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Abstract

The problem of estimating heavy-atom parameters
(esp. occupancies) from acentric reflexions in the MIR
method has a long history of difficulties, and a
conceptually satisfactory solution allowing bias-free
refinement of all parameters (including the lack of
isomorphism) has only recently been obtained by a
recourse to the method of maximum-likelihood
estimation. The situation is essentially identical in the
case of MAD phasing. The maximum-likelihood method
needs to be invoked to exploit incomplete phase
information in a heavy-atom parameter refinement while
preventing that information from biasing the results.

We have designed and written from scratch a computer
program –SHARP(Statistical Heavy-Atom Refinement
and Phasing) – that fully implements the maximum-
likelihood approach. It can refine all parameters specifying
the internal rescaling of data as well as the models for
lack-of-isomorphism and for all relevant heavy atoms,
against data from MIR and/or MAD data in any
combination.  The program has been systematically tested,
both on synthetic and on measured data, and compared to
the standard program MLPHARE. The results show the
superiority of our approach, especially in cases of low
signal-to-noise ratio. The likelihood function has also
been used as a detection tool to compute residual Fourier
maps which can be inspected to probe for minor sites, and
to calculate phase probability distributions encoded in
Hendrickson-Lattman coefficients.

1 Introduction

Bias-free refinement of  heavy-atom parameters in the
MIR and MAD methods, which is an essential step
towards obtaining the best possible electron-density maps
given the available data, has remained for a long time a
troublesome issue in macromolecular crystallography.
The conventional approach to this problem was originally

conceived [1,2] as a straightforward adaptation of the least-
squares method previously used on centric data by Hart
[3]: the "most probable" or the "best" estimates of the
phases, as defined by Blow & Crick [4], were simply made
to play a rôle analogous to that of the signs of centric
reflexions. Dickerson, Weinzierl & Palmer [5] pointed out
that more than two derivatives were needed for this type of
refinement, and Blow & Matthews [6] found this method
to have poor convergence properties unless steps were
taken to ensure that the acentric phase estimates used in
the refinement were independent of the parameters that
were being refined. With hindsight, these difficulties are
easily rationalised : this 'phased' least-squares refinement
was, in effect, violating the first cardinal rule of the least-
squares method, namely that any quantity involved in the
observational equations should be either a model parameter
or an observation. Treating the native phase as a known
constant within each cycle, but recalculating it after each
refinement step, introduces bias on the parameters,
especially in the case of mostly bimodal phase
distributions.

At the same time as the first attempts were being made
to use phase estimates, an alternative refinement scheme
was devised by Rossmann [7], based on a difference-
Patterson correlation criterion, and evolved towards the
"FHLE method" [8,9], and finally the "origin-removed
Patterson-correlation function" [10]. Here the use of
acentric phase estimates is avoided altogether, but at the
price of impoverishing the available information in the
sense that multiple derivatives are not allowed to assist
each other's refinement through the generation of phase
information.

Sygusch [11] recognized that a middle-ground could
perhaps be found if the acentric phases were no longer
deemed to be "estimates", but were instead treated as extra
parameters and refined along with the others.
Unfortunately, the enormous increase in the number of
variables dictated the use of a diagonal approximation,
which rather defeated the original purpose of



accommodating the correlations between phases and
parameters. Bricogne [12,13] proposed a solution that
partially overcame these difficulties. The main idea was
that structure-factor estimates for acentric reflexions are
implicit functions of the parameters that are being refined.
This dependence was shown to result (via the chain rule)
in a correction to the partial derivatives from which the
normal equations of the least-squares method are to be
formed. Many previously observed pathologies, such as
the rapid divergence of the site occupancies of good
derivatives, were cured by this analysis, but slower-
moving instabilities were observed that resulted in
divergent behaviour of the estimates for the lack of
isomorphism of the various derivatives. Moreover, the
problem of bimodality remained.

