
CHAPTER 7 

Methods and Problems of Crystal Structure Ana(ysi.3 

7.1. Various Forms of the Problem 

a. Description o f the structure. In the preceding chapter we have paid 
little attention to the actual configuration of a crystal. We have, in 
fact, considered the atoms to be point centres of scattering of the 
incident field which are situated at the lattice points xz = EZi at 
(i = 1, 2, 3; It integers varying from - 00 to + CO). There is thus 
only one atom per cell. In a crystallized compound there must be at 
least as many atoms in the cell as the chemical formula indicates, or a 
multiple of this number, corresponding to, say, Z molecules. These 
atoms form the ‘base’ associated with the cell. We distinguish them by a 
superscript s and their positions relative to the lowest-indexed corner 
of each cell are given by the chase-vectors’ 

x8 = xslal + xsza2 + xs3a3, (1) 

where the xsg are fractional coordinate numbers. The position of the 
atom of sort s in cell I as seen from the origin of the crystal is then 

x81 = I&(12 + xsi)at. (2) 

b. Atomic factor. The scattering power for X-rays is not the same 
for atoms of different sorts. Besides, since the size of the atoms is 
comparable to the X-ray wave-lengths, the angular distrubution of 
scattered amplitude is not the same for the atom as for the point 
scatterer which was considered so far. The wavelets issuing from 
various parts of the electron cloud of the atoms arrive with phase 
differences in the direction of observation and this makes the total 
amplitude received a function of the angle of scattering and of the size 
and distribution of the electron density in the atom. This function 
differs from the simple amplitude which, according to a classical 
calculation by J. J. Thomson, a single electron would give if it were 

* See also parts of Ch. 10. 
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substituted for the atom; the ratio of the actual amplitude to this 
fictitious one is called the ‘atomic factor’ f. Like all quantities that depend 
on phase differences caused by differences of optical path, f depends 
only on the order of diffraction, that is, on the vector h if we have to do 
with a crystal, or on the continuously variable position vector in 
Fourier space, y1, if we consider a single atom instead of a periodic 
array of such. The definitions are 

y1 = rh + r&z + q&3 
y)h = h = hlbr + hsbs + hsbs. (3) 

The experimental determination of atomic factors from X-ray 
observations was, and still is, an important aim, even though from 1926 
onwards, with the advent of wave mechanics, these factors could be 
calculated with a fair, but not always sufficient accuracy (Hartree’s 
method of self-consistent fields). By introducing the f-factor explicitly 
the remaining function of the atom is that of a point-scatterer. 

c. Structure factor. Since the order ofdiffraction (hr, hs, hs) indicates 
the differences of optical path for wavelets scattered by an atom and 
its neighbours along the directions of the axes at, an atom in the cell 
which is removed only by fractions of ai sends out a wavelet whose 
path length is compounded of the corresponding fractions of hl, hs, and 
hs, respectively. That is, for the atom of sort s in (1) the path difference, 
measured in wave-lengths, will be 

hrxrs + hsxss + hsxs8 = cps(h) (asin cps(hs). (4) 

For reasons which need not be explained here the path difference of cp 
wave-lengths against some standard wave is described mathematically 
by the exponential function exp with an imaginary argument, namely 

by exp (-j,), where j = 2nl/- 1. Using this symbolism we can now 
write down the factor by which the amplitude diffracted into an order 
h (= hr, hs, hs) will be modified through the superposition of the 
fields generated by each sort of atom separately. Owing to the defi- 
nition of the atomic factors fs, this factor F, which is called the ‘structure 
amplitude’, compares the amplitude of the diffracted wave received 
from the crystal in any direction to that amplitude which would be 
obtained if the atoms were all replaced by single electron scatterers. 
The formal expression of F is 

F(h) = &fs(h) exp (-j?“(h)), (5) 
the summation extended over all atoms in the cell (the base), be they 
chemically alike or not. 
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It should be noted that in the precise direction of the diffraction 
(hr, hs, hs) all the atoms in the crystal of any one sort s cooperate 
without any phase differences, and if the direction of observation is 
changed very slightly, secondary maxima and zero values will be 
generated by each kind of atom under the same angles. For this reason 
the factor F multiplies not only the amplitude obtained at the reci- 
procal lattice point h but also the entire distribution of amplitude in 
the neighbourhood of h. The measured intensity of diffraction is 
therefore proportional to the square of the absolute value of the 
complex quantity F(h), which is indicated as IF(h) 1s. It is from this 
quantity, and only from it, that we gain information about the contents 
of the cell, that is about the atomic structure of the crystal. Experi- 
mentally, between 100 and 20 000 observed intensities may be 
available, the higher number for the most complex crystals with large 
cells; each intensity has to be scaled up by division with angle- 
dependent factors like the Lorentz factor or the temperature factor 
(see Chapter 6) so as to yield a value proportional to IFIs. If these 
values are entered as ‘weights’ at the points of the reciprocal lattice, 
this weighted lattice shows the data available for the structure de- 
termination. 

