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1 Abstract

Direct visualization of crystallographic and magnetic point group symmetry by

means of computer graphics substantially simplifies the teaching of point group

symmetry at the undergraduate and graduate levels. A method is proposed for

the creation of still images and animated movies for all 32 crystallographic point

groups, and for the 122 magnetic point groups. For each point group, the action of

the symmetry operators on scalar and pseudo-scalar objects, as well as polar and

axial vectors, is represented as a three-dimensional rendered (ray-traced) image.

All images and movies are made available as supplementary educational material

via a dedicated web site.

2 Introduction

Symmetry is of fundamental importance to many branches of science. While the

concept of symmetry was well known to the Greek philosophers, it was not until

the early nineteenth century that the basic notion of a group and the machinery

of group theory were developed by Evariste Galois (1811-1832). Galois used the

symmetry properties of n-th order polynomial equations to decide whether or not

the solutions can be written down using rational functions and n-th order roots; in

particular, he showed (see [Livio(2005)] for an entertaining account) from the sym-

metry of the quintic equation that its solution can not be written down using only

standard mathematical operations (additions, subtractions, multiplications, divi-

sions, and roots). Today, group theory occupies a central place in both modern and

classical physics, in chemistry, and in material science and engineering.

In this contribution, we will focus on the symmetry of 3-D crystals, in particular

on the 32 crystallographic point groups, and the 122 magnetic point groups. When

teaching a crystallography course to a group of students, in particular at the un-

dergraduate level, it is not always easy to convey the meaning of the concept of a

group. The mathematical definition of a group is not difficult per se, but is often
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presented in a rather abstract way, and, at first, can appear to be unrelated to any-

thing tangible. Some text books refer to infinite sets of numbers combined with

basic arithmetic operators to illustrate what groups are and how they work; others

use the Cayley square and low order groups, such as the permutation groups, to

illustrate what a group is.

Individual symmetry elements can be represented readily by simple drawings,

and many textbooks offer very clear drawings of rotation axes, mirror planes and

so on (e.g. [Burns and Glazer(1990), McKie and McKie(1986)]). For crystallo-

graphic point groups, one usually resorts to graphical representations by means

of stereographic projections to illustrate the structure of each group. While this

is accepted practice (after all, the International Tables for Crystallography, Vol-

ume A, [Hahn(1996)] lists all crystallographic point groups by means of their

stereographic projections), that does not mean that these representations are easily

grasped by beginning students. Consider what is involved in this representation:

the student is asked to interpret a 2-D stereographic projection (which itself is not

as simple as the more familiar orthogonal and perspective projections) of an ab-

stract 3-D object (the point group), and to reconstruct from this projection what a

3-D object with the corresponding symmetry might look like. Should we be sur-

prised, then, to find that many students have a difficult time with stereographic

projections of point groups?

Not everyone has the ability to perform mental operations, such as rotations, on 3-

D objects without actually touching them or observing them in 3-D [De Graef(1998)].

And yet, the very definition of symmetry operations involves the concept of mo-

tion of an object: an object has a symmetry property when it can be brought into

self-coincidence by an isometric motion (i.e., by a translation, rotation, mirror,

or inversion operation). It is not a trivial matter to execute such motions by pure

thought alone. Research into the way the human brain interprets 3-D visual cues

indicates that there are two different levels at which this information can be pro-

cessed. If 3-D information is presented in 2-D, then the brain has to perform a

cognitive effort to convert the information to a 3-D representation. Different peo-

ple have different approaches to this conversion, and not everyone can easily per-
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form this task. On the other hand, if the information is presented in true 3-D form,

then the human brain, which is highly capable of 3-D perception, does not need to

use its congnitive centers to convert the information; all cognitive efforts can go

towards interpreting and understanding the meaning of the 3-D object itself.

We would substantially simplify the student’s task if we could eliminate one or

more intermediate steps in the representation of point groups. Since a point group

represents a 3-D object, why not directly visualize the point group in 3-D, us-

ing computer graphics and animation? Once the 3-D representation is understood,

the corresponding stereographic projection should pose no substantial problems

[De Graef(1998)]; indeed, an understanding of the 3-D nature of point groups may

even help to understand the stereographic projection itself.

