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Small Molecule Computing

David Watkin

Chemical Crystallography Laboratory

Oxford

A Brief History

and a Look to the Future

or

 What ever happened to Xtal?
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Early Computing

The 1950’s

Most of the crystallographic ‘computers’ at this period 

were electro-mechanical analogue machines, using 

technology originally developed for military purposes.

Data were input via dials or other mechanical 

adjustments.
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Help with the Calculations
A.D. Booth, 1948

Mechanical, electrical, electro-

mechanical and optical devices 

were built to help with 

computation of trigonometric 

functions and the summation of 

series.
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Early Computing

Later, punched card accounting machines were co-opted for 

the computation of Fourier maps.

Data were input on Hollerith punched cards.  The 80-column 

legacy is only slowly dying. Until recently, lines in a CIF were 

limited to 80 characters, including trailing blanks.
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Early Computing – 1952
Computing Methods and the Phase 

Problem in X-ray Crystal Analysis, 1952

Ed Ray Pepinsky
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Early Computing
Electron density map displayed on X-RAC, David Sayre making some adjustments
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Fourier Modification 2008

“This paper summarizes the current state of charge flipping, a 

recently developed algorithm of ab initio structure determination. 

Its operation is based on the perturbation of large plateaus of low 

electron density but not directly on atomicity. Such a working 

principle radically differs from that of classical direct methods”

The charge flipping algorithm

Gabor Oszlanyi and Andras Suto

Acta Cryst. (2008). A64, 123–134
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Early Computing – Fourier 

Modification - 1952

These were adventurous times in which anything might be possible if 

one was inventive enough.

Fred Ordway, in “Crystallographic Calculations by High-speed Digital 

Computers” (1952) wrote

“A procedure involving successive Fourier inversions, with elimination of 

negative excursions of the electron density function at each step, has been 

coded but not yet tried”

Addition, subtraction 0.0009 sec

Multiplication, Division 0.003 sec

Square Root 0.05 sec

Binary to decimal conversion 0.1 sec
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Electronic Computers - 1961
In less than ten years, analogue 

machines had disappeared, and 

were replace by digital calculators.

The second ‘Computing Methods’ 

meeting laid out the foundations of 

almost every computation we do 

today.

Languages varied from simple 

autocodes to Algol
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Phase Problem (1961)

28 papers presented at this seminal meeting.

10 were concerned with solving the Phase Problem

4 by Patterson Methods

3 by Direct Methods

1 by Isomorphous Replacement

1 by Anomalous Dispersion

1 by Monte Carlo Methods
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Monte Carlo 1994

Shake-n-bake

A trial structure or model is generated that is 

comprised of a number of randomly positioned atoms 

and their symmetry-related mates sufficient to specify 

the origin and enantiomorph for the space group in 

question. The starting coordinate sets are

Structure Solution by Minimal-Function Phase  

refinement and Fourier Filtering. II. 

Implementation and Applications
By Charles M. Weeks, George T. Detitta And Herbert A. Hauptman

Acta Cryst. (1994). AS0, 210-220
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Monte Carlo Methods
The Use of a Monte Carlo Method in X-ray Structure Analysis

V. Vand and A. Niggli

Computing Methods and the Phase Problem, 1961

“the direct application to crystal structures, consisting of emitting a 

large number of random structures and comparing their structure 

factors with [the observed] ones of the structure to be solved, seems 

to be inapplicable owing to the low probability of a sufficiently 

close hit.”

The random structures and a subset of the complete data were 

partially refined by the “Optimal Shift Method”.  Structures giving 

a fair agreement were used to phase the full data set.
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MULTAN

1970

The development of multi-solution tangent formula 

programs for solving the phase problem quickly 

displaced most other strategies for small molecular 

structures.  

The speed of computers, random-start methods and 

powerful discriminators against false solutions made 

much of the theoretical development of the previous 

decades redundant.
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Direct Methods (1976)
In 1976 structure solution by hand was co-existing with the new multi-solution 

programs.
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Automation
1970
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Automatic Structure Analysis, 

1991
Until the mid-1990’s, we had been trying to build 

fully automated systems, e.g.

