CIF - Changes to the specification

This document specifies changes to the syntax of CIF. We refer to the current syntax
specification of CIF as CIF1, and the new specification as CIF2. To date all archival
CIFs are CIF1.

The changes to syntax are necessitated by the adoption of new dictionary
functionalities that introduce several extensions, including new data types, and
method definitions using dREL.

It is assumed the reader has a thorough understanding of the CIF1 specification.

TERMINOLOGY

Reference to ASCII characters means those characters in UNICODE Code Page 0 or,
equivalently the first 127 characters of the LATIN-1 character set.

Reference to newline or \n means the sequence that terminates the line record
(which are architecture dependent). The most common newline sequences are #x0A
(ASClI line feed) for *nix and Mac OSX, and #x0D#x0A (ASCII carriage return and
line feed) for Windows. CIF applications also recognise #x0D as a newline. This is
also consistent with most text based Internet protocols.

The UNICODE characters #x2028 (line separator) and #x2029 (paragraph
separator) are not syntactically significant in CIF2, and are treated as any other
character.

Reasoning: A small subset of ASCII is specified to have syntactic significance in CIF2,
and only these characters. In particular #x2028 and #x2029 are rendered
inconsistently across applications. Likewise alternative UNICODE renderings of * *

: 3 { } [1haveno syntactic significance in CIF2. We do allow the wider use of
UNICODE as data.

Reference to whitespace means the characters ASCII space (#x20), ASCII horizontal
tab (#x09) and the newline characters. In the same vein as above, the additional 20
UNICODE characters that constitute whitespace are not syntactically significant in
CIF2.

PREAMBLE

CIF2 significantly extends CIF1 functionality, primarily through new dictionary
features. The CIF1 standard will continue to operate for the foreseeable future in
parallel with CIF2. Applications built on the CIF2 standard will be able to process CIF1
data files.

CHANGE 1 - NEW (MAGIC CODE)

A CIF2 file is uniquely identified by a magic code on its first line. The code is,

#\#CIF_ 2.0

CHANGE 2 — NEW (ENCODING)

CIF2 files are standard variable length binary files, but for historical reasons will have
a maximum record length of 2048 bytes. In a general sense the contents of the file
are characters that are encoded in UTF-8, however there are some restrictions on
the character set for token delimiters, separators and for data names.

In keeping with XML restrictions we allow the UTF-8 characters

#x9 #xA #xD
#x20 - #xXD7FF
#XE000 - #xXFFFD
#x10000 - #x10FFF

The characters #xE000-#xXF8FF are reserved for private use, and the IUCr can
specify what these characters must be.

Reasoning : There is growing demand for the wider character set afforded by
UNICODE to be made available in applications, especially those where
internationalisation is an issue. UTF-8 directly supports an extensive range of
printable objects that are not accessible through ASCII. Currently a very limited
range of special characters is supported through the IUCr specific escape-sequencing
mechanism.

CHANGE 3 — RESTRICTION

Character set for data names.

In CIF2 the tags referred to as data names are comprised of characters only from the
ASClI set, and restricted to those in the regular expression [A-Za-z0-9 .] (the .
is the explicit ASCII period character).

Reasoning : Data names can appear in any dREL scripts and operate at that level as
programming identifiers. Characters suchas [] + - / inadata name make the
parsing of a dREL script at best ambiguous, but often syntactically incorrect.

The restriction is similar to those found in most programming languages, except that
the period character is explicitly allowed in the tag.

CHANGE 4 — RESTRICTION
Non-delimited data values.

A data value in CIF2 may be a non-delimited string of UTF-8 characters, but excluding
the ASCll characters, : { } [1.

As with CIF1, the first character of a non-delimited string cannot be any of the ASCII
characters, “ ‘* §, since these have special meaning. A non-delimited string
cannot exactly match any STAR keyword, loop global save * stop
data_*, where * refers to zero or more characters.

Reasoning : Within compound data types (lists and tables) non-delimited strings will
be allowed values. Exclusion of the above characters ensures unambiguous parsing of
the compound data types.

CHANGE 5 — RESTRICTION

Delimited strings.
The delimited strings accepted in CIF2 are,

(1) A string delimited by ASCII single-quotes ('). The string is initiated by an ASCII
single-quote, can consist of UTF-8 characters excluding the newline, form-feed and
vertical tab characters, and is terminated by the first subsequent ASCII single-quote.
The string cannot contain any ASCII single-quote characters.

