Towards a generalised approach for defining, organising and storing metadata from all experiments at the ESRF

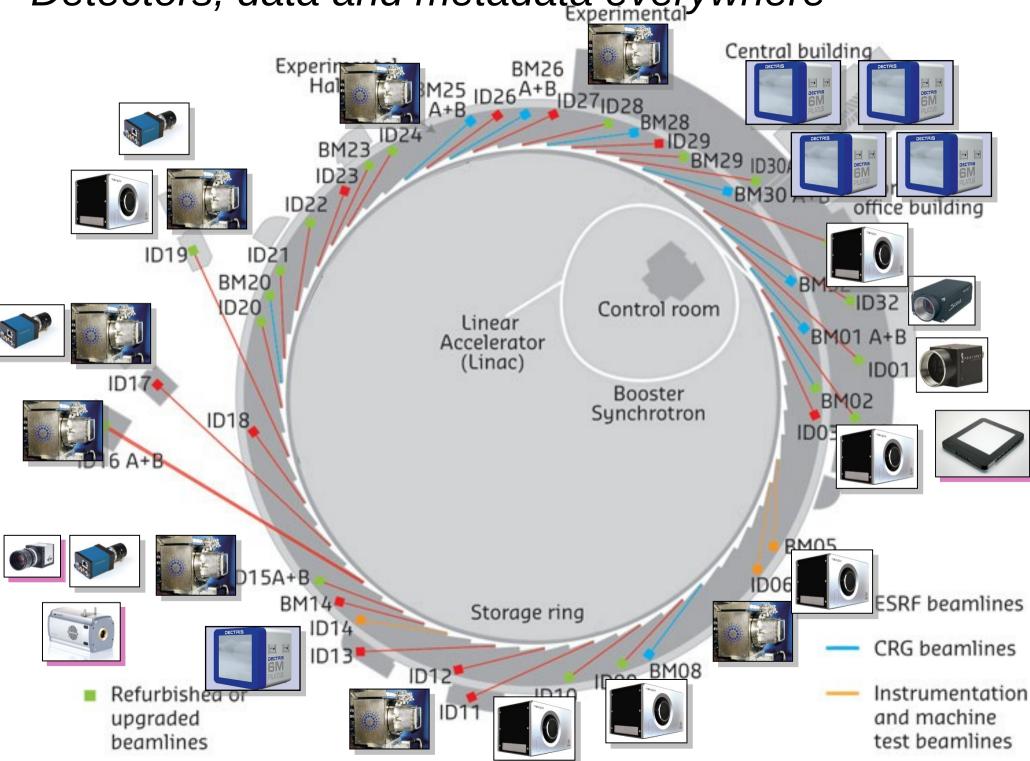
by Andy Götz ESRF

IUCR Satellite Workshop on Metadata 29th ECM (Rovinj) 2015

Looking towards the future

photo by Cynthia Greig (http://cynthiagreig.com) - Life Size

ESRF



- The European Synchrotron (Grenoble, France)
- 40+ Beamlines running 24/7
- Produced 1.2+ Petabytes of raw data in 2014-2015
- Metadata
 - Metadata well defined and managed for macromolecular crystallography (MX)
 - Non-unified approach for 35+ non-MX beamlines
- Upgrading source to a diffraction limited storage ring with 50+ more brilliance and coherence

ESRF Data Production

ESRF data production for 1 year TB total Δ 2014-05-29

Detectors, data and metadata everywhere

New Detectors every year

copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

What do we mean by Metadata ?

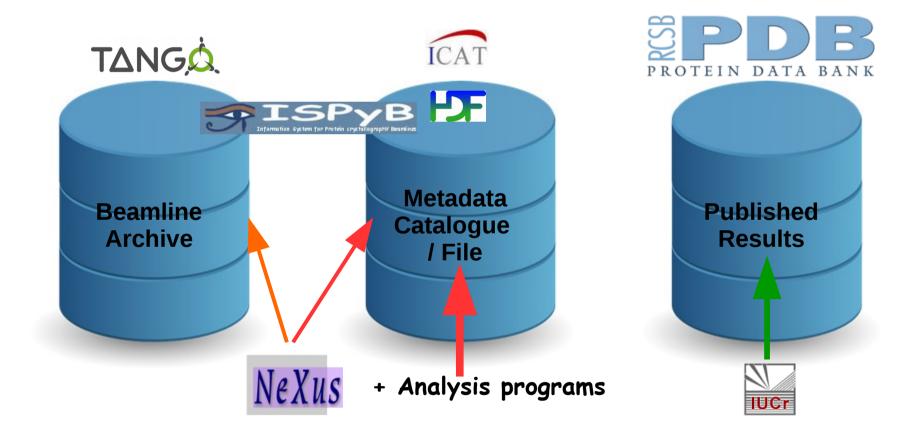
- "When talking about metadata we are often talking past each other"
- "Data about data doesn't mean anything"
- In this talk we define **metadata** to mean:

Data needed to reduce or analyse raw data i.e. in addition to the raw data

Metadata can also be data ...

6. Unpretentious; mod Characterized by littlen ttled; humiliated, 10, Di everages. 11. Soft; low; a small y Cut it up small, 2. Softly, 3 Something smaller than the rest: Small things collectively le English smal(1), Old E -small'ness n. minutive, minute, minic se adjectives describe cule, tiny, wee, p is markedly below that things whose physics age. Small and little can often be used interchange eral, small has the wider application; with reference size, little is usually more emphatic in implying sha from the average. Little is sometimes used also to a charm, endearment, or pathos to the term modifie means very, often abnormally, small. Minute desc small to the point of being difficult to see. Miniat copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

Three classes of Metadata



copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

Three classes of Metadata

- **Beamline+Sample** everything that describes the setup of the beamline + sample .
 - Used by beamline staff + experiment
- Experiment everything that describes the experiment and how it was conducted
 - Used by data analysis programs
- **Results** everything that describes the results of the analysis and the model
 - Used by scientists and journals

3 x Metadata Classes = 3 x Databases

Beamline + Sample

Experiment

Results

Why don't we manage Metadata well?