In this article, we refer to symmetry in its original meaning, namely invariance

under spatial geometric transformations, such as rotations, and reflections. In ad-

dition, we also consider time reversal symmetry, as it pertains to the magnetization

state of an object. We restrict the discussion to the domain of classical physics. In

section 3, we describe how the 32 crystallographic point groups can be represented

graphically by means of computer-generated 3-D drawings. Then we introduce the

notion of time reversal symmetry, first by means of a mathematical representation,

and then by means of a graphical color coded 3-D rendering. High resolution im-

ages and movies are available from a dedicated web site: http://mpg.web.cmu.edu.

We will refer to this web site as supplemental material. The visualizations of the 32

crystallographic point groups in this paper have been used for the past decade in an

undergraduate crystallography course at Carnegie Mellon University (Department

of Materials Science and Engineering); the magnetic point group representations

were added to this course during the past year.

3 Visualizing the 32 Crystallographic Point Groups

The symmetry elements that make up the 32 crystallographic point groups belong

to two classes: Type I elements are rotations (and, in the case of space groups,
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Figure 1: Illustration of the graphical representation of symmetry elements. From left to

right: rotation axes of order 2, 3, 4, and 6; an inversion center; and, towards the rear, a mirror

plane.

lattice translations) which do not change the handedness of an object, and Type II

elements include mirrors and the inversion operator, which do change the handed-

ness.

We will represent symmetry operators graphically as illustrated in Fig. 1, which

shows the symbols for rotation axes of orders 2, 3, 4, and 6, the inversion, and a

mirror plane. The rotation axes are represented as cylindrical rods with polygonal

end-caps reflecting the order of the rotation axis. The mirror plane is represented

as a rectangular plane, with a reflective surface property. All 3-D renderings pre-

sented in this paper were created with the rayshade program [ray()], a public do-

main ray tracing package. It is not difficult to convert the rayshade input files to a

format suitable for other rendering programs, such as the popular PoV-Ray pack-

age [pov()]. All ray tracing input files are available as part of the supplementary

material for this paper.
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Note that the handedness of an object is an arbitrary property, in the sense that there

is no absolute property of “right-handedness.” In fact, the usual terminology of left-

handed/right-handed or clockwise/counterclockwise is only a convention based on

the anatomy of the human body or on the arbitrary historical fact that the hands

of a clock run, well, clockwise. While handedness is arbitrary, the act of changing

the handedness of an object can be described unambiguously by means of coordi-

nate transformations. We will adopt the active view of coordinate transformations,

which means that a symmetry operation will be considered to change (i.e., rotate,

invert, or mirror) the object while leaving the reference frame unchanged.

As an example, we will consider the crystallographic point group 2/m (in the

international or Hermann-Mauguin notation; in the alternative Schœnflies notation

the symbol would be C2h). This point group consists of a two-fold rotation axis, 2,

which we take to lie along the z-axis of a cartesian reference frame; a mirror plane,

m, normal to the two-fold axis; and an inversion center, i, located at the origin.

When we take these three elements along with the identity operator, E, we can

easily show that the set {E, 2, m, i} satisfies all the conditions for a group. Each

symmetry operation can be represented mathematically by a 3 × 3 transformation

matrix M :

M(E) =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ ; M(2) =

⎛
⎜⎜⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎠ ;

M(m) =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎠ ; M(i) =

⎛
⎜⎜⎝

−1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎠ . (1)

The matrix M(2), for instance, transforms the point with coordinates (x, y, z)T

to the point (−x,−y, z)T , where T stands for the transposition operator, i.e., we

write position vectors as column vectors. We define the parity, p, of an operator,

O, as the determinant of the representing matrix, i.e.:

pO ≡ det |M(O)|. (2)
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(a) (c)(b)

Figure 2: Rendered representation of the point group 2/m: (a) shows just the symmetry

elements, along with the blue lines which represent the cartesian coordinate axes; in (b),

the blue spheres represent scalar objects, whereas the object in (c) is a pseudo-scalar object,

i.e., it has handedness.

Two of the operators of 2/m have even parity, the other two have odd parity:

pE = 1; p2 = 1; pm = −1; pi = −1. (3)

An operator of odd parity changes the handedness of the object on which it oper-

ates; in other words, an operator of odd parity is a Type II operator. We will refer

to the parity of a Type I or Type II operator as the spatial parity, to distinguish it

from the temporal parity which will be defined in section 5.

