Computing before Computers

R.O. Gould

Sometime Reader in Chemistry The University of Edinburgh

Notice in Computing Centre

In case of emergency, break glass

The Founders of Numbers in Crystallography

Nicolas Steno: 1638-1686

René Just Haüy: 1743-1822

Defining the Unit Cell 1

Steno's Law 1669:

All crystals of a given substance at a given temperature and pressure have the same angles between corresponding faces, regardless of their size and shape.

Defining the Unit Cell 2

• Haüy law: 1782

For a given crystal there is a set of ratios such that the ratios of the intercepts of any crystal plane on the crystal axes are rational fractions of these ratios. Hence all crystals consist of a "masonry of paralellipipedal blocks"

Two Circle Goniometer

- φ: azimuthal circle
- ρ: pole distance circle

CuSO₄.5H₂O

 Crystals from Groth *Chemische Krystallographie,,* Vol 2, p 419, 1908

Indexing of CuSO₄.5H₂O Final observed and calculated interfacial angles

Berechnet:		Beobachtet:
	Barker:	Kupffer:
a:b = (100):(010) =	*79° 6'	79 ⁰ 19'
a:m = (100):(110) = -	*26 7	
$m: \mu = (410): (1\overline{4}0) = 57^{\circ}16'$	57 9	·
a: l = (100): (120) = 4152	41 48	
$a:\lambda = (100):(1\overline{2}0) = 53\ 50$	53 34	
$a:\pi = (100):(1\overline{3}0) = 67$ 4	1. 1. 1. <u></u> , 0. , 21. 1.	· · ·
$a: \nu = (100): (2\overline{1}0) = 1556$		·
b: q = (010): (011) =	*64 58	65 4
b:c = (010):(001) = 94 29		
$q: z = (011): (0\overline{1}1) =$	*56 59	9 juli
b: t = (010): (021) = 44 39	44 41	· · · · · · · · · · · · · · · · · · ·
$b': \tau = (0\overline{1}0): (0\overline{2}1) = 40$ 33	40 33	40 17
$b: \omega' = (010): (\overline{1}11) = 76 \ 32\frac{1}{2}$	7.6 23	76 33
$b:\sigma = (010):(12\overline{1}) = 4049$	40 52	40 47
$b: \zeta' = (010): (\overline{1}31) = 40 31$	40 56	
$b: 5' = (010): (\overline{121}) = 54 49$	54 44	

Indexing of CuSO₄.5H₂O

- The idea of the reciprocal cell was not current, so calculations were complex.
- Obs: (100):(010) = 79.10°; $\gamma^* = 79.12°$
- Obs: (010):(001) = 94.48°; $\alpha^* = 94.54^\circ$

Unit Cell for CuSO₄.5H₂O

- 1: From indexing crystals: (Groth) a:b:c: 0.5721, 1, 0.5554 $\alpha = 82.08^{\circ}; \beta = 107.13^{\circ}; \gamma = 102.68^{\circ}$
- 2: From X-ray :(Varghese and Marslen, Acta Cryst B41,184-190, 1985) a:b:c: 0.5710, 1, 0.5566 $\alpha = 82.35^{\circ}; \quad \beta = 107.33^{\circ}; \quad \gamma = 102.60^{\circ}$

Value of Blue Sky Research

- Compare the invaluable and obviously useful work done by Groth to identify crystalline substances by careful measurement of painstakingly grown crystals with
- The totally academic work done by Fedorov and Schoenflies in identifying the 230 space groups which were of purely theoretical interest.

Calculation in early 20th Century

Addition – the BrunsViga as rescued from Scapa Flow

Calculation in early 20th Century

Multiplication

 Slide rules – here the Otis King cylindrical rule for 4-figure accuracy.

WWWWWWWW
ALTREADER OF CONTRACTOR
8 355 93 9350NE
755 79 795 B 8/5 L
B6 7 705 71 715 72
625 63 635 64
495 5 505 9
44 445 45 45
395
32 314 36 318 32 4
278 28 282 284 28 3
248, 25, 252, 254, 5
12 222 224 226 4
15 176 177 178 179 18 18
56 57 158 159 16
39 4 41 42 43
101 395 99 995 DNE 101
15 88 885 89 895 9 961
7 705 71 715 72
12 625 63 635 64 8
and the second

Calculation in early 20th Century

 Seven figure(!) tables for "ease and rapidity No difficult theory"

Preface to one of these

The opinions expressed in this book are those of the author, and do not necessarily represent the policy of the United States **Department of Defense.**

Determining a Structure

- Obtaining a crystal
- Collecting Data
- Solving Structure
- Refining Structure
- Presenting Data

Early Crystal Structures

CsCl

NaCl

Pictures from Miramodus Molecular Models

Fourier Summations

- Consider projection of 10 atoms, 200 data, 1000 points in map.
- Structure Factors 2000 calculations

