

Crystallographic methods: Historical perspectives

I.I.Sc.

M.R.N.Murthy Molecular Biophysics Unit Indian Institute of Science Bangalore 560 012 mrn@mbu.iisc.ernet.in

15 August 2017 Happy independence day!

History began in 1895 with Wilhelm Conrad Röntgen

Crooke's tube

First X ray made in public. Hand of the famed anatomist, Albert von Kölliker, made during Roentgen's initial lecture before the Würzburg Physical Medical Society on January 23, 1896.

Wave or particle?

Physic Nobel price, 1906

P. Lenard, B. Walter, J.J.Thomson

X-ray : waves or particules

Theoretical evidence of radiation emission related to the slowing down of charged particles (J.J. Thomson , 1896)

W.H. Bragg

— « Theoretical discovery of X-rays »

Physic Nobel price, 1913

Particles or waves?

W.L Bragg and W.H. Bragg When a wave hits an object, the region immediately behind that object is protected from the wave (shadow). Shadows are sharper close to an object than they are further from it. The wave that just missed the object spreads in a circle or sphere, into the space behind the object. This is why shadows become more blurred further away from the object that casts them.

Wilhelm Wien

wavelength of X-rays should be around one hundredth of a nanometre

Lovely quartz crystals in Nature's kitchen

Crystals: symbols of beauty as well as vanity

In ancient India, crystallography ws called

"Ratnashastra"

Origin of gems

भूखभावाद्धि रत्नानि जातानि विविधानि तु। उपला रत्नरुपत्वं प्राप्ताः कालान्तरेण वा।।

Due to earth's nature, various forms of gems are formed over long incubation periods

पुरा पृथिव्या रत्नानि गर्भे त्वासन्हि सर्वशः। रत्नगर्भा इति सा भूमिः ख्याताभूद् भुवनत्रये।।

Because of the presence of gems in its bosom Earth has earned the name "RATNAGARBHA"

Classification of gems

Maharatna

(precious stones)

Uparatna

(semi precious stones)

Vajra (diamond) Mukta (pearl) Manikya (Ruby) Indranila (Sapphire) Marakata (Emarald) Vidruma (Coral) Gomeda (Jacinth) Pushparaga (Topaz) Vaidurya (Lapis Lazuli)

One possessed of all desirable qualities

VAJRA (Diamond)

It was well recognized that diamond is the hardest substance

षट्कोणत्वं लघुत्वं च समाष्टदलता तथा तीक्ष्णाप्रहा निर्मलत्वं इति पञ्च गुणाः स्मृताः॥

Diamond has six vertices and eight facets Octahedral symmetry Five properties of diamond

Vajrakaya

VARAHAMIHIRA studied crystal defects

Diamond is the hardest gems

पृषिव्यां यानि रत्नानि ये चान्ये लोहधातवः । सर्व ताद्विलिखेड्जरं वज्रं तैर्न वलिख्यते ।। Halasya Mahatyam

Of all the gems on earth, and all materials made of metals, the hardest is the diamond

Diamond cannot be scratched by any other object

Experimental examination of gems

Diamond Pounding

Emarald Green ray scattering when crystal faces sun

Sapphire Blue when placed in milk

Imagination unlimited

Sun Ruby Venus Mars Coral Jupiter Saturn Mercury Pearl Moon Rahu Ketu

Diamond **Yellow Sapphire Blue Sapphire** Emerald **Hessonite Garnet** Cat's Eye Chrysoberyl

Crystals : periodic arrangement of molecules

Magic numbers of crystallography

7 crystal systems **14 Bravias lattices 11 Laue groups 32 Point groups 17 Plane groups 230 Space groups 65** Non-centric space groups

The mathematical principles that underlie these numbers were understood before the birth of X-ray crystallography

Laue, great synthesis of ideas

Physic Nobel price, 1914

What matters in adding two waves is the phase difference

In phase constructive

Out of Phase Destructive

(a)

(b)

[c]

Scattering vector

Three ways of describing interaction of crystals with X-rays

Bragg's law: 2 d sin $\theta = \lambda$

a* = b x c / (a. b x c) b* = c x a / (a. b x c) c* = a x b / (a. b x c)