Automatic Solution and Refinement of Crystal 

Structures by Means of the Package UNIQUE

Cascarano, Giacovazzo, Camalli , Spagna and 

Watkin. Acta Cryst. (1991). A47, 373-381

We eventually realised that it was easier to teach 

chemists some basic crystallography than to teach 

programs sophisticated chemistry. 

“An automatic procedure for crystal structure solution and refinement has been 

devised. It is able to take decisions at each critical point of the analysis by taking 

careful account of all information available at that point. The procedure has been 

implemented into the package UNIQUE (CRYSTALS+SIR88)” 
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A Turning Point

The computing school in 

Twente (Netherlands) in 1978, 

perhaps marked the high point 

of computing schools. 

Speakers discussed both their 

programming philosophies, 

and also the detailed 

algorithms used in their 

programs.

Mini-computers made their 

first serious appearance.
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The Period of Great Diversity

During the 1960’s -1970’s software for structure 

analysis was being developed in almost every X-

ray laboratory.

Even if one imported an established program such as 

ORFLS, it was often necessary to prepare small 

subroutines to deal with special cases.  Users 

needed some programming skills.
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FORDAP1962, Zalkin

ORFLS 1962, Busing, Martin & Levy

ORFFE 1964, Busing, Martin & Levy

ORTEP 1965, Johnson

MULTAN 1970, Germain, Main & Woolfson

Written in FORTRAN

See also  IUCr World List of Crystallographic Computer Programs,  Acta Cryst. (1962). 15, 1190. 

“The present World List contains entries for 577 programs, many of which also appear in the ACA 

lists. Nearly all programs listed were in existence prior to 1 January 1962.”

Widely Distributed Early Programs
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Systems 

Improved Productivity Through Crystallographic 

Packages

Bert Frenz (1991†) argued convincingly that the 

productivity of a structure analyst can be increased if 

there is a smooth data-flow between the various 

utilities needed for the analysis.

The convenience for the user is obtained at the 

expense of complexity for the designer.

†Crystallographic Computing 5. Ed Moras, Podjarny & Thierry
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The Rise of the Systems

X-ray 1963, Stewart, Kundell & Baldwin

CRYSTALS 1970, Carruthers and Spagna

XTL 1972, Sparks

SHELX 1972, Sheldrick

SDP 1975, Okaya & Frenz

RONTGEN 75 1975, Andrianov

DIRDIF 1975, Gould, van den Hark, Beurskens

XTAL 1978, Hall & Stewart

CRYSTAN 1978, Burzlaff, Bohem & Gomm

NRC-PDP8 1978, Larson & Gabe (NRCVAX)

PLATON 1982, Spek (EUCLID)

GSAS 1986, Larson & von Dreele

NRCVAX 1987, Gabe, Lee & Le Page

Molen 1990, Fair



22/68

and their Fall
By the mid 1990’s systems were dying

Extinct:
• X-ray 1963, Stewart, Kundell & Baldwin
• NRC-PDP8 1978, Larson & Gabe (NRCVAX)
• NRCVAX 1987, Gabe, Lee & Le Page
• Molen 1990, Fair

Endangered:
• CRYSTALS 1970, Carruthers and Spagna
• DIRDIF 1975, Gould, van den Hark, Beurskens
• SDP 1975, Okaya & Frenz
• XTAL 1978, Hall & Stewart

• PLATON 1982, Spek (EUCLID)
• GSAS 1986, Larson & von Dreele
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Some Commercial Packages

Massive effort has been put into creating comprehensive 
commercial packages, yet most of them have faded away.

The costs of developing and maintaining software are enormous.

Robert Langridge, in his address at the special session entitled 

"Crystallographic Computing for the 1990's: What Can We 

Expect?"  stated that software maintenance represents 

75% of the cost over the lifetime of a computer system.

In other words, writing a new program is only a small part of the final cost if 

it is to remain in use over a long period.
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Built to Last

It might be thought that ‘program systems’, developed by a group of 

workers, would be the most durable because understanding of the inner 

working is distributed across the group.

