Managing a Large'" Scientific
(Crystallographic'’') Software
Project

“It's not the Algorithms”

[1] Non-trival, not small
[2] | don't think it matters

Paul Emsley
Aug 2011

Dependencies/Libraries
Handling the updates

Source Code Repository
Building
Testing
Progress
Mailing list
Releases
Deployment

GNU GPL v3

OpenGL (3D graphics) package for
macromolecular model-building

I.e. making, adjusting and validating
models of proteins

At its peak it was 3™ most highly cited
research paper in last 5 years

Most highly cited Free Software

| have been a GNU fan since late '80s

“If | have a chance to develop software, it will
be based on GNU and GLPed”

12 years later | got the chance

Which meant GCC, G++, GDB, Emacs & the
GNU build system

Extremely entrenched user-base

2 (perhaps 3) programs that were always used
Once chosen & learnt, users didn't swap

Which mean that the program had to be

Easy to get/Freely available
Easy to install
With compelling functionality

Communicate with other programs
and “Web Services”

‘ Coot v oA X

File Edit Calculate Draw Measures Walidate HID About Extensions

=z
&

) Reset Wiew E Display Manager

=1
=]

Yy
i .,
i >
Py, 'i'*
-' ’J

T’“ A

, "

N EF OO0

) $sr St

o
J

W
o \.‘

‘ o

°
s
o
a

(mol. no: 2) N9 /1/A/1 3GP occ: 1.00 bf: 20.00 ele: N pos: (54.41, 8.70,20.59)

226 package
dependencies

Core:

C++, C, Scheme (Guile), Python
Crystallographic Libraries:

CCP4 libs, mmdb, Clipper
Graphics:

GTK+, glade, gnomecanvas, OpenGL
Building:

Subversion, automake & autoconf, emacs,

Documentation:

Texinfo, Doxygen, XHTML, Wordpress, Apache

Schematic Coot Architecture

ibcoot d
P i -.

dependency ﬁ I ﬁ rﬂ

layer

| used to work on just one computer

Making a tar file every few days.
(This made backtracking painful)

| discovered SVN and that made a big
difference

+30-40% more productive
More than one computer

Cross-platform issues

Kevin (2001): “You have a methodological problem”
“if you can't test your code you're developing wrongly”
From 0.0 to 0.3.3 — time spent was mostly bug fixing
90% of time fixing 3-yr-old code
Frustrating
Pre-release testing (by me)
conflict of interest

| was “hitting the buffers” on the release schedule
| really didn't want to find bugs!

At CCP4 meeting: Peter Briggs was talking
about problems releasing 5.0

Me: “You must have a extensive and fully-
featured test suite!”

Peter: "Hmm”

Harry (to PE): "Have you got one?”
Me: “Err, no”

Harry: “Shut up, then”

Ralf and Peter discussed how testing in
CCTBX worked.

| was impressed at the rigour

Bring some of that to Coot

Generated test data for classes/objects

Used for development
Had hard-coded test values

the “did it work”?” test was something that |
determined “by eye” at/after run-time

Not automated
Not part of test suite

No-one formally involved
Student (at Workshops)
And other ad-hoc users

Challenge is to convert problems that they
report/demonstrate into an automatic test

Written in a different language

it is difficult to write tests with compensating
errors

If the scripting language is embedded, it can
return variables, rather than text in a log file that
has to be parsed and converted to variables

| use greg (gnu regression test suite)
because guile is embedded in Coot

We also use PyUnit

“Can | have a “sharpening tool?”

Yes (| thought), but | will need to store the data before
converting it to a map — make it part of the molecule class:

clipper::HKL _data<clipper::datatypes::F_phi<float> > original_fphis
| Implemented the sharpening template

| merged in changes from Bernhard

| ran the tests

Crash!

Obscure bug, tickled only after using 60+ molecules, which
may not have otherwise been noticed for years

A new way of working for me:

First | export a function to the scripting layer that
allows access to new function

then sketch out the new class and functions
interface (skeleton functions)

Now write a test that exercises new functions

At first it fails - Of course!

