# INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

*Volume C* MATHEMATICAL, PHYSICAL AND CHEMICAL TABLES

> *Edited by* E. PRINCE

# **Contributing Authors**

- A. ALBINATI: Istituto Chimica Farmaceutica, Università di Milano, Viale Abruzzi 42, Milano 20131, Italy. [8.6]
- N. G. ALEXANDROPOULOS: Department of Physics, University of Ioannina, PO Box 1186, Gr-45110 Ioannina, Greece. [7.4.3]
- F. H. ALLEN: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England. [9.5, 9.6]
- Y. AMEMIYA: Engineering Research Institute, Department of Applied Physics, Faculty of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113, Japan. [7.1.8]
- I. S. ANDERSON: Institut Laue-Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [4.4.2]
- U. W. ARNDT: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England. [4.2.1, 7.1.6]
- J. BARUCHEL: Experiment Division, ESRF, BP 220, F-38043 Grenoble CEDEX, France. [2.8]
- P. J. BECKER: Ecole Centrale Paris, Centre de Recherche, Grand Voie des Vignes, F-92295 Châtenay Malabry CEDEX, France. [8.7]
- G. BERGERHOFF: Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagkstrasse 1, D-53121 Bonn, Germany. [9.4]
- P. T. BOGGS: Scientific Computing Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [8.1]
- L. BRAMMER: Department of Chemistry, University of Missouri– St Louis, 8001 Natural Bridge Road, St Louis, MO 63121-4499, USA. [9.5, 9.6]
- K. BRANDENBURG: Institut f
  ür Anorganische Chemie der Universit
  ät Bonn, Gerhard-Domagkstrasse 1, D-53121 Bonn, Germany. [9.4]
- P. J. BROWN: Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [4.4.5, 6.1.2]
- †B. BURAS [2.5.1, 7.1.5]
- J. M. CARPENTER: Intense Pulsed Neutron Source, Building 360, Argonne National Laboratory, Argonne, IL 60439, USA. [4.4.1]
- J. N. CHAPMAN: Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland. [7.2]
- P. CHIEUX: Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [7.3]
- J. CHIKAWA: Center for Advanced Science and Technology, Harima Science Park City, Kamigori-cho, Hyogo 678-12, Japan. [7.1.7, 7.1.8]
- C. COLLIEX, Laboratoire Aimé Cotton, CNRS, Campus d'Orsay, Bâtiment 505, F-91405 Orsay CEDEX, France. [4.3.4]
- D. M. COLLINS: Laboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375-5341, USA. [8.2]
- P. CONVERT: Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [7.3]
- M. J. COOPER: Department of Physics, University of Warwick, Coventry CV4 7AL, England. [7.4.3]
- P. COPPENS: 732 NSM Building, Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA. [8.7]
- J. M. COWLEY: Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA. [2.4.1, 4.3.1, 4.3.2, 4.3.8]

- D. C. CREAGH: Division of Health, Design, and Science, University of Canberra, Canberra, ACT 2601, Australia. [4.2.3, 4.2.4, 4.2.5, 4.2.6, 10]
- J. L. C. DAAMS: Materials Analysis Department, Philips Research Laboratories, Prof. Holstaan 4, 5656 AA Eindhoven, The Netherlands. [9.3]
- W. I. F. DAVID: ISIS Science Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, England. [2.5.2]
- †R. D. DESLATTES [4.2.2]
- S. L. DUDAREV: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, England. [4.3.2]
- S. ĎUROVIČ: Department of Theoretical Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 842 36 Bratislava, Slovakia. [9.2.2]
- L. W. FINGER: Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015-1305, USA. [8.3]
- M. FINK: Department of Physics, University of Texas at Austin, Austin, TX 78712, USA. [4.3.3]
- W. FISCHER: Institut für Mineralogie, Petrologie und Kristallographie, Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany. [9.1]
- H. M. FLOWER: Department of Metallurgy, Imperial College, London SW7, England. [3.5]
- A. G. FOX: Center for Materials Science and Engineering, Naval Postgraduate School, Monterey, CA 93943-5000, USA. [6.1.1]
- J. R. FRYER: Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland. [3.5]
- E. GAŁDECKA: Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 937, 50-950 Wrocław 2, Poland. [5.3]
- L. GERWARD: Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark. [2.5.1, 7.1.5]
- J. GJØNNES: Department of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo, Norway. [4.3.7, 8.8]
- O. GLATTER: Institut für Physikalische Chemie, Universität Graz, Heinrichstrasse 28, A-8010 Graz, Austria. [2.6.1]
- J. R. HELLIWELL: Department of Chemistry, University of Manchester, Manchester M13 9PL, England. [2.1, 2.2]
- A. W. HEWAT: Institut Laue-Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [2.4.2]
- R. L. HILDERBRANDT: Chemistry Division, Room 1055, The National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, USA. [4.3.3]
- A. HOWIE: Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, England [4.3.6.2]
- H.-C. HU: China Institute of Atomic Energy, PO Box 275 (18), Beijing 102413, People's Republic of China [6.2]
- J. H. HUBBELL: Room C314, Radiation Physics Building, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [4.2.4]
- P. INDELICATO: Laboratoire Kastler-Brossel, Case 74, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris CEDEX 05, France. [4.2.2]
- A. JANNER: Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands. [9.8]
- T. JANSSEN: Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands. [9.8]

<sup>†</sup> Deceased.

<sup>†</sup> Deceased.

- A. W. S. JOHNSON: Centre for Microscopy and Microanalysis, University of Western Australia, Nedlands, WA 6009, Australia. [5.4.1]
- J. D. JORGENSEN: Materials Science Division, Building 223, Argonne National Laboratory, Argonne, IL 60439, USA. [2.5.2]
- V. L. KAREN: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [9.7]
- E. G. KESSLER JR: Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [4.2.2]
- E. KOCH: Institut für Mineralogie, Petrologie und Kristallographie, Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany. [1.1, 1.2, 1.3, 9.1]
- J. H. KONNERT: Laboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375-5000, USA. [8.3]
- P. KRISHNA: Rajghat Education Center, Krishnamurti Foundation India, Rajghat Fort, Varanasi 221001, India. [9.2.1]
- G. LANDER: ITU, European Commission, Postfach 2340, D-76125 Karlsruhe, Germany. [4.4.1]
- A. R. LANG: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, England. [2.7]
- J. I. LANGFORD: School of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England. [2.3, 5.2, 6.2, 7.1.2]
- †E. S. LARSEN JR. [3.3]
- P. F. LINDLEY: ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France. [3.1, 3.2.1, 3.2.3, 3.4]
- E. LINDROTH, Department of Atomic Physics, Stockholm University, S-104 05 Stockholm, Sweden. [4.2.2]
- † H. LIPSON. [6.2]
- A. LOOIJENGA-VOS: Roland Holstlaan 908, NL-2624 JK Delft, The Netherlands. [9.8]
- D. F. LYNCH: CSIRO Division of Materials Science & Technology, Private Bag 33, Rosebank MDC, Clayton, Victoria 3169, Australia. [4.3.6.1]
- C. F. MAJKRZAK: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [2.9]
- S. MARTINEZ-CARRERA: San Ernesto, 6-Esc. 3, 28002 Madrid, Spain. [10]
- †E. N. MASLEN. [6.1.1, 6.3]
- R. P. MAY: Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France. [2.6.2]
- †R. MEYROWITZ. [3.3]
- A. MIGHELL: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [9.7]
- M. A. O'KEEFE: National Center for Electron Microscopy, Lawrence Berkeley National Laboratory MS-72, University of California, Berkeley, CA 94720, USA. [6.1.1]
- A. OLSEN: Department of Physics, University of Oslo, PO Box 1048, N-0316 Blindern, Norway. [5.4.2]
- A. G. ORPEN: School of Chemistry, University of Bristol, Bristol BS8 1TS, England. [9.5, 9.6]
- D. PANDEY: Physics Department, Banaras Hindu University, Varanasi 221005, India. [9.2.1]
- <sup>†</sup>W. PARRISH. [2.3, 5.2, 7.1.2, 7.1.3, 7.1.4]
- L. M. PENG: Department of Electronics, Peking University, Beijing 100817, People's Republic of China. [4.3.2]
- E. PRINCE: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [8.1, 8.2, 8.3, 8.4, 8.5]

- R. PYNN: LANSCE, MS H805, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA. [4.4.3]
- G. REN: Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, PO Box 2724, Beijing 100080, People's Republic of China. [4.3.2]
- F. M. RICHARDS: Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave, New Haven, CT 06520-8114, USA. [3.2.2]
- J. R. RODGERS: National Research Council of Canada, Canada Institute for Scientific and Technical Information, Ottawa, Canada K1A 0S2. [9.3]
- A. W. ROSS: Physics Department, The University of Texas at Austin, Austin, TX 78712, USA. [4.3.3]
- J. M. ROWE: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. [4.4.3]
- T. M. SABINE: ANSTO, Private Mail Bag 1, Menai, NSW 2234, Australia. [6.4]
- O. SCHÄRPF: Physik-Department E13, TU München, James-Franck-Strasse 1, D-85748 Garching, Germany. [4.4.2]
- M. SCHLENKER: l'Institut National Polytechnique de Grenoble, Laboratoire Louis Néel du CNRS, BP 166, F-38042 Grenoble CEDEX 9, France. [2.8]
- V. F. SEARS: Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0. [4.4.4]
- G. S. SMITH: Manuel Lujan Jr Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. [2.9]
- V. H. SMITH JR: Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. [4.3.3]
- J. C. H. SPENCE: Department of Physics, Arizona State University, Tempe, AZ 85287, USA. [4.3.8]
- C. H. SPIEGELMAN: Department of Statistics, Texas A&M University, College Station, TX 77843, USA. [8.4, 8.5]
- J. W. STEEDS: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, England. [4.3.7]
- Z. SU: Digital Equipment Co., 129 Parker Street, PKO1/C22, Maynard, MA 01754-2122, USA. [8.7]
- P. SUORTTI: Department of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, Finland. [7.4.4]
- R. TAYLOR: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England. [9.5, 9.6]
- N. J. TIGHE: 42 Lema Lane, Palm Coast, FL 32137-2417, USA. [3.5]
- V. VALVODA: Department of Physics of Semiconductors, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic. [4.1]
- P. VILLARS: Intermetallic Phases Databank, Postal Box 1, CH-6354 Vitznau, Switzerland. [9.3]
- J. WANG: Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. [4.3.3]
- D. G. WATSON: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England. [9.5, 9.6]
- M. J. WHELAN: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, England. [4.3.2]
- B. T. M. WILLIS: Chemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England. [2.5.2, 3.6, 4.4.6, 5.5, 6.1.3, 7.4.2, 8.6]
- †A. J. C. WILSON. [1.4, 3.3, 5.1, 5.2, 7.5, 9.7]
- <sup>†</sup>P. M. DE WOLFF. [7.1.1, 9.8]
- †B. B. ZVYAGIN. [4.3.5]

<sup>†</sup> Deceased.

# Contents

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PAGE     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| PREFACE (A. J. C. Wilson)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xxxi     |
| PREFACE TO THE THIRD EDITION (E. Prince)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xxxi     |
| PART 1: CRYSTAL GEOMETRY AND SYMMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |
| 1.1. Summary of General Formulae (E. Koch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        |
| 1.1.1. General relations between direct and reciprocal lattices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        |
| 1.1.1.1. Primitive crystallographic bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>3   |
| Table 1.1.1.1. Direct and reciprocal lattices described with respect to conventional basis systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3        |
| <b>1.1.2.</b> Lattice vectors, point rows, and net planes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3        |
| <b>1.1.3.</b> Angles in direct and reciprocal space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        |
| <b>1.1.4. The Miller formulae</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |
| 1.2. Application to the Crystal Systems (E. Koch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6        |
| <b>1.2.1. Triclinic crystal system</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6        |
| 1.2.2. Monoclinic crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6        |
| 1.2.2.1. Setting with 'unique axis <b>b</b> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>6   |
| <b>1.2.3.</b> Orthorhombic crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6        |
| <b>1.2.4.</b> Tetragonal crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        |
| Table 1.2.4.1. Assignment of integers $s \le 100$ to pairs h, k with $s = h^2 + k^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7        |
| <b>1.2.5. Trigonal and hexagonal crystal system</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7        |
| 1.2.5.1. Description referred to hexagonal axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>8   |
| Table 1.2.5.1. Assignment of integers $s \le 100$ to pairs h, k with $s = h^2 + k^2 + hk$ Table 1.2.5.2. Assignment of integers $s_1 \le 50$ to triplets h, k, l with $s_1 = h^2 + k^2 + l^2$ and to integers $s_1 = h^2 + h^2 + h^2 + h^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8        |
| $s_2 = n\kappa + n\ell + \kappa\ell + \dots + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9        |
| Table 1.2.6.1. Assignment of integers $s \le 100$ to triplets h, k, l with $s = h^2 + k^2 + l^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9        |
| 1.3. TWINNING (E. Koch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       |
| 1.3.1. General remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       |
| 1.3.2. Twin lattices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10       |
| 1.3.2.1. Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11       |
| Table 1.3.2.1. Lattice planes and rows that are perpendicular to each other independently of the metrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11       |
| 1.3.3. Implication of twinning in reciprocal space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12       |
| Table 1.3.4.1. Possible twin operations for twins by merohedry       Image: Image | 13       |
| true space groups for crystals twinned by merohedry (type 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13       |
| 1.3.5. Calculation of the twin element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14       |
| 1.4. Arithmetic Crystal Classes and Symmorphic Space Groups (A. J. C. Wilson)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       |
| 1.4.1. Arithmetic crystal classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       |
| 1.4.1.1. Arithmetic crystal classes in three dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>16 |
| Table 1.4.1.1. The two-dimensional arithmetic crystal classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       |
| 1.4.2. Classification of space groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20       |
| 1.4.2.1. Symmorphic space groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>16 |

| <b>1.4.3.</b> Effect of dispersion on diffraction symmetry                                                                                                                                    | 21       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.4.3.1. Symmetry of the Patterson function                                                                                                                                                   | 21<br>21 |
| Table 1.4.3.1. Arithmetic crystal classes classified by the number of space groups that they contain                                                                                          | 20       |
| References                                                                                                                                                                                    | 21       |
| PART 2: DIFFRACTION GEOMETRY AND ITS PRACTICAL REALIZATION                                                                                                                                    | 23       |
| 2.1. CLASSIFICATION OF EXPERIMENTAL TECHNIQUES (J. R. Helliwell)                                                                                                                              | 24       |
| Table 2.1.1. Summary of main experimental techniques for structure analysis                                                                                                                   | 25       |
| 2.2. SINGLE-CRYSTAL X-RAY TECHNIQUES (J. R. Helliwell)                                                                                                                                        | 26       |
| <b>2.2.1.</b> Laue geometry                                                                                                                                                                   | 26       |
| 2.2.1.1. General                                                                                                                                                                              | 26<br>27 |
| 2.2.1.3. Single-order and multiple-order reflections                                                                                                                                          | 27       |
| 2.2.1.4. Angular distribution of reflections in Laue diffraction                                                                                                                              | 29<br>29 |
| 2.2.2. Monochromatic methods                                                                                                                                                                  | 29       |
| 2.2.2.1. Monochromatic still exposure                                                                                                                                                         | 30       |
| 2.2.2.2. Crystal setting                                                                                                                                                                      | 30       |
| 2.2.3. Rotation/oscillation geometry                                                                                                                                                          | 31       |
| 2.2.3.1. General                                                                                                                                                                              | 31       |
| 2.2.3.2. Diffraction coordinates                                                                                                                                                              | 31       |
| 2.2.3.3. Relationship of reciprocal-lattice coordinates to crystal system parameters                                                                                                          | 33       |
| 2.2.3.4. Maximum oscillation angle without spot overlap                                                                                                                                       | 33<br>34 |
| Table 2.2.3.1. Glossary of symbols used to specify quantitites on diffraction patterns and in reciprocal space                                                                                | 32       |
| 2.2.4. Weissenberg geometry                                                                                                                                                                   | 34       |
| 2.2.4.1. General                                                                                                                                                                              | 34<br>34 |
| 2.2.4.3. Recording of upper layers                                                                                                                                                            | 34       |
| 2.2.5. Precession geometry                                                                                                                                                                    | 35       |
| 2.2.5.1. General                                                                                                                                                                              | 35       |
| 2.2.5.2. Crystal setting                                                                                                                                                                      | 35       |
| 2.2.5.3. Recording of zero-layer photograph                                                                                                                                                   | 35       |
| 2.2.5.4. Recording of upper-layer photographs                                                                                                                                                 | 35<br>36 |
| Table 2251 The distance displacement (in mm) measured on the film versus angular setting error of the                                                                                         | 50       |
| radic 2.2.5.1. The distance displacement (in hin) measured on the full versus angular setting error of the crystal for a screenless precession ( $\bar{\mu} = 5^{\circ}$ ) setting photograph | 35       |
| <b>2.2.6</b> Diffractometry                                                                                                                                                                   | 36       |
| 2.261 General                                                                                                                                                                                 | 36       |
| 2.2.6.2. Normal-beam equatorial geometry                                                                                                                                                      | 36       |
| 2.2.6.3. Fixed $\chi = 45^{\circ}$ geometry with area detector                                                                                                                                | 37       |
| 2.2.7. Practical realization of diffraction geometry: sources, optics, and detectors                                                                                                          | 37       |
| 2.2.7.1. General                                                                                                                                                                              | 37       |
| 2.2.7.2. Conventional X-ray sources: spectral character, crystal rocking curve, and spot size                                                                                                 | 37       |
| 2.2.7.3. Synchrotron X-ray sources                                                                                                                                                            | 38       |
| 2.2.7.4. Geometric effects and distortions associated with area detectors                                                                                                                     | 41       |
| 2.3. Powder and Related Techniques: X-ray Techniques (W. Parrish and J. I. Langford)                                                                                                          | 42       |
| 2.3.1. Focusing diffractometer geometries                                                                                                                                                     | 43       |
| 2.3.1.1. Conventional reflection specimen, $\theta$ -2 $\theta$ scan                                                                                                                          | 44       |
| 2.3.1.1.1. Geometrical instrument parameters                                                                                                                                                  | 44       |
| 2.3.1.1.2. Use of monochromators                                                                                                                                                              | 46       |
| 2.3.1.1.3. Alignment and angular calibration                                                                                                                                                  | 46<br>47 |
| 2.3.1.1.4. Instrument oroadening and adentations                                                                                                                                              | 47<br>48 |
| 23116 Aberrations related to the specimen                                                                                                                                                     | 48       |

| 2.3.1.4. | Reflection specimen, 6 | $\theta - \theta \operatorname{scan}$ | <br> |
|----------|------------------------|---------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2315     | Microdiffractometry    |                                       |      |      |      |      |      |      |      |      |      |      |      |      |

| 2.3.1.5. Microdiffractometry                                                                                                                             |          |    |    |       | <br>      |              | 53       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|----|-------|-----------|--------------|----------|
| 2.3.2. Parallel-beam geometries, synchrotron radiation                                                                                                   |          |    |    |       | <br>      |              | 54       |
| 2.3.2.1. Monochromatic radiation, $\theta = 2\theta$ scan                                                                                                |          |    |    |       | <br>      |              | 55       |
| 2.3.2.2. Cylindrical specimen, $2\theta$ scan                                                                                                            |          |    |    |       | <br>      |              | 57       |
| 2.3.2.3. Grazing-incidence diffraction                                                                                                                   | • ••     |    |    |       | <br>      | • ••         | 58       |
| 2.3.2.4. High-resolution energy-dispersive diffraction                                                                                                   | • ••     |    |    |       | <br>      | • ••         | 58       |
| 2.3.3. Specimen factors, angle, intensity, and profile-shape measurement                                                                                 | • ••     |    |    |       | <br>      | • ••         | 60       |
| 2.3.3.1. Specimen factors                                                                                                                                | • ••     |    |    |       | <br>      |              | 60       |
| 2.3.3.1.1. Preferred orientation                                                                                                                         | • ••     |    |    |       | <br>      |              | 60       |
| 2.3.3.1.2. Crystallite-size effects                                                                                                                      | • ••     |    |    |       | <br>      | • ••         | 62       |
| 2.3.3.2. Problems arising from the $K\alpha$ doublet                                                                                                     | • ••     |    |    |       | <br>      | • ••         | 62       |
| 2.3.3.4 Rate-meter/strip-chart recording                                                                                                                 | • ••     |    |    |       | <br>••••• | • ••         | 63       |
| 2.3.3.5. Computer-controlled automation                                                                                                                  |          |    |    |       | <br>      |              | 63       |
| 2.3.3.6. Counting statistics                                                                                                                             |          |    |    |       | <br>      |              | 64       |
| 2.3.3.7. Peak search                                                                                                                                     |          |    |    |       | <br>      | • ••         | 65       |
| 2.3.3.8. Profile fitting                                                                                                                                 | • ••     |    |    |       | <br>      |              | 66       |
|                                                                                                                                                          | • ••     |    |    |       | <br>••••• | • ••         | 69       |
| Table 2.3.3.1. Preferred-orientation data for silicon                                                                                                    | <br>ulae | •• |    |       | <br>      | • ••         | 61<br>61 |
| 224 Deceder concerned                                                                                                                                    | ше       |    |    | • ••  | <br>      | • ••         | 70       |
| <b>2.3.4.</b> Powder cameras $\dots$                                             | • ••     |    |    |       | <br>      | • ••         | 70<br>70 |
| 2.3.4.1. Cylindrical cameras (Debye-Scherrer) $\dots \dots \dots \dots \dots \dots \dots \dots$<br>2.3.4.2. Eccusing cameras (Guinier)                   | • ••     |    |    |       | <br>      | • ••         | 70<br>70 |
| 2.3.4.3. Miscellaneous camera types                                                                                                                      |          |    |    | ·· ·· | <br>      | · ··         | 70       |
| 2.3.5 Generation, modifications, and measurement of X-ray spectra                                                                                        |          |    |    |       |           |              | 71       |
| 2.3.5.1. X-ray tubes                                                                                                                                     |          |    |    |       | <br>      |              | 71       |
| 23511 Stability                                                                                                                                          |          |    |    |       | <br>      |              | 72       |
| 2.3.5.1.2. Spectral purity                                                                                                                               | · ··     |    |    | ·· ·· | <br>      | · ··<br>· ·· | 72       |
| 2.3.5.1.3. Source intensity distribution and size                                                                                                        |          |    |    |       | <br>      |              | 73       |
| 2.3.5.1.4. Air and window transmission                                                                                                                   |          |    |    |       | <br>      |              | 73       |
| 2.3.5.1.5. Intensity variation with take-off angle                                                                                                       | • ••     |    |    |       | <br>      | • ••         | 74       |
| 2.3.5.2. X-ray spectra                                                                                                                                   |          |    |    |       | <br>      | • ••         | 74       |
| 2.3.5.2.1. Wavelength selection                                                                                                                          | • ••     |    |    |       | <br>      |              | 75       |
| 2.3.5.3. Other X-ray sources                                                                                                                             | • ••     |    |    |       | <br>      |              | 75       |
| 2.3.5.4. Methods for modifying the spectrum $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$                                                | • ••     |    |    |       | <br>      | • ••         | 75       |
| 2.3.5.4.1. Crystal monochromators                                                                                                                        | • ••     |    |    |       | <br>      |              | 76       |
| 2.5.5.4.2. Single and balanced lifters                                                                                                                   | • ••     |    |    |       | <br>      | • ••         | /8       |
| Table 2.3.5.1. X-ray tube maximum ratings                                                                                                              . | • ••     |    |    |       | <br>      | • ••         | 72       |
| Table 2.3.5.3. Calculated thickness of balanced filters for common target elements                                                                       | · ··     |    |    | ·· ·· | <br>      | · ··         | 78<br>79 |
|                                                                                                                                                          |          |    |    |       | <br>      |              |          |
| 2.4. Powder and Related Techniques: Electron and Neutron Techniques                                                                                      | • ••     |    |    |       | <br>      | • ••         | 80       |
| <b>2.4.1. Electron techniques</b> (J. M. Cowley)                                                                                                         |          |    |    |       | <br>      |              | 80       |
| 2.4.1.1. Powder-pattern geometry                                                                                                                         |          |    |    |       | <br>      |              | 80       |
| 2.4.1.2. Diffraction patterns in electron microscopes                                                                                                    |          |    |    |       | <br>      |              | 80       |
| 2.4.1.3. Preferred orientations                                                                                                                          | • ••     | •• | •• |       | <br>      | • ••         | 80       |
| 2.4.1.4. Powder-pattern intensities                                                                                                                      | • ••     |    |    |       | <br>      | • ••         | 80<br>81 |
| 2.4.1.6. Unknown-phase identification: databases                                                                                                         | •••      | •• |    | ••••  | <br>      | •••          | 81       |
| <b>2.4.2. Neutron techniques</b> (A. W. Hewat)                                                                                                           |          |    |    |       | <br>      |              | 82       |
| 2.5. Energy-Dispersive Techniques                                                                                                                        |          |    |    |       | <br>      |              | 84       |
| 2.5.1. Techniques for X-rays (B. Buras and L. Gerward)                                                                                                   |          |    |    |       | <br>      |              | 84       |
| 2.5.1.1. Recording powder diffraction spectra                                                                                                            |          |    |    |       | <br>      |              | 84       |
|                                                                                                                                                          |          |    |    |       |           |              |          |

### CONTENTS

 

|             | 2.5.1.2. Incident X-ray beam                                                                                                                             | 84       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|             | 2.5.1.3. Resolution                                                                                                                                      | 85       |
|             | 2.5.1.4. Integrated intensity for powder sample                                                                                                          | 85<br>86 |
|             | 2.5.1.6. The Rietveld method                                                                                                                             | 86       |
|             | 2.5.1.7. Single-crystal diffraction                                                                                                                      | 86       |
|             | 2.5.1.8. Applications                                                                                                                                    | 86       |
| 2.5.2.      | White-beam and time-of-flight neutron diffraction (J. D. Jorgensen, W. I. F. David, and B. T. M. Willis)                                                 | 87       |
|             | 2.5.2.1. Neutron single-crystal Laue diffraction                                                                                                         | 87<br>87 |
| 2.6. Small- | Angle Techniques                                                                                                                                         | 89       |
| 2.6.1.      | <b>(-ray techniques</b> (O. Glatter)                                                                                                                     | 89       |
|             | 2.6.1.1. Introduction                                                                                                                                    | 89<br>90 |
|             | 2.6.1.3. Monodisperse systems                                                                                                                            | 91       |
|             | 2.6.1.3.1. Parameters of a particle                                                                                                                      | 91       |
|             | 2.6.1.3.2. Shape and structure of particles                                                                                                              | 93       |
|             | 2.6.1.3.2.1. Homogeneous particles                                                                                                                       | 93       |
|             | 2.6.1.3.2.2. Hollow and inhomogeneous particles                                                                                                          | 96       |
|             | 2.6.1.3.3. Interparticle interference, concentration effects                                                                                             | 97       |
|             | 2.6.1.4. Polydisperse systems                                                                                                                            | 99       |
|             | 2.6.1.5. Instrumentation                                                                                                                                 | 99       |
|             | 2.6.1.5.1. Small-angle cameras                                                                                                                           | 99<br>00 |
|             | 2.6.1.6. Data evaluation and interpretation                                                                                                              | 00       |
|             | 2.6.1.6.1. Primary data handling                                                                                                                         | 00       |
|             | 2.6.1.6.2. Instrumental broadening – smearing                                                                                                            | 01       |
|             | 2.6.1.6.3. Smoothing, desmearing, and Fourier transformation                                                                                             | 01       |
|             | 2.6.1.6.4. Direct structure analysis $\dots \dots \dots$ | 03       |
|             | 2.6.1.7 Simulations and model calculations                                                                                                               | 03       |
|             | 2.0.1.7. Simulations and model calculations                                                                                                              | 03       |
|             | 2.6.1.7.1. Simulations                                                                                                                                   | 03       |
|             | 2.6.1.7.3. Calculation of scattering intensities                                                                                                         | 04       |
|             | 2.6.1.7.4. Method of finite elements                                                                                                                     | 04       |
|             | 2.6.1.7.5. Calculation of distance-distribution functions                                                                                                | 04       |
|             | 2.6.1.8. Suggestions for further reading                                                                                                                 | 04       |
|             | Table 2.6.1.1. Formulae for the various parameters for h and m scales                                                                                    | 92       |
| 2.6.2.      | leutron techniques (R. May)                                                                                                                              | 05       |
|             | 2.6.2.1. Relation of X-ray and neutron small-angle scattering                                                                                            | 05       |
|             | 2.6.2.1.1. Wavelength                                                                                                                                    | 05       |
|             | 2.6.2.1.2. Geometry                                                                                                                                      | 06       |
|             | 2.6.2.2. Isotopic composition of the sample                                                                                                              | 06       |
|             | 262.21 Contrast variation $1$                                                                                                                            | 07       |
|             | 2.6.2.2.2. Specific isotopic labelling                                                                                                                   | 07       |
|             | 2.6.2.3. Magnetic properties of the neutron                                                                                                              | 07       |
|             | 2.6.2.3.1. Spin-contrast variation                                                                                                                       | 08       |
|             | 2.6.2.4. Long wavelengths                                                                                                                                | 08       |
|             | 2.6.2.5. Sample environment                                                                                                                              | 08       |
|             | 2.0.2.0. Inconcretit scattering                                                                                                                          | 00       |
|             | 2.6.2.6.2. Detector-response correction                                                                                                                  | 08       |
|             | 2.6.2.6.3. Estimation of the incoherent scattering level                                                                                                 | 09       |
|             | 2.6.2.6.4. Inner surface area                                                                                                                            | 09       |
|             | 2.6.2.7. Single-particle scattering                                                                                                                      | 10       |
|             | 2.6.2.7.1. Particle shape                                                                                                                                | 10       |
|             | 2.6.2.7.2. Particle mass                                                                                                                                 | 10       |

| CONTENTS |
|----------|
|----------|

| 2.6.2.7.3. Real-space considerations                                                                   | 110        |
|--------------------------------------------------------------------------------------------------------|------------|
| 2.6.2.7.4. Particle-size distribution                                                                  | 111        |
| 2.6.2.7.6. Label triangulation                                                                         | 111        |
| 2.6.2.7.7. Triplet isotropic replacement                                                               | 111        |
| 2.6.2.8. Dense systems                                                                                 | 112        |
| 2.7. TOPOGRAPHY (A. R. Lang)                                                                           | 113        |
| <b>2.7.1. Principles</b>                                                                               | 113        |
| 2.7.2. Single-crystal techniques                                                                       | 114        |
| 2.7.2.1. Reflection topographs                                                                         | 114<br>115 |
| 2.7.3. Double-crystal topography                                                                       | 117        |
| 2.7.4. Developments with synchrotron radiation                                                         | 119        |
| 2.7.4.1. White-radiation topography                                                                    | 119<br>120 |
| Table 2.7.4.1. Monolithic monochromator for plane-wave synchrotron-radiation topography                | 121        |
| 2.7.5. Some special techniques                                                                         | 121        |
| 2.7.5.1. Moiré topography                                                                              | 121        |
| 2.7.5.2. Real-time viewing of topograph images                                                         | 122        |
| 2.8. NEUTRON DIFFRACTION TOPOGRAPHY (M. Schlenker and J. Baruchel)                                     | 124        |
| <b>2.8.1. Introduction</b>                                                                             | 124        |
| 2.8.2. Implementation                                                                                  | 124        |
| 2.8.3. Application to investigations of heavy crystals                                                 | 124        |
| 2.8.4. Investigation of magnetic domains and magnetic phase transitions.                               | 124        |
|                                                                                                        | 100        |
| 2.9. NEUTRON REFLECTOMETRY (G. S. Smith and C. F. Majkrzak)                                            | 120        |
| <b>2.9.1.</b> Introduction                                                                             | 126        |
| 2.9.2. Theory of elastic specular neutron reflection                                                   | 126        |
| 2.9.3. Polarized neutron reflectivity                                                                  | 127        |
| <b>2.9.4. Surface roughness</b>                                                                        | 128        |
| <b>2.9.5.</b> Experimental methodology                                                                 | 128        |
| 2.9.6. Resolution in real space                                                                        | 129        |
| 2.9.7. Applications of neutron reflectometry                                                           | 129        |
| 2.9.7.1. Self-diffusion                                                                                | 129        |
| 2.9.7.2. Magnetic multilayers                                                                          | 130        |
| 2.9.7.3. Hydrogenous materials                                                                         | 130        |
| References                                                                                             | 130        |
| PART 3: PREPARATION AND EXAMINATION OF SPECIMENS                                                       | 147        |
| 3.1. Preparation, Selection, and Investigation of Specimens (P. F. Lindley)                            | 148        |
| 3.1.1. Crystallization                                                                                 | 148        |
| 3.1.1.1. Introduction                                                                                  | 148<br>148 |
| 3.1.1.3. Methods of growing crystals                                                                   | 148        |
| 3.1.1.4. Factors affecting the solubility of biological macromolecules                                 | 148        |
| 3.1.1.5. Screening procedures for the crystallization of biological macromolecules                     | 150<br>150 |
| 3.1.1.7. Membrane proteins                                                                             | 150        |
| Table 3.1.1.1. Survey of crystallization techniques suitable for the crystallization of low-molecular- |            |
| weight organic compounds for X-ray crystallography                                                     | 149        |
| Table 3.1.1.2. Commonly used ionic and organic precipitants                                            | 150<br>151 |
| Table 3.1.1.4. Reservoir solutions for sparse-matrix sampling                                          | 152        |

| CONTENTS |
|----------|
|----------|

| 3.1.2.     | Selection of single crystals                                                                                                                                                        | 151        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | 3.1.2.1. Introduction                                                                                                                                                               | 151        |
|            | 3.1.2.2. Size, shape, and quality                                                                                                                                                   | 151        |
|            | 3.1.2.3. Optical examination                                                                                                                                                        | 154        |
|            | 3.1.2.4. Twinning                                                                                                                                                                   | 155        |
|            | Table 3.1.2.1. Use of crystal properties for selection and preliminary study of crystals; morphological,                                                                            | 1 5 0      |
|            | optical, and mechanical properties                                                                                                                                                  | 153        |
| 3.2. Detei | RMINATION OF THE DENSITY OF SOLIDS                                                                                                                                                  | 156        |
| 3.2.1.     | Introduction (P. F. Lindley)                                                                                                                                                        | 156        |
|            | 3.2.1.1. General precautions                                                                                                                                                        | 156        |
| 3.2.2.     | Description and discussion of techniques (F. M. Richards)                                                                                                                           | 156        |
|            | 3.2.2.1. Gradient tube                                                                                                                                                              | 156        |
|            | 3.2.2.1.1. Technique                                                                                                                                                                | 156        |
|            | 3.2.2.1.2. Suitable substances for columns                                                                                                                                          | 157<br>158 |
|            | 3.2.2.2. Flotation method                                                                                                                                                           | 158        |
|            | 3.2.2.3. Pycnometry                                                                                                                                                                 | 158        |
|            | 3.2.2.4. Method of Archimedes                                                                                                                                                       | 158        |
|            | 3.2.2.5. Immersion microbalance                                                                                                                                                     | 158        |
|            | 3.2.2.6. Volumenometry                                                                                                                                                              | 158        |
|            | 3.2.2.7. Other procedures                                                                                                                                                           | 158        |
|            | Table 3.2.2.1. Possible substances for use as gradient-column components                                                                                                            | 157        |
| 3.2.3.     | Biological macromolecules (P. F. Lindley)                                                                                                                                           | 159        |
|            | Table 3.2.3.1. Typical calculations of the values of $V_M$ and $V_{solv}$ for proteins                                                                                              | 159        |
| 3.3. Meas  | UREMENT OF REFRACTIVE INDEX (E. S. Larsen Jr, R. Meyrowitz, and A. J. C. Wilson)                                                                                                    | 160        |
| 3.3.1.     | Introduction                                                                                                                                                                        | 160        |
| 3.3.2.     | Media for general use                                                                                                                                                               | 160        |
| 222        | Table 3.3.2.1. Immersion media for general use in the measurement of index of refraction                                                                                            | 160        |
| 5.5.5.     |                                                                                                                                                                                     | 100        |
| 3.3.4.     | Media for organic substances                                                                                                                                                        | 161        |
|            | Table 3.3.4.1. Aqueous solutions for use as immersion media for organic crystals             Table 3.3.4.2. Organic immersion media for use with organic crystals of low solubility | 160<br>160 |
| 3.4. Moun  | TTING AND SETTING OF SPECIMENS FOR X-RAY CRYSTALLOGRAPHIC STUDIES (P. F. Lindley)                                                                                                   | 162        |
| 3.4.1.     | Mounting of specimens                                                                                                                                                               | 162        |
|            | 3.4.1.1. Introduction                                                                                                                                                               | 162        |
|            | 3.4.1.2. Polycrystalline specimens                                                                                                                                                  | 162        |
|            | 3.4.1.2.1. General                                                                                                                                                                  | 162        |
|            | 2.4.1.2. Single emptals (small melecules)                                                                                                                                           | 102        |
|            |                                                                                                                                                                                     | 103        |
|            | 3.4.1.3.1. General                                                                                                                                                                  | 163<br>164 |
|            | 3.4.1.4. Single crystals of biological macromolecules at ambient temperatures                                                                                                       | 165<br>166 |
|            | 3.4.1.5.1. Radiation damage                                                                                                                                                         | 166        |
|            | 3.4.1.5.2. Cryoprotectants                                                                                                                                                          | 166        |
|            | 3.4.1.5.3. Crystal mounting and cooling                                                                                                                                             | 166        |
|            | 3.4.1.5.4. Cooling devices                                                                                                                                                          | 167<br>167 |
|            | Table 3.4.1.1. Single-crystal and powder mounting, capillary tubes and other containers                                                                                             | 163        |
|            | Table 3.4.1.2. Single-crystal mounting – adhesives                                                                                                                                  | 164        |
|            | Table 3.4.1.3. Cryoprotectants commonly used for biological macromolecules                                                                                                          | 166        |
| 3.4.2.     | Setting of single crystals by X-rays                                                                                                                                                | 167        |
|            | 3.4.2.1. Introduction                                                                                                                                                               | 167        |
|            | 3.4.2.2. Preliminary considerations                                                                                                                                                 | 168<br>168 |
|            |                                                                                                                                                                                     |            |

|             | 3.4.2.4. Precession geometry setting with moving-crystal methods.                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 24251 Laus images white rediction                                                                                                                                  |
|             | 3.4.2.5.2. 'Still' images – monochromatic radiation                                                                                                                |
|             | 3.4.2.6. Setting and orientation for crystals with large unit cells using oscillation geometry                                                                     |
|             | 3.4.2.7. Diffractometer-setting considerations                                                                                                                     |
| 3.5. Prepai | ATION OF SPECIMENS FOR ELECTRON DIFFRACTION AND ELECTRON MICROSCOPY (N. J. Tighe, J. R.                                                                            |
| Fryer,      | and H. M. Flower)                                                                                                                                                  |
| 3.5.1.      | Ceramics and rock minerals                                                                                                                                         |
|             | 3.5.1.1. Thin fragments, particles, and flakes                                                                                                                     |
|             | 3.5.1.2. Thin-section preparation                                                                                                                                  |
|             | 3.5.1.3. Final thinning by argon-ion etching                                                                                                                       |
|             | $3.5.1.4$ . Final thinning by chemical etching $\dots \dots \dots$ |
|             | 3.5.1.5. Evaporated and sputtered thin films                                                                                                                       |
|             | Table 3.5.1.1. Chemical etchants used for preparing thin foils from single-crystal ceramic materials                                                               |
| 3.5.2.      | Metals                                                                                                                                                             |
|             | 3.5.2.1. Thin sections                                                                                                                                             |
|             | 3.5.2.2. Final thinning methods                                                                                                                                    |
|             | 3.5.2.3. Chemical and electrochemical thinning solutions                                                                                                           |
| 3.5.3.      | Polymers and organic specimens                                                                                                                                     |
|             | 3.5.3.1. Cast films                                                                                                                                                |
|             | 3.5.3.2. Sublimed films                                                                                                                                            |
|             |                                                                                                                                                                    |
| 6. Specim   | ens for Neutron Diffraction (B. T. M. Willis)                                                                                                                      |
| Refer       | ences                                                                                                                                                              |
| ART 4:      | PRODUCTION AND PROPERTIES OF RADIATIONS                                                                                                                            |
| .1. Radia   | Tions used in Crystallography (V. Valvoda)                                                                                                                         |
| 4.1.1.      | Introduction                                                                                                                                                       |
| 412         | Flactromagnetic wayos and narticles                                                                                                                                |
| 7.1.2.      |                                                                                                                                                                    |
| 4.1.3.      |                                                                                                                                                                    |
|             | Table 4.1.3.1. Average diffraction properties of X-rays, electrons, and neutrons                                                                                   |
| 4.1.4.      | Special applications of X-rays, electrons, and neutrons                                                                                                            |
|             | 4.1.4.1. X-rays, synchrotron radiation, and $\gamma$ -rays                                                                                                         |
|             | 4.1.4.2. Electrons                                                                                                                                                 |
|             | 4.1.4.3. Neutrons                                                                                                                                                  |
| 4.1.5.      | Other radiations                                                                                                                                                   |
|             | 4.1.5.1. Atomic and molecular beams                                                                                                                                |
|             | 4.1.5.2. Positrons and muons                                                                                                                                       |
|             | 4.1.5.5. Infrated, visible, and unraviolet light                                                                                                                   |
|             |                                                                                                                                                                    |
| 2. X-ray    |                                                                                                                                                                    |
| 4.2.1.      | Generation of X-rays (U. W. Arndt)                                                                                                                                 |
|             | 4.2.1.1. The characteristic line spectrum                                                                                                                          |
|             | 4.2.1.1.1. The intensity of characteristic lines                                                                                                                   |
|             | 4.2.1.2. The continuous spectrum                                                                                                                                   |
|             | 4.2.1.3. X-ray tubes                                                                                                                                               |
|             | 4.2.1.3.1. Power dissipation in the anode                                                                                                                          |
|             | 4.2.1.4. Radioactive X-ray sources                                                                                                                                 |
|             | 4.2.1.5. Synchrotron-radiation sources                                                                                                                             |
|             | 4.2.1.6. Plasma X-ray sources                                                                                                                                      |
|             | Table 1211 Correspondence between Y ray diagram levels and electron configurations                                                                                 |
|             | Table 4.2.1.2. Correspondence between IUPAC and Siegbahn notations for X-ray diagram lines                                                                         |

| Table 4.2.1.3. Copper-target X-ray tubes and their loading                                                                                                  |        |     | 194<br>196 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------------|
| Table 4.2.1.5. Reducive permissive routing for affective larger materials                                                                                   | <br>01 |     | 196        |
| Table 4.2.1.6. Comparison of storage-ring synchrotron-radiation sources                                                                                     |        |     | 199        |
| Table 4.2.1.7. Intensity gain with storage rings over conventional sources                                                                                  |        |     | 200        |
|                                                                                                                                                             |        |     | 200        |
| 4.2.2. X-ray wavelengths (R. D. Deslattes, E. G. Kessler Jr, P. Indelicato, and E. Lindroth)                                                                |        | ••  | 200        |
| 4.2.2.1. Historical introduction                                                                                                                            |        |     | 200        |
| 4.2.2.2. Known problems                                                                                                                                     |        |     | 201        |
| 4.2.2.3. Alternative strategies                                                                                                                             |        |     | 201        |
| 4.2.2.4. The X-ray wavelength scales, old and new                                                                                                           |        |     | 201        |
| 4.2.2.5. K-series reference wavelengths                                                                                                                     |        |     | 202        |
| 4.2.2.6. L-series reference wavelengths                                                                                                                     |        |     | 202        |
| 4.2.2.7. Absorption-edge locations                                                                                                                          |        |     | 202        |
| 4.2.2.8. Outline of the theoretical procedures                                                                                                              |        | ••  | 204        |
| 4.2.2.9. Evaluation of the uncorrelated energy with Dirac–Fock method                                                                                       |        | ••  | 205        |
| 4.2.2.10. Correlation and Auger shifts                                                                                                                      |        |     | 205        |
| 4.2.2.11. QED corrections                                                                                                                                   |        |     | 205        |
| 4.2.2.12. Structure and format of the summary tables                                                                                                        |        |     | 211        |
| 4.2.2.13. Availability of a more complete X-ray wavelength table                                                                                            |        |     | 212        |
| 4.2.2.14. Connection with scales used in previous literature                                                                                                |        | ••  | 212        |
| Table 4.2.2.1. K-series reference wavelengths                                                                                                               |        |     | 203        |
| Table 4.2.2.2. Directly measured L-series reference wavelengths                                                                                             |        |     | 204        |
| Table 4.2.2.3. Directly measured and emission + binding energies K-absorption edges                                                                         |        |     | 205        |
| Table 4.2.2.4. Wavelengths of K-emission lines and K-absorption edges                                                                                       |        |     | 206        |
| Table 4.2.2.5. Wavelengths of L-emission lines and L-absorption edges                                                                                       |        |     | 209        |
| Table 4.2.2.6. Wavelength conversion factors                                                                                                                |        |     | 212        |
|                                                                                                                                                             |        |     | 010        |
| <b>4.2.3. X-ray absorption spectra</b> (D. C. Creagh)                                                                                                       | ••     | ••  | 213        |
| 4.2.3.1. Introduction                                                                                                                                       |        |     | 213        |
| 4.2.3.1.1. Definitions                                                                                                                                      |        |     | 213        |
| 4.2.3.1.2. Variation of X-ray attenuation coefficients with photon energy                                                                                   |        |     | 213        |
| 4.2.3.1.3. Normal attenuation, XAFS, and XANES                                                                                                              |        |     | 213        |
| 4232 Techniques for the measurement of X-ray attenuation coefficients                                                                                       |        |     | 214        |
| 40201 Experimental configurations                                                                                                                           |        |     | 214        |
| 4.2.3.2.1. Experimental configurations                                                                                                                      |        | ••  | 214        |
| 4.2.3.2.2. Specified selection $\dots \dots \dots$          |        | ••  | 215        |
| 4.2.5.2.5. Requirements for the absolute measurement of $\mu_l$ of $(\mu/\rho)$                                                                             |        | ••  | 213        |
| 4.2.3.3. Normal attenuation coefficients                                                                                                                    |        | ••  | 215        |
| 4.2.3.4. Attenuation coefficients in the neighbourhood of an absorption edge                                                                                |        | ••  | 216        |
| 4.2.3.4.1. XAFS                                                                                                                                             |        |     | 216        |
| 4.2.3.4.1.1. Theory                                                                                                                                         |        |     | 216        |
| 423412 Techniques of data analysis                                                                                                                          |        |     | 217        |
| $123/112$ . Formingues of data analysis $\dots \dots \dots$ |        |     | 217        |
|                                                                                                                                                             |        | ••  | 210        |
| 4.2.3.4.2. X-ray absorption near edge structure (XANES)                                                                                                     |        | ••  | 219        |
| 4.2.3.5. Comments                                                                                                                                           |        |     | 220        |
| Table 4.2.3.1. Some synchrotron-radiation facilities providing XAFS databases and analysis utilities                                                        |        |     | 219        |
| <b>434</b> V row abcomission (or attenuation) $-\frac{10}{100}$                                                                                             |        |     | 200        |
| 4.2.4. X-ray absorption (or attenuation) coefficients (D. C. Creagh and J. H. Hubbell)                                                                      |        | ••  | 220        |
| 4.2.4.1. Introduction                                                                                                                                       |        |     | 220        |
| 4.2.4.2. Sources of information                                                                                                                             |        |     | 221        |
| 4.2.4.2.1. Theoretical photo-effect data: $\sigma_{pe}$                                                                                                     |        |     | 221        |
| 4.2.4.2.2. Theoretical Rayleigh scattering data: $\sigma_R$                                                                                                 |        |     | 221        |
| 4.2.4.2.3. Theoretical Compton scattering data: $\sigma_C$                                                                                                  |        |     | 229        |
| 4.2.4.3. Comparison between theoretical and experimental data sets                                                                                          |        |     |            |
| 4.2.4.4. Uncertainty in the data tables                                                                                                                     |        |     |            |
| Table 1211 Table of wavelengths and energies for the characteristic redictions used in                                                                      | , т    | ah  | >          |
| 1 auto 4.2.4.1. 1 units of wavelengins and energies for the characteristic radiations used $17$                                                             |        | uUl | to<br>221  |
|                                                                                                                                                             |        | ••  | 221        |
| Table 4.2.4.2. Total photon interaction cross section                                                                                                       |        | ••  | 223        |
|                                                                                                                                                             |        | ••  | 230        |
| 4.2.5. Filters and monochromators (D. C. Creagh)                                                                                                            |        |     | 229        |
| 4.2.5.1. Introduction                                                                                                                                       |        |     | 229        |
| 4.2.5.2. Mirrors and capillaries                                                                                                                            |        |     | 236        |

| 4.2.5.2.3. (                           | Capinanes                                                                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1253 Filters                           |                                                                                                                                            |
| 4.2.5.4. Monochro                      | omators                                                                                                                                    |
| 42541 (                                | restal monochromators                                                                                                                      |
| 4.2.5.4.2. 1                           | Laboratory monochromator systems                                                                                                           |
| 4.2.5.4.3.                             | Multiple-reflection monochromators for use with laboratory and synchrotron-radiation                                                       |
| :                                      | sources                                                                                                                                    |
| 4.2.5.4.4. I                           | Polarization                                                                                                                               |
| 6. X-ray dispersion c                  | orrections (D. C. Creagh)                                                                                                                  |
| 4.2.6.1. Definition                    | 18                                                                                                                                         |
| 4.2.6.1.1. 1                           | Ravleigh scattering                                                                                                                        |
| 4.2.6.1.2.                             | Thomson scattering by a free electron                                                                                                      |
| 4.2.6.1.3. 1                           | Elastic scattering from electrons bound to atoms: the atomic scattering factor, the atomic form factor, and the dispersion corrections     |
| 4.2.6.2. Theoretic                     | al approaches for the calculation of the dispersion corrections                                                                            |
| 4.2.6.2.1.                             | The classical approach                                                                                                                     |
| 4.2.6.2.2. N                           | Non-relativistic theories                                                                                                                  |
| 4.2.6.2.3. 1                           | Relativistic theories                                                                                                                      |
|                                        | 4.2.6.2.3.1. Cromer and Liberman: relativistic dipole approach                                                                             |
|                                        | 4.2.6.2.3.2. The scattering matrix formalism                                                                                               |
| 4.2.6.2.4. J                           | Intercomparison of theories                                                                                                                |
| 4.2.6.3. Modern e                      | experimental techniques                                                                                                                    |
| 4.2.6.3.1. J                           | Determination of the real part of the dispersion correction: $f'(\omega, 0)$                                                               |
| 4.2.6.3.2. I                           | Determination of the real part of the dispersion correction: $f'(\omega, \Delta)$                                                          |
|                                        | 4.2.6.3.2.1. Measurements using the dynamical theory of X-ray diffraction                                                                  |
|                                        | 4.2.6.3.2.2. Friedel- and Bijvoet-pair techniques                                                                                          |
| 4.2.6.3.3. 0                           | Comparison of theory with experiment                                                                                                       |
|                                        | 4.2.6.3.3.1. Measurements in the high-energy limit $(\omega/\omega_{\kappa} \rightarrow 0)$                                                |
|                                        | 4.2.6.3.3.2. Measurements in the vicinity of an absorption edge                                                                            |
|                                        | 4.2.6.3.3.3. Accuracy in the tables of dispersion corrections                                                                              |
|                                        | 4.2.6.3.3.4. Towards a tensor formalism                                                                                                    |
|                                        | 4.2.6.3.3.5. Summary                                                                                                                       |
| 4.2.6.4. Table of                      | wavelengths, energies, and linewidths used in compiling the tables of the dispersion                                                       |
| 4.2.6.5. Tables o                      | f the dispersion corrections for forward scattering, averaged polarization using the                                                       |
| Table 4261                             | It multipole approach                                                                                                                      |
| Table 4.2.0.1.<br>Table 4.2.6.2( $a$ ) | values of $E_{tot}/mc$ used as a function of atomic number $Z_{int}$                                                                       |
| 14010 1.2.0.2(4).                      | calculations of Cromer & Liberman (1970, 1981, 1983) and Creagh & McAuley for the                                                          |
|                                        | noble gases and several common metals                                                                                                      |
| Table $4.2.6.2(b)$ .                   | A comparison of the real part of the forward-scattering amplitudes computed using different                                                |
| Table 4949                             | theoretical approaches $\dots \dots \dots$ |
| 1 aule 4.2.0.3.                        | A comparison of the imaginary part of the forward-scattering amplitudes $f_{(\omega, 0)}$ computed using different theoretical approaches  |
| Table 4.2.6.4.                         | Comparison of measurements of the real part of the dispersion correction for LiF. Si. Al                                                   |
|                                        | and Ge for characteristic wavelengths Ag $K\alpha_1$ , Mo $K\alpha_1$ and Cu $K\alpha_1$ with theoretical                                  |
|                                        | predictions                                                                                                                                |
| Table 4.2.6.5.                         | Comparison of measurements of $f'(\omega, 0)$ for C, Si and Cu for characteristic wavelengths                                              |
| Table 1266                             | Ag $\kappa \alpha_1$ , Mo $\kappa \alpha_1$ and Cu $\kappa \alpha_1$ with theoretical predictions                                          |
| 1 aute 4.2.0.0.                        | comparison of $f(\omega_A, 0)$ for copper, nicket, zirconium, and niobium for theoretical and experimental data sets.                      |
| Table 4.2.6.7.                         | List of wavelengths, energies, and linewidths used in compiling the table of dispersion                                                    |
|                                        | corrections                                                                                                                                |
|                                        | Dispersion corrections for forward scattering                                                                                              |
| Table 4.2.6.8.                         |                                                                                                                                            |

