
  

Introduction to Bayesian methods in 
macromolecular crystallography

Tom Terwilliger
Los Alamos National Laboratory

Why use a Bayesian approach?

 We often know how are measurements are related to our model...

 The Bayesian approach gives us the probability of our model once we 
have made a measurement

 It is useful for dealing with cases where there are errors (uncertainties) 
in the model specification (missing parts of model)



  

Introduction to Bayesian methods in 
macromolecular crystallography

Basics of the Bayesian approach
 Working with probability distributions
 Prior probability distributions
 How do we go from distributions to the value of “x”?
 Bayesian view of making measurements
 Example: from “400 counts” to a probability distribution for the rate
 Bayes' rule
 Applying Bayes' rule
 Visualizing Bayes' rule

Marginalization: Nuisance variables and models for errors
 How marginalization works
 Repeated measurements with systematic error

Applying the Bayesian approach to any measurement 
problem



  

Basics of the Bayesian approach
Working with probability distributions

p(x) does not tell us what x is...
...just the relative probability of each value of x
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Representing what we know about x as a probability distribution

p(x) tells us the relative probability of different values of x



  

I am sure x is at least 2.5

Prior probability distributions
What we know before making measurements
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All values of x are equally probable

Prior probability distributions
What we know before making measurements
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x is less than about 2 or 3

Prior probability distributions
What we know before making measurements
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We don't know exactly what “x” is...

but we can calculate a weighted estimate:

Working with probability distributions
What is the “value” of x ?
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Weight each
value of x 

by its relative
probability p(x)

A=1/∫ p x dx A is normalization factor 



  

A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

 We measure 400 photons hitting the corresponding pixels in our 
detector in 1 second

What is the probability that the rate of photons hitting these pixels is 
actually less than 385 photons/sec?



  

A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

 We measure 400 photons hitting the corresponding pixels in our detector 

in 1 second : N
obs

 = 400

A good guess for the actual rate k of photons hitting these pixels is 400:  
k ~ 400

What is the probability that  k  is actually < 385 photons/sec?

What is p( k<385 | N
obs

 = 400)



  

A Bayesian view of making measurements

Start with prior knowledge about which values of k are 
probable: p

o
(k)

Make measurement N
obs

For each possible value of parameter k ( 385...400...)

Calculate probability of observing N
obs

 if k were correct: 
p(N

obs
 | k)

Use Bayes' rule to get p(k) from p
o
(k), N

obs 
and p(N

obs
|k):

pk  pok  p N obs∣k 
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A Bayesian view of making measurements

pN obs∣k 
What is the probability that we 
would measure N

obs
 counts if the 

true rate were k? 
k=400k=385



  

Bayes' rule

The probability that k is correct is proportional to...

the probability of k from our prior knowledge

multiplied by...

the probability that we would measure N
obs

 counts if the 
true rate were k 

pk  pok  p N obs∣k 
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Bayes' rule

The probability that k is correct 
is proportional to...

the probability of k from our 
prior knowledge (prior)

multiplied by...

the probability that we would 
measure N

obs
 counts if the true 

rate were k  (likelihood)

pk  pok  p N obs∣k 
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Application of Bayes' rule

No prior knowledge:   

Poisson dist. for N
obs 

( large k) 
  

 

pk  pok  p N obs∣k 
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Application of Bayes' rule
Probability distribution
for k given our 
measurement N

obs
 =400:   

Probability that k < 385: 

p = 22%

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Nobs

p(
N

ob
s|

k)

k=385 k=400

pk e−[N obs−k ]
2 /2k 

pk385=A∫−∞

385
p k dk

A=1/∫−∞

∞

p k dk



  

Visualizing Bayes' rule

p x∣ yobs po x  p yobs∣x

Where does Bayes' rule come 
from?

