_atom_site_fract_x

.34976

.22118

H322B

Dictionary name: cif_core.dic

Dictionary version: 2.1 Dictionary last updated: 1999-03-24

_atom_site_[] Data items in the ATOM_SITE category record details about the atom sites in a crystal structure, such as the positional coordinates, atomic displacement parameters, magnetic moments and directions, and so on.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277]. loop____atom_site_label

atom site fract v atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_calc_flag _atom_site_calc_attached_atom .4154(4) .5699(1) .3026(0) .060(1) 01 Uani ? ? C2 .5630(5) .5087(2) .3246(1) .060(2) Uani ? ? C3 .5350(5) .4920(2) .3997(1) .048(1) Uani N4 .3570(3) .5558(1) .4167(0) .039(1) Uani # - - - - data truncated for brevity -.320(2) .14000 Uiso H321C .04(1) .318(3) 2 2 .272(4) .475(3) .19000 H322A .25(1) Uiso ?

Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

.19000

Uiso

calc C322

.40954

loop_ _atom_site_aniso_label _atom_site_aniso_B_11 _atom_site_aniso_B_22 _atom_site_aniso_B_33 _atom_site_aniso_B_12 _atom_site_aniso_B_13 _atom_site_aniso_B_23 _atom_site_aniso_type_symbol 01 .071(1) .076(1) .0342(9) .008(1) .0051(9) -.0030(9) 0 C2 .060(2) .072(2) .047(1) .002(2) .013(1) -.009(1) C C3 .038(1) .060(2) .044(1) .007(1) .001(1) -.005(1) C N4 .037(1) .048(1) .0325(9) .0025(9) .0011(9) -.0011(9) N # - - - data truncated for brevity - - -

Example 3 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [(1996). Acta Cryst. C52, 951–953].

loop _atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z atom site U iso or equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) s2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) 3 1.0650(2) -0.1390(2) 4 0.9619(3) -0.0522(3) 0.2918(2) 0.0500(5) Ν1 C1 4 0.9619(3) 0.3009(2) 0.0509(6) + - - - - data truncated for brevity - - - -

Example 4 - Hypothetical example to illustrate the description of a disordered methyl group. Assembly 'M' is a disordered methyl with configurations 'A' and 'B'.

loop_ atom site label atom site occupancy _atom_site_disorder_assembly # _atom_site_disorder_group H11B H11A H13B C1 1 # H11A .5 М А # H12A .5 М А # C1 --------C2---H13A М .5 А # \ н11в .5 # М в H12B .5 М в # H13B .5 М В # H12A Н12В H13A

_atom_site_adp_type	(char)
	(cnur)

A standard code used to describe the type of atomic displacement parameters used for the site.

Uani	anisotropic U ^{ij}
Uiso	isotropic U
Uovl	overall U
Umpe	multipole expansion U
Bani	anisotropic B ^{ij}
Biso	isotropic B
Bovl	overall B
alatad	item(s); stem site therm

Related item(s): _atom_site_thermal_displace_type (alternate). Appears in list containing _atom_site_label. [atom_site]

_atom_site_aniso_B_11	
_atom_site_aniso_B_12	
_atom_site_aniso_B_13	
_atom_site_aniso_B_22	
_atom_site_aniso_B_23	
_atom_site_aniso_B_33	(numb)

These are the standard anisotropic atomic displacement components in ångströms squared which appear in the structure factor term:

$$T = \exp\left\{-1/4\sum_{i}\left[\sum_{j}(B^{ij}h_{i}h_{j}a_{i}^{*}a_{j}^{*})\right]\right\}$$

h = the Miller indices, $a^* =$ the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred.

Appears in list containing _atom_site_aniso_label. Related item(s): _atom_site_aniso_U_ (conversion). [atom_site]

_atom_site_aniso_label

(char)

Anisotropic atomic displacement parameters are usually looped in a separate list. If this is the case, this code must match the _atom_site_label of the associated atom coordinate list and conform with the same rules described in _atom_site_label.

Appears in list as essential element of loop structure. Must match data name _atom_site_label. [atom_site]

_atom_site_aniso_ratio

(numb)

Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids.

_atom_site_aniso_type_symbol (char)

This _atom_type_symbol code links the anisotropic atom parameters to the atom type data associated with this site and must match one of the _atom_type_symbol codes in this list.

Appears in list containing _atom_site_aniso_label. Must match data name _atom_site_type_symbol. [atom_site]

These are the standard anisotropic atomic displacement components in ångströms squared which appear in the structure factor term:

$$T = \exp\left\{-2\pi^2 \sum_{i} \left[\sum_{j} (U^{ij}h_ih_ja_i^*a_j^*)\right]\right\}$$

h = the Miller indices, $a^* =$ the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row.