ONLY

- **Single beamlines** lack the critical mass to drive forward metadata standardisation
- Beamlines use multiple techniques
- Same technique on multiple beamlines
- Community standards often don't exist
- New techniques being invented regularly
- Exception to the rule is when multiple beamlines using the same technique work together e.g. MX (see Gordon's talk)

New global approach @ ESRF

- Moving to a global site wide solution tailored to local needs
- Commonly defined framework for input and output
- Implement a site wide solution offering same services for all experiments
- Constrain the global and local definitions using Nexus + HDF5 + icat

- Give **priority** to metadata required for data **reduction** and **analysis programs**
- Address all techniques on all beamlines
- Implement a metadata + data policy

Goals for Metadata @ ESRF for ALL beamlines

- 1. Define metadata for all experimental techniques
- 2. Define data format(s) for automated data analysis
- 3. Annotate data with metadata and store in HDF5
- 4. Archive all metadata forever
- 5. Provide access to metadata

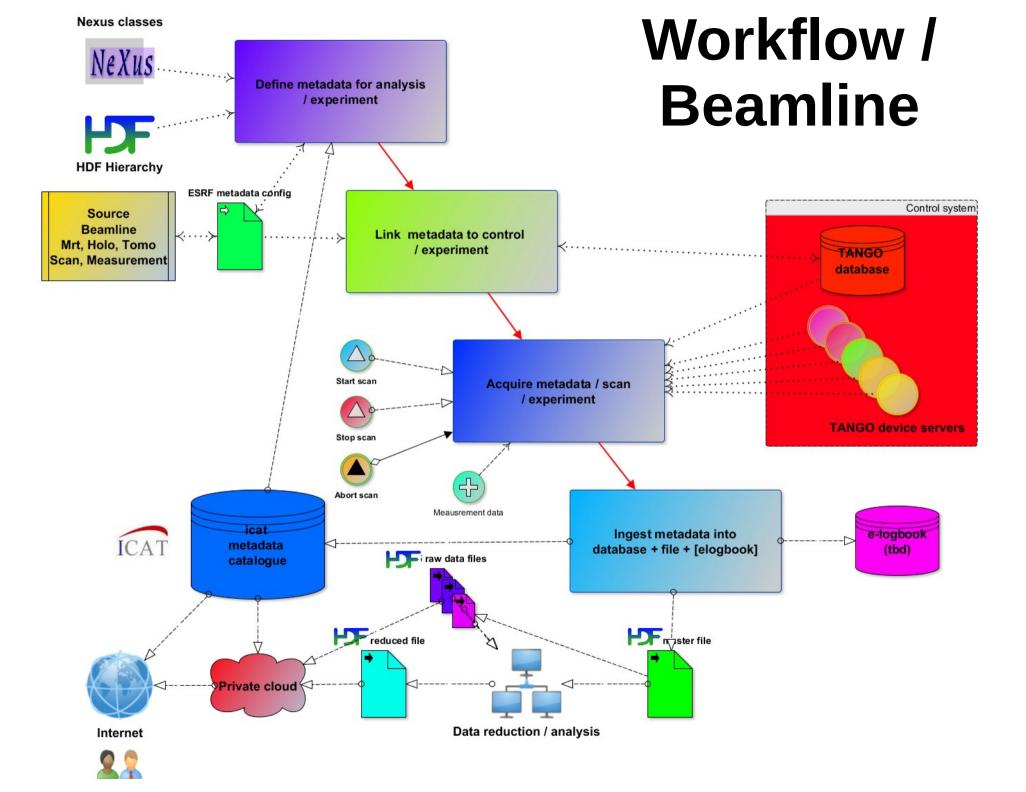
- 6. Implement DOI for data for provenance + publications
- 7. Provide users efficient download data service(s)
- 8. Archive (not-for-free) service to curate raw data
- 9. Implement the ESRF Data Policy (as soon as it has been defined by the management)

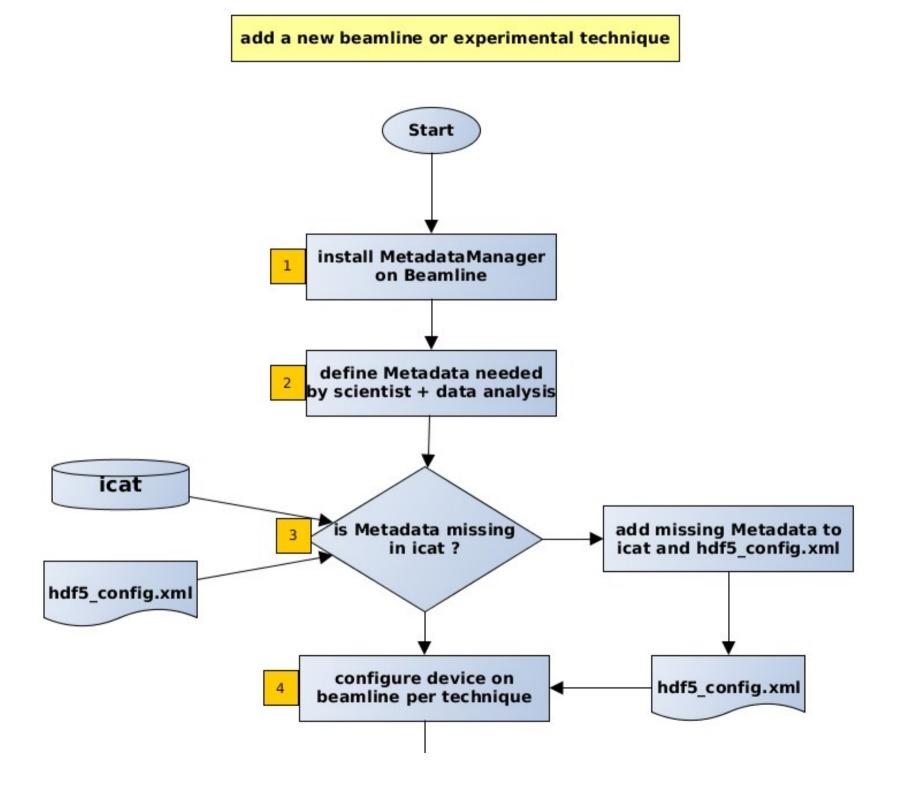
Advanced Metadata management

- For certain techniques (MX, BIOSAXS, XRPD) :
 - LIMS* to track samples from the lab to publication
 - Track samples location for safety purpose
 - Advanced web interface for
 - preparing experiments,
 - running experiments and
 - displaying results
 - Upload results to public database(s)
 - Mail-in service for industrial users
 - Data Analysis As a Service (DAAS)