IfF(h) itself (i.e. including the sign or the complex phase) could be 
used as weight, then a simple Fourier synthesis, consisting, of the 
summation of a series of sin and cos functions with the F(h) as coefficients, 
would lead back to the mass distribution in the crystal. Actually it is 
the scattering power or electron density which produces the diffraction 
effect and which we determine in a structure analysis; but we use the 
term ‘mass’ in crystal space as opposed to ‘weight’ in Fourier space. 
Exploration of the entire Fourier space by experiment would require 
the use of very long wave vectors, i.e. very short wave-lengths, and this 
is not feasible, even in principle, because for the shorter wave-lengths, 
such as gamma rays, the angles of diffraction become very small and, 
furthermore, classical scattering without change of wave-length gives 
way to quantum effects involving changes of the states of the atoms, 
the emission of photoelectrons, and so forth. This means that only a 
limited region of Fourier space, surrounding the origin, is explorable 
by X-ray diffraction. Factors like the Lorentz and temperature factors 
also limit the observable intensities to those of lower orders. Thus the 
‘aperture’ through which we look at reciprocal space is limited and 
the picture in it incomplete. This means that if this information 
is transformed back into physical space it will give a somewhat 
blurred mass distribution. This blurring is often called ‘break-off 
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effect’ or ‘termination of series effect’. It is one of the minor troubles 
of actual structure analysis. From the large number of intensities 
observed in most cases it is seen that the available region in Fourier 
space usually contains many more data than the number of atomic 
coordinates that have to be determined. 

It is this excess of data over the number of unknowns which makes up 
for the lack of information on the phases of the F(h), but a systematic 
way of exploiting this overdetermination is still in its trial stage 
(Karle & Hauptmann’s method of ‘joint probability’, see below). 

d. Algebraic and analytical structure determination. In practically all 
of the early work-up to about 1930-the aim of structure analysis 
was to find the positions of the centres of the atoms in the cell, that is, 
the base vectors for its Z atoms s = 1.. . Z. This requires the de- 
termination of 32 coordinates, or rather of 3(Z- 1) coordinates, since 
only relative positions count. Besides, the distribution of masses over 
these sites must be found. In order to speak of point-sites, the atomic 
factors must be used in reducing the intensities. The finite number of 
unknowns is hidden away in the reduced intensity values via the 
structure factor. Their extraction from there is essentially a problem 
of algebra, but one for which no general solution has been found. 
Even in the very much simplified case when the same atomic factor 
may be used for all atoms, as in many organic substances because of 
the similarity of the atomic factors for C, N, and 0, the simultaneous 
equations to be solved are of a high degree and quite forbidding. 
One has therefore to proceed by ‘trial and error’ methods, i.e. by 
systematic guessing and approximation. 

On the other hand, the crystal may be considered as a periodic 
continuous distribution of scattering power or mass density, p(x), and 
one can see the aim of structure analysis in the determination of 
thisfunction. This is, of course, equivalent to an infinity of unknowns. 
The structure amplitude produced by such a continuous distribution 
differs from (5) only in that the summation over individual atoms is 
replaced by an integration over the contents of the cell, whereby the 
continuously variable cp(h, x) = h .x takes the place of cp*(h) from (4) ; 
also the lumped atomic factor f*(h) is replaced by the electron density 
itself which causes the scattering power in each element dv of the cell 
volume. Thus the structure amplitude in this case is 

FM = S ~(4 exp b-Xb4) dv. (6) 

Again, the intensity is proportional to IF(h) and in this ‘structure 
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factor’, which is derivable from the experiments, is hidden away the 
unknown function p(x) . 