At this point, compliance with the first cardinal rule of
the least-squares method had been essentially restored, but
attention was drawn to the violation of a second cardinal
rule : the inverse-variance 'weights' in the expression for
the least-squares residual should be kept fixed as if they
were part of the observed data. Since the method of least-
squares is a special case of the maximum-likelihood
method when errors are normally distributed with fixed
(co)variances, it is clear that the problem of properly
estimating the lack-of-isomorphism parameters demanded a
fully-fledged maximum-likelihood rather than a least-
squares treatment.

Perusal of the literature shows that two-dimensional
statistical 'phasing' (probability distribution on the phase
and on the modulus of the native structure factor) had been
considered as early  as 1970 [14], leading to the first
mention of likelihood in this context by Einsein [15]. The
first mention of parameter estimation by maximum-
likelihood, in a very limited context, is found in Green
[16]. Maximum-likelihood (ML) refinement for heavy-
atom parameters was then advocated by Bricogne
[17,18,19], Read [20], and an approximation to it was
implemented by Otwinowski [21] in the program
MLPHARE. This program is only a partial
implementation of ML refinement – best described as
'phase-integrated least-squares' – in the sense that (i) it
integrates the exponential of the least-squares residual and
its partial derivatives only over the phase of the native
structure factor (not over its modulus) ; and that (ii) the
lack of isomorphism is still re-estimated at the end of each
refinement cycle rather than being refined, and may often
converge to non-optimal values. Nevertheless, this
approach has been shown in numerous cases to yield better
results than earlier refinements, drawing attention to the
potential of maximum-likelihood methods.

The maximum-likelihood formalism outlined in
Bricogne [19] for the MIR and SIR cases forms the basis
of the present work. We will describe here its extension to
probability distributions incorporating anomalous
diffraction effects as well as measurement error and non-

isomorphism. Integrating these distributions in the whole
complex plane leads to likelihood functions that can be
used for heavy-atom detection and refinement, and for
producing phase probability distributions. We will also
describe the current implementation of this formalism in a
computer program, named SHARP (for Statistical Heavy-
Atom Refinement and Phasing) [22].

2 Likelihood functions for parameter
refinement

2.1 Outline

Generally speaking, bias is introduced in a model
incorporating some degree of randomness whenever a
distribution for a random quantity is replaced by a value
for that quantity. The likelihood formalism avoids this
pitfall by consistently emphasizing that distributions are
involved.

More specifically, a least-squares (LS) model is always
formulated as a prescription for turning given values of
model parameters into 'calculated' (error-free) values to be
compared with the observables. Error estimates are
obtained a posteriori, by examining the residual
discrepancy between the 'calculated' and the 'observed'
quantities.By contrast, a likelihood-based model casts its
predictions directly in the form of probability distributions
for the observables, the quantities called 'calculated' in the
LS formalism usually appearing as parameters in these
distributions.

2.2 The native structure factor

The most important thing to bear in mind when
building up the likelihood function for heavy-atom
refinement is that the complex value of the native

structure factor F
P

(h) is not known. The measurement of
a native amplitude for an acentric reflexion h, if present,
gives rise to a two-dimensional probability distribution

p( )F
P

(h) . A measurement for the structure factor of a
derivative crystal will also give rise to a two-dimensional

probability distribution p( )F
P

(h) |{g}  for the native
structure factor, conditional to the values {g} of the set of
global parameters for the heavy-atom model, for the
scaling model and for the lack-of-isomorphism model.

For a centric reflexion, the probablity distribution
becomes one-dimensional, but the theory is essentially
similar.

2.3 The likelihood function

For a given reflexion h, the probability distribution of
the native complex-valued, conditional to all the
information available, is obtained by multiplying the



probability distributions of F
P

(h ) for independent
measurements.

