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Why use a Bayesian approach?

«We often know how are measurements are related to our model...

«The Bayesian approach gives us the probability of our model once we have made
a measurement

oIt is useful for dealing with cases where there are errors (uncertainties) in the
model specification (missing parts of model)

oIt is a useful way to combine our prior knowledge with observations to update
our model

«A Bayesian approach can be used in many different situations where parameters
(values) are to be estimated from measurements or observations.



Simple version of Bayes' rule

Suppose we are interested in the value of “x”
We have some prior knowledge about x “p, (x)”
We have some measurements of x “observations”

Then we can say...

p(x) < p, (x) p(observations | x)

The probability that a particular value of x is correct is proportional to...
the probability of x from our prior knowledge
multiplied by...

the probability that we would have made our observations if x were correct
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Painted stork
(more commogta

Open bill stork (less From a distance
common) .
p(x) < p, (x) p(observations | x)

Without observation of details p(observations|x) is the same for each

Painted stork is more common -> p, (Painted Stork) > p_, (Open bill Stork)
4 Bestguess: Painted Stork

See:
b : https://www.youtu
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Open bill stork U p CIOSG Painted stork

p(x) < p, (x) p(observations | x)

Now we can see if features expected for each stork are present
Painted stork we expect side has dark stripe
Openbill stork has white side

Which are they?




Open bill stork Up close
p(x) < p, (x) p(observations | x)

Now we can see if features expected for each stork are present
Painted stork we expect side has dark stripe
Openbill stork has white side

4 | P(observations | Painted Stork) is very high

P(observations | Openbill stork) is very low

-> very confident this these are Painted stork.

Painted stork




Introduction to Bayesian methods in
macromolecular crystallography

Basics of the Bayesian approach

* Working with probability distributions

* Prior probability distributions

* How do we go from distributions to the value of “x”?

* Bayesian view of making measurements

* Example: from “400 counts” to a probability distribution for the rate
* Bayes'rule

* Applying Bayes' rule

* Visualizing Bayes' rule

Marginalization: Nuisance variables and models for errors

* How marginalization works
* Repeated measurements with systematic error

Applying the Bayesian approach to any measurement
problem



Basics of the Bayesian approach
Working with probability distributions

Representing what we know about x as a probability distribution

p(x) tells us the relative probability of different values of x
1.0

0.8

p(x) does not tell us what x is...
...just the relative probability of each value of x



Prior probability distributions

What we know before making measurements

1.0

| am sure x is at least 2.5



Prior probability distributions
What we know before making measurements

1.0

All values of x are equally probable



Prior probability distributions

What we know before making measurements

1.0

X is less than about 2 or 3



Working with probability distributions
What is the “value” of x ?
(x)

We don’'t know exactly what “x” is... l
but we can calculate a weighted estimate: 10
0.8
= —~ 06
(x) Afxp(x)dx R
Q04
/ \ 0.2
Weight each by its relative
value of x probability p(x) 00 = . . =

A — 1 / f p ( X ) dxj < A is normalization factor



A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our
detector in 1 second

What is the probability that the rate of photons hitting these pixels is
actually less than 385 photons/sec?



Using Bayes' rule

p(x) < p, (x) p(observations | x)

The probability that a particular value of x is correct is proportional to...
the probability of x from our prior knowledge
multiplied by...

the probability that we would have made our observations if x were correct



A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our detector

in 1 second : N = 400
obs

A good guess for the actual rate k of photons hitting these pixels is 400:

k~ 400

What is the probability that k is actually < 385 photons/sec?

What is p( k<385 | N_,_= 400)



A Bayesian view of making measurements

Start with prior knowledge about which values of k are
probable: p (k)

Make measurement N ,

For each possible value of parameter k ( 385...400...)

Calculate probability of observing N, _if k were correct:
PN, | k)

Use Bayes'rule to get p(k) from p (k), N_,_and p(N , |k):

p(k)ecp, (k) p(N k)



A Bayesian view of making measurements

What is the probability that we ( ‘ k )
would measure N, counts if the obs

true rate were k?
k=385 k=400

N

0 100 200 300 400 500

Nobs



Bayes' rule

p(k)ocp (k) p(N k)

The probability that k is correct is proportional to...
the probability of k from our prior knowledge
multiplied by...

the probability that we would measure N, _counts if the

true rate were k k=§i ‘)(:400

1.0
0.8
%é(lG
go' 0.4
s 0.2

0.0

0 100 200 300 400 500
Nobs



Bayes' rule

p(k)ocpo(\k)p(Nobs\k)

Prior Likelihood
The probability that k is correct
is proportional to...

the probability of k from our
prior knowledge (prior)

k=385 =400
multiplied by... 1.0 K f
0.8
the probability that we would & 08
measure N , counts if the true 2 3‘2‘*
rate were k (likelihood) ™ 00

0 100 200 300 400 500
Nobs



Application of Bayes' rule

plk)oc p,(k) p(N g k)