Paradoxically, it turns out that the most portable and enduring software: 

•has naïve input

•has plain-text output 

•is focussed onto a narrow range of tasks 

•was generally written or maintained by one person

•The “one person” has a secure research post
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Built to Last

Paradoxically, the most portable and enduring software has naïve input, 

plain-text output, is focussed onto a narrow range of tasks, and was 

generally written by one person.

Instead of a monolithic program, a more maintainable product consists 

of a range of modules which speak to each other through very simple, 

well defined, interfaces. 

Each module can be developed more or less independently of the others.
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symmetry and reflection data all in free 

format.

Trigonal bovine trypsin P3121 #152 

CuKa

54.735 54.735 106.786 90 90 120

6 symops follow, then h,k,l,I and sig(I)

1 0 0 0 1 0 0 0 1 0.0 0.0 0.0

0 -1 0 1 -1 0 0 0 1 0.0 0.0 0.333333

-1 1 0 -1 0 0 0 0 1 0.0 0.0 0.666667

0 1 0 1 0 0 0 0 -1 0.0 0.0 0.0

1 -1 0 0 -1 0 0 0 -1 0.0 0.0 0.666667

-1 0 0 -1 1 0 0 0 -1 0.0 0.0 0.333333

22 -3 -41 21.38 3.27

-2 6 -12 162.92 11.71

-19 4 -32 81.44 6.82

-13 -9 -51 16.44 3.87

etc. 389596 reflections in total, 
terminated by the end of the file.

Maintainability & Understandability

The task was to sort the reflections into a 

standard order, eliminate systematic 

absences, merge equivalent reflections 

and detect centric reflections.

The half-dozen solutions to the problem 

showed many differing virtues, from 

being very brief  to expansive but self-

explanatory.

Reciprocal Space Tutorial - George M. Sheldrick

Siena, 2005
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Maintainability & Understandability

Reciprocal Space Tutorial - George M. Sheldrick

http://journals.iucr.org/iucr-top/comm/ccom/siena2005/notes.html

Author and Language   No. of pages

George Sheldrick Fortran 77 3

Tim Gruene C++ 7

Michel Fodje C++   8

Juan Rodriguez-Carvajal Fortran-95 5

Bradley Smith Java 12

Ralf W. Grosse-Kunstleve Python 1

CRYSTALS Simple Datafile 1
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George Sheldrick
      PROGRAM SMERG

C

C Fortran-77 sort-merge solution for Siena exercise

C

      PARAMETER(NX=2000000)

      INTEGER IH(NX),IK(NX),IL(NX),IP(NX),IQ(NX)

      REAL FF(NX),SI(NX),SY(12,24)

C

C Read data from standard input

C

      READ(*,'(/)')      

      READ(*,*)NS

      READ(*,*)((SY(I,J),I=1,12),J=1,NS)

      NR=0

  1   N=NR+1

      IF(N.GT.NX)STOP '** Too many reflections **'

      READ(*,*,END=5)IH(N),IK(N),IL(N),FF(N),SI(N)

      IP(N)=N

      NR=N

C

C Convert reflection indices to standard setting

C

      U=REAL(IH(N))

      V=REAL(IK(N))

      W=REAL(IL(N))

        DO 4 M=-1,1,2

          DO 3 J=1,NS

          I=M*NINT(SY(1,J)*U+SY(4,J)*V+SY(7,J)*W)

          K=M*NINT(SY(2,J)*U+SY(5,J)*V+SY(8,J)*W)

          L=M*NINT(SY(3,J)*U+SY(6,J)*V+SY(9,J)*W)

          IF(L.LT.IL(N))GOTO 3

          IF(L.GT.IL(N))GOTO 2

          IF(K.LT.IK(N))GOTO 3

          IF(K.GT.IK(N))GOTO 2

          IF(I.LE.IH(N))GOTO 3

  2       IH(N)=I

          IK(N)=K

          IL(N)=L

  3       CONTINUE

  4     CONTINUE

      GOTO 1    

etc

The program is self-contained, uses no 

obscure FORTRAN features, and with 

a little effort even the DO 4 ….4 

CONTINUE loop can be understood
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 sigmas = flex.double()

  for i_line in xrange(3+n_symops,len(lines)):