This probability distribution is then transformed into a
likelihood distribution for that reflexion, via the simple
rule (in the absence of prior phase information) :

Λ( ){g},F
P

*
(h)  = p( )F

P
*

(h)|{g}

Note that this equation is valid at each trial point

F
P
*

(h) in the Harker plane. In order to have a likelihood

function that is independent of assumptions on the native
complex structure factor, we must now integrate the

likelihood function over all possible values of F
P
*

(h) :

Λ( ){ }g  = ∫∫ Λ( ){g},F
P

*
(h)  d

2
F

P
*

In the case of a centric reflexion, the integration is one-
dimensional only, along the axis defined by the centric
phase.

3 Parametrisation

3.1 Heavy-atom structure factors

This parametrisation amounts to a physical description
of diffraction properties , involving heavy-atom
coordinates, occupancies, isotropic and (if need be)
anisotropic temperature factors, as well as normal and
anomalous scattering factors. This was prefered to
'isomorphous' and 'anomalous' occupancies, because the
physical parameters f' and f'' are either known precisely
(MIR experiment off an absorption adge) or can be
measured (Cromer curve in a MAD experiment). Our
implementation uses a hierarchical organisation for these
parameters, that enables common attributes to be shared
appropriately (Fig. 2). A list of site coordinates is
determined that contains all known sites in all derivatives,
and for each level of the hierarchy, these sites are 'qualified'
(by a chemical identity, by an occupancy etc.). In this
way, the long-standing problem of the same site being
refined independently at each wavelength of a MAD
experiment cannot occur, And common sites in a MIR
experiment are parametrised correctly.

Future developments will incorporate a parametrisation
of the anisotropy of anomalous scattering [23,24] and will
allow a refinement of the corresponding parameters from
unmerged data carrying suitable goniometric information
for each measurement.

3.2 Scale factors

Currently, scale factors are parametrised by a constant

scale K
sc
j

, an isotropic relative temperature factor B
sc
j

, and

six anisotropic increments ( )b
p,q
j

 to B
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j
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3.3 Lack-of-isomorphism variance

Differences between native and derivative structure
factors are explained by a heavy-atom model, and by an
error model. In the 'null hypothesis' where we know
nothing about the heavy-atom structure, all the differences
are average attributed to the error, and this error will be
refined to smaller values as the heavy-atom model
becomes more accurate.

This error can be broken down in three main
components :

The measurement error.
It is part of the crystallographic data and not refined.

The physical lack-of-isomorphism error.
In the absence of structural evidence for 'localised' lack-of-
isomorphism, our assumption will be that of Luzzati [25]
that there is a random isotropic positional perturbation,
with spatially uniform mean amplitude and normal
distribution, over the whole asymmetric unit.  Based on
this hypothesis, following the work of Read [26] and
Dumas [27], we used a one-parameter model for the
physical lack-of-isomorphism variance, increasing with
resolution.

The model error.
This error has the same effect on the statistical distribution
of the native structure factor as the previous one, but its
variance is approximately decreasing with resolution as the
mean intensity of remaining heavy atoms. We used a two-
parameter model (a constant and a temperature factor) for
this error.

A similar parametrisation is used for the error on the
anomalous differences. Although there is no physical basis
for adopting the same model, it was thought flexible
enough as a function of resolution to fit to more diverse
functions of resolution.



4 Other uses for the likelihood
function

4.1 Residual maps for model updates

The likelihood formalism also provides the
opportunity of checking for significant systematic
disagreement betweeen the data and the substitution model.
For each reflexion h, we calculate the gradients of the
likelihood function with respect to the real and imaginary

parts of the various heavy-atom structure factors F
H
j

( )h .

These numbers are then used in Fourier syntheses to
produce residual maps, that have the symmetry of the
crystal. Similarly, in the case where there is significant
anomalous diffraction, the gradients with respect to

( )F
H
j+

+F
H

j-
 become coefficients for isomorphous

residual maps, and those with respect to ( )F
H
j+

-F
H

j-
 for

anomalous residual maps.

