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Series Preface 

The  long te rm aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rog ramme  is to produce a large collection of 
short s ta tements  each dealing with a specific topic at a specific level. The  
emphasis  is on a particular teaching approach and there may well, in time, 
be  pamphlets  giving alternative teaching approaches to the same topic. I t  
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that  teachers can make  their own selection. 
Similarly, in due course, we hope  that the same topics will be  covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents a 
sample of the various levels and approaches and it is hoped that  it will 
st imulate many  more  people  to contribute to this scheme. I t  does not take 
very long to write a short pamphlet ,  but  its value to someone  teaching a 
topic fo r  the first t ime c a n  be very g rea t .  

Each pamphle t  is prefaced by a s ta tement  of aims, level,  necessary 
background,  etc. 

C. A. Taylor  
Edi tor  f o r  the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To help towards an understanding of the way in which close packed 
structures may be described and  to begin to bridge the gap between the 
theoretical abstractions of basic crystallography and the world of real 
crystals. 

Level 

I t  would be most  appropriate  in the later years of undergraduate  
courses, especially those in materials science. I t  could also form an 
element  in a postgraduate course of crystallography for newcomers  to the 
subject. 

Background 
A general familiarity with crystal lattices, crystal symmetry,  the reg- 

ional lattice and the basic principles of X-ray  diffraction such as might be  
given in an introductory course is assumed. 

Practical Resources 

Crystal structure models are essential in understanding the material  in 
• this article. An X-ray generator  and rotation camera would be helpful. 

Time Required for Teaching 

It  probably represents about  6 hours teaching if adequate  use of models 
is to be made. Further  t ime for X-ray photography of suitable single 
crystals of close packed structures would be an advantage. 



C l o s e - P a c k e d  Structures  

P. Krishna and D. Pandey* 

Depar tment  of Physics, Banaras Hindu University, 
Varanasi, India 

The crystal structures of a large number of metals, alloys and inorganic 
compounds can be described geometrically in terms of a close-packing of 
equal spheres, held together by interatomic forces. Frequently, the posi- 
tions of one kind of atoms or ions in inorganic structures correspond 
approximately to those of equal spheres in a close-packing with the other 
atoms distributed among the voids. All such structures will be referred to 
as close-packed structures though they may not  be ideally close-packed. 
The close-packed arrangement of equal spheres in a plane is shown in 
Fig. 1 where each sphere is in contact with six other spheres. Since the 
symmetry of this layer i s  6mm, such a layer is called a hexagonal 
close-packed layer. Let  this layer be called an A layer. It contains two 
types of triangular voids, one with the apex of the triangle upwards in the 
diagram and labelled B, and the other with the apex downwards and 
labelled C. In the two-dimensional unit cell indicated in the figure (a = b, 
, /=  120 °) the three positions A, B and C have coordinates 00, ½-~ and 21 gg -  

In a three-dimensional packing the next hexagonal close-packed layer 
of spheres can occupy either the sites B or C, but not both. Similarly the 
layer above a B layer can be either C or A and that above a C layer either 
A or B. No two successive layers can be alike. The positions B and C are 
displaced with respect to A by vectors +S and - g  respectively where 
S = a/3 ~1010} in the Miller-Bravais notation. 

Any sequence of the letters, A, B and C with no two successive letters 
alike represents a possible manner  of close-packing equal spheres. In such 
a three-dimensional close-packing, each sphere is surrounded by and 
touches 12 other spheres. This is the maximum number of spheres that 
can be arranged to touch a given sphere and it provides the maximum 
packing density for an infinite lattice arrangement.  (There are however 
other arrangements of a f ini te number of equal spheres which have a 
higher packing density1.) It is evident from the foregoing that the number 
of different close-packed structures that are possible in three dimensions 
is infinite. The identity period or c dimension of the hexagonal unit cell in 
a three-dimensional close-packed structure is determined by the number 
of layers after which the stacking sequence repeats itself. The two most 

* Now at the School of Materials  Science and Technology, Banaxas Hindu University, 

India. • 
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Fig. 1. The close-packing of spheres. 

