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Abstract

The normal matrix for full matrix least squares contains a
wealth of information about the behavior of the problem.
In particular, the eigenvalues and eigenvectors contain all
of the information concerning precision of parameter deter-
mination and correlation of parameters. This information is
valid even if the refinement is underdetermined. Full-matrix
analysis is likely to prove valuable for low resolution work
as well as for high resolution work.

1 Introduction

Refinement of macromolecular structures as a mathematical
problem is not different from refinement of small-molecule
structures. Both are straightforward optimization problems.
The difficulties arise because the macromolecular crystal-
lographer rarely has sufficient data to answer questions at
the same level of detail as the small molecule crystallog-
rapher. Nevertheless, he has a lot of data, and the tempta-
tion to over-interpret it is sometimes overwhelming. As a
personal note, I began work on refinement of protein struc-
tures when I realized that despite having hundreds of thou-
sands of observations I was unable to say with any certainty
whether the heme group in deoxyhemoglobin was signif-
icantly domed. A quarter of a century later it is still not
possible to put a direct measure of accuracy on estimates of
the heme geometry in hemoglobin.

Structural questions about macromolecules can be posed
on several levels, ranging from “What is the fold?” to “Is
one of the bonds in the iron-sulfur cluster significantly dif-
ferent from the others?” The level of detail is widely vari-
able, and structures which are adequate for the former pur-
pose may not be adequate for the latter. Any of us who prac-
tice our craft for any length of time will see some beautiful-
looking maps, which lead to structures in which we have
high confidence - but we cannot put reliable numbers on that
confidence. Similarly, we will see maps which are charita-

�Supported in part by grant BIR 9223760 from the National Science
Foundation.

yThis manuscript is an expanded version of one prepared for the CCP4
study weekend on Macromolecular Refinement, January 4-6, 1996

bly described as obscure, where we can (perhaps) build the
chain, but cannot be positive that the density we see is not
a phase artifact. Sometimes we see both kinds of density in
the same map. This presents us with a real problem. The
accuracy of the structures we report is not uniform, but the
methods for characterizing this information and reporting it
to the users of the coordinates are very poor indeed.

There are a number of common practices in refinement
of macromolecular structures which cause serious problems
with the accuracy of the final structure. Some of these are
omission of weak data, omission of low resolution data, im-
proper treatment of solvent, and improper treatment of non-
crystallographic symmetry restraints. Kleywegt and Jones
[1, 2] discuss some of the problems that arise from these
practices.

Many of these practices arise from the confusion of two
distinct problems. The first problem is to solve the struc-
ture, which means to find the correct model. In this stage
of the problem it is often highly appropriate to leave out
weak data and concentrate on the strongest signal. It can
also be appropriate to alter weights on restraints, relax non-
crystallographic symmetry restraints, and generally let the
molecule distort in order to fall into the best minimum.
Once the model is determined, there is the second problem
of finding the best values for the parameters of the model.
This is a quite different problem and requires different treat-
ment of the data. Much confusion arises because both prob-
lems are generally handled by the same software, and su-
perficially appear the same.

The method of analysis presented here is directed at two
problems. The first problem is to derive a reliable method
of estimating the uncertainty of each individual parameter,
which works for all resolutions and for all forms of param-
eterizing or restraining the model. It is shown below how
to ascertain which parameters are determined precisely and
which are not, by methods which are not limited by low res-
olution data. It is also shown how to determine the effect of
different ways of parameterizing the problem on the accu-
racy of the parameters. Practical analysis according to these
methods is not complete, but the results are almost certain
to be pessimistic. In the words of Ecclesiastes 1:18,For in



much wisdom is much grief: and he that increaseth knowl-
edge increaseth sorrow.