No prior knowledge:  p (k)=1

| k ) oC e [ obs ] ( )

k=€ f=400
1.0

0.8
= 0.6
§ 0.4
= 0.2

0.0

P ( obs

0 100 200 300 400 500
Nobs



Application of Bayes' rule

Probability distribution | I
for k given our oc o Nk ?1(2k
measurement N_,_ =400: P ( k ) €

385
Probability that k < 385: p(k<385)=4[ _ p(k)dk
p = 22% A=1/{"_p(k)dk

p(Nobs|k)
© o o =
A O 0 O

S O
o N
o

100 200 300 400 500
Nobs



Visualizing Bayes' rule

p(x| yobs) OCPO(X)P()’obs‘x)

Where does Bayes' rule come
from?

Using a graphical view to show
how p(x|y) is related to p(y|x)



Visualizing Bayes' rule: p(x
p(x) and p(y)

Y obs) Ocpo(x)p(yobs‘ X)

p(x)dx= B p(x) dx is the fraction of all
drops from x to x+dx

— D —
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A is all the drops in the box

X X+dx B is the drops in the vertical strip
C is drops in horizontal strip
D is the intersection of B and C



Visualizing Bayes' rule: p(y|x) and p(x|y)

p(x)dx=B
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Considering only drops from x to x+dx, p(y|x)dy is the fraction of drops
from y to y+dy

p(y)dy=C



Visualizing Bayes' rule: p(x.,y)

p(x)dx=B [ D J=[DB] [B ]
—  |e— p(x,y)dydx=p(y[x)dy p(x)dx
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p(x,y)dxdy is the fraction of all drops inside the box
from x to x+dx and y to y+dy



Visualizing Bayes' rule: p(x,y)
p(x)dx=B [ D J=[DC][C ]

] |e— (x,y)dydx=p(x]y)dx p(y)dy
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X x+dx p(x)dx=B

p(x,y)dxdy is the fraction of all drops inside the box
from x to x+dx and y to y+dy



D=D/B*B

D=D/IC*C

y+dy

Visualizing Bayes' rule

p(x,y)dxdy=p(y[x) p(x)dxdy
p(x,y)dxdy=p(x]y) p(y)dxdy

p(x)dx=B

p(y)dy=C



An identity we will need now and later....

p(»)=[ p(»]x) p(x)dx

p(x)dx=B
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VP g 4 It i A i ) e
- - - - - -
) Z l, J U J U J 4 J £ 1
y+dy
C D p(y|x)dy=D/B p(y)dy=C
ARTYS TTETETELIL
1P 4 e A e A i ) e )
</ </ v % </ - |
2 J U ) J U v v J J
Jgar ) Wkt A i ) i e
- % J o 3 B |/ : J o 2 > o 2 J JA J v
=) W I g 4 e 4 ) e 4
Y —




Visualizing Bayes' rule

p(x,y) written two ways p(x|y)p(y)=p(y|x)p(x)

rearrangement...  p(x|y)=p(y|x) p(x)/ p(y)

An identity P(J’):fp(ﬂx)l?(x)dx

Substitution...Bayes' rule:

p(x|y)=p(»|x) p(x)I| p(¥|x)p(x)dx



Bayes' rule as a systematic way to evaluate truth-tables

p(x)dx
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p(x) dx is the fraction of all drops from x to x+dx



Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

Second tossH Second toss T

First toss H HH HT

TH TT

Firsttoss T




Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

Second Second FS=head on first or second toss

) —lossH toss T H= heads first toss T= tails first toss
First H H
toss Bayes' rule:
H H T
p(H)=A p(H) p(FS|H)
First I T A =1/[p,(H) p(FSIH) + p,(T) p(FS|T) |
’flc-)ss H T p,(H)=1/2
p(FS|H)= 1
p(FS|T)=1/2

A=1/[1/2 +1/2*1/2] = 4/3
p(H)=4/3*1/2 = 2/3



Quick Review of Bayes' rule

p(x] yobS)ocpo(x)p<yobs‘x)

P( x‘ Y obs) Probability of x given our observations

P, (x ) What we knew beforehand about x

X Probability of measuring these
p (y obs ‘ ) observations if x were the correct value



Marginalization

What if the observations depend on z as well as x ?
(Maybe z is model error)

P( )4 obs‘ JC) What we want to use in Bayes' rule

P(Vorsl¥)= | D(yosslx, 2) p(2)dz

“Integrate over the nuisance variable z, weighting by p(z)”



Marginalization
y . ~observations

P Vows) = f P (Yorslz) p(z)dz Identity we saw earlier

The whole equation

p(.yobs'x):f P(Vors|z,x) p(z|x)dz canbefora

particular value of x

If z does not

P(Yorl¥)=] P(osslz,x) p(2z)dz  dependonx
p(z)=p(zlx)

“Integrate over the nuisance variable z, weighting by p(z)”



Marginalization with Bayes' rule

We want to get p(x) using p(y, ,|x) in Bayes' rule...