• Electron density – 200 000 calculations

Optical Methods – Huggins Masks

Masks: 4,2 and 1,1

pentaerythrito l

Optically generated structure

1-d Fourier Summations

- In line group **p**2: $\rho x = 2\Sigma_h F(h) \cos 2\pi h x$
- "Strip" showing values of function for specific values of F (76) and h (7):

2-d Fourier Summations

- In plane group *p*2:
- $\rho x, y = 2\Sigma_h \Sigma_k F(h,k) \cos 2\pi hx + ky$

= $2\Sigma_h \cos 2\pi hx \Sigma_k F(h,k) \cos 2\pi ky$ - $2\Sigma_h \sin 2\pi hx \Sigma_k F(h,k) \sin 2\pi ky$

Beevers-Lipson Strips

Dr C.A. Beevers

Arnold Beevers, 1908-2001, scientist, humourist, and inventor.

A Fourier Machine

- **One of many attempts by Dr** C.A. Beevers to effect the rapid calculation of electron Density maps in crystals (1946-1950). This one was never brought to a successful use, but it had an excellent principle – that of the planimeter: If the lower wheel went through φ, the upper wheel would be driven through an angle of $\cos \theta$. Successive turns would give $\Sigma \phi_i \cos \theta x n$. n goes 0 -15)
 - C.A. Beevers

A Fourier Machine

Engineering Problems

- I've a brake which I make
- With a string sort of thing.
- It's a good sort of brake,
- But it hasn't worked yet.

"The Engineer", from Now we are Six by A.A. Milne

An Electric Analogue Machine

- Designed by Beevers and Stern in 1950
- Electrical generation of terms to be summed
- Sums read from a galvanometer with adjustable zero.
- Approximately 6 times faster than strips with error about 1%.
- Used until the "advent of other machines"

An Electric Analogue Machine

The machine during construction

An Electric Analogue Machine

The Completed Machine

Competition for the Calculator

- Frank Gilbreth:
- Proper upbringing of children to compete with dehumanising machinery.

Rosalind Franklin Adding?

Juliet Stevenson as Rosalind Franklin : BBC Horizon Programme

Kakuro – for the additionally unchallenged!

a,α-Trehalose dihydrate: unit cell

 $P2_12_12_1 a = 12.233(9), b = 17.889(13), c = 7.596(6)$

Spherical crystals ground ($r \approx 0.35$ mm)

Work by Robert Simpson, -1971

a,α-Trehalose dihydrate: data

Photographs: 0kl - 9kl, h0l - h, 14, l, hk0 - hk56 films per layer (186 total), intensities by eye 5500 data \rightarrow 2097 independent, 52 too weak $\sigma(I) \approx 0.09I - All data used for solution$ **α,α-Trehalose dihydrate: solution**

(much of this carried out on VSO in Nigeria)

Four centric reflections fix origin and enantiomorph

Two symbols chosen for symbolic addition.

α,α-Trehalose dihydrate: solution

hkl	Φ	E
043	0	2.58
092	π/2	2.45
502	0	3.44
950	π/2	3.25
683	а	2.86
4,13,4	b	
2.53		

α,α-Trehalose dihydrate: solution

• E-map along [001].

• Essentially correct although not used!

The contoured map

"There is little future in peaksearch methods; crystallographers enjoy contouring maps so much" Anon. ca 1980

Richards Box

- ← Half-silvered mirror
- ← Contoured map behind

← Model being built

From Dickerson, "Present at the Flood"

Refinement

• Early structures were refined by Fourier methods – shift until difference map indicates best fit

• R-factors of 20% considered very good.

α-D-Glucose

• $P2_12_12_1$: a = 10.38, b = 14.84, c = 4.93Å

• Suitable for solution in hk0 projection, difficulty with z-coordinates.

T.R.R. Macdonald, 1950

Refinement – early attempts at least squares

- Even in projection, least squares gives a huge matrix for inversion.
- "block diagonal" least squares is only a series of 2x2 matrices.
- Considered useful with 0.3Å resolution Fourier requiring 0.7Å resolution (Hughes, 1941)

a-D-Glucose

[001] projection

[010] projection

α-D-Glucose

 Least squares used to refine zcoordinates in h0l and 0kl projections.
Final R-factors:

$$\mathbf{R}_{hk0}: 18.4\% \mathbf{R}_{h01}: 20.4\% \mathbf{R}_{0k1}: 14.7\%$$

(cf trehalose: R= 5.7% on all data)

Diagrams – presenting the results – a molecule – d-tartaric acid

F. Stern, 1950

Diagrams – presenting the results – trehalose dihydrate packing

R. Simpson, 1971

Facing up to a complex future

The opposite of faith is not doubt, it is certainty.

R. Holloway

How much are we prepared to accept that we need not understand?