
CHAPTER 15 

Dynamical X-ray Optics; 
Electron and Neutron Baijiraction 

P. P. EWALD 

15.1. Inadequqg of the Kinematical Theory 

Laue’s original theory of X-ray diffraction was characterized in Ch. 6 
as a kinematical theory. Just as in mechanics the sub-section of 
kinematics deals with the analysis and superposition of given motions, 
regardless of any forces producing them, so,this theory only considers 
the result of superposing given elementary wavelets which are derived 
from an incident or primary wave by its successive scattering on 
the atoms. No further scattering is considered which the secondary 
rays might produce on their passage through the crystal, and the 
omission of this reaction entails immediately an infringement of the 
law of conservation of energy. Each secondary ray, generated by 
‘constructive interference’ of the wavelets, transports energy in its own 
direction, and this energy flow must obviously be taken out ofthat of 
the primary ray. On the assumption of the kinematical theory, how- 
ever, the strength of the primary ray is not affected by the scattering, 
so that energy is not withdrawn from that source. For this reason 
it cannot be expected that the kinematical theory renders correct 
account of the intensities to be found in the secondary rays. 

This deficiency of the kinematical theory was not apparent from 
Laue’s first experiments, because the primary beam seemed to have 
such an overwhelmingly large intensity. With a scattering action weak 
of the first order, the reaction on the primary beam would be small of 
the second order, and indeed, the kinematical theory may be safely 
applied if, as in a fine powder, the individual crystal is so small that its 
total scattered intensity remains a very small fraction ofthe intensityinci- 
dent on it. Only with the use ofX-ray tubes giving strong monochromatic 
X-rays did it become certain that a diffracted (or ‘reflected’) ray 
was not as weak as it appeared to be from the Laue diagram. It was 
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recognized that the central spot of these diagrams contains the entire 
spectrum of the incident radiation and that, referred to the same 
spectral range that is contained in the secondary ray, this and the 
primary ray are of similar intensity. 

15.2. Darwin’s Theory 

Comparable intensity of incident and reflected ray is assumed in 
C. G. Darwin’s very early dynamical theory (1914). 
Considering first a single plane of atoms, Darwin calculates a re- 
flection coefficient for it by the classical considerations by which 
J. J. Thomson determined the scattering by a single electron. This 
reflection coefficient is then applied to the back and forth reflections 
of the two beams, primary and reflected, between the equally spaced 
atomic planes of the crystal. The theory has many points in common 
with that of light falling on a plane-parallel glass plate, for instance in 
the Lummer-Gehrcke interferometer. Its result is a curve for the 
reflected and transmitted amplitudes as functions of the angle of 
incidence on the crystal plate. In the symmetrical Bragg case, i.e. 
when the reflecting planes are parallel to the crystal surface, total 
reflection occurs over a small angular range of incidence of the order of 
10 seconds of arc, next to the Bragg angle; here the crystal acts as a 
no-pass filter to the incident ray. In the adjoining angular regions the 
reflectivity drops rapidly to zero. The centre of the region is shifted 
slightly from the position indicated by Bragg’s Law nh = 2d sin 8 as 
usually applied, namely by taking for A the X-ray wave-length in free 
space, which we will now call ho. Instead, A should be understood as 
the wave-length in the crystal, that is ho/p, where p is the refractive 
index for X-rays in the body. Normally, p is smaller than 1,l.c = 1 - E, 
where E is a positive quantity of the order of 10-6, so that the wave- 
length and phase velocity are greater in the body than in empty space 
by this amount. Measurable deviations from Bragg’s Law result 
because the refractive index varies from one order to another; they 
were noticed when the spectroscopists derived different wave-lengths 
for the same line reflected in different orders by applying the un- 
corrected Bragg Law. 

In the symmetrical Laue case, i.e. when the reflecting planes are at 
right angles to the surface of the crystal plate, the primary and 
secondary ray emerge at the underside of the plate equally inclined. 
Again there exists an angular range of some seconds of arc in which 
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reflection occurs; but instead of reflectivity 1 as in total reflection, the 
maximum cannot exceed & and occurs exactly under the uncorrected 
Bragg angle of incidence. 