It is now straightforward to create a graphical representation of the point group

2/m, by placing the building blocks of Fig. 1 in the correct relative position and

orientation. The resulting representation is shown in Fig. 2(a). The blue lines rep-

resent the axes of the cartesian reference frame. It is not difficult to repeat this

procedure for all 32 crystallographic point groups; the resulting renderings are

available as 1200 × 1200 pixel JPEG images in the supplementary material. The

file names are chosen to be easily readable; for the point group 2/m the file is

called raw 2overm.jpg, whereas the point group 3̄m (D3d) can be found in the file

raw bar3m.jpg, and so on. The prefix raw refers to the fact that only the point

group symmetry operators are represented; no objects are present in these render-

ings.

We can enrich the graphical representation of the point groups by adding an ob-
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ject and all its equivalent images. In principle, we can add any kind of object

(even mathematical abstract objects, such as a second rank symmetric tensor rep-

resented by an oriented ellipsoid), and determine how the symmetry elements of

the point group would copy this object into equivalent positions and orientations.

The simplest object is one that does not have any handedness nor preferential di-

rection, i.e., a sphere. As shown in Fig. 2(b), if we place a sphere at the location

(x, y, z)T (labeled as point 1), then there will be equivalent spheres at the positions

(−x,−y, z)T (2), (x, y,−z)T (3), and (−x,−y,−z)T (4). The spheres represent

scalar objects, because there is no handedness nor directionality involved.

If we replace the sphere by an object with handedness, then we obtain the repre-

sentation in Fig. 2(c). The object is a helix consisting of smaller spheres. The helix

has both handedness and an orientation in space; if we consider only the hand-

edness for now, then the helix is a representation of a pseudo-scalar object, i.e.,

there are two versions of the object, a left-handed and a right-handed helix. The

helices at positions (1) and (2) (referring to Fig. 2(b)) have the same handedness,

since they are related to each other by a symmetry operator (the two-fold axis 2)

of even spatial parity (p2 = +1). The other two helices, at positions (3) and (4),

have opposite spatial parity with respect to the one at position (1), since they are

generated by symmetry operators of odd spatial parity, m and i.

In the standard stereographic projections of the point groups, one usually only

deals with scalar objects, as shown in Fig. 3(a). Filled black circles correspond to

points in the Northern hemisphere, whereas open circles represent points in the

Southern hemisphere. Pseudo-scalar objects can be included by color-coding the

projection points. Fig. 3(b) shows the same point group but with the odd parity

equivalent points colored in red. Similar projections for the highest order cubic

point group m3̄m (Oh) are shown in Fig. 3(c) and (d). It is clear that the higher the

point group order, the more complex the stereographic projection becomes, and the

harder it is to visualize the symmetry in 3-D. Fig. 4 shows the corresponding 3-D

rendered representation for m3̄m, using a pseudo-scalar object (helix). Equivalent

helices occur in two sets of three around the three-fold rotation axis near the center

of the image; three of the helices are right-handed, the other three are left-handed.
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2/m
C2h

Oh

m3m

(a) (b)

(c) (d)

Figure 3: Stereographic projections for scalar objects (a and c) and pseudo-scalar objects

(b and d) for the point groups 2/m (a and b) and m3̄m (c and d). Red points have opposite

handedness from black points; filled circles correspond to the Northern hemisphere, open

circles to the Southern hemisphere.

Figure 4: 3-D rendered representation of the cubic point group m3̄m using a helical object.
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This set of six helices is then copied by the vertical four-fold axis to three other

locations, and by the horizontal mirror plane to four locations in the lower half of

the representation, for a total of 48 equivalent positions.

In the supplemental material, the reader will find point group renderings for all

32 crystallographic point groups employing a scalar object (file names starting

with the prefix scalar ) and a pseudo-scalar object (file names starting with the

prefix pseudoscalar ). In addition, animations are available in which the entire

point group object rotates around the vertical axis, to facilitate interpretation of the

various symmetry elements and their relative orientations.