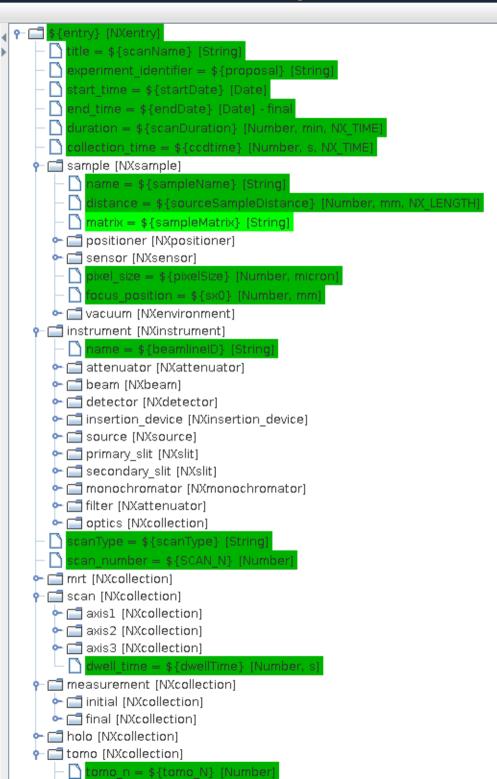
* Laboratory Information Management System

MX+ISPyB talk is tomorrow


copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

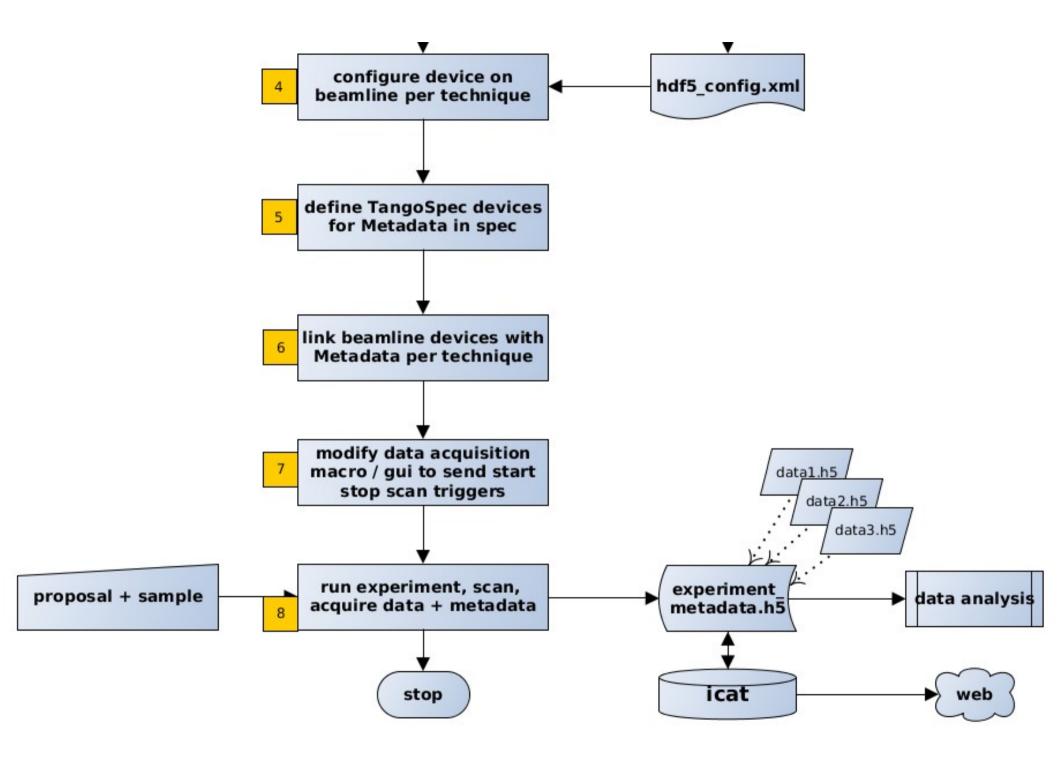

Global approach builds on existing standards

- HDF5 use the hierarchical structure to store data from multiple techniques in single file or master file + links to data files
- Nexus use the Nexus classes as much as possible (do not reinvent the wheel)
- Icat use icat for metadata catalogue and profit from all the services + the community
- ISPyB use ISPyB for advanced metadata management