common close-packed structures which occur in nature are: (i) the hex- 
agonal close-packing (hcp)wi th  a layer stacking A B A B . .  and (ii) the 
cubic close-packing (ccp) with a layer stacking A B C A B C . .  They have 
identity periods o f  two and three layers respectively. In addition to the 
hcp and ccp modifications, a number of materials, like SiC, ZnS, CdI2, 
PbI2, AgI and GaSe-are  known 2'3'4 to crystallize in a large variety of 
close-packed structures, called polytypes, with larger identity periods. 
The different polytype structures of the same material have identical a 
and b dimensions of their hexagonal unit cell but differ along c. Even for 
the same identity period of n layers, a number of different close-packed 
structures are possible with different arrangements of the n layers. The 
extent to which a real crystal structure approximates to a close-packing 
can be determined from the h/a ratio, where h is the separation between 
successive close-packed layers and a is the diameter of the spheres. For  
an ideally close-packed structure, this ratio must be ~/}= 0.81652'5. Table 
1 lists the h/a ratio for some metals and inorganic materials with hcp 
structure. 

Table i 

Material h/ a Material h/ a 

Cd 0.943 AgI 0.815 
Zn 0.928 BeO 0.815 
He 0.8165 CdSe 0.815 
Co 0.814 ZnO 0.800 
Mg 0.812 /kiN 0.800 

• Sc 0.797 CdS 0.810 



Voids  in a Close-Packing  

In case of close-packed inorganic compounds, the larger atoms or ions 
occupy positions approximately corresponding to those of equal spheres 
in a close-packing while the smaller atoms are distributed among the 
voids. Three-dimensional close-packings of spheres have two kinds of 
voids: 

(i) If the triangular void in a close-packed layer has  a sphere directly over it, there results 
a void with four spheres around it, as shown in Fig. 2a. Such a void is called a tetrahedral 
void since the four spheres surrounding it are arranged on the  corners of a regular 
te t rahedron (Fig. 2b). If R denotes  the radius of the four spheres surrounding a tetrahedral  
void, the  radius of the  sphere that would just fit into this void is given 2'5 by 0.225 R. 

(ii) If a triangular void pointing up in one close-packed layer is covered by a triangular 
void pointing down in the adjacent  layer, then a void surrounded by six spheres results (Fig. 
2c). Such a void is called an octahedra! void since the  six spheres surrounding it lie at the 
corners of a regular octahedron (Fig. 2d). The  radius of the sphere that would just fit into an 
octahedral  void in a close-pacl(ing is given 2'5 by 0.414 R. 

Fig. 2(a) 

Fig. 2 (c) 

A 

B 

Figl 2 (b) A 

A 

A A 

B 

Fig. 2(d) 

Fig. 2. Voids in a close-packing (a) Tetrahedral void, (b) Tetrahedron formed by 
the cenrres of spheres, (c) Octahedral void, (d) Octahedron formed by the centres 

• of  spheres. 
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To determine the number  of tetrahedral  a n d  octahedral voids in a 
three-dimensional  close-packing of spheres, we note that a sphere in a 
hexagonal close-packed layer A is surrounded by three B voids and three 
C voids (Fig. 1). When the next layer is placed on top of this, the three 
voids of one kind (say B) are occupied and the other three (say C) are 
not. Thus the three B voids become tetrahedral  voids and the three C 
voids become octahedral  voids. A single sphere in a three-dimensional  
close-packing will have similar voids on the lower side as well. In 
addition, the particular sphere being considered covers a triangular void 
in the layer above it and another  in the layer below it. Thus two more  
tetrahedral  voids surround the spheres. This results in 2 x  3 +  1+ 1 = 8 
tetrahedral  voids and 2 x 3 = 6 octahedral voids surrounding the sphere. 
Since a tetrahedral  void is shared by four spheres, there are twice as many 
tetrahedral  voids as there are spheres. Similarly, since an octahedral  void 
is surrounded by six spheres, there are as many octahedral voids as there 
are spheres. 

In an actual crystal structure a particular a tom can best fit into one or 
the other kind of void depending on its size relative to that of the 
close-packed atoms. Thus the radius ratio of the atoms present in a 
crystal imposes limitations on the coordination that they can have in real 
structures. Conversely, the coordination number  of an a tom imposes a 
limitation on the radius ratio. In effect this means that the size and 
coordination number  of a central a tom may require that its close-packed 
neighbours do not touch each other. 