    fields = lines[i_line].split()

    assert len(fields) == 5

    miller_indices.append([int(value) for value in fields[:3]])

    data.append(float(fields[3]))

    sigmas.append(float(fields[4]))

  miller_set=miller.set(

    crystal_symmetry=crystal_symmetry,

    indices=miller_indices,

    anomalous_flag=False)

  miller_array = miller_set.array(

    data=data,

    sigmas=sigmas).set_observation_type_xray_intensity()

  print "Before merging:"

  miller_array.show_summary()

  print

  merged = miller_array.merge_equivalents()

  merged.show_summary()

  print

  merged_array = merged.array()

  print "After merging:"

  merged_array.show_comprehensive_summary()

  print

if (__name__ == "__main__"):

  run(sys.argv[1:])

etc. 389596 reflections in total

Ralph Grosse-Kunstleve
# sort_merge_initial.py was written in exactly 30 minutes while

# sitting in the audience as others explained their solutions.

#

# It doesn't solve the exercise exactly, but demonstrates how to

# work with the high-level cctbx facilities to solve most of the

# exercise. Note that sort_merge.py produces significantly more

# information than was requested, e.g. the space group name,

# data completeness, etc.

#

from cctbx.array_family import flex

from cctbx import crystal

from cctbx import uctbx

from cctbx import sgtbx

from cctbx import miller

import sys

def run(args):

  assert len(args) == 1

  lines = open(args[0]).read().splitlines()

  title = lines[0]

  unit_cell = uctbx.unit_cell(lines[1])

  n_symops = int(lines[2].split()[0])

  space_group = sgtbx.space_group()

  for line in lines[3:3+n_symops]:

    coeffs = [float(field) for field in line.split()]

    space_group.expand_smx(sgtbx.rt_mx(coeffs[:9], coeffs[9:]))

  crystal_symmetry = crystal.symmetry(

    unit_cell=unit_cell,

    space_group=space_group)

  miller_indices = flex.miller_index()

  data = flex.double()

This was the tersest solution, 

and almost solved the problem 

as set.  

On a computer with the full 

toolbox installed, the 

development environment 

enables the reader to backtrack 

to discover the functionality of 

the modules.
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Program or User-Commands?

George’s solution is obviously a program in the 

classical sense.

Ralph’s solution is less clearly defined.  It is 

evidently a program in that it instructs the 

computer, but it is more like a set of user 

commands in that the maths is hidden from view.

The advent of scripting languages blurs the line 

between programs and data.
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CRYSTALS

File “job.dat”

#use start.dat

#OPEN HKLI reflections.hkl

#LIST 6

READ TYPE=FREE

END

#CLOSE HKLI

#SYSTEMATIC

END

#SORT

END

#MERGE

END

File “start.dat”

#TITLE Trigonal bovine trypsin P3121 

# 152 CuKa

LIST 1

REAL 54.735 54.735 106.786 90 90 120

END

#SPACEGROUP

SYMBOL P 31 2 1

END

File “reflections.hkl”

22 -3 -41 21.38 3.27

-2 6 -12 162.92 11.71

-19 4 -32 81.44 6.82

-13 -9 -51 16.44 3.87

etc. 389596 reflections in total, 

This data file causes 

CRYSTALS to perform much 

the same calculations as 

Ralph’s program, in much the 

same time as George’s.
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Topas - Alan Coelho
' DCOND2 + Pb + silica wool 25tns/RT, run # 1 (Overall sum)                       

r_exp  2.858                 

r_exp_dash  18.720            

r_wp  3.702              

r_wp_dash  24.245             

r_p  4.724               

r_p_dash  30.647              

weighted_Durbin_Watson  1.333   

gof  1.295                     

'do_errors

xdd prl52076_87_25tns_tof_xye.dat xye_format   

neutron_data

x_calculation_step = Yobs_dx_at(Xo);

       weighting = If(SigmaYobs < .01, 1, 1/SigmaYobs^2);

'############################################################

 TOF_LAM(0.001)

TOF_x_axis_calibration(!t0, 3.88810, !difc, 4677.19027, !difa, 0.13451)

   

   prm !exp1  7.15326 min 1 max 10

  