CIF – use IUCr standards where they exist for publishing results

HDF5 configurator

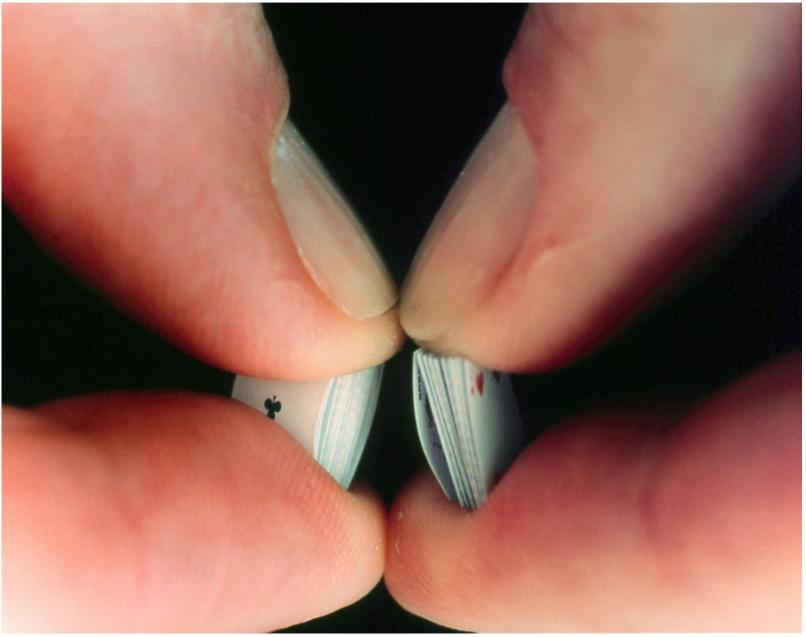
				HDF5 Configurator		
File ICAT L&F Help						
Name	Description	ValueType	Units	P C & (entry) (NXentry)	🗂 NXaperture	
attenuators_labels	Attenuators labels	STRING			NXattenuator	
attenuators positions	Attenuators positions	STRING			📑 NXbeam	
	Fluorescence detecto	STRING		- externation attended formulat	NXbeam_stop	
	Fluorescence detecto			Distantine - Aference Leavel	NXbending_magnet	
diff detectors positions	Diffraction detectors	STRING		Euorume = \${euonare} {Dare} - Imai		
diff_detectors_motors	Diffraction detectors	STRING		- Diffuration = SEscanDuration & INumber min NX TIMEL	NXcapillary	
tomo_detectors_positi	Tomography detector	STRING		September time - Conditional INtroduct of NY TIMET	NXcharacterization	
	Tomography detector				NXcollection	
	Secondary source mo				📑 NXcollimator	
secondary_source_po	Secondary source mo			- D name = \${sampleName} [String]	🗂 NXcrystal	
iC	Ionisation chamber flux		A		🗂 NXdata	
doseRate	Dose Rate	NUMERIC	Gy/s/mA	- 🗋 matrix = \${sampleMatrix} [String]	NXdetector	
beamHeight	Beam Height	NUMERIC	mm		NXdetector_group	
beamWidth	Beam Width	NUMERIC	mm		NXdisk_chopper	
mscType	Multislit Type	STRING			NXentry	
mbSize	Microbeam Size	NUMERIC	micron			
ctcMot	C-to-C Motor	STRING			NXenvironment	
ctcSpacing	C-to-C Spacing	NUMERIC	micron		NXevent_data	
ctcN	Number of Irradiations	NUMERIC			NXfermi_chopper	
crassMat	Crossfiring Motor	STRING			📑 NXfilter	
crossAngle	Crossfiring Angle	NUMERIC	deg	- 🗂 attenuator [NXattenuator]	🗂 NXflipper	
crassN	Number of Crossfiring	NUMERIC		 Deam (NXbeam) 	NXgeometry	
inticdMot	Interlaced Motor	STRING			NXguide	
IntledOff	Interlaced Offset	NUMERIC	micron		NXinsertion_device	
gonioz_start	Z Start Position	NUMERIC	mm		NXinstrument	
gonioz_stop	Z Stop Position	NUMERIC	mm		NXlog	
ganioz_speed	Z Last Speed	NUMERIC	mm/s			
ICU2	Counts on ION chamb	NUMERIC		Secondary sil (NASIL)	NXmirror NXmirror	
ICOMU1	Counts on ION MUSST	NUMERIC		real monocritomator (NAmonocritomator)	MXmoderator	
ICOMU2	Counts on ION MUSST	NUMERIC		• 🗖 filter (NXattenuator)	NXmonitor	
sourceSampleDistance	Source/sample distance		mm		📑 NXmonochromator	
machineMode	Machine mode	STRING		- ScanType - \${scanType} [String]	📑 NXnote	
cameraName	Camera Name Machine current at thus	STRING	-		NXobject	
machineCurrentStart machineCurrentStop	Machine current at th	NUMERIC NUMERIC	ma ma	Carl neumer = *Locker with trempert	NXorientation	
		STRING	1074	← _ mrt [Nxcollection]	NXparameters	
insertionDeviceName InsertionDeviceGap	InsertionDeviceName InsertionDeviceGap	STRING	mm	Y SCALINACOLECTOLI	_	
filter	Filters name	STRING		P axisi inacollectioni	NXpolarizer	
monochromatorName	Monochromator Name	STRING		P avis / invicoilection	NXpositioner	
energy	Energy	NUMERIC	keV	► C axis3 (NXcollection)	NXprocess	
tomo_N	Projections NUMERIC	NUMERIC		- New House - 5 (dwellTime) (Number, st	- NXroot	
ref On	Reference images eve			measurement [NXcollection]	📑 NXsample	
ref N		NUMERIC			🗂 NXsensor	
dark N		NUMERIC		• 🚍 initial (NXcollection)	📑 NXshape	
y_Step	Sample translation for		mm	←	NXsource	
ccdtime	Exposure time	NUMERIC	S	← 🔄 holo [NXcollection]	NXsubentry	
scanDuration		NUMERIC	min		NXtranslation	
	Sample/detector dista		mm	- D tomo_n = \${tomo_N} [Number]	NXuser	
			degree	Design a start to make a		
A.R.					NXvelocity_selector	
Name		De	finition		📑 NX0raylens	
		HDF5 file entry		<pre>- D ref_on = \${ref_on} (Number)</pre>		
		Proposal code		$-\Box$ y_step = \${y_step} [Number, mm]		
beamlineID		ID of the beamline		FTOMO_PAR = \${FTOMO_PAR} (String)		
		Name of the sample		$- \boxed{2} \operatorname{Step} = \{ z \operatorname{Step} \} [Number, mm]$		
scanName		Name of the scan				
		Scan starting date		— ☐ sample_distance → /instrument/detector/sample_distance		
endDate		Scan ending date		— ☐ source_distance → /instrument/detector/source_distance		
		Manager and the second second second				



ł		NXaperture
ŀ		NXattenuator
		NXbeam
		NXbeam_stop
		NXbending magnet
		NXcapillary
		NXcharacterization
		NXcollection
		NXcollimator
		NXcrystal
		NXdata
		NXdetector
		NXdetector_group
		NXdisk_chopper
		NXentry
		NXenvironment
		NXevent_data
		NXfermi_chopper
		NXfilter
		NXflipper
		NXgeometry
		NXguide
		NXinsertion_device
		NXinstrument
		NXlog
		NXmirror
		NXmoderator
		NXmonitor
		NXmonochromator
		NXnote
		NXobject
		NXorientation
		NXparameters
		NXpolarizer
		NXpositioner
		NXprocess
		NXroot
		NXsample NXsappar
		NXsensor NYshann
		NXshape NXsource
		NXsource NXsubentry
		NXsubentry NXtranslation
	님	NALTARISTALION