Symmetry and Space Group of Close-Packed Structures 
The symmetry of a single close-packed layer of spheres is 6mm. It has 

2-, 3- and 6- fold axes of rotation normal to its plane as shown in Fig. 3. 
In addition it has three symmetry p lanes - -one  perpendicular to the 
x-axis, one perpendicular  to the y-axis and the third equally inclined to x 
and y. When two or more  layers are stacked over each other in a 
close-packing the resulting structure retains all the three symmetry  planes 
and has at least 3-fold axes parallel to [00.1] through the points 000, ½ ~ 0 
and 21 ~ 0 as shown in Fig. 4. Such a structure belongs to the trigonal 
system and has a space group P 3 m l  or R 3 m l ,  according as the lattice is 
hexagonal or rhombohedral .  This represents the lowest symmetry  of a 
close-packing of spheres comprised of a completely arbitrary periodic 
stacking sequence of close-packed layers. If the arbitrariness in stacking 
successive layers in the unit cell is limited then higher symmetries can also 
result. It  can be shown 2'6 that it is possible to have three additional 
symmetry elements, namely, a centre of symmetry (i), a mirror  plane 
perpendicular to [00.1], and a screw axis 63. It  was shown by Belov 7 that 
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Fig. 3. Symmetry axes of a single close-packed layer of spheres. 

consistent combinations .of these symmetry elements can give rise to only 
eight possible space groups: 

P 3 m l ,  P3ml,  P6m2, P63mc 

P63/mmc, R3m, R3m and F43m 

Of these eight space groups, FF~3m is the only one that is cubic and 
corresponds to the cubic close-packed structure A B C A B C . . .  In com- 
pounds, the presence of t h e  other  atoms occupying the voids further 
restricts the possible space groups. 

Fig. 4. The minimum symmetry o~" a three dimensional close-packing of spheres. 
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Possible Lattice Types 

Close-packings of equal spheres can belong to the trigonal, hexagonal 
or cubic crystal systems. When the structure has the minimum symmetry 
discussed earlier it belongs to the trigonal system. When it has a 63 axis of 
symmetry it belongs to the hexagonal system. Structures belonging to the 
hexagonal system necessarily have a hexagonal lattice, i.e. a lattice in 
which we can choose a primitive unit cell with a =  b:~ c, a =/3 = 9 0  °, 
3' = 120 °. The primitive unit cell of the hcp structure is shown in Fig. 5. It  
should be noted that there are two spheres associated with each lattice 
point in the hop structure, one at 000 and the other at ½2½. Structures 
belonging to the trigonal system can have either a hexagonal or a 
rhombohedra l  lattice. By a rhombohedra l  lattice is meant  a lattice in 
which we can choose a primitive unit cell with a = b = c, o~ =/3 = 3,7 ~ 90 °. 
Both types of lattices can be referred to either hexagonal or rhom-  
bohedral  axes, the unit cell being non-primitive when a hexagonal lattice 
is referred to rhombohedra l  axes or vice versa. Figure 6 shows a rhom- 
bohedral  lattice in which the primitive cell is defined by the rhombohedra l  
axes al ,  a2, a3; but a non-primitive hexagonal unit call can be chosen by 
adopting the axes A1, A2, C. T h e  latter has lattice points at 0 0 ~  2½½ and 

22. In the special case of the close-packing A B C A B C  . . . .  (with'the ideal 
h/a ratio of 0.8165) the primitive rhombohedra l  lattice has o~ =/3 =3 '  = 
60 °, which enhances the symmetry  to FFt3m and enables the choice of a 
face-centred cubic unit cell. The relationship between the fcc and the 
primitive rhombohedra l  unit cell is shown in Fig. 7. The  three-fold axis of 
the rhombohedra l  unit cell coincides with one of the (111) directions of 

/ 
Fig. 5. The primitive unit cell of the hcp structure. 
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T..A  ! 
Fig. 6. A rhombohedral lattice (al, a2, aa) referred to hexagonal axes (A 1, A 2, C) 

(After M. J. Buerger, X - ray  crystallography, Wiley : New York 1953). 

the cubic unit cell. The close-packed layers are thus parallel to the {111} 
planes in the cubic close-packing. 