Appears in list containing _atom_site_aniso_label. Related item(s): _atom_site_aniso_B_ (conversion). [atom_site]

The number of hydrogen atoms attached to the atom at this site excluding any H atoms for which coordinates (measured or calculated) are given.

Appears in list containing <code>_atom_site_label</code>. Where no value is given, the assumed value is '0'. The permitted range is $0\rightarrow 8$.

Example(s): '2' (water oxygen), '1' (hydroxyl oxygen), '4' (ammonium nitrogen) [atom_site]

Equivalent isotropic atomic displacement parameter, B_{equiv} , in angströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.

$$B_{\rm equiv} = \left(B_i B_j B_k\right)^{1/3}$$

 B_n = the principal components of the orthogonalised B^{ij} .

The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred.

Appears in list containing _atom_site_label. The permitted range is 0.0→∞. Related item(s): _atom_site_B_iso_or_equiv (alternate), _atom_site_U_equiv_geom_mean (conversion). [atom_site]

Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, B_{equiv} , in ångströms squared, calculated from anisotropic temperature factor parameters.

$$B_{\text{equiv}} = (1/3) \sum_{i} \left[\sum_{j} (B^{ij} a_i^* a_j^* a_i a_j) \right]$$

a = the real-space cell lengths, a^* = the reciprocal-space cell lengths, $B^{ij} = 8\pi^2 U^{ij}$.

Ref: Fischer, R. X. & Tillmanns, E. (1988). *Acta Cryst.* C44, 775–776. The IUCr Commission on Nomenclature recommends against the use of *B* for reporting atomic displacement parameters. *U*, being directly proportional to *B*, is preferred.

Appears in list containing <code>_atom_site_label</code>. The permitted range is $0.0 \rightarrow \infty$. Related item(s): <code>_atom_site_B_equiv_geom_mean</code> (alternate), <code>_atom_site_U_iso_or_equiv</code> (conversion).

[atom_site]

_atom_site_calc_attached_atom

The _atom_site_label of the atom site to which the 'geometrycalculated' atom site is attached.

Appears in list containing _atom_site_label. Where no value is given, the assumed value is '.'. [atom_site]

A standard code to signal if the site coordinates have been determined from the intensities or calculated from the geometry of surrounding sites, or have been assigned dummy coordinates. The abbreviation 'c' may be used in place of 'calc'.

d	determined from diffraction measurements
calc	calculated from molecular geometry
с	abbreviation for "calc"
dum	dummy site with meaningless coordinates

Appears in list containing _atom_site_label. Where no value is given, the assumed value is 'd'. [atom_site]

The atom site coordinates in angströms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the _atom_sites_Cartn_transform_axes description.

Related item(s): _atom_site_fract_ (alternate). Appears in list containing _atom_site_label. [atom_site]

This number links an atom site to the chemical connectivity list. It must match a number specified by _chemical_conn_atom_number.

Appears in list containing _atom_site_label. Must match data name _chemical_conn_atom_number. The permitted range is $1 \rightarrow \infty$. [atom_site]

A description of the constraints applied to parameters at this site during refinement. See also _atom_site_refinement_flags and _refine_ls_number_constraints.

Appears in list containing _atom_site_label. Where no value is given, the assumed value is '.'.

Example(s): 'pop=1.0-pop(Zn3)' [atom_site]

_atom_site_description (char)

A description of special aspects of this site. See also _atom_site_refinement_flags.

Appears in list containing _atom_site_label.

```
Example(s): 'Ag/Si disordered' [atom_site]
```

(char)

(char)

A code which identifies a cluster of atoms that show long range positional disorder but are locally ordered. Within each such cluster of atoms, _atom_site_disorder_group is used to identify the sites that are simultaneously occupied. This field is only needed if there is more than one cluster of disordered atoms showing independent local order.

Appears in list containing _atom_site_label.

Example(s): 'A' (disordered methyl assembly with groups 1 and 2), 'B' (disordered sites related by a mirror), 'S' (disordered sites independent of symmetry) [atom_site]

_atom_site_disorder_group (char)

A code that identifies a group of positionally disordered atom sites that are locally simultaneously occupied. Atoms that are positionally disordered over two or more sites (e.g. the H atoms of a methyl group that exists in two orientations) can be assigned to two or more groups. Sites belonging to the same group are simultaneously occupied, but those belonging to different groups are not. A minus prefix (e.g. "-1") is used to indicate sites disordered about a special position.