These maps enable the detection of minor sites, and
perform this task in an optimal fashion because they take
into account the full  unbiased phase information available
from the data at the current stage of refinement. They are
essentially Fourier syntheses calculated from inverse-
variance weighted difference coefficients between the
derivative and native data. Their enhanced sensitivity to
any departure from the current heavy-atom model (when
the data are accurate enough, and to high enough
resolution) makes them the instrument of choice to detect
more subtle features, such as anisotropy in the heavy-atom
temperature factors or structural disorder at certain sites.

4.2 Final phasing and calculation of
Hendrickson-Lattman coefficients

Once the global parameters have been refined to

convergence, the likelihood function Λ( )F
P
*

, { }g

considered as a function of the trial native structure factor

F
P
*

 only, becomes (after suitable normalisation) the

probability distribution function of the modulus and phase
of the native structure factor (this is a simple application

of Bayes's theorem). The two-dimensional centroids

F
P
best

( )h , used as Fourier coefficients of the electron-

density map, and the Hendrickson-Lattman 'ABCD'
coefficients [28] of the marginal phase distribution can be
easily derived from this likelihood function.

4.3 Future developments and perspectives

A natural extension of the quantitative use of residual
maps based on log-likelihood gradients is the refinement
of heavy-atom clusters of known geometry by real-space
techniques of the Agarwal-Lifchitz type (e.g. as
implemented in the TNT package). This is currently
underway.

In order to offer ab initio detection capability, another
type of map will be added to the existing program. Its
coefficients will initially involve second-order derivatives
of the log-likelihood function associated to the null
hypothesis defined by "all intensity differences between
data sets are caused by lack of isomorphism". This map
will have the character of a Buerger sum function over a
weighted difference-Patterson function [29]. As major sites
are detected and included in the substitution model, the
log-likelihood function will develop first-order derivatives
giving rise to a difference-Fourier component in the
residual map, while the revised second derivatives will
keep contributing a component with the character of a sum
function over a residual difference-Patterson.

The whole process of detecting sites and of assessing
their significance quantitatively can thus be automated,
using the log-likelihood gain referred to the null
hypothesis as a scoring criterion for the peak-search. The
procedure will stop when the highest remaining peak in
the residual maps is essentially at the level of the noise.

Once all heavy atoms have been detected and refined,
the remaining features in the 'isomorphous' residual maps,
if they are significant, can provide the basis for a
systematic study of lack of isomorphism. This could
improve the rather crude way in which 'global' and 'local'
lack of isomorphism have hitherto been described.

5 The Graphical User Interface

In order to facilitate the full use of SHARP's ability to
accommodate experimental data from any combination of
sources (MIR, with or without anomalous scattering,
MAD, or a blend of both), it was necessary to guide the
user in the construction of a hierarchical parameter file
describing his/her experimental situation. This was
achieved by the means of an HTML browser-based
graphical user interface. The same system was used to
facilitate inspection of the output of the program, and the
optional execution of standard peripheral tasks.

5.1 Choice of tools

Our approach is based on a client-server philosophy, in
order to make best use of the World Wide Web as a
communication tool. As a result, once SHARP is
installed on a server (a powerful computer, workstation or
other, that will actually do the calculations), any



authorised user can run the program from any terminal
connected to the Internet. This has proved invaluable to us
during the beta-testing stage, and provides high flexibility
for all users.

The result is a forms-based interface, written in HTML
language and processed by Perl scripts, that exactly
mirrors the hierarchy of parameters during the buildup of
the parameters file, and that connects automatically to
graphical helper applications, to facilitate inspection of the
output.

5.2 Input

The input pages consist in a series of embedded forms,
that guide the user through our parametrisation of the
experiment (list of sites, compounds, crystals,
wavelengths, batches). Because the options taken in the
higher levels condition the structure of the lower levels,
the setting of the parameter tree is unidirectional ; coming
back erases what has been set before.