      TOF_Exponential(, 47.03716,, 109.24076, exp1, difc, +)

   push_peak        

      TOF_Exponential(, 17.27854,,  3.43204, exp1, difc, +)

   bring_2nd_peak_to_top      

      TOF_Exponential(, 1431.31523,,  33.75847_LIMIT_MIN_-13.5347376, exp1, difc, -)

      scale_top_peak    88.4790102 min .001 del = Val .05 + 1; 

   add_pop_1st_2nd_peak    

'############################################################

Coelho has developed a 

“crystallographic” language 

which enables the user to 

tailor a computation to the 

individual task.

This includes declaring new 

variables, and defining new 

calculations.
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Case Study:

Xtal and SHELXx

You could run an X-ray 

laboratory using either of these 

packages.

Why has Xtal almost 

disappeared?



34/68

Xray and Xtal

The first reference to Xray was 

about 1963, (Stewart, Kundell 

& Baldwin).  This grew into a 

large system written in ‘pidgin 

Fortran’ 
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Xray and Xtal

XTAL: New Concepts in Program System 
Design

S. R. Hall,  James M. Stewart & Robert J. 
Munn

Acta Cryst. (1980). A36, 979-989

To try to get round implementation difficulties on 
different systems, the FORTRAN program was re-
cast into RATMAC, a language that could be pre-
processed into RATFOR, and then FORTRAN
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XTAL

Modules

ABSORB ADDATM ADDREF ATABLE BAYEST BONDAT

BUNYIP CBAZA CHARGE CIFENT CONTRS CREDUC

CRILSQ CRISP CRYLSQ DIFDAT FC FOURR

GENEV GENSIN GIP LATCON LISTFC LSABS

LSLS LSQPL LSRES MAPLST MODEL MODHKL

NEWCEL NEWMAN ORTEP PATSEE PIG PLOTX

PREABS PREVUE REFCAL REFM90 REGFE REGWT

RFOURR RIGBOD RMAP RSCAN SHAPE SHELIN

SLANT SORTRF STARTX VUBDF XTINCT

System Editor

Syd Hall

Co-Editors

James Stewart   

Howard Flack     

Geoff King   

Doug du Boulay 

Roeli Olthof-Hazekamp 
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Formal Design
The X-ray system, and later the Xtal system, was a carefully managed project.  It was 

designed to be maintainable and extensible.  Documentation was an important feature.

Even the documentation was 

documented
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Formal Design

In addition to a modest user 

guide, the authors also produced a 

very detailed description of the 

algorithms used.

In the 400-page Reference 

Manual, users could find out more 

or less exactly what each 

computation was doing.

Published 1990
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Informal Design

At about the same time that X-ray was morphing into Xtal, George 

Sheldrick was creating SHELX. 

Note that there was no version number – GMS had no idea how important 

his creation was to become.

Documentation was minimal and the algorithms were not described in 

detail. 

A definitive version was released in 1976 as SHELX76.

The original program, which can still easily be re-dimensioned to handle 

modestly large structures, was a complete system including data 

processing, structure solution, refinement and table generation.
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Informal Design

The ‘single executable’ program has inevitable maintenance problems when 

ever new features need to be added.

A more manageable model is to divide the overall problem into pieces that are 

more-or-less independent, and focus effort onto each problem in turn.

Over the years, GMS has released updated modules, e.g.
SHELXS

SHELXL

SADABS

SHELXD

XP

The SHELX76 ‘system’ has been divided into separate parts with a consistent 

data and instruction input style.
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System Design

Pro Con

Stand-alone 

dedicated 

programs

Low development cost

Low maintenance cost

Easily linked to other systems

Easy to add a low-sophistication GUI

Difficult to integrate closely 

into other systems.

Difficulties with sharing 

intermediate results

Closely 

Integrated 

system

Big increase in functionality for 

complex problems

High development cost

Very high maintenance cost
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Why do Programs Die Out?