At a lexical level the contents of the string are treated as raw. For example
loop _author.family name ‘Harris’ ‘Gr\"”uber’

The lexer returns the string value as Harris and Gr\ "uber, leaving the handling
of any elide characters to the calling application.

(2) A string delimited by ASCII double-quotes (“). The string is initiated by an ASCII
double-quote, can consist of UTF-8 characters excluding the newline, form-feed and
vertical tab characters, and is terminated by the first subsequent ASCII double-
guote. The string cannot contain any ASCIl double-quote characters.

At a lexical level the contents of the string are treated as raw. For example
_quote.literal “He said, ‘We’re going in circles’”

The lexer returns the string value as He said, ‘We’re going in
circles’.

(3) A string delimited by ASCII newline semi-colon (\n;). The string is initiated by an
ASCII newline semi-colon sequence, consists of UTF-8 characters, and is terminated
by the first subsequent ASCII newline semi-colon sequence. At a lexical level the
contents of the string are treated as raw. For example

_recipe.ingredients

;Sugar
Flour
Butter

14

The lexer returns the string value as Sugar\nFlour\nButter, where \n is the
literal newline sequence.

CHANGE 6 — NEW

Triple-quote delimited strings.

The ASCII “ " " sequence (alternatively ASCII * * *) delimits the beginning of a string
that may contain any printable character and newlines and is terminated by the first
subsequent “" " sequence (alternatively ‘ * *). At a lexical level the contents of the
string are treated as raw. The string can contain separable “ and “ " characters,
(alternatively * and * ’). For example

“""He said “His name is O'Hearly”.”""”

‘*'In {\bf \TeX} the accents are \’' and \".’"'’

The lexer returns the string values, He said “His name is O’Hearly”.
and In {\bf \TeX} the accents are \’ and \”..Nointerpretation of
any elides is undertaken; this is the responsibility of the calling application. The triple
guote string also supports embedded newlines, which are considered part of the
string.

CHANGE 7 - NEW

List data type.

The ASCII square bracket ([1) is accepted in STAR for delimiting the List compound
data type. A List is an ordered set. The elements of a List can be any ASCII space
separated data values and hence it is a recursive data type.

This syntax can represent a List as an ordered set of values. For example
[1.2 llall lbl [1.2 llall lbl]]

In the context of being outside of data tokens a list is initiated by an ASCII left square
bracket ([) and terminated by the pair-matching ASCII right square bracket ().
Expressions in square brackets can be split over more than one physical line. This
implies implicit line joining, and there is no newline token between implicit
continuation lines. For example

[1 . 2 llall 1 b 4
[1.2 llall lbl]]
is identical to the previous example list.

CHANGE 8 - NEW

Table data type.

The ASCII curly brace ({}) is accepted in STAR for delimiting the Table (Associative
Array) compound data type. A Table is an unordered set that is indexed by a string
label. The elements of a Table can be any ASCII space separated data values defined

in STAR, hence it is a recursive data type. The index label must be a single or double
guoted string, separated by an ASCII colon (:) from the value. For example

{"symm”:“P 4n 2 3 -1n”"” ‘avec’:[10.3 0.0 0.0]
‘bvec’:[0.0 10.3 0.0] ‘cvec’:[0.0 0.0 10.3]
“description”:"“”"”Cubic space group
and metric cell vectors””"}

In the context of being outside of data tokens a list is initiated by an ASCII left curly
brace ({) and terminated by the pair-matching ASCII right curly brace (}).
Expressions in curly braces brackets can be split over more than one physical line.
This implies implicit line joining, and there is no newline token between implicit
continuation lines (as in the previous example).

CHANGE 9 — REFINEMENT to CIF1

Separating tokens.

For delimited values, the first subsequent instance of the terminating character
sequence terminates that token. Whitespace characters (ASCII space, ASCII tab or
ASCIl newline) are used to separate tokens. That is, whitespace separation is
required between the end of one token and the beginning of the next token. For
example

“123" abc’ [[1 2 3] [4 5 6]]
{“first”:Bolt “second”:Johnson “third”:Borzov}

Note the requirement of whitespace is explicitly between the end of one token and
the beginning of the next token. That does NOT require that whitespace is necessary
between the beginning of one token and the beginning of the next token (similarly
for the ends of tokens). Hence in the List example above there is no requirement for
whitespace between [[and]].

In a Table the internal token is of the form “String” :Value, rather than two
tokens separated by a :.