In close-packed structures, it is generally convenient to refer both 
hexagonal and rhombohedral  lattices to hexagonal axes. The projection 
of the hexagonal lattice on the (001) plane is shown in Fig. 8. The axes, x, 
y define the smallest hexagonal unit cell, the z axis being normal to the 
plane of the paper; the hexagonal unit cell is primitive with all the lattice 
points at 000. Figure 9 depicts the projection of a rhombohedral  lattice 
on the (00.1) plane. The full lines Oxh, Oyh represent the hexagonal axes 

Fig. 7. The relationship between the fcc and the primitive rhombohedral unit cell of 
the cop structure. 
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~g. 8. The proiection o.f the hexagonal laniee on the (O001)-plane. Shows different 
ways of choosing hexagonal axes (after International Tables for Crystallog- 

raphy, Kynoch Press: Birmingham, 1952). 

0 0 O 0  O e  

2/3 e 2 ~  2/3 • 

0 • 1"~ / / ~'~ +Yh 
0 

213 2 2/3 0 

I/3 . / ~ I Y / 1 / 3  / 1 /3 .  

o07/ ~ '0  0 • 
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+Xh- 01/3 • 1/3 1/3 
Fig. 9. Projection of a rhombohedral lattice (obverse setting). Shows the choice o[ 
hexagonal (---~) and rhombohedral ( - - - - )  axes (after International Tables for 

Crystallography Vol. I, Kynoch Press: Birmingham, 1952). 
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and the three dotted lines represent  rhombohedra l  axes. It  is evident from 
the figure that the hexagonal unit cell of a rhombohedra l  lattice is 
non-primitive with lattice points at 000, 211 1 2 2  ~ and ~ 3 .  If the lattice is 
rotated through 60 ° around [001], the hexagonal unit cell will then be 

1 2 1  2 1 2  centred at ~ and ~ .  These two settings of the rhombohedra l  lattice 
are called 'obverse '  and ' reverse '  settings. They are indistinguishable by 
X-ray methods since the two are crystallographically equivalent: they 
represent  twin arrangements  when both of them occur in the same single 
crystal. 

N o t a t i o n s  U s e d  for  R e p r e s e n t i n g  C l o s e - P a c k e d  Structures  

The special notations employed to distinguish the different close- 
packed structures of a material  have been described in detail by Verma  
and Krishna 2. In this section a brief description of only those notations 
which are more  commonly used is given. 

(a) Ramsdell's notation s 

Close-packed structures can be designated by specifying the total 
number  of layers in the hexagonal unit cell followed by the letter H, R or 
C to indicate the lattice type. Thus a symbol nH represents a structure 
with n layers in the primitive hexagonal unit cell while mR denotes a 
structure whose primitive lattice is rhombohedra l  and contains m layers 
in its hexagonal unit cell. In order to distinguish structures with same 
lattice type as well as the same repeat  period along c, subscripts a, b, c or 
1, 2, 3 are often used. This notation is applicable to all close-packed 
structures but it does not reveal  the actual ar rangement  of the layers in 
the unit cell. 

(b) The classical ABC notation 

As pointed out earlier, the actual a r rangement  of layers in all close- 
packed structures can be described in terms of the A B C  notation for 
close-packing of spheres. Thus the SiC type 6 H  has six Si and six C layers 
in its hexagonal unit cell stacked as A a  B/3 CT A a  CT B/3 where the 
Roman  letters denote  positions of layers of Si atoms and the Greek  
letters those of C atoms. Since the positions of C atoms are fixed relative 
to the positions of Si atoms it is customary to omit  the Greek  letters and 
write the structure as A B C A C B .  In the case of CdI2 structures, where the 
Cd atoms lie in the octahedral  voids between alternate close-packed 
iodine layers, one often retains the Greek  letters to denote the positions 
of Cd layers. Thus CdI  2 type 4 H  has a structure A v B  C a B .  While this 
notation gives a complete  description of the structure it does not reveal 
the symmetry  or lattice type directly and becomes cumbersome for 
structures with large repeat  periods. 