Darwin’s paper is a masterpiece of physical insight into what is 
essential for explaining the features of X-ray diffraction by perfect 
crystals, and all later work, experimental and theoretical, has vindi- 
cated it. It grew out of the reflection idea current in England in 
1913/14 which was not fully accepted in Germany. It could not 
convince the German physicists for two reasons. Thinking in terms of 
diffraction rather than reflection, they were conscious of the fact that a 
single plane of atoms, owing to its periodic structure, would produce a 
whole pencil of cross-grating spectra besides the specular reflection 
which was exclusively taken into consideration by Darwin. The second 
reason was the fact that in the Laue arrangement, then currently used 
in Germany, the incidence was generally taken along a direction of 
symmetry and therefore not a single reflected beam but all the 
symmetrically related ones were produced simultaneously. Darwin’s 
treatment was not at all well adapted to deal with this case. It thus 
came that Ewald developed a dynamical theory along more general 
lines without fully recognizing the significance of Darwin’s work, 
except when in the last stage the results of both theories in the case of 
only two rays turned out to be the same. 

15.3. Ewald’s Dynamical Theory (1917) 

The construction of the directions of the ‘strong’ diffracted rays by 
means of the sphere of reflection shows that if this sphere passes 
through n points of the reciprocal lattice, nothing would be 
changed if each of these points in turn were assumed to be the 
origin of this lattice, and the wave-vector pointing to it were that of the 
primary ray. In other words, given the wave-length 10 which de- 
termines the radius of the sphere of reflection, and the centre of the 
sphere at the ‘tie-point’ T, the n plane waves form an inseparable unit 
which we call the X-optical field. If for the moment we considered 
only one of the component waves of this field to travel through the 
crystal alone, it would, in doing so, promptly generate the other 
(n - 1) waves. There is, at this stage, no meaning attached to con- 
sidering one of them as the ‘primary’ wave. The problem then arises of 
setting up the condition for the entire X-optical field to travel through 
the crystal in a self-consistent way. This means that at any atom the 
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field should produce a scattered wavelet of exactly the amplitude and 
phase that are needed in order to build up the field as a sum over all 
the wavelets. As a result of this fundamental condition the tie-point T 
cannot be chosen arbitrarily; it has to lie on a surface in reciprocal 
space, the ‘Surface of Dispersion’. Its particular shape extends only 
through that very small region of this space where the n chosen waves 
remain the only strong component waves of the X-optical field. This 
condition is not critical in so far as, with the tie-point moving farther 
away, the interaction between some of the waves becomes so weak that 
it becomes unnecessary to take it into account. In some cases, however, 
a new ‘strong’ wave-component of the field might turn up which should 
be considered. 

Once a tie-point T is chosen within this region and on any part ofthe 
surface of dispersion, the wave-vectors which go from T to the n 
lattice points of the reciprocal lattice are precisely determined re- 
garding both length and direction, and they change with a shift of T 
on the surface of dispersion. This means that for each dynamically 
possible position of T the component waves have well-determined 
directions and phase velocities or refractive indices, but there is not a 
refractive index of the medium which would determine the velocity of 
all the waves .-The surface of dispersion contains one further im- 
portant information, namely the relative amplitudes of all the com- 
ponent waves of the field. These depend on the position of T; in fact, 
the amplitude of a component wave h is proportional to (Ki-Ki)-1, 
where Kh is its wave-vector T+h and K, the wave constant of the 
elementary wavelets. Since this amplitude is extremely sensitive to 
small changes in the length of I(& the restriction of T to the surface of 
dispersion is the means of adjusting the amplitudes of the component 
waves of the field so that it becomes self-consistent. 

It can be shown generally that in a region of reciprocal space giving 
rise to n strong waves the surface of dispersion consists of 2n sheets, 
the factor 2 corresponding to the transversality of the waves. Thus if 
for one wave-vector, say Kr, the direction is prescribed, 2n different 
lengths of this vector are dynamically possible with tie-points Tl to 
Tan, whereas the wave-vectors leading to the other points of the 
reciprocal lattice have each not only 2n different lengths but also 
slightly different directions. The differences in length and directions 
are minute since the spread of the tie-points is over a distance about 
10-s to 10-s of the length of the wave-vectors themselves, yet they are 
the all important feature because of the dependence of the amplitude 
ratios on the shifts of the tie-points. Needless to say, each possible field 
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can be given an arbitrary overall amplitude attached to the cor- 
responding tie-point. 