5.3 Output

The output listing file of SHARP is also written (by
the FORTRAN program) in the HTML language, and thus
contains hyperlinks to both text documents and graphics.
This enables the main listing to contain only the minimal
amount of information on the refinement, while anciliary
detail is spun off into sub-files, which are hyperlinked to
the main listing file.

Third-party graphical helper applications such as npo
[30] for stacks of 2D plots and O [31] for 3D plots, are
triggered from the logfile to visualise residual maps and
electron-density maps.

Finally, links to the documentation are scattered
through the output, to provide the user with a context-
sensitive help facility.

6 Applications

6.1 Synthetic data

The first tests of SHARP were aimed at establishing
the numerical validity of the procedure. In statistical
terms, the refinement is successful when, starting from a
non-optimal point in parameter space, it converges
towards a solution at a distance of 1 from the 'perfect'
parameters that we introduced in the synthesis. The
distance is calculated in the metric of the variance-
covariance matrix, and represents units of standard
deviations on the parameter estimates, taking into account
all correlations between the errors.

The results of these tests are presented in Table 1, in
three situations of interest. The starting parameters have

been chosen to correspond to a realistic situation. Scales
and lack-of-isomorphism parameters are estimated before
refinement using robust procedures, and the starting
distance is calculated after this estimation.

6.2 Measured data on known structures

Two datasets have been used for testing the accuracy of
the refinement and phasing procedure as implemented in
SHARP, and comparing it to the widely-used program
MLPHARE [21].

The first of these datasets is a SIRAS experiment
performed on the 26kD protein elastase, using a crystal un
der high pressure of krypton gas as a derivative [35].
Refinement started with one krypton site, and the log-
likelihood gradient map showed that the thermal motion of
the krypton atom was anisotropic. Once this anisotropy
was included in the heavy-atom model the features
disappeared from the residual map. The peaks that
remained in the map at this stage were a pair of elongated
peaks of opposite sign, that correspond to the movement
of a side-chain (val 121), and a spherical negative peak that
suggests the departure of a water molecule, replaced by the
krypton atom in the cavity.

Phase probability distributions were calculated with
SHARP, using as a final heavy-atom model one Krypton
atom with anisotropic thermal motion. The side-chain
displacement and the departing oxygen atom were not
included.

Because the phase probability distributions are mostly
bimodal at this point (due to scarce anomalous scattering),
the quality of the electron-density map is a poor judge of
the quality of the phasing, since centroid phases will
anyway be poor in information content. We therefore used
a density modification procedure [36] to improve the
phases , with the rationale that it would yield better results
when the input phase probability distributions (encoded as
Hendrickson-Lattman coefficients) are statistically more
accurate.  The density modification procedure was exactly
similar for both SHARP and MLPHARE. The results are
summarized in Table 2.

The second is a MAD dataset on IF3-C [37,38] (C-
terminal part of translational initiation factor 3). The two
methionine residues of this 94-residue protein were
replaced by selenomethionines and a three-wavelength
anomalous diffraction experiment was performed at the
Selenium K edge.

The starting heavy-atom model consisted in two
selenium atoms with isotropic thermal motion.
Refinement of this model showed that, consistently with
the results of other refinement procedures, the second
selenium atom had a high temperature factor (around 60).
Once the refinement was completed, the residual maps



showed strong anisotropic features for the first selenium
site and weaker anisotropy for the second. We therefore
updated the heavy-atom model by allowing an anisotropic
temperature factor for both seleniums atoms. The
resultsing residual map showed much fewer features above
the noise level, except for a 10σ peak at 1.8 Å distance
from the first selenium site. The second update of the
heavy-atom model allowed for a third selenium atom with
an isotropic temperature factor, that refined to a low
occupancy (0.2). The remarkable result was that the added
occupancies of site 1 and site 3 were equal to the the
occupancy of site 2 within the standard deviation of this
parameter. This observation, added to the small distance
between site 1 and site 3, shows that this Methionine
residue has a double conformation.