(c) Zhdanov notation 

If the layers in a close-packed structure are projected on to one of the 
close-packed planes, the atoms fall into one of the three possible posi- 
tions A, B and C with xy coordinates 00, ½~ and 21 ~ respectively. The 
passage f rom A---~B---~C--*A involves a vector translation of 12 ~g in the 
basal plane, whereas the passage f rom A--~C---~B---~A involves a vector 
translation of ~, ½ = -~ ,  - ~  (Fig. 1). H~igg 9 therefore denoted the former  by 
a plus sign (+ )  and the latter by a minus sign ( - ) .  A structure such as 
/kBCB is thus represented as + + - - .  The relationship between the three 
orientations, A, B and C of the close-packed layers may also be visualized 
in terms of clockwise or anticlockwise rotation about  [00.1] through 60 °. 
Frank 1° used the symbols /k and V for the two rotations. Thus the /~ 
symbol implies a cyclic change A---~B--~C--~A and the symbol V implies 
an anticyclic change. No compactness results f rom the use of these + 
a n d -  or /k and V symbols for representing a close-packed structure 
because their number  remains the same as the number  of layers in the 
A B C  sequence of the structure. Zhdanov  11 therefore suggested summing 
up the consecutive + (or A) and - (or V) signs and putting them down in 
numeral  figures. Thus the 6 H  SiC structure having the A B C  sequence 
A B C A C B  and a H~igg sequence + + + - - -  is denoted by the symbol (33) 
in the Zhdanov notation. 

Ramsdell  8 interpreted the Zhdanov  symbols in terms of the zig-zag 
sequence of Si and C atoms in the (1120) planes of SiC structure. These 
planes contain all the atoms of the structure since the three symmetry 
axes parallel to [001] all lie in this plane. Figure 10 illustrates the 
meaning of the zig-zag sequence, taking the 6 H  (33) structure of SiC as 
example.  If a Si or C atom lies on A in one layer, the next must be either 
to the right on B, or to the left on C. If to the right, the third layer may 
have its a tom continue to the right or it may change direction and go to 
the left. Because of these repeated changes, a zig-zag pattern results. 
Such an arrangement  can be described in terms of the number  of layers 
added in each direction in succession and has been called the 'zigzag 
sequence'  by Ramsdell .  The unit cell is completed after arriving at an 
identical a tom having the same environment  as the a tom f rom which one 
started. Thus in Fig. 10 the unit-cell of 6 H  is completed at 2 and not at 1. 
The Zhdanov  notation is by far the most  convenient and concise notation 
to describe close-packed structures. 

(d) The h-c notation 

In the h-c  notation, used by Pauling ~2, Wyckoff 13 and Jagodzinski 14, 
one specifies each layer in terms of the orientation of layers above and 
below it. A layer is said to be in hexagonal configuration and is denoted 
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A ~  B C A ~  B C A ~  B 

Fig. I0. Ramsdell's Zig-Zag sequence of Si (or C) atoms in the (112.0) plane of 
6 H  (ABCACB). 

as 'h' if it is surrounded on either side by layers in similar orientations. A 
layer is said to be in cubic configuration and is denoted as 'c' if it is 
surrounded on either side by layers in different orientations. Thus the 6 H  
SiC structure with stacking sequence A B C A C B  can be written as hcchcc 
in the h-c  notation. This notation is specially usefu'[ in dealing with X-ray 
diffraction effects from faulted structures and for calculating stacking fault 
energies ~5. , 

It is quite easy to transform from one notation to anotlaer. For this it is 
convenient to write first the complete A B C  sequence.of the structure and 
then express this in the desired notation. Some close-packed structures 
expressed in different notations are listed in Table 2. ~ " 

Table 2. Different notations for describing some close- 
packings 

Ramsdell ABC Zhdanov h-c 
notation sequence number notation 

2/-/ AB (Ii) h 
3C ABC co c 
4 H  ABCB (22) hc 
6 H  1 ABCACB (33) hcc 
6H 2 ABCBAB (2211) hchchh 
9R ABACACBCB (12) hhc 

11 



Examples  of Some Close-Packed Structures 

(i) Elements 
The structure of many of the metallic and non-metall ic elements can be 

described in terms of a close packing of equal spheres. There  is a clear 
relationship between the structure and the position of an element  in the 
Periodic Table.  Elements  in the same group tend to have the same 
structure at room temperature ;  for example,  the alkali metals and Be, 
Mg, Zn and Cd ~ r o u p  I I A  and IIB) are hcp; Cu, Ag and Au (group IB) 
are ccp. The  elements  of the rare-ear th  series crystallize in the ccp 
structure, the hcp structure or  the 4 H  (ABCB) structure (e.g. Sm). The 
stable modification of Co at room tempera ture  is probably hcp but it 
undergoes t ransformation to a ccp structure at high temperature .  