Y...I1s an experimental measurement of y

~(Yops—y)120°

P (Yol y) e

y depends on x and z (perhaps z is model error)
y=y(z,x)

...then we can integrate over zto get p(y , |x):

P YosslX)= | p(yors|¥(z, %)) p(2)dz



Repeated measurements with systematic error

We want to know on average how many drops Davg of rain hit a
surface per 100 cm? per minute.

The rain does not fall uniformly: D(x)=D, +E(x) where the SD of
E(x) is e. However we only sample one place

We count the drops N falling in 1 minute into a fixed bucket with
top area of 100 cm? m times (N, N,...) with a mean of n.

What is the weighted mean estimate <D, >? What is the
uncertainty in <D, >? ]




How to apply a Bayesian analysis to any
measurement problem

1. Write down what you really want to know: p(Davg)

2. Write down prior knowledge: po(Davg)=1

3. Write down how the true value of the thing you are
measuring depends on what you really want to know and

any other variables: D=Davg+E

4. Write down probability distributions for errors in
measurement and for the variables you don't know:

P(N,,.|D) and p(E)



How to apply a Bayesian analysis of any
measurement problem

5. Use 3&4 to write probability distribution for measurements given
values of what you want to know and of nuisance variables: p(N.,
N2...|Davg,E)

6. Integrate over the nuisance variables (E), weighted by their
probability distributions p(E) to get probability of measurements given
what you want to know: p(N,, Nz...|Dan)

7. Apply Bayes'rule to get the probability distribution for what you
want to know, given the measurements: p(Davg|N1, N,...)= po(Davg)

p(N, N,...D,,)



Repeated measurements with systematic error

We want to get p(Davg) using p(Nobs|Dan) in Bayes' rule...but the
rate into our bucket D depends on D_. and E:

avg
D=D, +E
p ( E ) oce —E°2e

N _,.is the number of drops we count with SD of n':

( Obsl Davg , )(x:e_(Nobs_(Davg+E))2/282

Including all m measurements N, N.,...

p(Np Nz‘D E)OC e_zi(Ni_(Davg+E))2/232

avg’



From p(Nl’ NZ"' |D E)(X: e_Zi(Ni_(Davg+E))2/2S2

previous _ED el
slide p(E)xe ¢

avg’

We have p(N,,N,...|D,
the nuisance variable E:

E). We want p(N,,N,...|D,, ). Integrate over

P(N,Ny.|Dug)=[ p(N|,N,...|Dpg, E) p(E)dE

Yielding (where n is the mean value of N <N,N.,,...>)

—(D_.—n)*12(e*+s*Im
p(NI:N2”'|Davg)OCe ( - Jiate )

Now we have p(N,N,...|D, ) and we are ready to apply Bayes' rule



We have the probability of the observations given D, ,

—(Dge—n 212(e*+ s*Im
p(NI:NZ"'|Davg)OCe ( e )

Bayes' rule gives us the probability of D, given the observations:

- avg_nZ/ e’+s%Im
p(D,,|N,,N,..)cp,(D,,)e (D= )12 (e*+5% m)

If the prior p (D,,,) is uniform:

p(Davg| N1 ,Nz...)OCe_(D“"g_”)zlz(ez“LSZ/m)

an

(D,p)=n=(N)  o'=e+sm



How to apply a Bayesian analysis to any
measurement problem

1. Write down what you really want to know: p(Davg)

2. Write down prior knowledge: po(Davg)=1

3. Write down how the true value of the thing you are
measuring depends on what you really want to know and

any other variables: D=Davg+E

4. Write down probability distributions for errors in
measurement and for the variables you don't know:

P(N,,.|D) and p(E)



How to apply a Bayesian analysis of any
measurement problem

5. Use 3&4 to write probability distribution for measurements given
values of what you want to know and of nuisance variables: p(N.,
N2...|Davg,E)

6. Integrate over the nuisance variables (E), weighted by their
probability distributions p(E) to get probability of measurements given
what you want to know: p(N,, Nz...|Dan)

7. Apply Bayes'rule to get the probability distribution for what you
want to know, given the measurements: p(Davg|N1, N,...)= po(Davg)

p(N, N,...D,,)



Tutorial Discussions

.Discussion of Bayesian applications in crystallography

\Working through simple Bayesian exercises from handout in a
group

.Density modification and Bayesian statistics

.Discussion of individual challenging examples and questions
from students



Some things to think about ...

.1. Are you sure you have included all plausible hypotheses? If you don’t
have correct answer in your list your Bayesian analysis will never work...

.2. The data has to discriminate among the plausible hypotheses to be
useful.

3. A plausible hypothesis is one for which the prior is not zero



Applications of Bayesian methods in crystallography

.Molecular replacement with likelihood targets
Likelihood-based refinement

Statistical density modification

.Matching of sequence to density in a map

.Evaluation of map quality