The 3-D rendering approach can also be used to illustrate the concept of special po-

sitions, i.e., positions that coincide with one or more symmetry elements. Consider

the point group 4/mmm; this group of order 16 consists of a fourfold axis with a

perpendicular mirror plane, four mirror planes that contain the fourfold axis, four

twofold axis and the inversion operator. Fig. 5 shows six frames of an animation

(available as the file special positions.mpg in the supplemental material). In frame

(c), all spheres are located at general positions (with multiplicity 16); the spheres

approach the diagonal mirror planes and when they lie on the mirror planes (d) the

number of sphere positions is reduced by a factor of two, reflecting the fact that the

special positions have a lower multiplicity than the general position. In Fig. 5(e)

the spheres approach the horizontal mirror plane; when they reach the plane (f), the

multiplicity decreases again by a factor of 2. Starting from (c), the points approach

the fourfold axis (b), and when they coincide with the axis, the multiplicity of the

resulting special position is reduced to 2.
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(a) (b)

(c) (d)

(e) (f)
Figure 5: 3-D rendered representations of the general equivalent positions of the point
group 4/mmm (c); in (d), the points approach the diagonal mirror plane, and in (e) they
coincide with the mirror plane, resulting in special positions with a multiplicity that equals
half of the group order. In (f), the special points lie at the intersection of two mirror planes,
halving the multiplicity once more. Starting from (c), the points approach the vertical axis
(b) until they coincide with it in (a) to result in a multiplicity of 2.
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4 Polar and Axial Vectors

One can easily extend this method of graphical representations to other objects,

such as vectors (which can be represented by arrows), symmetric second rank

tensors (representable by a general ellipsoid), and so on. In this section, we will

consider the effect of crystallographic symmetry on vector objects. There are two

types of vectors: polar vectors and axial vectors. We know from basic physics

that moving electrical charges generate a magnetic field. In particular, electrons

moving around the nucleus of an atom generate tiny electrical currents which give

rise to a vector quantity known as the magnetic moment. The magnetic moment is

represented by the vector µ; the magnitude of this vector is equal to the current

multiplied by the area of the circular orbit of radius r, i.e.,

|µ| = Iπr2. (4)

The direction of the moment vector is determined by the direction of the current;

for a counter-clockwise current (Fig. 6(a)), the moment vector points up, whereas

for a clockwise current (Fig. 6(b)) the moment points down.

(a) (b) (c) (d)

m

μμμ

μμμ
CCW CW

p
-q

+q

polar

axial axial

Figure 6: Representation of an axial vector resulting from a counter-clockwise electrical

current (a) and a clockwise current (b). (c) shows an electrical dipole moment vector. In (d),

it is shown that the mirror image of an axial vector that is parallel to the mirror plane points

in the direction opposite to that of the original vector.

If we consider the electrostatic equivalent, the polarization vector p, then the sit-

uation is different, since the electrostatic dipole moment is defined as the charge, q,



14 4 POLAR AND AXIAL VECTORS

multiplied by the separation, d, between the negative and positive charges (Fig. 6(c)).

The image of a polar vector parallel to a mirror plane is a new vector with the same

direction as the original one. For an axial vector, on the other hand, (Fig. 6(d)) a

counter-clockwise current becomes a clockwise current when viewed in a mirror,

so that the mirror image of a magnetic moment vector parallel to a mirror plane is

a moment vector parallel to the original one, but pointing in the opposite direction.

Polar and axial vectors can be defined formally by the transformation rules they

obey. Consider a symmetry operator O described by the 3 × 3 matrix M ij . A

polar vector p is then defined as a first-rank tensor which satisfies the following

transformation rule (with summation over repeated indices implied; the asterisk

indicates the new reference frame):

p∗i = Mijpj (polar). (5)

For an axial (or pseudo-) vector, µ, we must multiply this expression by the deter-

minant of the transformation matrix:

µ∗
i = det |M |Mijµj (axial). (6)

In other words, for a Type II operation, an axial vector undergoes an additional

sign change. Alternatively, we can use the parity of the operator O:

µ∗
i = pOMijµj . (7)

Let us analyze the meaning of these transformation rules by means of a graphical

example. Consider a single mirror plane, m, oriented normal to the z-axis through

the origin (see Fig. 7). A polar vector p has components [0, sin θ, cos θ] where

θ = 0..90◦, i.e., the vector is oriented parallel to z when θ = 0◦ and is parallel to

the mirror plane when θ = 90◦. Let us also assume that this vector is located at

the point with coordinates r = (0, 0, 1). The transformation of a vector under the

point symmetry operation m then consists of two steps: first, compute the image

of r under m, which is (0, 0,−1). Then move the vector p from (0, 0, 1) to the

origin, apply equation (5), and move the resulting vector to the point (0, 0,−1).