Inappropriate language

Too machine specific

Over-complex internal organisation

Outdated algorithms

Poorly Documented

Unacceptable user-interface

Over-proliferation of unwanted goodies

Small user-base

Licence Costs

No-one to support it
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Future-proofing
This can be aimed at by:

SHELX Xtal

Using a slowly-evolving language that is well 

characterised

X

Not using proprietary extensions to the language X

Not using hardware specific facilities X X

Easy to install/compile X

Making minimal or no use of external libraries X X

Providing definitive user-documentation X X

Providing worked examples X X

Having a well defined data structure that can be 

extended

X

Providing definitive programmer documentation X

Commenting the code, especially the little tweaks that 

have evolved to improve stability or functionality

X
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Case Study:

Xtal and SHELXx

Xtal SHELXx

Large (at the time) user-base Very large user-base

Continuously updated Definitive editions

Exhaustive selection of options Small, focussed, selection of options

Verbose input Terse instruction set

Complicatd to install Single, easily compiled, file

Continuously updated structural data base Each job totally self contained



45/68

User Interface
Bad Ideas

•Complex interface for a simple task

•Over-simple interface for a complex task

Good Ideas

•The user can easily get started on simple 

tasks

•The user can form a mental image of the 

activity. 

GPS example.

If you come across unexpected road works, you 

may need a map in order to suggest alternative 

routes to the instrument.
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CRYSTALS

40 years of accumulated experience and development

A complete package from hkli files  through to 

publication cifs with the exception of structure solution.

Collaboration with Sheldrick, Giacovazo and Palatinus 

provides seamless structure solution.

Internal code and seamless links to CIFcheck and 

PLATON provide structure validation.
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Richness and Complexity

CRYSTALS is a very ‘rich’ program – there are 
many hundreds of user-adjustable parameters.

This provides the new user with a bewildering range 
of choices – it is too complex

“Scripts” enable an experienced crystallographer to 
produce pre-prepared, simplified, strategies for 
routine tasks.
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Home-made Interpreters
%SCRIPT COLLECT

A SCRIPT to help collect atoms into a molecule, or bring new peaks close to existing 

atoms.

%% check we have an atom list

%  IF EXISTS 5 .NE. 1 THEN

  You do not have an atom list.

%  FINISH

%  END IF

%  BLOCK

%    ON ERROR REPEAT

%    QUEUE REWIND

%    CLEAR

%      VERIFY ALL NEW NONE

%      GET NOSTORE FINAL ABBREVIATED -

  'Collect all the atoms, or just the new peaks' 'NEW'

%      IF VALUE .EQ. 1 THEN

%        INSERT 'SELECT TYPE = ALL'

%        QUEUE SEND

%        CLEAR

%      ELSE IF VALUE .EQ. 2 THEN

%        INSERT 'SELECT TYPE = PEAKS'

%        QUEUE SEND

%        CLEAR

%      ELSE

%        FINISH

%      END IF

%  END BLOCK

%  COPY '#COLLECT'

%  QUEUE PROCESS

%  COPY 'END'

%END SCRIPT

‘CRYSTALS’ Issue 7  (Betteridge, Prout and 
Watkin, Oxford, 1983)

The program can enter a dialogue with the user.
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1995. Richard Cooper added a GUI.
The Guide enables the user to apply chemical knowledge.
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CRYSTALS 2000

Most of the infra-structure needed to enable enhanced functionality 

to be added was in place for The Millennium.

Since then the underlying FORTRAN and user accessible features 

have continued to be developed in response to the communities 

needs.

Publicity material, 2003
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OLEX2: a complete structure solution, refinement and analysis program

Oleg V. Dolomanov, Luc J. Bourhis, Richard J. Gildea, Judith A. K. Howard and Horst Puschmann 

Age Concern

As part of the EPSRC “Age Concern” project the group in 

Durham has shared complete access to CRYSTALS source code 

and SCRIPTS to help them develop their own user interface.



52/68

Age Concern

smtbx/cctbx

“focusing on those key computational details which have been 

the treasures of the classic programs CRYSTALS or SHELX.”
ACA 2010: 07.26.4 Solution and Refinement with the cctbx and smtbx

Luc Bourhis, Oleg Dolomanov, Richard Gildea, Judith Howard, Horst Puschmann

SMTK/cctbx

“provide a modelling design 

process, where the model 

formulation is kept separate 

from the optimization 

process.”
SMTK – a small-molecule toolkit library for 

crystallographic modelling and refinement

Mustapha Sadki* and David J. Watkin J. Appl. 