Another problem which can be addressed by the meth-
ods presented in this paper is to determine how the results
of the crystallographic experiment can be improved. There
are many open questions as to the “best practice” in any
experimental field. For example, there are widely vary-
ing practices in the use of low resolution data, inclusion of
weak reflections in refinement calculations, incorporation
of non-crystallographic symmetry restraints, and the trade-
off between completeness and resolution in data collection.
There are significantly different conceptual and mathemat-
ical descriptions of the models being refined. The mathe-
matical and computational apparatus discussed in this paper
provides a rigorous method for analysis of these questions.
It appears that it may be possible to use these methods to
determine optimal data collection protocols for answering
specific questions about a particular structure at higher reso-
lution, and will in general tell what must be done to achieve
a specified level of accuracy in a structure determination.
Due to space limitations this application will be given very
short treatment.

2 Theory of least squares

The theory of least-squares analysis of poorly determined
systems is well advanced mathematically, but seldom used
extensively in practice. The books by Lawson and Han-
son [3], and by Golub and Van Loan [4] are highly rec-
ommended to the reader. Excellent material is also found
in Diamond’s discussion of real-space refinement [5]. The
following derivations are completely general for all least-
squares problems, linear and non-linear. To avoid severe
notational complexity, the specific language of the crystal-
lographic problem is deferred until necessary.

The general problem of fitting a non-linear model func-
tion to a set of observations can be written as a minimization
of
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where�(x) is the sum of squares of residuals,yj is an ob-
served value,wj is a weighting factor based on the reliabil-
ity of yj , andfj(x) is the function which calculates the the-
oretical value of the observable quantity given the parame-
tersx and the indexj which specifies the conditions of the
observation. There are a variety of methods for finding the
parametersx which minimize�(x). The commonly used
methods for the macromolecular crystallographic problem
are simulated annealing [6], conjugate gradients applied di-
rectly to the non-linear function itself [7], and conjugate
gradients applied to the linear approximation to�(x) [8, 9].
Refinement of parameters in small-molecule crystallogra-

phy is normally done by directly solving successive linear
approximations to�(x), a method known as full-matrix
least squares [10, 11]. All of these methods work, some
faster than others. Generally speaking, simulated annealing
has the largest radius of convergence, conjugate gradients
applied to the non-linear function (especially as modified
by Tronrud [12]) is the fastest, and full-matrix least squares
is the most accurate.

The simplest description of the linear approximation is to
expand�(x) as a Taylor series about the minimum point
�0 = �(x0), wherex0 is the set of parameters which mini-
mize�(x). The expansion is
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where the Dirac bra-ket notation expresses a column vector
as jxii, a row vector ashxij, and a matrix asjxij j. hxjyi
is thus the inner product of the vectorsx andy. Since the
expansion is about a minimum, the gradient atx0 vanishes
for all parametersxi. Thus we have the approximation that
(to second order)
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Given the first and second derivatives of�(x), Equation (4)
can be solved for the correction tox which brings it closer
to x0. The approximation is the use of second derivatives
evaluated atx instead ofx0, and the neglect of higher order
terms in the Taylor series. Neither condition is a problem for
parameter estimates close tox0. Note that the assumption
that the function can be approximated locally by a quadratic
polynomial is equivalent to assuming that the matrix of sec-
ond derivatives is constant.

An alternative is to expand the residuals in terms of the
parameter shifts. In this formulation each weighted obser-
vation is expanded in a Taylor series as

wjyj = wjfj (x) + wj
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wherewj is the weight associated with observationyj .
Writing the system of equations (5) as a matrix equation
we have

A (x� x0) = r (6)



whereA hasm rows andn columns,x is a column vector
of lengthn, andr is a column vector of lengthm, with
elementswj (fj(x)� yj). �(x) is given by
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where the superscriptT denotes the transpose of a matrix
or vector. It is well known [3] that the solution to (5) which
minimizeskA (x� x0)� rk (and hence minimizes�(x))
is the solution to then� n matrix equation

ATA (x� x0) = AT r (8)

The equivalence of the two approaches is readily demon-
strated by expanding the terms in the two formulations. The
elementsgi of g = AT r andhij of H = ATA are given
by
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Differentiation of Equation (1) gives�
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The second derivative term on the right hand side of Equa-
tion (12) which is not found in Equation (10) vanishes as
x ! x0. Equations (4) and (8) thus converge to the same
form.