To enrich the graphical representation of these transformations, we will use a color

subtraction code. The original vector p is represented by a white vector, i.e., with
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red-green-blue components [R, G, B] = [1, 1, 1]. The image of p under an opera-

tor with even parity will also be represented as a white vector. For operators with

odd spatial parity, we will remove one of the colors, say green, so that the image

of p under an operator with odd spatial parity has colors [1, 0, 1] (magenta). In the

next section, we will extend this code by removing the color red in the presence

of anti-symmetry. From here on, we will represent all regular symmetry elements

(Types I and II) by dark blue graphical symbols.

Fig. 7 shows how a polar and an axial vector transform under the action of a single

mirror plane m. For the axial vector, the mirror image must be inverted due to the

fact that pm = −1 in equation (7). This leads to the somewhat counter-intuitive

result that the image of an axial vector parallel to a mirror plane points in the di-

rection opposite to the original vector, whereas the image of an axial vector normal

to a mirror plane points in the same direction.

m

polar

axial

m

Figure 7: Representation of the action of a mirror plane m on a polar vector and an axial

vector. The original vectors are rendered in white, whereas vectors related to the original

ones by a Type II symmetry operation (odd spatial parity) are rendered in purple.
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5 Time Reversal Symmetry

In this section, we consider the effect of time reversal, and we propose a graphi-

cal method to represent the operation of symmetry elements with a time reversal

component. If we consider the definition of the magnetic moment in the previous

section, we can rewrite equation (4) as

|µ| =
dq

dt
πr2. (8)

It is clear that a reversal of time changes the sign of the current and, hence, reverses

the direction of the magnetic moment vector µ. For a polar vector, time reversal

has no effect at all. We will represent the operation of time reversal by the operator

R. When we combine the time reversal operator with a regular symmetry operator,

O, we will denote the new operator by a primed symbol, O ′. Primed symmetry

operators are known as anti-symmetry operators, and they are formally represented

by the product of a regular symmetry operator with the time reversal operator;

O′ = OR = RO. (9)

Note that, since there is no mixing of spatial coordinates and the time coordinate,

the two operators always commute.

(a) (b)

Figure 8: Representation of the operations of the point group 2/m on an axial vector,

oriented parallel to the twofold axis (a) and parallel to the mirror plane (b).
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Let us now return to the example point group 2/m, with elements {E, 2, m, i}.

First of all, using Fig. 7 we can easily derive the graphical representation for 2/m

for an axial vector object; the result is shown in Fig. 8 for two different orientations

of the magnetization vectors. Note that all symmetry operators are represented in

dark blue, reflecting the fact that they are regular operators, not anti-symmetry

operators. In (a), the leftmost white vector is oriented parallel to the twofold axis,

and its images are also parallel to this axis, indicating that this symmetry allows

for the existence of a ferromagnetic state. When the moment is rotated towards the

mirror plane (b), the net magnetization vanishes since all moments are parallel to

the mirror plane. The supplementary material for this article contains a rendered

animation of the magnetization vector rotating back and forth between two limiting

orientations. There are 32 mpeg movies, with file names starting with axial , one

for each of the crystallographic point groups. Note that, since these groups do not

contain anti-symmetry operators, the only possible colors for the axial vectors are

white and magenta. Out of these 32 groups, only 12 (1, 2, m, 2/m, 3, 3̄, 4, 4̄,

4/m, 6, 6̄, and 6/m) are ferromagnetic when the magnetization has a component

along the rotation axis, or perpendicular to the mirror plane in the case of m.

If we combine the elements of 2/m with R, we can generate a number of new

groups. First of all, the anti-symmetry operators corresponding to (E, 2, m, i) are

(R, 2′, m′, i′). Thus, we can generate a new group of order 8 by combining all

eight operators: {E, 2, m, i, R, 2′, m′, i′}. This group is represented by the sym-

bol 2/m1′, where 1′ represents the time reversal operator R in the international

notation scheme. It is easy to prove that this is a group by constructing Cayley’s

square. A point group in which the element R appears by itself is known as a gray

point group; if we consider a magnetic moment vector µ located at (x, y, z)T , then

the element R will also generate −µ at that same location, so that there can not

be a net magnetic moment. If we represent the original moment vector as a white

object, and its image under time reversal as a black object, then the total object is

black + white = gray, hence the name gray point group.