Fortunately the knowledge of the dynamically possible fields in the 
interior of the unbounded crystal-the ‘meso-fields’-is sufficient for 
the construction of the dynamically balanced state of a crystal bounded 
by a plane surface on which the ‘incident’ wave falls. The way this 
comes about is the following. 

The field in the unbounded crystal, which is represented by the tie- 
point T, is the sum of the spherical wavelets issuing from the atoms or 
dipoles filling all space. If the summation is limited to the wavelets 
issuing from the lower half-space only (the ‘half-crystal’) the same 
field,-the meso-field-,is again generated inside the crystal, but there 
are additional waves created both inside and outside it (‘epi-waves’). 
This is a result only of breaking off the summation. All epiwaves 
have phase velocity c as in free space. The internal epiwaves stand in a 
very close relation to those mesowaves which move from the surface 
towards the interior of the halfcrystal; in fact, each of these mesowaves 
is accompanied by an epiwave of the same amplitude (but of opposite 
phase) and a direction differing only by a refractive correction cor- 
responding to its phase velocity c or wave-vector of length k,. The 
relation of the external epiwaves is of the same kind with respect to 
those mesowaves which travel from the interior of the half-crystal 
towards its surface. These waves exist only outside the crystal, and they 
are there the continuation (except again for a slight refraction) of the 
mesowaves running up against the surface. 

Clearly the internal epiwaves, as well as the incident wave which 
has to be superimposed, disturb the self-consistent regime which found 
its expression in the surface of dispersion. The mere fact that these 
waves have free space velocity c in the interior of the body shows that 
they do not belong there. If their elimination could be achieved by 
the superposition of self-consistent fields of suitable strengths, then a 
dynamically balanced state would remain over throughout the crystal. 
This is exactly what can be achieved with 2n conditions of annihilation 
of unacceptable waves and 2n overall amplitudes that can be chosen 
for the wave-fields represented by the 2n tie-points. 

In this solution, in each of the main directions of diffraction h a 
bundle of waves progresses with very nearly equal wave-vectors 
Tlh, Tsh, . .Tsnh. These lead to multiple beats between the constituent 
waves, the spatial period of the beats being determined by the dif- 
ferences Ts-Tr, Ts-Tl , . . which are very small compared to the 
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length of, say, Kr = Tlh, so that the change of amplitude in any one of 
the directions of diffraction takes place slowly. Through these beats 
the energy flow is shifted from one direction of diffraction to the 
others, and possibly back again; for this reason this type of solution 
was called the pendulum type solution (Pendellosung). It will be 
noticed that the beat periods, which are given by the above differences 
Ts-Tl etc. are the same for all orders of diffraction, i.e. for all values 
h. At the surface the energy flux has of course at first the direction of 
the incident wave and the diffracted waves moving towards the 
interior start with amplitude zero; they pick up amplitude as they 
advance into the interior, while the primary wave is diminished. The 
details of the energy transfer, the beat period, the maximum amplitude 
reached by each diffracted wave, and, in the case of a plane parallel 
crystal slab of thickness D, the distribution of amplitudes among the 
diffracted rays emerging from the plate-all this depends on the 
exact direction of the incident wave and its wave-length and can best 
be visualized with the help of the surface of dispersion. 

15.4. Laue’s Form of the Dynamical Theor_y 

Before discussing the simplest applications of this theory, namely 
to the cases of a solitary ray and of a primary and one secondary 
ray, the form should be considered which Laue gave to this theory 
in 1931. The main innovation lies in the model of the crystal, which 
to Laue is a three-dimensionally periodic dielectric, i.e. locally 
polarizable, medium. Laue does not concentrate the polarizability 
at certain points of the cell, as was the case of the dipoles of Ewald’s 
theory, but considers a continuous distribution. M. Kohler, in 1935, 
derived Laue’s assumption by a perturbation method from a 
wavemechanical model of the crystal. 