(ii) Inorganic compounds 
(a) Silicon carbide and zinc sulphide 

SiC has a binary tetrahedral  structure in which the Si and C layers are 
stacked alternately, each carbon layer occupying half the tetrahedral  
voids between successive close-packed silicon layers. One can regard the 
structure as consisting of two identical interpenetrating close-packings, 
one of Si and the other  of  C, with the one displaced relative to the other 
along the e-axis through one fourth of the layer spacing. The  binding 
between Si and C atoms in SiC is predominant ly  covalent. The silicon- 
carbon bond length of 1.94.& as calculated f rom the known covalent 
tetrahedral  radii of C and Si is nearly equal to the observed silicon- 
carbon bond l en~h  of 1.89 A. The tetrahedral  ar rangement  of Si and C 
in SiC does not permit  either a centre of symmetry (i) or a plane of 
symmetry  (m) perpendicular  to [00.1]. Silicon carbide can therefore have 
only four possible space g r o u p s - P 3 m l ,  R 3 m l ,  P63mc and F43m.  

Commercia l  SiC crystals are grown at temperatures  above 2000°C and 
are called a-SiC crystals. The  more common modifications in the a -S iC  
crystals are 6H, 15R and 4H. They have stacking s e q u e n c e s / A B C A C B /  
( =  6H),  / A B C B A C A B A C B C A C B /  ( =  15R) a n d / A B C B / . . .  (4/-/). Fig- 
ure 11 depicts the structure of the most  common a-SiC modification 6 H  
with a packing A B C A C B .  In addition to the common modifications 
(often called the 'basic structures '  of a-SiC) several polytype structures 
with stacking sequences of larger repeat  periods have been discovered. 
These have either a hexagonal or a rhombohedra l  lattice 2. Table 3 lists 
the known structures of SiC. In all these structures the h/a ratio is 0.817, 
which is very close to the value of 0.8165 for an ideal close-packing. The  
cubic or /3-SIC, with a packing / A B C / A B C / . . . ,  is denoted as 3 C  and 
normally forms 2 at temperatures  below 1800°C. It  is regarded as the 
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Fig. 11. Tetrahedral arrangement of Si and C atoms in 6 H  SiC structure. 

low-tempera ture  modification of SiC and undergoes a solid-state transfor- 
mation to the 6 H  structure at tempera tures  above 1800°C 2'16'17. The  
wurtzite (2/-/) modification of SiC, with a stacking s e q u e n c e / A B / A B /  . . . .  
does not occur in commercial  SiC and has been synthesized by special 
methods between the temperatures  of 1400 and 1500°C 18. I t  is regarded 
as a metastable  modification of SiC and undergoes solid-state t ransforma- 
tion to the 3 C  and 6 H  structures at tempera tures  above 1400°C 17. The 
h/a ratio in this structure is 0.8205 which differs considerably from t h e  
ideal h/a ratio for perfect close-packing. 
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Table 3. List of SiC polytypes with known structures 

Structure Structure 
Polytype (Zhdanov sequence) Polytype (Zhdanov sequence) 

2H 11 54H (33)6323334 
3 C ~o 57H (23)93333 
4 H  22 57R (33),_34 
6 H  33 69R 1 (33)332 
8H 44 69R 2 33322334 
10H 3322 75R l (33)334 
14H (22)233 75R 2 (32)3(23) 2 
15R 23 81H (33)535(33)634 
16H 1 (33)z22 • 84R (33)3(32)2 
16H 2 332332 87R (33)432 
18H (22)333 90R (23)43322 
19H (23)322 96R (33)33434 
20H (22)344 99R (33)43222 
21H 333534 105R (33)532 
21R 34 111R (33)534 
24R 35 120R (22)523222333 
27H (33)2(23) 3 123R (33)632 
27R 2223 141R (33)732 
33R 3332 147R (3332)432 
33H 1 (33)2353334 159R (33)s32 
33H-2 (33)3(23) 3 168R (23)1o33 
36H I (33),_32(33)234 174R (33)66(33)54 
3 6 H ,  (33)43234 189R (34)843 
39H (33),_32(33)3(32) 2 222R (33)634(33)~34 
39R 3334 267R (23)1722 
45R 232332 273R (23)1733 
51R 1 (33),_32 303R (33)1632 
51R 2 (22)323 393R (33)2132 