| 4.3.1.1. Elastic scattering from a perfect crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 259                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.1.2. Atomic scattering factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 259                                                                                                                                                                                                                                                                                                                                |
| 4.3.1.3. Approximations of restricted validity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260                                                                                                                                                                                                                                                                                                                                |
| 4.3.1.4. Relativistic effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260                                                                                                                                                                                                                                                                                                                                |
| 4.5.1.5. Adsorption effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201                                                                                                                                                                                                                                                                                                                                |
| 4.3.1.7. Use of Tables 4.3.1.1 and 4.3.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 261                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.1.1. Atomic scattering amplitudes for electrons for neutral atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 263                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.1.2. Atomic scattering amplitudes for electrons for ionized atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203                                                                                                                                                                                                                                                                                                                                |
| 4.3.2. Parameterizations of electron atomic scattering factors (J. M. Cowley, L. M. Peng, G. Ren, S. L. Dudarev,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |
| and M. J. Whelan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 262                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.2.1. Parameters useful in electron diffraction as a function of accelerating voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 281                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.2.2. Elastic atomic scattering factors of electrons for neutral atoms and s up to $2.0 A^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 282                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.2.3. Elastic atomic scattering factors of electrons for neutral atoms and s up to $6.0 A^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 284                                                                                                                                                                                                                                                                                                                                |
| 4.3.3. Complex scattering factors for the diffraction of electrons by gases (A. W. Ross, M. Fink, R. Hilderbrandt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    |
| J. Wang, and V. H. Smith Jr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262                                                                                                                                                                                                                                                                                                                                |
| 4.3.3.2.1. Elastic scattering factors for atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262                                                                                                                                                                                                                                                                                                                                |
| 4.3.3.2.2. Total inelastic scattering factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                                                                                                                                                                                                                                                                                                                                |
| 4.2.2.2. Molecular scattering factors for electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 390                                                                                                                                                                                                                                                                                                                                |
| Table 4.3.3.1. Partial wave elastic scattering factors for neutral atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 286                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/0                                                                                                                                                                                                                                                                                                                                |
| 4.3.4. Electron energy-loss spectroscopy on solids (C. Colliex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 391                                                                                                                                                                                                                                                                                                                                |
| 4.3.4.1. Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 391                                                                                                                                                                                                                                                                                                                                |
| 4.3.4.1.1. Use of electron beams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 391                                                                                                                                                                                                                                                                                                                                |
| / 4 / 1 / Poromotore involved in the deceription of a single inclusive contering event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 392                                                                                                                                                                                                                                                                                                                                |
| 43.4.1.2. Tradalents involved in the description of a single inclusive scattering event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202                                                                                                                                                                                                                                                                                                                                |
| 4.3.4.1.2. Farameters involved in the description of a single inclusive scattering event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 392                                                                                                                                                                                                                                                                                                                                |
| 4.3.4.1.2. Problems associated with multiple scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 392<br>393                                                                                                                                                                                                                                                                                                                         |
| 4.3.4.1.2. Farameters involved in the description of a single inclusive scattering event in the intervention of a single inclusive scattering event in the intervention of the different types of excitations contained in an electron energy-loss spectrum in the intervention of the interve           | <ul><li>392</li><li>393</li><li>394</li></ul>                                                                                                                                                                                                                                                                                      |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event in the intervention of a single inclustic scattering event in the intervention of a single inclustic scattering event in the intervention of the different types of excitations contained in an electron energy-loss spectrum in the intervention of the</li></ul> | <ul><li>392</li><li>393</li><li>394</li><li>394</li></ul>                                                                                                                                                                                                                                                                          |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event and a single incluste scattering event and a single incluster scattering event and a single inclaster scatter scatteri</li></ul> | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> </ul>                                                                                                                                                                                                                                                        |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event and a single incluste scattering event and a single vent and a single incluste scattering event and a single vent and a single ven</li></ul> | <ol> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> </ol>                                                                                                                                                                                                                                           |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event and a single vent and a single incluste scattering event and a single vent a</li></ul> | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> </ul>                                                                                                                                                                                                                              |
| <ul> <li>4.3.4.1.2. Parameters involved in the description of a single inclustic scattering event and a single incluste scattering event and a single vent and a single incluste scattering event and a single vent and a single incluste scattering event and a single incluster scattering event and a single event and</li></ul> | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> </ul>                                                                                                                                                                                                                 |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event and a single vent and</li></ul>  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> </ul>                                                                                                                                                                                                    |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event and a single vent and</li></ul>  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>402</li> </ul>                                                                                                                                                                                       |
| <ul> <li>4.3.4.1.2. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>401</li> </ul>                                                                                                                                                             |
| <ul> <li>4.3.4.1.2. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> </ul>                                                                                                                                                                          |
| <ul> <li>4.3.4.1.2. Farameter's involved in the description of a single inclustic scattering event and a single incluster scattering and a single incluster scattering event and a single incluster scattering event and a single incluster scattering event and a single incluster scattering and a single incluster scattering and a single scattering and a single</li></ul>  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>404</li> <li>404</li> </ul>                                                                                                                                   |
| <ul> <li>4.3.4.1.2. Farameters involved in the description of a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single inclustic scattering event in a main in a single incluste scattering event in a main in a single incluste scattering event in a main in a single incluste scattering event in a main in a main in a single incluste scattering event in a main in a main in a single incluste scattering event in a main in a single incluste scattering event in a main in a single incluste scattering event in a main in a mai</li></ul> | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>404</li> <li>406</li> <li>408</li> </ul>                                                                                                                      |
| <ul> <li>4.3.4.1.3. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> </ul>                                                                                                         |
| <ul> <li>4.3.4.1.3. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> </ul>                                                                                                         |
| <ul> <li>4.3.4.1.3. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> </ul>                                                                                                                      |
| <ul> <li>4.3.4.1.3. Problems associated with dustription a single inclusive staticting event 1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> </ul>                                                                                                         |
| <ul> <li>4.3.4.12. Frankfers involved in the description of a single inclustic scattering event is a single incluster scattering is a single incluster scattering event is a single incluster scattering event is a single incluster scattering is a single incluster scattering is a single incluster scattering event is a single incluster scattering is a single incluster scattering is a single incluster scattering is a single incluster in the description is a single incluster scattering is a single incluster scattering is a single incluster scattering is a single incluster in the single incluster scattering is a single incluster in the single incluster is a single incluster in the single</li></ul>  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> </ul>                                                                                            |
| <ul> <li>4.3.4.1.3. Problems associated with multiple sciencing</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> </ul>                                                                               |
| <ul> <li>4.3.4.1.3. Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> </ul>                                                                               |
| 4.3.4.1.3. Problems associated with multiple scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> </ul>                                                                                            |
| <ul> <li>4.3.4.1.2. Frainteetrs involved in the description of a single inclusive staticting event 1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> </ul>                                                                  |
| <ul> <li>4.3.4.1.2 Problems associated with multiple scattering</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> <li>412</li> </ul>                                        |
| 4.3.4.1.3 Problems associated with multiple scattering in clastic scattering event is a second of the different types of excitations contained in an electron energy-loss spectrum is a sociated with multiple scattering is a second of the different types of excitations contained in an electron energy-loss spectrum is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different is a sociated with multiple scattering is a second of the different accessible parameters ( $r, \theta, \Delta E$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>397</li> <li>401</li> <li>403</li> <li>404</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> <li>412</li> <li>412</li> </ul> |
| <ul> <li>4.3.4.1.3 Problems associated with multiple scattering in clastic scattering event in an electron energy-loss spectrum</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> <li>412</li> <li>412</li> <li>412</li> <li>412</li> </ul>              |
| <ul> <li>4.3.4.1.3 Problems associated with multiple scattering.</li> <li>4.3.4.1.4. Classification of the different types of excitations contained in an electron energy-loss spectrum</li> <li>4.3.4.2.1. General instrumental considerations</li> <li>4.3.4.2.2. Spectrometers</li> <li>4.3.4.2.3. Detection systems</li> <li>4.3.4.2.3. Detection systems</li> <li>4.3.4.3.1. Volume plasmons</li> <li>4.3.4.3.1. Volume plasmons</li> <li>4.3.4.3.2. Dielectric description</li> <li>4.3.4.3.3. Real solids</li> <li>4.3.4.3.3. Real solids</li> <li>4.3.4.4.3. Surface plasmons</li> <li>4.3.4.4.3. Surface plasmons</li> <li>4.3.4.4.4. Surface plasmons</li> <li>4.3.4.4.3. Solid-state effects</li> <li>4.3.4.4.4. Applications of core electrons</li> <li>4.3.4.4.4. Applications of core-loss spectroscopy</li> <li>4.3.4.5. Conclusions</li> <li>Table 4.3.4.2. Plasmon energies measured (and calculated) for a few simple metals</li> <li>Table 4.3.4.3. Experimental and theoretical values for the coefficient α in the plasmon dispersion curve together with estimates of the cut-off wavevector</li> <li>Table 4.3.4.4. Comparison of measured and calculated values for the halfwidth ΔE<sub>1/2</sub>(0) of the plasmon line</li> <li>4.3.5.1. Texture patterns (B. B. Zvyagin)</li> <li>4.3.5.1. Texture patterns</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> <li>398</li> <li>412</li> <li>412</li> <li>412</li> <li>413</li> </ul> |
| <ul> <li>4.3.4.1.3. Problems associated with multiple scattering.</li> <li>4.3.4.1.4. Classification of the different types of excitations contained in an electron energy-loss spectrum</li> <li>4.3.4.2. Instrumentation .</li> <li>4.3.4.2.1. General instrumental considerations .</li> <li>4.3.4.2.2. Spectrometers</li> <li>4.3.4.2.3. Detection systems .</li> <li>4.3.4.2.3. Detection systems .</li> <li>4.3.4.3.1. Volume plasmons .</li> <li>4.3.4.3.1. Volume plasmons .</li> <li>4.3.4.3.2. Dielectric description .</li> <li>4.3.4.3.3. Real solids.</li> <li>4.3.4.3.3. Real solids.</li> <li>4.3.4.4.3. Burface plasmons .</li> <li>4.3.4.4.3. Burface plasmons .</li> <li>4.3.4.4.3. Burface plasmons .</li> <li>4.3.4.4.3. Solid-state effects .</li> <li>4.3.4.4.3. Solid-state effects .</li> <li>4.3.4.4.4. Applications of core electrons of core electros and the state ing th</li></ul>  | <ul> <li>392</li> <li>393</li> <li>394</li> <li>395</li> <li>397</li> <li>397</li> <li>397</li> <li>399</li> <li>401</li> <li>403</li> <li>404</li> <li>406</li> <li>408</li> <li>410</li> <li>411</li> <li>394</li> <li>397</li> <li>398</li> <li>398</li> <li>412</li> <li>412</li> <li>413</li> <li>414</li> </ul>              |

|            | 4.3.6.1. The multislice method (D. F. Lynch)                                                                                                                             | 414<br>415 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.3.7.     | Measurement of structure factors and determination of crystal thickness by electron diffraction (J. Gjønnes                                                              | 11.6       |
|            | and J. W. Steeds)                                                                                                                                                        | 416        |
| 4.3.8.     | Crystal structure determination by high-resolution electron microscopy (J. C. H. Spence and J. M. Cowley)                                                                | 419        |
|            | 4.3.8.1. Introduction                                                                                                                                                    | 419        |
|            | 4.3.8.2. Lattice-fringe images                                                                                                                                           | 421        |
|            | 4.3.8.3. Crystal structure images                                                                                                                                        | 422        |
|            | 4.3.8.4. Parameters affecting HREM images                                                                                                                                | 424        |
|            | 4.3.8.5. Computing methods                                                                                                                                               | 425        |
|            | 4.3.8.6. Resolution and hyper-resolution $\dots \dots \dots$             | 427        |
|            | 4.3.8.7. Alternative methods                                                                                                                                             | 427<br>428 |
| 4.4. Neutr | Ron Techniques                                                                                                                                                           | 430        |
| 4.4.1.     | Production of neutrons (J. M. Carpenter and G. Lander)                                                                                                                   | 430        |
| 4.4.2.     | Beam-definition devices (I. S. Anderson and O. Schärpf)                                                                                                                  | 431        |
|            | 4.4.2.1. Introduction                                                                                                                                                    | 431        |
|            | 4.4.2.2. Collimators                                                                                                                                                     | 431        |
|            | 4.4.2.3. Crystal monochromators                                                                                                                                          | 432        |
|            | 4.4.2.4. Mirror reflection devices                                                                                                                                       | 435        |
|            | 4.4.2.4.1. Neutron guides                                                                                                                                                | 435        |
|            | 4.4.2.4.2. Focusing mirrors                                                                                                                                              | 436        |
|            | 4.4.2.4.3. Multilayers                                                                                                                                                   | 436        |
|            | 4.4.2.4.4. Capillary optics                                                                                                                                              | 437        |
|            | 4.4.2.5. Filters                                                                                                                                                         | 438        |
|            | 4.4.2.6. Polarizers                                                                                                                                                      | 438        |
|            | 4.4.2.6.1. Single-crystal polarizers                                                                                                                                     | 438        |
|            | 4.4.2.6.2. Polarizing mirrors                                                                                                                                            | 440        |
|            | 4.4.2.6.3. Polarizing filters                                                                                                                                            | 440        |
|            | 4.4.2.6.4. Zeeman polarizer                                                                                                                                              | 442        |
|            | 4.4.2.7. Spin-orientation devices                                                                                                                                        | 442        |
|            | 4.4.2.7.1. Maintaining the direction of polarization                                                                                                                     | 442        |
|            | 4.4.2.7.2. Rotation of the polarization direction                                                                                                                        | 442        |
|            | 4.4.2.7.3. Flipping of the polarization direction                                                                                                                        | 442        |
|            | 4.4.2.8. Mechanical choppers and selectors                                                                                                                               | 443        |
|            | Table 4.4.2.1 Some important properties of materials used for neutron monochromator crystals                                                                             | 433        |
|            | Table 4.4.2.1. Some important properties of materials ased for neuron monochromator crystals                                                                             | 435        |
|            | Table 4.4.2.3. Characteristics of some typical elements and isotopes used as neutron filters                                                                             | 439        |
|            | Table 4.4.2.4. Properties of polarizing crystal monochromators.                                                                                                          | 440        |
|            | Table 4.4.2.5. Scattering-length densities for some typical materials used for polarizing multilayers                                                                    | 441        |
| 4.4.3.     | <b>Resolution functions</b> (R. Pvnn and J. M. Rowe)                                                                                                                     | 443        |
|            |                                                                                                                                                                          | A A A      |
| 4.4.4.     | Scattering lengths for neutrons (v. f. Sears)                                                                                                                            | 444        |
|            | 4.4.4.1. Scattering lengths                                                                                                                                              | 444        |
|            | 4.4.4.2. Scattering and absorption cross sections                                                                                                                        | 452        |
|            | 4.4.4.5. Isotope effects                                                                                                                                                 | 452        |
|            | 4.4.4.4. Confection for electromagnetic interactions $\dots \dots \dots$ | 453        |
|            | 4446 Compilation of scattering lengths and cross sections                                                                                                                | 453        |
|            | Table $AAA1$ Bound scattering lengths b and cross sections $\sigma$ of the elements and their isotopes                                                                   | 100        |
|            | 1 auto 4.4.4.1. Dounu sounering lengins, 0, unu cross sections, 0, 0j the elements and their isotopes                                                                    | 443        |
| 4.4.5.     | Magnetic form factors (P. J. Brown)                                                                                                                                      | 454        |
|            | Table 4.4.5.1. $\langle J_0 \rangle$ form factors for 3d transition elements and their ions                                                                              | 454        |
|            | 1 able 4.4.5.2. $\langle J_0 \rangle$ form factors for 4d atoms and their ions                                                                                           | 455        |
|            | 1 able 4.4.3.3. $\langle J_0 \rangle$ form factors for rare-earth lons                                                                                                   | 433        |
|            | 1 able 4.4.3.4. $\langle J_0 \rangle$ form factors for 3d transition elements and their ions                                                                             | 433<br>156 |
|            | Table 4.4.5.6. $\langle j_2 \rangle$ form factors for 4d atoms and their ions                                                                                            | 430<br>157 |
|            | Table 4.4.5.7 $\langle i_2 \rangle$ form factors for rare-earth ions                                                                                                     | 457        |
|            | Table 4.4.5.8. $\langle i_2 \rangle$ form factors for actinide ions                                                                                                      | 457        |
|            | Table 4.4.5.9. $\langle j_4 \rangle$ form factors for 3d atoms and their ions                                                                                            | 458        |
|            |                                                                                                                                                                          |            |

| CONTENTS |
|----------|
|----------|

|                                                                                 | Table 4.4.5.10. $\langle j_4 \rangle$ form factors for 4d atoms and their ions $\ldots \ldots \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 459                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | Table 4.4.5.11. $\langle j_4 \rangle$ form factors for rare-earth ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 459                                                                                                                                                                                                                                                                            |
|                                                                                 | Table 4.4.5.12. $\langle j_4 \rangle$ form factors for activide ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 459                                                                                                                                                                                                                                                                            |
|                                                                                 | Table 4.4.5.13. $(j_6)$ form factors for rare-earth ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 460                                                                                                                                                                                                                                                                            |
|                                                                                 | Table 4.4.5.14. $(j_6)$ form factors for actinide ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 460                                                                                                                                                                                                                                                                            |
| 4.4                                                                             | 6. Absorption coefficients for neutrons (B. T. M. Willis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 461                                                                                                                                                                                                                                                                            |
|                                                                                 | Table 4.4.6.1. Absorption of the elements for neutrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 461                                                                                                                                                                                                                                                                            |
| R                                                                               | ferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 462                                                                                                                                                                                                                                                                            |
| IX.                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 402                                                                                                                                                                                                                                                                            |
| PART                                                                            | 5: DETERMINATION OF LATTICE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 489                                                                                                                                                                                                                                                                            |
| 5.1. Int                                                                        | RODUCTION (A. J. C. Wilson)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 490                                                                                                                                                                                                                                                                            |
| 5.2. X-I                                                                        | AY DIFFRACTION METHODS: POLYCRYSTALLINE (W. Parrish, A. J. C. Wilson, and J. I. Langford)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 491                                                                                                                                                                                                                                                                            |
| 5.2                                                                             | <b>1. Introduction</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 491                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.1.1. The techniques available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 491                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.1.2. Errors and aberrations: general discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 491                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.1.3. Errors of the Bragg angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 491                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.1.4. Bragg angle: operational definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 491                                                                                                                                                                                                                                                                            |
|                                                                                 | Table 5.2.1.1. Functions of the cell angles in equation (5.2.1.3) for the possible unit cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 492                                                                                                                                                                                                                                                                            |
| 5.3                                                                             | 2. Wavelength and related problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 492                                                                                                                                                                                                                                                                            |
| 0.1                                                                             | 5.2.2.1 Errors and uncortainties in wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 402                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.2.1. Efforts and uncertainties in wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 492                                                                                                                                                                                                                                                                            |
|                                                                                 | $5.2.2.2$ . Reflection in $\dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 492                                                                                                                                                                                                                                                                            |
| -                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 402                                                                                                                                                                                                                                                                            |
| 5.4                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 493                                                                                                                                                                                                                                                                            |
|                                                                                 | 5.2.3.1. Aberrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 493<br>493                                                                                                                                                                                                                                                                     |
| 5.3                                                                             | 4. Angle-dispersive diffractometer methods: conventional sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 495                                                                                                                                                                                                                                                                            |
| 0.1                                                                             | Table 52.4.1 Controid displacement $ AA A\rangle$ and variance W of cortain abstrations of an angle disparsive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 475                                                                                                                                                                                                                                                                            |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 494                                                                                                                                                                                                                                                                            |
| = ^                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                |
| 3.4                                                                             | 5. Angle-dispersive diffractometer methods: synchrotron sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495                                                                                                                                                                                                                                                                            |
| 5.2<br>5.2                                                                      | 5. Angle-dispersive diffractometer methods: synchrotron sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495<br>496                                                                                                                                                                                                                                                                     |
| 5.2<br>5.2<br>5.2                                                               | 5. Angle-dispersive diffractometer methods: synchrotron sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495<br>496<br>496                                                                                                                                                                                                                                                              |
| 5.2<br>5.2<br>5.2                                                               | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497                                                                                                                                                                                                                                                       |
| 5.2<br>5.2                                                                      | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497                                                                                                                                                                                                                                                       |
| 5.4<br>5.4<br>5.4<br>5.4                                                        | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497                                                                                                                                                                                                                                                |
| 5.4<br>5.2<br>5.2<br>5.2                                                        | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497<br>498                                                                                                                                                                                                                                         |
| 5.4<br>5.4<br>5.4<br>5.4                                                        | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497<br>498<br>498                                                                                                                                                                                                                                  |
| 5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497<br>497<br>498<br>498<br>498                                                                                                                                                                                                                    |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497<br>498<br>498<br>498<br>498                                                                                                                                                                                                                    |
| 5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>499                                                                                                                                                                                                      |
| 5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>499<br>500                                                                                                                                                                                        |
| 5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>500<br>501                                                                                                                                                                                               |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>499<br>500<br>501<br>502                                                                                                                                                                                        |
| 5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>500<br>501<br>502<br>503                                                                                                                                                                                 |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                          | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>499<br>500<br>501<br>502<br>503<br>503                                                                                                                                                                                 |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                   | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>500<br>501<br>502<br>503<br>503<br>500                                                                                                                                                                   |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                   | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>496<br>497<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>500<br>501<br>502<br>503<br>503<br>500<br>503                                                                                                                                                            |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4              | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> </ul>                                                     |
| 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4              | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> <li>501</li> </ul>                                                     |
| 5.3. X-1                                                                        | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> <li>501</li> <li>501</li> <li>505</li> </ul>                                        |
| 54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>5 | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li> <li>6. Whole-pattern methods</li> <li>7. Energy-dispersive techniques</li> <li>Table 5.2.7.1. Centroid displacement (ΔE/E) and variance W of certain aberrations of an energy-dispersive diffractometer</li> <li>8. Camera methods.</li> <li>Table 5.2.8.1. Some geometrical aberrations in the Debye–Scherrer method</li> <li>9. Testing for remanent systematic error</li> <li>10. Powder-diffraction standards</li> <li>Table 5.2.10.2. Reflection angles for standards s.</li> <li>Table 5.2.10.2. Reflection angles for tungsten, silver, and silicon</li> <li>Table 5.2.10.3. Silicon standard high reflection angles</li> <li>Table 5.2.10.6. Fluorophlogopite standard reflection angles</li> <li>Table 5.2.10.7. Silver behenate standard reflection angles</li> <li>Table 5.2.11. NIST intensity standards, SRM 674</li> <li>Table 5.2.11. NIST intensity standards</li> <li>Table 5</li></ul> | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> <li>501</li> <li>505</li> <li>505</li> </ul>                           |
| 54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>5 | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li> <li>6. Whole-pattern methods</li> <li>Table 5.2.7.1. Centroid displacement (ΔE/E) and variance W of certain aberrations of an energy-dispersive diffractometer</li> <li>8. Camera methods.</li> <li>9. Testing for remanent systematic error</li> <li>9. Testing for remanent systematic error</li> <li>10. Powder-diffraction standards</li> <li>Table 5.2.10.1. NIST values for sulicon standards</li> <li>Table 5.2.10.2. Reflection angles for tungsten, silver, and silicon</li> <li>Table 5.2.10.4. Silicon standard reflection angles</li> <li>Table 5.2.10.5. Tungsten reflection angles</li> <li>Table 5.2.10.7. Silver behenate standard reflection angles</li> <li>Table 5.2.10.7. Silver behenate standard reflection angles</li> <li>Table 5.2.11.1. NIST intensity standards, SRM 674</li> <li>13. Factors determining accuracy</li> <li>At DIFFRACTION METHODS: SINGLE CRYSTAL (E. Gałdecka).</li> <li>14. Introduction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495<br>496<br>497<br>497<br>498<br>498<br>498<br>498<br>499<br>500<br>501<br>502<br>503<br>500<br>503<br>500<br>501<br>501<br>501<br>505<br>505<br>505                                                                                                                         |
| 54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>5 | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li> <li>6. Whole-pattern methods</li> <li>7. Energy-dispersive techniques</li> <li>Table 5.2.7.1. Centroid displacement ⟨∆E/E⟩ and variance W of certain aberrations of an energy-dispersive diffractometer</li> <li>8. Camera methods</li> <li>8. Camera methods</li> <li>9. Testing for remanent systematic error</li> <li>9. Testing for remanent systematic error</li> <li>10. Powder-diffraction standards</li> <li>Table 5.2.10.1. NIST values for silicon standards</li> <li>Table 5.2.10.2. Reflection angles for tungsten, silver, and silicon</li> <li>Table 5.2.10.4. Silicon standard reflection angles</li> <li>Table 5.2.10.4. Silicon standard reflection angles</li> <li>Table 5.2.10.7. Silver behenate standard reflection angles</li> <li>Table 5.2.11.1. NIST intensity standards, SRM 674</li> <li>12. Instrumental line-profile-shape standards</li> <li>13. Factors determining accuracy</li> <li>AY DIFFRACTION METHODS: SINGLE CRYSTAL (E. Gałdecka).</li> <li>14. Introduction</li> <li>5.3.1.2. Introduction to single-crystal methods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> <li>505</li> <li>505</li> <li>506</li> </ul>                           |
| 54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>5 | <ul> <li>5. Angle-dispersive diffractometer methods: synchrotron sources</li> <li>6. Whole-pattern methods</li> <li>Table 5.2.7.1. Centroid displacement (ΔE/E) and variance W of certain aberrations of an energy-dispersive diffractometer</li> <li>8. Camera methods</li> <li>Table 5.2.8.1. Some geometrical aberrations in the Debye–Scherrer method</li> <li>9. Testing for remanent systematic error</li> <li>10. Powder-diffraction standards</li> <li>Table 5.2.10.1. NIST values for silicon standards</li> <li>Table 5.2.10.2. Reflection angles for tungsten, silver, and silicon</li> <li>Table 5.2.10.3. Silicon standard neffection angles</li> <li>Table 5.2.10.4. Silicon standard neffection angles</li> <li>Table 5.2.10.5. Tungsten reflection angles</li> <li>Table 5.2.10.6. Fluorophlogopite standard reflection angles</li> <li>Table 5.2.10.7. Silver behenate standard reflection angles</li> <li>Table 5.2.11.1. NIST intensity standards, SRM 674</li> <li>11. Intensity standards</li> <li>13. Factors determining accuracy</li> <li>AY DIFFRACTION METHODS: SINGLE CRYSTAL (E. Gałdecka).</li> <li>2. Photographic methods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>495</li> <li>496</li> <li>497</li> <li>497</li> <li>498</li> <li>498</li> <li>498</li> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>500</li> <li>503</li> <li>501</li> <li>501</li> <li>505</li> <li>505</li> <li>506</li> <li>508</li> </ul> |

| 5.3.2.2.                  | The Laue method                                                                                                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.3.2.3.                  | Moving-crystal methods                                                                                                                                                                |
| 4                         | .3.2.3.1. Rotating-crystal method                                                                                                                                                     |
| 4                         | .3.2.3.2. Moving-film methods                                                                                                                                                         |
| -                         | .3.2.3.3. Combined methods                                                                                                                                                            |
|                           | 3.2.3.4. Accurate and precise lattice-parameter determinations                                                                                                                        |
| 5004                      |                                                                                                                                                                                       |
| 5.3.2.4.                  | The Kossel method and divergent-beam techniques                                                                                                                                       |
| 4                         | .3.2.4.1. The principle                                                                                                                                                               |
|                           | 3.2.4.2. Review of methods of accurate lattice-parameter determination                                                                                                                |
|                           | 3244 Applications 515                                                                                                                                                                 |
| 533 Methods               | with counter recording $516$                                                                                                                                                          |
| 5.3.3. Michious           |                                                                                                                                                                                       |
| 5.3.3.1.                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                  |
| -                         | .3.3.2.1. Four-circle diffractometer                                                                                                                                                  |
| 5333                      | Data processing and optimization of the experiment 517                                                                                                                                |
| 5.5.5.5                   | 3331 Models of the diffraction profile                                                                                                                                                |
|                           | 3.3.3.2. Precision and accuracy of the Bragg-angle determination; optimization of the experiment 519                                                                                  |
| 5.3.3.4.                  | One-crystal spectrometers                                                                                                                                                             |
| 1                         | .3.3.4.1. General characteristics                                                                                                                                                     |
| -                         | .3.3.4.2. Development of methods based on an asymmetric arrangement and their applications                                                                                            |
|                           | .3.3.4.3. The Bond method                                                                                                                                                             |
|                           | 5.3.3.4.3.1. Description of the method                                                                                                                                                |
|                           | 5.3.3.4.3.2. Systematic errors                                                                                                                                                        |
|                           | 5.3.3.4.3.3. Development of the Bond method and its applications                                                                                                                      |
|                           | 5.3.3.4.3.4. Advantages and disadvantages of the Bond method                                                                                                                          |
| 5.3.3.5.                  | Limitations of traditional methods                                                                                                                                                    |
| 5.3.3.6.                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                  |
| 5.3.3./.                  | $\text{Multiple-crystal} - \text{pseudo-non-dispersive techniques} \dots \dots$ |
|                           | .3.3.7.1. Double-crystal spectrometers                                                                                                                                                |
|                           | $3.3./2. \text{ Iriple-crystal spectrometers } \dots $                          |
| -                         | 3.3.7.4. Combined methods                                                                                                                                                             |
| 5338                      | Ontical and X-ray interferometry – a non-dispersive technique                                                                                                                         |
| 5.3.3.9.                  | attice-parameter and wavelength standards                                                                                                                                             |
| 5.3.4. Final ren          | arks                                                                                                                                                                                  |
| 5.4 ELECTRON DUE          | 527<br>527                                                                                                                                                                            |
| <b>5.4.</b> ELECTRON-DIFF | $RACHON METHODS \dots \dots$                                                    |
| 5.4.1. Determin           | ation of cell parameters from single-crystal patterns (A. W. S. Johnson)                                                                                                              |
| 5.4.1.1.                  | ntroduction                                                                                                                                                                           |
| 5.4.1.2.                  | Zero-zone analysis                                                                                                                                                                    |
| 5.4.1.3.                  | Non-zero-zone analysis $\dots \dots \dots$                                            |
| Table 5                   | 4.1.1. Unit-cell information available for photographic recording                                                                                                                     |
| 5.4.2. Kikuchi a          | nd HOLZ techniques (A. Olsen)                                                                                                                                                         |
| 5.5. Neutron Meti         | oods (B. T. M. Willis)                                                                                                                                                                |
| References                |                                                                                                                                                                                       |
|                           |                                                                                                                                                                                       |
| PART 6: INTER             | PRETATION OF DIFFRACTED INTENSITIES                                                                                                                                                   |
| 6.1. Intensity of D       | IFFRACTED INTENSITIES                                                                                                                                                                 |
| 6.1.1. X-ray sca          | ttering (E. N. Maslen, A. G. Fox, and M. A. O'Keefe)                                                                                                                                  |
| 6.1.1.1.                  | Coherent (Rayleigh) scattering                                                                                                                                                        |
| 6.1.1.2.                  | ncoherent (Compton) scattering                                                                                                                                                        |
| 6.1.1.3.                  | Atomic scattering factor                                                                                                                                                              |
| (                         | .1.1.3.1. Scattering-factor interpolation                                                                                                                                             |

| CONTENTS |
|----------|
|----------|

| 6.1.1.4. Generalized scatterin<br>6.1.1.5. The temperature fact<br>6.1.1.6. The generalized temp                                                    | g factors<br>or<br>perature factor                                                                                                               | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>                                                  | ·· ·· ··<br>·· ·· ··                                  | <br>                                                                                           | ·· ·· ··                         | <br>                       | 565<br>584<br>585                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|-------------------------------------------------------|
| 6.1.1.6.1. Gram–Charl<br>6.1.1.6.2. Fourier-inva<br>6.1.1.6.3. Cumulant ex                                                                          | ier series<br>riant expansions<br>spansion                                                                                                       | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br><br>                                              | <br><br>                                              | <br><br>                                                                                       | ·· ·· ··<br>·· ·· ··             | <br><br>                   | 586<br>586<br>586                                     |
| 6.1.1.6.4. Curvilinear 6<br>6.1.1.6.5. Model-based<br>6.1.1.6.6. The quasi-G                                                                        | lensity functions<br>l curvilinear density func<br>aussian approximation fo                                                                      | <br>etions<br>or curviline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br><br>ar motio                                      | <br><br>n                                             | ··· ··<br>·· ··                                                                                | ·· ·· ··<br>·· ·· ··             | <br><br>                   | 588<br>589<br>590                                     |
| 6.1.1.7. Structure factor<br>6.1.1.8. Reflecting power of a                                                                                         |                                                                                                                                                  | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>                                                  | <br>                                                  | <br>                                                                                           | <br>                             | <br>                       | 590<br>590                                            |
| Table 6.1.1.1. Mean atomic sTable 6.1.1.2. Spherical bondTable 6.1.1.3. Mean atomic sTable 6.1.1.4. Coefficients forTable 6.1.1.5. Coefficients for | scattering factors in electr<br>ded hydrogen-atom scatte<br>scattering factors in electr<br>r analytical approximatio<br>or analytical approxima | cons for fre<br>ering factor,<br>cons for che<br>on to the sc<br>etion to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e atoms<br>s<br>emically s<br>attering f<br>e scatter | <br>significar<br>factors oj<br>ing fact              | <br><br>It ions<br>f Table<br>ors of                                                           |                                  | <br><br>l and 6<br>6.1.1.1 |                                                       |
| the range 2.0<br>Table 6.1.1.6. Angle depende<br>Table 6.1.1.7. Indices allowe                                                                      | < $(\sin \theta)/\lambda < 6.0 Å^{-1}$<br>ence of multipole function<br>d by the site symmetry for                                               | <br>ns<br>or the real j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br><br>form of t                                     | <br><br>he spher                                      | <br><br>ical ha                                                                                | <br><br>rmonics                  |                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| Table 6.1.1.8. <i>Cubic harmon</i><br>Table 6.1.1.9. $f_{nl}(\alpha, S) = \int_0^\infty$<br>Table 6.1.1.10. <i>Indices nmp</i>                      | ics $K_{lj}(\theta, \varphi)$ for cubic site<br>$r^n exp(-\alpha r)j_l(Sr)dr$<br>allowed by the site symm                                        | e symmetrie<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es<br><br>e function                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $   \dots  \dots$ | <br><br>)                        | <br><br>                   | 585<br>586<br>586                                     |
| Table 6.1.1.11. Indices $n_x$ , $n_y$<br>6.1.2. Magnetic scattering of neutron                                                                      | , <i>n<sub>z</sub> allowed for the basis</i><br><b>15</b> (P. J. Brown)                                                                          | <i>functions</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $H_{n_x}(Ax)H$                                        | H <sub>ny</sub> (By)H                                 | $I_{n_z}(Cz)$                                                                                  | ·                                | ·· ··<br>·· ··             |                                                       |
| 6.1.2.1. Glossary of symbols<br>6.1.2.2. General formulae for                                                                                       | the magnetic cross secti                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                  | <br>                                                  | <br>                                                                                           | <br>                             | <br>                       | 590<br>591                                            |
| 6.1.2.3. Calculation of magne<br>6.1.2.4. The magnetic form fa<br>6.1.2.5. The scattering cross s<br>6.1.2.6. Rotation of the polar                 | tic structure factors and<br>actor<br>section for polarized neu<br>ization of the scattered 1                                                    | cross sections and trons and the section of the sec | ons<br><br>                                           | ·· ·· ··<br>·· ·· ··<br>·· ·· ··                      | ··· ··<br>·· ··<br>·· ··                                                                       | ·· ·· ··<br>·· ·· ··<br>·· ·· ·· | ·· ··<br>·· ··<br>·· ··    | 591<br>592<br>592<br>592                              |
| 6.1.3. Nuclear scattering of neutrons<br>6.1.3.1. Glossary of symbols                                                                               | (B. T. M. Willis)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | <br>                                                                                           |                                  |                            | 593<br>593                                            |
| 6.1.3.2. Scattering by a single<br>6.1.3.3. Scattering by a single<br>6.1.3.4. Scattering by a single                                               | atom<br>crystal                                                                                                                                  | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>                                                  | <br><br>                                              | <br>                                                                                           | ·· ·· ··                         | <br>                       | 593<br>594<br>594                                     |
| 6.2. Trigonometric Intensity Factors                                                                                                                | s (H. Lipson, J. I. Lang                                                                                                                         | gford and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | НС. Н                                                 | [u)                                                   |                                                                                                |                                  |                            | 596                                                   |
| <b>6.2.1. Expressions for intensity of di</b><br>Table 6.2.1.1. <i>Summary of fo</i>                                                                | <b>ffraction</b><br>rmulae for integrated por                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>lection                                           | <br>                                                  | <br>                                                                                           |                                  | <br>                       | 596<br>597                                            |
| 6.2.2. The polarization factor                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 596                                                   |
| <b>6.2.3.</b> The angular-velocity factor                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 596                                                   |
| 6.2.4. The Lorentz factor                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 596                                                   |
| 6.2.5. Special factors in the powder                                                                                                                | method                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 596                                                   |
| 6.2.6. Some remarks about the integ                                                                                                                 | rated reflection power ra                                                                                                                        | atio formul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ae for si                                             | ngle-crys                                             | tal slal                                                                                       | <b>bs</b>                        |                            | 598                                                   |
| 6.2 V RAV ADCORDITION (E. N. Maglar)                                                                                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 590                                                   |
| 0.3. A-RAY ABSORPTION (E. N. Master)                                                                                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            |                                                       |
| 6.3.1. Linear absorption coefficient                                                                                                                | absorption                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            |                                                       |
| 6.3.1.2. Scattering                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            |                                                       |
| 6.3.1.3. Extinction<br>6.3.1.4. Attenuation (mass ab                                                                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | <br>                                                                                           |                                  | <br>                       | 599<br>600                                            |
| 6.3.2. Dispersion                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 600                                                   |
| 6.3.3. Absorption corrections                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |                                                                                                |                                  |                            | 600                                                   |
| 6.3.3.1. Special cases<br>6.3.3.2. Cylinders and sphere                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                                                  |                                                       | <br>                                                                                           |                                  | <br>                       | 600<br>600                                            |
| 6.3.3.3. Analytical method fo 6.3.3.4. Gaussian integration                                                                                         | r crystals with regular fa                                                                                                                       | ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                                                  | <br>                                                  | <br>                                                                                           | <br>                             | <br>                       | 604<br>606                                            |

| <b>CONTENTS</b> |
|-----------------|
|-----------------|

|        | 6.3.3.5. Empirical methods                                          | <br>607<br>608 |
|--------|---------------------------------------------------------------------|----------------|
|        | Table 6.2.2.1 Transmission coefficients                             | <br>601        |
|        | Table 6.3.3.2. Values of A* for cylinders                           | <br>602        |
|        | Table 6.3.3.3. Values of A* for spheres                             | <br>602        |
|        | Table 6.3.3.4. Values of $(1/A^*)(dA^*/d\mu R)$ for spheres         | <br>603        |
|        | Table 6.3.3.5. Coefficients for interpolation of $A^*$ and $T$      | <br>603        |
| 6.4. 🛛 | . The Flow of Radiation in a Real Crystal (T. M. Sabine)            | <br>609        |
|        | 6.4.1. Introduction                                                 | <br>609        |
|        | 6.4.2. The model of a real crystal                                  | <br>609        |
|        | 6.4.3. Primary and secondary extinction                             | <br>609        |
|        | 6.4.4. Radiation flow                                               | <br>610        |
|        | 6.4.5. Primary extinction                                           | <br>610        |
|        | 6.4.6. The finite crystal                                           | <br>610        |
|        | 6.4.7. Angular variation of <i>E</i>                                | <br>610        |
|        | 6.4.8. The value of x                                               | <br>610        |
|        | 6.4.9. Secondary extinction                                         | <br>611        |
|        | 6.4.10. The extinction factor                                       | <br>611        |
|        | 6.4.10.1. The correlated block model                                | <br>611        |
|        | 6.4.10.2. The uncorrelated block model                              | <br>611        |
|        | 6.4.11. Polarization                                                | <br>611        |
|        | 6.4.12. Anisotropy                                                  | <br>612        |
|        | 6.4.13. Asymptotic behaviour of the integrated intensity            | <br>612        |
|        | 6.4.13.1. Non-absorbing crystal, strong primary extinction          | <br>612        |
|        | 6.4.13.2. Non-absorbing crystal, strong secondary extinction        | <br>612<br>612 |
|        | 6.4.14. Relationship with the dynamical theory                      | <br>612        |
|        | 6.4.15. Definitions                                                 | <br>612        |
|        | References                                                          | <br>613        |
| PAR    | ART 7: MEASUREMENT OF INTENSITIES                                   | <br>617        |
| 7.1. I | Detectors for X-rays                                                | <br>618        |
|        | 711 Photographic film (P. M. de Walff)                              | 618            |
|        | 7.1.1. Fillotographic min (1. M. de Wolli)                          | <br>618        |
|        | 7.1.1.2. Densitometry                                               | <br>618        |
|        | 7.1.2. Geiger counters (W. Parrish and J. I. Langford)              | <br>618        |
|        | 7.1.3. Proportional counters (W Parrish)                            | 619            |
|        | 7.1.3.1. The detector system                                        | <br>619        |
|        | 7.1.3.2. Proportional counters                                      | <br>619        |
|        | 7.1.3.3. Position-sensitive detectors                               | <br>619        |
|        | 7.1.3.4. Resolution, discriminination, efficiency                   | <br>619        |
|        | 7.1.4. Scintillation and solid-state detectors (W. Parrish)         | <br>619        |
|        | 7.1.4.1. Scintillation counters                                     | <br>619        |
|        | 7.1.4.2. Solid-state detectors                                      | <br>620        |
|        | 7.1.4.3. Energy resolution and pulse-amplitude discrimination       | <br>620        |
|        | 7.1.4.4. Quantum-counting efficiency and linearity                  | <br>621<br>622 |
|        | <b>7.1.5. Energy-dispersive detectors</b> (B. Buras and L. Gerward) | <br>622        |
|        | 716 Position-sensitive detectors (UW Arndt)                         | 672            |
|        | 7161 Choice of detector                                             | <br>623        |
|        | 71611 Detection efficiency                                          | <br>624        |
|        | 7.1.6.1.2. Linearity of response                                    | <br>624        |
|        | 7.1.6.1.3. Dynamic range                                            | <br>625        |

| CONTENTS |
|----------|
|----------|

| / I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 614 Spatial resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 625                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 625                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 616 Spatial distortion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 625                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 617 Energy discrimination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 625                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 618 Suitability for dynamic measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 610 Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 626                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6110 Size and weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 626                                                                                                                                                                                      |
| 71(2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (20                                                                                                                                                                                      |
| /.1.0.2. Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 020                                                                                                                                                                                      |
| 7.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.2.1. Localization of the detected photon $\dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 627                                                                                                                                                                                      |
| /.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0.2.2. Parallel-plate counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 627                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 028                                                                                                                                                                                      |
| 7.1.6.3. Sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 629                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.3.1. X-ray-sensitive semiconductor PSD's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 629                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.3.2. Light-sensitive semiconductor PSD's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 630                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.3.3. Electron-sensitive PSD's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 630                                                                                                                                                                                      |
| 7.1.6.4. Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vices with an X-ray-sensitive photocathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 630                                                                                                                                                                                      |
| 7.1.6.5. Tel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | levision area detectors with external phosphor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 630                                                                                                                                                                                      |
| 7.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.5.1. X-ray phosphors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 631                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.5.2. Light coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 632                                                                                                                                                                                      |
| 7.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.5.3. Image intensifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 632                                                                                                                                                                                      |
| 7.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6.5.4. TV camera tubes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 632                                                                                                                                                                                      |
| 7.1.6.6. Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 632                                                                                                                                                                                      |
| Table 7.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.1. The importance of some detector properties for different X-ray patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 624                                                                                                                                                                                      |
| Table 7.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2. X-ray phosphors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 631                                                                                                                                                                                      |
| 7.1.7. X-ray-sensiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tive TV cameras (J. Chikawa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 633                                                                                                                                                                                      |
| 7.1.7.1. Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gnal-to-noise ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 633                                                                                                                                                                                      |
| 7.1.7.2. Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ´aging system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 634                                                                                                                                                                                      |
| 7.1.7.3. Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 635                                                                                                                                                                                      |
| 7.1.8. Storage pho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | osphors (Y. Amemiya and J. Chikawa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 635                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |
| 7.2. Detectors for Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Electrons (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639                                                                                                                                                                                      |
| 7.2. Detectors for El<br>7.2.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Electrons (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639                                                                                                                                                                               |
| 7.2. DETECTORS FOR EI<br>7.2.1. Introduction<br>7.2.2 Characteriza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639                                                                                                                                                                        |
| 7.2. DETECTORS FOR EI<br>7.2.1. Introduction<br>7.2.2. Characteriza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639                                                                                                                                                                        |
| 7.2. DETECTORS FOR EN<br>7.2.1. Introduction<br>7.2.2. Characteriza<br>7.2.3. Parallel dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELECTRONS (J. N. Chapman) <t< td=""><td>639<br/>639<br/>639<br/>640</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 639<br>639<br>639<br>640                                                                                                                                                                 |
| <ul> <li>7.2. DETECTORS FOR ET</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flux</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ELECTRONS (J. N. Chapman) <t< td=""><td>639<br/>639<br/>639<br/>640<br/>640</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 639<br>639<br>639<br>640<br>640                                                                                                                                                          |
| <ul> <li>7.2. DETECTORS FOR E1</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>ELECTRONS (J. N. Chapman)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 639<br>639<br>639<br>640<br>640<br>640                                                                                                                                                   |
| <ul> <li>7.2. DETECTORS FOR E1</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Dete</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>640<br>641                                                                                                                                            |
| <ul> <li>7.2. DETECTORS FOR E1</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.4. Ele</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641                                                                                                                                     |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641                                                                                                                                     |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel deter</li> <li>7.2.3.1. Flui</li> <li>7.2.3.2. Photomatic Production</li> <li>7.2.3.3. Deter</li> <li>7.2.3.4. Eler</li> <li>7.2.3.5. Imatic Production</li> <li>7.2.4. Serial detect</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>641<br>641                                                                                                                       |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detect</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Photometry</li> <li>7.2.3.3. Dete</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Imation</li> <li>7.2.4.1. Serial detect</li> <li>7.2.4.1. Far</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ELECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>640<br>641<br>641<br>641<br>642<br>642                                                                                                                |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detect</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Photometry</li> <li>7.2.3.3. Dete</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>641<br>642<br>642<br>642<br>642                                                                                                  |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detec</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642                                                                                           |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detec</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>643                                                                                    |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detec</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CLECTRONS (J. N. Chapman)   ation of detectors   ation of detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 639<br>639<br>639<br>640<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>643<br>644                                                                                    |
| <ul> <li>7.2. DETECTORS FOR ED</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLECTRONS (J. N. Chapman)   n   ation of detectors   ation of detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>643<br>644<br>644                                                                             |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detect</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Photometry</li> <li>7.2.3.3. Detector</li> <li>7.2.3.4. Elector</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron can</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLECTRONS (J. N. Chapman)   ation of detectors   ation of detectors   Prectors Provide the systems based on an electron-tube devices Provide the systems based on solid-state devices Provide the systems Provide the systems based on solid-state devices Provide the systems Provide the syste                                                                                                                                                                                                                                                                                                                                                                             | 639<br>639<br>639<br>640<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>643<br>644<br>644                                                                             |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detec</li> <li>7.2.3.1. Flue</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLECTRONS (J. N. Chapman)   ation of detectors   ation of detectors   and the end of t | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644                                                                      |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLECTRONS (J. N. Chapman)   ation of detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644                                                                      |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ELECTRONS (J. N. Chapman)   ation of detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644<br>644                                                               |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2</li> <li>7.3.3. Neutron det</li> <li>7.3.3.1. Det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644<br>644<br>644                                                 |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scir</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2. Det</li> <li>7.3.3. Neutron det</li> <li>7.3.3.1. Det</li> <li>7.3.3.1. Det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLECTRONS (J. N. Chapman)   ation of detectors   ation of detectors   actors lorescent screens. lorescens. lorescent screens. lore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 639<br>639<br>639<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644<br>644<br>644<br>644                                                 |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2. Det</li> <li>7.3.3. Det</li> <li>7.3.3. Det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 639<br>639<br>639<br>640<br>640<br>640<br>641<br>641<br>641<br>642<br>642<br>642<br>642<br>643<br>644<br>644<br>644<br>644<br>644<br>645<br>644                                          |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel detere</li> <li>7.2.3.1. Flui</li> <li>7.2.3.2. Photometry</li> <li>7.2.3.3. Deterion</li> <li>7.2.3.4. Elerication</li> <li>7.2.3.5. Ima</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2</li> <li>7.3.3. Neutron det</li> <li>7.3.3.1. Det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 639\\ 639\\ 639\\ 640\\ 640\\ 640\\ 640\\ 641\\ 641\\ 641\\ 641\\ 642\\ 642\\ 642\\ 642\\ 642\\ 643\\ 644\\ 644\\ 644\\ 644\\ 645\\ 644\\ 645\\ 645$                   |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron cap</li> <li>Table 7.3.2</li> <li>7.3.3. Det</li> <li>7.3.3. Det</li> <li>7.3.4. Filr</li> <li>7.3.3. Filr</li> <li>7.3.3. The fill for the formation of the f</li></ul> | BLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 639\\ 639\\ 639\\ 640\\ 640\\ 640\\ 640\\ 641\\ 641\\ 641\\ 641\\ 642\\ 642\\ 642\\ 642\\ 642\\ 642\\ 643\\ 644\\ 644\\ 644\\ 645\\ 644\\ 645\\ 644\\ 645\\ 646\\ 646$ |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4. Serial detect</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scir</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron det</li> <li>7.3.3.1. Det</li> <li>7.3.3.1. Det</li> <li>7.3.3.1. Det</li> <li>7.3.3.2. Det</li> <li>7.3.3.3. Det</li> <li>7.3.4. Filr</li> <li>Table 7.3.3</li> <li>Table 7.3.3</li> <li>Table 7.3.3</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLECTRONS (J. N. Chapman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 639\\ 639\\ 639\\ 640\\ 640\\ 640\\ 641\\ 641\\ 641\\ 641\\ 642\\ 642\\ 642\\ 642\\ 642\\ 642\\ 643\\ 644\\ 644\\ 644\\ 644\\ 645\\ 644\\ 645\\ 646\\ 646$             |
| <ul> <li>7.2. DETECTORS FOR EI</li> <li>7.2.1. Introduction</li> <li>7.2.2. Characteriza</li> <li>7.2.3. Parallel dete</li> <li>7.2.3.1. Flu</li> <li>7.2.3.2. Pho</li> <li>7.2.3.3. Det</li> <li>7.2.3.4. Ele</li> <li>7.2.3.5. Ima</li> <li>7.2.4.1. Far</li> <li>7.2.4.2. Scin</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.2.4.3. Sen</li> <li>7.3.5. Conclusions</li> <li>7.3. THERMAL NEUTRO</li> <li>7.3.1. Introduction</li> <li>7.3.2. Neutron det</li> <li>7.3.3.1. Det</li> <li>7.3.3.2. Det</li> <li>7.3.3.3. Det</li> <li>7.3.3.4. Filt</li> <li>Table 7.3.3</li> <li>Table 7.3.3</li> <li>7.3.4. Electronic as</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLECTRONS (J. N. Chapman)         ation of detectors         ation of detectors         lorescent screens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 639\\ 639\\ 639\\ 640\\ 640\\ 640\\ 641\\ 641\\ 641\\ 641\\ 642\\ 642\\ 642\\ 642\\ 642\\ 642\\ 642\\ 643\\ 644\\ 644\\ 644\\ 644\\ 645\\ 644\\ 645\\ 646\\ 646$       |