Actually the models are not fundamentally different since Laue 
could assume the scattering power to be localized at certain points, or 
Ewald could fill the cell with a suitable distribution of dipoles which 
in the limit form a continuous distribution. The main difference then 
is one of technique: Laue makes use of the Fourier development of the 
dielectric constant from the start, whereas with Ewald this appears 
only at a later stage in form of the structure factor of the polarizability 
distribution in the cell. A difference of perhaps greater significance 
occurs when the ‘half-crystal’ is considered. Its surface is obtained in 
Laue’s theory as a plane cutting through the continuous mass distri- 
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bution, and boundary conditions are formulated which must be 
fulfilled at all points of this plane. In Ewald’s half-crystal the surface 
plane is defined by the last point-atoms, but between them it has no 
physical reality. There is no ‘boundary condition’; instead the 
condition of self-consistency holds at every atom, no matter how deep 
in the interior it is situated. Both theories seem to give the same results 
and the choice between them is a matter of liking. 

15.5. One and Two Rays in the Dynamical Theory 

The first case, that of a solitary X-ray in the crystal, occurs if 
the sphere of reflection passes close to the origin of the reciprocal 
lattice o@, without approaching any other lattice point (Fig.15-5( 1)). 
In contrast to the assumption of the kinematical theory that the phase 
velocity is c (the value for free space), and the length of the wave- 
vector k, = v/c, we have to allow the solitary wave to travel in the 
body with a different velocity, q, and wave-vector of length K, = v/q, 
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Fig. 15-5 (1). Reciprocal lattice and single ray. 
Only the o&in (000) = 1 lies close to the sphere of reflection. The circle shown dotted ti 
parts, of radius ko, would be the locus of the tie-point T according to de kinematical theory. 
The small length of the inner circle, of radius Ko, is de surface of dispersion of the ray as 

long as it remains solitary. 
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which is determined by the polarizability of the medium. The 
‘surface of dispersion’ for this solitary wave is then a sphere of radius 
K, and is valid for all those directions of propagation of this ray 
for which no secondary rays are generated. Any point on this surface 
may be taken as tie-point T about which the sphere of reflection, 
of radius k, can be drawn. This no longer goes through the origin 
of the reciprocal lattice, but passes it at a distance k, - K, which in 
general is of the order of lo-sk,, corresponding to a departure of the 
refractive index from 1 by about 10-s. 

Consider now the case of two strong wave-components of the optical 
field. This happens in positions of the tie-point T which are ap- 
proximately at distance k, also from a second point, h, of the reciprocal 
lattice. If we draw the surface of dispersion of radius K, about h, as 
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Fig. 1542). Surface of dispersion for two rays. 
Dotted circles, radius ks: locus of tie-point for wave-vectors ending in reciprocal lattice 
points 1 and h according to the kinematical theory. Intersection at Laue point La. 

Drawn-out circles: same for dynamical theory assuming two uncoupled rays (radius Ks). 
Intersection: Lorentz point Lo. The coupling of the two rays produces the splitting-up of 
the circles and interconnection as shown. This is the true surface of dispersion on which the 
tie-point has to lie. Shown for one case of polarisation only. 

N.B. In this and the preceding figure the difference between ks and Ks should be one part 
in 10s or 106, instead of one in twenty-five as drawn. 
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well as about the origin 1 (= 000), the point of intersection of the two 
spheres, in a given plane, is called the Lorentz point; it is that point 
where the two rays would co-exist except for their interaction. On 
account of the latter, however, the surfaces split up and are connected 
in a way that leaves the Lorentz point the centre but not a point of 
the surface of dispersion near this point. Fig. 15-5(Z) shows the surface 
for one mode of polarization only, for instance when the electric 
vectors in both rays are normal to the plane of the rays. (When they 
lie in this plane, the splitting up of the surface would be slightly less.) 
In the figure the splitting is shown on a highly magnified scale; 
actually the minimum distance of the two sheets should be only about 
10-s of the lengths of the wave-vectors K1 = T 1 and Kh = T h, 
respectively. The spheres of radius K, are the asymptotic surfaces of 
the surface of dispersion. The drawing also shows the two (dotted) 
circles of radius k, about 1 and h which are the surfaces of dispersion 
of the solitary rays according to the kinematical theory. Their point of 
intersection is the ‘Laue-point’ with which the tie-point would have to 
coincide if the uncorrected Laue-Bragg conditions were to hold. The 
distance between the concentric circles about 1 or h, respectively, 
shows the normal effect of refraction, and the separation of the actual 
surface of dispersion from the two asymptotic circles is a measure of 
the interaction of the two rays. 