But eventually the test passes

Very gratifying

And test moves from devel to main testing suite

Many functions in Coot take a molecule-number
argument

part of the test suite should be to exercise functions
given “bad” molecule numbers

~95% of time there is no problem (tested twice)
iIs it worth it for that extra ~small %age of time?
A crash in an interactive program on bad input is bad

A crash in a “batch” program on bad input is not so
bad

Recent Example

= “When | mutate an adenine to a thymine, the
C7 disappears”

(greg-testcase "Mutate to a DT keeps C7" #t
(lambda ()
(let ((imol (ideal-nucleic-acid "DNA" "B" 1 "gatc")))
(if (not (valid-model-molecule? imol))
(throw 'fail))
(mutate-base imol "A" 2 "™ "DT")

(list? (get-atom imol "A" 2™ " C7 ")))))

Recall that OpenGL is not immediately
scriptable

Click on an atom and in the console it reported
atom specs of atoms[0], not
atoms[atom_index]

Very difficult to catch (or even notice)

Previously: 90% of time for the 2 or 3 years
spend debugging old code

Writing tests takes
+50% to +100% longer

For me, | now spend most of my time with
new code, not old code

That is enjoyable

Having the executables have to pass a test suite
IS an enormous feeling of security

Subversion and testing

Security

Liberation!
Freedom from paralysis

Which Framework?

= | use greg for Scheme and PyUnit for Python
= CCP4 now uses Python and PyUnit

debugging
sucks

é

testing
roCKs

Cyclomatic Code Complexity
A measure of code branches

Correlated with the number of lines of code in a
function

and/or the number of “if” statements

Studies show strong correlation of code
complexity with defect rate

“metrics” plug-in for Eclipse
Simple Rule: if it's longer than 2 pages
Worry...

Visualisation of Code

Code City

Jmol in Code City

Vuze in Code City

he mailing list and SVN were hosted at the
University

Burden on our sys. adm., who had other things
to do

Then the server was hacked, new computer
brought in but | was not allowed to run SVN
there

So

SVN hosting moved to Google

Mailing list moved to JISCmail
600+ subscribers

Many machines
Dispersed

Some | can use the file system directly and
some files are accessed over the web

Status is polled every 10 minutes
guile script

Can access the age of the latest successful
build and the build logs (in case of failure)

Build Status

Coot SVN and Build Summary

Generated Sat 04 Apr 10:40:03 2009 BST

S¥N Repository Revision: 1946 sen lag

Source code coot-0.5-pre-1-revision-1946 1945
19 hours 25 minutes source-build pass Sat Apr 4 1 13441 BST 2009 source build log

Bum-up chart

binary-Linus -i286-fedora-3 1945
passbuild pass secondtest build-log build-dir test-log

|

1 day 2 hours 23 minutes

binary-Linux -i2286-fadara-2-pythan 1945
pass-build pass-secondtest build-log build-dir test-log python-test-lag

1 day 12 hours 3 minutes

binary-Linux -i226fedora-4-python-gtk2 1945
passbuild pass secondtest build-log build-dir test-log python-test-log

il

4 hours 4 minutes

binary-Linux -i2286fedara-2-python-qtk2 1945

pass-build pass-test build-log build-dir test-log python-test-log

1 day 2 hours 52 minutes

binary-Linux -i225fedora-1 0-python-gtk2 1945
passbuild passtest build-log build-dir test-lag python-test-lag

I

2 hours 27 minutes

binary-Linux -i226-radhat-9.0 1948
pass-build pass-secondtest build-log build-dir test-log

[

5 hours 11 minutes

binaryg-Linux -i226-redhat-2. 0-python 1946
passbuild pass secondtest build-log build-dir test-log python-test-log

il

2 hours 43 minutes

binary-Linux -x 26 64-rhal-4-qtk2 1944
missingfile fail-build build-log build-dir test-log python-test-log

2 days 2 hours 22 minutes

binary-Linux -x 26 64-rhel-4-python-gtk2 1946
missingfile fail-build build-log build-dir test-log python-test-log

il

5 hours 4 minutes

binary-Linux -i286-centos-4-gtk2 1929

pass-build pass-test build-log build-dir test-lag iihun-‘t-ﬂt-hg

17 days 15 hours 43 minutes

21330

binary-Linux -i296-centos-4-python-gtk
i test-log

passbuild passtest build-log buil

hon-test-lo

15 days 22 hours 26 minutes

binary-Linux -£ 26 E4-cermtos-S-gtk2 1946
pass-build pass-secondtest build-log build-dir test-log python-test-lag

r

2 hours 53 minutes

binary-Linux -x 86 &4-centos-S-python-gtk2 1945
passbuild pass secondtest build-log build-dir test-log python-test-log

—

18 hours 18 minutes

binary-Linux -i526-uburtu-5. 05,1 -python-gtk2 1945
pass-build pass-test build-log build-dir test-log python-test-log

—]

3 hours 15 minutes

binary-Linux -i626-uburmtu-2.04.2 1945
passbuild pass secondtest build-log build-dir test-log

r]