Clearly, the determination of this continuous function is an even 
worse proposition than that of a finite number of coordinate values in 
the algebraic version of the problem. And yet for many purposes the 
electron density p(x) is what we are really aiming at, for instance in 
studies of the chemical bond. True, bond lengths and angles can be 
obtained from the algebraic locating of atomic centres, but only the 
analytical treatment reveals the actual electron densities on and near 
the directions of the bonds, for instance an excess density near the 
midpoints of the C-C bonds in diamond, or the small but definite 
differences of electron density surrounding the carbon atoms at the end 
and in the middle of the anthracene molecule (Fig. lO(3c)). p(x) 
also contains information about the spreading of the atoms by the 
temperature motion. 

Since the analytical approach includes the determination of the 
shape of the electron cloud of each atom, the measured intensity may 
not be reduced to that of a point scatterer by reduction of the intensi- 
ties with the atomic factors. On the other hand, it is necessary to 
attribute the correct sign or phase to each of the IFI before taking 
them as Fourier coefficients. In many cases this knowledge is obtained 
from the preceding location of the atomic centres by means of an 
algebraic structure determination. The two methods are therefore 
both employed in most cases. 

7.2. The Algebraic Structure Determination 

The indexing of the geometrical data obtained by any of the methods 
using monochromatic X-rays leads to the acceptance of a definite 
shape and size of the cell. Knowledge of the chemical formula, i.e. of 
the actual weight of the molecule, and of the specific weight of the 
crystal then tells the number Z of the molecules which are in the cell. 
This determination is not unique; we could, for instance, double one 
of the axial lengths, say as, and obtain a cell of double the volume and 
a content of 22 molecules. With this cell all the hs-values would have 
to be doubled and the bigger cell opens up the possibility that between 
these even ha-values odd ones could be observed. Only if these are not 
found, even on close inspection of overexposed photographs, can we be 
satisfied that the smaller cell is the true one. In this sense the de- 
termination of the cell contains an element of intensity discussion 
besides the use of the geometrical data. In alloys, silicates, long-chain 



METHODS AND PROBLEMS 107 

compounds and other structures that are close to possessing an internal 
periodicity of the base the search for the ‘true cell by means of ‘inter- 
layer lines’ or other forms of weak reflections is a very essential step in 
the crystal analysis. 

The next step, which may be determining the placement of some of 
the atoms, is the determination of the space group. This again does not 
require a quantitative discussion of intensities, but only the observation 
of certain zero intensities occurring systematically, the c&ences’. 
These are found whenever the structure contains glide symmetry 
elements because these lead to the interleaving of reflecting atomic 
planes with similarly populated ones at *, Q, or 2 of the spacing 
required by the cell. Not all space groups show absences, and even if 
such are observed, it does not fully determine the space group, but it 
restricts the choice. 

The early structure determinations dealt with cases where there 
were only few atoms in the cell, and then their positions were often 
fully fixed by the knowledge of the space group or groups, especially in 
cases of high symmetry. Each symmetry element crossing the cell will 
reproduce an atom placed in the cell, except it is placed on the 
symmetry element itself; therefore, if the number of atoms in the cell is 
small, they have to lie on the symmetry elements and often on their 
points of intersection. In suitable cases, this fully determines the 
possible positions of the atoms, and since these points of intersection 
may be the same in related space groups, this may be a unique 
determination in spite of some indeterminacy of the space group. In 
other cases, the atomic positions may be restricted to lie on symmetry 
elements without being fixed otherwise. Any undetermined atomic 
coordinate is called a ‘parameter’, and the value of a parameter can 
only be assigned from a discussion of the intensities. All modern 
crystal analyses deal with structures containing a large number of 
parameters-meaning anything beyond four or five parameters, SO 

that their direct determination from a discussion of the intensities is 
not possible. 

It is here that the ‘trial and error’ method sets in, together with 
methods of ‘structure rejinement’. The gist of this procedure is that for 
any assumed positions of the atoms it is a straightforward, if sometimes 
lengthy, matter to calculate the structure amplitudes Fh and thence 
the theoretical intensities jFh12. These can then be compared to the 
observed ones. If the positions chosen were the correct ones the 
IFIw and the IF1 obs values should show a definite close correlation; 
coincidence is not to be expected because of the many factors influ- 
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encing jFjobs which are not too well known (atomic factor, tempera- 
ture factor, etc.). However, if the assumed atomic positions are in part 
correct or approximate, some parallelism between the calculated and 
observed F-values will be noticeable which indicates in which way, by 
shifting the atoms, a better agreement may be produced. As a measure 
of the overall agreement a ‘residue’ or ‘reliability number’ R is formed, 
usually of the form 

R = VIFhlobs - IFhlcazcl 

~IFhlobs 
, (7) 

the sums being extended over all observed orders of diffraction. It will 
be noticed that R is really the inverse of a figure for the correctness of the 
structure proposal, since the correlation is the better the smaller R is. 