The matrix equation

H (x� x0) = g (13)

is the set ofnormal equationsfor the least squares problem.
Since a protein refinement can easily have104 parameters,
the size of the normal matrices can become very large. Full

matrix least squares is not normally applied to large pro-
teins.

The normal equations can be solved by invertingH,

H�1g = H�1H (x� x0) = (x� x0) (14)

S = H�1 is the covariance matrix times the mean square
residual, which means that, after scaling, the elements ofS

are
sij = cij�i�j (15)

wherecij is the correlation coefficient between parametersi

andj, and�i is the standard deviation of parameteri. Since
the correlation of any parameter with itself is 1, the diagonal
elements are the variances of the parameters determined by
solving the normal equations.The inverse of the normal
matrix is the source of the detailed accuracy information
from traditional small-molecule least squares analysis of X-
ray diffraction data.

The matrix of correlation coefficients is often used to de-
tect dependencies between variables in a least-squares prob-
lem. Values ofjcij j close to 1 indicate dependencies. How-
ever, this is limited to the detection of pairwise dependen-
cies. Higher order dependencies do not necessarily have
pairwise components. Lawson and Hanson [3, page 72]
give a3�3 example of strongly interdependent variables in
which the magnitude of the largest correlation is 0.49.

If there are insufficient observations to explicitly deter-
mine all parameters, the matrixH becomes singular and the
inverse matrix is not defined. For crystallography this oc-
curs if the resolution is low, which is a common case for
macromolecules. All of the preceding analysis concerning
the Taylor series expansions and normal equations is still
valid up through Equation (13). Methods for minimizing
�(x) which do not depend on inverting the matrixH (such
as simulated annealing or conjugate gradients) will still find
a minimum, but in a formal sense the variance of some of
the parameters will be infinite. The minimum will not be
unique.

Even singular normal equations can be solved by diago-
nalizing the matrixH. The eigenvalues and eigenvectors of
H are solutions to the matrix equation

Hv = �v (16)

where� is an eigenvalue ofH andv is the corresponding
eigenvector ofH.

For the case in whichH is a normal matrix for a least
squares problem, we have the interesting result from Equa-
tion (7) that
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whenvi is the ith eigenvector ofH and�i is the corre-
sponding eigenvalue. The eigenvectors ofH specify com-
binations of parameters which are statistically independent
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Figure 1: Both ellipses have the same
eigenvectors, but the eigenvalues are swapped.
The eigenvector in the (+;+) quadrant corresponds

to a shift of parameters which preserves the distance
between two points. The eigenvector in the (+;�)

quadrant corresponds to a shift of parameters which
preserves the center of mass of two points. The two

ellipses reflect situations in which either the
separation is more accurately known than the

position, or in which the position is known more
accurately than the separation.

of one another, and the eigenvalues are proportional to the
reciprocal of the variance of those parameter combinations.
Another way of expressing the same idea is that the eigen-
vectors which correspond to large eigenvalues are directions
in which parameter shifts have a large effect on the sum
of squares of the residuals, and thus are well determined.
Eigenvectors which correspond to small eigenvalues have
little effect on the sum of squares of the residuals and thus
correspond to poorly determined combinations of parameter
shifts. (In fact the reciprocals of the eigenvalues are propor-
tional to the variances of the corresponding combinations of
parameters.)

This situation is illustrated for a two-parameter case in
Figure 1. The ellipses are contours of constant�(x) in the
second order approximation. The principal axes of the el-
lipses correspond to the variances of the parameters. The
short axis of the ellipse gives the direction in which�(x)
has the most sharply determined minimum.