1 hour 24 minutes

binary-Linux -i526-uburntu-2. 04, 2-pythan 1946
pass-build pass-secondtest build-log build-dir test-log python-test-lag

]

& hours 22 minutes

Lots of emaill,

personal and via mailing list
| travel a lot and do presentations

Thus specs are gathered

| select those that the users most require and
estimate how long to implement

| choose enough for ~2 months (full-on) work

Each feature taking n “half-days”

Dev Points

180

mEpeaaNERE
-
(]
N
(]
.
o

160
140
120
100

80

60—

Christmas
40 holidays start

O 5 10 1520 25 30 35 40 45 50 55 60 65 70

Days (since pre-release start)

—Done
== Total Scope for 0.6

Dev Points

180 .

160 e~

b §

140—

EEEmEEEE
y

120_ ------- 2?
100

80

Boston

60

4 Christmas
holidays start

20

o
0O 10 20 30 40 50 60 70 80 90 100110

Days (since pre-release start)

-—Done
== Total Scope for 0.6

Burn-up Chart

180
160

 §

140—

120

-I----" *

100

80—

Dev Points

Boston

60

4 Christmas
holidays start

20

O 10 20 30 40 50 60 70 80 90 100110

Days (since pre-release start)

=—Done
==Total Scope for 0.6

Dev Points

180 .

160 i

 §

140

120 [==sm=== . Writing Papers

100

80

Boston

60

4 Christmas
holidays start

20

=—Done
== Total Scope for 0.6

T
0 10 20 30 40 50 60 70 80 90 100110

Days (since pre-release start)

Project managing:
Either define the release date...

or the spec
NOT both!

(That's a recipe for a “death march”)

Integration on a hourly/daily basic (SVN)
Daily deployment

multiple platforms
Bug fixes, feature requests available quickly

real communication with “expert users”
take customer feedback seriously

Problem of “monolithic release” goes away

because the program is “always deployable”

coot

GENERAL
Summary
Mews

Links

Similar Projects
Widgets

DEVELOPMENT
Code Analysis
Commits
Estimated Cost
Enlistments

COMMURNITY
Contributors
Users
Managers
World Map

Ratings & Reviews

Journal Entries

EDIT
Fermissions
History

Cootis a suite of programs for macromelecular model-building using X-ray data
incorporating interactive melecular graphics including refinemant, rebuilding and

users

1 USE THIS

mode| validation.

Coot is built on top of several layers, including the GMU Scientific Library, GTk,
Guile, guile-gtk, coordinate handling libraries (mmdb), crystallographic object handling libr
iclipper), GNOMECanvas and CpenGL.

This project is managed by smsley.
» Tagged as validation interactive macromolecules opengl proteins model-building
moleculargraphics | Edit tags

Code Analysis
Code =
1000k
750k
%]
=
5
500k
B
=
250k
%
007 2008 2009 2010 2011

[B cod: @B comments @ Blanks

This chart is interactive.
Youcan mouse over lines, click on/off labels from the legend and drag inside the chart to zoom.

@ Established codebase

/%, Few source code comments

/% Small development team

/4, Decreasing year-over-year development activity

a Estimated project cost: $8 476,833

30-Day Commit Activity
Jul 20 — Aug 18

C 3 committers made 36 commits
© 79 files modified
© 2152 lines added

© 1328 lines removed

World Activity Map

Ml e

Froject Links

© Homepage code.google.com | Edit

C Licensed Under GMU General Public License 2 |

<]

Code Analysis

Code =

1000k

750k

200k

Total Lines

250k

0
EDD? 2008 2008 2010 2011

BB Blanks

| B Code @B Comments

Lines of Code

[Languag=s|:]

400k

300k

200k

Lines

100k

0
%007 2008 2009 2010 2011

[— C+t == WML == C = shell script = Scheme]

Languages

Z Commits

150

100

&0

Y007 2008 2009

[— Commits }

Coot repo commits/month

2010

2011

Commits %

400

300

200

¥ Commits

100

%DDD 2002 2004 2006 2008 2010

| — Commits

CCTBX repo commits/month

Not writing papers

Not going to meetings

Not handling the Mac or WinCoot builds
Using Scheme and Python

Especially for the GUI
Emacs

Subversion
Testing/test suite
Working together

Use SVN (or bzr) or something similar

Writing new code is much more fun than
debugging old code

So: Be disciplined: Test-driven development
Use Standard Template Library

Writing extension language code
(scheme/python) is much more fun than C++

Spec features, not release and NOT both

“Release Early, Release Often”

= This is ridiculous
= (in our field)

= Should be:

- “Release when it's 'done done', release often”