Special methods have been developed for the refinement of a model 
structure once this seems to be not too far off the truth. The influence 
which certain shifts in the atomic positions have on the R-value are 
studied and improved positions calculated therefrom. This process is 
simple only in rare cases when the shifts of different atoms can be 
considered separately; usually all shifts are coupled together and the 
minimum R-value sought for is a true multidimensional minimum 
problem in the space of all atomic coordinates. This is a typical com- 
puter problem and it has been programmed for a variety of electronic 
computers : 

trial structure - FsCazc - Rr - proposed shifts - new FsCalc - R2 - 
second shifts - third FsC,lc - Rs - etc. 
The machine can be programmed to do all this without help, and also 
to watch that the R-values decrease, and to stop when this is no longer 
the case or when a certain value of R (often 0.1, i.e. 10%) is reached. 
Beyond this, it is considered useless to go with algebraic determi- 
nations. 

7.3; The Analytical Structure Determination 

If the positions of the atomic centres have been determined in an 
algebraic determination, the signs or phases which are needed for 
converting lFh[ into Fa itself are known from the last cycle of approxi- 
mation. This information may now be applied to the IFobs values, 
uncorrected for atomic factors and, possibly, temperature factor, in 
order to obtain a set of F-values which can serve as coefficients of a 
Fourier series representing the actual distribution of the electron 
density in the crystal. The summation, the Fourier gvzthesis, is required 
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at the points of a conveniently narrow grid in the crystal cell. If the 
electron density curves are drawn on clear sheets of plastic for the 
consecutive layers of the grid, and the sheets stacked in the proper 
positions, the atoms appear floating in the cell as balls of high electron 
concentration. 

The numerical work for a three-dimensional synthesis is so large that 
it has become a practical proposition only with the advent of the 
electronic computers. Before that, syntheses were restricted to two 
dimensions, and these were taken up soon after the first one-dimen- 
sional syntheses by Duane and Havighurst showed the usefulness of the 
method in 1925. The two-dimensional series require observation of 
intensities only in one zone of crystal planes, that is, in the reciprocal 
lattice, the knowledge of weights only on one plane passing through the 
origin. The summed series then represents the mass distribution ob- 
tained by projecting the spatial electron density on to a plane in the 
crystal which is normal to the zone axis. In order to obtain a significant 
projection, the direction of projection must be a very simple rational 
one which makes successive layers of cells match in projection. Of 
course the pictures of atoms may lie very close to one another in 
projection, even if the atoms are widely separated in the direction of 
projection. It is therefore not so easy to recognize atoms in the contour 
lines of the projection as it would be in a three-dimensional synthesis. 
The early diagram of anthracene (Ch. 10, Fig. 10( 3b)) shows in afavour- 
able case of two-dimensional synthesis what kind of indication of 
atoms can be expected; it may be contrasted with the next diagram 
showing a section through the same molecule based on a three- 
dimensional synthesis. 

The Fourier summation in two dimensions was first carried out by 
W. L. Bragg (Proc. Roy. Sot. A 1929, 123, 537) for the monoclinic 
crystal diopside, Mg(SiOs) 2, using 30-40 reflections and summing at a 
grid of 24 x 12 points covering one eighth of the (a, c) face of the cell; 
the remaining parts of the cell follow from symmetry. The signs of the 
F-values were taken from a previous algebraic determination of the 
structure by Bragg & Warren. Even in this first try-out the number of 
numerical operations was quite high. It was inevitable that the 
repeated application of Fourier synthesis led to the invention of methods 
for abbreviating this procedure. Beevers and Lipson developed their 
‘Fourier strip’ method which did more for the general introduction 
of Fourier methods than any other improvement, and remains, for its 
simplicity and educational value, one of the chief means for evaluating 
two-dimensional Fourier series of limited complexity. An account of 
the origin of the method is given by Lipson in Part VII. 
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The density calculation is always performed for the points of a grid 
in the cell, which must be fine enough to show individual atoms by 
their high electron density. Once the densities, measured in electrons 
per square angstrom for the projection, are inscribed in the grid, the 
curves connecting points of equal density are easily drawn with a 
convenient height of the contour step. 