As in the previous example, we show in Table 3
comparative results of MLPHARE and SHARP, both
before and after density modification.

7 Conclusion

The results described here were an important step in the
commissioning of SHARP. They showed, on simulated
data and on measured data, that its performance was at least
as good as we had expected. The sensitivity of the log-
likelihood gradient maps enables very precise updating of
the heavy-atom model, which in turn results in increased
phasing power of a given derivative, especially in the
highest resolution range, as witnessed by the consistently
lower phase errors and higher correlation coefficients. The
advantages of a bias-free refinement of heavy-atom
parameters are clearest when a phase modification
procedure is subsequently applied to the output of
SHARP.

The program is now at the end of the beta-testing
stage, and will be released to academic sites very soon.
The World Wide Web page of interest is indicated at the
top of this article.
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type of
experiment

protein
(pdb ID)

space-
group

resolution
(Å)

heavy atom
(per mol.)

phasing
power

(iso/ano)

distance at
start

distance at
convergence

SIR 1abe [32]
(306 resid.)

P212121 20 - 3. 1 Hg 1.42 0. 4.06 1.14

MIRAS 1ald [33]
(363 resid.)

P6422 20. - 3.5

4U
2Pb
1Hg
3Ag
3Au

0.66
0.85
0.92
0.38
0.64

1.24
0.

1.11
0.
0.

9.05 0.92

MAD
1bgh [34]
(85 resid.)

C2 20. - 2. 1 Se
(3 wvl)

0.
0.2
0.68

0.57
1.01
0.6

11.2 0.88

Table 1 : general overview of test refinements on simulated data from PDB files

Resolution
(Å) ALL 50.0 5.25 3.73 3.05 2.64 2.36 2.16 2.00 1.87

SHARP refinement and phasing, density modification with SOLOMON (43% solv.)

FOM 0 . 9 2 0.96 0.97 0.95 0.93 0.92 0.92 0.92 0.87

<∆ϕ> 2 4 . 3 19.9 16.6 23.8 24.7 27.4 26.6 28.0 31.7

CORREL 0 . 8 6 0.81 0.93 0.87 0.86 0.84 0.84 0.84 0.80

MLPHARE (+VECREF) refinement and phasing, density modification with SOLOMON (43% solv.)

FOM 0 . 8 7 0.88 0.94 0.95 0.93 0.90 0.89 0.86 0.71

<∆ϕ> 3 1 . 4 30.5 27.4 29.2 31.7 33.7 33.0 33.5 35.7

CORREL 0 . 8 1 0.87 0.82 0.84 0.80 0.85 0.77 0.73 0.68

Table 2 : Quality of Kr-Elastase SIRAS phasing, in comparison with the refined model



Resolution
(Å) ALL 50.0 5.25 3.73 3.05 2.64 2.36 2.16 2.00 1.87

SHARP refinement and phasing, density modification with SOLOMON

FOM 0 . 8 8 0.86 0.92 0.92 0.90 0.89 0.87 0.86 0.84

<∆ϕ> 2 9 . 2 41.9 24.7 23.6 27.6 28.9 30.5 30.3 34.6

CORREL 0 . 8 2 0.68 0.88 0.87 0.84 0.83 0.80 0.81 0.74

MLPHARE refinement and phasing, density modification with SOLOMON

FOM 0 . 8 8 0.82 0.92 0.92 0.90 0.89 0.87 0.86 0.84

<∆ϕ> 3 3 . 6 41.7 26.4 30.0 32.6 32.7 35.9 38.9 40.8

CORREL 0 . 7 8 0.68 0.86 0.82 0.79 0.79 0.75 0.72 0.67

Table 3 : Quality of IF3-C MAD phasing, in comparison with the refined model