Using a graphical view to show 
how  p(x|y) is related to p(y|x) 



  

x   x+dx   

y

y+dy
p(y)dy=C

p(x)dx= B

Visualizing Bayes' rule:
p(x) and p(y)

AB

C D

A is all the drops in the box
B is the drops in the vertical strip  
C is drops in horizontal strip
D is the intersection of B and C

p(x) dx is the fraction of all 
drops from x to x+dx

p x∣ yobs po x  p yobs∣x



  

x   x+dx   

y

y+dy
p(y)dy=C

p(x)dx=B

p(y|x)dy=D/B

Considering only drops from x to x+dx, p(y|x)dy is the fraction of drops 
from y to y+dy

AB

C D

Visualizing Bayes' rule:   p(y|x) and p(x|y)



  

x   x+dx   

y

y+dy
p(y)dy=C

p(x)dx=B [     D      ] = [ D/B  ]   [  B   ]
p(x,y)dydx=p(y|x)dy  p(x)dx

p(y|x)dy=D/B

p(x,y)dxdy is the fraction of all drops inside the box 
from x to x+dx and y to y+dy

AB

C D

Visualizing Bayes' rule:  p(x,y)



  

x   x+dx     p(x)dx=B

y

y+dy

p(x)dx=B [     D      ] = [ D/C  ]   [  C   ]
p(x,y)dydx=p(x|y)dx  p(y)dy

p(x|y)dx=D/C

p(x,y)dxdy is the fraction of all drops inside the box 
from x to x+dx and y to y+dy

AB

C D

Visualizing Bayes' rule:  p(x,y)



  

x   x+dx   

y

y+dy
p(y)dy=C

p(x)dx=B p(x,y)dxdy=p(y|x) p(x)dxdy
p(x,y)dxdy=p(x|y) p(y)dxdy

p(y|x)dy=D/B

Visualizing Bayes' rule

AB

C D

D = D/B * B
D = D/C * C



  
x   x+dx   

y

y+dy
p(y)dy=C

p(x)dx=B

p(y|x)dy=D/B

An identity we will need now and later....

AB

C D

p y=∫ p  y∣x  p x dx



  

p x∣ y p  y = p  y∣x  p x 

p y=∫ p  y∣x  p x dx

p x∣ y=p  y∣x  p x /∫ p y∣x p  xdx

p x∣ y=p  y∣x  p x / p  y 

Visualizing Bayes' rule

p(x,y) written two ways

An identity

rearrangement...

Substitution...Bayes' rule:



  

x   x+dx   

y

y+dy
p(y)dy

p(x)dx

 Bayes' rule as a systematic way to evaluate truth-tables

p(x) dx is the fraction of all drops from x to x+dx

AAB

C D



  

 Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

H H H T

T H T T

First toss H

First toss T

Second  toss H Second toss T



  

 Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

H 
H

H 
T

T 
H

T 
T

First 
toss 
H

First 
toss 
T

Second 
 toss H

Second 
toss T

FS=head on first or second toss

H= heads first toss       T= tails first toss

Bayes' rule:

p(H)=A p
o
(H) p(FS|H)

A = 1 /[ p
o
(H) p(FS|H) + p

o
(T) p(FS|T) ]

p
o
(H)=1/2

p(FS|H)= 1
p(FS|T)=1/2

A = 1/[1/2 + 1/2 * 1/2] = 4/3
p(H)= 4/3 * 1/2 = 2/3



  

Quick Review of Bayes' rule

p x∣ yobs po x  p yobs∣x

po x 

p x∣ yobs

p yobs∣x 

Probability of x given our observations

What we knew beforehand about x

Probability of measuring these 
observations if x were the correct value



  

Marginalization

What if the observations depend on z as well as x ?
(Maybe z is model error)

p yobs∣x  What we want to use in Bayes' rule

p yobs∣x =∫ p  yobs∣x , z  p  z dz

“Integrate over the nuisance variable z, weighting by p(z)”



  

Marginalization
y

obs
=observations

p yobs=∫ p  yobs∣z  p  z dz Identity we saw earlier

p yobs∣x =∫ p  yobs∣z , x  p  z∣x dz
The whole equation 
can be for a 
particular value of x

p yobs∣x =∫ p  yobs∣z , x  p  z dz
If z does not 
depend on x, 
p(z)=p(z|x)

“Integrate over the nuisance variable z, weighting by p(z)”



  

Marginalization with Bayes' rule

y= y  z , x 

p yobs∣y e
−yobs−y 

2/22

p yobs∣x =∫ p  yobs∣y  z , x  p  z dz

We want to get p(x) using p(y
obs

|x) in Bayes' rule...

y
obs 

is an experimental measurement of y 

y depends on x and z (perhaps z is model error)

...then we can integrate over z to get p(y
obs

|x):



  

Repeated measurements with systematic error

We want to know on average how many drops D
avg

 of rain hit a 
surface per 100 cm2 per minute. 