The surface of dispersion fulfills the same function for X-rays which 
the ‘normal surface’ has for the crystal optics of visible light, namely 
that of containing the laws of wave-field propagation in the interior of 
the crystal and thereby offering an easily visualized means of con- 
structing the field which will be generated inside and outside the 
half-crystal under the stimulus of an incident wave. 

15.6. Some Applications of the Dynamical Theory 

Apart from the refraction, of interest for high-precision determinations of 
wave-lengths or lattice constants, the main application of the dynamical 
theory is to the discussion of the intensities of diffracted rays. The 
usual test of the theory is performed on the symmetrically reflected 
ray with the reflecting atomic planes parallel to the crystal surface. 
In the ideal case of a simple lattice of non-absorbing point atoms, the 
reflection would be total within a certain angular range of incidence 
of the order of 5-lo”, and drop off quickly outside this range. The 
total, or integrated, intensity which is taken out of a beam of wider 
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opening, or by turning the crystal through the reflecting position, is 
proportional to this angular range which varies with the angle of 
diffraction and is different for the two cases of polarization. The 
existence of a base in the cell makes the range of total reflection 
proportional to ]F$ not to IFhIs as in the kinematical theory. Ab- 
sorption in the crystal modifies still further the expression for the 
integrated intensity. 

Within the resolving power of the experimental methods of Bergen 
Davis,Compton and Allison, Coster and Prins, L. Parratt, J. A. Bearden, 
M. Renninger and other specialists, the predictions of the dynamical 
theory concerning the range, shape and intensity of the reflection 
curve have been substantially confirmed on selected crystals. Ren- 
ninger showed that even rocksalt, from which the standard data of 
mosaic crystal reflectivity were taken, gives rise to the totally different 
reflection curve of the perfect crystal provided only a few square 
millimeters of the cleaved surface of a crystal grown from the melt are 
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Fig. E-6( 1). Reflectivity of rocksalt for &K-radiation. 

a theoretical curve for mosaic crystal; 
b same for perfect crystal; 

x + natural crystal, standard treatment (ground and polished) ; 
A natural crystal, untouched cleavage; 
o crystal grown from melt, untouched cleavage, small area. 

After M. Renninger, ,&f.Krist., A 1934,99, pg. 368. 
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used for the measurement. The curves showing the reflection for the 
perfect and the ideal mosaic crystal show the great increase in intensity 
of the mosaic crystal over the perfect one (Darwin’s discovery), and the 
measured points show that either of these curves can be very closely 
approached, and that a crystal taken from a salt mine may give 
values anywhere between the two extremes (Fig. 15-6( 1)). For this 
reason the accurate determination of Fourier coefficients from 
measured intensities requires a preceding study of the perfection of 
the individual crystals on which the measurements are being made. 

The dynamical theory is also essential in accounting for the changes of 
intensity of a reflection of order h when there occurs, simultaneously, a 
reflection of order h’ on a different set of planes. The first example on 
which this was studied was the ‘forbidden’ reflection 222 of diamond. 
The fact that this reflection was missing gave W. H. and W. L. Bragg 
the clue to the structure of diamond in 1913, but on close inspection a 
trace of the reflection was found. This pointed to the existence of a 
non-centrosymmetric carbon atom and the true intensity of this 
reflection thus became a means for studying the atomic shape. The 
values found by different observers, though all small, stood not in good 
agreement and Renninger, remeasuring them on a twocrystal spectro- 
meter, found that the value is strongly changed by turning the crystal 
in its reflecting face under preservation of the Bragg angle. For 
different azimuths the intensity varied in the ratio of about 1 : 10, 
showing peaks at the angles where a simultaneous reflection occurred. 
The explanation is, that although no direct transfer of energy can take 
place from the primary beam to 222 because the structure factor is 
zero (or very small), the once diffracted beam h’ will act like a second 
primary beam and give a diffraction peak in the direction of 222 which 
is now, however, of order (2 - h’, 2 - k’, 2 - l’), and therefore may 
have a non-zero structure factor. The appearance of diffracted 
intensity in a direction where it was normally not expected was easier 
to detect than the change of intensity produced by simultaneous 
reflection in cases of non-vanishing structure factors. But these have by 
now been quite often found and form one reason why the ‘reliability 
index R’ (see Chapter 7) cannot be reduced below a minimum value. 