A different kind of two-dimensional map of electron density is used 
for building up the mass distribution in three dimensions. For this 
purpose, sections through the crystal cell have to be constructed, each 
showing the contour lines of the spatial density (in electrons per cube 
angstrom), so that by piling up such sections drawn on plates of clear 
plastic a vivid impression of the atoms is obtained as they float in the 
interior of the cell. Models of this type were first shown by Dorothy 
Hodgkin for the penicillin structure (cf. the remarks in Ch. 8 and 10). 
One of the many relations of duality between physical and Fourier 
space is that sectioning in one space corresponds to projecting in the 
other. We saw above how the projected electron density was obtained 
from the intensities lying in a cross section through Fourier space; we 
now obtain the sections through the crystal cell from Fourier series 
having as coefficients certain sums of the F-values normal to the plane 
of sectioning. These sums can be formed only if the phases or signs are 
correctly attached to the observed IFI-values. 

7.4. Methods of Phase Determination 

We have, so far, assumed that the phase of Fh is known from a pre- 
ceding algebraic placement of the atoms. This, however, is not always 
necessary. 

If the crystal structure has a centre of symmetry, this can be taken as 
the origin in crystal space, and, as is easily seen from the expression (5) 
or (6) of the structure amplitude, Fh will be a real quantity, so that 
only a + or - sign remains undetermined after observing the 
intensity IFhIs. The general phase problem is thus greatly reduced, and 
more centre-symmetric structures have been determined than corre- 
sponds to their natural occurrence. One could imagine that it might 
be possible with the help of computers to synthesize the Fourier series 
with all possible combinations of signs, and pick out thereafter the 
most attractive result. But even if only 30 Fourier terms are used, the 
different combinations of sign will number about 230, which is of the 
order of 109. Thus, if only one second were allowed for the inspection 
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of each synthesis, it would take about 35 years to get through with it! 
A more effective way is the ‘heavy atom technique’. The atomic factors 

of heavy atoms reach out to higher orders than those of light atoms; 
this is due to the high concentration of scattering power in the small 
inner electrons shells of the heavy atoms. By using only high-order 
reflections it is therefore often possible to locate the heavy atoms alone, 
of which there are usually few in the cell. From the known positions the 
phase of the heavy atom contribution to each order of diffraction can 
be calculated, and with it that part of IFh] which is due to them. If the 
observed IFhl is greater than this value, the likelihood is that the light 
atom contributions are additive, if it is smaller, they must be sub- 
tractive, and that fixes the phase. It is often possible to compare crystals 
which have essentially the same structure (isomorphous crystals) but 
contain heavy atoms of different weights. The difference of F-value 
produced by such changes then show clearly whether the phase to be 
attributed to a particular lFhlobs is that produced by the heavy atoms 
alone, or not. 

The classical example for the application of this kind of argument is 
J. M. Robertson’s determination of the phthallocyanine structures in 
1935/36. This case is particularly favourable because it is possible to 
compare the diffracted intensities of the purely organic molecule 
CssNsHrs to those obtained after insertion of a nickel or platinum 
atom at the centre of the organic group. The heavy atom contribution 
outweighs that of the other part in determining the phases and the 
Fourier synthesis can proceed without any previous model. Even the 
assumption of the existence of atoms need not be made, since no 
atomic factor is used; the well rounded-off balls of high electron 
density appear in the course of the synthesis, and the existence of 
atoms is thus shown on purely optical grounds. 

A similar statement can be made for the most complex structure so 
far analysed, namely myoglobin whose molecule contains some 2500 
light atoms; here various heavy atom groups can be attached to 
the surface of this enormous globular molecule without appreciably 
disturbing either its internal constitution or the crystal structure it 
forms by interaction with adjacent molecules. It is clear that in a case 
of such complication any attempt at an ‘algebraic’ structure determi- 
nation would be hopeless. 