In addition, there are three sub-groups of order 4 of 2/m1 ′: 2/m′ = {E, 2, m′, i′},

2′/m = {E, 2′, m, i′}, and 2′/m′ = {E, 2′, m′, i}. These point groups do not
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have the time reversal operator as an element, but they do have anti-symmetry op-

erators. Such point groups are known as magnetic point groups. The proof that all

three are indeed groups follows directly from visual inspection of the Cayley ta-

ble for 2/m1′. Alternatively, we can conveniently generate magnetic point groups

from a given crystallographic point group using the following process: identify

elements from a halving sub-group of the latter, subtract these elements from the

elements of the crystallographic point group, operate on the remaining elements

with R, and combine the subtracted elements with the newly-derived elements.

Iterating through the halving sub-groups then produces all magnetic point groups

associated with a particular crystallographic point group. The halving sub-groups

of 2/m are 2, m, and 1̄, which leads to the elements listed above. For instance,

the halving sub-group m consists of the elements {E, m}. The elements of 2/m

that are not in m are {2, i}; combining them with R leads to {2 ′, i′}, and adding

these to m results in 2′/m = {E, 2′, m, i′}.

If we repeat this procedure for all the halving sub-groups of all 32 crystallographic

point groups we find a total of 58 magnetic point groups. Combining these with

the 32 crystallographic point groups and the 32 gray point groups leads to a total of

122 point groups, which describe all possible symmetry combinations of magnetic

moment vectors (or axial vectors in general) and the crystallographic point groups.

The inclusion of time reversal symmetry means that we must generalize the trans-

formation equation (7) to include the additional time reversal sign change when the

operator is an antisymmetry operator. If we represent the temporal parity of an op-

erator by pR, which is equal to +1 for regular operators and −1 for anti-symmetry

operators, then the transformation equation for an axial vector becomes:

µ∗
i = pOpRMijµj . (10)

Therefore, we find that there are four possible combinations for the two parity

factors. We write the parity of an operator as a pair of numbers (pO, pR), where

the spatial parity is the first element and the temporal parity the second. Examples
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of symmetry operators for each case are:

(+1, +1) → 1, 2, 3, 4, 6, . . . ;

(+1,−1) → R, 2′, 4′, 6′, . . . ;

(−1, +1) → m, i, 2̄, 4̄, . . . ;

(−1,−1) → m′, i′, 2̄′, 4̄′, . . . ;

where the symbols 2̄, 4̄, . . . are roto-inversion axes. For the purpose of graphical

representations, it will be useful to extend the color subtraction scheme as follows:

(+1, +1) → [1, 1, 1] white;

(+1,−1) → [0, 1, 1] cyan;

(−1, +1) → [1, 0, 1] magenta;

(−1,−1) → [0, 0, 1] blue.

In other words, all axial vectors related to each other by an operator with parities

(+1, +1) will be rendered in white; vectors which are related to a white vector by

an operator with parities (−1,−1) will be rendered in blue, and so on. Another

way of looking at this is that white and blue vectors have a + sign as combined

prefactor in equation (10), whereas magenta and cyan vectors have a − sign. This

is the reason for calling the magnetic point groups two-color groups or black-white

groups.

6 Visualizing the 122 Magnetic Point Groups

While it is possible to use standard stereographic projections for the magnetic

point groups (e.g., see [Joshua(1974)]), the resulting drawings are hard to interpret,

since there are now four different symbols for the equivalent points: spin up and

down, both above and below the plane of the projection. As will become clear in

this section, the 3-D rendered representation is far superior to the stereographic

projection, and is easily interpreted.
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2’/m 2/m’

2’/m’ 2/m1’

(a) (b)

(c) (d)

Figure 9: Representation of the operations of the magnetic point groups derived from 2/m

on an axial vector: 2′/m, 2/m′, 2′/m′, and 2/m1′. Note that an anti-symmetry operator

is represented by a yellow symbol; a regular symmetry operator is rendered in dark blue.

We apply the subtractive color scheme to the magnetic point groups 2 ′/m, 2/m′,

and 2′/m′. If we consider the operators for each group, then it is straightforward

to write down the colors of the vectors:

2′/m = {E, 2′, m, i′} → {white,cyan,magenta,blue};
2/m′ = {E, 2, m′, i′} → {white,white,blue,blue};
2′/m′ = {E, 2′, m′, i} → {white,cyan,blue,magenta}.