Ewald's construction

Sir William Henry Bragg (1862-1942)

A humble beginning

Structure of sodium chloride

Sir William Lawrence Bragg (1890-1971)

Scattering by an Atom

Atomic scattering factor

 $f = f_0 \exp(-B\sin^2\theta/\lambda)$: phase factor

Scattering by a Unit Cell

 $\mathbf{f}_{i} = f_{i}e^{2\pi i\mathbf{r}_{j}\cdot\mathbf{S}}$

This expression assumes X-ray beam scattered by a factitious atom placed at the origin of the unit cell as the reference beam X-ray diffraction yields the unit cell transform sampled at integral reciprocal lattice points

Fundamental Equations of Crystallography

Structure Factor

F (hkl) = $\iiint \rho$ (xyz) e $2\pi i (hx + ky + lz) dx dy dz$

Electron density

 ρ (xyz) = $\Sigma\Sigma\Sigma F(hkl) e^{i\alpha} e^{-2\pi i (hx + ky + lz)}$

History of first structures

Dorothy and Bernal took first pictures of protein crystals in the 30's

Max Perutz became a graduate student in the 20's

He demonstrated the way of determining phases in Green, Ingram and Perutz, JMB (1954)

Structure of myoglobin (1960), haemoglobin(1962)

A true revolution Today, we know more than 125,000 protein structures

Crystal structure: Mild perturbation F_{P}

Native

Adding one (or more) atoms in known positions changes the structure factor in a known way

Heavy atom positions overdetermined

F_{PF}

Derivative

Resolving phase ambiguity

119 reflection

Blow and Crick

One derivative

Three derivatives

$$P(\alpha_P) \propto \prod_{i=1}^{\infty} \exp(-\epsilon_i^2/2E_i^2)$$

Crystal mosaicity and beam divergence determine the rocking curve

Spot resolution problem: 1970's Home source

1980's synchrotrons

Unbelivable power

Year

Recording intensities associated with three-dimensional reciprocal lattice on two-dimensional detectors

Weisenberg Precession Screenless oscillation photography

Twinkle twinkle Little star How I wonder What you are

Where do you come from?

How strong are you?

How much do I trust you?

Auto-indexing

Difference vector method

Projection of reciprocal lattice points

No need to pre-orient the crystal

Indexing

Refining orientation

Post-refinement

📥 🛛 Bravais La	attice Table	- -		-				
Auto	indexing prefor	med for u	init cell b	etween	11.8 to 3	315 Ang:	stroms	
🔷 primitive a	ubic	22.68%	45.48	90.68	90.77	60.16	90.06	90.05
			75.64	75.64	75.64	90.00	90.00	90.00
♦ I centred	cubic	25.95%	101.67	90.77	101.41	63.61	78.46	116.65
~			97.95	97.95	97.95	90.00	90.00	90.00
↔ F centred	cubic	26.84%	101.67	101.69	163.42	97.07	97.18	126.85
•			122.26	122.26	122.26	90.00	90.00	90.00
🐟 primitive ri	hombohedral	7.82%	90.68	90.94	101.48	116.67	116.41	120.03
Ť			94.37	94.37	94.37	117.70	117.70	117.70
			160.36	160.36	45.48	90.00	90.00	120.00
🔶 primitive h	exagonal	0.08%	90.68	90.94	45.48	90.02	90.05	120.03
·			90.81	90.81	45.48	90.00	90.00	120.00
🔷 primitive to	etragonal	13.52%	90.68	90.77	45.48	89.94	90.05	119.84
· ·	U		90.72	90.72	45.48	90.00	90.00	90.00
 I centred t 	tetragonal	15.44%	163.42	90.94	45.48	89.98	73.90	90.06
			127.18	127.18	45.48	90.00	90.00	90.00
♦ primitive o	orthorhombic	13.52%	45.48	90.68	90.77	60.16	90.06	90.05
			45.48	90.68	90.77	90.00	90.00	90.00
🐟 C centred	orthorhombic	0.04%	90.94	157.02	45.48	89.94	89.98	89.93
			90.94	157.02	45.48	90.00	90.00	90.00
🔷 I centred	orthorhombic	6.79%	45.48	90.68	163.87	90.13	73.93	90.05
			45.48	90.68	163.87	90.00	90.00	90.00
♦ F centred orthorhombic		15.88%	45.48	186.94	187.10	58.19	75.99	75.96
			45.48	186.94	187.10	90.00	90.00	90.00
♦ primitive monoclinic		0.03%	90.68	45.48	90.77	90.06	119.84	89.95
			90.68	45.48	90.77	90.00	119.84	90.00
♦ C centred monoclinic		0.03%	157.02	90.94	45.48	89.98	90.06	90.07
			157.02	90.94	45.48	90.00	90.06	90.00
♦ primitive tr	riclinic	0.00%	45.48	90.68	90.77	60.16	89.94	89.95
lf yc	ou would like to c press Apply butto	hange the on and clos	crystal lai se window	ttice: selec , otherwis	ct desired se just clo	bravais la se windo	attice, w.	
								-
	Apply			Apply & Close				