| CO           | NΤ    | E | VTS |
|--------------|-------|---|-----|
| $\sim \circ$ | T . T |   | 110 |

|                                                                                                                                                       | 7.3.4.2. Controls and adjustments of the electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | ••                                                   |                                              | ••                                                                | ••                                     | ••                                     | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.3.5.                                                                                                                                                | . Typical detection systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.3.5.1. Single detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.3.5.2. Position-sensitive detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •••                                                   | ••                                                   |                                              | ••                                                                |                                        | ••                                     | 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | Table 7351 Characteristics of some PSDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••                                                   | ••                                                   |                                              | ••                                                                |                                        | ••                                     | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.3.6                                                                                                                                                 | Characteristics of detection systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •••                                                   | ••                                                   | •••••                                        | ••                                                                |                                        | ••                                     | 651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.3.7                                                                                                                                                 | Connections to the intensity measurements depending on the detection system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••                                                   | ••                                                   |                                              |                                                                   |                                        | ••                                     | 651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.3.1.                                                                                                                                                | 7371 Single detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •••                                                   | ••                                                   |                                              |                                                                   | ••                                     | ••                                     | 052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.3.7.2. Banks of detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                      | ·· ··                                        |                                                                   |                                        |                                        | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.3.7.3. Position-sensitive detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.4. Corre                                                                                                                                            | ection of Systematic Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.4.1.                                                                                                                                                | • Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.4.2.                                                                                                                                                | . Thermal diffuse scattering (B. T. M. Willis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.2.1. Glossary of symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.2.2. TDS correction factor for X-rays (single crystals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••                                                   | ••                                                   |                                              |                                                                   |                                        | ••                                     | 054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.2.2.1. Evaluation of $\alpha_{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                      | ·· ··<br>·· ··                               |                                                                   |                                        |                                        | 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.2.3. TDS correction factor for thermal neutrons (single crystals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.2.4. Correction factor for powders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.4.3.                                                                                                                                                | Compton scattering (N. G. Alexandropoulos and M. J. Cooper)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.3.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                     | <br>                                                 | <br>                                         | <br>                                                              | <br>                                   | <br>                                   | 657<br>657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                       | 7.4.3.2.1. Semi-classical radiation theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | ••                                                   |                                              |                                                                   |                                        |                                        | 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.3.2.2. Thomas–Fermi model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ··                                                  |                                                      | <br>                                         | <br>                                                              | <br>                                   | <br>                                   | 659<br>659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                       | 7.4.3.3. Relativistic treatment of incoherent scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | 7.4.3.4. Plasmon, Raman, and resonant Raman scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                      |                                              |                                                                   |                                        |                                        | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | Table 74.3.1 The energy transfer in the Compton scattering process for selected X <sub>-1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | <br>ner                                              | <br>ni <i>e</i> s                            | ••                                                                |                                        |                                        | 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay ei                                                 | <br>ner{<br>                                         | <br>zies<br>                                 | <br>                                                              | <br>                                   | <br>                                   | 651<br>657<br>658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                       | Table 7.4.3.3. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ay el<br>ay el<br>an<br>rons                          | <br>ner{<br><br>                                     | <br>gies<br>                                 | <br><br>                                                          | <br><br>                               | <br><br>                               | 651<br>657<br>658<br>659                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.4.4.                                                                                                                                                | Table 7.4.3.3. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ay el<br><br><br>                                     | <br>ner{<br><br>                                     | <br>gies<br><br>                             | <br><br>                                                          | <br><br>                               | <br><br>                               | 661<br>657<br>658<br>659<br>661                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.4.4.                                                                                                                                                | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ray en<br><br>rons<br>                                | <br>ner <u>{</u><br><br>                             | <br>gies<br><br>                             | <br><br>                                                          | <br><br><br>                           | <br><br><br>                           | 661<br>657<br>658<br>659<br>661<br>661                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.4.4.                                                                                                                                                | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ay en<br>ay en<br>rons<br>                            | <br>ner <u>{</u><br><br><br>                         | <br>gies<br><br><br>                         | ···<br>···<br>···<br>···<br>···                                   | <br><br><br><br>                       | <br><br><br>                           | 661<br>657<br>658<br>659<br>661<br>661<br>661<br>661<br>663                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.4.4.                                                                                                                                                | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ray en<br>rons<br><br><br><br>                        | <br>ner <u>{</u><br><br><br><br>                     | <br>gies<br><br><br><br>                     | ···<br>···<br>···<br>···<br>···                                   | <br><br><br><br>                       | ···<br>··<br>··<br>··<br>··<br>··      | 661<br>657<br>658<br>659<br>661<br>661<br>661<br>663<br>664                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>7.4.4.</b><br>7.5. Statis                                                                                                                          | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>cay en<br>rons<br><br><br>                        | <br>ner <u></u><br><br><br><br>                      | <br>gies<br><br><br><br><br>                 | ···<br>··<br>··<br>··<br>··<br>··                                 | ··<br>··<br>··<br>··                   | ··<br>··<br>··<br>··                   | 661<br>657<br>658<br>659<br>661<br>661<br>661<br>663<br>664<br>666                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>7.4.4.</b><br>7.5. Statis<br><b>7.5.1.</b>                                                                                                         | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-1<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rons<br><br><br><br><br>                              | <br>ner{<br><br><br><br><br>                         | <br>gies<br><br><br><br><br>                 | ··<br>··<br>··<br>··<br>··                                        | ···<br>··<br>··<br>··<br>··            | ··<br>··<br>··<br>··                   | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>664<br>666                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>7.4.4.</b><br>7.5. Statis<br><b>7.5.1.</b><br><b>7.5.2.</b>                                                                                        | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>rons<br><br><br><br><br>                          | <br>ner{<br><br><br><br><br>                         | <br>gies<br><br><br><br><br><br>             | ···<br>··<br>··<br>··<br>··                                       | ···<br>··<br>··<br>··<br>··            | ···<br>··<br>··<br>··<br>··            | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>664<br>666<br>666<br>666                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.                                                                                                   | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ray en<br>rons<br><br><br><br><br>                    | <br>ner <u>{</u><br><br><br><br><br>                 | <br>gies<br><br><br><br><br><br><br>         | ···<br>··<br>··<br>··<br>··                                       | ······································ | ···<br>··<br>··<br>··<br>··            | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>666<br>666<br>666<br>666                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.                                                                                         | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>ner{<br><br><br><br><br><br>                     | <br>gies<br><br><br><br><br><br><br>         | ···<br>··<br>··<br>··<br>··<br>··<br>··                           | ······································ | ···<br>··<br>··<br>··<br>··<br>··      | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>664<br>666<br>666<br>666<br>666<br>666                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.                                                                               | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>mer <u>{</u><br><br><br><br><br>                 |                                              | ···<br>··<br>··<br>··<br>··<br>··                                 | ······································ | ······································ | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>666<br>666<br>666<br>666<br>666                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.                                                                               | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-1<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>mer <sub>{</sub><br><br><br><br><br><br>         |                                              | ···<br>··<br>··<br>··<br>··<br>··<br>··<br>··                     | ······································ | ······································ | 661<br>657<br>658<br>659<br>661<br>661<br>663<br>664<br>666<br>666<br>666<br>666<br>667<br>667<br>667                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.                                                                               | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-1<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>ner{<br><br><br><br><br><br><br>                 |                                              | ···<br>···<br>···<br>···<br>···<br>···<br>···<br>···<br>···<br>·· | ······································ | ······································ | 661            657            658            659            661            661            661            661            663            666            666            666            666            666            666            666            666            666            666            666            666            666            667            667            667            667                                                                                                          |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.                                                                     | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>ner <sub>{</sub><br><br><br><br><br><br><br><br> |                                              |                                                                   |                                        | ······································ | 661            657            658            659            661            661            661            661            661            664            666            666            666            666            666            666            666            666            666            666            666            666            667            667            667            667                                                                                                          |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.                                                           | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r<br>Table 7.4.3.2. The incoherent scattering function for elements up to $Z = 55$<br>Table 7.4.3.3. Compton scattering of Mo K $\alpha$ X-radiation through 170° from 2s elect<br>White radiation and other sources of backgound (P. Suortti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                 | <br>ner;<br><br><br><br><br><br><br><br>             |                                              |                                                                   | · · · · · · · · · · · · · · · · · · ·  | ······································ | 661            657            658            659            661            661            661            663            666            666            666            666            666            666            666            666            666            666            666            667            667            667            667            667            667                                                                                                                         |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.<br><b>Refe</b>                                            | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r         Table 7.4.3.2. The incoherent scattering function for elements up to Z = 55         Table 7.4.3.3. Compton scattering of Mo Kα X-radiation through 170° from 2s elect         White radiation and other sources of backgound (P. Suortti)         7.4.4.1. Introduction         7.4.4.2. Incident beam and sample         7.4.4.3. Detecting system         7.4.4.4. Powder diffraction         7.4.4.4. Powder diffraction         8. Treatment of intensities of diffraction         8. Fixed-time counting         8. Fixed-count timing         9. Fixed-time duties         9. Fixed-time duties         9. Fixed-time functions         9. Fixed-time functions         9. Fixed-time functions         9. Fixed-count timing         9. Fixed-count times         9. Fixed-count timing         9. Fixed-                                                                               | · · · · · · · · · · · · · · · · · · ·                 | <br>nerį<br><br><br><br><br><br><br><br><br>         | <br>gies<br><br><br><br><br><br><br><br>     |                                                                   | ······································ | ······································ | 661            657            658            659            661            661            661            663            666            666            666            666            666            666            666            666            666            666            666            667            667            667            667            667            667            667            667            667            667            667            667            667                |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.<br><b>Refe</b> i<br>PART 8:                               | TASJS: Magnetic scattering:       a. a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                 | <br>ner;<br><br><br><br><br><br><br><br><br>         | <br>gies<br><br><br><br><br><br><br><br>     |                                                                   | · · · · · · · · · · · · · · · · · · ·  | ······································ | 661            657            658            659            661            661            661            661            663            666            666            666            666            666            666            667            667            667            667            667            667            667            667            667            667            667            667            667            667            667            667            667                |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.<br><b>Refei</b><br>PART 8:<br>8.1. Least                  | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-1         Table 7.4.3.2. The incoherent scattering function for elements up to Z = 55         Table 7.4.3.3. Compton scattering of Mo Kα X-radiation through 170° from 2s elect         White radiation and other sources of backgound (P. Suortti)         7.4.4.1. Introduction         7.4.4.2. Incident beam and sample         7.4.4.3. Detecting system         7.4.4.4. Powder diffraction         7.4.4.4. Powder diffraction         8.5.1. Fluctuations of intensities of diffraction         8.5.1. Exected time         8.5.2. Complicating phenomena         8.5.5.1. Dead time         8.5.5.2. Voltage fluctuations         8.5.5.2. Voltage fluctuations         8.5.5.1. Dead time         8.5.5.2. Voltage fluctuations         8.5.5.3. Detecting times         8.5.5.4. REFINEMENT OF STRUCTURAL PARAMETERS         8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5                                                                                                                                                                                                                                                                                                                                                                    | ay en ar an       | <br>nerį<br><br><br><br><br><br><br><br><br><br>     |                                              |                                                                   | · · · · · · · · · · · · · · · · · · ·  | ······································ | 661            657            658            659            661            661            661            661            661            666            666            666            666            666            666            667            667            667            667            667            667            667            667            667            667            667            667            667            667            667            667            677            678 |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.<br><b>Refer</b><br>PART 8:<br>8.1. Least<br><b>8.1.</b>   | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-r         Table 7.4.3.2. The incoherent scattering of Mo Ka X-radiation through 170° from 2s elect         White radiation and other sources of backgound (P. Suortti)         7.4.4.1. Introduction         7.4.4.2. Incident beam and sample         7.4.4.3. Detecting system         7.4.4.4. Powder diffraction         8. Fluctuations of intensities of diffraction         9. Outling modes         9. Fixed-time counting         9. Fixed-time diffications         9. Fixed-count timing         9. Treatment of measured-as-negative (and other weak) intensities         9. Treatment of counting times         9. Treatment of strengtimes         9. Optimization of counting times         9. Optimization | · · · · · · · · · · · · · · · · · · ·                 | <br>nerį<br><br><br><br><br><br><br><br><br><br>     | <br>gies<br><br><br><br><br><br><br><br><br> |                                                                   |                                        |                                        | 661            657            658            659            661            661            661            663            666            666            666            666            666            666            666            666            667            667            667            667            667            667            667            667            667            677            678            678                                                                            |
| 7.4.4.<br>7.5. Statis<br>7.5.1.<br>7.5.2.<br>7.5.3.<br>7.5.4.<br>7.5.5.<br>7.5.6.<br>7.5.7.<br><b>Refei</b><br>PART 8:<br>8.1. Least<br><b>8.1.1.</b> | Table 7.4.3.1. The energy transfer in the Compton scattering process for selected X-7         Table 7.4.3.2. The incoherent scattering of Mo Ka X-radiation through 170° from 2s elect         White radiation and other sources of backgound (P. Suortti)         7.4.1. Introduction         7.4.2. Incident beam and sample         7.4.3.3. Detecting system         7.4.4.1. Introduction         7.4.4.2. Incident beam and sample         7.4.4.3. Detecting system         7.4.4.4. Powder diffraction         7.4.4.4. Powder diffraction         8.TICAL FLUCTUATIONS (A. J. C. Wilson)         9. Distributions of intensities of diffraction         9. Counting modes         9. Fixed-time counting.         9. Fixed-count timing         9. Solution for elements (and other weak) intensities         9. Treatment of measured-as-negative (and other weak) intensities         9. Treatment of counting times         9. REFINEMENT OF STRUCTURAL PARAMETERS         9. Refinitions         9. Surves (E. Prince and P. T. Boggs)         9. Definitions                                                                                                                                                                                                                                                             | ay         ei           ray         ei           rons | <br>nerį<br><br><br><br><br><br><br><br><br><br><br> |                                              |                                                                   | · · · · · · · · · · · · · · · · · · ·  | ······································ | 661            657            658            659            661            661            661            661            661            666            666            666            666            666            666            666            667            667            667            667            667            667            667            667            677            678            678            678            678                                                             |

| 8.1      | 2. Principles of least squares                                                                                                                                                                   |           |             |         | 68        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------|-----------|
| 8.1      | 3. Implementation of linear least squares                                                                                                                                                        |           |             |         | 68        |
|          | 8.1.3.1. Use of the QR factorization                                                                                                                                                             |           |             |         | 68        |
|          | 8.1.3.2. The normal equations                                                                                                                                                                    |           |             |         | 682       |
|          | 8.1.3.3. Conditioning                                                                                                                                                                            |           |             |         | 682       |
| 8.1      | 4. Methods for nonlinear least squares                                                                                                                                                           |           |             |         | 682       |
|          | 8.1.4.1. The Gauss–Newton algorithm                                                                                                                                                              |           |             |         | 68.       |
|          | 8.1.4.2. Trust-region methods – the Levenberg–Marquardt algorithm                                                                                                                                |           |             |         | 68.       |
|          | 8.1.4.5. Quasi-Newton, of secant, methods                                                                                                                                                        |           |             |         | 00.       |
|          | 8.1.4.5. Recommendations                                                                                                                                                                         |           |             |         | 68        |
| 8.1      | 5. Numerical methods for large-scale problems                                                                                                                                                    |           |             |         | 683       |
|          | 8.1.5.1. Methods for sparse matrices                                                                                                                                                             |           |             |         | 683       |
|          | 8.1.5.2. Conjugate-gradient methods                                                                                                                                                              |           |             |         | 68        |
| 8.1      | 6. Orthogonal distance regression                                                                                                                                                                |           |             |         | 68′       |
| 8.1      | 7. Software for least-squares calculations                                                                                                                                                       |           |             |         | 688       |
| 8.2. Отн | IER REFINEMENT METHODS (E. Prince and D. M. Collins)                                                                                                                                             |           |             |         | 689       |
| 8.2      | 1. Maximum-likelihood methods                                                                                                                                                                    |           |             |         | 689       |
| 8.2      | 2. Robust/resistant methods                                                                                                                                                                      |           |             |         | 689       |
| 8.2      | 3. Entropy maximization                                                                                                                                                                          |           |             |         | 69        |
|          | 8.2.3.1. Introduction                                                                                                                                                                            |           |             |         | 69        |
|          | 8.2.3.2. Some examples                                                                                                                                                                           |           |             |         | 69        |
| 8.3. Cor | ISTRAINTS AND RESTRAINTS IN REFINEMENT (E. Prince, L. W. Finger, and J. H. Konnert)                                                                                                              |           |             |         | 69.       |
| 8.3      | <b>1.</b> Constrained models                                                                                                                                                                     |           |             |         | 69.       |
|          | 8.3.1.1. Lagrange undetermined multipliers                                                                                                                                                       |           |             |         | 69.       |
|          | 8.3.1.2. Direct application of constraints                                                                                                                                                       |           |             |         | 69.       |
| 0.7      |                                                                                                                                                                                                  |           |             |         | 09.       |
| 8.3      | 2. Stereochemically restrained least-squares refinement                                                                                                                                          |           |             |         | 698       |
|          | 8.5.2.1. Stereochemical constraints as observational equations                                                                                                                                   | <br>      |             |         | 090       |
|          | Table 8.3.2.1. Coordinates of atoms in standard groups appearing in polypepildes and prote         Table 8.3.2.2. Ideal values of distances, torsion angles, etc. for a glycine–alanine dipeptil | de wi     | <br>ith a   | <br>tra | 092<br>ns |
|          | Table 8323 Typical values of standard deviations for use in determining weights in restro                                                                                                        | <br>11100 | <br>rofin   | <br>omo | /00<br>nt |
|          | of protein structures                                                                                                                                                                            |           |             |         | 70        |
|          |                                                                                                                                                                                                  |           |             |         |           |
| 8.4. Sta | TISTICAL SIGNIFICANCE TESTS (E. Prince and C. H. Spiegelman)                                                                                                                                     |           |             |         | 702       |
| 8.4      | <b>1.</b> The $\chi^2$ distribution                                                                                                                                                              |           |             |         | 702       |
|          | Table 8.4.1.1. Values of $\chi^2/\nu$ for which the c.d.f. $\Psi(\chi_2, \nu)$ has the values given in the column                                                                                | ın he     | ading       | gs, f   | or        |
|          | various values of $\nu$                                                                                                                                                                          |           |             |         | 70.       |
| 8.4      | <b>2.</b> The <i>F</i> distribution                                                                                                                                                              |           |             |         | 70.       |
|          | Table 8.4.2.1. Values of the F ratio for which the c.d.f. $\Psi(F, \nu_1, \nu_2)$ has the value 0.95, for va<br>$\nu_1$ and $\nu_2$                                                              | rious<br> | <i>choi</i> | ces<br> | of<br>704 |
| 8.4      | 3. Comparison of different models                                                                                                                                                                |           |             |         | 704       |
|          | Table 8.4.3.1. Values of t for which the c.d.f. $\Psi(t, \nu)$ has the values given in the column headi values of $\mu$                                                                          | ings, j   | for va      | ario    | us<br>704 |
| 8.4      | 4. Influence of individual data points                                                                                                                                                           | ·· ··     |             |         | 70:       |
| 8.5. Dei | ection and Treatment of Systematic Error (E. Prince and C. H. Spiegleman)                                                                                                                        |           |             |         | 70′       |
| 8.5      | <b>1.</b> Accuracy                                                                                                                                                                               |           |             |         | 70′       |
| 8.5      | 2. Lack of fit                                                                                                                                                                                   |           |             |         |           |
| 0 =      |                                                                                                                                                                                                  |           |             |         | 70        |
| 8.5      | <b></b>                                                                                                                                                                                          |           |             |         | /08       |
| 8.5      | 4. Plausibility of results                                                                                                                                                                       |           |             |         | 70        |

| CONTENTS |
|----------|
|----------|

| 8.6. THE RIETVELD METHOD (A. Albinati and B. T. M. Willis)                                                                                                                                                                                                                                                                                                                                         |                                       |                                                  |                                  | <br>                     | . 710                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|----------------------------------|--------------------------|-------------------------------------------------------------|
| 8.6.1. Basic theory                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                  |                                  | <br>                     | . 710                                                       |
| 8.6.2. Problems with the Rietveld method                                                                                                              .                                                                                                                                                                                                                                            | ·· ··<br>·· ··<br>·· ··<br>·· ··      | <br><br><br>                                     | ·· ··<br>·· ··<br>·· ··<br>·· ·· | <br><br><br><br><br><br> | . 711<br>. 711<br>. 711<br>. 711<br>. 711<br>. 712<br>. 712 |
| 8.7. ANALYSIS OF CHARGE AND SPIN DENSITIES (P. Coppens, Z. Su. and P. J. Becker)                                                                                                                                                                                                                                                                                                                   |                                       |                                                  |                                  | <br>                     | . 713                                                       |
| 8.7.1. Outline of this chapter                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                  |                                  | <br>                     | . 713                                                       |
| 8.7.2. Electron densities and the <i>n</i> -particle wavefunction                                                                                                                                                                                                                                                                                                                                  |                                       |                                                  |                                  | <br>                     | . 713                                                       |
| 8.7.3. Charge densities                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  |                                  | <br>                     | . 714                                                       |
| 8.7.3.1. Introduction                                                                                                               .                                                                                                                                                                                                                                                              | ·· ··<br>·· ··<br>·· ··               | <br><br>                                         | <br><br>                         | <br><br><br><br><br>     | . 714<br>. 714<br>. 715<br>. 715                            |
| 8.7.3.3.2. Cusp constraint                                                                                                                                                                                                                                                                                                                                                                         | <br><br>                              | <br><br>                                         | <br><br>                         | <br><br><br><br><br>     | . 715<br>. 715<br>. 715                                     |
| 8.7.3.4. Electrostatic moments and the potential due to a charge distribution                                                                                                                                                                                                                                                                                                                      |                                       |                                                  |                                  | <br>                     | . 716                                                       |
| 8.7.3.4.1. Moments of a charge distribution                                                                                                                                                                                                                                                                                                                                                        | <br>n                                 |                                                  |                                  | <br>                     | . /10                                                       |
| <ul> <li>8.7.3.4.1.1. Moments as a function of the atomic multiplic expansion</li> <li>8.7.3.4.1.2. Molecular moments based on the deformation density</li> <li>8.7.3.4.1.3. The effect of an origin shift on the outer moments</li> <li>8.7.3.4.1.4. Total moments as a sum over the pseudoatom moments</li> <li>8.7.3.4.1.5. Electrostatic moments of a subvolume of space by Fourier</li> </ul> |                                       | <br><br><br>Imma                                 | <br><br><br>ation                | <br><br><br><br><br>     | . 710<br>. 717<br>. 717<br>. 718<br>. 718                   |
| 8.7.3.4.2. The electrostatic potential                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                  |                                  | <br>                     | . 718                                                       |
| <ul> <li>8.7.3.4.2.1. The electrostatic potential and its derivatives</li></ul>                                                                                                                                                                                                                                                                                                                    | ··· ··<br>·· ··<br>·· ··              | <br><br>                                         | ·· ··<br>·· ··<br>·· ··          | <br><br><br><br><br>     | . 718<br>. 720<br>. 720<br>. 720<br>. 720<br>. 721          |
| <ul> <li>8.7.3.5. Quantitative comparison with theory</li></ul>                                                                                                                                                                                                                                                                                                                                    | ·· ··<br>·· ··<br>·· ··               | <br><br>                                         | <br><br>                         | <br><br><br><br><br>     | . 721<br>. 722<br>. 723<br>. 723<br>. 723<br>. 723          |
| 8.7.3.9. Uncertainties in derived functions.                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                  |                                  | <br>                     | . 724<br>. 725                                              |
| Table 8.7.3.1. Definition of difference density functions                                                                                                                                                                                                                                                                                                                                          | <br>, an<br>ons 1<br>4 <sub>h</sub> ) | <br>nd δ <sub>z</sub><br>P <sub>lm</sub><br><br> | <br><br><br>                     | <br><br><br><br><br><br> | . 714<br>. 719<br>. 722<br>. 723<br>. 723                   |
| 8.7.4. Spin densities                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                  |                                  | <br>                     | . 725                                                       |
| 8.7.4.1. Introduction                                                                                                                                                                                                                                                                                                                                                                              | <br>                                  | <br><br>                                         | <br><br>                         | <br><br><br><br><br>     | . 725<br>. 725<br>. 726                                     |
| 8.7.4.3.1. Spin-only density at zero temperature8.7.4.3.2. Thermally averaged spin-only magnetization density8.7.4.3.3. Spin density for an assembly of localized systems8.7.4.3.4. Orbital magnetization density                                                                                                                                                                                  | ·· ··<br>·· ··<br>·· ··               | <br><br>                                         | <br><br>                         | <br><br><br><br><br>     | . 726<br>. 726<br>. 727<br>. 727                            |
| 8.7.4.4. Probing spin densities by neutron elastic scattering                                                                                                                                                                                                                                                                                                                                      | <br>                                  | <br>                                             | <br>                             | <br><br><br>             | . 727<br>. 727                                              |
| 8.7.4.4.2. Unpolarized neutron scattering                                                                                                                                                                                                                                                                                                                                                          | <br>                                  | <br>                                             | <br>                             | <br><br><br>             | . 728<br>. 728                                              |

|             | 8.7.4.4. Polarized neutron scattering of centrosymmetric crystals                                                                                     | 728<br>728        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|             | 8.7.4.4.6. Effect of extinction                                                                                                                       | 728               |
|             | 8.7.4.4.7. Error analysis                                                                                                                             | 729               |
|             | 8.7.4.5. Modelling the spin density                                                                                                                   | 729               |
|             | 8.7.4.5.1. Atom-centred expansion                                                                                                                     | 729               |
|             | 8.7.4.5.1.1. Spherical-atom model                                                                                                                     | 729               |
|             | 8.7.4.5.1.2. Crystal-field approximation                                                                                                              | 729               |
|             | 8.7.4.5.1.3. Scaling of the spin density                                                                                                              | 730               |
|             | 8.7.4.5.2. General multipolar expansion                                                                                                               | 730<br>730        |
|             | 8746 Orbital contribution to the magnetic scattering                                                                                                  | 730<br>730        |
|             | 87461 The dipolar approximation                                                                                                                       | 730<br>731        |
|             | 8.7.4.6.2. Beyond the dipolar approximation                                                                                                           | 731<br>731<br>731 |
|             | 8.7.4.7. Properties derivable from spin densities                                                                                                     | 731               |
|             | 8.7.4.7.1. Vector fields                                                                                                                              | 732               |
|             | 8.7.4.7.2. Moments of the magnetization density                                                                                                       | 732               |
|             | 8.7.4.8. Comparison between theory and experiment                                                                                                     | 732               |
|             | 8.7.4.9. Combined charge- and spin-density analysis                                                                                                   | 732               |
|             | 8.7.4.10. Magnetic X-ray scattering separation between spin and orbital magnetism                                                                     | 733               |
|             | 8.7.4.10.1. Introduction                                                                                                                              | 733               |
|             | 8.7.4.10.2. Magnetic X-ray structure factor as a function of photon polarization                                                                      | 733               |
| 8.8. Accur  | TE STRUCTURE-FACTOR DETERMINATION WITH ELECTRON DIFFRACTION (J. Giønnes)                                                                              | 735               |
| D.C.        |                                                                                                                                                       | 700               |
| Keter       | nces                                                                                                                                                  | /38               |
| PART 9:     | BASIC STRUCTURAL FEATURES                                                                                                                             | 745               |
| 9.1. Sphere | PACKINGS AND PACKINGS OF ELLIPSOIDS (E. Koch and W. Fischer)                                                                                          | 746               |
| 9.1.1.      | phere packings and packings of circles                                                                                                                | 746               |
|             | 9.1.1.1. Definitions                                                                                                                                  | 746               |
|             | 9.1.1.2. Homogeneous packings of circles                                                                                                              | 746               |
|             | 9.1.1.3. Homogeneous sphere packings                                                                                                                  | 746               |
|             | 9.1.1.4. Applications                                                                                                                                 | 750               |
|             |                                                                                                                                                       | /31               |
|             | Table 9.1.1.1. Types of circle packings in the plane                                                                                                  | /4′/              |
|             | contact numbers and low densities                                                                                                                     | 748               |
| 9.1.2.      | ackings of ellipses and ellipsoids                                                                                                                    | 751               |
| 02 LAVER    | STACKING (                                                                                                                                            | 750               |
| J.Z. LAIEK  |                                                                                                                                                       | - 52              |
| 9.2.1.      | ayer stacking in close-packed structures (D. Pandey and P. Krishna)                                                                                   | 752               |
|             | 9.2.1.1. Close packing of equal spheres                                                                                                               | 752               |
|             | 9.2.1.1.1. Close-packed layer                                                                                                                         | 752               |
|             | 9.2.1.1.2. Close-packed structures                                                                                                                    | 152<br>752        |
|             | 9.2.1.1.5. Notations for close-packed structures                                                                                                      | 152<br>752        |
|             | 9.2.1.2. Structure of compounds based on close-packed layer stackings                                                                                 | 155               |
|             | 9.2.1.2.1. Volds in close packing $\dots \dots \dots$ | 155<br>753        |
|             | 9.2.1.2.2. Structure of $CdI_2$                                                                                                                       | 754<br>754        |
|             | 9.2.1.2.4. Structure of GaSe                                                                                                                          | 754               |
|             | 9.2.1.3. Symmetry of close-packed layer stackings of equal spheres                                                                                    | 755               |
|             | 9.2.1.4. Possible lattice types                                                                                                                       | 755               |
|             | 9.2.1.5. Possible space groups                                                                                                                        | 755               |
|             | 9.2.1.6. Crystallographic uses of Zhdanov symbols                                                                                                     | 756               |
|             | 9.2.1./. Structure determination of close-packed layer stackings                                                                                      | /56               |
|             | 9.2.1./.1. General considerations                                                                                                                     | /56<br>757        |
|             | 7.2.1.7.2. Determination of the father type                                                                                                           | 131               |

| COLLEINIO |
|-----------|
|-----------|

| 9.2.1.7.3. Determination of the identity period                                                                                                                    |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 9.2.1.7.4. Determination of the stacking sequence of layers                                                                                                        |                                                |
| 9.2.1.8. Stacking faults in close-packed structures                                                                                                                |                                                |
| 9.2.1.8.1. Structure determination of one-dimensionally diso                                                                                                       | ordered crystals                               |
| Table 9.2.1.1. Common close-packed metallic structures          Table 9.2.1.2. Line (Signature)                                                                    |                                                |
| Table 9.2.1.2. List of SiC polytypes with known structures in order<br>Table 0.2.1.3. Intrinsic fault configurations in the 6H (A, P, C, A, C)                     | of increasing periodicity                      |
| Table 9.2.1.5. Intrinsic fault configurations in the $0H$ ( $A_0B_1C_2A_3C_4$ .<br>Table 9.2.1.4. Intrinsic fault configurations in the $9R$ ( $A_0B_1A_2C_3A_4$ ) | $D_5, \ldots)$ structure                       |
| <b>0.2.2.1</b> Lever stacking in general polytypic structures (S. $\check{D}$ urovič)                                                                              | C2D0C1D2,) structure                           |
| 9.2.2.1 The notion of polytypic structures (3. Durovic)                                                                                                            |                                                |
| 9.2.2.1. The notion of polytypism                                                                                                                                  |                                                |
| 92221 Close packing of suberes                                                                                                                                     | 76                                             |
| 9.2.2.2. Polytype families and OD groupoid families                                                                                                                | 76                                             |
| 9.2.2.2.3. MDO polytypes                                                                                                                                           |                                                |
| 9.2.2.2.4. Some geometrical properties of OD structures                                                                                                            |                                                |
| 9.2.2.2.5. Diffraction pattern – structure analysis                                                                                                                |                                                |
| 9.2.2.2.6. The vicinity condition                                                                                                                                  |                                                |
| 9.2.2.2.7. Categories of OD structures                                                                                                                             |                                                |
| 9.2.2.7.1. OD structures of equivalent layers                                                                                                                      |                                                |
| 9.2.2.2.7.2. OD structures with more than one kin                                                                                                                  | nd of layer                                    |
| 9.2.2.2.8. Desymmetrization of OD structures                                                                                                                       |                                                |
| 9.2.2.2.9. Concluding remarks                                                                                                                                      |                                                |
| 9.2.2.3. Examples of some polytypic structures                                                                                                                     |                                                |
| 9.2.2.3.1. Hydrous phyllosilicates                                                                                                                                 |                                                |
| 9.2.2.3.1.1. General geometry                                                                                                                                      |                                                |
| 9.2.2.3.1.2. Diffraction pattern and identification of                                                                                                             | of individual polytypes                        |
| 9.2.2.3.2. Stibivanite $Sb_2VO_5$                                                                                                                                  |                                                |
| 9.2.2.3.3. $\gamma$ -Hg <sub>3</sub> S <sub>2</sub> Cl <sub>2</sub>                                                                                                |                                                |
|                                                                                                                                                                    |                                                |
| 9.2.2.4. List of some polytypic structures                                                                                                                         |                                                |
| 9.3. Typical Interatomic Distances: Metals and Alloys (J. L. C. Daa                                                                                                | ms, J. R. Rodgers, and P. Villars) 77          |
| 9.3.1. Glossary                                                                                                                                                    |                                                |
|                                                                                                                                                                    |                                                |
| 9.4. Typical Interatomic Distances: Inorganic Compounds (G. Bergerl                                                                                                | hoff and K. Brandenburg) 77                    |
| 9.4.1. Introduction                                                                                                                                                |                                                |
| Table 9.4.1.1. Atomic distances between halogens and main-grou                                                                                                     | ip elements in their preferred oxidation       |
| Table 9.4.1.2. Atomic distances between halogens and main-group                                                                                                    | elements in their special oxidation states 78  |
| Table 9.4.1.3. Atomic distances between halogens and transition m                                                                                                  | netals                                         |
| Table 9.4.1.4. Atomic distances between halogens and lanthanoids                                                                                                   |                                                |
| Table 9.4.1.5. Atomic distances between halogens and actinoids                                                                                                     |                                                |
| Table 9.4.1.6. Atomic distances between oxygen and main-group el                                                                                                   | lements in their preferred oxidation states 78 |
| Table 9.4.1.7. Atomic distances between oxygen and main-group el                                                                                                   | elements in their special oxidation states     |
| 1 able 9.4.1.8. Alomic distances between oxygen and transition o                                                                                                   | elements in their preferreu and special<br>78  |
| Table 9.4.1.9. Atomic distances between oxygen and lanthanoids                                                                                                     | 78                                             |
| Table 9.4.1.10. Atomic distances between oxygen and actinoids                                                                                                      |                                                |
| Table 9.4.1.11. Atomic distances in sulfides and thiometallates                                                                                                    |                                                |
| Table 9.4.1.12. Contact distances between some negatively charged                                                                                                  | l elements                                     |
| 9.4.2. The retrieval system                                                                                                                                        |                                                |
| 9.4.3. Interpretation of frequency distributions                                                                                                                   |                                                |
| 9.5. Typical Interatomic Distances: Organic Compounds (F. H. Allen,                                                                                                | , D. G. Watson, L. Brammer, A. G.              |
| Orpen, and R. Taylor)                                                                                                                                              |                                                |
| 9.5.1. Introduction                                                                                                                                                |                                                |
|                                                                                                                                                                    |                                                |
| Table 9.5.1.1. Average lengths for bonds involving the elements         Br, Te and I                                                                               |                                                |

| CONTENTS |
|----------|
|----------|

|                                                                                                                            | 9.5.2.1. Selection of crystallogi                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | apine uata                                                                                                                                                                                                                                                                                                                           | ı                                                         | • ••                                                                                                                       | •• ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••                                                                                                |                                              |                                                 |                                       | ••                                                                         | ••                                                      |                                           |                                                  | ••                                                     |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                                                                                                            | 9.5.2.2. Program system                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     | ••                                               |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.5.2.3. Classification of bonds<br>9.5.2.4. Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>                                                                                                                                                                                                                                                                                                                                 | <br>                                                      | <br>                                                                                                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                                                                                              | <br>                                         | <br>                                            | · ··                                  | <br>                                                                       | <br>                                                    | <br>                                      | <br>                                             | <br>                                                   | <br>                                              | <br>                                                | <br>                                             | <br>                                             |                                                  | <br>                                             |
| 9.5.3.                                                                                                                     | Content and arrangement of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e table                                                                                                                                                                                                                                                                                                                              |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| 210101                                                                                                                     | 9.5.3.1. Ordering of entries: th                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e 'Bond' c                                                                                                                                                                                                                                                                                                                           |                                                           | n                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.5.3.2. Definition of 'Substruc                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ture'                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.5.3.3. Use of the 'Note' colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mn                                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| 9.5.4.                                                                                                                     | <b>Discussion</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| Typica<br>d- and                                                                                                           | al Interatomic Distances: O<br><i>f</i> -Block Metals (A. G. Orj                                                                                                                                                                                                                                                                                                                                                                                                                                     | RGANOME<br>ben, L. B                                                                                                                                                                                                                                                                                                                 | TALLI<br>ramn                                             | ic Co<br>ner, I                                                                                                            | мро<br>F. H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | une<br>. Al                                                                                       | os an<br>len,                                | ю С<br>D. (                                     | oor<br>3. W                           | din<br>Vats                                                                | ATI<br>on                                               | on<br>, an                                | Cor<br>d R                                       | арг<br>Т                                               | ех<br>'ay                                         | es<br>lor                                           | of<br>)                                          | тн<br>                                           | IE<br>                                           |                                                  |
| 9.6.1.                                                                                                                     | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| 9.6.2.                                                                                                                     | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.2.1. Selection of crystallog                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aphic data                                                                                                                                                                                                                                                                                                                           | a                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.2.2. Program system                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.2.3. Classification of bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.2.4. Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| 9.6.3.                                                                                                                     | Content and arrangement of ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ble of inte                                                                                                                                                                                                                                                                                                                          | raton                                                     | nic di                                                                                                                     | stanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es                                                                                                |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.3.1. The 'Bond' column                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.3.2. Definition of 'Substruc                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ture'                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.3.3. Use of the 'Note' colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mn                                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | 9.6.3.4. Locating an entry in T                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | able 9.6.3.                                                                                                                                                                                                                                                                                                                          | 3                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
|                                                                                                                            | Table 9.6.3.1. Ligand index                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     | ••                                               |                                                  |                                                  |                                                  |
|                                                                                                                            | Table 9.6.3.2. <i>Numbers of entr</i><br>Table 9.6.3.3. <i>Interatomic dista</i>                                                                                                                                                                                                                                                                                                                                                                                                                     | ies in Tab<br>inces                                                                                                                                                                                                                                                                                                                  | le 9.6<br>                                                | .3.3                                                                                                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                                                                                              | <br>                                         |                                                 | · ··                                  | <br>                                                                       |                                                         | <br>                                      |                                                  |                                                        | <br>                                              | <br>                                                |                                                  | <br>                                             | <br>                                             | <br>                                             |
| 9.6.4.                                                                                                                     | <b>Discussion</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| - III 0.                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 | • ••                                  | ••                                                                         | ••                                                      |                                           |                                                  | ••                                                     |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| and A                                                                                                                      | . Mighell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  | ••                                               |                                                  |
| and A<br>9.7.1.                                                                                                            | . Mighell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e groups                                                                                                                                                                                                                                                                                                                             |                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                              |                                                 |                                       |                                                                            |                                                         |                                           |                                                  |                                                        |                                                   |                                                     |                                                  |                                                  |                                                  |                                                  |
| and A<br>9.7.1.                                                                                                            | . Mighell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e groups<br>ries                                                                                                                                                                                                                                                                                                                     |                                                           | · ··                                                                                                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                                                                                              | <br>                                         | <br>                                            | <br>                                  | <br>                                                                       | <br>                                                    | <br>                                      | <br>                                             | <br>                                                   | <br>                                              | <br>                                                |                                                  | <br>                                             | <br>                                             | <br>                                             |
| and A<br>9.7.1.                                                                                                            | . Mighell)<br>A priori classifications of space<br>9.7.1.1. Kitajgorodskij's catego<br>9.7.1.2. Symmorphism and ant<br>9.7.1.3. Comparison of Kitajgo                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      |                                                           | <br><br>Vilson                                                                                                             | <br><br>.'s cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><br>assifi                                                                                    | <br><br><br>catic                            | <br><br><br>ons .                               | ·<br>·<br>·                           | <br><br>                                                                   | <br><br>                                                | <br><br>                                  | <br><br>                                         | <br><br>                                               | <br><br>                                          | <br><br>                                            | <br><br>                                         | <br><br>                                         | <br><br>                                         | <br><br>                                         |
| and A<br>9.7.1.                                                                                                            | . Mighell)<br>A priori classifications of space<br>9.7.1.1. Kitajgorodskij's catego<br>9.7.1.2. Symmorphism and ant<br>9.7.1.3. Comparison of Kitajgo<br>9.7.1.4. Relation to structural                                                                                                                                                                                                                                                                                                             | e <b>groups</b><br>ries<br>imorphism<br>rodskij's a<br>classes                                                                                                                                                                                                                                                                       |                                                           | <br><br>Vilson<br>                                                                                                         | <br><br>.'s cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><br>assifi<br>                                                                                | <br><br><br>                                 | <br><br>ons .<br>                               | · ··<br>· ··<br>· ··<br>· ··          | <br><br>                                                                   | <br><br>                                                | <br><br>                                  | <br><br>                                         | <br><br>                                               | <br><br>                                          | <br><br>                                            | <br><br>                                         | <br><br><br>                                     | <br><br><br>                                     | <br><br>                                         |
| and A<br>9.7.1.                                                                                                            | . Mighell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e groups<br>ries<br>imorphism<br>rodskij's a<br>classes<br>categoriza<br>rranged by                                                                                                                                                                                                                                                  | <br><br>and W<br><br>ation                                | · · ··<br>· ··<br>Vilson<br>· ··<br>of the                                                                                 | <br><br>.'s cla<br><br>e trica<br>e crys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br><br>assifi<br><br>linic<br>stal o                                                             | <br><br><br><br>, moi                        | <br><br>ons .<br><br>nocli<br>and               | <br><br><br>nic a<br>degr             | <br><br><br>and<br>ree o                                                   | <br><br><br>ort                                         | <br><br><br>horl                          | <br><br><br><br>nom<br>norp                      | <br><br><br>bic<br>ohis                                | <br><br><br>sp                                    | <br><br><br>ace<br>                                 | <br><br><br>gr                                   | <br><br><br><br>oup                              | <br><br><br><br>                                 | <br><br><br>                                     |
| 9.7.1.<br>9.7.2.                                                                                                           | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups a.</li> <li>Special positions of given symm</li> </ul>                                                                                                                                                                 | e groups<br>ries<br>imorphism<br>orodskij's a<br>classes<br>categoriza<br>rranged by<br>netry                                                                                                                                                                                                                                        |                                                           | <br>Vilson<br><br>of the<br>hmetic<br>                                                                                     | <br><br>.'s cla<br><br>e trica<br>crys<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>assifi<br><br><i>linic</i><br>stal o                                                          | <br><br><br><br>, moi<br>class<br>           | <br><br>ons .<br><br>nocli<br>and<br>           | <br><br>nic a<br>degr                 | <br><br><br>and<br>ree o                                                   | <br><br><br>ort<br>of s                                 | <br><br><br>horl<br>ymn                   | <br><br><br>nom<br>norp<br>                      | <br><br><br>bic<br>ohis                                | <br><br><br>sp<br>m                               | <br><br><br>ace<br>                                 | <br><br><br><br>                                 | <br><br><br><br>oup<br>                          | <br><br><br><br>                                 | <br><br><br><br><br>                             |
| 9.7.1.<br>9.7.2.                                                                                                           | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups and<br/>Special positions of given symm<br/>Table 9.7.2.1. Statistics of the</li> </ul>                                                                                                                                | e groups<br>ries<br>imorphism<br>orodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use use of V                                                                                                                                                                                                                        | <br><br>and W<br><br>ation<br>, arith<br><br>Vyckc        | · · ··<br>· ··<br>· ··<br>· ··<br>· ··<br>· ··<br>· ··<br>·                                                                | <br><br>.'s cla<br><br>e tric.<br>e tric.<br>crys<br><br>osition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>assifi<br><br><i>linic</i><br>stal o<br><br>ns o                                              | <br><br><br><br>, mol<br>class<br><br>of spo | <br><br>ons .<br><br>nocli<br>and<br><br>ecifie | <br><br><br>nic a<br>degr<br><br>d sy | <br><br><br>and<br>ree o<br>                                               | <br><br>ort<br>of s<br><br>netr                         | <br><br><br>horl<br>ymn<br><br>y G        | <br><br><br>nom<br>norp<br><br>in                | <br><br>bic<br>ohis<br><br>the                         | <br><br><br>m<br><br>ho                           | <br><br><br>ace<br><br>                             | <br><br><br><br><br>                             | <br><br><br><br>oup<br><br>                      | <br><br><br><br><br><br>cul                      | <br><br><br><br><br>ar                           |
| 9.7.1.                                                                                                                     | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups a<br/>Special positions of given symm<br/>Table 9.7.2.1. Statistics of the<br/>organic crystals</li> </ul>                                                                                                             | e groups<br>ries<br>imorphism<br>rodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use of V<br>                                                                                                                                                                                                                         | <br><br><br><br><br><br><br>                              | • • • • • • • • • • • • • • • • • • •                                                                                      | <br><br>.'s cla<br><br>e tric.<br>c crys<br><br>psition<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>assifi<br><br>linic<br>stal o<br><br>ns o<br>                                                 | <br><br><br><br><br><br><br>                 | <br>ons .<br>nocli<br>and<br><br>ecifie         | <br><br>nic a<br>degr<br><br>d sy     | <br><br>and<br>ree o<br><br>ymm                                            | <br><br><br><br><br>                                    | <br><br><br>horl<br>ymn<br>ymn<br>y G<br> | <br><br><br>nom<br>norp<br><br>in                | <br><br><br>bic<br>ohis<br><br>the                     | <br><br><br>spi<br>m<br><br>                      | <br><br><br>ace<br><br>                             | <br><br><br><br><br><br>                         | <br><br><br><br><br><br><br>                     | <br><br><br><br><br><br><br>                     | <br><br><br><br><br>ar                           |
| 9.7.1.<br>9.7.2.                                                                                                           | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>orodskij's a<br>classes<br>categoriz.<br>rranged by<br>netry<br>use of V<br>                                                                                                                                                                                                                        | <br><br><br><br><br>ation<br>, arith<br><br>Vyckc<br>     | <br>Vilson<br><br>of the<br>hmetic<br><br>off po<br>                                                                       | <br><br><br>e tric.<br>: crys<br><br>osition<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>assiff<br><br>linic<br>stal o<br><br>ns o<br>                                                 | <br><br><br><br><br><br>of spo<br>           | <br>ons .<br>nocli<br>and<br><br>ecifie<br>     | <br><br>nic a<br>degr<br><br>d sy     | <br><br>and<br>ree o<br><br>ymm                                            | <br><br><br>ort<br>of s<br><br>netr                     | <br><br>horl<br>ymn<br>y G<br>            | <br><br><br><br><br><br><br>                     | <br><br>bic<br>ohis<br><br>the<br>                     | <br><br><br>m<br><br>                             | <br><br><br><br><br>                                | <br><br><br><br><br>                             | <br><br><br><br><br><br>oleo                     | <br><br><br><br><br>cul                          | <br><br><br><br><br>ar                           |
| 9.7.2.<br>9.7.3.                                                                                                           | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups an<br/>Special positions of given symm<br/>Table 9.7.2.1. Statistics of the<br/>organic crystals</li> <li>Empirical space-group frequence</li> </ul>                                                                   | e groups<br>ries<br>imorphism<br>orodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use of V<br>                                                                                                                                                                                                                        | <br>and W<br><br>ation<br>ation<br>arith<br><br>Vyckc<br> | <br><br>Vilson<br><br>of the<br>imetic<br><br>off po<br><br>                                                               | <br><br><br>e tric.<br>e crys<br><br>osition<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br>asssifi<br><br>linic<br>stal o<br><br><br>                                                | <br><br><br><br><br><br><br>                 |                                                 | <br><br><br><br><br>d sy<br>          | <br><br>and<br>ree o<br><br>vmm                                            | <br><br><br><br><br><br>                                | <br><br>horl<br>ymn<br><br>y G<br>        | <br><br><br><br><br><br><br>                     | <br><br><br>bic<br>ohis<br><br>the<br>                 | <br><br><br>m<br><br>ho<br>                       | <br><br><br>ace<br><br><br><br>                     | <br><br><br><br><br>                             | <br><br><br><br><br>oleo<br>                     | <br><br><br><br><br>cul<br>                      | <br><br><br><br>ar<br>                           |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups a.</li> <li>Special positions of given symm<br/>Table 9.7.2.1. Statistics of the<br/>organic crystals</li> <li>Empirical space-group frequence</li> <li>Use of molecular symmetry</li> </ul>                           | e groups<br>ries<br>imorphism<br>orodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use of V<br>                                                                                                                                                                                                                        |                                                           | <br>Vilson<br><br>of the<br>nmetic<br><br>off po<br><br>                                                                   | <br><br>.'s cla<br><br>e tric.<br>: crys<br><br>osition<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br><br>assiff<br><br>linic<br>stal o<br><br><br>                                                 |                                              | <br><br>ons .<br>nocli<br>and<br><br>ecifie<br> | <br><br><br><br><br><br>              | <br><br><br>and<br>ree o<br><br><br>                                       | <br><br>ort<br>of s<br><br>netr<br>                     |                                           | <br><br><br><br><br><br><br>                     | <br><br><br>bic<br>bhis<br><br>the<br>                 | <br><br><br>m<br><br>hc<br><br>                   | <br><br><br>ace<br><br><br><br>                     | <br><br><br><br><br><br>                         | <br><br><br><br><br><br><br>                     | <br><br><br><br><br>cul<br><br>                  | <br><br><br><br><br><br>                         |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li> <li>A priori classifications of space<br/>9.7.1.1. Kitajgorodskij's catego<br/>9.7.1.2. Symmorphism and ant<br/>9.7.1.3. Comparison of Kitajgo<br/>9.7.1.4. Relation to structural<br/>Table 9.7.1.1. Kitajgorodskij's<br/>Table 9.7.1.2. Space groups and<br/>Special positions of given symm<br/>Table 9.7.2.1. Statistics of the<br/>organic crystals</li> <li>Empirical space-group frequence<br/>Use of molecular symmetry<br/>9.7.4.1. Positions with symmet</li> </ul> | e groups<br>ries<br>imorphism<br>prodskij's a<br>classes<br>categoriza<br>cranged by<br>netry<br>e use of V<br><br>ries<br>ries<br>ry <u>1</u>                                                                                                                                                                                       |                                                           | <br>Vilson<br><br>of the<br>nmetic<br><br>off po<br><br>                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><br>linic<br>stal o<br><br><br>                                                               |                                              |                                                 | <br><br><br><br><br>d sy<br><br>      | <br><br><br>and<br>ree o<br><br><br>                                       | <br><br>ort<br>of s<br><br><br>                         |                                           | <br><br><br>nom<br>norp<br><br><br>              | <br><br><br>bic<br>ohis<br><br><br>                    | <br><br><br>m<br>m<br>ho<br><br>                  | <br><br><br><br><br><br>                            | <br><br><br><br><br><br><br>                     | <br><br><br><br><br><br><br><br>                 | <br><br><br><br><br><br><br><br>                 | <br><br><br><br>ar<br><br>                       |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>prodskij's a<br>classes<br>categoriza<br>erranged by<br>netry<br>use of V<br><br>iies<br>ry 1<br>ry 1<br>ry 1                                                                                                                                                                                       |                                                           | • • • • • • • • • • • • • • • • • • •                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><br>assiff<br><br>linic<br>stal o<br><br><br><br>                                             |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br><br>and<br>ree o<br><br><br><br><br>                               | <br><br>ort<br>of s<br><br><br>                         |                                           | <br><br><br><br><br><br><br>                     | <br><br>bic<br>bhis<br><br>the<br><br>                 | <br><br><br>m<br>m<br>ha<br><br><br>              | <br><br><br>ace<br><br><br><br><br>                 | <br><br><br><br><br><br><br>                     | <br><br><br><br><br><br><br><br>                 | <br><br><br><br><br><br><br>                     | <br><br><br><br>ar<br><br>                       |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>rodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use of V<br><br>ry 1<br>ry 1<br>                                                                                                                                                                                                     |                                                           | • • • • • • • • • • • • • • • • • • •                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><br>asssiff<br><br><i>linicc</i><br><br><br><br><br>                                          |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>ree o<br><br><br><br>                                       | <br>ort<br>of s<br><br>                                 | <br><br>horl<br>ymn<br><br>y G<br><br>    | <br><br><br><br><br><br><br><br>                 | <br><br>bic<br>bhis<br><br>the<br><br>                 | <br><br><br>m<br>m<br>ha<br><br><br>              | <br><br><br>ace<br><br><br><br><br>                 | <br><br><br><br><br><br><br><br><br>             | <br><br><br><br>oleo<br><br><br>                 | <br><br><br><br><br><br><br><br>                 | <br><br><br><br>ar<br><br><br>                   |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>prodskij's a<br>classes<br>categoriza<br>pranged by<br>netry<br>use of V<br><br>ry <u>1</u><br>ry <u>1</u><br>symmetry                                                                                                                                                                              |                                                           | <br>Vilson<br><br>of the<br>ametic<br><br>off po<br><br><br><br><br><br><br>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>asssifi<br><br>linic<br>stal o<br><br><br><br><br><br><br>                                    |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>ree o<br><br><br><br><br>                                   | <br>ort<br>of s<br><br><br><br>                         |                                           | <br><br><br><br><br><br><br><br>                 | <br><br>bic<br>ohis<br><br><br><br><br>                | <br><br><br>m<br>m<br>ho<br><br><br><br>          | <br><br><br>ace<br><br><br><br><br>                 | <br><br><br><br><br><br><br><br>                 | <br><br><br><br><br>olec<br><br><br><br>         | <br><br><br><br><br><br><br><br>                 | <br><br><br><br><br><br><br><br>                 |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>rodskij's a<br>classes<br>categoriza<br>rranged by<br>netry<br>use of V<br><br>ry <u>1</u><br>ry <u>1</u><br>symmetry<br>nolecules <u>.</u>                                                                                                                                                         |                                                           | <br>Vilson<br><br>of the<br>ametic<br><br>off po<br><br><br><br><br><br><br>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>assift<br><br>.linic<br>stal o<br><br><br><br><br><br><br><br><br><br><br><br><br>            |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>ree o<br><br><br><br><br><br><br><br><br><br>               | <br><br><br><br><br><br><br><br><br><br><br><br>        |                                           | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br>bic<br>ohis<br><br>the<br><br><br><br><br><br> | <br><br><br>m<br><br>hc<br><br><br><br><br><br>   | <br><br><br>ace<br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br>             | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br>             |
| 9.7.2.<br>9.7.3.<br>9.7.4.                                                                                                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e groups<br>ries<br>imorphism<br>rodskij's a<br>classes<br>categoriza<br>cranged by<br>netry<br>use of V<br><br>ry 1<br>ry 1<br>symmetry<br>nolecules 1<br>                                                                                                                                                                          |                                                           | · · ··<br>Vilson<br>· ··<br>of the<br>metic<br>· ··<br>off po<br>· ··<br>· ··<br>· ··<br>· ··<br>· ··<br>· ··<br>· ··<br>· |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>Jinic<br>stal o<br><br><br><br><br><br><br><br><br><br><br><br><br>                           |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>ree o<br><br><br><br><br><br><br><br><br>                   | <br><br>ort<br>of s<br><br><br><br><br><br><br><br><br> |                                           |                                                  | <br><br>bic<br>phis<br><br>the<br><br><br><br><br>     | <br><br>spi<br>m<br><br>ho<br><br><br><br><br>    | <br><br>ace<br><br><br><br><br><br><br><br>         | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br>             |
| 9.7.2.<br>9.7.3.<br>9.7.4.<br>9.7.5.<br>9.7.6.                                                                             | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e       groups         ries          imorphism         orodskij's a         classes          categoriza         cranged       by         etry          euse       of         w          euse       of         cites          ry       1         ry       1         ry       1         ry       1         symmetry         nolecules  |                                                           | <br>Vilson<br><br>of the<br>metic<br><br>off po<br><br><br><br><br><br><br>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>assiff<br><br>linic<br>stal o<br><br><br><br><br><br><br><br><br><br><br><br><br>             |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>cree of<br><br><br><br><br><br><br><br><br><br>             | <br>ort<br>of s<br><br><br><br><br><br><br><br><br><br> |                                           | <br><br><br><br><br><br><br><br><br><br><br>     | <br><br>bic<br>bhis<br><br>the<br><br><br><br><br><br> | <br><br>spi<br>m<br><br>hc<br><br><br><br><br>    | <br><br><br><br><br><br><br><br><br><br><br><br>    |                                                  | <br><br><br><br><br><br><br><br><br><br><br>     | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> |
| 9.7.2.<br>9.7.2.<br>9.7.3.<br>9.7.4.<br>9.7.5.<br>9.7.6.                                                                   | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e       groups         ries          imorphism         ordskij's a         classes          categoriza         rranged       by         etry          e use       of         v          e use       of         cites          ry       1         ry       1         ry       1         ry       1         symmetry         nolecules |                                                           | <br>Vilson<br><br>of the<br>imetic<br><br>off po<br><br><br><br><br>e gec<br>specifi<br><br>                               | <br><br>e tric.<br>e tric.<br>c crys<br><br>osition<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                         | <br>assiff<br><br>linic<br>stal o<br><br><br><br><br><br><br><br><br><br><br><br><br>             |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>cree of<br><br><br><br><br><br><br><br><br>                 | <br>ort<br>of s<br><br><br><br><br><br>                 |                                           | <br><br><br><br><br><br><br><br><br><br><br>     | <br><br>bic<br>ohis<br><br>the<br><br><br><br><br>     | <br><br>spi<br>m<br><br>hc<br><br><br><br><br>    | <br><br><br>ace<br><br><br><br><br><br><br><br>     |                                                  | <br><br><br><br><br><br><br><br><br><br><br>     | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br>             |
| <ul> <li>9.7.1.</li> <li>9.7.2.</li> <li>9.7.3.</li> <li>9.7.4.</li> <li>9.7.5.</li> <li>9.7.6.</li> <li>9.7.7.</li> </ul> | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                           | <br>Vilson<br><br>of the<br>ametic<br><br>off po<br><br><br><br><br><br><br>                                               | <br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>assiff<br><br>linic<br>stal o<br><br><br><br><br><br><br><br><br><br><br><br><br>             |                                              |                                                 | <br><br><br><br><br><br><br>          | <br><br>and<br>cree of<br><br><br><br><br><br><br><br><br><br><br><br><br> | <br>ort<br>of s<br><br><br><br><br><br><br>             |                                           | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br>bic<br>ohis<br><br>the<br><br><br><br><br><br> | <br><br>spi<br>m<br><br>hc<br><br><br><br><br>    | <br><br><br><br><br><br><br><br><br><br><br><br>    |                                                  | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br> |
| <ul> <li>9.7.2.</li> <li>9.7.3.</li> <li>9.7.4.</li> <li>9.7.5.</li> <li>9.7.6.</li> <li>9.7.7.</li> </ul>                 | <ul> <li>Mighell)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                           | <br>Vilson<br><br>of the<br>imetic<br><br>off po<br><br><br><br><br><br><br>                                               | <br><br>e tric.<br>e tric.<br>c crys<br><br>osition<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | <br>assiff<br><br>linic<br>stal o<br><br>ms o<br><br><br><br><br><br><br><br><br><br><br><br><br> |                                              |                                                 | <br><br><br><br><br>                  | <br><br>and<br>cree of<br><br><br><br><br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br>                    |                                           | <br><br><br><br><br><br><br><br><br><br><br><br> | <br>bic<br>ohis<br><br>the<br><br><br><br>hic<br><br>  | <br><br>sp<br>m<br><br>hc<br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br><br><br><br>    | <br><br><br><br><br><br><br><br><br>             | <br><br><br><br><br><br><br><br><br><br><br><br> |                                                  | <br><br><br><br><br><br><br><br><br>             |