3 Poorly Determined Systems

The inverse of a matrix can be constructed from the eigen-
vectors and eigenvalues of the matrix. IfV is the orthogonal
matrix constructed so that the columns ofV are the eigen-
vectorsv ofH, it is easily shown that

H�1 = V��1VT (18)

where��1 is a diagonal matrix containing the reciprocals
of the eigenvalues ofH. If H is singular some of the eigen-
values are zero, and��1 is not defined. However, if we
define thepseudo-inverseof � as
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�
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0 �i = 0 or i 6= j
(19)

then
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where the matrix product yields an identity matrix of the
same rank asH, with the remainder of the product being0.
The equation corresponding to 18 is

H+ = V�+V
T
: (20)

The elements ofH+ contain the same correlation infor-
mation and variance information as the elements ofH�1,
except that it applies only to the parameter combinations
which are in fact still determined by the data. The pseudo-
inverse is identical to the inverse if the matrixH is of full
rank.

This apparatus provides a complete mechanism for de-
termining which parameters of a model are actually de-
termined by the least squares procedure. It also gives di-
rect measures of the precision of the determinations of
the parameters for those parameters which are actually de-
rived from the data. Preliminary calculations on two small
molecules and a protein have shown that even singular crys-
tallographic systems contain a large number of large eigen-
values, and hence many accurately determined parameters.

4 Restraints and Diffraction Data

There are several different methods for applying restraints,
and there are different degrees of approximation that can
be used in computing the elements of the normal matrices.
It is important that the effects of these different approaches
be understood precisely. When the restraints are put into the
least-squares calculation as additional observations to be fit,
the matrixA of Equation (6) can be partitioned as

A =

�
A1

A2

�
andAT =

�
AT

1A
T
2

�
(21)



where all of the experimental observational equations are in
A1 and all of the restraint equations are inA2. If we attach
an explicit scale factorKr to the equations of restraint, the
matrixH becomes

H = ATA

= AT
1A1 +K2

rA
T
2A2

= H1 +K2

rH2 (22)

This directly separates the contributions of the two portions
of the problem to the solution and will at long last clarify
the effects of different restraint schemes on the results of a
crystal structure refinement.

Construction ofH from Equation (22) has the advantage
that the quality of the parameters and the goodness of fit
can be studied as a function ofKr to determine the correct
relative weight to assign to the restraints. The benefit of
this approach over Br¨unger’s [13] is that all of the data can
be used while still avoiding overfitting. Br¨unger’s cross-
validation approach requires that a fraction of the data not
be used in the refinement so that it can be used as an ob-
jective check on the progress of the refinement and on the
validity of changes in parameters. In cases which are poorly
determined it is not desirable to give up a fraction of the data
if it can be avoided. (It should be noted that cross valida-
tion is good for testing other things besidesKr, such as the
validity of basic changes in the model. It is not yet clear
whether the methods being developed here could replace
Rfree for those purposes.)

5 Data Collection Protocol Analysis

Substitution of crystallographic variables into Equations (7)
and (14) gives

hij =
X
hkl

whkl

�
@ jFc
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which shows that the normal matrixdoes not depend di-
rectly on the observed data.The normal matrix depends
on the model, the set of observations which are included in
the calculation, and the statistical weight assigned to each
observation, but does not depend on the values of the ob-
servations. The values of the parameters of the model do
depend on the data, and this does affect the values of the
elements of the normal matrix.

It is thus possible, given a model, to evaluate the effect
of different data collection protocols on the accuracy with
which the parameters will be determined. This formalism
will decisively answer the question as to whether the omis-
sion of data observed at less than2� harms the accuracy
of the model (it does), and settle the wars concerning the
inclusion or omission of data inside the6Å sphere during
refinement. It will also tell specifically how the collection

of additional data will improve the accuracy of the model,
subject to the assumption that the model does not change
dramatically in view of the new data. For example, just
how good does your data have to get before you can tell if
one bond in your iron-sulfur cluster is significantly differ-
ent from the others? Are you better off getting more data,
or improving the accuracy of the data you already have?

