Electron diffraction data: new perspectives

Lukáš Palatinus

Institute of Physics ASCR, Prague, Czechia

Outline

Electron diffraction

- why and why not, when and when not?
- Oriented diffraction patterns
 - the beauty and the betrayal of symmetry
 - precession to the rescue!?
- Electron diffraction tomography
 - A weapon of mass structure production, finally! But...
- Dynamical refinement from (P)EDT
 - What God has joined together let not man separate (Mk 10:9)
- Outlook
 - Quo vadis, electron crystallography?

Electron vs. X-ray diffraction

X-rays

- ✓ weak interaction with crystal
- ✓ simple description of diffraction by kinematical theory
- ✓ little radiation damage
- possibility of diffraction in various environments (hp, gasses)
- k large crystals (>> 1 μm) or powder diffraction -> problems with mixtures and impurities

- ***** strong interaction with crystal
- complicated description of diffraction by dynamical theory
- x radiation damage
- ***** experiment in vacuum
- ✓ small crystals down to X nm
- ✓ analysis of mixtures and impurities

Electron vs. X-ray diffraction

Diffraction mostly kinematical

$$F_{\mathbf{g}} = \sum_{i=1}^{q} f_i(g) \exp(2\pi i \mathbf{g} \cdot \mathbf{r}_i)$$

$$I_{\mathbf{g}_i} \propto \left| F_{\mathbf{g}_i} \right|^2$$

Diffraction strongly dynamical

Dynamical diffraction – the Bloch-wave method

$$S = \exp(2\pi i t \mathbf{A})$$

$$I_{\mathbf{g}_{i}} \propto |S_{i1}|^{2}$$

$$a_{ii} = 2KS_{\mathbf{g}_{i}}, i = 1, N_{beams}$$

$$a_{ij} = U_{\mathbf{g}_{i}-\mathbf{g}_{j}}, i, j = 1, N_{beams}; i \neq j$$

Dynamical diffraction – the Bloch-wave method

$$S = \exp(2\pi i t \mathbf{A})$$
$$I_{\mathbf{g}_{i}} \propto |S_{i1}|^{2}$$
$$a_{ii} = 2KS_{\mathbf{g}_{i}}, i = 1, N_{beams}$$
$$a_{ij} = U_{\mathbf{g}_{i}-\mathbf{g}_{j}}, i, j = 1, N_{beams}; i \neq j$$

 $\begin{pmatrix} 0 & U_{-g_1} & U_{-g_2} & U_{-g_3} & U_{-g_4} \\ U_{g_1} & 2KS_{g_1} & U_{g_1-g_2} & U_{g_1-g_3} & U_{g_1-g_4} \\ U_{g_2} & U_{g_2-g_1} & 2KS_{g_2} & U_{g_2-g_3} & U_{g_2-g_4} \\ U_{g_3} & U_{g_3-g_1} & U_{g_3-g_2} & 2KS_{g_3} & U_{g_3-g_4} \\ U_{g_4} & U_{g_4-g_1} & U_{g_4-g_2} & U_{g_4-g_3} & 2KS_{g_4} \end{pmatrix}$

Dynamical diffraction - multislice

Image: http://www.microscopy.ethz.ch/simulation.htm

Scattering: $\psi'(x, y) = \psi(x, y) \exp(i\delta\varphi(x, y))$ Propagation: $(\pi i(x^2 + y^2))$

ι

$$\psi''(x,y) = \psi'(x,y) \otimes \exp\left(\frac{\pi i (x^2 + y^2)}{\lambda \Delta z}\right)$$

Dynamical diffraction

$$S = \exp(2\pi i t \mathbf{A})$$
$$I_{\mathbf{g}_i} \propto |S_{i1}|^2$$
$$= 2KS_{\mathbf{g}_i}, i = 1, N_{beams}$$

 a_{ii}

$$a_{ij} = U_{\mathbf{g}_i - \mathbf{g}_j}, i, j = 1, N_{beams}; i \neq j$$

Dynamical diffraction

Each intensity is a function of:

- Crystal thickness
- Crystal orientation
- Structure factors of all sufficiently excited beams

$$a_{ii} = 2KS_{\mathbf{g}_i}, i = 1, N_{beams}$$

$$a_{ij} \hspace{.1 in} = \hspace{.1 in} U_{\mathbf{g}_i - \mathbf{g}_j}, i, j = 1, N_{beams}; i \neq j$$

$$\mathbf{S} = \exp\left(\frac{2\pi i t \mathbf{A}}{2K_n}\right)$$

$$I_{\mathbf{h}_i} = |s_{i1}|^2$$

Oriented diffraction patterns

Oriented diffraction patterns

- very useful for determination of lattice parameters and symmetry
- ✓ beautiful spot patterns and CBED patterns
- ✓ computationally (more) easily tractable
- * the strongest dynamical effects
- structure solution possible, but very cumbersome

Sr₂₅Fe₃₀O₇₇;http://www.microsc opy.cz/html/1450.html

Al-Cu-Fe quasicrystal; http://www.tohoku.ac.jp/en/researc h/research_highlights/research_hig hlight_07.html

Silicon [110]

GaAs [1-10]; http://arxiv.org/ftp/arxiv/papers/1 211/1211.6571.pdf

Vincent & Midgley, Ultramicrosocopy 53 (1994)

PED = integrating the diffracted intensities over many orientations of the incident beam around a circle

For symmetry determination: more reflections in one diffraction pattern, more obvious systematic absences, easier access to HOLZ lines, better symmetry

For structure solution: intensities are "more kinematical" – more generally, the ordering of intensities is much closer to kinematical than non-precessed data.

For structure refinement: less sensitive to crystal thickness and orientation, more sensitive to structural parameters

PED = integrating the diffracted intensities over many orientations of the incident beam around a circle

For symmetry determination: more reflections in one diffraction pattern, more obvious systematic absences, easier access to HOLZ lines, better symmetry

For structure solution: intensities are "more kinematical" – more generally, the ordering of intensities is much closer to kinematical than non-precessed data.

For structure refinement: less sensitive to crystal thickness and orientation, more sensitive to structural parameters

Structure solution from oriented patterns

Precession electron diffraction of Mn₂O₃ and PbMnO_{2.75}: solving structures where X-rays fail

Acta Costallographica Section A

Foundations of

Crystallography ISSN 0108-7673

Received 24 June 2003 Accepted 12 August 2003

Holger Klein

Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673

Received 19 July 2002 Accepted 6 December 2002 Structure of Ti₂P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy

Mauro Gemmi,^a*† Xiaodong Zou,^a Sven Hovmöller,^a Andrea Migliori,^b Marie Vennström^c and Yvonne Andersson^c

Three-dimensional reconstruction of the v-AlCrFe phase by electron crystallography

X. D. Zou,^a* Z. M. Mo,^a† S. Hovmöller,^a X. Z. Li^b and K. H. Kuo^c

^aStructural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, ^bCenter for Materials

Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673

Electron crystallography without limits? Crystal structure of Ti₄₅Se₁₆ redetermined by electron diffraction structure analysis

Received 24 February 2000 Accepted 9 October 2000

Thomas E. Weiricht

Problems: low coverage, tedious data collection, strong dynamical effects even with precession

Available online at www.sciencedirect.com

Ultramicroscopy 107 (2007) 507-513

ultramicroscopy

www.elsevier.com/locate/ultramic

RED – "Stockholm school"