Current global configuration of Nexus/HDF5 main classes

- -<group NX_class="NXentry" groupName="\${entry}">
 - <title ESRF_description="Name of the scan" ESRF_mandatory="Mandatory" NAPItype <experiment_identifier ESRF_description="Proposal code" ESRF_mandatory="Manda <start time ESRF_description="Scan starting date" ESRF_mandatory="Mandatory" N <end_time ESRF_description="Scan ending date" ESRF_mandatory="Mandatory" NAI <duration ESRF_description="Total acquisition time" NAPItype="NX FLOAT64" NX_u <collection_time ESRF_description="Exposure time" NAPItype="NX FLOAT64" NX_u +<group NX_class="NXsample" groupName="sample"></group> +<group NX_class="NXinstrument" groupName="instrument"></group> <scanType ESRF_description="Scan type can be 'step by step' or 'continuous' " NAPIty <scan_number ESRF_description="Scan number" NAPItype="NX FLOAT64">\${SCAN +<group NX_class="NXcollection" groupName="mrt"></group> +<group NX_class="NXcollection" groupName="tomo"></group> +<group NX_class="NXcollection" groupName="scan"></group> +<group NX_class="NXcollection" groupName="measurement"></group> </group>


Definitions are a superset of all metadata required by all beamlines – a single beamline / experiment uses a subset of the information – multiple techniques stored in same file

Scan is a key concept

- The notion of a scan is **fundamental** to the experiment and data analysis programs
- A scan represents a **dataset**. It is comprised of one or more data acquisitions runs with zero or more changing parameters (scanning)
- A scan is a **meta-concept** for grouping data
- A scan can be made up of **sub-scans**

Flexible metadata definitions

copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

Flexible Metadata definitions

- Storing metadata with images is not enough
- Beamlines need to change definitions every time a new technique is added
- Techniques can be very varied and can be beamline specific
- More and more beamlines use multiple techniques
- Cannot expect international standards on all techniques

Typical request from a beamline

Holo-tomography

DESCRIPTION Index of first dark image Index of last dark image Index of first sample image in plane 1 Index of last sample image in plane 1 Index of first sample image in plane 2 Index of last sample image in plane 2 Index of first sample image in plane 3 Index of last sample image in plane 3 Index of first sample image in plane 4 Index of last sample image in plane 4 Index of first reference image in plane 1 Index of last reference image in plane 1 Index of first reference image in plane 2 Index of last reference image in plane 2 Index of first reference image in plane 3 Index of last reference image in plane 3 Index of first reference image in plane 4 Index of last reference image in plane 4 Number of planes for holography Source/sample distances for all planes used Sample/detector distances for all planes used Sample vertical translation for reference images

NAME dark num start dark num end im01 num start im01 num end im02 num start im02 num end im03 num start im03 num end im04 num start im04 num end ref01 num start ref01 num end ref02 num start ref02 num end ref03 num start ref03 num end ref04 num start ref04 num end holo N holoSourceSampleDistances holoSampleDetectorDistances z Step

UNITS

Tomography

- Metadata required by tomography analysis programs
 - <group NX_class="NXcollection" groupName="tomo">
 <tomo_n ESRF_description="Projections NUMERIC" NAPItype="NX_FLOAT64">\$
 <ref_n ESRF_description="Reference images NUMERIC" NAPItype="NX_FLOAT64">\$
 <dark_n ESRF_description="Dark images NUMERIC" NAPItype="NX_FLOAT64">\$
 </dark_n ESRF_description="Reference images every REF_ON projections" NAPItype="NX_FLOAT64">\$
 </dark_n ESRF_description="Reference images every REF_ON projections" NAPItype="NX_FLOAT64">\$
 </dark_n ESRF_description="Sample translation for reference images" NAPItype=""NX_FLOAT64">\$
 </dark_n ESRF_description="Ftomo parameters" NAPItype=""NX_FLOAT64">\$
 </dark_n ESRF_description=""NX_FLOAT64">\$
 </dark_n ESRF_description="Ftomo parameter

Microbeam Radiation Therapy

- Metadata required by MRT protocol
- -<group NX_class="NXcollection" groupName="mrt">

<multi slit type ESRF_description="Multislit Type" NAPItype="NX CHAR">\${mscT <dose_rate ESRF_description="Dose Rate" NAPItype="NX FLOAT64" units="Gy/s/m</pre> <ctc motor ESRF description="C-to-C Motor" NAPItype="NX CHAR">\${ctcMot}</c> <ctc spacing ESRF description="C-to-C Spacing" NAPItype="NX FLOAT64" units=" <ctc n ESRF description="Number of Irradiations" NAPItype="NX FLOAT64">\${ctc <cross_motor ESRF_description="Crossfiring Motor" NAPItype="NX CHAR">\${cros <cross_angle ESRF_description="Crossfiring Angle" NAPItype="NX FLOAT64" units <cross n ESRF description="Number of Crossfiring" NAPItype="NX FLOAT64">\${cross n ESRF description="NX FLOAT64">}{crossfiring" NAPItype="NX FLOAT64">}{crossfiring" NAPItype="NX FLOAT64">}{crossfiring Crossfiring Cro <intlcd motor ESRF description="Interlaced Motor" NAPItype="NX CHAR">\${intlc <intlcd_offset ESRF_description="Interlaced Offset" NAPItype="NX FLOAT64" units <z_start_position ESRF_description="Z Start Position" NAPItype="NX FLOAT64" un <z_stop_position ESRF_description="Z Stop Position" NAPItype="NX FLOAT64" uni <z_speed ESRF_description="Z Last Speed" NAPItype="NX FLOAT64" units="mm/s <IC01 ESRF_description="Counts on ION chamber 0-1" NAPItype="NX FLOAT64">\$ <ICO2 ESRF_description="Counts on ION chamber 0-2" NAPItype="NX FLOAT64">\$ <ICOMU1 ESRF_description="Counts on ION MUSST chamber 0-1" NAPItype="NX H <ICOMU2 ESRF_description="Counts on ION MUSST chamber 0-2" NAPItype="NX H <IONCH1 ESRF_description="Counts on ION chamber 1" NAPItype="NX FLOAT64"> <IONCH2 ESRF_description="Counts on ION chamber 2" NAPItype="NX FLOAT64"> </group>