6 Sample Results

Exploratory calculations have been done on two systems us-
ing SHELXL-93 [14] to compute the matrices on the Cray
C90 at the San Diego Supercomputer Center and on a Dig-
ital Equipment Corporation Alphastation 400 4/233. The
first case examined was a small lactone,C7H11NO3, the
data for which are distributed with the SHELXL-93 pro-
gram as a test case. The data extend to 0.8Å resolution.
The model contains coordinates and anisotropic thermal pa-
rameters for each heavy atom; the hydrogen atoms ride at
calculated positions with one exception, which has a free
bond rotation parameter. In all, there are 105 parameters in
the lactone model.

The second test case is a small protein, amicyanin [15,
16], which contains 105 amino acid residues and one cop-
per atom. The model also contains 88 solvent molecules,
for a total of 896 atoms and 3,856 parameters when us-
ing isotropic thermal parameters. (Two parameters are used
for scaling.) The data extend to 1.07Å resolution and are
kindly provided by Professors F. Scott Mathews and N.-h.
Xuong. The current model used in these preliminary calcu-
lations is not fully refined.

6.1 Small Molecule Test Case

The lactone refinement was done as described in the
SHELXL-93 manual. Refinement is onjFj2, hydrogen
atoms were given a riding model, and all heavy atoms were
refined with anisotropic thermal paramters. The program
was modified so that the matrix was written to disk before
Marquadt damping was applied. The program ran in sec-
onds on both computers, which is not surprising because it
also ran in seconds for this case on an IBM PC.

Some results for the lactone are presented in the follow-
ing figures. Figures 2 and 3 introduce the use of the power
represented by a particular eigenvector component. The ma-
trix V which contains the eigenvectors as columns has the
property that

NX
k=1

v2ik = 1

and partial sums of squares across the rows ofV measure
the projection of the parameteri into the subspace spanned
by the corresponding columns ofV. Figures 2 and 3 show
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Figure 3: Contribution of each eigenvector to
the U11 parameter of atom C11 at 0.8 Å and 2.0
Å resolution. This parameter is well determined

at 0.8 Å resolution because the smallest
eigenvalue contributing to the solution is greater

than 106. At 2.0 Å resolution the parameter is
essentially undetermined.

that the quality of the parameters does not decrease uni-
formly. Significant information persists at low resolution.
These figures are also completely consistent with small-
molecule refinement experience in that anisotropic thermal
parameters cannot be refined at low resolution, and that they
are clearly more strongly correlated with other parameters
than the spatial coordinates are.

Figures 4 and 5 show the effect of resolution on the eigen-
vectors of the lactone. The high resolution vectors in Fig-
ure 4 show a small amount of correlation. The peak in vec-
tor 100 near 50 on the scale is thex, y, andz coordinates
of atom N6, which is obviously making a concerted move-
ment. The peaks at parameters 90-95 in vector 7 are theUij

parameters of atom C10. Finally, the peak at 96 in vector 6
corresponds to the torsion angle of hydrogen H10.

The low resolution eigenvectors shown in Figure 5 are
much more diffuse. Each eigenvector carries information
about a number of parameters – but the number is not al-
ways large. For example, vector 100, which corresponds
to an eigenvalue of5:5 � 106, has four significant peaks,
most of which span several adjacent parameters. These cor-
respond to thex, y, andz coordinates of atoms O1, O2, and
N6; and to thez coordinate of atom O3.

6.2 Macromolecular Test Case

Analysis of the amicyanin normal matrix is far more com-
plex. Normal matrices were calculated for this protein at
resolutions of 1.07, 2.0, 2.5, 3.0, and 3.5Å. Refinement
was done usingjFj2 instead of the more conventionaljFj
because testing the differences between these two formu-
lations of the refinement problem is part of the point of
this proposal. Two refinements were calculated at each res-
olution – one which used the standard stereochemical re-
straints produced by the PDBINS program which is part of
the SHELXL-93 distribution, and one which usednostereo-
chemical restraints. Subtraction of the unrestrained normal
matrix from the restrained matrix will give the matrixH2 of
Equation 22 appropriate for this set of restraints, although
this has not yet been done. The model was refined with
isotropic thermal parameters.