A very remarkable confirmation and extension of the dynamical 
theory began in 1948 with the first observations by G. Borrmann of 
what is now called the Borrmann Effect. This is the surprising fact that an 
absorbing, near perfect crystal suddenly becomes transparent when a 
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secondary ray is split off. The effect is very sensitive to imperfections 
and has been most successfully observed in selected germanium, 
silicon and calcite crystals. There remains, even in the position of 
greatest transparency, a considerable absorption, but the reduction of 
intensity is by many powers of ten less than that expected by applying 
the ordinary absorption coefficient which indeed may prevent any 
measurable penetration of the crystal by X-rays outside the Bragg 
reflection position. The angular opening of the transmitted ray is very 
small, and A. Authier in Paris, by placing a slit between two crystals 
showing the Borrmann effect, managed to isolate a monochromatic 
beam of an angular opening of l/50”. The emerging beam is strongly 
polarized through the Borrmann effect, so that a pair of suitably cut 
germanium crystal plates has been used by H. Cole as a polarizer. 

M. v. Laue gave the surprising explanation of the effect by dis- 
cussing the results given by the dynamical theory after the introduction 
of .a complex dielectric constant; the real part of this gives the re- 
fraction, and its imaginary part absorption. It turns out that just as the 
normal refractive index of a solitary wave suffers changes when the 
coupling with another ray sets in, so also does the absorption index: 
that sheet of the surface of absorption which comes closest to the 
‘Laue point’ (see above) gives rise to the greatest reduction of ab- 
sorption, while on the sheets which are pushed away from the Laue 
point absorption is enhanced. In travelling through a thick crystal only 

Fig. 15-6(2). Schematic drawing of wave-field in Borrmann effect. 
Between the reflecting planes (full lines) a standing-wave pattern is 
progressing downwards. The nodal lines between the atomic planes are 

shown dotted. The wave-field splits up at the exit surface. 
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the least absorbed field survives, and this is represented by the tie- 
points lying closest to the Laue point. In the case of two rays, and four 
sheets of the surface of,dispersion, the closest approach occurs for that 
case of polarization where the coupling between the rays is strongest, 
that is when the electric vector is normal to the plane of the rays. This 
explains the polarizing action of the effect. 

In analysing the field inside the crystal it is seen that at the peak 
position of transparency in the symmetrical Laue case it consists of a 
wave travelling downwards along the reflecting net planes of atoms 
while across these planes the field has a standing-wave character. The 
planes of the atomic lattice are interleaved by nodal planes of the field 
on which the electric vector is permanently zero in the optimum case, 
or .else remains small. If the absorbing atoms, for instance the calcium 
atoms in calcite, lie on these planes they are permanently situated in 
zero, or small, electric field and no photoeffect or absorption happens. 
The remaining absorption, in the case of calcite, would be that of the 
COs groups, which is only a fraction of that of the heavy atoms. 

The study of the optical field in the Borrmann effect led Laue to 
investigate the energy flow. Since no energy can be transported across 
the nodal planes of the standing wave, the flow of energy takes places 
along the reflecting planes. It was shown experimentally by Borrmann 
that only at the exit surface of the crystal the two wave-components of 
the internal field separate. In a rather sophisticated way this result 
vindicates the early attempts of W. H. Bragg and J. Stark (see Ch. 5) 
to explain X-ray diffraction by the transportation of ‘photons’ in the 
pits of the crystal structure. 

The standing-wave field becomes less perfect, and moves relative to 
the net-planes if the angle of incidence is even slightly altered, and 
with this change absorption quickly sets in and renders the crystal 
opaque. Any internal irregularities of the crystal, such as dislocations, 
the internal stresses due to bending or temperature gradients, etc. 
locally destroy the transparency. On enlarged photographs of the 
transmitted or reflected beams the individual dislocations in carefully 
annealed Si and Ge crystal have been counted and their shapes 
reconstructed from the shadows they produce when reflection takes place 
on different planes. 

One of the most promising subjects of research is the influence the 
temperature motion of the atoms has on the Borrmann effect. 
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15.7. Electron and Neutron Di$raction. 

That diffraction effects can be obtained with particle streams is 
due to the fact that particles of mass m, velocity v, and momentum 
p have to be associated with a wave of wave-length h = h/p, where h 
is Plan&s constant 6.62 * lo-27 ergesec. 