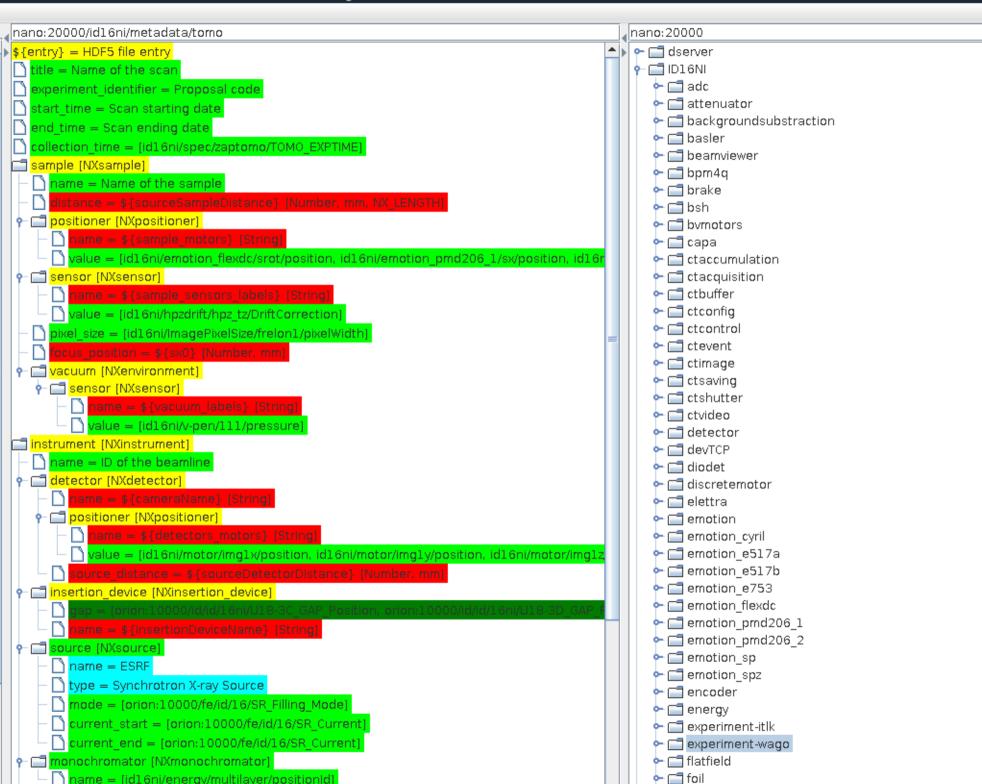
Generic Scan

• Can be used for any technique e.g. fluorescence

- <group NX_class="NXcollection" groupName="scan">

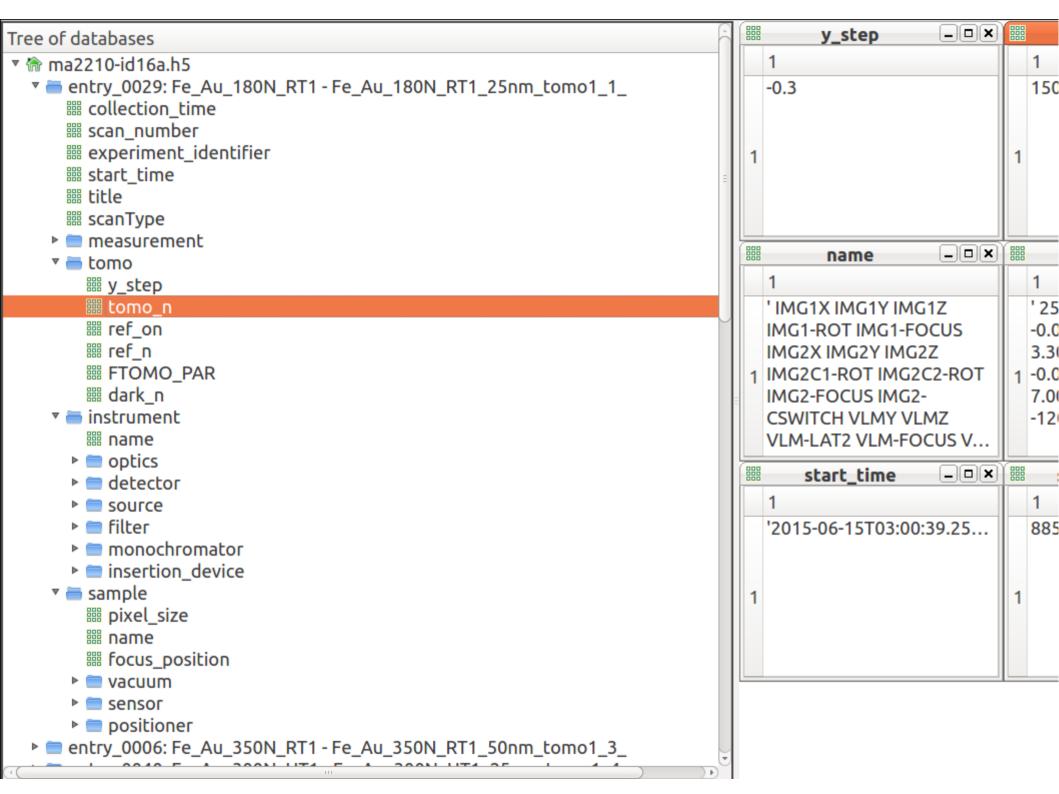
- <group NX_class="NXcollection" groupName="axis1">
 <name ESRF_description="1st scan axis" NAPItype="NX_CHAR">\${scanAxis_1]
 <range ESRF_description="Scan range along 1st axis" NAPItype="NX_FLOAT64
 <dimension ESRF_description="Number of scan points along 1st axis" NAPItype=</pre>
- +<group NX_class="NXcollection" groupName="axis2"></group>
- + <group NX_class="NXcollection" groupName="axis3"></group>
 <dwell_time ESRF_description="Dwell time per step" NAPItype="NX_FLOAT64" u
 </group>