Z. Kristallogr. 225 (2010) 94-102 / DOI 10.1524/zkri.2010.1202

© by Oldenbourg Wissenschaftsverlag, München

Towards automated diffraction tomography: Part I-Data acquisition

EDT – examples

EDT – examples

- ✓ complete or almost complete diffraction data
- conceptually simple, fast and potentially fully automatic experiment
- ✓ easy solution of structures by *ab initio* methods
- **×** Poor figures of merit, unreliable atomic positions, unreliable e.s.d.s

structure	R _{obs} [%]	average ∆ [Å]	max ∆ [Å]	
barite	27	0.1	0.3	
$Li_4Ti_8Ni_3O_{21}$	35	0.23	0.4	
Zn ₅ Cl ₄ (BTDD) ₃	32	?	0.2 (rigid bodies and soft constr.)	
natrolite	20	0.1	0.183	
charoite	17			
Na ₂ Ti ₆ O ₁₃	29	0.152	0.454	

Why is the refinement so poor? Because of the dynamical difraction

Dynamical refinement

 $S = \exp(2\pi i t \mathbf{A}/2K_n)$ $I_{\mathbf{g}_i} \propto |S_{i1}|^2$ $a_{ii} = 2KS_{\mathbf{g}_i}, i = 1, N_{beams}$ $a_{ij} = U_{\mathbf{g}_i - \mathbf{g}_j}, i, j = 1, N_{beams}$

Dynamical refinement = leastsquares refinement with I_{calc} calculated with the dynamical diffraction theory

Dynamical refinement - specifics

data selection – a key to success:

 g_{max} : the maximum resolution of the experimetal data (typically 1.4 Å⁻¹)

 S_g^{max} : maximum excitation error of the experimental data

 R_{Sg}^{\max} : The ratio between S_g and the amplitude of the precession motion at **g**

Dynamical refinement - specifics

- Each experimental frame is treated separately. Reflections are not merged accross frames
- Symmetry-equivalent reflections are not merged
- Each frame has a separate scale factor
- Crystal thickness is refined
- Exact orientation of the crystal w.r.t. incident beam for each frame is important and must be known
- Data selection procedure is important!

Dynamical refinement and PED – why bother?

Own et al. (2006), Acta Cryst. A62

Palatinus et al. (2013), Acta Cryst. A69

Price to pay: much longer computing times!

Dynamical refinement and PED – why bother?

Paracetamol form II – two data sets Data set I Data set II precession 1.5° 0.0° angle 1.5° 1.5° tilt step tilt range 85° 74.5° $\mathsf{R}_{\mathsf{obs}}$

9%

35%

Dynamical refinement – practical procedure

Set up the parameters of refinement, calculate thickness plots to indentify starting thickness

Palatinus et al. (2015), Acta Cryst. A69

Dynamical refinement – test results

material	kinematical		dynamical		computing	
	al ADRA / MDRA	R1	ADRA / MDRA	R1	cycle (desktop PC)	Remark
kaolinite	0.0946 / 0.2660	19.15	0.0216 / 0.0504	5.77	2 m 24 s	inverted structure R1=8.19
Ni ₂ Si	0.0206 / 0.0240	11.07	0.0076 / 0.0110	7.28	54 s	15 nm nanowire
Ni ₃ Si ₂	0.0163 / 0.0482	17.95	0.0065 / 0.0139	8.45	5m 27s	35 nm nanowire
PrVO ₃	0.1549 / 0.2395	21.52	0.0174 / 0.0298	9.11	1 m 52 s	
mayenite	0.0270 / 0.0392	17.56	0.0121 / 0.0334	8.63	16 m 20 s	partially occupied O visible in the difference Fourier
orthopyro xene	0.0492 / 0.0814	24.98	0.0104 / 0.0236	7.06	38 m	partial occupancies of Fe/Mg refined to accuracy better than 2%

Current challenges

- ✓ Can we still improve the fit to get to the typical x-ray levels of accuracy and figures of merit?
- Can we find data collection protocols that do not require PED and still can be well refined?
- ✓ Can we port the dynamical refinement strategy to macromolecules and is it necessary?
- ✓ Develop random diffraction tomography for the solution of *really* unstable crystals
- ✓ We need an appropriate instrument!

Future of electron crystallography

- \checkmark Presentation of the method, more widespread use
- Use of special cameras with improved signal-to-noise ratio
- Random diffraction tomography, combination of diffraction from many crystals