| 9.8. Incommensurate and Commensurate Modulated Structure                                                                         | s (T.          | Jans            | sen,   | A. J  | anne      | er, A | 4. I | _00   | ijen         | ga-  | Vo   | vs,  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------|-------|-----------|-------|------|-------|--------------|------|------|------|
| and P. M. de Wolff)                                                                                                              |                |                 |        |       |           |       |      |       |              | ••   |      |      |
| 9.8.1. Introduction                                                                                                              |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.1.1. Modulated crystal structures                                                                                            |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.1.2. The basic ideas of higher-dimensional crystallograp                                                                     | hy             |                 |        |       |           |       |      |       |              |      | ••   |      |
| 9.8.1.3. The simple case of a displacively modulated crystal                                                                     |                |                 |        |       |           |       | ••   |       | • ••         | ••   | ••   |      |
| 9.8.1.3.1. The diffraction pattern                                                                                               | <br>           | <br>            | ·· ··  |       | <br>      | <br>  | <br> | ·· ·  | · ··<br>· ·· | <br> | <br> | <br> |
| 9.8.1.4. Basic symmetry considerations                                                                                           |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.1.4.1. Bravais classes of vector modules                                                                                     |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.1.4.2. Description in four dimensions                                                                                        |                |                 |        |       |           |       |      | ·· ·  |              |      | ••   |      |
| 9.8.1.4.3. Four-dimensional crystallography                                                                                      |                |                 |        | ••    |           |       |      |       | • ••         | ••   | ••   |      |
| 9.8.1.4.5. Four-dimensional space groups                                                                                         |                |                 |        |       |           |       |      |       | · ··         |      |      |      |
| 9.8.1.5. Occupation modulation                                                                                                   |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.2. Outline for a superspace-group determination                                                                              |                |                 |        |       |           |       |      |       |              |      |      |      |
| 083 Introduction to the tables                                                                                                   |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.3.1 Tables of Bravais lattices                                                                                               |                |                 |        | ••    |           |       |      |       |              | ••   | ••   |      |
| 9.8.3.2. Table for geometric and arithmetic crystal classes                                                                      | ·· ··<br>·· ·· | ·· ··<br>       |        |       |           |       |      |       | · ··         |      |      |      |
| 9.8.3.3. Tables of superspace groups                                                                                             |                |                 |        | • ••  |           |       |      |       | • ••         |      |      |      |
| 9.8.3.3.1. Symmetry elements                                                                                                     |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.3.3.2. Reflection conditions                                                                                                 |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.3.4. Guide to the use of the tables                                                                                          | <br>           | <br>            |        |       | <br>      |       | <br> |       | <br>         |      | <br> |      |
| 9.8.3.6. Ambiguities in the notation                                                                                             |                |                 |        |       |           |       |      |       |              |      |      |      |
| Table 9.8.3.1(a). $(2 + 1)$ -Dimensional Bravais classes for in                                                                  | comm           | iensu           | rate s | struc | tures     |       |      |       |              |      |      |      |
| Table 9.8.3.1(b). $(2 + 2)$ -Dimensional Bravais classes for in                                                                  | icomn          | ıensu           | rate s | struc | tures     |       |      |       |              |      | ••   |      |
| Table 9.8.3.2(a). $(3 + 1)$ -Dimensional Bravais classes for in<br>Table 9.8.3.2(b). $(3 + 1)$ Dimensional Bravais classes for a | comm           | iensu           | rate s | struc | tures     |       |      |       | • ••         | ••   | ••   |      |
| Table 9.8.3.2(b). $(3 + 1)$ -Dimensional point groups and ari                                                                    | thmeti         | nsura<br>ic crv | stal c | lasse | res<br>s  |       |      |       | · ··         | ••   | ••   |      |
| Table 9.8.3.4(a). $(2 + 1)$ -Dimensional superspace groups                                                                       |                |                 |        |       |           |       |      |       |              |      |      |      |
| Table 9.8.3.4(b). $(2 + 2)$ -Dimensional superspace groups                                                                       |                |                 |        |       |           |       |      |       |              |      |      |      |
| Table 9.8.3.5. $(3 + 1)$ -Dimensional superspace groups                                                                          | <br>           |                 |        | <br>  | <br>alaar |       |      |       | • ••         | ••   | ••   |      |
| 1 able 9.8.5.0. Centring rejection contaitions for $(3 + 1)$ -                                                                   | umen           | siona           | u Dru  | vuis  | ciuss     | es    | ••   | ••••• | • ••         | ••   | ••   | ••   |
| 9.6.4. Incorrection foundation                                                                                                   |                |                 |        | ••    |           |       |      | ••••• | • ••         | ••   | ••   |      |
| 9.8.4.1. Lattices and metric                                                                                                     | <br>           | ·· ··<br>·· ··  |        |       | <br>      | <br>  | <br> | ••••• | · ··<br>· ·· | <br> | <br> |      |
| 9.8.4.2.1. Laue class                                                                                                            |                |                 |        |       |           |       |      |       |              |      | ••   |      |
| 9.8.4.2.2. Geometric and arithmetic crystal classes                                                                              |                |                 |        | •••   |           |       | ••   | ••••• | • ••         | ••   | ••   |      |
| 9.8.4.3. Systems and Bravais classes                                                                                             |                |                 |        | •••   |           |       | ••   | ••••• | • ••         | ••   | ••   |      |
| 9.8.4.3.1. Holohedry                                                                                                             |                |                 |        | ••    |           |       |      |       | • ••         | ••   | ••   |      |
| 9.8.4.3.3. Bravais classes                                                                                                       |                |                 |        |       |           |       |      |       | · ··         |      |      |      |
| 9.8.4.4. Superspace groups                                                                                                       |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.4.1. Symmetry elements                                                                                                       |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.4.4.2. Equivalent positions and modulation relat<br>9.8.4.4.3 Structure factor                                               | ions           |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.5. Generalizations                                                                                                           |                |                 |        | ••    |           | ••    |      |       |              |      |      |      |
| 9.8.5.1. Incommensurate composite crystal structures                                                                             |                |                 |        |       |           |       |      |       |              |      |      |      |
| 9.8.5.2. The incommensurate <i>versus</i> the commensurate case<br><b>References</b>                                             | ,              | <br>            |        |       | <br>      |       |      |       | <br>         |      | ••   | <br> |
| PART 10: PRECAUTIONS AGAINST RADIATION INJ                                                                                       | URY            | (D              | . C.   | Cre   | agh       | anc   | 1    |       |              |      |      |      |
| S. Martinez-Carrera)                                                                                                             |                |                 |        |       |           |       |      |       |              |      |      |      |
| 10.1. INTRODUCTION                                                                                                               |                |                 |        | •••   |           | ••    | ••   | ••••• |              | ••   | ••   |      |
| <b>10.1.1. Definitions</b>                                                                                                       |                |                 |        | •••   |           |       | ••   |       | • ••         | ••   | ••   |      |
| Table 10.1.1. The relationship between SI and the earlier sy                                                                     | stem c         | of un           | its    |       |           |       |      |       |              |      |      |      |

|       |         | Table 10.<br>Table 10.                    | 1.2. Max<br>1.3. Qua           | imum p<br>lity facto | rimary<br>ors (Q | -dose<br>F) . | e lim<br> | it p<br>  | er (<br>     | quari<br> | ter<br>  | <br>    | <br>     | <br>  | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br><br><br> | <br> | 960<br>960        |
|-------|---------|-------------------------------------------|--------------------------------|----------------------|------------------|---------------|-----------|-----------|--------------|-----------|----------|---------|----------|-------|--------------|------|------|------|--------------|------|------|------|--------------|--------------|------|-------------------|
|       | 10.1.2. | Objective                                 | s of radi                      | ation pr             | otectio          | on.           |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 960               |
|       | 10.1.3. | Responsib                                 | ilities                        |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 960               |
|       |         | 10.1.3.1. C                               | General<br>The radia           | <br>tion saf         | <br>Tetv of      | <br>ficer     |           |           |              |           |          |         |          |       | <br>         |      | ••   |      | <br>         |      |      |      | <br>         | <br>         |      | 960<br>960        |
|       |         | 10.1.3.2. T<br>10.1.3.3. T<br>10.1.3.4. F | The work<br>Primary-c          | er<br>lose lim       | its              | <br>          | <br><br>  | <br>      | <br>         | <br>      | <br>     | <br>    | <br>     | <br>  | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br><br><br> | <br> | 960<br>960<br>961 |
| 10.2. | Prote   | CTION FRO                                 | m Ioniz                        | ing Ra               | DIATI            | on .          |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 962               |
|       | 10.2.1. | General                                   |                                |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 962               |
|       | 10.2.2. | Sealed so                                 | irces and                      | l radiat             | ion-pr           | oduci         | ng a      | ippa      | ırat         | us        |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 962               |
|       |         | 10.2.2.1. E                               | Enclosed                       | installa<br>allation | tions            |               | •••       | ••        |              |           |          |         | ••       |       | <br>         | ••   | ••   | ••   | <br>••       | ••   | ••   | ••   | <br>         | <br>••       | ••   | 962<br>962        |
|       |         | 10.2.2.3. S<br>10.2.2.4. X<br>10.2.2.5 F  | ealed so<br>C-ray difference a | urces<br>fraction    | and $\lambda$    | <br><br>X-ray | ana       | <br>lysis | <br><br>s ap | <br>para  | <br>atus | <br>    | <br>     | <br>  | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br> | <br> | <br> | <br><br><br> | <br><br><br> | <br> | 962<br>962<br>962 |
|       | 10.2.3. | Ionizing-r                                | adiation                       | protecti             | ion – 1          | <br>insea     | led       | <br>radi  | <br>ioac     | tive      | <br>ma   | <br>ter | <br>ials | <br>8 | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 963               |
| 10.3. | Respo   | NSIBLE BO                                 | DDIES                          |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      |              |      |      |      | <br>         | <br>         |      | 964               |
|       | Table   | 10.3.1. Reg                               | ulatory a                      | authorit             | ies              |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 964               |
|       | Refere  | ences                                     |                                |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 967               |
| Auth  | ior In  | DEX                                       |                                |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 968               |
| Subji | ect Ini | DEX                                       |                                |                      |                  |               |           |           |              |           |          |         |          |       | <br>         |      |      |      | <br>         |      |      |      | <br>         | <br>         |      | 984               |

# **Preface** By A. J. C. Wilson

A new volume of the International Tables for Crystallography containing mathematical, physical and chemical tables was discussed by the Executive Committee of the International Union of Crystallography at least as early as August 1979. My own ideas about what has become Volume C began to develop in the course of the Executive Committee meeting held at the Ottawa Congress in August 1981. It was then conceived as an editorial condensation of the old volumes II, III and IV, with obsolete material deleted and tables easily reproduced on a pocket calculator reduced to a skeleton form or omitted altogether. However, it soon became obvious that advances since the old volumes were produced could not be satisfactorily accommodated within such a condensation, and that if Volume C were to be a worthy companion of Volume A (Space-Group Symmetry) and Volume B (Reciprocal Space) it would have to consist largely of new material.

Work on Volumes B and C began officially on 1 January 1983, and the general outlines of the volumes were circulated to the Executive Committee, the National Committees, and others interested. This circulation generated much constructive criticism and offers of help, particularly from several Commissions of the Union. The Chairmen of certain Commissions were particularly helpful in finding qualified contributors of specialist sections, and from time to time served as members of the Commission on *International Tables for Crystallography*. I often had occasion to lament the lack of a Commission on X-ray Diffraction. The revised outlines of the two volumes were approved by the Executive Committee during the Hamburg Congress in 1984.

For various reasons the publication of Volume C has taken longer than expected. A requirement that prospective contributors should be approved by the Executive Committee produced some delays, and more serious delays were caused by authors who failed to deliver their contributions by the agreed date – or at all. A decision was taken to include in this first edition only what was in the Editor's hands in January 1990, and since that date the timetable has been set by the printers. The present Volume is the result. Readers will find a few sections resulting from the original idea of editorial condensation from Volumes II, III and IV, and some sections from those volumes revised or rewritten by their original authors. Most of Volume C is entirely new.

I am indebted to many crystallographers for advice and encouragement, to the authors of contributions that arrived before the deadline, to the Chairmen of various Commissions for their help, and to the Technical Editor for his skill and good humour in dealing with much difficult material.

# Preface to the third edition

BY E. PRINCE

This is the third edition of *International Tables for Crystallography* Volume C. The purpose of this volume is to provide the mathematical, physical and chemical information needed for experimental studies in structural crystallography. It covers all aspects of experimental techniques, using all three principal radiation types, from the selection and mounting of crystals and production of radiation, through data collection and analysis, to the interpretation of results. As such, it is an essential source of information for all workers using crystallographic techniques in physics, chemistry, metallurgy, earth sciences and molecular biology.

Volume C of *International Tables for Crystallography* is one of the many legacies to crystallographers of the late Professor A. J. C. Wilson, whose death on 1 July 1995 left the preparation of a revised and expanded second edition unfinished. When I was appointed as Professor Wilson's successor as Editor, I realised that although most of the material in the first edition was new, some had been carried over from Volumes II, III, and IV of the earlier series *International Tables for X-ray Crystallography* and had become outdated. Moreover, many of the topics covered were changing very rapidly, so needed to be brought up to date. In fact, by the time the second edition was published in 1999, more than half the chapters had been revised or updated and two completely new chapters, on reflectometry and neutron topography, had been included. The second edition of Volume C was also the first volume of *International Tables* to be produced entirely electronically.

The authors of the second edition were asked if they wished to submit revisions to their articles for this third edition in August 2001. All revisions were received within the following year. In total, 11 chapters have been revised, corrected or updated, and all known errors in the second edition have been corrected. I hope few new errors have been introduced. I thank all authors, especially those who have submitted revisions, and I particularly thank the Editorial staff in Chester for their continued dilligence.

# SAMPLE PAGES

#### 1.1. SUMMARY OF GENERAL FORMULAE

|                   | Direct lattice                                                                                                                                                                                                                               |                        | Reciprocal latti                                                                                               | ce                       |                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|
|                   | $\mathbf{a}_c, \mathbf{b}_c, \mathbf{c}_c$                                                                                                                                                                                                   |                        | $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*$                                                               |                          |                   |
| Bravais<br>letter | Centring vectors                                                                                                                                                                                                                             | Unit-cell volume $V_c$ | Conditions for reciprocal-lattice vectors<br>$h\mathbf{a}_{c}^{*} + k\mathbf{b}_{c}^{*} + l\mathbf{c}_{c}^{*}$ | Unit-cell volume $V_c^*$ | Bravais<br>letter |
| A                 | $\frac{1}{2}\mathbf{b}_{c}+\frac{1}{2}\mathbf{c}_{c}$                                                                                                                                                                                        | 2 <i>V</i>             | k+l=2n                                                                                                         | $\frac{1}{2}V^*$         | A                 |
| В                 | $\frac{1}{2}\mathbf{a}_{c}+\frac{1}{2}\mathbf{c}_{c}$                                                                                                                                                                                        | 2 <i>V</i>             | h+l=2n                                                                                                         | $\frac{1}{2}V^*$         | В                 |
| С                 | $\frac{1}{2}\mathbf{a}_{c}+\frac{1}{2}\mathbf{b}_{c}$                                                                                                                                                                                        | 2 <i>V</i>             | h+k=2n                                                                                                         | $\frac{1}{2}V^*$         | С                 |
| Ι                 | $\frac{1}{2}\mathbf{a}_c + \frac{1}{2}\mathbf{b}_c + \frac{1}{2}\mathbf{c}_c$                                                                                                                                                                | 2 <i>V</i>             | h+k+l=2n                                                                                                       | $\frac{1}{2}V^*$         | F                 |
| F                 | $\frac{\frac{1}{2}\mathbf{a}_{c} + \frac{1}{2}\mathbf{b}_{c}}{\frac{1}{2}\mathbf{a}_{c} + \frac{1}{2}\mathbf{c}_{c}},$ $\frac{\frac{1}{2}\mathbf{b}_{c} + \frac{1}{2}\mathbf{c}_{c}}{\frac{1}{2}\mathbf{b}_{c} + \frac{1}{2}\mathbf{c}_{c}}$ | 4V                     | h + k = 2n,<br>h + l = 2n,<br>k + l = 2n                                                                       | $rac{1}{4}V^*$          | Ι                 |
| R                 | $\frac{\frac{1}{3}\mathbf{a}_c + \frac{2}{3}\mathbf{b}_c + \frac{2}{3}\mathbf{c}_c}{\frac{2}{3}\mathbf{a}_c + \frac{1}{3}\mathbf{b}_c + \frac{1}{3}\mathbf{c}_c}$                                                                            | 3 <i>V</i>             | -h+k+l=3n                                                                                                      | $\frac{1}{3}V^*$         | R                 |

Table 1.1.1.1. Direct and reciprocal lattices described with respect to conventional basis systems

$$V^* = a^* b^* c^* \sin \alpha \sin \beta^* \sin \gamma^*$$
  
=  $a^* b^* c^* \sin \alpha^* \sin \beta \sin \gamma^*$   
=  $a^* b^* c^* \sin \alpha^* \sin \beta^* \sin \gamma$ . (1.1.1.9)

#### 1.1.1.2. Non-primitive crystallographic bases

For certain lattice types, it is usual in crystallography to refer to a 'conventional' crystallographic basis  $\mathbf{a}_c$ ,  $\mathbf{b}_c$ ,  $\mathbf{c}_c$  instead of a primitive basis  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$ . In that case,  $\mathbf{a}_c$ ,  $\mathbf{b}_c$ , and  $\mathbf{c}_c$  with all their integral linear combinations are lattice vectors again, but there exist other lattice vectors  $\mathbf{t} \in \mathbf{L}$ ,

$$\mathbf{t} = t_1 \mathbf{a}_c + t_2 \mathbf{b}_c + t_3 \mathbf{c}_c$$

with at least two of the coefficients  $t_1$ ,  $t_2$ ,  $t_3$  being fractional.

Such a conventional basis defines a conventional or centred unit cell for a corresponding point lattice, the volume  $V_c$  of which may be calculated by analogy with V by substituting  $\mathbf{a}_c$ ,  $\mathbf{b}_c$ ,  $\mathbf{c}_c$  for  $\mathbf{a}$ ,  $\mathbf{b}$ , and  $\mathbf{c}$  in (1.1.1.1).

If *m* designates the number of centring lattice vectors **t** with  $0 \le t_1, t_2, t_3 < 1$ ,  $V_c$  may be expressed as a multiple of the primitive unit-cell volume *V*:

$$V_c = mV.$$
 (1.1.1.10)

With the aid of equations (1.1.1.2) and (1.1.1.3), the reciprocal basis  $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*$  may be derived from  $\mathbf{a}_c, \mathbf{b}_c, \mathbf{c}_c$ . Again, each reciprocal-lattice vector

$$\mathbf{r}^* = h\mathbf{a}_c^* + k\mathbf{b}_c^* + l\mathbf{c}_c^* \in \mathbf{L}^*$$

is an integral linear combination of the reciprocal basis vectors, but in contrast to the use of a primitive basis only certain triplets h, k, l refer to reciprocal-lattice vectors.

Equation (1.1.1.5) also relates  $V_c$  to  $V_c^*$ , the reciprocal cell volume referred to  $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*$ . From this it follows that

$$V_c^* = \frac{1}{m} V^*. \tag{1.1.1.11}$$

Table 1.1.1.1 contains detailed information on 'centred lattices' described with respect to conventional basis systems.

As a direct lattice and its corresponding reciprocal lattice do not necessarily belong to the same type of Bravais lattices [*IT* A (1987, Section 8.2.4)], the Bravais letter of  $\mathbf{L}^*$  is given in the last column of Table 1.1.1.1. Except for *P* lattices, a conventionally chosen basis for  $\mathbf{L}^*$  coincides neither with  $\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*$  nor with  $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*$ . This third basis, however, is not used in crystallography. The designation of scattering vectors and the indexing of Bragg reflections usually refers to  $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*$ .

If the differences with respect to the coefficients of direct- and reciprocal-lattice vectors are disregarded, all other relations discussed in Part 1 are equally true for primitive bases and for conventional bases.

#### **1.1.2.** Lattice vectors, point rows, and net planes

The length t of a vector  $\mathbf{t} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$  is given by

$$t^{2} = u^{2}\mathbf{a}^{2} + v^{2}\mathbf{b}^{2} + w^{2}\mathbf{c}^{2} + 2uvab\cos\gamma + 2uwac\cos\beta + 2vwbc\cos\alpha.$$
(1.1.2.1)

Accordingly, the length  $r^*$  of a reciprocal-lattice vector  $\mathbf{r}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$  may be calculated from

$$r^{*2} = h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2hka^* b^* \cos \gamma^* + 2hla^* c^* \cos \beta^* + 2klb^* c^* \cos \gamma^*.$$
(1.1.2.2)

If the coefficients u, v, w of a vector  $\mathbf{t} \in \mathbf{L}$  are coprime, [uvw] symbolizes the direction parallel to  $\mathbf{t}$ . In particular, [uvw] is used to designate a crystal edge, a zone axis, or a point row with that direction.

The integer coefficients h, k, l of a vector  $\mathbf{r}^* \in \mathbf{L}^*$  are also the coordinates of a point of the corresponding reciprocal lattice and designate the Bragg reflection with scattering vector  $\mathbf{r}^*$ . If h, k, l are coprime, the direction parallel to  $\mathbf{r}^*$  is symbolized by  $[hkl]^*$ .

Each vector  $\mathbf{r}^*$  is perpendicular to a family of equidistant parallel nets within a corresponding direct point lattice. If the coefficients h, k, l of  $\mathbf{r}^*$  are coprime, the symbol (hkl) describes that family of nets. The distance d(hkl) between two neighbouring nets is given by (2) Orthorhombic lattice with  $b = \sqrt{3}a$ : [310] is perpendicular to (110).

(i) *P* lattice (*cf.* Fig. 1.3.2.2): j = hu + kv + lw = 4 even i = |j|/2 = 2.

(ii) C lattice (cf. also Fig. 1.3.2.2): Because of the C centring, [310] has to be replaced by  $[\frac{3}{2}\frac{1}{2}0]$ . j = hu' + kv' + lw' = 2 even i = |j|/2 = 1.



- Fig. 1.3.2.2. Projection of the lattices of the twin components of an orthorhombic twinned crystal  $(oP, b = \sqrt{3}a)$  with twin index 2. The twin may be interpreted either as a rotation twin with twin axis [310] or as a reflection twin with twin plane (110). The figure shows, in addition, that twin index 1 results if the *oP* lattice is replaced by an *oC* lattice in this example (twinning by pseudomerohedry).
- (3) Orthorhombic C lattice with b = 2a: [210] is perpendicular to (120) (cf. Fig. 1.3.2.3).

As (120) refers to an 'extinct reflection' of a C lattice, the triplet 240 has to be used in the calculation.

$$j = h'u + k'v + l'w = 8$$
 even  
 $i = |j|/2 = 4.$ 



Fig. 1.3.2.3. Projection of the lattices of the twin components of an orthorhombic twinned crystal (oC, b = 2a) with twin index 4. The twin may be interpreted either as a rotation twin with twin axis [210] or as a reflection twin with twin plane (120).

(4) Rhombohedral lattice in hexagonal description with  $c = \frac{1}{2}\sqrt{3}a$ :  $[\bar{1}1\bar{2}]$  is perpendicular to  $(1\bar{1}1)$ . Because of the *R* centring,  $[\bar{1}1\bar{2}]$  has to be replaced by  $[\bar{\frac{1}{3}}\frac{\bar{2}}{3}]$ . As  $(1\bar{1}1)$  refers to an 'extinct reflection' of an *R* lattice, the triplet  $1\bar{1}1$  has to be replaced by  $3\bar{3}3$ . j = h'u' + k'v' + l'w' = -4 even i = |j|/2 = 2.

#### 1.3.3. Implication of twinning in reciprocal space

As shown above, the direct lattices of the components of any twin coincide in at least one row. The same is true for the corresponding reciprocal lattices. They coincide in all rows perpendicular to parallel net planes of the direct lattices.

For a reflection twin with twin plane (hkl), the reciprocal lattices of the twin components have only the lattice points with coefficients nh, nk, nl in common.

For a rotation twin with twofold twin axis [uvw], the reciprocal lattices of the twin components coincide in all points of the plane perpendicular to [uvw], *i.e.* in all points with coefficients h, k, l that fulfil the condition hu + kv + lw = 0.

For a rotation twin with irrational twin axis parallel to a net plane (hkl), only reciprocal-lattice points with coefficients nh, nk, nl are common to both twin components.

As the entire direct lattices of the two twin components coincide for an inversion twin, the same must be true for their reciprocal lattices.

For a reflection or rotation twin with a twin lattice of index i, the corresponding reciprocal lattices, too, have a sublattice with index i in common (*cf*. Fig. 1.3.2.1*b*). In analogy to direct space, the twin lattice in reciprocal space consists of each *i*th lattice plane parallel to the twin plane or perpendicular to the twin axis. If the twin index equals 1, the entire reciprocal lattices of the twin components coincide.

If for a reflection twin there exists only a lattice row [uvw] that is almost (but not exactly) perpendicular to the twin plane (hkl), then the lattices of the two twin components nearly coincide in a three-dimensional subset of lattice points. The corresponding misfit is described by the quantity  $\omega$ , the *twin obliquity*. It is the angle between the lattice row [uvw] and the direction perpendicular to the twin plane (hkl). In an analogous way, the twin obliquity  $\omega$  is defined for a rotation twin. If (hkl) is a net plane almost (but not exactly) perpendicular to the twin axis [uvw], then  $\omega$  is the angle between [uvw] and the direction perpendicular to (hkl).

#### 1.3.4. Twinning by merohedry

A twin is called a *twin by merohedry* if its twin operation belongs to the point group of its vector lattice, *i.e.* to the corresponding holohedry. As each lattice is centrosymmetric, an inversion twin is necessarily a twin by merohedry. Only crystals from merohedral (*i.e.* non-holohedral) point groups may form twins by merohedry; 159 out of the 230 types of space groups belong to merohedral point groups.

For a twin by merohedry, the vector lattices of all twin components coincide in direct *and* in reciprocal space. The twin index is 1. The maximal number of differently oriented twin components equals the subgroup index m of the point group of the crystal with respect to its holohedry.

Table 1.3.4.1 displays all possibilities for twinning by merohedry. For each holohedral point group (column 1), the types of Bravais lattices (column 2) and the corresponding merohedral point groups (column 3) are listed. Column 4 gives the subgroup index m of a merohedral point group in its

Any relp (*hkl*) lying in the region of reciprocal space between the  $1/\lambda_{max}$  and  $1/\lambda_{min}$  Ewald spheres and the resolution sphere  $1/d_{min}$  will diffract (the shaded area in Fig. 2.2.1.1). This region of reciprocal space is referred to as the accessible or stimulated region. Fig. 2.2.1.2 shows a predicted Laue pattern from a well



Fig. 2.2.1.1. Laue geometry. A polychromatic beam containing wavelengths  $\lambda_{\min}$  to  $\lambda_{\max}$  impinges on the crystal sample. The resolution sphere of radius  $d_{\max}^* = 1/d_{\min}$  is drawn centred at O, the origin of reciprocal space. Any reciprocal-lattice point falling in the shaded region is stimulated. In this diagram, the radius of each Ewald sphere uses the convention  $1/\lambda$ .



Fig. 2.2.1.2. A predicted Laue pattern of a protein crystal with a zone axis parallel to the incident, polychromatic X-ray beam. There is a pronounced blank region at the centre of the film (see Subsection 2.2.1.2). The spot marked N is one example of a nodal spot (see Subsection 2.2.1.4).

aligned protein crystal. For a description of the indexing of a Laue photograph, see Bragg (1928, pp. 28, 29).

For a Laue spot at a given  $\theta$ , only the ratio  $\lambda/d$  is determined, whether it is a single or a multiple relp component spot. If the unit-cell parameters are known from a monochromatic experiment, then a Laue spot at a given  $\theta$  yields  $\lambda$  since *d* is then known. Conversely, precise unit-cell lengths cannot be determined from a Laue pattern alone; methods are, however, being developed to determine these (see Carr, Cruickshank & Harding, 1992).

The maximum Bragg angle  $\theta_{max}$  is given by the equation

$$\theta_{\max} = \sin^{-1}(\lambda_{\max}/2d_{\min}).$$
 (2.2.1.2)

#### 2.2.1.2. Crystal setting

The main use of Laue photography has in the past been for adjustment of the crystal to a desired orientation. With smallmolecule crystals, the number of diffraction spots on a monochromatic photograph from a stationary crystal is very small. With unfiltered, polychromatic radiation, many more spots are observed and so the Laue photograph serves to give a better idea of the crystal orientation and setting prior to precession photography. With protein crystals, the monochromatic still is used for this purpose before data collection *via* an area detector. This is because the number of diffraction spots is large on a monochromatic still and in a protein-crystal Laue photograph the stimulated spots from the *Bremsstrahlung* continuum are generally very weak. Synchrotron-radiation Laue photographs of protein crystals can be recorded with short exposure times. These patterns consist of a large number of diffraction spots.

Crystal setting via Laue photography usually involves trying to direct the X-ray beam along a zone axis. Angular mis-setting angles  $\varepsilon$  in the spindle and arc are easily calculated from the formula

$$\varepsilon = \tan^{-1}(\Delta/D), \qquad (2.2.1.3)$$

where  $\Delta$  is the distance (resolved into vertical and horizontal) from the beam centre to the centre of a circle of spots defining a zone axis and *D* is the crystal-to-film distance.

After suitable angular correction to the sample orientation, the Laue photograph will show a pronounced blank region at the centre of the film (see Fig. 2.2.1.2). The radius of the blank region is determined by the minimum wavelength in the beam and the magnitude of the reciprocal-lattice spacing parallel to the X-ray beam (see Jeffery, 1958). For the case, for example, of the X-ray beam perpendicular to the  $a^*b^*$  plane, then

$$\lambda_{\min} = c(1 - \cos 2\theta), \qquad (2.2.1.4a)$$

where

$$2\theta = \tan^{-1}(R/D)$$
 (2.2.1.4b)

and *R* is the radius of the blank region (see Fig. 2.2.1.2), and *D* is the crystal-to-flat-film distance. If  $\lambda_{\min}$  is known then an approximate value of *c*, for example, can be estimated. The principal zone axes will give the largest radii for the central blank region.

#### 2.2.1.3. Single-order and multiple-order reflections

In Laue geometry, several relp's can occur in a Laue spot or ray. The number of relp's in a given spot is called the multiplicity of the spot. The number of spots of a given multiplicity can be plotted as a histogram. This is known as the multiplicity distribution. The form of this distribution is dependent on the ratio  $\lambda_{max}/\lambda_{min}$ . The multiplicity distribution in all measurements, and errors due to (b) and (c) vary with each specimen.

Ideally, the specimen should be in the form of a focusing torus because of the beam divergence in the equatorial and axial planes. The curvatures would have to vary continuously and differently during the scan and it is impracticable to make specimens in such forms. An approximation is to make the specimen in a flexible cylindrical form with the radius of curvature increasing with decreasing  $2\theta$  (Ogilvie, 1963). This requires a very thin specimen (thus reducing the intensity) to avoid cracking and surface irregularities, and also introduces background from the substrate. A compromise uses rigid curved specimens, which match the SFC (Fig. 2.3.1.3) at the smallest  $2\theta$  angle to be scanned, and this eliminates most of the aberration (Parrish, 1968). A major disadvantage of the curvature is that it is not possible to spin the specimen.

In practice, a flat specimen is almost always used. The specimen surface departs from the focusing circle by an amount h at a distance l/2 from the specimen centre:

$$h = R_{\rm FC} - [R_{\rm FC}^2 - (l^2/2)]^{1/2}.$$
 (2.3.1.11)

This causes a broadening of the low- $2\theta$  side of the profile and shifts the centroid  $\Delta 2\theta$  to lower  $2\theta$ :

$$\Delta 2\theta(\mathrm{rad}) = -\alpha^2 / (6\tan\theta). \qquad (2.3.1.12)$$

For  $\alpha = 1^{\circ}$  and  $2\theta = 20^{\circ}$ ,  $\Delta 2\theta = -0.016^{\circ}$ . The peak shift is about one-third as large as the centroid shift in the forwardreflection region. This aberration can be interpreted as a continuous series of specimen-surface displacements, which increase from 0 at the centre of the specimen to a maximum value at the ends. The effect increases with  $\alpha$  and decreasing  $2\theta$ . The profile distortion is magnified in the small  $2\theta$ -angle region where the axial divergence also increases and causes similar effects. Typical flat-specimen profiles are shown in Fig. 2.3.1.10(*c*) and computed centroid shifts in Fig. 2.3.1.10(*d*).

The specimen-transparency aberration is caused by diffraction from below the surface of the specimen which asymmetrically broadens the profile (Langford & Wilson, 1962). The peak and centroid are shifted to smaller  $2\theta$  as shown in Fig. 2.3.1.10(*e*). For the case of a thick absorbing specimen, the centroid is shifted

$$\Delta 2\theta(\text{rad}) = \sin 2\theta / 2\mu R \qquad (2.3.1.13)$$

and for a thin low-absorbing specimen

$$\Delta 2\theta(\mathrm{rad}) = t \cos \theta / R, \qquad (2.3.1.14)$$

where  $\mu$  is the effective linear absorption coefficient of the specimen used, *t* the thickness in cm, and *R* the diffractometer radius in cm. The intermediate absorption case is described by Wilson (1963). A plot of equation (2.3.1.13) for various values of  $\mu$  is given in Fig. 2.3.1.10(*f*). The effect varies with  $\sin 2\theta$  and is maximum at 90° and zero at 0° and 180°. For example, if  $\mu = 50 \text{ cm}^{-1}$ , the centroid shift is  $-0.033^{\circ}$  at 90° and falls to  $-0.012^{\circ}$  at  $20^{\circ}2\theta$ .

The observed intensity is reduced by absorption of the incident and diffracted beams in the specimen. The intensity loss is  $\exp(-2\mu/x_s \csc \theta)$ , where  $\mu$  is the linear absorption coefficient of the powder sample (it is almost always smaller than the solid material) and  $x_s$  is the distance below the surface, which may be equal to the thickness in the case of a thin film or low-absorbing material specimen. The thick (1 mm) specimen of LiF in Fig. 2.3.1.10(*e*) had twice the peak intensity of the thin (0.1 mm) specimen.

The aberration can be avoided by making the sample thin. However, the amount of incident-beam intensity contributing to the reflections could then vary with  $\theta$  because different amounts are transmitted through the sample and this may require corrections of the experimental data. Because the effective reflecting volume of low-absorbing specimens lies below the surface, care must be taken to avoid blocking part of the diffracted beam with the antiscatter slits or the specimen holder, particularly at small  $2\theta$ .

There are additional problems related to the specimen such as preferred orientation, particle size, and other factors; these are discussed in Section 2.3.3.



Fig. 2.3.1.9. (a) Effect of source size on profile shape, Cu  $K\alpha$ ,  $\alpha_{ES} 1^{\circ}$ ,  $\alpha_{RS} 0.05^{\circ}$ , Si(111).

| No. | Projected size (mm)     | FWHM ( $^{\circ}2\theta$ ) |
|-----|-------------------------|----------------------------|
| 1   | $1.6 \times 1.0$ (spot) | 0.31                       |
| 2   | $0.32 \times 10$ (line) | 0.11                       |
| 3   | $0.16 \times 10$ (line) | 0.13                       |
| 4   | $0.32 \times 12$ (line) | 0.17.                      |

Effect of receiving-slit aperture  $\alpha_{RS}$  on profiles of quartz (b) (100) and (c) (121); peak intensities normalized, Cu  $K\alpha$ ,  $\alpha_{ES}$  1°.

determination, and texture studies. These and other applications can be found in an annotated bibliography covering the period 1968–1978 (Laine & Lähteenmäki, 1980). The short counting time and the simultaneous recording of the diffraction spectrum permit the study of the kinetics of structural transformations in time frames of a few seconds or minutes.

Energy-dispersive powder diffraction has proved to be of great value for high-pressure structural studies in conjunction with synchrotron radiation. The brightness of the radiation source and the efficiency of the detector system permit the recording of a diffraction spectrum with satisfactory counting statistics in a reasonable time (100-1000 s) in spite of the extremely small sample volume  $(10^{-3}-10^{-5} \text{ mm}^3)$ . Reviews have been given by Buras & Gerward (1989) and Häusermann (1992). Recently, XED experiments have been performed at pressures above 400 GPa, and pressures near 1 TPa may be attainable in the near future (Ruoff, 1992). At this point, it should be mentioned that XED methods have limited resolution and generally give unreliable peak intensities. The situation has been transformed recently by the introduction of the image-plate area detector, which allows angle-dispersive, monochromatic methods to be used with greatly improved resolution and powder averaging (Nelmes & McMahon, 1994, and references therein).

# 2.5.2. White-beam and time-of-flight neutron diffraction (By J. D. Jorgensen, W. I. F. David, and B. T. M. Willis)

#### 2.5.2.1. Neutron single-crystal Laue diffraction

In traditional neutron-diffraction experiments, using a continuous source of neutrons from a nuclear reactor, a narrow wavelength band is selected from the wide spectrum of neutrons emerging from a moderator within the reactor. This monochromatization process is extremely inefficient in the utilization of the available neutron flux. If the requirement of discriminating between different orders of reflection is relaxed, then the entire white beam can be employed to contribute to the diffraction pattern and the count-rate may increase by several orders of magnitude. Further, by recording the scattered neutrons on photographic film or with a position-sensitive detector, it is possible to probe simultaneously many points in reciprocal space.

If the experiment is performed using a pulsed neutron beam, the different orders of a given reflection may be separated from one another by time-of-flight analysis. Consider a short polychromatic burst of neutrons produced within a moderator. The subsequent times-of-flight, t, of neutrons with differing wavelengths,  $\lambda$ , measured over a total flight path, L, may be discriminated one from another through the de Broglie relationship:

$$m_n(L/t) = h/\lambda, \qquad (2.5.2.1)$$

where  $m_n$  is the neutron mass and h is Planck's constant. Expressing t in microseconds, L in metres and  $\lambda$  in Å, equation (2.5.2.1) becomes

$$t = 252.7784 L\lambda$$
.

Inserting Bragg's law,  $\lambda = 2(d/n)\sin\theta$ , for the *n*th order of a fundamental reflection with spacing d in Å gives

$$t = (505.5568/n)Ld\sin\theta.$$
 (2.5.2.2)

Different orders may be measured simply by recording the time taken, following the release of the initial pulse from the moderator, for the neutron to travel to the sample and then to the detector.



Fig. 2.5.2.1.Construction in reciprocal space to illustrate the use of multi-wavelength radiation in single-crystal diffraction. The circles with radii  $k_{\text{max}} = 2\pi/\lambda_{\text{min}}$  and  $k_{\text{min}} = 2\pi/\lambda_{\text{max}}$  are drawn through the origin. All reciprocal-lattice points within the shaded area may be sampled by a linear position-sensitive detector spanning the scattering angles from  $2\theta_{\text{min}}$  to  $2\theta_{\text{max}}$ . With a position-sensitive area detector, a three-dimensional portion of reciprocal space may be examined (after Schultz, Srinivasan, Teller, Williams & Lukehart, 1984).

The origins of pulsed neutron diffraction can be traced back to the work of Lowde (1956) and of Buras, Mikke, Lebech & Leciejewicz (1965). Later developments are described by Turberfield (1970) and Windsor (1981). Although a pulsed beam may be produced at a nuclear reactor using a chopper, the major developments in pulsed neutron diffraction have been associated with pulsed sources derived from particle accelerators. Spallation neutron sources, which are based on proton synchrotrons, allow optimal use of the Laue method because the pulse duration and pulse repetition rate can be matched to the experimental requirements. The neutron Laue method is particularly useful for examining crystals in special environments, where the incident and scattered radiations must penetrate heat shields or other window materials. [A good example is the study of the incommensurate structure of  $\alpha$ -uranium at low temperature (Marmeggi & Delapalme, 1980).]

A typical time-of-flight single-crystal instrument has a large area detector. For a given setting of detector and sample, a threedimensional region is viewed in reciprocal space, as shown in Fig. 2.5.2.1. Thus, many Bragg reflections can be measured at the same time. For an ideally imperfect crystal, with volume  $V_s$ and unit-cell volume  $v_c$ , the number of neutrons of wavelength  $\lambda$ reflected at Bragg angle  $\theta$  by the planes with structure factor F is given by

$$N = i_0(\lambda)\lambda^4 V_s F^2 / (2v_c^2 \sin^2 \theta), \qquad (2.5.2.3)$$

where  $i_0(\lambda)$  is the number of incident neutrons per unit wavelength interval. In practice, the intensity in equation (2.5.2.3) must be corrected for wavelength-dependent factors, such as detector efficiency, sample absorption and extinction, and the contribution of thermal diffuse scattering. Jauch, Schultz & Schneider (1988) have shown that accurate structural data can be obtained using the single-crystal time-of-flight method despite the complexity of these wavelength-dependent corrections.