The structure of ZnS is analogous to that of SiC. The bonding in ZnS is 
known to be partly ionic and partly covalent.  The wurtzite and sphalerite 
modifications of this compound,  which occur as minerals, correspond to 
the / A B / A B / A B / . . .  and / A B C / A B C /  . . . .  packings respectively. 

The cubic form is known to be the low-temperature modification and 
undergoes a reversible phase transformation 2 to the 2 H  form around 
1020°C. In addition to these two c o m m o n  modifications, ZnS is known 19 
to display a large variety of polytype structures with larger identity 
periods. As  stated earlier, all the polytype modifications of a material 
have identical a and b lattice parameters and differ only along c. The h/a 
ratio for the 2 H  modification of ZnS is 0 .818 which is somewhat  different 
from the ideal value 0 .8165 for a perfect close-packing. 
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Cadmium Iodide  

Cadmium iodide is an ionic compound,  the ionic radii of Cd and I being 
0 .97 /~  and 2.16 ~ respectively 2. The structure consists of a close-packing 
of the I ions with the Cd ions distributed among the octahedral  voids. The 
radius ratio tea~h= 0.45 permits the Cd ions to occupy the octahedral  
voids. Since there are only half as many  Cd ions as I ions in the structure, 
only half of the total octahedral  voids are occupied. Thus the Cd and I 
layers are not stacked alternately; there is one Cd layer after every two I 
layers as shown in Fig. 12. The structure therefore  consists of molecular 
sheets (called minimal sandwiches) with a layer of Cd ions sandwiched 
between two close-packed layers of I ions. The  binding within the 
minimal sandwich is ionic in character and is much stronger than the 
binding between successive sandwiches which is of van der Waals type. It  
is because of the weak van der Waals bonding between the successive 

'--4 I i ,-',. ', . " L  ,.":: "v--. 
1 "I • I ~ % I = | I 

Fig. 12. The layer structure of Cdl2: small circles represent Cd ions and larger ones 
the I ions (after A. F. Wells, Structural fnorganic Chem/stry, Clarendon Press: 

Oxford, 1945). 
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minimal sandwiches that the material possesses the easy cleavage charac- 
teristic of a layer structure. Cadmium iodide structures can have a centre 
of symmetry in octahedral voids, but cannot have a symmetry plane 
perpendicular to [00.1]. Cadmium iodide can therefore have five possible 
space groups - P3ml, P3rn, R3m, R3rn and P63mc. Cubic symmetry is 
not possible in CdI2 on account of the presence  of Cd atoms. The most 
common modifications of CdI2 are 4 H  and 2 H  with stacking sequences 
/ A y B  C a B /  . . . . .  and / A y B / A T B /  . . . .  respect ively ,  where the Greek  
letters denote  the positions of Cd ions. In addition, this material also 
displays 2"19 a number  of polytype modifications of large repeat  periods. 
From the structure of CdI2 it follows that the identity period of all such 
modifications must consist of an even number of iodine layers. The h/a 
ratio in all these modifications of CdIe is 0.805 which differs considerably 
from the ideal value of 0.8165. 