While the method of heavy atom substitution has been the most 
efficient means of supplying the signs or phases required for a Fourier 
synthesis, other methods have been helpful and are being improved 
continually. The scattering power of an atom undergoes a change 
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when the wave-length of the incident radiation is shifted across an 
absorption edge of an atom. This is not a very large change, but 
Bijvoet showed that with accurate intensity measurements it can be 
traced and put to the same use as the substitution of a heavy or light 
atom. A different kind of phase relation near the absorption edge of an 
atom has been used by Peerdeman, working with Bijvoet, to dis- 
tinguish between the diffraction by a right-handed and a left-handed 
structure. In this case measurements are made at only one wave- 
length, for which one of the atoms has a strong absorption. This is 
reflected in an imaginary part of the atomic factor of this atom which 
is always positive. If a right- and a left-handed structure are compared, 
the geometrical structure factor will change the sign of its phase, since 
the transition from one structure to the other is made by an inversion, 
i.e. replacing + (x, y, z) by - (x, y, z). The addition of the always 
positive absorption part of the sensitive atomic factor will increase the 
IFhIs in one case and decrease it in the other. A comparison of the 
intensities from a d- and an l-crystal thus allows to tell which of these 
is built with right-handed screw axes. This important and rather 
unexpected method was applied to strychnine by Peerdeman. Instead 
of using two crystals, the author compared the intensities of several --- 
(h, k, 1) reflections to those on the back faces, (h, k, 1) ; this serves the 
same purpose since only the product h *x appears in the geometrical 
structure factor. 

7.5. The Patterson Method 

What happens if the measured IFhI themselves are used as coefficients 
of a Fourier series? The answer was given in 1934 by A. L. Patterson: 
the summed series represents the ‘conuolution’ or ‘foold’ of the electron 
density distribution in the crystal. 

To explain this term let us assume that the base of the crystal 
contains point atoms of masses rns at positions x8. We can then draw 
all the vectors connecting one atom with any other one, i.e. x88’ = 
zzz xs - x8’, from one origin, letting each end in a weight which is the 
product mass rnss’ = rns . ms’. If the same distance occurs between 
several atoms, the total weight at the end of this vector will be the 
sum of the individual product masses. It is easily seen that all vectors 
will lie within a cell equal to that of the eight crystal cells which have 
the origin in common. We call the space in which we perform this 
construction Patterson space, and the distribution of product masses in 
it the self-convolution or fold of the mass distribution in the crystal cell. 
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If instead of condensed masses we have a density function p(x) in 
crystal space, the corresponding fold is a continuous function P(X) 
which is called the Patterson function. Its significance is that it indi- 
cates for every vectorial distance X in Patterson space what total 
product density will be picked up in crystal space if we let a vector X 
roam over all points of the crystal cell, that is, 

P(X) = SP(X)P(X + X)dvx. 

The origin of Patterson space carries the product mass 

(8) 

x(ms)z or S(p(x>>2dvx, 
as the case may be. 

If the same construction is continued beyond the confines of one 
cell for the entire crystal, then the product-mass distribution in 
Patterson space will be periodic with the same cell as the crystal. For 
to every pair of masses lying at xs and x8’ in the same cell there exists a 
pair lying in different cells, so that their relative distance is greater than 
that of the other pair by a lattice vector x1 of the crystal lattice. This 
periodic product-mass distribution, appropriately normalized so as not 
to become infinite, is the self-convolution of the crystal mass distri- 
bution; as such it contains the desired information folded away in a 
multiply superimposed fashion. 

The great virtue of the Patterson function is that it can be con- 
structed by Fourier summation with the real, positive, observed values 
IFhIs as coefficients. Therefore also projections and sections can easily 
be calculated in Patterson space, in contrast to crystal space. Patterson 
maps, i.e. two-dimensional representations of the projected product 
mass distribution by means of contour lines, are thus really an alterna- 
tive representation of the observational data. As such they do not help 
solve the phase problem, but they change it to a geometrical and 
often more appealing form, namely to the problem of unfolding the 
folded distribution. 

Much thought has been spent on the problem in this changed form 
and great progress has been made in its clear perception and in 
practical methods of unfolding, especially by M. Buerger (see next 
section). 

7.6. The Mathematical and Instrumental Atpoach to Structure Determination 

a. Discussion of the problem. Imagine the structure to be known from 
some source, so that the correct density p(x) is known. By means of a 
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Fourier analysis we can deduce therefrom the coefficients Fh, including 
signs or phases. The IFhIs check with the values obtained from the 
diffracted intensities. Now imagine the signs or phases to be altered in 
an entirely arbitrary way. This does not change the agreement with 
the observed values, but it destroys all the relations between the 
terms of the Fourier series which, with the correct signs, led to the 
building-up of very high values of the electron density in the central 
parts of the atoms. In short, instead of obtaining maps with layer lines 
showing well rounded and separated atoms, like a dish of fried eggs, we 
obtain from the changed series a disorganized picture corresponding to 
scrambled eggs. And yet, the reliability index is unchanged, and 
would remain so, even if more diffraction data were added. 