#### 2.5.2.2. Neutron time-of-flight powder diffraction

This technique, first developed by Buras & Leciejewicz (1964), has made a unique impact in the study of powders in confined environments such as high-pressure cells (Jorgensen &

scattering function because that leads to an increasing loss of essential information about the particle (monomer) itself.

#### 2.6.1.4. Polydisperse systems

In this subsection, we give a short survey of the problem of polydispersity. It is most important that there is no way to decide from small-angle scattering data whether the sample is mono- or polydisperse. Every data set can be evaluated in terms of monodisperse or polydisperse structures. Independent *a priori* information is necessary to make this decision. It has been shown analytically that a certain size distribution of spheres gives the same scattering function as a monodisperse ellipsoid with axes *a*, *b* and *c* (Mittelbach & Porod, 1962).

The scattering function of a polydisperse system is determined by the shape of the particles and by the size distribution. As mentioned above, we can assume a certain size distribution and can determine the shape, or, more frequently, we assume the shape and determine the size distribution. In order to do this we have to assume that the scattered intensity results from an ensemble of particles of the same shape whose size distribution can be described by  $D_n(R)$ , where R is a size parameter and  $D_n(R)$  denotes the number of particles of size R. Let us further assume that there are no interparticle interferences or multiple scattering effects. Then the scattering function I(h) is given by

$$I(h) = c_n \int_0^\infty D_n(R) R^6 i_0(hR) \,\mathrm{d}R, \qquad (2.6.1.54)$$

where  $c_n$  is a constant, the factor  $R^6$  takes into account the fact that the particle volume is proportional to  $R^3$ , and  $i_0(hR)$  is the normalized form factor of a particle size R. In many cases, one is interested in the mass distribution  $D_m(R)$  [sometimes called volume distribution  $D_c(R)$ ]. In this case, we have

$$I(h) = c_m \int_0^\infty D_m(R) R^3 i_0(hR) \, \mathrm{d}R. \qquad (2.6.1.55)$$

The solution of these integral equations, *i.e.* the computation of  $D_n(R)$  or  $D_m(R)$  from I(h), needs rather sophisticated numerical or analytical methods and will be discussed later.

The problems of interparticle interference and multiple scattering in the case of polydisperse systems cannot be described analytically and have not been investigated in detail up to now. In general, interference effects start to influence data from small-angle scattering experiments much earlier, *i.e.* at lower concentration, than multiple scattering. Multiple scattering becomes more important with increasing size and contrast and is therefore dominant in light-scattering experiments in higher concentrations.

A concentration series and extrapolation to zero concentration as in monodisperse systems should be performed to eliminate these effects.

#### 2.6.1.5. Instrumentation

X-ray sources are the same for small-angle scattering as for crystallographic experiments. One can use conventional generators with sealed tubes or rotating anodes for higher power. For the vast majority of applications, an X-ray tube with copper anode is used; the wavelength of its characteristic radiation (Cu  $K\alpha$  line) is 0.154 nm. Different anode materials emit X-rays of different characteristic wavelengths.

X-rays from synchrotrons or storage rings have a continuous wavelength distribution and the actual wavelength for the experiment is selected by a monochromator. The intensity is much higher than for any type of conventional source but synchrotron radiation is available only at a few places in the world. Reviews on synchrotron radiation and its application have been published during recent years (Stuhrmann, 1978; Holmes, 1982; Koch, 1988). In these reviews, one can also find some remarks on the general principles of the systems including cameras and special detectors.

#### 2.6.1.5.1. Small-angle cameras

General. In any small-angle scattering experiment, it is necessary to illuminate the sample with a well defined flux of X-rays. The ideal condition would be a parallel monochromatic beam of negligible dimension and very high intensity. These theoretical conditions can never be reached in practice (Pessen, Kumosinski & Timasheff, 1973). One of the main reasons is the fact that there are no lenses as in the visible range of electromagnetic radiation. The refractive index of all materials is equal to or very close to unity for X-rays. On the other hand, this fact has some important advantages. It is, for example, possible to use circular capillaries as sample holders without deflecting the beam. There are different ways of constructing a small-angle scattering system. Slit, pinhole, and block systems define a certain area where the X-rays can pass. Any slit or edge will give rise to secondary scattering (parasitic scattering). The special construction of the instrument has to provide at least a subspace in the detector plane (plane of registration) that is free from this parasitic scattering. The crucial point is of course to provide the conditions to measure at very small scattering angles.

The other possibility of building a small-angle scattering system is to use monochromator crystals and/or bent mirrors to select a narrow wavelength band from the radiation (important for synchrotron radiation) and to focus the X-ray beam to a narrow spot. These systems require slits in addition to eliminate stray radiation.

*Block collimation – Kratky camera*. The Kratky (1982*a*) collimation system consists of an entrance slit (edge) and two blocks – the *U*-shaped centre piece and a block called *bridge*. With this system, the problem of parasitic scattering can be largely removed for the upper half of the plane of registration and the smallest accessible scattering angle is defined by the size of the entrance slit (see Fig. 2.6.1.13). This system can be integrated in an evacuated housing (Kratky compact camera) and fixed on the top of the X-ray tube. It is widely used in many laboratories for different applications. In the Kratky system, the X-ray beam has a rectangular shape, the length being much larger than the width. Instrumental broadening can be corrected by special numerical routines. The advantage is a relatively high primary-beam intensity. The main disadvantage is that it cannot be used in special applications such as oriented systems where



Fig. 2.6.1.13. Schematic drawing of the block collimation (Kratky camera): E edge;  $B_1$  centre piece;  $B_2$  bridge; P primary-beam profile; PS primary-beam stop; PR plane of registration.

diffraction in CC'D'D will take the path shown by the heavy line in Fig. 2.7.2.4, simplifying the picture to the case of extreme confinement of energy flow to parallelism with the Bragg planes. At the X-ray exit surface DD', splitting into  $\mathbf{K}_0$  and  $\mathbf{K}_h$  beams occurs. A slit-less arrangement, as shown in the figure, may suffice. Then, when S is a point-like source of  $K\alpha$  radiation, and distance a is sufficiently large, films  $F_1$  and  $F_2$  will each record a pair of narrow images formed by the  $\alpha_1$  and  $\alpha_2$  wavelengths, respectively. A wider area of specimen can be imaged if a line focus rather than a point focus is placed at S (Barth & Hosemann, 1958), but then the  $\alpha_1$  and  $\alpha_2$  images will overlap. Under conditions of high anomalous transmission, defects in the crystal cause a reduction in transmitted intensity, which appears similarly in the  $\mathbf{K}_0$  and  $\mathbf{K}_h$  images. Thus, it is possible to gain intensity and improve resolution by recording both images superimposed on a film  $F_3$  placed in close proximity to the X-ray exit face DD' (Gerold & Meier, 1959).

#### 2.7.3. Double-crystal topography

The foregoing description of single-crystal techniques will have indicated that in order to gain greater sensitivity in orientation contrast there are required incident beams with closer collimation, and limitation of dispersion due to wavelength spread of the characteristic X-ray lines used. It suggests turning to prior reflection of the incident beam by a perfect crystal as a means of meeting these needs. Moreover, the application of crystalreflection-collimated radiation to probe angularly step by step as well as spatially point by point the intensity of Bragg reflection from the vicinity of an individual lattice defect such as a dislocation brings possibilities of new measurements beyond the scope provided by simply recording the local value of the integrated reflection. The X-ray optical principles of doublecrystal X-ray topography are basically those of the doublecrystal spectrometer (Compton & Allison, 1935). The properties of successive Bragg reflection by two or more crystals can be effectively displayed by a Du Mond diagram (Du Mond 1937), and such will now be applied to show how collimation and monochromatization result from successive reflection by two crystals, U and V, arranged as sketched in Fig. 2.7.3.1. They are in the dispersive, antiparallel, ++ setting, and are assumed to be identical perfect crystals set for the same symmetrical Bragg reflection. Only rays making the same glancing angle with both surfaces will be reflected by both U and V. For example, radiation of shorter wavelength reflected at a smaller glancing angle at U (the ray shown by the dashed line) will impinge at a larger glancing angle on V and not satisfy the Bragg condition. In this ++ setting, with a given angle  $\omega$  between the Bragg-



Fig. 2.7.2.4. Topographic techniques using anomalous transmission.

reflecting planes of each crystal,  $\theta_U + \theta_V = \omega$  and  $\Delta \theta_U = -\Delta \theta_V$ . The Du Mond diagram for the ++ setting, Fig. 2.7.3.2, shows plots of Bragg's law for each crystal, the V curve being a reflection of the U curve in a vertical mirror line and differing by  $\omega$  from the U curve in its coordinate of intersection with the axis of abscissa, in accord with the equations given above. The small angular range of reflection of a monochromatic ray by each perfect crystal is represented exaggeratedly by the band between the parallel curves. Where the band for crystal U superimposes on the band for V (the shaded area) defines semiquantitatively the divergence and wavelength spread in the rays successively reflected by U and V. (It is taken for granted that  $\frac{1}{2}\omega$  lies between the maximum and minimum incident glancing angles on U,  $\theta_{max}$  and  $\theta_{min}$ , afforded by the incident beam, assumed polychromatic.) The reflected beam from U alone contains wavelengths ranging from  $\lambda_{\min}$  to  $\lambda_{\max}$ . Comparison of these  $\theta$  and  $\lambda$  ranges with the extent of the shaded area illustrates the efficacy of the ++ arrangement in providing a collimated and monochromatic beam, which can be employed to probe the reflecting properties of a third crystal (Nakayama, Hashizume, Miyoshi, Kikuta & Kohra, 1973). Techniques employing three or more successive Bragg reflections find considerable application when used with synchrotron X-ray sources, and will be considered below, in Section 2.7.4.

The most commonly used arrangement for double-crystal topography is shown in Fig. 2.7.3.3, in which U is the 'reference' crystal, assumed perfect, and V is the specimen crystal under examination. Crystals U and V are in the parallel, '+-' setting, which is non-dispersive when the Bragg planes of U and V have the same (or closely similar) spacings. Before considering the Du Mond diagram for this arrangement, note that Bragg reflection at the reference crystal U is asymmetric, from planes inclined at angle  $\alpha$  to its surface. Asymmetric reflections have useful properties, discussed, for example, by Renninger (1961), Kohra (1972), Kuriyama & Boettinger (1976), and Boettinger, Burdette & Kuriyama (1979). The asymmetry factor, b, of magnitude  $|\mathbf{K}_0 \cdot \mathbf{n}/\mathbf{K}_h \cdot \mathbf{n}|$ ,  $\mathbf{n}$  being the



Fig. 2.7.3.1. Double-crystal ++ setting.



Fig. 2.7.3.2. Du Mond diagram for ++ setting in Fig. 2.7.3.1.

#### 2.9. NEUTRON REFLECTOMETRY

the wavelength resolution is determined by the monochromator, whereas the timing and moderator characteristics determine the wavelength resolution on a time-of-flight instrument. Although the second term in equation (2.9.5.1) is standard in scattering, it has a unique characteristic, in that the angular divergence of the reflected beam determines the resolution. This is the case because the sample is a  $\delta$ -function scatterer, so that the angle of the incident beam can be determined precisely by knowing the reflected angle (Hamilton, Hayter & Smith, 1994). For a more complete description of both types of neutron reflectometry instrumentation, see Russell (1990).

#### 2.9.6. Resolution in real space

From Fig. 2.9.2.3, the period  $\delta Q$  of the reflectivity oscillation (in the region where the Born approximation becomes valid, sufficiently far away from the critical angle) is inversely proportional to the thickness t of the film. That is,  $2\pi/(\delta Q) = t$ . Consequently, in order to be able to resolve reflectivity oscillations for a film of thickness t, the instrumental Q resolution  $\Delta Q$  [from equation (2.9.5.1)] must be approximately  $2\pi/t$  or smaller. With sufficiently good instrumental



Fig. 2.9.7.3. Co/Cu(111) spin-dependent reflectivities (top). Nuclear (Nb) and magnetic (Np) scattering densities (bottom). Also shown is the (constant) moment direction [after Schreyer *et al.* (1993)].

resolution, even the thickness of a film with non-abrupt interfaces can be accurately determined, as demonstrated by the hypothetical case depicted in Fig. 2.9.6.1 (where the instrumental resolution is taken to be perfect): an overall film-thickness difference of 2 Å (between 42 and 40 Å films) is clearly resolved at a Q of about 0.2 Å<sup>-1</sup>. In practice, differences even less than this can be distinguished. Note, however, that to 'see' more detailed features in the scattering-density profile (such as the oscillation on top of the plateau shown for the long-dash profile in the inset of Fig. 2.9.6.1), other than the overall film thickness, it can be necessary to make reflectivity measurements at values of Q corresponding to  $2\pi/(\text{characteristic dimension of the feature})$ .

#### 2.9.7. Applications of neutron reflectometry

#### 2.9.7.1. Self-diffusion

One of the simplest, yet powerful, examples of the use of neutron reflectivity is in the study of self-diffusion. Most techniques to measure diffusion coefficients rely on chemical and mechanical methods to measure density profiles after a sample



Fig. 2.9.7.4. (*a*) Measured neutron reflectivity for the Langmuir-Blodgett multilayer described in the text along with the fit. (*b*) Both corresponding neutron and X-ray scattering density profiles. The X-ray reflectivity is more sensitive to the high-Z barium in the head groups whereas the neutron reflectivity can distinguish mixing between adjacent hydrogenated and deuterated hydrocarbon tails [after Wiesler *et al.* (1995)].

#### 3.4. MOUNTING AND SETTING OF SPECIMENS FOR X-RAY CRYSTALLOGRAPHIC STUDIES

Table 3.4.1.1. Single-crystal and powder mounting, capillary tubes and other containers

| Material                                                                             | Temperature<br>range (K)  | Comments                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) Capillary tubes                                                                  |                           |                                                                                                                                                                                                                 |
| Glass<br>Lindemann glass<br>Vitreous silica                                          | <773<br><773<br><1373     | Lindemann glass scatters less, but is moisture<br>sensitive<br>Thinner walled tubes that are less sensitive to<br>atmospheric influences can be obtained using other<br>types of glass                          |
| Collodion<br>Polyvinyl methylal resin<br>( <i>e.g.</i> Formvar)<br>Cellulose acetate | 93 to 343<br><323<br><373 | These capillaries can be made by coating a copper<br>wire with a solution of the polymer in an appropriate<br>organic solvent. When dry, the metal core may be<br>removed by stretching, to reduce its diameter |
| Polyethylene                                                                         | < 373                     | Tubes may be drawn from the molten polymer using a glass tube and a slow stream of air. The polymer gives a distinct diffraction pattern                                                                        |
| (B) Other containers                                                                 |                           |                                                                                                                                                                                                                 |
| Gelatin capsules                                                                     | < 303                     | Vessels with very thin, $20\mu m$ , windows can be made                                                                                                                                                         |
| Methyl methacrylate resin ( <i>e.g.</i> Perspex)                                     | < 338                     |                                                                                                                                                                                                                 |
| Mica                                                                                 | < 1073                    | Mica windows useful in vessels for small-angle scattering, but the wall size is generally thicker, $\sim 0.3 \text{ mm}$ , and there are discrete lines at 10.00, 3.34 and 2.60 Å in the diffraction pattern    |
| Regenerated cellulose film ( <i>e.g.</i> cellophane)                                 | Ambient                   |                                                                                                                                                                                                                 |

For optimum results, tube diameters should be between 0.3 and 0.5 mm with wall thicknesses of 0.02 to 0.05 mm. The materials listed above, except where stated, give diffuse diffraction patterns. If necessary, control diffraction patterns, recorded only from the capillary or other container, should be taken.

(1993) have developed a mirror furnace working at up to 2300 K and suitable for polycrystalline or single-crystal samples.

A comprehensive account of cryogenic studies pertinent to both polycrystalline and single-crystal samples is given by Rudman (1976). Nieman, Evans, Heal & Powell (1984) have described a device for the preparation of low-temperature samples of noxious materials. The device is enclosed in a vanadium can and is therefore only suitable for neutron diffraction studies. Ihringer & Kuster (1993) have described a cryostat for powder diffraction, temperature range 8–300 K, for use on a synchrotron-radiation beam line at HASYLAB, Germany (Arnold *et al.*, 1989).

#### 3.4.1.3. Single crystals (small molecules)

#### 3.4.1.3.1. General

Small single crystals of inorganic and organic materials, suitable for intensity data collection, are normally glued to the end of a glass or vitreous silica fibre, or capillary (Denne, 1971b; Stout & Jensen, 1968). A simple device that fits onto a conventional microscope stage to facilitate the procedure of cementing a single crystal to a glass fibre has been constructed by Bretherton & Kennard (1976). The support is in turn fixed

to a metal pin that fits onto a goniometer head. For preliminary studies, plasticine or wax are useful fixatives, since it is then relatively easy to alter the orientation of the support, and hence the crystal, as required. For data-collection purposes, the support should be firmly fixed or glued to the goniometer head pin. The fibre should be sufficiently thin to minimize absorption effects but thick enough to form a rigid support. The length of the fibre is usually about 10 mm. Kennard (1994) has described a macroscope that allows specimens to be observed remotely during data collection and can also be used for measurement of crystal faces for absorption correction. Large specimens can be directly mounted onto a camera or onto a specially designed goniometer (Denne, 1971a; Shaham, 1982). A method using high-temperature diffusion to bond ductile single crystals to a metal backing, for strain-free mounting, has been described by Black, Burdette & Early (1986).

Prior to crystal mounting, it is always prudent to determine the nature of any spatial constraints that are applicable for the proposed experiment. Some diffractometers have relatively little translational flexibility, and the length of the fibre mount or capillary is critical. For some low-temperature devices where the cooling gas stream is coaxial with the specimen mount, the

#### 4.1.4. Special applications of X-rays, electrons, and neutrons

Special sources and/or special properties of these radiations are used in general crystallography.

#### 4.1.4.1. X-rays, synchrotron radiation, and $\gamma$ -rays

X-ray beams from *rotating-anode tubes* are approximately one hundred times more intensive than those from normal X-ray tubes. Laser plasma X-ray sources yield intensive nanosecond pulses of the line spectrum of nearly electron-free ions in the X-ray region with a spectral breadth of  $\Delta \lambda / \lambda \approx 10^{-3}$ . Several such pulses may be repeated per hour (Frankel & Forsyth, 1979). Synchrotron radiation is characterized by a continuous spectrum of wavelengths, high spectral flux, high intensity, high brightness, extreme collimation, sharp time structure (pulses with 30-200 ps length emitted in ns intervals), and nearly 100% polarization in the orbital plane (Kuntz, 1979; Bonse, 1980). Some of these properties are utilized in ordinary structure analysis: for example, fine tuning of the wavelength of synchrotron radiation for the solution of the phase problem by resonant scattering on chosen atomic species constituting the material under study. But these radiations also offer new advantages in other fields of crystallography, as, for example, in X-ray topography (Tanner & Bowen, 1980), in time-resolving studies (Bordas, 1980), in X-ray microscopy (Parsons, 1980), in studies of local atomic arrangements by extended X-ray absorption fine structure (XAFS) investigations (Lee, Citrin, Eisenberger & Kincaid, 1981) or studies of surface structures by X-ray photoemission spectroscopy (XPS) (Plummer & Eber-Array photoennission spectroscopy (ArS) (ritinher & Eber-hardt, 1982), *etc.*  $\gamma$ -*rays* emitted by radioactive sources such as <sup>198</sup>Au ( $t_{1/2} = 2.7 \text{ d}$ ), <sup>153</sup>Sm ( $t_{1/2} = 46.8 \text{ h}$ ), <sup>192</sup>Ir ( $t_{1/2} = 74.2 \text{ d}$ ) or <sup>137</sup>Cs ( $t_{1/2} = 29.9 \text{ a}$ ) are characterized by short wavelengths (typically hundreds of Å), by narrow spectral breadth ( $\Delta E \approx 10^{-8} \text{ eV}$ ,  $\Delta \lambda/\lambda \approx 10^{-6}$ ) and by relatively low beam intensity ( $\sim 10^8 - 10^9 \text{ m}^{-2} \text{ s}^{-1}$ ). They are mainly used for trudiag of the magning structure of single emisters. studies of the mosaic structure of single crystals (Schneider, 1983) or for the determination of charge density distribution (Hansen & Schneider, 1984). The typical absorption length of  $\sim$  1–4 cm and the increase of the extinction length by a factor of about 50 compared with ordinary X-rays are advantages utilized in these experiments.  $\gamma$ -rays also find applications in magnetic structure studies and in the determination of gradients of electric fields by Mössbauer diffraction and spectroscopy (Kuz'min, Kolpakov & Zhdanov, 1966).

For Compton scattering, see Sections 6.1.1 and 7.4.3.

#### 4.1.4.2. Electrons

Low-energy electrons (10–200 eV) have wavelengths near 1 Å and a penetration of a few Å below the surface of a crystal. Lowenergy electron diffraction (LEED) is thus used for the study of surface-layer structures (Ertl & Küppers, 1974). High-energy electrons are also currently used in electron microscopy in materials science. Under certain conditions, images of lattice planes with a resolution of 2 Å or better can be obtained. Transmission electron microscopy is also used for reconstruction of the three-dimensional structure of biological objects (such as viruses), alternatively in combination with X-ray diffraction (de Rossier & Klug, 1968).

#### 4.1.4.3. Neutrons

The most important application of neutron diffraction is found in studies of magnetic structures (Marshall & Lovesey, 1971). The magnetic moment of neutrons is equal to 1.913  $\mu_N$ , where  $\mu_N$  is the nuclear magneton, and neutrons have spin I = 1/2. They can thus interact with the magnetic moments of nuclei or with the magnetic moments of the electron shells with uncompensated spins. Changes in wavelength from 1 to 30 Å enable one to study non-uniformities of different sizes and structures of polymers and biological objects by the small-angle method. Inelastic scattering of neutrons is used for determining phonon-dispersion curves. Neutron topography and neutron texture diffraction can be utilized for the relatively large samples used in technological applications. The *pulsed spallation neutron sources* are used for high-resolution time-of-flight powder diffraction.

#### 4.1.5. Other radiations

#### 4.1.5.1. Atomic and molecular beams

Fast charged particles like protons, deuterons or He<sup>+</sup> ions show preferential penetration through crystals when the direction of incidence is almost parallel to the prominent planes or axes of the lattice. The reverse effect of this *channelling* is *shadowing* when the centres of emission of the fast charged particles are the atoms of the crystal themselves. These methods are, for example, used in studies of surface structures, lattice defects, orientation, thermal vibrations, atomic displacements, and concentration profiles (Feldman, Mayer & Picraux, 1982). Ion beams are also applied in special analytical methods like Rutherford backscattering (RBS), inelastic scattering, protoninduced X-ray analysis (PIX), *etc.* 

#### 4.1.5.2. Positrons and muons

These elementary particles are used in crystallography mainly in studies of lattice defects (vacancies, interstitials, and impurity atoms) for the determination of their concentration, location, and diffusion by means of the techniques such as positron annihilation spectroscopy (PAS) and muon spin resonance ( $\mu$ SR) – see, for example, Siegel (1980) and Gyax, Kündig & Meier (1979). The positron implantation range in a solid is  $\lesssim 100 \,\mu\text{m}$  from the positron sources usually used (*e.g.* <sup>22</sup>Na, <sup>64</sup>Cu, <sup>58</sup>Co); these sources yield positrons with end-point energies of  $\lesssim 1$  MeV. The PAS techniques are based on lifetime, Doppler broadening or angular correlation measurements of  $\gamma$ -rays emitted by the decaying nucleus of the radioactive source and those resulting from the positron-electron annihilation process. Muon sources require intense primary medium-energy proton beams. The positive muon  $\mu^+$  has charge +e, spin 1/2, mass 105.659 MeV/ $c^2$  and a magnetic moment equal to 1.001 of the muon-magneton units. With a mean lifetime of 2.197 µs, the muon decays into a positron (e<sup>+</sup>) and two neutrinos ( $\nu_e$  and  $\bar{\nu}_{\mu}$ ). The correlation between the direction of the emitted positron and the spin direction of the muon allows one to measure the spin precession frequency and/or the decay of the muon polarization of an ensemble of muons implanted in a solid.

#### 4.1.5.3. Infrared, visible, and ultraviolet light

Visible light is one of the oldest tools used by crystallographers for macroscopic symmetry determination, for orientation of crystals, and in metallographic microscopes for phase analysis. Infrared and Raman spectroscopy are highly complementary methods in the infrared and visible range of wavelengths, respectively. The information content available with the two techniques is determined by molecular symmetry and polarity. This information is utilized for the identification of molecules or structural groups [symmetric

#### 4.2. X-RAYS

### Table 4.2.2.1. K-series reference wavelengths in Å; bold numbers indicate a directly measured line

Numbers in parentheses are standard uncertainties in the least-significant figures.

| 2        | Symbol     | Α   | $K\alpha_2$                       | $K\alpha_1$                      | $K\beta_3$                      | $K\beta_1$                       | References         |
|----------|------------|-----|-----------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------|
| 12       | Mg         |     | 9.89153 (10)                      | 9.889554 (88)                    |                                 |                                  | (a)                |
| 13       | Al         |     | 8.341831 (58)                     | 8.339514 (58)                    |                                 |                                  | (a)                |
| 14       | Si         |     | 7.12801 (14)                      | 7.125588 (78)                    |                                 |                                  | (b)                |
| 16       | S          |     | 5.374960 (89)                     | 5.372200 (78)                    |                                 |                                  | (b)                |
| 17       | Cl         |     | 4.730693 (71)                     | 4.727818 (71)                    |                                 |                                  | (b)                |
| 18       | Ar         |     | 4.194939 (23)                     | 4.191938 (23)                    |                                 |                                  | (c)                |
| 19       | Κ          |     | 3.7443932 (68)                    | 3.7412838 (56)                   |                                 |                                  | (d)                |
| 24       | Cr         |     | 2.2936510 (30)                    | 2.2897260 (30)                   | 2.0848810 (40)                  | 2.0848810 (40)                   | <i>(e)</i>         |
| 25       | Mn         |     | 2.1058220 (30)                    | 2.1018540 (30)                   | 1.9102160 (40)                  | 1.9102160 (40)                   | <i>(e)</i>         |
| 26       | Fe         |     | 1.9399730 (30)                    | 1.9360410 (30)                   | 1.7566040 (40)                  | 1.7566040 (40)                   | <i>(e)</i>         |
| 27       | Co         |     | 1.7928350 (10)                    | 1.7889960 (10)                   | 1.6208260 (30)                  | 1.6208260 (30)                   | ( <i>e</i> )       |
| 28       | Ni         |     | 1.6617560 (10)                    | 1.6579300 (10)                   | 1.5001520 (30)                  | 1.5001520 (30)                   | ( <i>e</i> )       |
| 29       | Cu         |     | 1.54442740 (50)                   | 1.54059290 (50)                  | 1.3922340 (60)                  | 1.3922340 (60)                   | ( <i>e</i> )       |
| 31       | Ga         |     | 1.3440260 (40)                    | 1.3401270 (96)                   | 1.208390 (75)                   | 1.207930 (34)                    | (b),(f)            |
| 33       | As         |     | 1.108830 (31)                     | 1.104780 (12)                    | 0.992689 (79)                   | 0.992189 (53)                    | (b),(f)            |
| 34       | Se         |     | 1.043836 (30)                     | 1.039756 (30)                    | 0.933284 (74)                   | 0.932804 (30)                    | (b),(f)            |
| 36       | Kr         |     | 0.9843590 (44)                    | 0.9802670 (40)                   | 0.8790110 (70)                  | 0.8785220 (50)                   | <i>(b)</i>         |
| 40       | Zr         |     | 0.7901790 (25)                    | 0.7859579 (27)                   | 0.7023554 (30)                  | 0.7018008 (30)                   | <i>(b)</i>         |
| 42       | Mo         |     | 0.713607 (12)                     | 0.70931715 (41)                  | 0.632887 (13)                   | 0.632303 (13)                    | (d),(f)            |
| 44       | Ru         |     | 0.6474205 (61)                    | 0.6430994 (61)                   | 0.5730816 (42)                  | 0.5724966 (42)                   | (d),(f)            |
| 45       | Rh         |     | 0.6176458 (61)                    | 0.6132937 (61)                   | 0.5462139 (42)                  | 0.5456189 (42)                   | (d),(f)            |
| 46       | Pd         |     | 0.5898351 (60)                    | 0.5854639 (46)                   | 0.5211363 (41)                  | 0.5205333 (41)                   | (d),(f)            |
| 47       | Ag         |     | 0.5638131 (26)                    | 0.55942178 (76)                  | 0.4976977 (60)                  | 0.4970817 (60)                   | (d),(f)            |
| 48       | Cd         |     | 0.5394358 (46)                    | 0.5350147 (46)                   | 0.4757401 (71)                  | 0.4751181 (71)                   | (d),(f)            |
| 49       | In         |     | 0.5165572 (60)                    | 0.5121251 (46)                   | 0.4551966 (41)                  | 0.4545616 (41)                   | (d),(f)            |
| 50       | Sn         |     | 0.4950646 (46)                    | 0.4906115 (46)                   | 0.4358821 (51)                  | 0.4352421 (51)                   | (d),(f)            |
| 51       | Sb         |     | 0.4748391 (45)                    | 0.4703700 (45)                   | 0.417/477 (41)                  | 0.4170966 (31)                   | (d),(f)            |
| 54       | Xe         |     | 0.42088103(71)                    | 0.4163508 (14)                   | 0.3694051 (13)                  | 0.368/346 (13)                   | (d)                |
| 56       | Ba         |     | 0.38968378 (74)                   | 0.38512464 (84)                  | 0.3415228 (11)                  | 0.34082708 (75)                  | (d)                |
| 60       | Nd<br>Sm   |     | 0.3248079 (59)                    | 0.3201048 (59)                   | 0.283034(39)                    | 0.282904 (44)                    | (d),(f)            |
| 02<br>67 | SII        |     | 0.31309830(79)                    | 0.30904300 (40)                  | 0.273704(30)                    | 0.273014(30)<br>0.220124(20)     | (a),(f)            |
| 67       | H0<br>En   |     | 0.20349000 (04)<br>0.2571133 (11) | 0.2007008(42)<br>0.25237350(62)  | 0.230834(30)                    | 0.230124(30)                     | (j),(g)            |
| 60       | El<br>Tm   |     | 0.2571155(11)<br>0.24010005(61)   | 0.25257559(02)<br>0.24424486(44) | 0.2234700(14)<br>0.216366(20)   | 0.22209800(72)<br>0.21550182(57) | (a)                |
| 74       | W          |     | 0.24910095(01)<br>0.21383304(50)  | 0.24434400 (44)                  | 0.210300(30)<br>0.18518317(70)  | 0.2133762(37)<br>0.1843768(30)   | (f),(n)<br>(d) (f) |
| 74       | VV<br>A 11 |     | 0.21383304 (30)                   | 0.20901314 (18)                  | 0.16516517 (70)                 | 0.1843708 (30)                   | (a),(j)            |
| 82       | Ph         |     | 0.10307004 (01)                   | 0.16019760 (47)                  | 0.1398249 (13)                  | 0.13899327 (77)                  | (a)                |
| 83       | Bi         |     | 0.17029527(50)<br>0.1657183(20)   | 0.1607903 (46)                   | 0.1400122 (10)<br>0.142780 (11) | 0.14390030(30)<br>0.1419492(54)  | (f)                |
| 90       | Th         | 230 | 0.1037103 (20)                    | 0.1007203 (40)                   | 0.142766 (11)                   | 0.1419492 (34)                   | (f),(g)            |
| 91       | Pa         | 231 | 0.13732000(91)<br>0.1343516(29)   | 0.1293302(27)                    | 0.1152427(21)                   | 0.11/40735(3)                    | (i)                |
| 92       | U          | 238 | 0.13099111(78)                    | 0.12595977 (36)                  | 0.11228858 (66)                 | 0.11140132 (65)                  | (d)                |
| 93       | Np         | 237 | 0.1277287 (39)                    | 0.1226882 (36)                   | 0.1094230 (39)                  | 0.1085265 (28)                   | ( <i>i</i> )       |
| 94       | Pu         | 239 | 0.1245782 (15)                    | 0.11952120 (69)                  | (**)                            |                                  | (h)                |
| 94       | Pu         | 244 | 0.1245705 (25)                    | 0.1195140 (23)                   | 0.1066611 (18)                  | 0.1057595 (18)                   | ( <i>i</i> )       |
| 95       | Am         | 243 | 0.1215158 (24)                    | 0.1164463 (33)                   | 0.1039794 (17)                  | 0.1030803 (17)                   | (i)                |
| 96       | Cm         | 248 | 0.1185427 (23)                    | 0.1134635 (21)                   | 0.1013753 (17)                  | 0.1004708 (16)                   | (i)                |
| 97       | Bk         | 249 | 0.1156630 (54)                    | 0.1105745 (49)                   | 0.0988598 (55)                  | 0.0979514 (54)                   | (i)                |
| 98       | Cf         | 250 | 0.1128799 (82)                    | 0.1077793 (75)                   |                                 |                                  | <i>(i)</i>         |

References: (a) Schweppe et al. (1994); (b) Mooney (1996); (c) Schweppe (1995); (d) Deslattes & Kessler (1985); (e) Hölzer et al. (1997); (f) Bearden (1967); (g) Borchert, Hansen, Jonson, Ravn & Desclaux (1980); (h) Borchert (1976); (i) Barreau, Börner, Egidy & Hoff (1982).

theoretical framework (see below) has been undertaken and will be made available in the longer publication and on the web site.

The feature of absorption spectra customarily designated as 'the absorption edge' has been variously associated with: the first inflection point of the absorption spectrum; the energy needed to produce a single inner vacancy with the photo-electron 'at rest at infinity'; or the energy needed to remove an electron from an inner shell and place it in the lowest unoccupied energy level. A general discussion of this question has been given by Parratt (1959). If we choose the second alternative, then it is easy to see that, with some care for symmetry restrictions, one can estimate the absorption-edge energy by combining the binding energy for any accessible outer shell with the energy of an emission line for which the transition terminus lies in the same outer shell. Of course, this procedure does not focus on the details of absorption thresholds, the locations of which are important for a number of structural applications. On the other hand, our choice gives greater regularity with respect to nuclear charge and facilitates use of electron binding energies, since they are referenced to the Fermi energy or the vacuum.

Electron binding energies have been tabulated for the principal electron shells of all the elements considered in the present table (Fuggle, Burr, Watson, Fabian & Lang, 1974; Cardona & Ley, 1978; Nyholm, Berndtsson & Mårtensson,

