+ Cryogenic cooling of monochromator crystal

LN₂ cooling (Diamond)

Omitted topics

- Electron analyzer
- Crystal/multilayer analyzer
- Ultra-fast detectors
- Timing instruments

Detectors

Ionization chamber, solid state detectors (Silicon, Germanium...)

A. Ionization chamber (standard beam monitor in hard x-ray region)

	a. Ambient gas pressure type
	Control of absorbance: Mixing gas (N ₂ -He, N ₂ -Ar)
Ream monitor	b. Pressurized gas type
	Control of absorbance: Low vacuum, high vacuum
F detector	c. Lytle detector
	Fluorescence detection where energy resolution is
	not required
B.	Solid state detectors (SSD) Energy resolution: 135-220 eV @5.9 keV
	Silicon (Li) Pure Ge Upto 100 pixels; Oyanagi, NIM A513, 340 (2003).
C.	Silicon drift diode (SDD) Energy resolution: 130 eV @5.9 keV
	Upto five elements (?)
D	. Si APD Fast response detector Energy resolution ≈26%
	Kishimoto, RSI 63, 824 (1992)
E	Scintillation detector, NaI, plastic Energy resolution (NaI) ≈46%
F	. Multilayer monochromator

Note: frequent spike noise comes from a discharge Low voltage is recommended

Two types of ionization chamber

@CLS

Controlled gas flow makes a stable signal output

@ESRF

Pressurized ionization chamber setup at APS

+ Fluorescence intensity estimation

For x-rays incident on a slab of sample with thickness of x:

The fluorescence intensity $I_{\rm f}(E)$ accepted by a detector with a solid angle of $\mathbb{W}/4\mathbb{W}$ is:

Basically ionization chamber

Soller slit assembly to remove scattering and fluorescence background

Note: easy-to-use and low-cost fluorescence detector Note: never use in multi fluorescence signal sample www.exafsco.com/

@SagaLS

Figure 2. Soller Slit Position

For simple case, i.e., a single fluorescence line, energy resolving power becomes unimportant

> Lytle detector Si APD (DE≈26%) Nal array (40-50%)

High coverage of solid angle but ... Low energy resolution

> 18% of 4p DE=41%E

Focused beamline with a Nal array BL4C, 10C@PF

Sample: Mb(III)OH₂

Signal: Fe fluorescence Background: Filter fluorescence plus elastic scattering

Statistics: Proportional to the square root of the accumulated number of photons

Mn Ka

511

+ Statistics in fluorescence XAFS

- a. Repeating scans
- b. Segmented detection

No. 3 Australian Beamline at PF (Foran et al.)

Now in operation in Australian light source

3rd Generation

36 pixels

5 mm x 5 mm

165 eV@5.9keV

Glitches (scattering, standing wave, other elements) are completely removed.

Photo-induced spin crossover
–fluorescence detection by Ge PAD

Laser illumination changes Fe spin state from S=0 to S=2 No symmetry breaking!

Oyanagi et al., J. of Luminescence 119, 361 (2006).

Vacuum-tight ion chambers and a fast SSD @ESRF

Fluorescence X-ray

Measurement modes geometry

Transmission and fluorescence

+ Grazing incidence geometry

In a total reflection regime, $q_{\rm inc} < q_{\rm c}$

Selective excitation of surface with background reduction is possble Increasing surface sensitivity to 0.1 monolayer (ML) level

XSW (X-ray Standing Wave) set up Zegenhagen & Oyanagi @BL13/PF Electrochemistry cell (GaAs substrate)

ii (reflected beam)monitor (I=280 mm, N₂ or N₂+Ar gas)

 i_0 monitor (I=140 mm, N₂ gas)

+ UHV fluorescence experiment

Rev. Sci. Instrum. 66, 5477 (1995)

V-compatible 7 Si(Li) SSD

UHV 8-axis goniometer

UHV XAS system with MBE

Sample preparation methods

Some hints for better experiments

Closed cycle He cryostat @KEK

Multi sample holder @ANKA

+ Sample preparation

General

Detailed description of sample preparation is available at xafs.org by the following researchers

Grant Bunker Matt Newville Rob Scarrow Scott Calvin

URLs for each description available at xafs.org

Transmission experiment (Powder specimen)

http://www.xafs.org/Experiment/DoublyContainedSamples

Homogeneity and right thickness/concentration

Fluorescence experiment (single crystal)

Orientation and surface roughness

Temperature dependence

Stress-free good thermal contact

+ Sample mounting (bulk single crystals)

Large single crystal mounted on an aluminum base (left), smaller crystal mounted on impurity-free base (right)

LSCO on a standard type

Low-impurity type

2-4mm

1mm or less