Wilson 1949: Statistics of intensities

PDP 11/44:

Dinosaurs size Walnut sized brain of DEC10

Computer cost and performance

Flash freezing: 1990

Figure 2

A typical experimental arrangement for a cryocrystallographic data collection. A magnetic rubber disc is pierced with a stainless steel pin, the top of which is rounded and the bottom of which fits into the hole in the goniometer head. The magnet must be strong enough to make a rigid connection, but weak enough to allow the experimenter fine control of the top hat, which is fabricated from a magnetic metal such as stainless steel or nickel. (Figure reproduced from Garman & Schneider, 1997.)

Counters, Films, multiwire, imaging plates, CCD

Selenium K-edge and peak for E. coli thioredoxin (Hendrickson et al)

Breakdown of Friedel's Law

When an anomalous scatterer is present

 $f(\theta,\lambda) = f_0(\theta) + f'(\lambda) + if''(\lambda)$

 $|F_{hkl}| \neq |F_{-h-k-l}|$

We can measure this difference of amplitudes

 $\Delta F \pm = |F_{PH}(+)| - |F_{PH}(-)|$ is the Bijvoet difference

this can be used as an approximation to $|F_H|$ to locate sites

1980s-1990s

Molecular replacement

Can you recognize the similarity?

$$\mathbf{R}(\kappa,\phi,\psi) = \int_{r_{\min}}^{r_{\max}} \mathbf{P}_{nat}(\mathbf{u}) \mathbf{P}_{mod}(\kappa,\phi,\psi,\mathbf{u}) d\mathbf{u}$$

$$\mathbf{T}(\mathbf{t}) = \int_{cell} \mathbf{P}_{2\rightarrow 1}(\mathbf{u} - \mathbf{t}) \mathbf{P}_{nat}(\mathbf{u}) d\mathbf{u}$$

a) 0.000 Z 1.300

Double sorting algorithm!

Perfecting the structure

 $\int_{-\infty}^{1} (|F_o| - |F_c|)^{\frac{1}{2}}$

F_cs are calculated structure factors

F (hkl) = $\iiint \rho$ (xyz) [exp $2\pi i$ (hx + ky +lz)] dx dy dz

F (hkl) = $\Sigma\Sigma\Sigma$ f (xyz) exp $2\pi i$ (hx + ky +lz)

Importance of observations to parameters ratio

$$\mathbf{f} = \sum \frac{1}{\sigma^2} (|F_o| - |F_c|)^2$$

NP problems: scary local minima

RESTRAINTS ARE THE SOLUTION

Validation

Ramachandran plot Bond lengths/angles Homolog structure comparison Independent structural solutions

Robots for setting up crystallization and examining results

pRSET vector

Most proteins are now obtained by bacterial or cell expression

Thank you

32 point groups (crystal classes)

Rotation axis only	1	2	3	4	6
Dihedral	222	32	422	622	
Isometric				23	432
Rotoinversion axis	- 1	2	- 3	- 4	- 6
Rotation, \perp m	2/m	3/m	4/m	6/m	
Rotation, II m	2mm	3mm	4mm	6mm	
Rotoinversion		- 32m	- 42m	- 62m	
Dihedral, m	2/m2/m2/m		4/m2/m2/m		6/m2/m2/m
lsometric, m	netric, m 2/m3		- 4/m3n	า	