Figures 6 and 7 show the eigenvalue spectra for the ten re-
finements. The restrained refinement contains no surprises;
the matrices are non-singular at resolutions better than 3.0
Å. The unrestrained refinements shown in Figure 7 shows
that even at 3.5̊A there are 657 eigenvalues greater than
105 and hence significant information determined by the X-
ray diffraction data. The situation is made much clearer by
Figure 8. For this figure thresholds of106 and103 were
chosen for well determined and poorly determined param-
eters. The squares of the components of each parameter
were summed in the subspaces determined by� > 106 and
� < 103. The parameters are sorted so that the first two are
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the scale factors, the next 896 are the thermal parameters,
and the remaining parameters are the spatial coordinates. In
each case the parameters for the 88 solvent molecules are
to the right. The well determined set is drawn in red; the
poorly determined set is drawn in black. High values in red
indicate well determined parameters, while high values in
black indicate poorly determined parameters.

The first thing to note is the power of the method for pick-
ing out sections of suspect structure. The 1.07Å restrained
refinement contains a number of red spikes which clearly
indicate sections which are not as well determined as the
rest of the structure. Since this refinement is not complete,
it is not yet determined whether this reflects disorder or er-
ror in the model. The spike in the black curve indicates a
thermal parameter which is unstable on refinement. As the
resolution decreases the behavior of the thermal parameters
and the level of accuracy of the coordinates shows behavior
consistent with current experience, except that the thermal
parameters are perhaps more poorly determined at 2.5Å
than an optimist might hope. The vertical black bar close
to 900 indicates that the thermal parameters for the solvent
atoms are almost uniformly dubious at 2.0Å.

Comparison of the restrained and unrestrained columns
is particularly enlightening. Many non-solvent coordinates
are well-determined at 3.5̊A in the restrained refinement,
but are not determined at all without restraints. This shows
how much of the information in the final structures is com-
ing from the restraints as a function of resolution. This fea-
ture is further highlighted by the poor quality of the solvent
coordinates in the restrained refinements; the only restraints
which help them are the anti-bumping restraints. A par-
ticularly noteworthy feature is that the quality of the sol-
vent coordinates in the 2.5̊A restrained structure is better
than the quality of the same coordinates in the unrestrained
structure even though there are few restraints on the solvent
molecules. This indicates that the restraints help the overall
structure, not just the portions restrained.

The calculation of the eigenvalues and vectors of the ma-
trices for this problem required 3 hours on a DEC Alpha,
or 20 minutes on a Cray C90. The calculations are clearly
feasible on large workstations as well as on supercomputers.
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[6] A.T. Brünger, J. Kuriyan, and M. Karplus, “Crystallo-
graphic R-factor refinement by molecular dynamics,”
Science, vol. 235, pp. 458–460, 1987, asb.

[7] D. E. Tronrud, L. F. Ten Eyck, and B. W. Matthews,
“An efficient general-purpose least-squares refinement
program for macromolecular structures,”Acta Cryst.,
vol. A43, pp. 489–501, 1987.

[8] John H. Konnert, “A restrained-parameter structure-
factor least-squares refinement procedure for large
asymmetric units,” Acta Cryst., vol. A32, pp. 614–
617, 1976, asb.

[9] J. H. Konnert and W. A. Hendrickson, “A restrained-
parameter thermal-factor refinement procedure,”Acta
Cryst., vol. A36, pp. 344–350, 1980, asb.

[10] G. H. Stout and L. H. Jensen,X-ray Structure Deter-
mination: A Practical Guide, John Wiley and Sons,
New York, 1989.

[11] G. M. Sheldrick,SHELXL-93, a Program for the Re-
finement of Crystal Structures from Diffraction Data,
Institut fuer Anorg. Chemie, Goettingen, Germany,
1993.

[12] D.E. Tronrud, “Conjugate direction minimization -
an improved method for the refinement of macro-
molecules,” Acta Crystallographica, vol. A48, pp.
912–916, 1992.
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