Measurement


• Dynamically measured metadata

- <group NX_class="NXcollection" groupName="measurement"> - <group NX_class="NXcollection" groupName="initial"> <link groupName="SR_Current" ref="/instrument/source/current_start"/> <link groupName="vacuum" ref="/sample/vacuum/sensor/value"/> <energy ESRF_description="Energy" NAPItype="NX_FLOAT64" units="keV">\${energy ESRF_description="Energy" NAPItype="NX_FLOAT64" units="hotons/s"> <iu ESRF_description="Incident flux" NAPItype="NX_FLOAT64" units="photons/s"> <it ESRF_description="Incident flux" NAPItype="NX_FLOAT64" units="photons/s"> <it ESRF_description="Incident flux" NAPItype="NX_FLOAT64" units="photons/s"> </

Collecting Metadata on beamline



copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

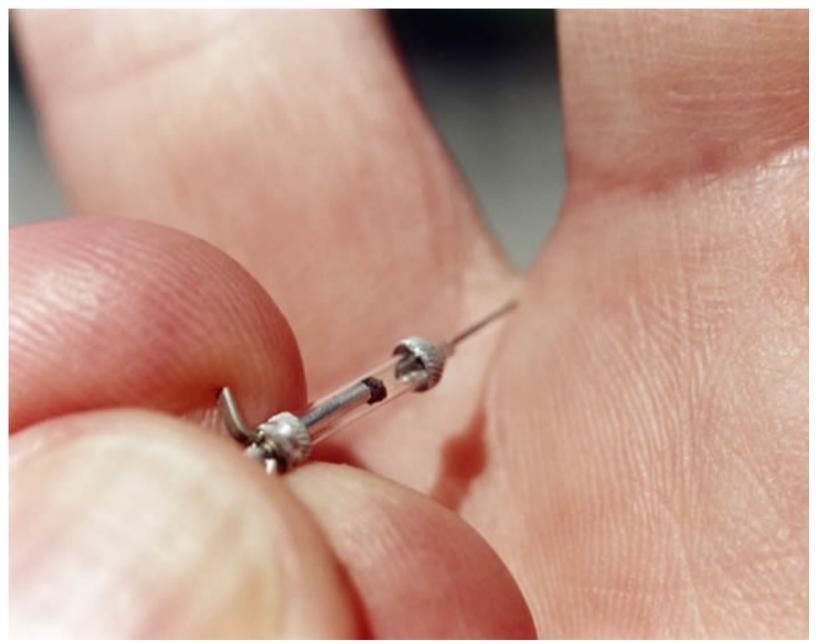
ID16A example dataset

Tree of databases					
▼ 🕅 ma2210-id16a.h5					
entry_0029: Fe_Au_180N_RT1 - Fe_Au_180N_RT1_25nm_tomo1_1_					
entry_0006: Fe_Au_350N_RT1 - Fe_Au_350N_RT1_50nm_tomo1_3_					
entry_0040: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_25nm_tomo1_4_					
entry_0034: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_100nm_tomo1_2_					
entry_0025: Fe_Au_180N_RT1 - Fe_Au_180N_RT1_100nm_tomo1_1_					
entry_0010: Fe_Au_300N_RT1 - Fe_Au_300N_RT1_100nm_tomo1_3_					
entry_0041: Fe_Au_ConstantRate_RT1 - Fe_Au_ConstantRate_RT1_100nm_tor					
entry_0048: Fe_Au_300N_HT2 - Fe_Au_300N_HT2_100nm_tomo1_4_					
entry_0007: Fe_Au_350N_RT1 - Fe_Au_350N_RT1_50nm_tomo1_4_					
entry_0044: Fe_Au_ConstantRate_RT1 - Fe_Au_ConstantRate_RT1_100nm_tor					
entry_0035: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_100nm_tomo1_3_					
entry_0038: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_25nm_tomo1_2_					
entry_0004: Fe_Au_350N_RT1 - Fe_Au_350N_RT1_50nm_tomo1_1_					
entry_0016: Fe_Au_240N_RT1 - Fe_Au_240N_RT1_100nm_tomo1_1_					
entry_0033: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_100nm_tomo1_1_					
entry_0026: Fe_Au_180N_RT1 - Fe_Au_180N_RT1_100nm_tomo1_2_					
entry_0020: Fe_Au_240N_RT1 - Fe_Au_240N_RT1_100nm_tomo1_4_					
entry_0013: Fe_Au_300N_RT1 - Fe_Au_300N_RT1_25nm_tomo1_2_					
entry_0043: Fe_Au_ConstantRate_RT1 - Fe_Au_ConstantRate_RT1_100nm_tor					
entry_0021: Fe_Au_240N_RT1 - Fe_Au_240N_RT1_25nm_tomo1_1_					
entry_0012: Fe_Au_300N_RT1 - Fe_Au_300N_RT1_25nm_tomo1_1_					
entry_0011: Fe_Au_300N_RT1 - Fe_Au_300N_RT1_100nm_tomo1_4_					
entry_0002: Fe_Au_350N_RT1 - Fe_Au_350N_RT1_100nm_tomo1_3_					
entry_0032: Fe_Au_180N_RT1 - Fe_Au_180N_RT1_25nm_tomo1_4_					
entry_0017: Fe_Au_240N_RT1 - Fe_Au_240N_RT1_100nm_tomo1_1_					
entry_0024: Fe_Au_240N_RT1 - Fe_Au_240N_RT1_25nm_tomo1_4_					
entry_0027: Fe_Au_180N_RT1 - Fe_Au_180N_RT1_100nm_tomo1_3_					
entry_0036: Fe_Au_300N_HT1 - Fe_Au_300N_HT1_100nm_tomo1_4_					
entry_0015: Fe_Au_300N_RT1 - Fe_Au_300N_RT1_25nm_tomo1_4_					
entry_0005: Fe_Au_350N_RT1 - Fe_Au_350N_RT1_50nm_tomo1_2_					
🕨 🚍 entry_0042: Fe_Au_ConstantRate_RT1 - Fe_Au_ConstantRate_RT1_100nm_tor					

Current status of Metadata

- Nexus/HDF5/icat system running on 2 beamlines with work started for 2 more
- Techniques implemented so far :
 - holo-tomography, nano-fluorescence, nanodiffraction, generic scanning
- Techniques to implement next :
 - ptychography, full-field diffraction, fluorescence, saxs, 3d x-ray diffraction, ...