Identification of Close-Packed Structures 
by X-ray Diffraction 

When a material crystallizes into a number of different close-packed 
structures all of which have identical layer spacings and different only in 
the manner  of stacking the layers, crystals of the different modifications 
look alike and cannot be identified by their external morphology. In order 
to identify such polytype modifications, it is necessary to determine the 
number  of layers .in the hexagonal unit cell and the lattice type of the 
crystal. This can be conveniently achieved by recording reciprocal-lattice 
rows parallel to c* on single-crystal X-ray diffraction photographs. Since 
the different polytypes of the same material have identical a and b 
parameters of the direct lattice, the a'b* reciprocal lattice net is also the 
same. The reciprocal lattice of these modifications differ only along the c* 
axis which is perpendicular to the layers. For  each reciprocal-lattice row 
parallel to c "~ there are others with the same value of the cylindrical 
coordinate ~. For example, the rows 10./, 01.l, i l . l ,  10.I, 01.1 and l l . l  all 
have f = [a*l. Due to symmetry, it is sufficient to record any one of them 
on X-ray diffraction photographs. The number of layers, n, in the 
hexagonal unit cell can be found by determining the c parameter  from 
c-axis rotation or oscillation photographs and dividing this by the known 
layer-spacing h for that compound (n = c/h). The density of reciprocal 
points along rows parallel to c* depends on the periodicity along the c 
axis. The larger the identity period along c, the more closely spaced are 
the reciprocal-lattice points along c*. In case of long-period polytypes the 
number of layers in the hexagonal unit cell can be determined by using a 
simple alternative method suggested by Krishna and Verma 2°. This 
requires the counting of the number of spacings after which the sequence 
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b-ig. 13. 77~e 10.l rows of some close-packed structures of SiC as recorded on 
c -  axis oscillation photographs (a) 6 H  (b) 3 6 H  (c) 90R (d) D/s. 2H. 
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of relative intensities begins to repeat  along the 10./ row of spots on 
an oscillation or Weissenberg photograph.  If the structure contains one-  
dimensional disorder due to a random-distr ibut ion of stacking faults, this 
effectively causes the c lattice pa ramete r  to become infinite (c*--~O) and 
results in the production of characteristic streaks along reciprocal lattice 
rows parallel to c*. I t  is therefore difficult to distinguish by X-ray 
diffraction between structures of very large unresolvable periodicities and 
those with random disorder. Latt ice resolution in the electron-microscope 
has been used in recent  years to identify such structures 21. Figure 13 
depicts the 10 . / rows  of some close-packed structures of SiC as recorded 
on c-axis oscillation photographs.  When  the structure has a hexagonal 
lattice, the positions of spots are symmetrical  about  the zero layer line on 
the c-axis oscillation photograph as seen in Fig. 13 (a) and (b) for the 6 H  
and 3 6 H  SiC structures. However ,  the intensities of the reflections on the 
two sides of the zero layer line are the same for the 6 H  structure but not 
for the 36/-/. This is because the 6 H  structure belongs to the hexagonal 
space group P63mc whereas the 3 6 H  structure belongs to the trigonal 
space group P3 rn 12. The  apparent  mirror  symmetry  perpendicular  to the 
c-axis in Fig. 13 (a) results f rom the combination of the 63 screw axis with 
the centre of symmetry  introduced by X-ray  diffraction 22. For a structure 
with a rhombohedra l  lattice, the positions of X-ray diffraction spots are 
not symmetrical  about  the zero layer line because the hexagonal unit cell 
is non-primitive causing the reflections hkl to be absent when - h  + k + 
17~3n (+n = 0 ,  1, 2 , . . . ) .  For  the 10./ row this means that the permit ted 
reflections above the zero layer line are 10.1, 10.4, 10.7 etc. and below 
the zero-layer line 10.2, 10.5, 10.8 etc. The zero layer line will therefore 
divide the distance between the nearest  spots on either side (namely 10.1 
and 10.7.) approximately in the ratio 1 : 2. This enables a quick identifica- 
tion of a rhombohedra l  lattice. Thus the lattice type corresponding to Fig. 
13 (c) is rhombohedra l  and the polytype is designated as 90R and belongs 
to the space group R3m. Figure 13(d) depicts the 10 . / r ow  of a disordered 
2 H  SiC structure. The diffuse streak connecting the strong 2 H  reflections 
is due to the presence of a r andom distribution of stacking faults in the 
2 H  structure. 

C o n c l u s i o n  

Several other  materials with close-packed structures are now known to 
exhibit similar complicated close-packings and it is necessary to point out 
to students that the hcp and ccp structures are not the only close-packed 
structures which occur in nature. The mechanism of the formation of 
long-period polytype structures, with a periodicity much larger than the 
range of any known atomic forces, has posed a problem in solid-state 
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physics which has yet to be answered satisfactorily. For a detailed account 
of polytype structures observed in different materials and the different 
theories put forward to explain their formation, the reader is referred to a 
book by Verma and Krishna 3 and to more recent review articles 23'24'25'26. 
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