The three point groups are represented graphically in Fig. 9 for a magnetization

vector parallel to the twofold axis. Of these four groups, 2 ′/m′ is ferromagnetic

when the magnetization has a component parallel to the mirror plane, as illustrated

in Fig. 10. Symmetry elements are represented by blue symbols, whereas anti-

symmetry elements are represented in yellow.
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The gray point group 2/m1 ′ is also shown in Fig. 9; since for each symmetry

element the corresponding anti-symmetry element is also present, we represent

all symmetry operators by gray symbols. The equivalent magnetization (or axial)

vectors are then shown as gray double-headed arrows.

2’/m’

Figure 10: Representation of the magnetic point group 2′/m′ for the magnetization paral-

lel to the mirror plane, illustrating the possibility of a ferromagnetic state.

In the supplementary material, each magnetic point group is represented by a 60-

frame animation, with the magnetization vector rotating back and forth between

two positions. There are 122 movies, each starting with the prefix axial , followed

by the point group name (e.g., 2 ′/m is written as 2poverm). In addition, there

are 32 movies showing the point group symmetry applied to a polar vector; those

movies start with the prefix polar .

Table 1 lists the 32 crystallographic point groups (leftmost column) and the 58

magnetic point groups derived from them; gray point groups are obtained by adding

the symbol 1′ to the one in the leftmost column. Point groups that are consistent

with a ferromagnetic state are listed in bold face. Rendered illustrations for all 122

magnetic point groups acting on an axial vector are shown in Fig. 11, except for

the point groups derived from 2/m, which were already shown in Figs. 8 and 9.



22 6 VISUALIZING THE 122 MAGNETIC POINT GROUPS

Table 1: List of the 32 crystallographic point groups (leftmost column) and the 58

derived magnetic point groups in Hermann-Mauguin notation. Bold group symbols

indicate the 31 groups that allow for a ferromagnetic state. The gray magnetic point

groups are obtained from the first column by adding the symbol 1 ′ to the point

group symbol.
1

1̄ 1̄′

2 2′

m m′

2/m 2′/m′ 2/m′ 2′/m

222 2′2′2
mm2 m′m′2 2′m′m
mmm mm′m′ m′m′m′ mmm′

4 4′

4̄ 4̄′

4/m 4′/m 4/m′ 4′/m′

422 4′22′ 42′2′

4mm 4′mm′ 4m′m′

4̄2m 4̄′2m′ 4̄′m2′ 4̄2′m′

4/mmm 4′/mmm′ 4/mm′m′ 4/m′m′m′ 4/m′mm 4′/m′m′m
3

3̄ 3̄′

32 32′

3m 3m′

3̄m 3̄m′ 3̄′m′ 3̄′m
6 6′

6̄ 6̄′

6/m 6′/m′ 6/m′ 6′/m

622 6′22′ 62′2′

6mm 6′mm′ 6m′m′

6̄m2 6̄′2m′ 6̄′m2′ 6̄m′2′

6/mmm 6′/m′mm′ 6/mm′m′ 6/m′m′m′ 6/m′mm 6′/mmm′

23

m3̄ m′3̄′

432 4′32′

4̄3m 4̄′3m′

m3̄m m3̄m′ m′3̄′m′ m′3̄′m
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1 11’ 1 11’

1’ 2 21’ 2’

m m1’ m’ 222

2221’ 2’2’2 mm2 mm21’

m’m’2 m’m2’ mmm mmm1’

Figure 11: Representation of all 122 magnetic point groups (except for the ones derived

from 2/m which are shown in Figs. 8 and 9) in the order in which they appear in Table 2.
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mm’m’ m’m’m’ mmm’ 4

41’ 4’ 4 41’

4’ 4/m 4/m1’ 4’/m

4/m’ 4’/m’ 422 4221’

4’22m’ 42’2’ 4mm 4mm1’

Figure 11: (continued)
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4’mm’ 4m’m’ 42m 42m1’

4’2m’ 4’m2’ 42’m’ 4/mmm

4/mmm1’ 4’/mmm’ 4/mm’m’ 4/m’m’m’

4/m’mm 4’/m’m’m 3 31’

3 31’ 3’ 32

Figure 11: (continued)
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321’ 32’ 3m 3m1’

3m’ 3m 3m1’ 3m’

3’m’ 3’m 6 61’