The rain does not fall uniformly: D(x)=D
avg

+E(x) where the SD of 
E(x) is e.  However we only sample one place

We count the drops N falling in 1 minute into a fixed bucket with 
top area of 100 cm2  m times (N

1
, N

2
...) with a mean of n.

What is the weighted mean estimate <D
avg

>? What is the 
uncertainty in <D

avg
>? 



  

Repeated measurements with systematic error

D=DavgE

pN obs∣Davg ,E e
−N obs−DavgE 

2 /2s2

We want to get p(D
avg

) using p(N
obs

|D
avg

) in Bayes' rule...but the 
rate into our bucket D depends on D

avg
  and E:

N
obs 

is the number of drops we count with SD of n1/2:

Including all m measurements N
1
, N

2
...

p E e−E
2
/2 e2

pN 1 , N 2...∣Davg , E  e
−∑i N i−DavgE

2 /2s2



  

pN 1 , N 2...∣Davg=∫ p N 1 , N 2 ...∣Davg , E  p E dE

p E e−E
2 /2 e2

pN 1 , N 2...∣Davg , E  e
−∑i N i−DavgE 

2 /2s2

pN 1 , N 2...∣Davge
−Davg−n 

2 /2e2s2 /m

We have p(N
1
,N

2
...|D

avg
,E).  We want p(N

1
,N

2
...|D

avg
). Integrate over

the nuisance variable E:

Yielding (where n is the mean value of N:  <N
1
,N

2
...> ) 

Now we have p(N
1
,N

2
...|D

avg
)  and we are ready to apply Bayes' rule

From 
previous 
slide



  

pDavg∣N 1 ,N 2... po Davg e
−Davg−n

2 /2 e2s 2/m

We have the probability of the observations given  D
avg

,

pN 1 , N 2...∣Davge
−Davg−n 

2
/2e2

s2
/m

Bayes' rule gives us the probability of D
avg

 given the observations:

pDavg∣N 1 ,N 2...e−Davg−n 
2
/2e2

s2
/m

If the prior p
o
(D

avg
) is uniform:

s2 2


2
=e 2

s2
/m〈 Davg 〉=n=〈N 〉



  

Summary: How to apply a Bayesian analysis to 
any measurement problem

1. Write down what you really want to know: p(D
avg

)

2. Write down prior knowledge: p
o
(D

avg
)=1

3. Write down how the true value of the thing you are 
measuring depends on what you really want to know and 
any other variables:   D=D

avg
+E

4. Write down probability distributions for errors in 
measurement and for the variables you don't know:    
p(N

obs
|D) and p(E)



  

How to apply a Bayesian analysis of any 
measurement problem

5. Use 3&4 to write probability distribution for 
measurements given values of what you want to know and 
of nuisance variables:  p(N

1
, N

2
...|D

avg
,E)

6. Integrate over the nuisance variables (E), weighted by 
their probability distributions p(E) to get probability of 
measurements given what you want to know:                 
p(N

1
, N

2
...|D

avg
)

7. Apply Bayes' rule to get the probability distribution for 
what you want to know, given the measurements:          
p(D

avg
|N

1
, N

2
...)= p

o
(D

avg
) p(N

1
, N

2
...|D

avg
)



  

Applications of the Bayesian approach in 
macromolecular crystallography

 Correlated MIR phasing (errors due to non-isomorphism are correlated 
among heavy-atom derivatives)

 Correlated MAD phasing (errors in heavy-atom model are correlated 
among wavelengths)

 Bayesian difference refinement (errors in model of macromolecular 
structure correlated between two structures)

 Macromolecular refinement (phase unknown and model errors present)



  

Tutorials

 Working through simple Bayesian exercises from 
handout in a group

 PHENIX demo and discussion
 Density modification and model-building theory 
and discussion

 Discussion of individual challenging examples and 
questions from students
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