This discussion shows that there is more to a structure determination 
than the mere conversion of ever so many intensity data from Fourier 
space to crystal space. It shows that in the actual procedure of structure 
determination we add essential information of a non-optical kind, 
often without being fully aware of its importance. Such information is 
the existence of atoms; their individual size, number and distribution of 
electrons as expressed by the atomic factor; their kind and number 
according to the chemical formula. A structure analysis would be 
rightly rejected ifit did not show well rounded atomic peaks, correct 
electron density distributions in the light and heavy atoms, and 
acceptable values of bond lengths and angles. In fact, therefore, the 
criterion for accepting a structure as correct is not so much that the 
observed intensities of diffraction are well accounted for, but rather 
that this is the case within the limitations of a whole set of conditions 
drawn from experience. 

Any attempt at making structure analysis a straightforward mathe- 
matical procedure which could finally be left entirely to computers 
has to incorporate at least some of the above restrictions of the non- 
optical type. The most usual one is the assumption that the observed 
intensities can be rendered through an algebraic structure determi- 
nation based on the use of known atomic factors. 

b. Bond distances and bond angles. The notion that atoms in crystals 
could be thought of as spheres of certain diameters which are packed 
so as to touch one another was elaborated by Barlow and Pope before 
the days of X-ray .diffraction. Lothar Meyer’s significant curve of the 
distribution of atomic volumes over the periodic system made such an 
assumption plausible. With the rapidly accumulating precise data on 
atomic distances in crystals attempts to assign fixed radii to atoms 
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could be followed up in greater detail, and this was done in various 
places. W. L. Bragg was the first to use these radii for the construction 
of trial structures with which to start the trial and error course of 
determination. V. M. Goldschmidt showed that the ‘radius’ will vary 
with the state of ionization and the number of nearest neighbours, the 
coordination number, of the atom. Finally, some years after the 
advent of wave-mechanics in 1926, Linus Pauling deduced radii from 
the approximation of wave-mechanical calculations. 

With the wealth of data on atomic distances and bond directions 
between atoms now established, the structure analyst of today has a 
fair idea of what values to expect in a particular case, and he generally 
becomes suspicious of a structure proposal if it leads to deviations of 
more than a few tenths of an Angstrijm from the expected distances, or 
to unusual bond angles or coordination configurations. . 

It would be an enormous help if this knowledge could be incorpo- 
rated in some form as a non-optical condition at the beginning, instead 
of after the completion of a Fourier synthesis, but so far all attempts to 
achieve this have failed. The only form in which this condition can be 
made useful from the beginning of the analysis is in the construction 
of a model of what the molecule might eventually look like, and seeing 
how this can be fitted into the available space in the cell. This gives an 
initial structure for the trial and error process which has a chance of 
being not too far off the truth. 

c. Positiveness. The electron density is an essentially positive 
function throughout the cell, and in the case of centrosymmetric 
structures this leads to some restrictions on the signs of the Fourier 
coefficients. The first to find how to use the positiveness were D. Harker 
and J. S. Kasper in 19443. They showed that this property led to 
relations such as 

FH~ 5 4 Fo(Fo+%H) (84 

(FH+FH’)~ 5 (Fo+FH+H’) (FoSFE-H’) w4 

(FE--F&)2 5 (Fo-Fn-H’) (Fo-FE-H’) PC) 

(H stands for h, k, 1; H+H’ for h+h’, k+k’, l+l’, and 0 for 
0, 0,O.) Now Fo is known from the chemical formula and the density, 
since it is the total number N of electrons in the cell. (In the forward 
direction (000) all electrons scatter in phase, without any destructive 
interference.) The first of the inequalities establishes a restrictive 
connection between two Fourier coefficients, namely any Fn and. Fsn< 
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This may serve to determine the sign of Fan. Let for instance /Fnl = 
0.8 N, ]Fsnl = 0.45 N. Then allowing either sign for Fsn one gets 
from (8a) 

0.64 N2 S QN (N f 0.45 N) 

or 0.64 5 6 (1 f 0.45) 

The two values which the right hand side can take are 0.725 and 0.275, 
of which only the first, which corresponds to the + sign of Fsn, is ^ . . 
possible for the inequality to hold. 