6’ 6 61’ 6’

6/m 6/m1’ 6’/m’ 6/m’

Figure 11: (continued)
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6’/m 622 6221’ 6’22’

62’2’ 6mm 6mm1’ 6’mm’

6m’m’ 6m2 6m21’ 6’2m’

6’m2’ 6m’2’ 6/mmm 6/mmm1’

6’/m’mm’ 6/mm’m’ 6/m’m’m’ 6/m’mm

Figure 11: (continued)
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6’/mmm’ 23 231’ m3

m31’ m’3’ 432 4321’

4’32’ 43m 43m1’ 4’3m’

m3m m3m1’ m3m’ m’3’m’

m’3’m

Figure 11: (continued)
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Table 2: List of the image (stills) and movie files available as supplementary mate-

rial from the web site http://mpg.web.cmu.edu. The table shows the prefix defined

in the text, along with the number of files available; the full filename is obtained

by adding the point group name to the prefix and appending the file extension

(.jpeg or .mpg). For the axial and polar stills, three different vector orientations are

available, hence there are 366 and 96 images, respectively.

stills [1200× 1200 jpeg] movies [704 × 576 mpeg]

raw (32) special positions (1)

anaglyph (32)

scalar (32) scalar (32)

pseudoscalar (32) pseudoscalar (32)

axial (366) axial (122)

polar (96) polar (32)

7 Supplementary material

Table 2 lists all the items available as supplemental material to this article. The

files are available individually or as gzipped tar archives. All the ray tracing input

files and shell scripts required to create the archives are also available as a separate

archive. Creating all images and movies took approximately two weeks on a 2.6

GHz Linux workstation running the Red Hat Linux operating system. No user

intervention is required, except for the creation of the anaglyph images (red-blue

color stereo images); a README file is provided with detailed instructions on

how to create the anaglyphs in Photoshop. An example anaglyph for the point

group 4/mmm is shown in Fig. 12.

The movies are in mpeg format, with 704 × 576 pixels in each frame. Still im-

ages are stored in jpeg format, at a resolution of 1200 × 1200 pixels. To run the

shell scripts, the following public domain programs are needed: rayshade [ray()],

convert (from ImageMagick [ima(a)]), image2ppm (from image2mpeg [ima(b)]),

ppmtoy4m and mpeg2enc (both from MJPEG-tools [mjp()]).
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4/mmm

Figure 12: Example of an anaglyph (blue-red stereo) representation of the point group

4/mmm with a scalar object.

8 Discussion and Conclusions

In this pamphlet, we have applied computer visualizations by means of ray-traced

images to the crystallographic and magnetic point groups. We have shown that all

point groups can be represented by graphical 3-D objects, and we have illustrated

the action of the point group symmetry elements on scalar and pseudoscalar ob-

jects, and on polar and axial vectors. This type of representation can be extended

to other tensorial objects, such as symmetric second rank tensors, for which the

basic representation is the general ellipsoid.
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We have used the point group movies since 1995 in an undergraduate course on

the Structure of Materials in the Materials Science and Engineering department at

Carnegie Mellon University. Originally, we made the movies available for down-

load in QuickTime format; the current distribution uses the more widely available

mpeg format. The scalar and pseudoscalar representations were first published in

the Journal of Materials Education, which is not widely available [De Graef(1998)].

They were enhanced and used in an undergraduate textbook on the Structure of

Materials [De Graef and McHenry(2007)], which evolved from the course notes

used since 1995. In the present paper, we have expanded the use of the point group

renderings to include polar and axial vector objects, which implies the inclusion

of all magnetic point groups in addition to the regular crystallographic groups.

It should not be too difficult to convert the rayshade input files into other file for-

mats, for instance for the PoV-Ray rendering program [pov()]. Alternatively, one

could convert the input files for use in an interactive 3-D environment, for instance

the public domain Paraview program [par()], in which the entire point group object

can be manipulated by the user.

In our 13 years of experience with the use of the point group renderings, we have

found that undergraduate students have a much better grasp of the concept of a

group (crystallographic groups in particular); in fact, the 3-D insight that they

gained from using the various renderings also aided them in understanding the

more common 2-D point group representations by means of stereographic pro-

jections. We encourage other teachers to make use of the tools provided as sup-

plementary material; the material should be applicable to courses in the areas of

physics, materials science, chemistry, and geology.
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