4.2. X-RAYS Table 4.2.4.3. Mass attenuation coefficients ( $cm^2 g^{-1}$ ) (cont.)

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy                                                                                                                                                                                                                                                                                                                         | 49                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53                                                                                                                                                                                                                                                                                                                                                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (MeV)                                                                                                                                                                                                                                                                                                                          | Indium                                                                                                                                                                                                                                                                                                                             | Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tellurium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iodine                                                                                                                                                                                                                                                                                                                                                | Xenon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caesium                                                                                                                                                                                                                                                                                                                                                               | Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A KO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1.10 ( ))                                                                                                                                                                                                                                                                                                                     | 1 125 - 01                                                                                                                                                                                                                                                                                                                         | 1 105 + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.055 + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000 + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 405 + 01                                                                                                                                                                                                                                                                                                                                            | 1 4(E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5(1.01                                                                                                                                                                                                                                                                                                                                                              | 1 (25 + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ag $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.494E-02                                                                                                                                                                                                                                                                                                                      | 1.13E+01                                                                                                                                                                                                                                                                                                                           | 1.18E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.25E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.29E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.40E \pm 01$                                                                                                                                                                                                                                                                                                                                        | $1.46E \pm 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.56E + 01                                                                                                                                                                                                                                                                                                                                                            | 1.62E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pd $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.382E-02                                                                                                                                                                                                                                                                                                                      | 1.2/E+01                                                                                                                                                                                                                                                                                                                           | 1.34E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.41E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.46E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.59E+01                                                                                                                                                                                                                                                                                                                                              | 1.65E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.76E+01                                                                                                                                                                                                                                                                                                                                                              | 1.83E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rh $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.272E-02                                                                                                                                                                                                                                                                                                                      | 1.45E + 01                                                                                                                                                                                                                                                                                                                         | 1.52E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.60E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.66E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.80E + 01                                                                                                                                                                                                                                                                                                                                            | 1.88E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00E + 01                                                                                                                                                                                                                                                                                                                                                            | 2.08E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.210E - 02                                                                                                                                                                                                                                                                                                                    | 1.56E + 01                                                                                                                                                                                                                                                                                                                         | 1.64E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.73E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.79E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.94E + 01                                                                                                                                                                                                                                                                                                                                            | 2.02E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.15E + 01                                                                                                                                                                                                                                                                                                                                                            | 2.24E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pd Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.112E - 02                                                                                                                                                                                                                                                                                                                    | 1.76E + 01                                                                                                                                                                                                                                                                                                                         | 1.85E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.02E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.19E + 01                                                                                                                                                                                                                                                                                                                                            | 2.29E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.43E + 01                                                                                                                                                                                                                                                                                                                                                            | 2.54E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rh Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.017E - 02                                                                                                                                                                                                                                                                                                                    | 2.00E + 01                                                                                                                                                                                                                                                                                                                         | 2.10E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.22E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.29E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.18E + 01                                                                                                                                                                                                                                                                                                                                            | 2.27E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.42E + 01                                                                                                                                                                                                                                                                                                                                                            | 2.52E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mo $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.961E-02                                                                                                                                                                                                                                                                                                                      | 2.16E + 01                                                                                                                                                                                                                                                                                                                         | 2.26E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.39E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.47E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.68E + 01                                                                                                                                                                                                                                                                                                                                            | 2.80E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.98E + 01                                                                                                                                                                                                                                                                                                                                                            | 3.10E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mo $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.744E - 02                                                                                                                                                                                                                                                                                                                    | 2.95E + 01                                                                                                                                                                                                                                                                                                                         | 3.10E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.27E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.38E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.67E+01                                                                                                                                                                                                                                                                                                                                              | 3.82E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.07E + 01                                                                                                                                                                                                                                                                                                                                                            | 4.23E + 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $Zn K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.572E-03                                                                                                                                                                                                                                                                                                                      | $1.48E \pm 02$                                                                                                                                                                                                                                                                                                                     | 1.55E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.64E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.68E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.82E + 02                                                                                                                                                                                                                                                                                                                                            | 1.90E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.01E + 02                                                                                                                                                                                                                                                                                                                                                            | 2.09E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_{11} K_{\beta_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 905E-03                                                                                                                                                                                                                                                                                                                      | $1.80E \pm 02$                                                                                                                                                                                                                                                                                                                     | $1.88E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.98E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.04E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.20E \pm 02$                                                                                                                                                                                                                                                                                                                                        | $2.29E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.43E \pm 02$                                                                                                                                                                                                                                                                                                                                                        | 2.52E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Zn K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.631E - 03                                                                                                                                                                                                                                                                                                                    | 1.002 + 02<br>1.95E+02                                                                                                                                                                                                                                                                                                             | 2.04E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.15E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.012 + 02<br>2.21E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.202 + 02<br>2.39E+02                                                                                                                                                                                                                                                                                                                                | 2.29E+02<br>2.49E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.132 + 02<br>2.63E+02                                                                                                                                                                                                                                                                                                                                                | 2.32E + 02<br>2.73E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Mi K\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 265E 03                                                                                                                                                                                                                                                                                                                      | 1.55E + 02<br>2 10E $\pm 02$                                                                                                                                                                                                                                                                                                       | 2.04L + 02<br>$2.06 \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.13E + 02<br>$2.41E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.212 + 02<br>$2.48E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.55E + 02<br>2.68E $\pm 02$                                                                                                                                                                                                                                                                                                                          | 2.492+02<br>2.78E $\pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.05E + 02<br>2.05E + 02                                                                                                                                                                                                                                                                                                                                              | 2.75E + 02<br>$3.06E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Gamma \mathbf{N} \mathbf{K} \rho_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.20JE-03                                                                                                                                                                                                                                                                                                                      | $2.19E \pm 02$                                                                                                                                                                                                                                                                                                                     | $2.29E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.41E \pm 02$<br>2.50E ± 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.40 \pm 02$<br>2.67 \pm 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.08E \pm 02$                                                                                                                                                                                                                                                                                                                                        | $2.78E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.93E \pm 02$<br>2.17E ± 02                                                                                                                                                                                                                                                                                                                                          | $3.00E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Cu K\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.041E - 03                                                                                                                                                                                                                                                                                                                    | $2.50E \pm 02$                                                                                                                                                                                                                                                                                                                     | $2.47E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.39E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.07E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.00E \pm 02$                                                                                                                                                                                                                                                                                                                                        | $2.99E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.17E \pm 02$                                                                                                                                                                                                                                                                                                                                                        | $3.23E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CO K \rho_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.049E-03                                                                                                                                                                                                                                                                                                                      | $2.09E \pm 02$                                                                                                                                                                                                                                                                                                                     | $2.81E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.96E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.04E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.30E + 02                                                                                                                                                                                                                                                                                                                                            | $3.43E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.03E + 02                                                                                                                                                                                                                                                                                                                                                            | 3.76E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N1 $K\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.472E-03                                                                                                                                                                                                                                                                                                                      | 2.86E + 02                                                                                                                                                                                                                                                                                                                         | 2.99E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.14E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.23E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.49E + 02                                                                                                                                                                                                                                                                                                                                            | 3.62E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.83E+02                                                                                                                                                                                                                                                                                                                                                              | 3.96E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fe $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.058E-03                                                                                                                                                                                                                                                                                                                      | 3.32E+02                                                                                                                                                                                                                                                                                                                           | 3.4/E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.65E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.74E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.08E + 02                                                                                                                                                                                                                                                                                                                                            | 4.22E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.46E + 02                                                                                                                                                                                                                                                                                                                                                            | 4.61E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Co Κα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.925E - 03                                                                                                                                                                                                                                                                                                                    | 3.49E + 02                                                                                                                                                                                                                                                                                                                         | 3.64E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.83E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.94E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.25E + 02                                                                                                                                                                                                                                                                                                                                            | 4.40E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.65E + 02                                                                                                                                                                                                                                                                                                                                                            | 4.80E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mn $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.490E-03                                                                                                                                                                                                                                                                                                                      | 4.13E + 02                                                                                                                                                                                                                                                                                                                         | 4.31E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.54E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.66E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.03E + 02                                                                                                                                                                                                                                                                                                                                            | 5.20E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.49E + 02                                                                                                                                                                                                                                                                                                                                                            | 5.66E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fe Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.400E-03                                                                                                                                                                                                                                                                                                                      | 4.28E + 02                                                                                                                                                                                                                                                                                                                         | 4.47E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.71E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.83E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.22E + 02                                                                                                                                                                                                                                                                                                                                            | 5.40E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.69E + 02                                                                                                                                                                                                                                                                                                                                                            | 5.86E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\operatorname{Cr} K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.947E-03                                                                                                                                                                                                                                                                                                                      | 5.19E + 02                                                                                                                                                                                                                                                                                                                         | 5.42E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.70E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.85E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.31E + 02                                                                                                                                                                                                                                                                                                                                            | 6.52E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.86E + 02                                                                                                                                                                                                                                                                                                                                                            | 6.45E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mn Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.895E-03                                                                                                                                                                                                                                                                                                                      | 5.31E + 02                                                                                                                                                                                                                                                                                                                         | 5.54E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.82E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.98E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.45E + 02                                                                                                                                                                                                                                                                                                                                            | 6.66E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.00E + 02                                                                                                                                                                                                                                                                                                                                                            | 6.60E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cr Kā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.412E-03                                                                                                                                                                                                                                                                                                                      | 6.63E + 02                                                                                                                                                                                                                                                                                                                         | 6.91E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.23E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.40E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.96E + 02                                                                                                                                                                                                                                                                                                                                            | 7.21E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.60E + 02                                                                                                                                                                                                                                                                                                                                                            | 5.70E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ti <i>Kβ</i> <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.932E-03                                                                                                                                                                                                                                                                                                                      | 8.41E + 02                                                                                                                                                                                                                                                                                                                         | 8.76E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.15E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.32E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00E + 03                                                                                                                                                                                                                                                                                                                                            | 1.03E + 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.60E + 02                                                                                                                                                                                                                                                                                                                                                            | 3.14E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ti $K\bar{\alpha}^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.509E - 03                                                                                                                                                                                                                                                                                                                    | $1.05E \pm 03$                                                                                                                                                                                                                                                                                                                     | 1.09E + 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.91E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.51E + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.83E + 02                                                                                                                                                                                                                                                                                                                                            | $2.65E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.30E + 02                                                                                                                                                                                                                                                                                                                                                            | $3.34E \pm 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                | 57                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                | 57<br>Lanthanum                                                                                                                                                                                                                                                                                                                    | 58<br>Cerium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>Praseodymium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium                                                                                                                                                                                                                                                                                                                                      | 62<br>Samarium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium                                                                                                                                                                                                                                                                                                                                                        | 64<br>Gadalinium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                | 57<br>Lanthanum                                                                                                                                                                                                                                                                                                                    | 58<br>Cerium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>Praseodymium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium                                                                                                                                                                                                                                                                                                                                      | 62<br>Samarium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium                                                                                                                                                                                                                                                                                                                                                        | 64<br>Gadolinium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ag $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.494E-02                                                                                                                                                                                                                                                                                                                      | 57<br>Lanthanum<br>1.72E+01                                                                                                                                                                                                                                                                                                        | 58<br>Cerium<br>1.83E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59<br>Praseodymium<br>1.95E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>Neodymium<br>2.04E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61<br>Promethium<br>2.17E+01                                                                                                                                                                                                                                                                                                                          | 62<br>Samarium<br>2.23E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01                                                                                                                                                                                                                                                                                                                                            | 64<br>Gadolinium<br>2.42E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ag $K\beta_1$<br>Pd $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.494E-02<br>2.382E-02                                                                                                                                                                                                                                                                                                         | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01                                                                                                                                                                                                                                                                                            | 58<br>Cerium<br>1.83E+01<br>2.07E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>Neodymium<br>2.04E+01<br>2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01                                                                                                                                                                                                                                                                                                              | 62<br>Samarium<br>2.23E+01<br>2.52E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>Europium<br>2.35E+01<br>2.66E+01                                                                                                                                                                                                                                                                                                                                | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.494E-02<br>2.382E-02<br>2.272E-02                                                                                                                                                                                                                                                                                            | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01                                                                                                                                                                                                                                                                                | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01                                                                                                                                                                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01                                                                                                                                                                                                                                                                                                                    | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02                                                                                                                                                                                                                                                                               | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01                                                                                                                                                                                                                                                                    | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01                                                                                                                                                                                                                                                                                      | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01                                                                                                                                                                                                                                                                                                        | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02                                                                                                                                                                                                                                                                  | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01                                                                                                                                                                                                                                                        | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01<br>2.86E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01<br>3.18E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01                                                                                                                                                                                                                                                                          | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01                                                                                                                                                                                                                                                                                            | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02                                                                                                                                                                                                                                                     | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01                                                                                                                                                                                                                                            | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01<br>2.86E+01<br>3.24E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01<br>3.18E+01<br>3.60E+01                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.83E+01                                                                                                                                                                                                                                                              | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01                                                                                                                                                                                                                                                                                | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02                                                                                                                                                                                                                                        | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01                                                                                                                                                                                                                                | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01<br>2.86E+01<br>3.24E+01<br>3.49E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.83E+01<br>4.13E+01                                                                                                                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01                                                                                                                                                                                                                                                                    | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02                                                                                                                                                                                                                           | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01                                                                                                                                                                                                                    | $58 \\ Cerium \\ 1.83E+01 \\ 2.07E+01 \\ 2.35E+01 \\ 2.53E+01 \\ 2.86E+01 \\ 3.24E+01 \\ 3.49E+01 \\ 4.77E+01 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>3.38E+01<br>3.83E+01<br>4.13E+01<br>5.63E+01                                                                                                                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01                                                                                                                                                                                                                                                        | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03                                                                                                                                                                                                              | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02                                                                                                                                                                                                        | $58 \\ Cerium \\ 1.83E+01 \\ 2.07E+01 \\ 2.35E+01 \\ 2.53E+01 \\ 2.86E+01 \\ 3.24E+01 \\ 3.49E+01 \\ 4.77E+01 \\ 2.33E+02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02                                                                                                                                                                                                                                      | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02                                                                                                                                                                                                                                            | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03                                                                                                                                                                                                 | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02                                                                                                                                                                                            | $58 \\ Cerium \\ 1.83E+01 \\ 2.07E+01 \\ 2.35E+01 \\ 2.53E+01 \\ 2.86E+01 \\ 3.24E+01 \\ 3.49E+01 \\ 4.77E+01 \\ 2.33E+02 \\ 2.82E+02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02                                                                                                                                                                                                                          | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02                                                                                                                                                                                                                                | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Zn $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03                                                                                                                                                                                    | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>3.05E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02                                                                                                                                                                                | $58 \\ Cerium \\ 1.83E+01 \\ 2.07E+01 \\ 2.35E+01 \\ 2.53E+01 \\ 2.86E+01 \\ 3.24E+01 \\ 3.49E+01 \\ 4.77E+01 \\ 2.33E+02 \\ 2.82E+02 \\ 3.06E+02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.83E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02                                                                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02                                                                                                                                                                                                                    | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Zn $K\overline{\alpha}$<br>Ni $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.265E-03                                                                                                                                                                       | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>3.05E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02                                                                                                                                                                    | $\begin{array}{r} 58 \\ Cerium \\ \hline 1.83E+01 \\ 2.07E+01 \\ 2.35E+01 \\ 2.53E+01 \\ 2.86E+01 \\ 3.24E+01 \\ 3.24E+01 \\ 3.49E+01 \\ 4.77E+01 \\ 2.32E+02 \\ 2.82E+02 \\ 3.06E+02 \\ 3.43E+02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02                                                                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02                                                                                                                                                                                      | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02<br>4.05E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02                                                                                                                                                                                                        | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02<br>4.33E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Zn $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.265E-03<br>8.041E-03                                                                                                                                                          | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.24E+02                                                                                                                                                        | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01<br>2.86E+01<br>3.24E+01<br>3.49E+01<br>4.77E+01<br>2.33E+02<br>2.82E+02<br>3.06E+02<br>3.68E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02                                                                                                                                                                                                                                                                                                                                                                      | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02                                                                                                                                                                          | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.48E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02<br>4.05E+02<br>4.34E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02                                                                                                                                                                                            | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02<br>4.33E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Zn $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.265E-03<br>8.041E-03<br>7.649E-03                                                                                                                                             | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.48E+02<br>3.95E+02                                                                                                                                            | 58<br>Cerium<br>1.83E+01<br>2.07E+01<br>2.35E+01<br>2.53E+01<br>3.24E+01<br>3.24E+01<br>3.49E+01<br>4.77E+01<br>2.33E+02<br>2.82E+02<br>3.06E+02<br>3.68E+02<br>3.68E+02<br>4.17E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>3.04E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02                                                                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.26E+02                                                                                                                                                                          | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02<br>4.05E+02<br>4.34E+02<br>3.54E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02<br>4.84E+02                                                                                                                                                                                | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02<br>4.33E+02<br>4.03E+02<br>3.35E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.265E-03<br>8.041E-03<br>7.649E-03<br>7.472E-03                                                                                                                                | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.48E+02<br>3.95E+02<br>4.19E+02                                                                                                                                | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.43E+02\\ 3.68E+02\\ 3.68E+02\\ 4.17E+02\\ 4.17E+02\\ 4.26E+02\\ 3.68E+02\\ 4.17E+02\\ 4.26E+02\\ 3.68E+02\\ 3.68E+0$ | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02                                                                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.63E+02<br>4.05E+02<br>4.34E+02<br>3.54E+02<br>3.54E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02<br>4.34E+02<br>2.5E+02<br>3.75E+02                                                                                                                                                         | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02<br>4.33E+02<br>4.03E+02<br>3.35E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Co $K\beta_1$<br>Ni $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.631E-03<br>8.041E-03<br>7.649E-03<br>7.649E-03<br>7.649E-03<br>7.65E-03                                                                                                       | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.48E+02<br>3.95E+02<br>4.19E+02<br>4.82E+02                                                                                                                    | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.43E+02\\ 3.68E+02\\ 4.17E+02\\ 4.17E+02\\ 5.10E+02\\ 5.10E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>3.04E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02<br>4.68E+02<br>5 200E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>4.04E+02<br>4.57E+02<br>4.84E+02<br>4.84E+02                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02<br>5.92E+02                                                                                                                                                  | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02<br>4.05E+02<br>4.34E+02<br>3.54E+02<br>3.54E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02<br>4.80E+02<br>3.75E+02<br>4.02E+02                                                                                                                                                        | 64<br>Gadolinium<br>2.42E+01<br>2.74E+01<br>3.10E+01<br>3.34E+01<br>3.77E+01<br>4.27E+01<br>4.60E+01<br>6.26E+01<br>3.00E+02<br>3.60E+02<br>3.89E+02<br>4.33E+02<br>4.03E+02<br>3.35E+02<br>3.56E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Ni $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.631E-03<br>8.041E-03<br>7.649E-03<br>7.472E-03<br>7.058E-03                                                                                                                   | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.24E+02<br>3.95E+02<br>4.19E+02<br>4.83E+02<br>5.07E+02                                                                                                        | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.43E+02\\ 3.68E+02\\ 4.17E+02\\ 4.42E+02\\ 5.10E+02\\ 5.25E+02\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>3.04E+01<br>3.04E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02<br>4.68E+02<br>5.39E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02<br>4.84E+02<br>4.92E+02<br>5.56E+02                                                                                                                                                                                                                                                                                                                     | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02<br>5.88E+02                                                                                                                                      | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.86E+01\\ 3.08E+01\\ 3.08E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.71E+02\\ 1.63E+02\\ 1.63E+02\\ 1.63E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 63\\ Europium\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 3.75E+02\\ 4.08E+02\\ 3.75E+02\\ 4.08E+02\\ 4.08E+02\\ \end{array}$                                                                                                       | $\begin{array}{r} 64\\ \hline \text{Gadolinium}\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 4.03E+02\\ 3.35E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Ni $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Co $K\overline{\alpha}$<br>Co                                                                          | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.631E-03<br>8.641E-03<br>7.649E-03<br>7.472E-03<br>7.058E-03<br>6.925E-03                                                                                                      | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.24E+02<br>3.48E+02<br>3.95E+02<br>4.19E+02<br>4.83E+02<br>5.07E+02                                                                                            | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.17E+02\\ 4.42E+02\\ 5.10E+02\\ 5.10E+02\\ 5.35E+02\\ 4.17E+02\\ 5.10E+02\\ 5.10E+0$ | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>3.04E+01<br>3.04E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02<br>4.68E+02<br>5.39E+02<br>5.65E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>4.04E+02<br>4.57E+02<br>4.84E+02<br>4.92E+02<br>5.05E+02                                                                                                                                                                                                                                                                                                                                 | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02<br>5.88E+02<br>4.00E+02<br>4.00E+02                                                                                                                          | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.52E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 3.71E+02\\ 1.63E+02\\ 1.76E+02\\ 1.6E+02\\ 1.6E+02\\$ | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02<br>4.34E+02<br>4.08E+02<br>3.75E+02<br>4.08E+02                                                                                                                                            | $\begin{array}{r} 64\\ \hline \text{Gadolinium}\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 4.03E+02\\ 3.35E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.61E+02$ |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Co $K\overline{\alpha}$<br>Mn $K\beta_1$<br>Co $K\overline{\alpha}$<br>Co $K\beta_1$<br>Co $K\overline{\alpha}$<br>Co | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.631E-03<br>8.641E-03<br>7.649E-03<br>7.472E-03<br>7.058E-03<br>6.925E-03<br>6.490E-03                                                                                         | 57<br>Lanthanum<br>1.72E+01<br>1.95E+01<br>2.21E+01<br>2.38E+01<br>2.69E+01<br>3.05E+01<br>3.29E+01<br>4.49E+01<br>2.21E+02<br>2.66E+02<br>2.89E+02<br>3.24E+02<br>3.24E+02<br>3.95E+02<br>4.19E+02<br>4.83E+02<br>5.07E+02<br>5.97E+02                                                                                            | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.3E+02\\ 3.68E+02\\ 4.17E+02\\ 4.42E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.47E+02$ | 59<br>Praseodymium<br>1.95E+01<br>2.20E+01<br>2.50E+01<br>2.69E+01<br>3.04E+01<br>3.45E+01<br>3.72E+01<br>5.07E+01<br>2.47E+02<br>2.99E+02<br>3.24E+02<br>3.63E+02<br>3.90E+02<br>4.41E+02<br>4.68E+02<br>5.39E+02<br>5.65E+02<br>6.16E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02<br>4.84E+02<br>4.92E+02<br>5.05E+02<br>4.39E+02                                                                                                                                                                                                                                                                                                         | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02<br>5.88E+02<br>4.00E+02<br>4.68E+02                                                                                                              | 62<br>Samarium<br>2.23E+01<br>2.52E+01<br>2.86E+01<br>3.08E+01<br>3.94E+01<br>4.24E+01<br>5.78E+01<br>2.79E+02<br>3.35E+02<br>3.63E+02<br>4.05E+02<br>4.34E+02<br>3.54E+02<br>3.71E+02<br>1.63E+02<br>1.66E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>Europium<br>2.35E+01<br>2.66E+01<br>3.01E+01<br>3.24E+01<br>3.66E+01<br>4.15E+01<br>4.47E+01<br>6.09E+01<br>2.93E+02<br>3.52E+02<br>3.80E+02<br>4.24E+02<br>4.34E+02<br>4.34E+02<br>4.08E+02<br>3.75E+02<br>4.08E+02<br>4.19E+02                                                                                                                                | $\begin{array}{r} 64\\ \hline \text{Gadolinium}\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 4.03E+02\\ 3.35E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.89E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Fe $K\beta_1$<br>Co $K\bar{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.494E-02<br>2.382E-02<br>2.272E-02<br>2.210E-02<br>2.112E-02<br>2.017E-02<br>1.961E-02<br>1.744E-02<br>9.572E-03<br>8.905E-03<br>8.631E-03<br>8.631E-03<br>8.641E-03<br>7.649E-03<br>7.472E-03<br>7.058E-03<br>6.925E-03<br>6.490E-03<br>6.400E-03                                                                            | $\begin{array}{r} 57\\ Lanthanum\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 2.89E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.07E+02\\ 5.97E+02\\ 6.18E+02\\ \end{array}$                                                        | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.24E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.17E+02\\ 4.42E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 5.01E+02\\ 5.01E+0$ | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.022\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.022\\ 5.65E+02\\ 5.65E$ | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>2.81E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02<br>4.92E+02<br>5.05E+02<br>4.55E+02<br>4.55E+02                                                                                                                                                                                                                                                                                             | 61<br>Promethium<br>2.17E+01<br>2.45E+01<br>2.78E+01<br>2.99E+01<br>3.38E+01<br>3.38E+01<br>4.13E+01<br>5.63E+01<br>2.73E+02<br>3.28E+02<br>3.55E+02<br>3.97E+02<br>4.26E+02<br>4.82E+02<br>5.11E+02<br>5.88E+02<br>4.00E+02<br>4.68E+02<br>1.94E+02                                                                                                  | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.52E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 3.71E+02\\ 1.63E+02\\ 1.66E+02\\ 2.04E+02\\ 2.04E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 63\\ Europium\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.08E+02\\ 3.75E+02\\ 4.08E+02\\ 1.95E+02\\ 2.03E+02\\ 2.03E+02\\ \end{array}$                                                | $\begin{array}{r} 64\\ \hline Gadolinium\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 4.03E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.95E+02\\ 1$    |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\overline{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Co $K\overline{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\overline{\alpha}$<br>Cr $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.494E-02\\ 2.382E-02\\ 2.272E-02\\ 2.210E-02\\ 2.112E-02\\ 2.017E-02\\ 1.961E-02\\ 1.744E-02\\ 9.572E-03\\ 8.905E-03\\ 8.631E-03\\ 8.265E-03\\ 8.041E-03\\ 7.649E-03\\ 7.472E-03\\ 7.058E-03\\ 6.925E-03\\ 6.925E-03\\ 6.490E-03\\ 6.400E-03\\ 5.947E-03\\ \end{array}$                                     | $\begin{array}{r} 57\\ Lanthanum\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 2.89E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.07E+02\\ 5.97E+02\\ 6.18E+02\\ 7.44E+02\\ \end{array}$                                             | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 2.86E+01\\ 3.24E+01\\ 3.24E+01\\ 3.49E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.17E+02\\ 4.42E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 4.94E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.88E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60<br>Neodymium<br>2.04E+01<br>2.30E+01<br>2.61E+01<br>3.18E+01<br>3.60E+01<br>3.88E+01<br>5.30E+01<br>2.57E+02<br>3.10E+02<br>3.36E+02<br>3.76E+02<br>4.04E+02<br>4.57E+02<br>4.92E+02<br>5.05E+02<br>4.39E+02<br>1.98E+02                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 61\\ \hline Promethium\\ 2.17E+01\\ 2.45E+01\\ 2.78E+01\\ 2.78E+01\\ 3.38E+01\\ 3.38E+01\\ 3.38E+01\\ 4.13E+01\\ 5.63E+01\\ 2.73E+02\\ 3.28E+02\\ 3.55E+02\\ 3.97E+02\\ 4.26E+02\\ 4.82E+02\\ 5.11E+02\\ 5.88E+02\\ 4.00E+02\\ 4.68E+02\\ 1.94E+02\\ 2.32E+02\\ \end{array}$                                                        | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.52E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.35E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 3.54E+02\\ 1.63E+02\\ 1.66E+02\\ 2.04E+02\\ 2.21E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 63\\ Europium\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.08E+02\\ 3.75E+02\\ 4.08E+02\\ 4.19E+02\\ 1.95E+02\\ 2.03E+02\\ 2.44E+02\\ \end{array}$                                                           | $\begin{array}{r} 64\\ \hline Gadolinium\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 4.03E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.95E+02\\ 2.35E+02\\ 2.35E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Pd $K\overline{\alpha}$<br>Rh $K\overline{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\overline{\alpha}$<br>Co $K\beta_1$<br>Ni $K\overline{\alpha}$<br>Fe $K\beta_1$<br>Co $K\overline{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\overline{\alpha}$<br>Cr $K\beta_1$<br>Mn $K\overline{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 2.494E-02\\ 2.382E-02\\ 2.272E-02\\ 2.272E-02\\ 2.210E-02\\ 2.112E-02\\ 2.017E-02\\ 1.961E-02\\ 1.744E-02\\ 9.572E-03\\ 8.905E-03\\ 8.631E-03\\ 8.265E-03\\ 8.041E-03\\ 7.649E-03\\ 7.472E-03\\ 7.058E-03\\ 6.925E-03\\ 6.490E-03\\ 6.490E-03\\ 5.947E-03\\ 5.895E-03\\ \end{array}$                         | $\begin{array}{r} 57\\ Lanthanum\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 3.24E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.07E+02\\ 5.97E+02\\ 5.97E+02\\ 6.18E+02\\ 7.44E+02\\ 7.60E+02\\ \end{array}$                       | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 2.86E+01\\ 3.24E+01\\ 3.24E+01\\ 3.49E+01\\ 4.77E+01\\ 2.33E+02\\ 3.68E+02\\ 3.68E+02\\ 3.68E+02\\ 3.68E+02\\ 4.17E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 4.94E+02\\ 5.12E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.88E+02\\ 1.93E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 60\\ \hline Neodymium\\ \hline 2.04E+01\\ 2.30E+01\\ \hline 2.30E+01\\ \hline 2.61E+01\\ \hline 2.81E+01\\ \hline 3.18E+01\\ \hline 3.60E+01\\ \hline 3.88E+01\\ \hline 5.30E+01\\ \hline 2.57E+02\\ \hline 3.10E+02\\ \hline 3.36E+02\\ \hline 3.36E+02\\ \hline 4.04E+02\\ \hline 4.57E+02\\ \hline 4.84E+02\\ \hline 4.92E+02\\ \hline 5.05E+02\\ \hline 4.39E+02\\ \hline 4.55E+02\\ \hline 1.98E+02\\ \hline 2.03E+02\\ \end{array}$                                                                         | $\begin{array}{r} 61\\ \hline Promethium\\ 2.17E+01\\ 2.45E+01\\ 2.78E+01\\ 2.78E+01\\ 3.38E+01\\ 3.38E+01\\ 3.38E+01\\ 4.13E+01\\ 5.63E+01\\ 2.73E+02\\ 3.28E+02\\ 3.55E+02\\ 3.97E+02\\ 4.26E+02\\ 4.82E+02\\ 5.11E+02\\ 5.88E+02\\ 4.00E+02\\ 4.68E+02\\ 1.94E+02\\ 2.32E+02\\ 2.37E+02\\ \end{array}$                                             | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.52E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 3.71E+02\\ 1.63E+02\\ 1.66E+02\\ 2.04E+02\\ 2.21E+02\\ 2.25E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} 63\\ \hline Europium\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.08E+02\\ 3.75E+02\\ 4.08E+02\\ 4.19E+02\\ 1.95E+02\\ 2.03E+02\\ 2.44E+02\\ 2.49E+02\\ \end{array}$                                         | $\begin{array}{r} 64\\ \hline Gadolinium\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.35E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.95E+02\\ 2.35E+02\\ 2.41E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Co $K\beta_1$<br>Ni $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Co $K\beta_1$<br>Ni $K\bar{\alpha}$<br>Fe $K\beta_1$<br>Co $K\bar{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\bar{\alpha}$<br>Cr $K\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.494E-02\\ 2.382E-02\\ 2.272E-02\\ 2.210E-02\\ 2.112E-02\\ 2.017E-02\\ 1.961E-02\\ 1.744E-02\\ 9.572E-03\\ 8.905E-03\\ 8.631E-03\\ 8.265E-03\\ 8.041E-03\\ 7.649E-03\\ 7.472E-03\\ 7.472E-03\\ 7.058E-03\\ 6.490E-03\\ 6.490E-03\\ 5.947E-03\\ 5.947E-03\\ 5.895E-03\\ 5.412E-03\\ \end{array}$             | $\begin{array}{r} 57\\ Lanthanum\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 2.89E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.07E+02\\ 5.97E+02\\ 5.97E+02\\ 6.18E+02\\ 7.44E+02\\ 7.60E+02\\ 2.25E+02\\ \end{array}$            | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.49E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.17E+02\\ 4.2E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 4.94E+02\\ 5.12E+02\\ 2.38E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.88E+02\\ 1.93E+02\\ 2.38E+02\\ 2.38E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 60\\ \hline 8 \ Neodymium\\ \hline 2.04E+01\\ \hline 2.30E+01\\ \hline 2.61E+01\\ \hline 2.61E+01\\ \hline 3.18E+01\\ \hline 3.18E+01\\ \hline 3.60E+01\\ \hline 3.88E+01\\ \hline 5.30E+01\\ \hline 2.57E+02\\ \hline 3.10E+02\\ \hline 3.36E+02\\ \hline 3.76E+02\\ \hline 4.04E+02\\ \hline 4.57E+02\\ \hline 4.84E+02\\ \hline 4.92E+02\\ \hline 5.05E+02\\ \hline 4.39E+02\\ \hline 4.55E+02\\ \hline 1.98E+02\\ \hline 2.03E+02\\ \hline 2.51E+02\\ \end{array}$                                            | $\begin{array}{r} 61\\ \hline Promethium\\ 2.17E+01\\ 2.45E+01\\ 2.78E+01\\ 2.99E+01\\ 3.38E+01\\ 3.38E+01\\ 3.38E+01\\ 4.13E+01\\ 5.63E+01\\ 2.73E+02\\ 3.28E+02\\ 3.28E+02\\ 3.97E+02\\ 4.26E+02\\ 4.26E+02\\ 4.26E+02\\ 5.11E+02\\ 5.88E+02\\ 4.00E+02\\ 4.68E+02\\ 1.94E+02\\ 2.32E+02\\ 2.37E+02\\ 2.94E+02\\ 2.94E+02\\ \end{array}$            | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.86E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 3.71E+02\\ 1.66E+02\\ 2.04E+02\\ 2.21E+02\\ 2.25E+02\\ 2.79E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} 63\\ \hline Europium\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.80E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 3.75E+02\\ 4.08E+02\\ 4.08E+02\\ 4.19E+02\\ 1.95E+02\\ 2.03E+02\\ 2.44E+02\\ 2.49E+02\\ 3.09E+02\\ \end{array}$                                                    | $\begin{array}{r} 64\\ \hline Gadolinium\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.03E+02\\ 3.35E+02\\ 3.56E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.95E+02\\ 2.35E+02\\ 2.41E+02\\ 2.98E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Co $K\beta_1$<br>Ni $K\bar{\alpha}$<br>Fe $K\beta_1$<br>Co $K\bar{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\bar{\alpha}$<br>Cr $K\beta_1$<br>Mn $K\bar{\alpha}$<br>Cr $K\beta_1$<br>Mn $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 2.494E-02\\ 2.382E-02\\ 2.272E-02\\ 2.210E-02\\ 2.112E-02\\ 2.017E-02\\ 1.961E-02\\ 1.744E-02\\ 9.572E-03\\ 8.905E-03\\ 8.631E-03\\ 8.265E-03\\ 8.041E-03\\ 7.649E-03\\ 7.649E-03\\ 7.658E-03\\ 6.490E-03\\ 6.490E-03\\ 6.490E-03\\ 5.947E-03\\ 5.947E-03\\ 5.895E-03\\ 5.412E-03\\ 4.932E-03\\ \end{array}$ | $\begin{array}{r} 57\\ Lanthanum\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 2.89E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.07E+02\\ 5.97E+02\\ 5.97E+02\\ 6.18E+02\\ 7.44E+02\\ 7.60E+02\\ 2.25E+02\\ 2.84E+02\\ \end{array}$ | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.49E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.06E+02\\ 3.68E+02\\ 4.17E+02\\ 5.10E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 4.94E+02\\ 5.12E+02\\ 2.38E+02\\ 3.00E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.88E+02\\ 1.93E+02\\ 2.38E+02\\ 3.00E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 60\\ \hline 8 \ Neodymium\\ \hline 2.04E+01\\ \hline 2.30E+01\\ \hline 2.30E+01\\ \hline 2.61E+01\\ \hline 3.18E+01\\ \hline 3.18E+01\\ \hline 3.60E+01\\ \hline 3.88E+01\\ \hline 5.30E+01\\ \hline 2.57E+02\\ \hline 3.10E+02\\ \hline 3.36E+02\\ \hline 3.36E+02\\ \hline 4.04E+02\\ \hline 4.57E+02\\ \hline 4.92E+02\\ \hline 5.05E+02\\ \hline 4.39E+02\\ \hline 4.39E+02\\ \hline 4.35E+02\\ \hline 1.98E+02\\ \hline 2.03E+02\\ \hline 2.51E+02\\ \hline 3.14E+02\\ \end{array}$                          | $\begin{array}{r} 61\\ \hline Promethium\\ 2.17E+01\\ 2.45E+01\\ 2.78E+01\\ 2.78E+01\\ 3.38E+01\\ 3.38E+01\\ 3.38E+01\\ 4.13E+01\\ 5.63E+01\\ 2.73E+02\\ 3.28E+02\\ 3.55E+02\\ 3.97E+02\\ 3.55E+02\\ 4.26E+02\\ 4.82E+02\\ 5.11E+02\\ 5.88E+02\\ 4.00E+02\\ 4.68E+02\\ 1.94E+02\\ 2.32E+02\\ 2.37E+02\\ 2.94E+02\\ 3.69E+02\\ \end{array}$            | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.86E+01\\ 3.08E+01\\ 3.08E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.71E+02\\ 1.66E+02\\ 2.04E+02\\ 2.04E+02\\ 2.21E+02\\ 2.25E+02\\ 2.79E+02\\ 3.50E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} 63\\ \hline \text{Europium}\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 4.36E+02\\ 4.08E+02\\ 4.08E+02\\ 4.08E+02\\ 1.95E+02\\ 2.03E+02\\ 2.44E+02\\ 2.49E+02\\ 3.09E+02\\ 3.90E+02\\ 3.90E+02\\ \end{array}$            | $\begin{array}{r} 64\\ \hline \text{Gadolinium}\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.33E+02\\ 3.35E+02\\ 3.55E+02\\ 1.53E+02\\ 1.61E+02\\ 1.89E+02\\ 1.89E+02\\ 1.95E+02\\ 2.35E+02\\ 2.41E+02\\ 2.98E+02\\ 3.74E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ag $K\beta_1$<br>Pd $K\beta_1$<br>Rh $K\beta_1$<br>Ag $K\bar{\alpha}$<br>Pd $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Rh $K\bar{\alpha}$<br>Mo $K\beta_1$<br>Mo $K\bar{\alpha}$<br>Zn $K\beta_1$<br>Cu $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Ni $K\beta_1$<br>Cu $K\bar{\alpha}$<br>Fe $K\beta_1$<br>Co $K\bar{\alpha}$<br>Mn $K\beta_1$<br>Fe $K\bar{\alpha}$<br>Cr $K\bar{\alpha}$<br>Ti $K\beta_1$<br>Ti $K\bar{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 2.494E-02\\ 2.382E-02\\ 2.272E-02\\ 2.210E-02\\ 2.112E-02\\ 2.017E-02\\ 1.961E-02\\ 1.744E-02\\ 9.572E-03\\ 8.905E-03\\ 8.631E-03\\ 8.631E-03\\ 8.041E-03\\ 7.649E-03\\ 7.472E-03\\ 7.058E-03\\ 6.490E-03\\ 6.490E-03\\ 6.490E-03\\ 5.947E-03\\ 5.895E-03\\ 5.412E-03\\ 4.932E-03\\ 4.509E-03\\ \end{array}$ | $\begin{array}{r} 57\\ \mbox{Lanthanum}\\ 1.72E+01\\ 1.95E+01\\ 2.21E+01\\ 2.38E+01\\ 2.69E+01\\ 3.05E+01\\ 3.05E+01\\ 3.29E+01\\ 4.49E+01\\ 2.21E+02\\ 2.66E+02\\ 2.89E+02\\ 3.24E+02\\ 3.24E+02\\ 3.95E+02\\ 4.19E+02\\ 4.83E+02\\ 5.97E+02\\ 6.18E+02\\ 7.44E+02\\ 7.60E+02\\ 2.25E+02\\ 2.84E+02\\ 3.55E+02\\ \end{array}$     | $\begin{array}{r} 58\\ Cerium\\ 1.83E+01\\ 2.07E+01\\ 2.35E+01\\ 2.35E+01\\ 2.53E+01\\ 2.53E+01\\ 3.24E+01\\ 3.24E+01\\ 3.49E+01\\ 4.77E+01\\ 2.33E+02\\ 2.82E+02\\ 3.06E+02\\ 3.43E+02\\ 3.68E+02\\ 4.17E+02\\ 5.35E+02\\ 5.35E+02\\ 5.47E+02\\ 5.61E+02\\ 4.94E+02\\ 5.12E+02\\ 2.38E+02\\ 3.00E+02\\ 3.57E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 59\\ \hline Praseodymium\\ 1.95E+01\\ 2.20E+01\\ 2.50E+01\\ 2.50E+01\\ 3.04E+01\\ 3.04E+01\\ 3.45E+01\\ 3.72E+01\\ 5.07E+01\\ 2.47E+02\\ 2.99E+02\\ 3.24E+02\\ 3.63E+02\\ 3.90E+02\\ 4.41E+02\\ 4.68E+02\\ 5.39E+02\\ 5.65E+02\\ 6.16E+02\\ 4.48E+02\\ 1.88E+02\\ 1.88E+02\\ 1.93E+02\\ 2.38E+02\\ 3.00E+02\\ 3.75E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 60\\ \hline 8 \ Neodymium\\ \hline 2.04E+01\\ \hline 2.30E+01\\ \hline 2.30E+01\\ \hline 2.61E+01\\ \hline 3.18E+01\\ \hline 3.18E+01\\ \hline 3.60E+01\\ \hline 3.88E+01\\ \hline 5.30E+01\\ \hline 2.57E+02\\ \hline 3.10E+02\\ \hline 3.36E+02\\ \hline 3.36E+02\\ \hline 4.04E+02\\ \hline 4.57E+02\\ \hline 4.84E+02\\ \hline 4.92E+02\\ \hline 4.39E+02\\ \hline 4.39E+02\\ \hline 4.39E+02\\ \hline 2.03E+02\\ \hline 2.03E+02\\ \hline 2.51E+02\\ \hline 3.14E+02\\ \hline 3.97E+02\\ \hline \end{array}$ | $\begin{array}{r} 61\\ \hline Promethium\\ 2.17E+01\\ 2.45E+01\\ 2.78E+01\\ 2.99E+01\\ 3.38E+01\\ 3.38E+01\\ 4.13E+01\\ 5.63E+01\\ 2.73E+02\\ 3.28E+02\\ 3.28E+02\\ 3.55E+02\\ 3.97E+02\\ 4.26E+02\\ 4.82E+02\\ 5.11E+02\\ 5.88E+02\\ 4.00E+02\\ 4.68E+02\\ 1.94E+02\\ 2.32E+02\\ 2.37E+02\\ 2.37E+02\\ 2.94E+02\\ 3.69E+02\\ 4.62E+02\\ \end{array}$ | $\begin{array}{r} 62\\ Samarium\\ 2.23E+01\\ 2.52E+01\\ 2.52E+01\\ 3.08E+01\\ 3.08E+01\\ 3.48E+01\\ 3.94E+01\\ 4.24E+01\\ 5.78E+01\\ 2.79E+02\\ 3.35E+02\\ 3.63E+02\\ 4.05E+02\\ 4.34E+02\\ 3.54E+02\\ 3.54E+02\\ 1.66E+02\\ 1.66E+02\\ 2.04E+02\\ 2.21E+02\\ 2.25E+02\\ 2.25E+02\\ 2.79E+02\\ 3.50E+02\\ 4.35E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 63\\ \hline \text{Europium}\\ 2.35E+01\\ 2.66E+01\\ 3.01E+01\\ 3.24E+01\\ 3.66E+01\\ 4.15E+01\\ 4.47E+01\\ 6.09E+01\\ 2.93E+02\\ 3.52E+02\\ 3.52E+02\\ 3.80E+02\\ 4.24E+02\\ 4.34E+02\\ 4.34E+02\\ 4.34E+02\\ 4.36E+02\\ 4.08E+02\\ 1.95E+02\\ 2.03E+02\\ 2.03E+02\\ 2.44E+02\\ 2.49E+02\\ 3.09E+02\\ 3.90E+02\\ 3.90E+02\\ 4.88E+02\\ \end{array}$ | $\begin{array}{r} 64\\ \hline \text{Gadolinium}\\ 2.42E+01\\ 2.74E+01\\ 3.10E+01\\ 3.34E+01\\ 3.77E+01\\ 4.27E+01\\ 4.60E+01\\ 6.26E+01\\ 3.00E+02\\ 3.60E+02\\ 3.60E+02\\ 3.60E+02\\ 3.89E+02\\ 4.03E+02\\ 3.35E+02\\ 3.55E+02\\ 3.56E+02\\ 1.61E+02\\ 1.89E+02\\ 1.95E+02\\ 2.35E+02\\ 2.35E+02\\ 2.41E+02\\ 2.98E+02\\ 3.74E+02\\ 4.69E+02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# 4.3. ELECTRON DIFFRACTION

# Table 4.3.3.1. Partial wave elastic scattering factors for neutral atoms (cont.)

Nd; Z = 60

|          | 10                                 | keV                                  | 40                                   | keV                                  | 60                                   | keV                                  | 90 k                         | reV.                                 |
|----------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|
| S        | f(s)                               | $\eta(s)$                            | f(s)                                 | $\eta(s)$                            | f(s)                                 | $\eta(s)$                            | f(s)                         | $\eta(s)$                            |
|          |                                    | ,                                    |                                      |                                      | 10 ( ) 1                             | ,                                    |                              |                                      |
| 0        | 1.4119E + 01                       | 2.8873E-01                           | 1.6423E+01                           | 2.0045E-01                           | 1.7330E+01                           | 1.7798E-01                           | 1.8487E+01                   | 1.5802E-01                           |
| 1        | 1.0206E+01                         | 3.8730E - 01                         | 1.2180E+01                           | 2.6378E-01                           | 1.2914E+01                           | 2.3333E-01                           | 1.3832E+01                   | 2.0647E-01                           |
| 2        | 6.0770E+00                         | 6.0589E-01                           | 7.5938E+00                           | 3.9891E-01                           | $8.1191E \pm 00$<br>$5.7165E \pm 00$ | 3.5059E - 01                         | $8.7556E \pm 00$             | 3.0858E-01                           |
| 3<br>1   | $4.0922E \pm 00$<br>2.9430E \pm 00 | 3.2028E = 01<br>1 0317E $\pm 00$     | $3.3104E \pm 00$<br>$3.9/33E \pm 00$ | 5.2825E = 01<br>6 5384E = 01         | $3.7105E \pm 00$                     | 4.0231E - 01<br>5.7046E - 01         | $0.1973E \pm 00$             | 4.0330E = 01<br>4.0023E = 01         |
| 5        | 2.9450E + 00<br>2.1968E + 00       | 1.0517E+00<br>1.2549E+00             | 3.0433E+00<br>3.0173E+00             | 7.8447E = 01                         | 4.2000E + 00<br>3.2827E + 00         | 6.8261E = 01                         | 4.0490E+00<br>3 5884E+00     | 5.9612E = 01                         |
| 6        | 1.7004E+00                         | 1.4824E+00                           | 2.3737E + 00                         | 9.1683E-01                           | 2.5919E + 00                         | 7.9603E - 01                         | 2.8414E + 00                 | 6.9396E-01                           |
| 7        | 1.3600E + 00                       | 1.7040E + 00                         | 1.9174E + 00                         | 1.0458E + 00                         | 2.0991E + 00                         | 9.0649E-01                           | 2.3062E + 00                 | 7.8917E-01                           |
| 8        | 1.1160E + 00                       | 1.9158E+00                           | 1.5834E + 00                         | 1.1693E + 00                         | 1.7370E + 00                         | 1.0122E + 00                         | 1.9117E + 00                 | 8.8024E-01                           |
| 9        | 9.3389E-01                         | 2.1191E + 00                         | 1.3307E + 00                         | 1.2878E + 00                         | 1.4620E + 00                         | 1.1136E + 00                         | 1.6113E + 00                 | 9.6756E-01                           |
| 10       | 7.9448E-01                         | 2.3165E + 00                         | 1.1340E + 00                         | 1.4028E + 00                         | 1.2473E + 00                         | 1.2120E + 00                         | 1.3761E + 00                 | 1.0523E + 00                         |
| 11       | 6.8613E-01                         | 2.5094E+00                           | 9.7772E-01                           | 1.5156E + 00                         | 1.0760E + 00                         | 1.3085E+00                           | 1.1878E + 00                 | 1.1354E + 00                         |
| 12       | 6.0093E-01                         | 2.6978E+00                           | 8.5185E-01                           | 1.6267E + 00                         | 9.3737E-01                           | 1.4036E+00                           | 1.0349E+00                   | 1.2173E+00                           |
| 13       | 5.3305E - 01                       | $2.8810E \pm 00$                     | 7.4934E-01                           | 1.7338E+00<br>1.8424E+00             | 8.239/E-01                           | 1.4972E+00<br>1.5997E+00             | 9.0940E-01                   | 1.29/9E+00<br>1.2760E+00             |
| 14       | 4.7800E - 01<br>4.3262E - 01       | 3.0381E+00<br>3.2284E+00             | 0.0303E = 01<br>5 0/00E = 01         | $1.6424E \pm 00$<br>$1.9458E \pm 00$ | 7.3030E = 01<br>6 5230E = 01         | 1.388/E+00<br>1.6777E+00             | 8.0340E = 01<br>7 1872E = 01 | 1.3709E+00<br>1.4538E+00             |
| 15       | 4.3202E = 01<br>3.9429E = 01       | 3.2284E+00<br>3.3918E+00             | 5.3439E = 01<br>5.3618E = 01         | 1.9456E+00                           | 5.8686E = 01                         | 1.077E+00<br>1.7637E+00              | 6.4574E = 01                 | $1.4338E \pm 00$<br>1 5282E $\pm 00$ |
| 17       | 3.6131E - 01                       | 3.5910E+00<br>3.5485E+00             | 4 8624E-01                           | 2.0430E+00<br>2.1413E+00             | 5.3126E - 01                         | 1.7057E+00<br>1.8462E+00             | 5.8382E - 01                 | 1.5202E + 00<br>1 5996E + 00         |
| 18       | 3.3244E - 01                       | 3.6990E + 00                         | 4.4336E-01                           | 2.2327E+00                           | 4.8362E - 01                         | 1.9251E+00                           | 5.3083E-01                   | 1.6679E + 00                         |
| 19       | 3.0684E-01                         | 3.8442E+00                           | 4.0614E-01                           | 2.3200E+00                           | 4.4241E-01                           | 2.0003E+00                           | 4.8510E-01                   | 1.7329E + 00                         |
| 20       | 2.8396E-01                         | 3.9848E+00                           | 3.7353E-01                           | 2.4034E + 00                         | 4.0644E-01                           | 2.0719E+00                           | 4.4530E-01                   | 1.7948E + 00                         |
| 21       | 2.6342E-01                         | 4.1212E + 00                         | 3.4475E-01                           | 2.4831E+00                           | 3.7480E-01                           | 2.1403E + 00                         | 4.1038E-01                   | 1.8537E + 00                         |
| 22       | 2.4492E-01                         | 4.2540E + 00                         | 3.1918E-01                           | 2.5597E + 00                         | 3.4679E-01                           | 2.2058E + 00                         | 3.7955E-01                   | 1.9100E + 00                         |
| 23       | 2.2824E-01                         | 4.3836E + 00                         | 2.9636E-01                           | 2.6334E + 00                         | 3.2186E-01                           | 2.2687E + 00                         | 3.5216E-01                   | 1.9641E + 00                         |
| 24       | 2.1319E-01                         | 4.5101E+00                           | 2.7590E-01                           | 2.7047E + 00                         | 2.9956E-01                           | 2.3294E+00                           | 3.2769E-01                   | 2.0161E+00                           |
| 25       | 1.9959E-01                         | 4.6340E+00                           | 2.5749E-01                           | 2.7739E+00                           | 2.7952E-01                           | 2.3882E+00                           | 3.0573E - 01                 | 2.0664E+00                           |
| 26       | 1.8/31E-01                         | 4.753E+00                            | 2.4088E - 01                         | $2.8412E \pm 00$                     | 2.6144E - 01                         | $2.4452E \pm 00$                     | 2.8594E - 01                 | 2.1152E+00<br>2.1627E+00             |
| 27       | 1.7019E - 01<br>1.6612E 01         | $4.8/41E \pm 00$<br>$4.0006E \pm 00$ | 2.2364E = 01<br>2.1222E 01           | $2.9008E \pm 00$                     | 2.4308E = 01<br>2.3025E 01           | $2.3008E \pm 00$<br>2.551E $\pm 00$  | 2.0805E - 01<br>2.5178E 01   | 2.102/E+00<br>2.2000E+00             |
| 20       | 1.0012E = 01<br>1 5697E = 01       | 4.9900E+00<br>5 1046E+00             | 1.9985E = 01                         | 2.9709E+00<br>3.0338E+00             | 2.3023E = 01<br>2 1677E = 01         | $2.5551E \pm 00$<br>2 6084E $\pm 00$ | 2.3178E = 01<br>2 3700E = 01 | 2.2090E+00<br>2 2545E+00             |
| 30       | 1.4865E-01                         | 5.2163E+00                           | 1.8859E - 01                         | 3.0954E+00                           | 2.0449E-01                           | 2.6606E + 00                         | 2.2352E - 01                 | $2.2915\pm00$<br>$2.2991\pm00$       |
| 31       | 1.4106E-01                         | 5.3258E+00                           | 1.7832E-01                           | 3.1559E+00                           | 1.9327E-01                           | 2.7119E + 00                         | 2.1119E-01                   | 2.3430E + 00                         |
| 32       | 1.3412E-01                         | 5.4332E + 00                         | 1.6892E-01                           | 3.2154E+00                           | 1.8299E-01                           | 2.7624E + 00                         | 1.9988E-01                   | 2.3861E + 00                         |
| 33       | 1.2776E-01                         | 5.5387E+00                           | 1.6031E-01                           | 3.2738E+00                           | 1.7355E-01                           | 2.8120E + 00                         | 1.8948E-01                   | 2.4286E + 00                         |
| 34       | 1.2191E-01                         | 5.6421E + 00                         | 1.5239E-01                           | 3.3313E+00                           | 1.6486E-01                           | 2.8609E + 00                         | 1.7990E-01                   | 2.4704E + 00                         |
| 35       | 1.1651E-01                         | 5.7438E+00                           | 1.4510E-01                           | 3.3878E+00                           | 1.5686E-01                           | 2.9090E + 00                         | 1.7106E-01                   | 2.5117E+00                           |
| 36       | 1.1151E-01                         | 5.8437E+00                           | 1.3837E-01                           | 3.4434E+00                           | 1.4946E-01                           | 2.9563E+00                           | 1.6288E-01                   | 2.5523E+00                           |
| 37       | 1.068/E-01                         | $5.9420E \pm 00$                     | 1.3215E-01                           | $3.4980E \pm 00$                     | 1.4262E - 01                         | $3.0029E \pm 00$                     | 1.5531E-01                   | 2.5924E+00                           |
| 38<br>20 | 1.0230E - 01                       | 6.038/E+00                           | 1.203/E = 01                         | 3.331/E+00                           | 1.3020E - 01<br>1.2024E 01           | $3.0488E \pm 00$                     | 1.482/E = 01<br>1.4172E 01   | 2.0318E+00<br>2.6705E + 00           |
| 39<br>40 | 9.8347E - 02<br>9.4797E - 02       | $6.1341E \pm 00$<br>$6.2282E \pm 00$ | 1.2099E = 01<br>1 1598E = 01         | $3.0040E \pm 00$<br>$3.6566E \pm 00$ | 1.3034E = 01<br>1 2481E = 01         | $3.0939E \pm 00$<br>$3.1383E \pm 00$ | 1.4172E = 01<br>1 3560E = 01 | 2.0703E+00<br>2.7087E+00             |
| 40       | 9.1286E = 02                       | 3.7860E - 02                         | 1.1398E = 01<br>1.1129E = 01         | 3.0000E+00<br>3.7078E+00             | 1.2461E = 01<br>1 1966E = 01         | 3.1305E+00<br>3.1819E+00             | 1.3300E = 01<br>1 2989E = 01 | 2.7087E+00<br>2.7462E+00             |
| 42       | 8.7989E-02                         | 1.2957E - 01                         | 1.0691E - 01                         | 3.7581E+00                           | 1.1483E - 01                         | 3.2248E+00                           | 1.2909E 01<br>1.2455E - 01   | 2.7831E+00                           |
| 43       | 8.4888E-02                         | 2.2024E - 01                         | 1.0280E - 01                         | 3.8075E + 00                         | 1.1031E-01                           | 3.2670E + 00                         | 1.1954E-01                   | 2.8194E + 00                         |
| 44       | 8.1972E-02                         | 3.0993E-01                           | 9.8933E-02                           | 3.8562E+00                           | 1.0606E-01                           | 3.3085E + 00                         | 1.1484E-01                   | 2.8551E+00                           |
| 45       | 7.9227E-02                         | 3.9870E-01                           | 9.5290E-02                           | 3.9041E+00                           | 1.0206E-01                           | 3.3493E+00                           | 1.1042E-01                   | 2.8902E + 00                         |
| 46       | 7.6637E-02                         | 4.8660E-01                           | 9.1852E-02                           | 3.9512E + 00                         | 9.8288E-02                           | 3.3894E + 00                         | 1.0625E-01                   | 2.9246E + 00                         |
| 47       | 7.4192E-02                         | 5.7369E-01                           | 8.8603E-02                           | 3.9976E + 00                         | 9.4726E-02                           | 3.4289E + 00                         | 1.0232E-01                   | 2.9584E + 00                         |
| 48       | 7.1876E-02                         | 6.6005E-01                           | 8.5532E-02                           | 4.0432E + 00                         | 9.1361E-02                           | 3.4676E + 00                         | 9.8609E-02                   | 2.9917E + 00                         |
| 49       | 6.9682E-02                         | 7.4573E-01                           | 8.2624E-02                           | 4.0881E+00                           | 8.8179E-02                           | 3.5057E+00                           | 9.5104E-02                   | 3.0243E+00                           |
| 50       | 6.7604E - 02                       | 8.3073E-01                           | 7.9865E-02                           | 4.1323E+00                           | 8.5163E-02                           | 3.5432E+00                           | 9.1785E-02                   | 3.0564E+00                           |
| 51       | 0.3033E-02                         | 9.1508E - 01                         | 7.7243E - 02                         | 4.1/58E+00                           | 8.2299E-02                           | 3.5801E+00<br>3.6164E+00             | 8.803/E-02<br>8.5648E 02     | 3.0880E+00<br>3.1100E+00             |
| 52       | 6.3709E - 02<br>6 1997F - 02       | 7.7001E - 01<br>1 0810F $\pm 00$     | 7.4750E-02<br>7.2378E-02             | $4.2100E \pm 00$<br>4.2611E $\pm 00$ | 7.5579E-02                           | $3.0104E \pm 00$<br>3.6521E $\pm 00$ | 8.3040E-02<br>8.2809E-02     | $3.11902\pm00$<br>$3.1495E\pm00$     |
| 54       | 6.0314E = 02                       | $1.00192\pm00$<br>1.1645E+00         | $7.0119F_{-02}$                      | 4.3028E+00                           | 7.4530E = 02                         | 3.6873E+00                           | 8.0112F_02                   | 3.1795E+00                           |
| 55       | 5.8714E - 02                       | 1.2466E + 00                         | 6.7967E-02                           | 4.3438E+00                           | 7.2190E-02                           | 3.7219E+00                           | 7.7548E-02                   | 3.2090E+00                           |
| 56       | 5.7194E-02                         | 1.3282E+00                           | 6.5914E-02                           | 4.3843E+00                           | 6.9959E-02                           | 3.7559E+00                           | 7.5108E-02                   | 3.2380E+00                           |
| 57       | 5.5751E-02                         | 1.4093E + 00                         | 6.3954E-02                           | 4.4242E + 00                         | 6.7830E-02                           | 3.7895E+00                           | 7.2781E-02                   | 3.2665E+00                           |
| 58       | 5.4378E-02                         | 1.4899E+00                           | 6.2081E-02                           | 4.4636E+00                           | 6.5797E-02                           | 3.8225E + 00                         | 7.0560E-02                   | 3.2946E+00                           |
| 59       | 5.3074E-02                         | 1.5700E + 00                         | 6.0291E-02                           | 4.5024E + 00                         | 6.3854E-02                           | 3.8551E+00                           | 6.8439E-02                   | 3.3222E+00                           |
| 60       | 5.1835E-02                         | 1.6496E + 00                         | 5.8579E-02                           | 4.5408E + 00                         | 6.1998E-02                           | 3.8872E + 00                         | 6.6415E-02                   | 3.3495E + 00                         |

particle pulse is short enough, the duration of the moderated neutron pulses is roughly inversely proportional to the neutron speed.

These accelerator-driven pulsed sources are pulsed at frequencies of between 10 and 100 Hz.

There are two fundamental differences between a reactor and a pulsed source.

(1) All experiments at a pulsed source must be performed with time-of-flight techniques. The pulsed source produces neutrons in bursts of 1 to  $50 \,\mu\text{s}$  duration, depending on the energy, spaced about 10 to 100 ms apart, so that the duty cycle is low but there is very high neutron intensity within each pulse. The time-of-flight technique makes it possible to exploit that high intensity. With the de Broglie relationship, for neutrons

 $\lambda(\text{\AA}) = 0.3966 t \,(\mu s)/L \,(\text{cm}),$ 

where t is the flight time in  $\mu$ s and L is the total flight path in cm.

(2) The spectral characteristics of pulsed sources are somewhat different from reactors in that they have a much larger component of higher-energy (above 100 meV) neutrons than the thermal spectrum at reactors. The exploitation of this new energy regime accompanied by the short pulse duration is one of the great opportunities presented by spallation sources.

Fig. 4.4.1.2 illustrates the essential difference between experiments at a steady-state source (left panel) and a pulsed source (right panel). We confine the discussion here to diffraction. If the time over which useful information is gathered is equivalent to the full period of the source  $\Delta t$  (the case suggested by the lower-right figure), the *peak flux* of the pulsed source is the effective parameter to compare with the flux of the steady-state source. Often this is not the case, so one makes a comparison in terms of *time-averaged flux* (centre panel). For the pulsed source, this is lowered from the peak flux by the duty cycle, but with the time-of-flight method one uses a large interval of the spectrum (shaded area). For the steady-state source, the time-averaged flux is high, but only a small wavelength slice (stippled area) is used in the experiment. It is the *integrals* of the

two areas which must be compared; for the pulsed sources now being designed, the integral is generally favourable compared with present-day reactors. Finally, one can see from the central panel that high-energy neutrons (100–1000 meV) are especially plentiful at the pulsed sources. These various features can be exploited in the design of different kinds of experiments at pulsed sources.

# **4.4.2.** Beam-definition devices (By I. S. Anderson and O. Schärpf)

#### 4.4.2.1. Introduction

Neutron scattering, when compared with X-ray scattering techniques developed on modern synchrotron sources, is flux limited, but the method remains unique in the resolution and range of energy and momentum space that can be covered. Furthermore, the neutron magnetic moment allows details of microscopic magnetism to be examined, and polarized neutrons can be exploited through their interaction with both nuclear and electron spins.

Owing to the low primary flux of neutrons, the beam definition devices that play the role of defining the beam conditions (direction, divergence, energy, polarization, *etc.*) have to be highly efficient. Progress in the development of such devices not only results in higher-intensity beams but also allows new techniques to be implemented.

The following sections give a (non-exhaustive) review of commonly used beam-definition devices. The reader should keep in mind the fact that neutron scattering experiments are typically carried out with large beams (1 to  $50 \text{ cm}^2$ ) and divergences between 5 and 30 mrad.

#### 4.4.2.2. Collimators

A collimator is perhaps the simplest neutron optical device and is used to define the direction and divergence of a neutron beam. The most rudimentary collimator consists of two slits or pinholes



Fig. 4.4.1.2. Schematic diagram for performing diffraction experiments at steady-state and pulsed neutron sources. On the left we see the familiar monochromator crystal allowing a constant (in time) beam to fall on the sample (centre left), which then diffracts the beam through an angle  $2\theta_s$  into the detector. The signal in the latter is also constant in time (lower left). On the right, the pulsed source allows a wide spectrum of neutrons to fall on the sample in sharp pulses separated by  $\Delta t$  (centre right). The neutrons are then diffracted by the sample through  $2\theta_s$  and their time of arrival in the detector is analysed (lower right). The centre figure shows the time-averaged flux at the source. At a reactor, we make use of a narrow band of neutrons (heavy shading), here chosen with  $\lambda = 1.5$  Å. At a pulsed source, we use a wide spectral band, here chosen from 0.4 to 3 Å and each one is identified by its time-of-flight. For the experimentalist, an important parameter is the integrated area of the two-shaded areas. Here they have been made identical.