The two lower inequalities (b) and (c) involve four Fourier coef- 
ficients besides Fo, and in order to be used the signs of at least two 
coefficients should be known. It will be noticed that inequality (a) 
follows from (b) when H is put equal to H’. Many special inequalities 
can be formed with regard to the symmetry ofvarious space groups and 
they have proved extremely useful in opening up a way to structures to 
which other approaches had been unsuccessful, like Harker & Kasper’s 
original object, dekaborane BroHr4. Their applicability is restricted to 
the large F-values; for the smaller F they are indecisive. 

Mathematically the condition that a Fourier series represent a 
function which is everywhere positive can be expressed as the non- 
negativity of a series of determinants of increasing order formed from 
the Fourier coefficients. These more general inequalities include as 
the simplest cases the ones discussed above, which seem to be the 
most powerful ones. Much interesting work has been done on the 
general lines by Karle & Hauptman, McGillavry, Goedkoop, Bertaut, 
von Eller and others, but it can not be said to have increased the 
applicability of inequalities for practical purposes. 

* * * 

There are three further developments which have proved their 
value for structure analysis. One is the computational aid obtainable 
nowadays by means of electronic digital computers. A great many 
lengthy calculations, which it would take years to perform by hand 
machines, have been programmed for several types of machines, and 
this service is increasingly used. From the administrative point of view 
it requires getting used to the idea that the ‘desk work’ involves 
expense like the experimental work for which nobody would doubt it. 
If the man-hour work performed by the machine is converted into 
salaries, the savings would become apparent, but of course the fact 
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remains that with machine work projects of a complexity can be 
undertaken which would never be tackled without it. 

Of the analogue computers Ray Pepinsky’s XRAC (for X-ray 
analogue computer) is by far the most important. In this ingenious 
electronic device the magnitudes of a large number of /F/-values are 
set on dials and they can enter the Fourier synthesis with a positive or 
negative sign according to the flipping of a switch. The machine then 
performs instantaneously not only the summation of the two-di- 
mensional Fourier series with these coefficients, but also displays the 
result in the accustomed form of contour lines on a television screen 
from where they can be photographed if desired. Besides, the magnifi- 
cation can be varied instantaneously, so that either several cells of the 
projection are displayed, or one only, or a part of it. With this machine 
it is possible to try out on the spot whether the change of sign of a 
Fourier coefficient makes the electron projection more acceptable or 
less. As a criterion for this, a low background between well separated 
atoms is usually taken. 

A counterpart of this machine is one for Fourier analysis, called 
SFAC (for Structure factor analogue computer) in which the Fourier 
coefficients or structure amplitudes are instantaneously calculated 
after atomic coordinates and atomic factors have been set on dials. 

A second important advance in the technique of structure determi- 
nation is to be seen in Martin Buerger’s profound studies of unfolding 
or deconvoluting of the Patterson function. This function was ob- 
tained by searching the cell for vectors leading from one atom to 
another and then shifting these vectors to the origin of Patterson space 
and labelling them with the product mass. Therefore, if we imagine 
one of the atoms to be shifted to the origin of Patterson space, the 
relative vectors from it to the other atoms of the base will be among the 
vectors in Patterson space. With Z atoms forming the base, there are 
Z-l such relative vectors, whereas the Patterson function contains 
Z(Z- 1) peaks because any one of the Z atoms has to be shifted to the 
origin. (Many of these vectors may coincide, and this makes the 
unfolding harder.) Buerger succeeded in constructing several ‘image 
seeking functions’ with which to find those Patterson peaks which 
belong together and form an image of the base. His theory is a great 
step in the direction of systematic unfolding and has been successfully 
applied in a large number of structure determinations; it presents no 
automatic solution because it requires attention and ingenuity in 
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its application, especially to the unfolding of projections to which it 
has been mainly applied. 

Finally a few words should be said about the statistical approach 
to the problem of structure analysis. Since the amount of data for 
an algebraic determination often exceeds the number of unknowns 
considerably, one can afford to use the data is a statistical way rather 
than as single and independent pieces of evidence. A. J. C. Wilson 
made important contributions by showing how symmetry elements of 
the structure, including the directly not observable inversion centres, 
could be deduced from suitable averages of IFIs-values. In a series of 
papers beginning in 1953 J. Karle and H. Hauptman have developed a 
method of determining probable sign relations between Fourier 
coefficients from ‘joint probabilities’ for the simultaneous appearance 
of certain sums of IFIs-values. This method has been successfully 
applied to a number of structure determinations and comes closest to 
the ideal of a fully automatic derivation of a structure. 
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