Estimate of Metadata production @ ESRF


- Projection based on 1 beamline
- Database size after 10 years < 2 TB

		As of 2015/02/11	Per week of operation per beamline	Per year of operation per beamline	Per week of operation on all beamline	Per year of operation on all beamlines
Proposal		19	1.5	57	58.5	2280
Users		69	5.3	207	212.3	8280
Sample		139	10.7	417	427	16680
Dataset		1917	147	5751	5898.5	230040
Datafile		1807096	139007	5421288	5560295	216851520
Parameter		55172	4244.0	165516	169760.0	6620640
Database size	GB	1	.1	3	3.1	120

Storing Metadata

- Metadata will be stored in a single master file (HDF5) per experiment + in icat database
- Data analysis will be able to access the raw data through the master file via links
- It will be possible to **regenerate** the **master file from icat** using the latest configuration file
- Storing metadata is low cost in terms of disk storage but needs human resources to be maintained

Data and metadata policy

copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

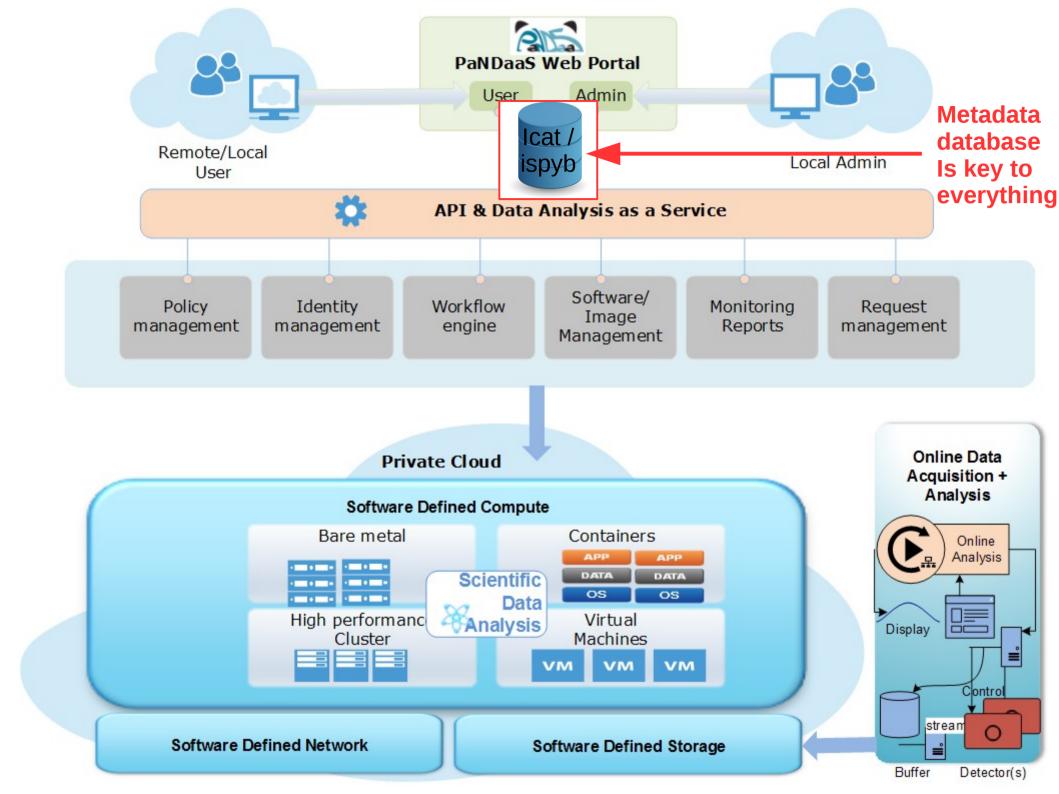
Metadata policy

- One of hurdles to defining a data policy cost of storage – is NOT an issue for Metadata
- Metadata needs to be complete so that data can be re-analysed
- ESRF is committed to defining and implenting a metadata and data policy during Phase II
- What **metadata policy** to apply when publishing metadata under a **DOI** ?

Metadata is key to progress

copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

Metadata key to progress


- Any **new data based service** requires quality metadata :
 - Online data analysis
 - Automated workflows
 - Archiving + retrieval
 - Metadata mining
 - Re-analysis of data
 - Cloud-based services
 - Linking raw data to publications

Data Analysis as a Service

- Data is becoming increasingly difficult to take home
- Users are increasingly facing storage and performance issues
- New users have issues with software
- Solution = leave data at the source and provide remote access to data and software
- Sound familiar ? Cloud ... PaNDaaS* proposal

*project progress will be posted on http://pan-data.eu/

How this workshop can help

copyright Cynthia Greig (http://cynthiagreig.com) - Life Size

How this workshop can help

- **Sharing** of **metadata schemes** for data analysis
- Define an international Metadata policy
- Insist on the need to curate raw data
- Coordinate metadata for new techniques related to crystallography

Links to other intiatives

- Similar efforts on going at :
 - DESY
 - NSLS II
 - others ...

Conclusion

- A beamline specific approach is not enough
- Global site-wide approach linked to a database is needed
- Metadata definitions need to be flexible and support multi-technique experiments
- Metadata is more than image headers the answer is a master file with all metadata required for data analysis
- Keeping definitions coherent is a challenge
- Metadata policy is unavoidable in the future

Credits

- ESRF Christophe Cleva, Armando Solé, Peter Cloetens, Christian Nemoz, Cyril Guilloud, Roberto Homs, Olof Svensson, Jerome Kieffer, Peter Boesecke, Julio Cesar Da Silva, Alessandro Mirone
- Photographs Cynthia Greig