# 4.4. NEUTRON TECHNIQUES

| Table 4.4.5.10. | $\langle j_{4} \rangle$ | form | factors | for 4d | atoms | and | their | ions |
|-----------------|-------------------------|------|---------|--------|-------|-----|-------|------|
|-----------------|-------------------------|------|---------|--------|-------|-----|-------|------|

| Atom or<br>ion  | A       | а      | В      | b      | С      | С     | D       | е      |
|-----------------|---------|--------|--------|--------|--------|-------|---------|--------|
| Y               | -8.0767 | 32.201 | 7.9197 | 25.156 | 1.4067 | 6.827 | -0.0001 | 0.1031 |
| Zr              | -5.2697 | 32.868 | 4.1930 | 24.183 | 1.5202 | 6.048 | -0.0002 | 0.0855 |
| $Zr^+$          | -5.6384 | 33.607 | 4.6729 | 22.338 | 1.3258 | 5.924 | -0.0003 | 0.0674 |
| Nb              | -3.1377 | 25.595 | 2.3411 | 16.569 | 1.2304 | 4.990 | -0.0005 | 0.0615 |
| Nb <sup>+</sup> | -3.3598 | 25.820 | 2.8297 | 16.427 | 1.1203 | 4.982 | -0.0005 | 0.0724 |
| Мо              | -2.8860 | 20.572 | 1.8130 | 14.628 | 1.1899 | 4.264 | -0.0008 | 0.0410 |
| $Mo^+$          | -3.2618 | 25.486 | 2.3596 | 16.462 | 1.1164 | 4.491 | -0.0007 | 0.0592 |
| Tc              | -2.7975 | 20.159 | 1.6520 | 16.261 | 1.1726 | 3.943 | -0.0008 | 0.0657 |
| $Tc^+$          | -2.0470 | 19.683 | 1.6306 | 11.592 | 0.8698 | 3.769 | -0.0010 | 0.0723 |
| Ru              | -1.5042 | 17.949 | 0.6027 | 9.961  | 0.9700 | 3.393 | -0.0010 | 0.0338 |
| $Ru^+$          | 1.6278  | 18.506 | 1.1828 | 10.189 | 0.8138 | 3.418 | -0.0009 | 0.0673 |
| Rh              | -1.3492 | 17.577 | 0.4527 | 10.507 | 0.9285 | 3.155 | -0.0009 | 0.0483 |
| $\mathbf{Rh}^+$ | -1.4673 | 17.957 | 0.7381 | 9.944  | 0.8485 | 3.126 | -0.0012 | 0.0487 |
| Pd              | -1.1955 | 17.628 | 0.3183 | 11.309 | 0.8696 | 2.909 | -0.0006 | 0.0555 |
| Pd <sup>+</sup> | -1.4098 | 17.765 | 0.7927 | 9.999  | 0.7710 | 2.930 | -0.0006 | 0.0530 |

Table 4.4.5.11.  $\langle j_4 \rangle$  form factors for rare-earth ions

| Ion                | Α       | а      | В      | b     | С      | С     | D      | е      |
|--------------------|---------|--------|--------|-------|--------|-------|--------|--------|
| $Ce^{2+}$          | -0.6468 | 10.533 | 0.4052 | 5.624 | 0.3412 | 1.535 | 0.0080 | 0.0522 |
| Nd <sup>2+</sup>   | -0.5416 | 12.204 | 0.3571 | 6.169 | 0.3154 | 1.485 | 0.0098 | 0.0519 |
| Nd <sup>3+</sup>   | -0.4053 | 14.014 | 0.0329 | 7.005 | 0.3759 | 1.707 | 0.0209 | 0.0372 |
| $Sm^{2+}$          | -0.4150 | 14.057 | 0.1368 | 7.032 | 0.3272 | 1.582 | 0.0192 | 0.0319 |
| Sm <sup>3+</sup>   | -0.4288 | 10.052 | 0.1782 | 5.019 | 0.2833 | 1.236 | 0.0088 | 0.0328 |
| $Eu^{2+}$          | -0.4145 | 10.193 | 0.2447 | 5.164 | 0.2661 | 1.205 | 0.0065 | 0.0516 |
| Eu <sup>3+</sup>   | -0.4095 | 10.211 | 0.1485 | 5.175 | 0.2720 | 1.237 | 0.0131 | 0.0494 |
| $\mathrm{Gd}^{2+}$ | -0.3824 | 10.344 | 0.1955 | 5.306 | 0.2622 | 1.203 | 0.0097 | 0.0363 |
| $\mathrm{Gd}^{3+}$ | -0.3621 | 10.353 | 0.1016 | 5.310 | 0.2649 | 1.219 | 0.0147 | 0.0494 |
| $Tb^{2+}$          | -0.3443 | 10.469 | 0.1481 | 5.416 | 0.2575 | 1.182 | 0.0104 | 0.0280 |
| $Tb^{3+}$          | -0.3228 | 10.476 | 0.0638 | 5.419 | 0.2566 | 1.196 | 0.0159 | 0.0439 |
| $Dy^{2+}$          | -0.3206 | 12.071 | 0.0904 | 8.026 | 0.2616 | 1.230 | 0.0143 | 0.0767 |
| Dy <sup>3+</sup>   | -0.2829 | 9.525  | 0.0565 | 4.429 | 0.2437 | 1.066 | 0.0092 | 0.0181 |
| $Ho^{2+}$          | -0.2976 | 9.719  | 0.1224 | 4.635 | 0.2279 | 1.005 | 0.0063 | 0.0452 |
| Ho <sup>3+</sup>   | -0.2717 | 9.731  | 0.0474 | 4.638 | 0.2292 | 1.047 | 0.0124 | 0.0310 |
| $\mathrm{Er}^{2+}$ | -0.2975 | 9.829  | 0.1189 | 4.741 | 0.2116 | 1.004 | 0.0117 | 0.0524 |
| Er <sup>3+</sup>   | -0.2568 | 9.834  | 0.0356 | 4.741 | 0.2172 | 1.028 | 0.0148 | 0.0434 |
| $Tm^{2+}$          | -0.2677 | 9.888  | 0.0925 | 4.784 | 0.2056 | 0.990 | 0.0124 | 0.0396 |
| Tm <sup>3+</sup>   | -0.2292 | 9.895  | 0.0124 | 4.785 | 0.2108 | 1.007 | 0.0151 | 0.0334 |
| $Yb^{2+}$          | -0.2393 | 9.947  | 0.0663 | 4.823 | 0.2009 | 0.965 | 0.0122 | 0.0311 |
| Yb <sup>3+</sup>   | -0.2121 | 8.197  | 0.0325 | 3.153 | 0.1975 | 0.884 | 0.0093 | 0.0435 |

Table 4.4.5.12.  $\langle j_4 \rangle$  form factors for actinide ions

| Ion              | Α       | а      | В       | b     | С      | С     | D       | е      |
|------------------|---------|--------|---------|-------|--------|-------|---------|--------|
| U <sup>3+</sup>  | -0.9859 | 16.601 | 0.6116  | 6.515 | 0.6020 | 2.597 | -0.0010 | 0.0599 |
| $U^{4+}$         | -1.0540 | 16.605 | 0.4339  | 6.512 | 0.6746 | 2.599 | -0.0011 | 0.0471 |
| $U^{5+}$         | -0.9588 | 16.485 | 0.1576  | 6.440 | 0.7785 | 2.640 | -0.0010 | 0.0493 |
| Np <sup>3+</sup> | 0.9029  | 16.586 | 0.4006  | 6.470 | 0.6545 | 2.563 | -0.0004 | 0.0470 |
| Np <sup>4+</sup> | -0.9887 | 12.441 | 0.5918  | 5.294 | 0.5306 | 2.263 | -0.0021 | 0.0583 |
| Np <sup>5+</sup> | -0.8146 | 16.581 | -0.0055 | 6.475 | 0.7956 | 2.562 | -0.0004 | 0.0600 |
| Np <sup>6+</sup> | 0.6738  | 16.553 | -0.2297 | 6.505 | 0.8513 | 2.553 | -0.0003 | 0.0623 |
| $Pu^{3+}$        | -0.7014 | 16.369 | -0.1162 | 6.697 | 0.7778 | 2.450 | 0.0000  | 0.0546 |
| $Pu^{4+}$        | -0.9160 | 12.203 | 0.4891  | 5.127 | 0.5290 | 2.149 | -0.0022 | 0.0520 |
| Pu <sup>5+</sup> | -0.7035 | 16.360 | -0.0979 | 6.706 | 0.7726 | 2.447 | 0.0000  | 0.0610 |
| Pu <sup>6+</sup> | -0.5560 | 16.322 | -0.3046 | 6.768 | 0.8146 | 2.426 | 0.0001  | 0.0596 |
| $Am^{2+}$        | -0.7433 | 16.416 | 0.3481  | 6.788 | 0.6014 | 2.346 | 0.0000  | 0.0566 |
| Am <sup>3+</sup> | 0.8092  | 12.854 | 0.4161  | 5.459 | 0.5476 | 2.172 | -0.0011 | 0.0530 |
| $Am^{4+}$        | -0.8548 | 12.226 | 0.3037  | 5.909 | 0.6173 | 2.188 | -0.0016 | 0.0456 |
| Am <sup>5+</sup> | -0.6538 | 15.462 | -0.0948 | 5.997 | 0.7295 | 2.297 | 0.0000  | 0.0594 |
| Am <sup>6+</sup> | -0.5390 | 15.449 | -0.2689 | 6.017 | 0.7711 | 2.297 | 0.0002  | 0.0729 |
| Am <sup>7+</sup> | -0.4688 | 12.019 | -0.2692 | 7.042 | 0.7297 | 2.164 | -0.0011 | 0.0262 |

### 5. DETERMINATION OF LATTICE PARAMETERS

Table 5.2.4.1. Centroid displacement  $\langle \Delta \theta / \theta \rangle$  and variance W of certain aberrations of an angle-dispersive diffractometer; for references see Wilson (1963, 1965c, 1974) and Gillham (1971)

For the Seemann–Bohlin arrangement, S and R are given by equations (5.2.4.1) and (5.2.4.2); for the symmetrical arrangement, they are equal to  $R_0$ . Other notation is explained at the end of the table.

| Aberration                                                                                 | $\langle \Delta(2	heta)  angle$                                 | W                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Zero-angle calibration                                                                     | Constant                                                        | 0                                                                                                                                                           |  |  |
| Specimen displacement                                                                      | $-s\{R^{-1}\cos(2\theta-\varphi)+S^{-1}\cos\varphi\}$           | 0                                                                                                                                                           |  |  |
| Specimen transparency<br>Thick specimen                                                    | $-\sin 2\varphi/\mu(R+S)$                                       | $\sin^2 2\varphi/\mu^2 (R+S)^2$                                                                                                                             |  |  |
| Thin specimen                                                                              | See Wilson (                                                    | 1974, p. 547)                                                                                                                                               |  |  |
| 2:1 mis-setting                                                                            | Zero if centroid of illuminated area is centred                 | $\beta^2 A^2 [R^{-1}\cos(2\theta - \varphi) + S^{-1}\cos\varphi]^2/3$                                                                                       |  |  |
| Inclination of plane of specimen to axis of rotation                                       | Zero if centroid of illuminated area on equator of specimen     | $\gamma^2 h^2 [R^{-1} \cos(2\theta - \varphi) + S^{-1} \cos \varphi]^2 / 3$ for uniform illumination                                                        |  |  |
| Flat specimen                                                                              | $-A^2\sin 2\theta/3RS$                                          | $4A^4\sin^2 2\theta/45R^2S^2$                                                                                                                               |  |  |
| Focal-line width                                                                           | Small                                                           | $\sim f_1^2 / 12 S^2$                                                                                                                                       |  |  |
| Receiving-slit width                                                                       | Small                                                           | $\sim r_1^2/12R^2$                                                                                                                                          |  |  |
| Interaction terms                                                                          | Small if adjustment reasonably good                             | See Wilson (1963, 1974)                                                                                                                                     |  |  |
| Axial divergence<br>No Soller slits, source, specimen and receiver<br>equal                | $-h^{2}[(S^{-2}+R^{-2})\cot 2\theta + (RS)^{-1}\csc 2\theta]/3$ | $h^{4}[\{7S^{-4} + 2(RS)^{-2} + 7R^{-4}\} \cot^{2} 2\theta \\+ 14(RS)^{-1}(S^{-2} + R^{-2}) \cot 2\theta \csc 2\theta \\+ 19(RS)^{-2} \csc^{2} 2\theta]/45$ |  |  |
| Narrow Soller slits<br>One set in incident beam                                            | $-[\Delta^2/12 + h^2/3R^2]\cot 2\theta$                         | $7[\Delta^4/720 + h^4/45R^2]\cot^2 2\theta$ $+ h^2 \csc^2 2\theta/9R^2$                                                                                     |  |  |
| One set in diffracted beam                                                                 | Replace R by                                                    | <i>S</i> in the above                                                                                                                                       |  |  |
| Two sets                                                                                   | $-(\Delta^2 \cot 2\theta)/6$                                    | $\Delta^4 (10 + 17 \cot^2 2\theta) / 360$                                                                                                                   |  |  |
| Wide Soller slits                                                                          | Complex. See Pike (1957), Langford & Wilso (1971)               | on (1962), Wilson (1963, 1974), and Gillham                                                                                                                 |  |  |
| Refraction                                                                                 | $\sim -2\delta \tan 	heta$                                      | $\sim \delta^2 [-6\ln(\Delta/2) + 25]/4\mu p$                                                                                                               |  |  |
| Physical aberrations       See Wilson (1963, 1965c, 1970a, 1974) and Gillham & King (1972) |                                                                 |                                                                                                                                                             |  |  |

Notation: 2A = illuminated length of specimen;  $\beta =$  angle of equatorial mis-setting of specimen;  $\gamma =$  angle of inclination of plane of specimen to axis of rotation;  $\Delta =$  angular aperture of Soller slits;  $\mu =$  linear absorption coefficient of specimen;  $r_1 =$  width of receiving slit (varies with  $\theta$  in some designs of diffractometer); s = specimen-surface displacement;  $f_1 =$  projected width of focal line; h = half height of focal line, specimen, and receiving slit, taken as equal;  $1 - \delta =$  index of refraction; p = effective particle size.

extrapolation is quick and easy for cubic substances, and by the use of successive approximations it can be applied to hexagonal (Wilson & Lipson, 1941), tetragonal, and even orthorhombic materials. It is, however, very cumbersome for non-cubic substances, and impracticable if the symmetry is less than orthorhombic.

Analytic extrapolation seems to have been first used by Cohen (1936a, b). It is now usual even in the cubic case: programs are often included in the software accompanying powder diffractometers, and many others are available separately. Some

programs that are frequently referred to are described by Appleman & Evans (1973), Mighell, Hubbard & Stalick (1981), and Ferguson, Rogerson, Wolstenholme, Hughes & Huyton (1987); for a comparison, see Kelly (1988). If the precision warrants it, the single function  $KF(\theta)$  may be replaced by a sum of functions  $K_iF_i(\theta)$ , one for each of the larger aberrations listed in Tables 5.2.4.1, 5.2.7.1, and 5.2.8.1. Two – the zero error and a function corresponding to specimen-surface displacement and transparency – must be used routinely; one or two more may be added if the precision warrants it.

Table 5.2.10.6. Fluorophlogopite 00l standard reflection angles [NIST SRM 675, d(001) = 9.98104(7)Å, T = 298K,  $\lambda = 1.5405929$ Å]

| l                                    | 2θ (°)                                                                      |
|--------------------------------------|-----------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 8.853<br>17.759<br>26.774<br>35.962<br>45.397<br>55.169<br>65.399<br>76.255 |
| 10<br>11                             | 101.025<br>116.193                                                          |
| 12                                   | 135.674                                                                     |

Table 5.2.10.7. Silver behenate 00l standard reflection angles  $[d(001) = 58.380(3) \text{ Å}, \lambda = 1.5405929 \text{ Å}$  (Huang, Toraya, Blanton & Wu, 1993)]

| l                                                           | 2θ (°)                                                                                                                            |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | $\begin{array}{c} 1.512\\ 3.024\\ 4.537\\ 6.051\\ 7.565\\ 9.081\\ 10.599\\ 12.118\\ 13.640\\ 15.164\\ 16.691\\ 18.221\end{array}$ |
| 13                                                          | 19.754                                                                                                                            |
|                                                             | •                                                                                                                                 |

The forward reflections have been used in parallel-beam synchrotron-radiation lattice-parameter studies (Parrish *et al.*, 1987).

(3) The profile shape has a strong influence on the accuracy of the angle measurement. The geometrical aberrations produce asymmetries that reduce the accuracy; the effects can be minimized by a proper selection of slit sizes. In most cases, it is inadvisable to use  $K\beta$  radiation to avoid  $K\alpha$ -doublet splitting, as the intensity is reduced by a factor of seven. Symmetrical profiles are obtained with parallelbeam optics, but it is usually necessary to use synchrotron radiation to achieve sufficient intensity.

- (4) The largest and commonest source of systematic error in focusing geometry is the specimen-surface displacement. Several remountings of the specimen in the diffractometer and measurement of some low-angle reflections may be helpful in determining and minimizing the error. This aberration does not occur in parallel-beam geometry unless a receiving slit is used.
- (5) The precision of the diffractometer gears (or the equivalent) may be the limiting factor in high-precision measurements. The use of an electromagnetic encoder mounted on the 2θ-output shaft can increase the precision considerably. It is not normally included in commercial diffractometers because of its cost, but it is essential for adequate accuracy when the 2θ angles must be determined to better than 0.001°. The various types of mechanical error have been described by Jenkins & Schreiner (1986).

The diffractometer must be carefully adjusted to avoid mechanical problems. The effect of backlash can be minimized by slewing beyond and then returning to the starting angle, and by always scanning in the same direction. It is essential to avoid over-tight worm-andgear meshing, as it causes jerky rather than smooth movement.

- (6) The beam must be precisely centred, the slits and monochromator (if used) must be parallel to the line focus of the X-ray tube, and the scanning plane must be perpendicular to the line focus.
- (7) The use of standard specimens with accurately known lattice parameters (Section 5.2.10) and ideally free of line broadening is strongly recommended as a test of the overall precision of the instrumentation and method.
- (8) For a given total time available for an experiment, it is necessary to strike a balance between numerous short steps with short counting times and fewer longer steps with longer counting times. The former alternative may give a better definition of the line shape; the latter may give lower calculated standard uncertainties (formerly called estimated standard deviations) in any derived parameters. Obviously, the step length must be considerably shorter than the width of any feature of the profile that is considered to be of importance.
- (9) Least-squares refinement is discussed in Subsection 5.2.3.2. The programs and the methods of handling the data should be carefully checked, as various programs have been found to give slightly different values from the same experimental data (see, for example, JCPDS – International Centre for Diffraction Data, 1986; Kelly, 1988).
- (10) Specimen preparation is very important; the particle size should preferably be less than  $10 \,\mu\text{m}$ , and a flat smooth surface normal to the diffraction vector is essential. The linearity of the detector and the temperature of the

|                                                                                                    | Cructal                                                  |                                                                             |                                                           | $I_{ m rel}$                                                                      | hkl                                                                               |                                                                   |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Standard                                                                                           | system                                                   | $a_0$ (Å)                                                                   | $c_0$ (Å)                                                 | 2                                                                                 | 3                                                                                 | $I_1/I_c(113)$                                                    |
| $\begin{array}{c} Al_2O_3 \ (corundum) \\ ZnO \\ TiO_2 \ (rutile) \\ Cr_2O_3 \\ CeO_2 \end{array}$ | Trigonal<br>Hexagonal<br>Tetragonal<br>Trigonal<br>Cubic | 4.75893 (10)<br>3.24981 (12)<br>4.59365 (10)<br>4.95916 (12)<br>5.41129 (8) | 12.9917 (7)<br>5.20653 (13)<br>2.95874 (8)<br>13.5972 (6) | 92.5 (26) 116<br>57.6 (11) 100<br>56.9 (28) 211<br>94.5 (22) 116<br>53.5 (20) 220 | 87.4 (19) 104<br>40.2 (14) 002<br>44.0 (17) 101<br>87.1 (23) 110<br>43.4 (23) 311 | <br>5.17 (13) 101<br>3.39 (12) 110<br>2.10 (5) 104<br>7.5 (2) 111 |

Table 5.2.11.1. NIST intensity standards, SRM 674

### 5.4. Electron-diffraction methods

BY A. W. S. JOHNSON AND A. OLSEN

# 5.4.1. Determination of cell parameters from single-crystal patterns (By A. W. S. Johnson)

#### 5.4.1.1. Introduction

This article treats the recovery of cell axes and angles from (a) a single pattern with suitable Laue zones and (b) two patterns with different zone axes. It is assumed that instrument distortions, if significant, are corrected and that the patterns are free of artefacts such as twinning, double diffraction *etc*. (Edington, 1975). The treatment is valid for convergent-beam, micro and selected-area electron-diffraction patterns and accelerating voltages above approximately 30 kV. Relevant papers are by LePage (1992) and Zuo (1993), and background reading is contained in Edington (1975), Gard (1976), and Hirsch, Howie, Nicholson, Pashley & Whelan (1965).

The basic requirement in the determination of the unit cell of a crystal is to find, from one or more diffraction patterns, the basis vector set,  $\mathbf{a}^*$ ,  $\mathbf{b}^*$ ,  $\mathbf{c}^*$ , of a primitive reciprocal unit cell. The Cartesian components of these vectors form an orientation matrix

$$\boldsymbol{UB} = (\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*),$$

which, when inverted, gives the vector components of the corresponding real-space cell. The elements of UB can be measured directly from the diffraction pattern in millimetres. Define axes x and y to be in the recording plane and z in the beam direction. A point in the diffraction pattern x, y, z is then related to the indices h, k, l by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \boldsymbol{U}\boldsymbol{B}\begin{pmatrix} h \\ k \\ l \end{pmatrix}.$$

Note that points with non-zero *z* are observed on the plane z = 0, see Fig. 5.4.1.1.

The metric M of  $UB^{-1}$  is used to find the unit-cell edges and angles as

 $C^*_{z}$ 

Fig. 5.4.1.1. Diffraction geometry. Crystal at *C* with the direct transmitted beam, *CRO*, intersecting the reciprocal-lattice origin at *R* and the recording plane at normal incidence at *O*. The camera length *L* is *CO* and the reciprocal of the wavelength  $\lambda$  is *CR*.

|     | Pattern type  | Constants<br>known              | Information available                 |
|-----|---------------|---------------------------------|---------------------------------------|
| (1) | Zero zone     | None or $\lambda$ or $L$        | <i>d</i> ratios and interplane angles |
| (2) |               | $L\lambda$ or $L$ and $\lambda$ | <i>d</i> values and interplane angles |
| (3) | Multiple zone | None or L                       | As for (1)                            |
| (4) |               | Lλ                              | As for (2)                            |
| (5) |               | λ                               | Unit-cell axial ratios and angles     |
| (6) |               | L and $\lambda$                 | Unit-cell axes and angles             |
| (7) | Two or more   | None or L                       | As for (5)                            |
| (8) | patterns*     | Lλ                              | As for (6)                            |

 Table 5.4.1.1. Unit-cell information available for photographic recording

\* See text, Subsection 5.4.1.2.

$$\boldsymbol{M} = \boldsymbol{U}\boldsymbol{B}^{-1} \cdot (\boldsymbol{U}\boldsymbol{B}^{-1})^T,$$

where T means the transpose. Then,

Ι

$$M = \begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} & \mathbf{c} \cdot \mathbf{c} \end{pmatrix}$$

$$a = L\lambda(\mathbf{a} \cdot \mathbf{a})^{1/2},$$
  

$$b = L\lambda(\mathbf{b} \cdot \mathbf{b})^{1/2},$$
  

$$c = L\lambda(\mathbf{c} \cdot \mathbf{c})^{1/2},$$
  

$$\cos \gamma = \mathbf{a} \cdot \mathbf{b}/(\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b})^{1/2},$$
  

$$\cos \beta = \mathbf{a} \cdot \mathbf{c}/(\mathbf{a} \cdot \mathbf{a} \mathbf{c} \cdot \mathbf{c})^{1/2},$$

and

$$\cos \alpha = \mathbf{b} \cdot \mathbf{c} / (\mathbf{b} \cdot \mathbf{b} \ \mathbf{c} \cdot \mathbf{c})^{1/2}$$

where L is the effective distance between the diffracting crystal and the recording plane and  $\lambda$  is the wavelength. These quantities are defined in Fig. 5.4.1.1 together with the nomenclature and geometrical relationships required in this article.

If necessary, the cell is reduced to the Bravais cell according to the procedures given in IT A (1983, Chapter 9.3), before calculating the metric.

In practice, there may be a difficulty in choosing a vector set that describes a *primitive* reciprocal cell. Although a record of any reasonably dense plane of reciprocal space immediately exposes two basis vectors of a cell, the third vector lies out of the plane of the diffraction pattern containing the first two vectors and may not be directly measurable. Hence, some care must be taken to ensure that the third vector chosen makes the cell

# 6.1. INTENSITY OF DIFFRACTED INTENSITIES

# Table 6.1.1.1. Mean atomic scattering factors in electrons for free atoms

Methods: E: exact; RHF, \*RHF (see text): relativistic Hartree-Fock.

| 2.50<br>3.00<br>3.50<br>4.00<br>5.00               | 1.60<br>1.70<br>1.80<br>1.90<br>2.00                                     | 1.10<br>1.20<br>1.30<br>1.40<br>1.50                                     | $\begin{array}{c} 0.55 \\ 0.60 \\ 0.65 \\ 0.70 \\ 0.80 \\ 0.90 \\ 1.00 \end{array}$        | $\begin{array}{c} 0.42 \\ 0.44 \\ 0.45 \\ 0.46 \\ 0.48 \\ 0.50 \end{array}$  | 0.32<br>0.34<br>0.35<br>0.36<br>0.38<br>0.40         | 0.22<br>0.24<br>0.25<br>0.26<br>0.28<br>0.30       | 0.16<br>0.17<br>0.18<br>0.19<br>0.20      | 0.11<br>0.12<br>0.13<br>0.14<br>0.15      | 0.06<br>0.07<br>0.08<br>0.09<br>0.10      | $\begin{array}{c} 0.00 \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \end{array}$       | Element<br>Z<br>Method<br>$(\sin \theta)/\lambda$ (Å <sup>-1</sup> ) |
|----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                    |                                                                          | $\begin{array}{c} 0.005 \\ 0.003 \\ 0.003 \\ 0.002 \\ 0.001 \end{array}$ | $\begin{array}{c} 0.053\\ 0.040\\ 0.031\\ 0.024\\ 0.015\\ 0.010\\ 0.007\\ \end{array}$     | $\begin{array}{c} 0.115\\ 0.101\\ 0.095\\ 0.090\\ 0.079\\ 0.071 \end{array}$ | 0.220<br>0.193<br>0.180<br>0.169<br>0.148<br>0.130   | 0.424<br>0.373<br>0.350<br>0.328<br>0.287<br>0.251 | 0.608<br>0.574<br>0.542<br>0.511<br>0.481 | 0.778<br>0.744<br>0.710<br>0.676<br>0.641 | 0.925<br>0.900<br>0.872<br>0.842<br>0.811 | $\begin{array}{c} 1.000 \\ 0.998 \\ 0.991 \\ 0.980 \\ 0.966 \\ 0.947 \end{array}$ | H<br>1<br>E                                                          |
| 0.004<br>0.002<br>0.001<br>0.001                   | 0.021<br>0.017<br>0.014<br>0.011<br>0.010                                | $\begin{array}{c} 0.072 \\ 0.055 \\ 0.042 \\ 0.033 \\ 0.026 \end{array}$ | $\begin{array}{c} 0.423\\ 0.353\\ 0.295\\ 0.248\\ 0.177\\ 0.129\\ 0.095 \end{array}$       | 0.686<br>0.636<br>0.613<br>0.591<br>0.548<br>0.509                           | 0.988<br>0.920<br>0.887<br>0.856<br>0.795<br>0.738   | 1.377<br>1.295<br>1.254<br>1.214<br>1.136<br>1.060 | 1.624<br>1.584<br>1.543<br>1.502<br>1.460 | 1.806<br>1.772<br>1.737<br>1.701<br>1.663 | 1.939<br>1.917<br>1.893<br>1.866<br>1.837 | 2.000<br>1.998<br>1.993<br>1.984<br>1.972<br>1.957                                | He<br>2<br>RHF                                                       |
| 0.021<br>0.011<br>0.006<br>0.004<br>0.002          | $\begin{array}{c} 0.091 \\ 0.075 \\ 0.063 \\ 0.053 \\ 0.044 \end{array}$ | 0.255<br>0.205<br>0.165<br>0.134<br>0.110                                | $\begin{array}{c} 0.924 \\ 0.823 \\ 0.732 \\ 0.650 \\ 0.512 \\ 0.404 \\ 0.320 \end{array}$ | 1.221<br>1.173<br>1.149<br>1.125<br>1.078<br>1.033                           | 1.465<br>1.417<br>1.393<br>1.369<br>1.320<br>1.270   | 1.693<br>1.648<br>1.626<br>1.604<br>1.559<br>1.513 | 1.863<br>1.828<br>1.796<br>1.768<br>1.742 | 2.135<br>2.065<br>2.004<br>1.950<br>1.904 | 2.606<br>2.502<br>2.400<br>2.304<br>2.215 | 3.000<br>2.986<br>2.947<br>2.884<br>2.802<br>2.708                                | Li<br>3<br>RHF                                                       |
| 0.060<br>0.033<br>0.019<br>0.012<br>0.005<br>0.003 | 0.223<br>0.190<br>0.163<br>0.139<br>0.120                                | 0.522<br>0.439<br>0.369<br>0.311<br>0.263                                | $\begin{array}{c} 1.279\\ 1.195\\ 1.112\\ 1.030\\ 0.876\\ 0.740\\ 0.622 \end{array}$       | 1.489<br>1.458<br>1.443<br>1.427<br>1.395<br>1.362                           | $1.652 \\ 1.616 \\ 1.600 \\ 1.583 \\ 1.551 \\ 1.520$ | 1.951<br>1.864<br>1.828<br>1.795<br>1.739<br>1.692 | 2.365<br>2.277<br>2.197<br>2.125<br>2.060 | 2.932<br>2.804<br>2.683<br>2.569<br>2.463 | 3.592<br>3.468<br>3.336<br>3.201<br>3.065 | 4.000<br>3.987<br>3.950<br>3.889<br>3.807<br>3.707                                | Be<br>4<br>RHF                                                       |
| 0.126<br>0.072<br>0.043<br>0.027<br>0.012<br>0.006 | 0.398<br>0.347<br>0.304<br>0.266<br>0.233                                | $\begin{array}{c} 0.790 \\ 0.690 \\ 0.602 \\ 0.524 \\ 0.457 \end{array}$ | $\begin{array}{c} 1.463 \\ 1.402 \\ 1.339 \\ 1.276 \\ 1.147 \\ 1.020 \\ 0.900 \end{array}$ | 1.644<br>1.611<br>1.596<br>1.581<br>1.553<br>1.526                           | 1.897<br>1.829<br>1.799<br>1.771<br>1.723<br>1.681   | 2.503<br>2.336<br>2.263<br>2.195<br>2.077<br>1.979 | 3.179<br>3.048<br>2.924<br>2.808<br>2.699 | 3.908<br>3.756<br>3.606<br>3.459<br>3.316 | 4.613<br>4.488<br>4.352<br>4.209<br>4.060 | 5.000<br>4.988<br>4.954<br>4.897<br>4.820<br>4.724                                | B<br>5<br>RHF                                                        |
| 0.216<br>0.130<br>0.081<br>0.053<br>0.025<br>0.013 | $\begin{array}{c} 0.588 \\ 0.525 \\ 0.468 \\ 0.418 \\ 0.373 \end{array}$ | $\begin{array}{c} 1.012 \\ 0.914 \\ 0.822 \\ 0.736 \\ 0.659 \end{array}$ | 1.603<br>1.537<br>1.479<br>1.426<br>1.322<br>1.219<br>1.114                                | 1.880<br>1.821<br>1.794<br>1.770<br>1.725<br>1.685                           | 2.351<br>2.227<br>2.171<br>2.120<br>2.028<br>1.948   | 3.297<br>3.058<br>2.949<br>2.846<br>2.658<br>2.494 | 4.153<br>3.998<br>3.847<br>3.701<br>3.560 | 4.952<br>4.794<br>4.633<br>4.472<br>4.311 | 5.645<br>5.526<br>5.396<br>5.255<br>5.107 | 6.000<br>5.990<br>5.958<br>5.907<br>5.837<br>5.749                                | C<br>6<br>RHF                                                        |
| 0.324<br>0.204<br>0.132<br>0.088<br>0.043<br>0.023 | $\begin{array}{c} 0.769 \\ 0.700 \\ 0.636 \\ 0.578 \\ 0.525 \end{array}$ | 1.172<br>1.090<br>1.004<br>0.921<br>0.843                                | $\begin{array}{c} 1.802\\ 1.697\\ 1.616\\ 1.551\\ 1.445\\ 1.353\\ 1.265\end{array}$        | 2.278<br>2.178<br>2.132<br>2.089<br>2.011<br>1.942                           | 3.014<br>2.831<br>2.747<br>2.667<br>2.522<br>2.393   | 4.254<br>3.963<br>3.825<br>3.693<br>3.445<br>3.219 | 5.218<br>5.051<br>4.886<br>4.723<br>4.563 | 6.030<br>5.875<br>5.714<br>5.551<br>5.385 | 6.682<br>6.574<br>6.453<br>6.321<br>6.180 | 7.000<br>6.991<br>6.963<br>6.918<br>6.855<br>6.776                                | N<br>7<br>RHF                                                        |
| 0.443<br>0.292<br>0.196<br>0.134<br>0.067<br>0.037 | 0.926<br>0.857<br>0.792<br>0.731<br>0.674                                | 1.298<br>1.221<br>1.145<br>1.070<br>0.997                                | 2.115<br>1.946<br>1.816<br>1.714<br>1.568<br>1.463<br>1.377                                | 2.844<br>2.697<br>2.629<br>2.564<br>2.445<br>2.338                           | 3.834<br>3.599<br>3.489<br>3.383<br>3.186<br>3.006   | 5.289<br>4.965<br>4.808<br>4.655<br>4.363<br>4.089 | 6.304<br>6.134<br>5.964<br>5.793<br>5.623 | 7.103<br>6.954<br>6.798<br>6.637<br>6.472 | 7.712<br>7.612<br>7.501<br>7.378<br>7.245 | 8.000<br>7.992<br>7.967<br>7.926<br>7.869<br>7.798                                | O<br>8<br>RHF                                                        |
| 0.564<br>0.389<br>0.270<br>0.190<br>0.099<br>0.055 | $     1.055 \\     0.990 \\     0.928 \\     0.868 \\     0.810   $      | 1.398<br>1.324<br>1.254<br>1.186<br>1.120                                | 2.559<br>2.309<br>2.112<br>1.956<br>1.735<br>1.588<br>1.482                                | 3.551<br>3.360<br>3.270<br>3.183<br>3.022<br>2.874                           | 4.761<br>4.484<br>4.353<br>4.225<br>3.983<br>3.759   | 6.362<br>6.020<br>5.851<br>5.685<br>5.363<br>5.054 | 7.395<br>7.226<br>7.055<br>6.883<br>6.709 | 8.168<br>8.026<br>7.876<br>7.721<br>7.560 | 8.736<br>8.645<br>8.541<br>8.427<br>8.302 | 9.000<br>8.993<br>8.970<br>8.933<br>8.881<br>8.815                                | F<br>9<br>RHF                                                        |
| 0.680<br>0.489<br>0.331<br>0.254<br>0.137<br>0.079 | 1.158<br>1.099<br>1.041<br>0.984<br>0.929                                | 1.502<br>1.418<br>1.346<br>1.280<br>1.218                                | 3.126<br>2.517<br>2.517<br>2.296<br>1.971<br>1.757<br>1.609                                | 4.370<br>4.139<br>4.029<br>3.923<br>3.722<br>3.535                           | 5.758<br>5.451<br>5.302<br>5.158<br>4.880<br>4.617   | 7.454<br>7.102<br>6.928<br>6.754<br>6.412<br>6.079 | 8.483<br>8.318<br>8.150<br>7.978<br>7.805 | 9.225<br>9.090<br>8.948<br>8.799<br>8.643 | 9.757<br>9.672<br>9.576<br>9.469<br>9.351 | 10.000<br>9.993<br>9.973<br>9.938<br>9.891<br>9.830                               | Ne<br>10<br>RHF                                                      |
|                                                    |                                                                          |                                                                          |                                                                                            |                                                                              |                                                      |                                                    |                                           |                                           |                                           |                                                                                   |                                                                      |

# 6. INTERPRETATION OF DIFFRACTED INTENSITIES

| TD 11  | 1    | 1 0  | 17   |         | •          | C ·     | •  | 1 .        | C   | 1 • 11     | •      | · c .            | •     |
|--------|------|------|------|---------|------------|---------|----|------------|-----|------------|--------|------------------|-------|
| Table  | 61   | 1 5  | Mean | atomic  | scattering | tactors | ın | plectrons  | tor | chemically | v sion | ificant          | 1005  |
| 1 uoic | 0.1. | 1.5. | mcun | aionnic | scarcring  | Juciors | un | ciccii ons | ,01 | chemican   | 0000   | <i>i</i> jicanii | 10110 |

Methods: C: correlated; HF: non-relativistic Hartree-Fock; RHF: relativistic Hartree-Fock; \*DS: modified Dirac-Slater.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flement                                   | $\mathbf{H}^{1-}$ | I i <sup>1+</sup> | $Be^{2+}$ | C .   | $0^{1-}$ | $\mathbf{F}^{1-}$ | Na <sup>1+</sup> | $M\sigma^{2+}$ | Δ1 <sup>3+</sup> | Si     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|-------------------|-----------|-------|----------|-------------------|------------------|----------------|------------------|--------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                         | 1                 | 3                 | 4         | 6     | 8        | 9                 | 11               | 12             | 13               | 14     |
| $ \begin{array}{  cm 0 / 2.60   cm 0 / 2.60   cm 0   cm$                                                                                                                                                                                                                                                                                                   | Method                                    | Ċ                 | Ċ                 | Ċ         | HF    | HF       | HF                | RHF              | RHF            | HF               | HF     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(\sin\theta)/\lambda$ (Å <sup>-1</sup> ) |                   |                   |           |       |          |                   |                  |                |                  |        |
| 0.00        2.000        2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                   |                   |           |       |          |                   |                  |                |                  |        |
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                      | 2.000             | 2.000             | 2.000     | 6.000 | 9.000    | 10.000            | 10.000           | 10.000         | 10.000           | 14.000 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                      | 1.983             | 1.999             | 1.999     | 5.989 | 8.986    | 9.988             | 9.995            | 9.997          | 9.997            | 13.973 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                      | 1.933             | 1.997             | 1.999     | 5.956 | 8.945    | 9.953             | 9.981            | 9.986          | 9.989            | 13.894 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                      | 1.857             | 1.994             | 1.997     | 5.903 | 8.878    | 9.895             | 9.958            | 9.969          | 9.976            | 13.766 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                      | 1.763             | 1.990             | 1.995     | 5.829 | 8.785    | 9.816             | 9.925            | 9.945          | 9.957            | 13.593 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                      | 1.659             | 1.984             | 1.992     | 5.738 | 8.670    | 9.716             | 9.883            | 9.914          | 9.933            | 13.381 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06                                      | 1 550             | 1 977             | 1 988     | 5 629 | 8 534    | 9 597             | 9 833            | 9 876          | 9 904            | 13 138 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                      | 1 442             | 1.968             | 1 983     | 5 507 | 8 381    | 9 461             | 9 773            | 9.832          | 9 870            | 12 870 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                      | 1 338             | 1.959             | 1.905     | 5 372 | 8 211    | 9 309             | 9 705            | 9 782          | 9.831            | 12.576 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                      | 1.238             | 1.948             | 1.973     | 5.227 | 8.029    | 9.144             | 9.630            | 9.725          | 9.787            | 12.293 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                      | 1.145             | 1.936             | 1.966     | 5.074 | 7.836    | 8.967             | 9.546            | 9.662          | 9.738            | 11.995 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                   |                   |           |       |          |                   |                  |                |                  |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.11                                      | 1.058             | 1.923             | 1.959     | 4.916 | 7.635    | 8.781             | 9.455            | 9.594          | 9.684            | 11.700 |
| $        \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                      | 0.978             | 1.909             | 1.952     | 4.754 | 7.429    | 8.586             | 9.357            | 9.519          | 9.625            | 11.410 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.13                                      | 0.904             | 1.894             | 1.944     | 4.591 | 7.218    | 8.386             | 9.253            | 9.440          | 9.563            | 11.130 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.14                                      | 0.836             | 1.8//             | 1.935     | 4.428 | 7.005    | 8.181             | 9.142            | 9.355          | 9.495            | 10.862 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15                                      | 0.773             | 1.800             | 1.925     | 4.207 | 0.792    | 1.975             | 9.020            | 9.205          | 9.424            | 10.008 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.16                                      | 0.715             | 1.842             | 1.915     | 4.109 | 6.579    | 7.762             | 8.904            | 9.171          | 9.349            | 10.368 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17                                      | 0.661             | 1.823             | 1.905     | 3.954 | 6.368    | 7.551             | 8.777            | 9.072          | 9.270            | 10.143 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.18                                      | 0.612             | 1.804             | 1.894     | 3.805 | 6.160    | 7.341             | 8.647            | 8.969          | 9.187            | 9.933  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19                                      | 0.567             | 1.783             | 1.882     | 3.661 | 5.956    | 7.131             | 8.512            | 8.862          | 9.101            | 9.737  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20                                      | 0.526             | 1.762             | 1.870     | 3.523 | 5.756    | 6.924             | 8.374            | 8.751          | 9.011            | 9.553  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.22                                      | 0.452             | 1.718             | 1.845     | 3.266 | 5.371    | 6.517             | 8.089            | 8.521          | 8.823            | 9.222  |
| $ \begin{bmatrix} 0.25 \\ 0.26 \\ 0.37 \\ 1.623 \\ 1.733 \\ 1.623 \\ 1.733 \\ 1.758 \\ 2.651 \\ 1.758 \\ 2.651 \\ 1.757 \\ 2.495 \\ 1.688 \\ 1.657 \\ 1.757 \\ 1.796 \\ 1.774 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.99 \\ 1.774 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.177 \\ 1.99 \\ 1.99 \\ 1.171 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1$ | 0.24                                      | 0.390             | 1.671             | 1.817     | 3.035 | 5.008    | 6.126             | 7.795            | 8.280          | 8.623            | 8.931  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                      | 0.362             | 1.647             | 1.803     | 2.930 | 4.836    | 5.937             | 7.646            | 8.156          | 8.520            | 8.798  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26                                      | 0.337             | 1.623             | 1.788     | 2.831 | 4.670    | 5.753             | 7.496            | 8.030          | 8.414            | 8.671  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.28                                      | 0.291             | 1.573             | 1.758     | 2.651 | 4.357    | 5.399             | 7.195            | 7.774          | 8.198            | 8.435  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.30                                      | 0.253             | 1.523             | 1.726     | 2.495 | 4.068    | 5.067             | 6.894            | 7.513          | 7.975            | 8.214  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.32                                      | 0.220             | 1.471             | 1.692     | 2.358 | 3.804    | 4.756             | 6.597            | 7.251          | 7.747            | 8.005  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34                                      | 0.192             | 1.419             | 1.658     | 2.241 | 3.564    | 4.467             | 6.304            | 6.987          | 7.515            | 7.803  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35                                      | 0.179             | 1.394             | 1.641     | 2.188 | 3.452    | 4.330             | 6.160            | 6.856          | 7.399            | 7.704  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.36                                      | 0.168             | 1.368             | 1.623     | 2.139 | 3.345    | 4.199             | 6.018            | 6.725          | 7.282            | 7.606  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                      | 0.147             | 1.316             | 1.587     | 2.050 | 3.147    | 3.951             | 5.739            | 6.465          | 7.047            | 7.410  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40                                      | 0.129             | 1.265             | 1.551     | 1.974 | 2.969    | 3.724             | 5.471            | 6.210          | 6.813            | 7.215  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.42                                      | 0 112             | 1.015             | 1 5 1 4   | 1 007 | 2 000    | 2 514             | 5 010            | 5 050          | 6 501            | 7.021  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.42                                      | 0.113             | 1.215             | 1.514     | 1.907 | 2.808    | 3.514             | 5.212            | 5.959          | 6.581            | 7.021  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.44                                      | 0.100             | 1.105             | 1.4/0     | 1.849 | 2.003    | 3.322             | 4.964            | 5.715          | 6.350            | 6.820  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.43                                      | 0.094             | 1.141             | 1.430     | 1.622 | 2.397    | 5.255<br>2.147    | 4.043            | 5.393          | 6 124            | 0.729  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40                                      | 0.089             | 1.117             | 1.439     | 1.790 | 2.333    | 2.097             | 4.720            | 5.477          | 5 001            | 6.032  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                      | 0.079             | 1.009             | 1.401     | 1.752 | 2.417    | 2.967             | 4.303            | 5.025          | 5.683            | 6 244  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                      | 0.070             | 1.025             | 1.504     | 1.711 | 2.515    | 2.041             | 4.290            | 5.025          | 5.005            | 0.244  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55                                      | 0.0526            | 0.914             | 1.270     | 1.624 | 2.097    | 2.531             | 3.808            | 4.508          | 5.162            | 5.766  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.60                                      | 0.0401            | 0.814             | 1.179     | 1.552 | 1.934    | 2.288             | 3.395            | 4.046          | 4.681            | 5.303  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.65                                      | 0.0311            | 0.724             | 1.091     | 1.488 | 1.808    | 2.096             | 3.046            | 3.641          | 4.243            | 4.865  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                      | 0.0243            | 0.643             | 1.007     | 1.428 | 1.710    | 1.945             | 2.753            | 3.288          | 3.851            | 4.455  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80                                      | 0.0155            | 0.507             | 0.852     | 1.315 | 1.567    | 1.729             | 2.305            | 2.724          | 3.195            | 3.734  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90                                      | 0.0102            | 0.400             | 0.717     | 1.204 | 1.463    | 1.585             | 1.997            | 2.315          | 2.693            | 3.150  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                      | 0.0070            | 0.317             | 0.602     | 1.096 | 1.376    | 1.481             | 1.785            | 2.023          | 2.319            | 2.691  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.10                                      | 0.0049            | 0.253             | 0.505     | 0.992 | 1.296    | 1.397             | 1.635            | 1.813          | 2.041            | 2.338  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20                                      | 0.0036            | 0.203             | 0.424     | 0.894 | 1.219    | 1.322             | 1.524            | 1.662          | 1.837            | 2.069  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30                                      | 0.0026            | 0.164             | 0.357     | 0.802 | 1.143    | 1.252             | 1.438            | 1.548          | 1.685            | 1.867  |
| 1.50       0.0015       0.109       0.255       0.642       0.994       1.117       1.304       1.388       1.479       1.595         1.60       0.0012       0.090       0.216       1.246       1.326         1.70       0.0009       0.075       0.184       1.191       1.270         1.80       0.0008       0.062       0.157       1.137       1.218         1.90       0.0006       0.053       0.135       1.084       1.168         2.00       0.0005       0.044       0.116       1.032       1.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40                                      | 0.0020            | 0.133             | 0.301     | 0.718 | 1.067    | 1.184             | 1.367            | 1.460          | 1.570            | 1.713  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.50                                      | 0.0015            | 0.109             | 0.255     | 0.642 | 0.994    | 1.117             | 1.304            | 1.388          | 1.479            | 1.595  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.60                                      | 0.0012            | 0.000             | 0.216     |       |          |                   | 1 246            | 1 226          |                  |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                      | 0.0012            | 0.090             | 0.210     |       |          |                   | 1.240            | 1.320          |                  |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.70                                      | 0.0009            | 0.073             | 0.184     |       |          |                   | 1.191            | 1.270          |                  |        |
| 2.00 	0.0005 	0.003 	0.135 	1.004 	1.100 	1.004 	1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                      | 0.0008            | 0.002             | 0.137     |       |          |                   | 1.137            | 1.210          |                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00                                      | 0.0005            | 0.033             | 0.135     |       |          |                   | 1 032            | 1 110          |                  |        |

#### **6.2.** Trigonometric intensity factors

BY H. LIPSON, J. I. LANGFORD AND H.-C. HU

#### 6.2.1. Expressions for intensity of diffraction

The expressions for the intensity of diffraction of X-rays contain several trigonometrical factors. The earlier series of International Tables (Kasper & Lonsdale, 1959, 1972) gave extensive tables of these functions, but such tables are now unnecessary, as the functions are easily computed. In fact, many crystallographers can ignore the trigonometric factors entirely, as they are built into 'black-box' data-processing programs. The formulae for single-crystal reflections (b) and (c) of Table 6.2.1.1 in the previous edition (Lipson & Langford, 1998) list only the integrated reflection power ratio (i.e. integrated reflection) under the strong absorption case. The revised formulae given here include both the reflection power ratio and the integrated reflection power ratio for a crystal slab of finite thickness with any values of the ratio of the absorption to the diffraction cross sections and under all possible kinds of diffraction geometry.

A conspectus of the expressions for the intensity of diffraction as recorded by various techniques, including the fundamental constants as well as the trigonometric factors, is given in Table 6.2.1.1. Details of the techniques are given elsewhere in this volume (Chapters 2.1–2.3) and in textbooks, such as those of Arndt & Willis (1966) for single-crystal diffractometry and Klug & Alexander (1974) for powder techniques. Notes on individual factors follow.

#### 6.2.2. The polarization factor

X-rays are an electromagnetic radiation, and the amplitude with which they are scattered is proportional to the sine of the angle between the direction of the electric vector of the incident radiation and the direction of scattering. Synchrotron radiation is practically plane-polarized, with the electric vector in the plane of the ring, but the radiation from an ordinary X-ray tube is unpolarized, and it may thus be regarded as consisting of two equal parts, half with the electric vector in the plane of scattering, and half with the electric vector perpendicular to this plane. For the latter, the relevant angle is  $\pi/2$ , and for the former it is  $(\pi/2) - 2\theta$ . The intensity is proportional to the square of the amplitude, so that the polarization factor – really the non-polarization factor – is

$$\{\sin^{2}(\pi/2) + \sin^{2}[(\pi/2) - 2\theta)]\}/2$$
  
= (1 + cos<sup>2</sup> 2\theta)/2. (6.2.2.1)

If the radiation has been 'monochromatized' by reflection from a crystal, it will be partially polarized, and the two parts of the beam will be of unequal intensity. The intensity of reflection then depends on the angular relations between the original, the reflected, and the scattered beams, but in the commonest arrangements all three are coplanar. The polarization factor then becomes

$$(1 + A\cos^2 2\theta)/(1 + A),$$
 (6.2.2.2)

where

$$A = \cos^2 2\theta_M \tag{6.2.2.3}$$

and  $\theta_M$  is the Bragg angle of the monochromator crystal. The expression (6.2.2.2) may be substituted for (6.2.2.1) in Table 6.2.1.1 whenever appropriate.

#### 6.2.3. The angular-velocity factor

In experiments where the crystal is rotated or oscillated, reflection of X-rays takes place as a reciprocal-lattice point moves through the surface of the sphere of reflection. The intensity is thus proportional to the time required for the transit of the point through the surface, and so is inversely proportional to the component of the velocity perpendicular to the surface. In most experimental arrangements – the precession camera (Buerger, 1944) is an exception – the crystals move with a constant angular velocity, and the perpendicular component of the velocity varies in an easily calculable way with the 'latitude' of the reciprocal-lattice point referred to the axis of rotation. If the reciprocal-lattice point lies in the equatorial plane and the radiation is monochromatic – the most important case in practice – the angular-velocity factor is

 $\csc 2\theta.$  (6.2.3.1)

If the latitude of the reciprocal-lattice point is  $\varphi$ , a somewhat more complex calculation shows that the factor becomes

$$\operatorname{cosec} \theta(\cos^2 \varphi - \sin^2 \theta)^{1/2}. \tag{6.2.3.2}$$

For  $\varphi = 0$ , the expression (6.2.3.2) reduces to (6.2.3.1). In some texts,  $\varphi$  is used for the co-latitude; this and various trigonometric identities can give superficially very different appearances to (6.2.3.2).

### 6.2.4. The Lorentz factor

There has been some argument over the meaning to be attached to the term *Lorentz factor*, probably because Lorentz did not publish his results in the ordinary way; they appear in a note added in proof to a paper on temperature effects by Debye (1914). Ordinarily, *Lorentz factor* is used for the trigonometric part of the angular-velocity factor, or its equivalent, if the sample is stationary. (See below).

#### 6.2.5. Special factors in the powder method

In the powder method, all rays diffracted through an angle  $2\theta$  lie on the surface of a cone, and in the absence of preferred orientation the diffracted intensity is uniformly distributed over the circumference of the cone. The amount effective in blackening film, or intercepted by the receiving slit of a diffractometer, is thus inversely proportional to the circumference of the cone, and directly proportional to the fraction of the crystallites in a position to reflect. When allowance is made for these geometrical factors, it is found that for the Debye– Scherrer and diffractometer arrangements the intensity is proportional to

$$p'' \operatorname{cosec} \theta, \qquad (6.2.5.1)$$

where p'' is the multiplicity factor (the number of permutations of *hkl* leading to the same value of  $\theta$ ). For the flat-plate frontreflection arrangement, the variation becomes

$$p''\cos 2\theta \csc \theta. \tag{6.2.5.2}$$

Combining the polarization, angular-velocity, and special factors gives a trigonometric variation of

$$p''(1 + \cos^2 2\theta) \sec \theta \csc^2 \theta \qquad (6.2.5.3)$$

$$W(\Delta) = \frac{1}{\eta\sqrt{2\pi}} \exp\left(-\frac{\Delta^2}{2\eta^2}\right), \qquad (6.4.8.2)$$

where  $\Delta$  is the angular deviation of the block from the mean orientation of all blocks in the crystal, and  $\eta$  is the standard deviation of the distribution. (The assumption of a Gaussian distribution is not critical to the argument that follows.)

Let the crystal be a cube of side L, and let  $\alpha$  be the probability that a ray reflected by the first block is reflected again by a subsequent block. The effective size of the crystal for Bragg scattering of a single incident ray is then

$$\langle L \rangle = \ell + (L - \ell)\alpha, \qquad (6.4.8.3)$$

while the size of the crystal for all other attenuation processes is L, since, for them, the Bragg condition does not apply. The probability of re-scattering,  $\alpha$ , can readily be expressed in terms of crystallographic quantities. The full width at half-maximum intensity of the Darwin reflection curve is given, after conversion to the glancing-angle ( $\theta$ ) scale, by Zachariasen (1945) as

$$\Delta \theta = \frac{3\lambda^2 N_c F}{\pi \sqrt{2} \sin 2\theta} \text{ (radians).} \tag{6.4.8.4}$$

The full width at half-maximum (FWHM) of the mosaic-block distribution (6.4.8.2) is derived in the usual way, and the parameter  $g \ (= 1/2\eta\sqrt{\pi})$  is introduced to clear (to 1%) numerical constants. Then  $\alpha$ , which is equal to the ratio of the widths, is given by

$$\alpha = \frac{gN_c\lambda^2 F}{\sin 2\theta}.$$
 (6.4.8.5)

Insertion of  $\langle L \rangle$  [equation (6.4.8.3)] in place of  $\ell$  in equation (6.4.8.1) for x leads to

$$x = [N_c \lambda F \ell + g Q_{\theta} (L - \ell)]^2, \qquad (6.4.8.6)$$

where  $Q_{\theta} = N_0^2 \lambda^3 F^2 / \sin 2\theta$ .