This relation between particle and wave was first used by L. de 
Broglie in 1924 to show that the wave associated with an electron 
travelling on the Bohr orbit in an atom would just fit on to the orbit 
with an integer number of wave-lengths. Out of this idea arose, in 
1926, Schrodinger’s theory of wave-mechanics. In 1925 W. Elsasser 
first pronounced the likelihood that a beam of electrons could suffer 
diffraction in a crystal similar to X-rays, provided it had a velocity 
producing a suitable wave-length for the crystal lattice. In 1936, four 
years after the discovery of the neutron by James Chadwick, Elsasser 
applied the same idea to neutrons and the first experiments for 
verifying it were made together with H. v. Halban and P. Preiswerk 
using a radium-beryllium neutron source.-Electron diffraction was 
first obtained independently by C. J. Davisson and L. H. Germer at the 
Bell Telephone Laboratories and by G. P. Thomson in England in 
1927. Since the first demonstration of these effects, an enormous 
amount of technical development of the instrumentation, of highly 
successful research, and of theoretical advancement has taken place in 
both branches of particle diffraction. Both subjects, closely linked as 
they are to X-ray diffraction, would deserve full chapters in this book; 
they are mentioned here as a pro memoria rather than as an adequate 
treatment, and electron diffraction in particular as a subject requiring 
the dynamical theory in a much higher degree than X-rays. 

The construction of reactors towards the end of the last war provided 
neutron sources of incomparably greater strength than the radioactive 
ones used earlier. A neutron flux of 101s to 1014 neutrons per square 
centimeter and second made possible all the experimental methods 
which had been developed for X-rays, although much larger crystals 
and counters had to be used because of the much smaller interaction of 
neutrons with matter than of X-rays (ten to twenty times smaller for 
‘thermal neutrons’, that is those which have been slowed down, 
mainly by collisions with the hydrogen atoms in paraffin, to an 
average equivalent wave-length of about one Angstrom). 

For electrons, on the other hand, the interaction with matter is so 
much stronger than for X-rays that the scattered amplitude for the 
same wave-length is greater by a factor of the order of 104. The 
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‘optical density’ (~2 - l), where p is the refractive index, is therefore 
much larger for electrons than for X-rays, where it is of the order 
10-a to 10-s. For a solitary electron beam ~2 - 1 = $/V, where 4 is 
the average electrostatic potential in the crystal (perhaps 6 Volt) and V 
is the accelerating potential through which the electron gained its 
energy, namely about 130, 15000 and 40000 Volt for electrons of 
wavelengths 1, 0.1, and 0.06 Angstrom, respectively. Thus the optical 
density for these three wave-lengths is of the order of l/20, l/2000, and 
l/6000, respectively. As a consequence of this much stronger inter- 
action the validity of the kinematical theory of diffraction ends much 
earlier than for X-rays, and the dynamical theory has to be applied. 
The low-energy electrons, like X-rays of long wave-lengths, are 
strongly absorbed and wave-lengths of 0.1 A and below are preferred 
for electron diffraction, except in surface investigation. This leads to a 
larger radius of the sphere of reflection, and therefore in the interior 
of the crystal to an electron-optical field consisting of a great number 
of component waves of comparable strength, instead of two or three 
waves which suffice in most cases for the discussion of X-optical fields. 

The diffraction of electrons is caused by the periodic electric 
potential within the crystal. H. Bethe gave the theory in his thesis in 
1927 by developing the potential in a Fourier series and expressing the 
results in terms of the Fourier coefficients-the same procedure which 
was followed by Laue in 1931 in his form of the X-ray theory. The 
main physical difference between the two cases lies in the atomic 
factors: electrons are scattered by the charges of the electrons and of 
the nucleus of each atom, whereas the nucleus does not scatter X-rays. 

In the neutron case, the scattering is an interaction between the two 
heavy particles, the neutron and the nucleus, and electrons play an 
indirect role by creating magnetic fields. Neutron scattering without 
change of wave-length (‘classical scattering’) consists of two parts : one 
is the short-range neutron-nucleus interaction and the other the result 
of the magnetic interaction of the neutron spin and the magnetic field 
of the atom which is due partly to the nuclear spin and partly to the 
orbital and spin moments of the electrons. 