Cryst. (2011). 44, 52–59

The project has also given rise to two refinement sub-systems.
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SMTK
Example. The equation of a 3D plane is:

A x +B y + C z + D = 0, divide by C, provided C is not zero.

a x + b y + z +d =0 

The distance of any atom (x,y,z) from the plane is

Distance = | ax + by + z + d | /  sqrt(a2 + b2 + 1) 

We must find the values of a,b and d which minimise the sum of the distance 

of all atoms of interest from the plane.

  template<T>  

   T Distance2Plane ( Array2D<T> &p , Array2D<> &data)

  {     

      return abs(p[0]* data[0] +  p[1]* data[1] + data[2]  + p[2]) / sqrt( p[0]*p[0] + p[1]*p[1] +1);

  } 

     // instantiate the least squares object using the template function with optional 

arguments: 

      bool  need_covar = true;

      lm_solver<Distance2Plane> lsq(data_points, m, n, need_covar);     

      // generates the lsq model f & f(x) and then we call for minimisation 

      ret = lsq.minimise (Observation); 
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Digital Computing

Digital computers have revolutionised

crystallography.

Has computing replaced thinking?

Bob Sparks matrix-accumulation benchmark (1976):

Microvax 3800 (1989) 1,824 secs

1.8Ghz Athlon, (2005) 3secs

3.0Ghz Intel Duo (2010) 1sec

We can now do in one day what would have taken three 

days in 2005, and almost five years in 1990
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Molecular Recognition

‘The crystallographer uses intuitively the concept of 
similarity amongst structures in the survey of F-maps 
..  It appears desirable now to minimise such human 
effort ..’

Formal Aspects of the Interpretation of Fourier Maps, J.C.J. Bart & A. Busetti, Acta Cryst. (1976). A32, 927

Many programs can check if a crystal structure corresponds to a proposed 

structure.  If the match is not exact, it becomes difficult to make a machine-

hypothesis about the nature of the differences.

Often a chemist can just glance at the structure and decide if it is feasible or not.

The speed of instruments and computers is such that 

crystallographers have become the slowest link.
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macHine valiDATion

Word Processors have shown us both the power 

and the risks of machine val1dation  of routine 

tasks.

spelling & grammar checks, automated 

ca!italisation etc. filter out MANY errors, but it 

an experienced reader is still required to 

r e v i e w the final documen T.
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Age Concern

Regression to the 1990’s

Once again, we are trying to teach computers some chemistry.

Spotting that a proposed structure is correct is not difficult. Spotting if it is 

nearly correct (and in what way it is incorrect) is much more difficult.

O=S(c1Ncc(C)cc1)(NC(COC(C2=NC=CC=C2)=O)C(OC)=O)=F

Dave Brown is working on a project to use chemical information in the 

form of SMILES strings to help analyse proposed structure solutions and 

unpick disorder.
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The Future:

The Microsoft Syndrome

1950

“These were adventurous times in which anything might be 

possible if one was inventive enough.” 

2010

“If it’s not on a menu, it cannot be done”

The user-community is no longer excited by computers

The GUI must encode the strategy to be applied to the underlying maths.
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A Test

Crystallography students now lack the skills to test 

ideas for them selves.

Take an hklf4 file, reject all reflections

where h+k+l = 5n

and where I/!(I) is less than 5.0

and output a new, properly formatted, hklf4 file
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Summary

The early computing schools documented some of the internal workings of 

programs and details not reported in journals.

Technical details published in journals are dispersed and un-catalogued.

Programs dedicated to a single task are most easily understood by users.

However, productivity can be increased by grouping tasks together into a 

system.

Documentation for both users and programmers becomes an exponential 

problem for large systems.

The cost of maintenance usually means that such systems are difficult to 

support in the long term

In collaborative projects, programming anarchy (sometimes called creativity) 

can turn the whole enterprise into a house of cards.

Users don’t like change.

Users don’t like choice.
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