#### 6.4.9. Secondary extinction

A separate treatment of secondary extinction is required only in the uncorrelated block model, and the method given by Hamilton (1957) is used in this work. The coupling constant in the H-D equations is given by  $\sigma(\Delta\theta) = Q_{\theta}E_{p}W(\Delta\theta)$ , where  $Q_{\theta} = N_{c}^{2}\lambda^{3}F^{2}/\sin 2\theta$  for equatorial reflections in the neutron case,  $E_{p}$  is the correction for primary extinction evaluated at the angle  $\theta$ , and  $W(\Delta\theta)$  is the distribution function for the tilts between mosaic blocks. The choice of this function has a significant influence on the final result (Sabine, 1985), and a rectangular or triangular form is suggested.

In the following equations for the secondary-extinction factor,

$$x = E_p Q_\theta GD, \tag{6.4.9.1}$$

and A and B are given by equations (6.4.5.6) and (6.4.5.7). The average path length through the crystal for the reflection under consideration is D and G is the integral breadth of the angular distribution of mosaic blocks. It is important to note that A should be set equal to one if the data have been corrected for absorption, and B should be set equal to one if absorption-weighted values of D are used. If D for each reflection is not known, the average dimension of the crystal may be used for all reflections.

For a rectangular function,  $W(\Delta \theta) = G$ , for  $|\Delta \theta| \le 1/2G$ ,  $W(\Delta \theta) = 0$  otherwise, and the secondary-extinction factor becomes

$$E_L = \frac{\exp(-\mu D)}{2x} [1 - \exp(-2x)], \qquad (6.4.9.2)$$

$$E_B = \frac{A}{1+Bx}.\tag{6.4.9.3}$$

For a triangular function,  $W(\Delta \theta) = G(1 - |\Delta \theta|G)$ , for  $|\Delta \theta| \le 1/G$ ,  $W(\Delta \theta) = 0$  otherwise, and the secondary-extinction factor becomes

$$E_L = \frac{\exp(-\mu D)}{x} \left\{ 1 - \frac{1}{2x} [1 - \exp(-2x)] \right\}, \qquad (6.4.9.4)$$

$$E_B = \frac{2A}{(Bx)^2} [Bx - \ln|1 + Bx|].$$
(6.4.9.5)

#### 6.4.10. The extinction factor

### 6.4.10.1. The correlated block model

For this model of the real crystal, the variable x is given by equation (6.4.8.6), with  $\ell$  and g the refinable variables. Extinction factors are then calculated from equations (6.4.5.3), (6.4.5.4), and (6.4.5.5). For a reflection at a scattering angle of  $2\theta$  from a reasonably equiaxial crystal, the appropriate extinction factor is given by (6.4.7.1) as  $E(2\theta) = E_L \cos^2 2\theta + E_B \sin^2 2\theta$ .

It is a meaningful procedure to refine both primary and secondary extinction in this model. The reason for the high correlation between  $\ell$  and g that is found when other theories are applied, for example that of Becker & Coppens (1974), lies in the structure of the quantity x. In the theory presented here, x is proportional to  $F^2$  for pure primary extinction and to  $Q^2_{\theta}$  for pure secondary extinction.

#### 6.4.10.2. The uncorrelated block model

When this model is used, two values of x are required. These are designated  $x_p$  for primary extinction and  $x_s$  for secondary extinction. Equation (6.4.8.1) is used to obtain a value for  $x_p$ . The primary-extinction factors are then calculated from (6.4.5.3), (6.4.5.4) and (6.4.5.5), and  $E_p(2\theta)$  is given by equation (6.4.7.1). In the second step,  $x_s$  is obtained from equation (6.4.9.1), and the secondary-extinction factors are calculated from either (6.4.9.2) and (6.4.9.3) or (6.4.9.4) and (6.4.9.5). The result of these calculations is then used in equation (6.4.7.1) to give  $E_s(2\theta)$ . It is emphasised that  $x_s$  includes the primary-extinction factor. Finally,  $E(2\theta) = E_p(2\theta)E_s[E_p(2\theta), 2\theta]$ .

Application of both models to the analysis of neutron diffraction data has been carried out by Kampermann, Sabine, Craven & McMullen (1995).

#### 6.4.11. Polarization

The expressions for the extinction factor have been given, by default, for the  $\sigma$ -polarization state, in which the electric field vector of the incident radiation is perpendicular to the plane defined by the incident and diffracted beams. For this state, the polarization factor is unity. For the  $\pi$ -polarization state, in which the electric vector lies in the diffraction plane, the factor is  $\cos 2\theta$ . The appropriate values for the extinction factors for this state are given by multiplying F by  $\cos 2\theta$  wherever F occurs.

For neutrons, which are matter waves, the polarization factor is always unity.

For an unpolarized beam from an X-ray tube, the observed integrated intensity is given by  $I^{obs} = \frac{1}{2}I_{\theta}^{kin}(E_{\sigma} + E_{\pi}\cos^2 2\theta)$ . In the kinematic limit,  $E_{\sigma} = E_{\pi} = 1$ , and the power to which  $\cos 2\theta$ 

#### 7.3. THERMAL NEUTRON DETECTION

#### Table 7.3.2.1. Neutron capture reactions used in neutron detection

| $n =$ neutron, $p = H^+ =$ proton | $t = {}^{3}\mathrm{H}^{-} = \mathrm{triton},$ | $\alpha = {}^{4}\mathrm{H}^{+} = \mathrm{alpha},  \epsilon$ | $e^- = \text{electror}$ |
|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------|
|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------|

| Capture reaction                                                                                                                                     | Cross section<br>at 1 Å (barns)      | Secondary-particle energies<br>(MeV)                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $^{3}\text{He} + n \rightarrow t + p$                                                                                                                | 3000                                 | t 0.20 p 0.57                                                                                                                  |
| $^{6}\mathrm{Li}+n \to t+\alpha$                                                                                                                     | 520                                  | t 3.74 α 2.05                                                                                                                  |
| $^{10}\text{B} + n \rightarrow ^{7}\text{Li}^{*} + \alpha \ (93\%)$ $\downarrow ^{7}\text{Li} + \gamma$ $\rightarrow ^{7}\text{Li} + \alpha \ (7\%)$ | 2100                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           |
|                                                                                                                                                      | 74000<br>( <sup>nat</sup> Gd: 17000) | $\begin{array}{ll} e^{-} & \text{spectrum} & 0.07 \text{ to } 0.182 \\ \gamma & \text{spectrum} & \text{up to } 8 \end{array}$ |
| $^{235}\text{U} + n \rightarrow \text{fission fragments}$                                                                                            | 320                                  | Fission fragments up to 80                                                                                                     |

#### There are two modes of operation.

In the case of *direct collection of charges*, the 25 000 electrons corresponding to one neutron capture (*primary electrons*) are collected by the anode in about 100–500 ns, and generate an input pulse in the charge preamplifier (see Section 7.3.4).

If the electrical field created by the high voltage applied to the anode exceeds a critical value, the electrons will be accelerated sufficiently to produce a cascade of ionizing collisions with the neutral molecules they encounter, the new electrons liberated in the process being called *secondary electrons*. This phenomenon, *gas multiplication*, occurs in the vicinity of the thin wire anode, since the field varies as 1/r. The avalanche stops when all the free electrons have been collected at the anode. With proper design, the number of secondary electrons is proportional to the number of primary electrons. For cylindrical geometries, the multiplication coefficient *M* can be calculated (Wolf, 1974). This type of detection mode is called the proportional mode. It is very commonly used because it gives a better signal-to-noise ratio (see Section 7.3.4).

A few critical remarks about gas detectors:

(i) Some gases have a tendency to form negative ions by the attachment of a free electron to a neutral gas molecule, giving a loss of detector current. This effect is negligible for <sup>3</sup>He but it limits the use of <sup>10</sup>BF<sub>3</sub> to about 2 atmospheres pressure, although traces of gases such as O<sub>2</sub> or H<sub>2</sub>O (*e.g.* detector materials and wall outgasing) are often the reason for loss by attachment.

(ii) Pure <sup>3</sup>He and <sup>10</sup>BF<sub>3</sub> gas detectors are practically insensitive to  $\gamma$  radiation. This is no longer the case when additional gases, which are necessary for <sup>3</sup>He, are used, although the polyatomic additives C<sub>3</sub>H<sub>8</sub> and CF<sub>4</sub> are much better than the rare gases Kr, Xe, and Ar (Fischer, Radeka & Boie, 1983).

(iii) For various reasons (the price of <sup>3</sup>He and <sup>10</sup>BF<sub>3</sub> and the toxicity of BF<sub>3</sub>), neutron gas detectors are closed chambers, which must be leak-proof and insensitive to BF<sub>3</sub> corrosion. The wall thickness must be adapted to the inside pressure, which sometimes implies a rather thick front aluminium window (*e.g.* a 10 mm window for a 16 bar <sup>3</sup>He gas position-sensitive detector; aluminium is chosen for its very good transmission of neutrons, about 90% for 10 mm thickness).

# 7.3.3.2. Detection via solid converter and gas ionization: the foil detector

This mode of detection is generally used for monitors. In a typical design, a <sup>10</sup>B deposit of controlled thickness, for example

 $t = 0.04 \,\mu\text{m}$  giving a capture efficiency of  $10^{-3}$  at  $\lambda = 1 \,\text{\AA}$ , is made on a thin aluminium plate (see Fig. 7.3.3.2). One of the two particles ( $\alpha$ , Li) produced in the solid by the capture reaction is absorbed by the plate; the other escapes and ionizes the gas. The electrons produced are collected by the aluminium plate, itself acting as the anode, or by a separate anode wire, allowing the use of the proportional mode. The detection efficiency is proportional to the deposit thickness *t*, but *t* must be kept less than the average range *r* of the secondary particles in the deposit (for  ${}^{10}\text{B}$ ,  $r_{\alpha} = 3.8 \,\mu\text{m}$  and  $r_{\text{Li}} = 1.7 \,\mu\text{m}$ ), which limits the efficiency to a maximum value of 3–4% for  $\lambda = 1 \,\text{\AA}$ . The fraction of the secondary particle energy that is lost in the deposit reduces the detector current, *i.e.* the signal-to-noise ratio, and worsens the amplitude spectrum (see Section 7.3.4).

#### 7.3.3.3. Detection via scintillation

In the detection process *via* scintillation (see Table 7.3.3.1), the secondary particles produced by the neutron capture ionize and excite a number of valence-band electrons of the solid scintillator to high-energy states, from which they tend to decay with the emission of a light flash of photons detected by a photomultiplier [see Fig. 7.3.3.3(a)]. A number of conditions must be satisfied:

(i) The scintillation must be immediate after the neutron-capture triggering event.

(ii) The scintillation decay time must be short. It depends on materials, and is around 50–100 ns for lithium silicate glasses.

(iii) A large fraction of the energy must be converted into light (rather than heat).

(iv) The material must be transparent to its own radiation.

Most thermal neutron scintillation detectors are currently based on inorganic salt crystals or glasses doped with traces of an activating element (Eu, Ce, Ag, *etc.*) (extrinsic scintillators). (A plastic scintillator might be considered to be a solid organic solution with a neutron converter.)

The use of extrinsic scintillators (Convert & Forsyth, 1983), although less efficient energetically, permits better decoupling of the energy of the photon-emitting transition (occurring now in the activator centres) from that of the valence-band electron excitation or ionization energy. The crystal or glass is then transparent to its own emission, and the light emitted is shifted to a wavelength better adapted to the following optical treatment.

$$\tau = T/t, \tag{7.5.3.7}$$

where t is the time devoted to the measurement, and the variance of the counting rate is

$$\sigma^{2}(\tau) = T/t^{2} = \tau/t.$$
 (7.5.3.8)

Similar expressions apply for the background, with B for the count, b for the time, and  $\beta$  for the counting rate. For the reflection count, the corresponding expressions are

$$\rho = T/t - B/b,$$
 (7.5.3.9)

$$\sigma^2(\rho) = \tau/t + \beta/b.$$
 (7.5.3.10)

To avoid confusion, upper-case italic letters are used for numbers of counts, lower-case italic for counting times, and the corresponding lower-case Greek letters for the corresponding counting *rates*. In accordance with common practice, however,  $I_i$ will be used for the intensity of the *j*th reflection, the context making it clear whether I is a number of counts or a counting rate.

#### 7.5.4. Fixed-count timing

The probability of a time t being required to accumulate Ncounts when the true counting rate is  $\nu$  is given by a  $\Gamma$ distribution (Abramowitz & Stegun, 1964, p. 255):

$$p(t) dt = [(N-1)!]^{-1} (\nu t)^{N-1} \exp(-\nu t) d(\nu t).$$
 (7.5.4.1)

The ratio N/t is a slightly biased estimate of the counting rate  $\nu$ ; the unbiased estimate is (N-1)/t. The variance of this estimate is  $\nu^2/(N-2)$ , or, nearly enough for most purposes,  $(N-1)^2/(N-2)t^2$ . The differences introduced by the corrections -1 and -2 are generally negligible, but would not be so for counts as low as those proposed by Killean (1967). If such corrections are important, it should be noticed that there is an ambiguity concerning N, depending on how the timing is triggered. It may be triggered by a count that is counted, or by a count that is not counted, or may simply be begun, independently of the incidence of a count. Equation (7.5.4.1) assumes the first of these.

Equation (7.5.4.1) may be inverted to give the probability distribution of the observed counting rate  $\nu_{a}$  instead of the probability distribution of the time *t*:

$$p(\nu_o) \, \mathrm{d}\nu_o = [(N-1)!]^{-1} [\nu(N-1)/\nu_o]^{N-1} \\ \times \exp\{-(N-1)\nu/\nu_o\} \, \mathrm{d}[\nu_o/(N-1)\nu]. \quad (7.5.4.2)$$

There does not seem to be any special name for the distribution (7.5.4.2). Only its first (N - 1) moments exist, and the integral expressing the probability distribution of the difference of the reflection and the background rates is intractable (Wilson, 1980).

#### 7.5.5. Complicating phenomena

#### 7.5.5.1. Dead time

After a count is recorded, the detector and the counting circuits are 'dead' for a short interval, and any ionizing event occurring during that interval is not detected. This is important if the dead time is not negligible in comparison with the reciprocal of the counting rate, and corrections have to be made; these are large for Geiger counters, and may sometimes be necessary for counters of other types. The need for the correction can be eliminated by suitable monitoring (Eastabrook & Hughes, 1953); other advantages of monitoring are described in Chapter 2.3.

# Mains-voltage fluctuations, unless compensated, and un-

7.5.5.2. Voltage fluctuations

smoothed high-tension supplies may affect the sensitivity of detectors and counting circuits, and in any case cause the probability distribution of the arrival of counts to be non-Poissonian. Backlash in the diffractometer drives may be even more important in altering the observed counting rates. As de Boer (1982) says, the ideal distributions represent a Utopia that experimenters can approach but never reach. He observed erratic fluctuations in counting rates, up to ten times as big as the expected statistical fluctuations. When care is taken, the instabilities observed in practice are much less than those of the extreme cases described by de Boer. Stabilizing an X-ray source and testing its stability are discussed in Subsection 2.3.5.1.

#### 7.5.6. Treatment of measured-as-negative (and other weak) intensities

It has been customary in crystallographic computations, but without theoretical justification, to omit all reflections with intensities less than two or three times their standard uncertainties. Hirshfeld & Rabinovich (1973) asserted that the failure to use all reflections, even those for which the subtraction of background has resulted in a negative net intensity, at their measured values will lead to a bias in the parameters resulting from a least-squares refinement. This is, however, inconsistent with the Gauss-Markov theorem (see Section 8.1.2), which shows that least-squares estimates are unbiased, independent of the weights used, if the observations are unbiased estimates of quantities predicted by a model. Giving some observations zero weight therefore cannot introduce bias. Provided the set of included observations is sufficient to give a nonsingular normal equations matrix, parameter estimates will be unbiased, but inclusion of as many well determined observations as possible will yield the most precise estimates. Requiring that the net intensity be greater than  $2\sigma$  assures that the value of |F| will be well determined. Furthermore, Prince & Nicholson (1985) showed that, if the net intensity, I, or  $|F|^2$  is used as the observed quantity, weak reflections have very little leverage (see Section 8.4.4), and therefore omitting them cannot have a significant effect on the precision of parameter estimates.

The use of negative values of I or  $|F|^2$  is also inconsistent with Bayes's theorem, which implies that a negative value cannot be an unbiased estimate of an inherently non-negative quantity. There are statistical methods for estimating the positive value of |F| that led to a negative value of *I*. The best known approach is the Bayesian method of French & Wilson (1978), who observe that "Instead of thanking the data for the information that certain structure factor moduli are small, we accuse them of assuming 'impossible' negative values. What we should do is combine our knowledge of the non-negativity of the true intensities with the information concerning their magnitudes contained in the data."

#### 7.5.7. Optimization of counting times

There have been many papers on optimizing counting times for achieving different purposes, and all optimization procedures require some knowledge of the distributions of counts or counting rates; often only the mean and variance of the distribution are required. It is also necessary to know the functional relationship between the quantity of interest and the counts (counting rates, intensities) entering into its measurement. Typically, the object is to minimize the variance of some

might seem to have the effect of making the weights dependent on the calculated values, so that the right-hand side of (8.2.2.6)is no longer zero, but this applies only if the weights are changed during the refinement. There is thus no conflict with the result in (8.1.2.9). In practice, in any case, many other sources of uncertainty are much more important than any possible bias that could be introduced by this effect.

#### 8.2.3. Entropy maximization

#### 8.2.3.1. Introduction

Entropy maximization, like least squares, is of interest primarily as a framework within which to find or adjust parameters of a model. Rationalization of the name 'entropy maximization' by analogy to thermodynamics is controversial, but there is formal proof (Shore & Johnson, 1980) supporting entropy maximization as the unique method of inference that satisfies basic consistency requirements (Livesey & Skilling, 1985). The proof consists of discovering the consequences of four consistency axioms, which may be stated informally as follows:

- (1) the result of the inference should be unique;
- (2) the result of the inference should be invariant to any transformations of coordinate system;
- (3) it should not matter whether independent information is accounted for independently or jointly;
- (4) it should not matter whether independent subsystems are treated separately in conditional problems or collected and treated jointly.

The term 'entropy' is used in this chapter as a name only, the name for variation functions that include the form  $\varphi \ln \varphi$ , where  $\varphi$  may represent probability or, more generally, a positive proportion. Any positive measure, either observed or derived, of the relative apportionment of a characteristic quantity among observations can serve as the proportion.

The method of entropy maximization may be formulated as follows: given a set of *n* observations,  $y_i$ , that are measurements of quantities that can be described by model functions,  $M_i(\mathbf{x})$ , where **x** is a vector of parameters, find the prior, positive proportions,  $\mu_i = f(y_i)$ , and the values of the parameters for which the positive proportions  $\varphi = f[M_i(\mathbf{x})]$  make the sum

$$S = -\sum_{i=1}^{n} \varphi'_{i} \ln(\varphi'_{i}/\mu'_{i}), \qquad (8.2.3.1)$$

where  $\varphi'_i = \varphi_i / \sum \varphi_j$  and  $\mu'_i = \mu_i / \sum \mu_j$ , a maximum. *S* is called the *Shannon-Jaynes entropy*. For some applications (Collins, 1982), it is desirable to include in the variation function additional terms or restraints that give *S* the form

$$S = -\sum_{i=1}^{n} \varphi'_{i} \ln(\varphi'_{i}/\mu'_{i}) + \lambda_{1}\xi_{1}(\mathbf{x},\mathbf{y}) + \lambda_{2}\xi_{2}(\mathbf{x},\mathbf{y}) + \dots, \quad (8.2.3.2)$$

where the  $\lambda$ s are undetermined multipliers, but we shall discuss here only applications where  $\lambda_i = 0$  for all *i*, and an unrestrained entropy is maximized. A necessary condition for *S* to be a maximum is for the gradient to vanish. Using

$$\frac{\partial S}{\partial x_j} = \sum_{i=1}^n \left(\frac{\partial S}{\partial \varphi_i}\right) \left(\frac{\partial \varphi_i}{\partial x_j}\right)$$
(8.2.3.3)

and

$$\frac{\partial S}{\partial \varphi_i} = \sum_{k=1}^n \left( \frac{\partial S}{\partial \varphi'_k} \right) \left( \frac{\partial \varphi'_k}{\partial \varphi_i} \right), \tag{8.2.3.4}$$

straightforward algebraic manipulation gives equations of the form

$$\sum_{i=1}^{n} \left\{ \frac{\partial \varphi_i}{\partial x_j} - \varphi_i' \left( \sum_{k=1}^{n} \frac{\partial \varphi_k}{\partial x_j} \right) \right\} \ln \left( \frac{\varphi_i'}{\mu_i'} \right) = 0.$$
(8.2.3.5)

It should be noted that, although the entropy function should, in principle, have a unique stationary point corresponding to the global maximum, there are occasional circumstances, particularly with restrained problems where the undetermined multipliers are not all zero, where it may be necessary to verify that a stationary solution actually maximizes entropy.

#### 8.2.3.2. Some examples

For an example of the application of the maximum-entropy method, consider (Collins, 1984) a collection of diffraction intensities in which various subsets have been measured under different conditions, such as on different films or with different crystals. All systematic corrections have been made, but it is necessary to put the different subsets onto a common scale. Assume that every subset has measurements in common with some other subset, and that no collection of subsets is isolated from the others. Let the measurement of intensity  $I_h$  in subset *i* be  $J_{hi}$ , and let the scale factor that puts intensity  $I_h$  on the scale of subset *i* be  $k_i$ . Equation (8.2.3.1) becomes

$$S = -\sum_{h=1}^{n} \sum_{i=1}^{m} (k_i I_h)' \ln\left[\frac{(k_i I_h)'}{J'_{hi}}\right],$$
(8.2.3.6)

where the term is zero if  $I_h$  does not appear in subset *i*. Because  $k_i$  and  $I_h$  are parameters of the model, equations (8.2.3.5) become

$$\sum_{i=1}^{m} k_i \ln\left[\frac{(k_i I_h)'}{J'_{hi}}\right] - \sum_{h=1}^{n} \sum_{i=1}^{m} (k_i I_h)' \left(\sum_{l=1}^{m} k_l\right) \ln\left[\frac{(k_i I_h)'}{J'_{hi}}\right] = 0,$$
(8.2.3.7*a*)

and

$$\sum_{h=1}^{n} I_h \ln\left[\frac{(k_i I_h)'}{J'_{hi}}\right] - \sum_{h=1}^{n} \sum_{i=1}^{m} (k_i I_h)' \left(\sum_{l=1}^{n} I_l\right) \ln\left[\frac{(k_i I_h)'}{J'_{hi}}\right] = 0.$$
(8.2.3.7b)

These simplify to

$$\ln I_h = Q - \sum_{i=1}^m k'_i \ln(k_i/J_{hi})$$
 (8.2.3.8*a*)

and

where

$$\ln k_i = Q - \sum_{h=1}^n I'_h \ln(I_h/J_{hi}), \qquad (8.2.3.8b)$$

 $O = \sum_{n=1}^{n} \sum_{j=1}^{m} (1, I_{n})^{j} \ln \left[ (1, I_{n}) / I_{n} \right]$ 

$$Q = \sum_{h=1}^{n} \sum_{i=1}^{m} (k_i I_h)' \ln[(k_i I_h)/J_{hi}].$$
 (8.2.3.8c)

Equations (8.2.3.8) may be solved iteratively, starting with the approximations  $k_i = \sum_{h=1}^{n} J_{hi}$  and Q = 0.

The standard uncertainties of scale factors and intensities are not used in the solution of equations (8.2.3.8), and must be computed separately. They may be estimated on a fractional basis from the variances of estimated population means  $\langle J_{hi}/I_h \rangle$ for a scale factor and  $\langle J_{hi}/k_i \rangle$  for an intensity, respectively. The maximum-entropy scale factors and scaled intensities are relative, and either set may be multiplied by an arbitrary, positive constant without affecting the solution. Profile R factor:

$$R_P = \frac{\sum_{i} |y_i(\text{obs.}) - y_i(\text{calc.})|}{\sum_{i} y_i(\text{obs.})}.$$

Weighted profile *R* factor:

$$R_{wP} = \left[\frac{\sum_{i} w_i |y_i(\text{obs.}) - y_i(\text{calc.})|^2}{\sum_{i} w_i y_i^2(\text{obs.})}\right]^{1/2}.$$

1 10

Bragg R factor:

$$R_I = \frac{\sum_{k} |I_k(\text{obs.}) - I_k(\text{calc.})|}{\sum_{k} I_k(\text{obs.})}$$

Expected R factor:

$$R_E = \left[\frac{\mathcal{N} - P}{\sum_i w_i y_i^2(\text{obs.})}\right]^{1/2}$$

 $I_k$  is the integrated intensity of the *k*th reflection,  $\mathcal{N}$  is the number of independent observations, and *P* is the number of refined parameters. The most important indicators are  $R_{wP}$  and  $R_E$ . The ratio  $R_{wP}/R_E$  is the so-called 'goodness-of-fit',  $\chi^2$ : in a successful refinement  $\chi^2$  should approach unity. The Bragg *R* factor is useful, since it depends on the fit of the structural parameters and not on the profile parameters.

#### 8.6.2. Problems with the Rietveld method

One should be aware of certain problems that may give rise to failure in a Rietveld refinement.

#### 8.6.2.1. Indexing

The first step in refinement is the indexing of the pattern. As the Rietveld method is often applied to the refinement of data for which the unit-cell parameters and space group are already known, there is then little difficulty in indexing the pattern, provided that there are a few well resolved lines. Without this knowledge, the indexing requires, as a starting point, the measurement of the d values of low-angle diffraction lines to high accuracy. According to Shirley (1980): 'Powder indexing works beautifully on good data, but with poor data it usually will not work at all'. The indexing of powder patterns and associated problems are discussed by Shirley (1980), Pawley (1981), Cheetham (1993) and Werner (2002).

#### 8.6.2.2. Peak-shape function (PSF)

The appropriate function to use varies with the nature of the experimental technique. In addition to the Gaussian PSF in (8.6.1.3), functions commonly used for angle-dispersive data are (Young & Wiles, 1982):

$$\begin{split} G_{ik} &= \frac{2}{\pi H_k} \left[ 1 + 4 \left( \frac{\Delta 2\theta_{ik}}{H_k} \right)^2 \right]^{-1} \qquad \text{(Lorentzian)} \\ G_{ik} &= \frac{2\eta}{\pi H_k} \left[ 1 + 4 \left( \frac{\Delta 2\theta_{ik}}{H_k} \right)^2 \right]^{-1} \\ &+ (1 - \eta) \frac{2\sqrt{\ln 2}}{\sqrt{\pi H_k}} \exp\left[ -4\ln 2 \left( \frac{\Delta 2\theta_{ik}}{H_k} \right)^2 \right] \qquad \text{(pseudo-Voigt)} \\ G_{ik} &= \frac{2\Gamma(n)(2^{1/n} - 1)}{\pi H_k \Gamma(n - \frac{1}{2})} \left[ 1 + 4(2^{1/n} - 1) \left( \frac{\Delta 2\theta_{ik}}{H_k} \right)^2 \right]^{-n} \\ &\qquad \text{(Pearson VII)} \end{split}$$

where  $\Delta 2\theta_{ik} = 2\theta_i - 2\theta_k$ .  $\eta$  is a parameter that defines the fraction of Lorentzian character in the pseudo-Voigt profile.  $\Gamma(n)$  is the gamma function: when n = 1, Pearson VII becomes a Lorentzian, and when  $n = \infty$ , it becomes a Gaussian.

The tails of a Gaussian distribution fall off too rapidly to account for particle size broadening. The peak shape is then better described by a convolution of Gaussian and Lorentzian functions [*i.e.* Voigt function: see Ahtee, Nurmela & Suortti (1984) and David & Matthewman (1985)]. A pulsed neutron source gives an asymmetrical line shape arising from the fast rise and slow decay of the neutron pulse: this shape can be approximated by a pair of exponential functions convoluted with a Gaussian (Albinati & Willis, 1982; Von Dreele, Jorgensen & Windsor, 1982).

The pattern from an X-ray powder diffractometer gives peak shapes that cannot be fitted by a simple analytical function. Will, Parrish & Huang (1983) use the sum of several Lorentzians to express the shape of each diffraction peak, while Hepp & Baerlocher (1988) describe a numerical method of determining the PSF. Pearson VII functions have also been successfully used for X-ray data (Immirzi, 1980). A modified Lorentzian function has been employed for interpreting data from a Guinier focusing camera (Malmros & Thomas, 1977). PSFs for instruments employing X-ray synchrotron radiation can be represented by a Gaussian (Parrish & Huang, 1980) or a pseudo-Voigt function (Hastings, Thomlinson & Cox, 1984).

#### 8.6.2.3. Background

The background may be determined by measuring regions of the pattern that are free from Bragg peaks. This procedure assumes that the background varies smoothly with  $\sin \theta / \lambda$ , whereas this is not the case in the presence of disorder or thermal diffuse scattering (TDS), which rises to a maximum at the Bragg positions. An alternative approach is to include a background function in the refinement model (Richardson, 1993). If the background is not accounted for satisfactorily, the temperature factors may be incorrect or even negative. The various procedures for estimating the background for X-ray, synchrotron, constantwavelength and TOF neutron powder patterns are reviewed by McCusker *et al.* (1999).

In neutron diffraction, the main contribution to the background from hydrogen-containing samples is due to incoherent scattering. Deuterating the sample is essential in order to substantially reduce this background. Two other types of homogeneous sphere packings (15 and 16) with contact number k = 10 also refer to densest layers of spheres. In these cases, each sphere has three contacts to one neighbouring layer and one contact to the other layer that is stacked directly above or below the original layer.

Cubic closest packings may also be regarded as built up from square layers  $4^4$  stacked in such a way that each sphere has four neighbouring spheres in the same layer and four neighbours each from the layers above and below (*cf.* Fig. 9.1.1.3). If square layers are stacked such that each sphere has contact to four spheres of one neighbouring layer and to two spheres of the other layer (*cf.* Fig. 9.1.1.4), sphere packings with contact number 10 result. In total, two types of homogeneous packings (17 and 18) with this kind of stacking exist. Sphere packings of type 9 may also be decomposed into  $4^4$  layers parallel to (101) or (011) in a five-layer sequence. These nets are made up from parallel rhombi and stacked such that each sphere has contact with three other spheres from the layer above and from the layer below. If such layers are stacked in a two-layer sequence, sphere packings of type 13



Fig. 9.1.1.2. Two triangular nets representing two densest packed layers of spheres. The layers are stacked in such a way that each sphere is in contact with two spheres of the other layer.



Fig. 9.1.1.3. Two square nets representing two layers of spheres stacked in such a way that each sphere is in contact with four spheres of the other layer.

with symmetry *Cmcm* result (O'Keeffe, 1998). Sphere packings of type 14 are also build up from  $4^4$  layers, but here the rhombi occur in two different orientations (O'Keeffe, 1998). Sphere packings with high contact numbers may also be derived by stacking of other layers. Type 20, for example, refers to  $3^46$  layers where each sphere is in contact with three spheres of one neighbouring net and two spheres of the other one (Sowa & Koch, 1999). Such a sphere packing may alternatively be derived from the cubic closest packing by omitting systematically 1/7 of the spheres in each of the  $3^6$  nets.

Sphere packings of types 8 and 19 (*cf.* Figs. 9.1.1.5 and 9.1.1.6) cannot be built up from plane layers of spheres in contact although their contact numbers are also high.

Table 9.1.1.2 contains complete information on homogeneous sphere packings with k = 10, 11, and 12 and with cubic or tetragonal symmetry.

The least dense (most open) homogeneous sphere packings known so far have already been described by Heesch & Laves (1933). Sphere packings of that type (24) cannot be stable because their contact number is 3 (*cf.* Fig. 9.1.1.7). As discussed



Fig. 9.1.1.4. Two square nets representing two layers of spheres stacked in such a way that each sphere is in contact with two spheres of the other layer.



Fig. 9.1.1.5. Sphere packing of type 8 (Table 9.1.1.2) represented by a graph: k = 11,  $P4_2/mnm$ , 4(f), xx0.



bond radius, and n = V/12, with V being the elemental valence, to adjust the radii to coordination numbers other than 12. The adjustment of the radii to the coordination numbers of the structure type of concern is a first approximation adjustment to the structure type. The broken lines in Figs. 9.3.2(*a*)–(*c*) are the results of a least-squares analysis.

Much more information about the short-range atomic arrangement, and a deeper insight into the geometry within a structure type, is obtained by looking at the coordination polyhedra (atomic environments AE) instead of looking only at the interatomic distances. These coordination polyhedra or AE not only give geometrical information about an atom and its neighbours but also give the correct coordination number. An AE is determined by using Brunner & Schwarzenbach's (1971) method, in which all interatomic distances between an atom and its neighbours are plotted in a next-neighbour histogram (NNH), as shown in Fig. 9.3.3(*a*). In most cases, a clear maximum gap is revealed. All atoms to the left of the maximum gap belong to the AE of the central atom; the coordination polyhedron constructed with these atoms is depicted in Fig. 9.3.3(*b*).

In cases where no maximum gap is found, Daams, Villars & van Vucht (1992) used the maximum convex rule. The maximum convex volume is defined as the maximum volume around only one central atom enclosed by convex faces with all the coordinating atoms lying at the intersection of at least three faces. Systematic studies of all intermetallic structure types



Fig. 9.3.2. (a) Plot of  $d_{AB}$  versus  $\overline{R}$  for the binary compounds crystallizing in hP3 AlB<sub>2</sub>. (b) Plot of  $d_{AB}$  versus  $\overline{R}$  for the binary compounds crystallizing in oP12 Co<sub>2</sub>Sb. (c) Plot of  $d_{AB}$  versus  $\overline{R}$  for the binary compounds crystallizing in tP6 Cu<sub>2</sub>Sb.

Fig. 9.3.3. (*a*) A typical example of a next-neighbour histogram (NNH) and (*b*) the atomic environment (AE) coordination polyhedron belonging to this NNH.

# 9.5. TYPICAL INTERATOMIC DISTANCES: ORGANIC COMPOUNDS

| Bond                               | Substructure                                                                                                                                                                                                                                                                                                                                                                 | d                                                                                                              | т                                                                                                              | σ                                                                                      | $q_l$                                                                                                        | $q_u$                                                                                                       | n                                                                    | Note             |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|
| B(4)—I                             | see TMPBTI (2.220, 2.253)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| B(4)—N(3)                          | $X_3 - \mathbf{B} - \mathbf{N} (= \mathbf{C})(X)$<br>in pyrazaboles                                                                                                                                                                                                                                                                                                          | 1.611<br>1.549                                                                                                 | 1.617<br>1.552                                                                                                 | 0.013<br>0.015                                                                         | 1.601<br>1.536                                                                                               | 1.625<br>1.560                                                                                              | 8<br>10                                                              |                  |
| B(3)—N(3)                          | $X_2 - \mathbf{B} - \mathbf{N} - \mathbf{C}_2$ : all coplanar<br>for $\tau(\mathbf{BN}) > 30^\circ$ see BOGSUL, BUSHAY,                                                                                                                                                                                                                                                      | 1.404                                                                                                          | 1.404                                                                                                          | 0.014                                                                                  | 1.389                                                                                                        | 1.408                                                                                                       | 40                                                                   | 2                |
|                                    | $S_2 - B - N - X_2$                                                                                                                                                                                                                                                                                                                                                          | 1.447                                                                                                          | 1.443                                                                                                          | 0.013                                                                                  | 1.435                                                                                                        | 1.470                                                                                                       | 14                                                                   |                  |
| B(4)—O                             | <b>B</b> — <b>O</b> in BO <sub>4</sub> <sup>-</sup><br>for neutral <b>B</b> — <b>O</b> see Note 3                                                                                                                                                                                                                                                                            | 1.468                                                                                                          | 1.468                                                                                                          | 0.022                                                                                  | 1.453                                                                                                        | 1.479                                                                                                       | 24                                                                   | 3                |
| B(3)—O(2)                          | $X_2 - \mathbf{B} - \mathbf{O} - X$                                                                                                                                                                                                                                                                                                                                          | 1.367                                                                                                          | 1.367                                                                                                          | 0.024                                                                                  | 1.349                                                                                                        | 1.382                                                                                                       | 35                                                                   |                  |
| B(n) - P                           | n = 4: <b>B</b> — <b>P</b><br>n = 3: see BUPSIB10 (1.892, 1.893)                                                                                                                                                                                                                                                                                                             | 1.922                                                                                                          | 1.927                                                                                                          | 0.027                                                                                  | 1.900                                                                                                        | 1.954                                                                                                       | 10                                                                   |                  |
| B(4)—S                             | B(4) - S(3)<br>B(4) - S(2)                                                                                                                                                                                                                                                                                                                                                   | 1.930<br>1.896                                                                                                 | 1.927<br>1.896                                                                                                 | 0.009<br>0.004                                                                         | 1.925<br>1.893                                                                                               | 1.934<br>1.899                                                                                              | 10<br>6                                                              |                  |
| B(3)—S                             | $N-B-S_2 = (=X-)(N-)B-S$                                                                                                                                                                                                                                                                                                                                                     | 1.806<br>1.851                                                                                                 | 1.806<br>1.854                                                                                                 | 0.010<br>0.013                                                                         | 1.799<br>1.842                                                                                               | 1.816<br>1.859                                                                                              | 28<br>10                                                             |                  |
| Br—Br                              | see BEPZEB, TPASTB                                                                                                                                                                                                                                                                                                                                                           | 2.542                                                                                                          | 2.548                                                                                                          | 0.015                                                                                  | 2.526                                                                                                        | 2.551                                                                                                       | 4                                                                    |                  |
| Br—C                               | Br - C*      Br - Csp3 (cyclopropane)      Br - Csp2      Br - Car (mono-Br + m,p-Br2)      Br - Car (o-Br2)                                                                                                                                                                                                                                                                 | 1.966<br>1.910<br>1.883<br>1.899<br>1.875                                                                      | 1.967<br>1.910<br>1.881<br>1.899<br>1.872                                                                      | 0.029<br>0.010<br>0.015<br>0.012<br>0.011                                              | 1.951<br>1.900<br>1.874<br>1.892<br>1.864                                                                    | 1.983<br>1.914<br>1.894<br>1.906<br>1.884                                                                   | 100<br>8<br>31<br>119<br>8                                           | 4<br>4<br>4<br>4 |
| $^{-}Br(2)$ —Cl                    | see TEACBR (2.362-2.402)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      | Ť                |
| Br—I                               | see DTHIBR10 (2.646), TPHOSI (2.695)                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Br—N                               | see NBBZAM (1.843)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Br—O                               | see CIYFOF                                                                                                                                                                                                                                                                                                                                                                   | 1.581                                                                                                          | 1.581                                                                                                          | 0.007                                                                                  | 1.574                                                                                                        | 1.587                                                                                                       | 4                                                                    |                  |
| Br—P                               | see CISTED (2.366)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Br—S(2)                            | see BEMLIO (2.206)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      | ŧ                |
| Br—S(3)                            | see CIWYIQ (2.435, 2.453)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      | Ť                |
| Br—S(3) <sup>+</sup>               | see THINBR (2.321)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      | Ť                |
| Br—Se                              | see CIFZUM (2.508, 2.619)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Br—Si                              | see BIZJAV (2.284)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Br—Te                              | In $\mathbf{Br}_{6}\mathbf{Te}^{2-}$ see CUGBAH (2.692–2.716)<br>$\mathbf{Br}$ — $\mathbf{Te}(4)$ see BETUTE10 (3.079, 3.015)<br>$\mathbf{Br}$ — $\mathbf{Te}(3)$ see BTUPTE (2.835)                                                                                                                                                                                         |                                                                                                                |                                                                                                                |                                                                                        |                                                                                                              |                                                                                                             |                                                                      |                  |
| Csp <sup>3</sup> —Csp <sup>3</sup> | $\begin{array}{c} C^{\#}-CH_{2}-CH_{3} \\ (C^{\#})_{2}-CH-CH_{3} \\ (C^{\#})_{3}-C-CH_{3} \\ C^{\#}-CH_{2}-CH_{2}-C^{\#} \\ (C^{\#})_{2}-CH-CH_{2}-C^{\#} \\ (C^{\#})_{3}-C-CH_{2}-C^{\#} \\ (C^{\#})_{3}-C-CH_{2}-C^{\#} \\ (C^{\#})_{3}-C-CH-(C^{\#})_{2} \\ (C^{\#})_{3}-C-CH-(C^{\#})_{2} \\ (C^{\#})_{3}-C-C-(C^{\#})_{3} \\ C^{*}-C^{*} \text{ (overall)} \end{array}$ | $\begin{array}{c} 1.513\\ 1.524\\ 1.534\\ 1.524\\ 1.531\\ 1.538\\ 1.542\\ 1.556\\ 1.588\\ 1.530\\ \end{array}$ | $\begin{array}{c} 1.514\\ 1.526\\ 1.534\\ 1.524\\ 1.531\\ 1.539\\ 1.542\\ 1.556\\ 1.580\\ 1.530\\ \end{array}$ | 0.014<br>0.015<br>0.011<br>0.014<br>0.012<br>0.010<br>0.011<br>0.011<br>0.025<br>0.015 | $\begin{array}{c} 1.507\\ 1.518\\ 1.527\\ 1.516\\ 1.524\\ 1.533\\ 1.536\\ 1.549\\ 1.566\\ 1.521 \end{array}$ | $\begin{array}{c} 1.523\\ 1.534\\ 1.541\\ 1.532\\ 1.538\\ 1.544\\ 1.549\\ 1.562\\ 1.610\\ 1.539\end{array}$ | 192<br>226<br>825<br>2459<br>1217<br>330<br>321<br>215<br>21<br>5777 | 5, 6             |

Table 9.5.1.1. Average lengths (cont.)

#### 9. BASIC STRUCTURAL FEATURES

#### Table 9.8.3.5. (3 + 1)-Dimensional superspace groups

The number labelling the superspace group is denoted by *n.m*, where *n* is the number attached to the three-dimensional basic space group and *m* numbers the various superspace groups having the same basic space group. The symbol of the basic space group, the symbol for the four-dimensional point group  $K_s$ , the number of the four-dimensional Bravais class to which the superspace group belongs (Table 9.8.3.2*a*), and the superspace-group symbol are also given. The superspace-group symbol is indicated in the short notation, *i.e.* for the basic group one uses the short symbol from *International Tables for Crystallography*, Volume A, and then the values of  $\tau$  are given for each of the generators in this symbol, unless all these values are zero. Then, instead of writing a number of zeros, one omits them all. Finally, the special reflection conditions due to non-primitive translations are given, for *hklm* if  $\mathbf{q}^r = 0$  and for *HKLm* otherwise. Recall the *HKLm* are the indices with respect to a conventional basis  $\mathbf{a}_c^*, \mathbf{b}_c^*, \mathbf{c}_c^*, \mathbf{q}^i$  as in Table 9.8.3.2(*a*). The reflection conditions due to centring translations are given in Table 9.8.3.6.

| No.        | Basic<br>space<br>group | Point<br>group<br>K <sub>s</sub>                     | Bravais<br>class<br>No. | Group<br>symbol                                                 | Special reflection conditions                              |
|------------|-------------------------|------------------------------------------------------|-------------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| 1.1<br>2.1 | Р1<br>Р1                | (1, 1)<br>$(\overline{1}, \overline{1})$             | 1<br>1                  | $P1(lphaeta\gamma) \ Par{1}(lphaeta\gamma)$                     | •                                                          |
| 3.1<br>3.2 | P2                      | $(2, \overline{1})$<br>$(2, \overline{1})$<br>(2, 1) | 235                     | $P2(\alpha\beta0)$ $P2(\alpha\beta\frac{1}{2})$ $P2(00x)$       |                                                            |
| 3.3        |                         | (2, 1)<br>(2, 1)                                     | 5                       | $P2(00\gamma)$<br>$P2(00\gamma)s$                               | 00lm: m = 2n                                               |
| 3.5        |                         | (2, 1)                                               | 6                       | $P2(\frac{1}{2}0\gamma)$                                        |                                                            |
| 4.1        | <i>P</i> 2 <sub>1</sub> | (2,1)                                                | 2 5                     | $P2_{1}(\alpha\beta0)$                                          | 0010: l = 2n<br>001m; l = 2n                               |
| 4.2        |                         | (2, 1)<br>(2, 1)                                     | 6                       | $P Z_1(00\gamma)$ $P Z_1(\frac{1}{2}0\gamma)$                   | 001m: l = 2n<br>00Lm: L = 2n                               |
| 5.1        | <b>B</b> 2              | (2, 1)<br>$(2, \overline{1})$                        | 4                       | $B2(\alpha\beta 0)$                                             |                                                            |
| 5.2        |                         | (2, 1)                                               | 7                       | $B2(00\gamma)$                                                  |                                                            |
| 5.3        |                         | (2,1)                                                | 7                       | $B2(00\gamma)s$                                                 | 00lm: m = 2n                                               |
| 5.4        | Dm                      | (2,1)                                                | 8                       | $B2(0\frac{1}{2}\gamma)$<br>$Pm(\alpha\beta 0)$                 |                                                            |
| 6.2        | r m                     | (m, 1)<br>(m, 1)                                     | 2                       | $Pm(\alpha\beta 0)s$                                            | hk0m: m = 2n                                               |
| 6.3        |                         | (m, 1)                                               | 3                       | $Pm(\alpha\beta\frac{1}{2})$                                    |                                                            |
| 6.4        |                         | $(m, \overline{1})$                                  | 5                       | $Pm(00\gamma)$                                                  |                                                            |
| 6.5        | D                       | (m, 1)                                               | 6                       | $Pm(\frac{1}{2}0\gamma)$                                        |                                                            |
| 7.1        | Pb                      | (m, 1)                                               |                         | $PD(\alpha\beta 0)$<br>$Pb(\alpha\beta 1)$                      | nK0m: K = 2n $HK0m: K = 2n$                                |
| 7.3        |                         | (m, 1)<br>(m, 1)                                     | 5                       | $Pb(00\gamma)$                                                  | hk00: k = 2n                                               |
| 7.4        |                         | $(m, \overline{1})$                                  | 6                       | $Pb(\frac{1}{2}0\gamma)$                                        | HK00: K = 2n                                               |
| 8.1        | Bm                      | ( <i>m</i> , 1)                                      | 4                       | $Bm(\alpha\beta 0)$                                             |                                                            |
| 8.2        |                         | $(m, \underline{1})$                                 | 4                       | $Bm(\alpha\beta 0)s$                                            | hk0m: m = 2n                                               |
| 8.3        |                         | (m, 1)                                               | 8                       | $Bm(00\gamma)$<br>$Bm(0^{1}\alpha)$                             |                                                            |
| 9.1        | Bb                      | (m, 1)<br>(m, 1)                                     | 4                       | $Bh(\alpha_2 \gamma)$<br>$Bb(\alpha_3 \beta_0)$                 | hk0m: k=2n                                                 |
| 9.2        | 20                      | $(m, \bar{1})$                                       | 7                       | $Bb(00\gamma)$                                                  | hk00: k = 2n                                               |
| 10.1       | P2/m                    | $(2/m, \overline{1}1)$                               | 2                       | $P2/m(\alpha\beta 0)$                                           |                                                            |
| 10.2       |                         | (2/m, 11)                                            | 2                       | $P2/m(\alpha\beta 0)0s$<br>$P2/m(\alpha\beta 1)$                | hk0m: m = 2n                                               |
| 10.3       |                         | (2/m, 11)<br>$(2/m, 1\overline{1})$                  | 5                       | $P_2/m(\alpha\beta_{\overline{2}})$<br>$P_2/m(00\gamma)$        |                                                            |
| 10.4       |                         | (2/m, 11)<br>$(2/m, 1\overline{1})$                  | 5                       | $P2/m(00\gamma)$                                                | 00lm: m = 2n                                               |
| 10.6       |                         | $(2/m, 1\overline{1})$                               | 6                       | $P2/m(\frac{1}{2}0\gamma)$                                      |                                                            |
| 11.1       | $P2_1/m$                | $(2/m, \overline{1}1)$                               | 2                       | $P2_1/m(\alpha\beta 0)$                                         | 0010: l = 2n                                               |
| 11.2       |                         | (2/m, 11)                                            | 2                       | $P2_1/m(\alpha\beta 0)0s$<br>$P2_1/m(00x)$                      | 0010: $l = 2n$ ; $hk0m$ : $m = 2n$                         |
| 11.3       |                         | (2/m, 11)<br>$(2/m, 1\overline{1})$                  | 6                       | $P 2_1 / m(00\gamma)$<br>$P 2_1 / m(\frac{1}{2}0\gamma)$        | $\begin{array}{l} 001m; \ l=2n\\ 001m; \ L=2n \end{array}$ |
| 12.1       | B2/m                    | (2/m, 11)<br>(2/m, 11)                               | 4                       | $B2/m(\alpha\beta 0)$                                           |                                                            |
| 12.2       |                         | $(2/m, \bar{1}1)$                                    | 4                       | $B2/m(\alpha\beta 0)0s$                                         | hk0m: m = 2n                                               |
| 12.3       |                         | $(2/m, 1\bar{1})$                                    | 7                       | $B2/m(00\gamma)$                                                |                                                            |
| 12.4       |                         | (2/m, 11)                                            | 8                       | $\frac{B2}{m(00\gamma)s0}$                                      | 00lm: m = 2n                                               |
| 12.5       | P2/b                    | (2/m, 11)<br>(2/m, 11)                               | 2                       | $\frac{B2}{m(\frac{1}{2}0\gamma)}$<br>$\frac{P2}{b(\alpha B0)}$ | hk0m: k=2n                                                 |
| 13.1       | 12/0                    | $(2/m, \bar{1}1)$<br>$(2/m, \bar{1}1)$               | 3                       | $\frac{P2}{b(\alpha\beta^{\frac{1}{2}})}$                       | HK0m: m = 2n                                               |
| 13.3       |                         | $(2/m, 1\bar{1})$                                    | 5                       | $P2/b(00\gamma)$                                                | hk00: k=2n                                                 |
| 13.4       |                         | $(2/m, 1\overline{1})$                               | 5                       | $P2/b(00\gamma)s0$                                              | 00lm: m = 2n; hk00: k = 2n                                 |
| 13.5       | P2/h                    | (2/m, 11)<br>(2/m, 11)                               |                         | F2/D(₂Uγ)<br>P2,/h(~R0)                                         | first 0010: K = 2n<br>0010: l = 2n: hk0m: k = 2n           |
| 14.1       | 1 21/0                  | (2/m, 11)<br>(2/m, 11)                               | 5                       | $P2_{1}/b(00\gamma)$                                            | 00lm: l = 2n; hk00: k = 2n                                 |
| 14.3       |                         | $(2/m, 1\overline{1})$                               | 6                       | $P2_1/b(\frac{1}{2}0\gamma)$                                    | 00Lm: L = 2n; HK00: K = 2n                                 |
| 15.1       | B2/b                    | $(2/m, \bar{1}1)$                                    | 4                       | $B2/b(\alpha\beta 0)$                                           | hk0m: k = 2n                                               |
| 15.2       |                         | (2/m, 11)                                            | 7                       | $\frac{B2}{b(00\gamma)}$                                        | hk00: k = 2n<br>hk00: k = 2n                               |
| 15.3       |                         | (2/m, 11)                                            |                         | $D 2 / D(UU\gamma) SU$                                          | 00m. m = 2n; nK00: K = 2n                                  |