It would lead too far to give a full account of these newer appli- 
cations of the diffraction principles. In both cases the existence of the 
experimental and theoretical methods evolved for X-rays has cut the 
time of development down to a fraction of that spent on X-ray methods. 
On the other hand, the peculiar features of both new fields have 
stimulated new developments, especially in theory, from which in turn 
the X-ray case profits. Never before has the dynamical theory been 
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discussed to such depth and detail as in the great spate of papers that 
has been coming in the last ten years from the Japanese school of 
electron diffraction which goes back to S. Kikuchi. At a recent inter- 
national conference on electron diffraction in Kyoto (September 1961) 
it became evident that in Japan alone there must be more physicists 
familiar with this theory than in all other countries taken together. 
The theory was shown to be essential not only for diffraction ex- 
periments as such, but also for the full explanation of the intensity 
distribution in electron-microscopical images. Apart from Japan, this 
study has found a home also in Australia (Melbourne), where J. M. 
Cowley, in collaboration with A. F. Moodie, has developed a new 
theoretical approach which is often better suited to deal with the 
strong interaction and the many-wave fields in electron diffraction. 

Neutron diffraction opens up new means of crystal structure analysis 
because the scattering power of atoms for neutrons differs radically 
from the simpler distribution of atomic factors for X-rays which go 
roughly with the atomic number or weight. Thus hydrogen gives an 
amplitude of coherent neutron scattering of nearly the same size as 
potassium but of opposite phase, and deuterium scatters with nearly 
twice the amplitude and the same phase as potassium. This strong 
scattering makes the detection of the hydrogen positions easier with 
neutrons than with X-rays. In non-magnetic neutron diffraction there 
is furthermore no dependence of the scattered amplitude on the 
scattering angle such as leads in the X-ray case to the complication of 
the atomic form factor and the rapid decrease of intensity in higher 
orders of diffraction; the size of the nucleus is so small compared to the 
neutron wave-length that it acts as a true point-scatterer. Since 
isotopes may have entirely different scattering powers for neutrons (as 
hydrogen and deuterium) a new type of ‘heavy atom method’ for 
crystal structure analysis by the substitution of chemically identical 
atoms becomes possible. 

The greatest innovation due to neutron diffraction is, however, the 
intimate study of the repartition of the magnetic moments among the 
atoms of a crystal. It is possible to ‘polarize’ a neutron beam, that is, 
to give the spin of the neutrons a parallel orientation by reflection on a 
single magnetic crystal such as magnetite or an iron-cobalt alloy. 
Since the amplitude of the magnetic scattering by an atom depends on 
the angle between its spin or magnetic field and that of the neutron, it 
is possible to investigate the distribution of magnetic moments in a 
crystal diffracting the polarized beam of neutrons. This method has 
opened up a new vista in structure determination which now reaches 
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one level deeper than the knowledge of atomic sites and of electron 
distribution. Charts have been obtained for the repartition of the 
unpaired electrons alone (those creating the magnetic field) and of 
atomic spins. The classical structure theory of Schoenflies and Fedorov 
has to be enlarged by the discussion of the possible repartition of equal 
particles carrying a vectorial or even higher order property besides the 
insignificant property of a scalar mass. A beginning of this was made by 
N.V. Belov with the study of black-and-white and coloured space 
groups, but much remains to be done. 

Apart from the ‘coherent’ scattering of electrons, neutrons and X-rays 
which leads to the formation of diffracted rays in sharply defined 
directions, there is also an ‘incoherent’ scattering in which part of the 
energy is transferred from the incident wave to the crystal where it 
augments the thermal elastic waves in which the thermal motion of the 
atoms resides. This incoherent scattering is not confined to the 
directions of the secondary rays but fills the intermediate directions 
with a continuous and generally not uniform background of scattered 
radiation. In the case of X-rays the individual collision (scattering) 
process between the (X-ray) photon and the (elastic wave) phonon 
transfers so little energy that the change ofwave-length.in the scattering 
process can be neglected. But owing to the large mass of the neutron a 
much greater energy is involved in the transfer, so that the change of 
wave-length becomes measurable and permits to sort the scattered 
neutrons according to their energy loss. This has become an important 
method for exploring the elastic spectrum of crystals, so fundamental 
for many of their properties and so hard to find by other methods. 
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