Appears in list containing _atom_site_label.

Example(s): '1' (unique disordered site in group 1), '2' (unique disordered site in group 2), '-1' (symmetry-independent disordered site) [atom_site]

_atom_site_fract_x	
_atom_site_fract_y	
_atom_site_fract_z	(numb)

Atom site coordinates as fractions of the _cell_length_ values. Related item(s): _atom_site_Cartn_ (alternate). Appears in list containing _atom_site_label. Where no value is given, the assumed value is '0.0'. [atom_site]

_atom_site_label

(char)

The _atom_site_label is a unique identifier for a particular site in the crystal. This code is made up of a sequence of up to seven components, _atom_site_label_component_0 to *_6, which may be specified as separate data items. Component 0 usually matches one of the specified _atom_type_symbol codes. This is not mandatory if an _atom_site_type_symbol item is included in the atom site list. The _atom_site_type_symbol always takes precedence over an _atom_site_label in the identification of the atom type. The label components 1 to 6 are optional, and normally only components 0 and 1 are used. Note that components 0 and 1 are concatenated, while all other components, if specified, are separated by an underline character. Underline separators are only used if higher-order components exist. If an intermediate component is not used it may be omitted provided the underline separators are inserted. For example the label 'C233__ggg' is acceptable and represents the components C, 233, ", and ggg. Each label may have a different number of components.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _atom_site_aniso_label,

_geom	_angle_	_atom_	_site_	label_	1,

- _geom_angle_atom_site_label_2,
- _geom_angle_atom_site_label_3,
- _geom_bond_atom_site_label_1,
- _geom_bond_atom_site_label_2,

_geom_contact_atom_site_label_1, _geom_contact_atom_site_label_2, _geom_hbond_atom_site_label_D, _geom_hbond_atom_site_label_H, _geom_torsion_atom_site_label_A, _geom_torsion_atom_site_label_2, _geom_torsion_atom_site_label_3, _geom_torsion_atom_site_label_4.	
Example(s): 'C12', 'Ca3g28', 'Fe3+17', 'H*251', 'bor	on2a',
'C_a_phe_83_a_0', 'Zn_Zn_301_A_0' [atom	_site]

_atom_site_label_component_0	
_atom_site_label_component_1	
_atom_site_label_component_2	
_atom_site_label_component_3	
_atom_site_label_component_4	
_atom_site_label_component_5	
_atom_site_label_component_6	(char)

Component 0 is normally a code which matches identically with one of the _atom_type_symbol codes. If this is the case then the rules governing the _atom_type_symbol code apply. If, however, the data item _atom_site_type_symbol is also specified in the atom site list, component 0 need not match this symbol or adhere to any of the $_atom_type_symbol$ rules. Component 1 is referred to as the "atom number". When component 0 is the atom type code, it is used to number the sites with the same atom type. This component code must start with at least one digit which is not followed by a + or - sign (to distinguish it from the component 0 rules). Components 2 to 6 contain the identifier, residue, sequence, asymmetry identifier and alternate codes, respectively. These codes may be composed of any characters except an underline.

Appears in list containing _atom_site_label. [atom_site]

_atom_site_occupancy

(numb)

The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site. The value must lie in the 99.97% Gaussian confidence interval $-3u \le x \le 1 + 3u$. The _enumeration_range of 0.0:1.0 is thus correctly interpreted as meaning $(0.0 - 3u) \le x \le (1.0 + 3u)$.

Appears in list containing <code>_atom_site_label</code>. Where no value is given, the assumed value is '1.0'. The permitted range is $0.0 \rightarrow 1.0$. [atom_site]

_atom_site_refinement_flags	(char)
-----------------------------	--------

A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site.

	no refinement constraints
S	special position constraint on site
G	rigid group refinement of site
R	riding-atom site attached to non-riding atom
D	distance or angle restraint on site
Т	thermal displacement constraints
U	$U_{\rm iso}$ or U^{ij} restraint (rigid bond)
Р	partial occupancy constraint
۰ ·	

Appears in list containing _atom_site_label. [atom_site]

4

_atom_site_restraints

(char)

A description of restraints applied to specific parameters at this site during refinement. See also _atom_site_refinement_flags and _refine_ls_number_restraints.

Appears in list containing _atom_site_label.

Example(s): 'restrained to planar ring' [atom_site]

 $_$ atom_site_symmetry_multiplicity (numb) The multiplicity of a site due to the space-group symmetry as is given in *International Tables for Crystallography*, Vol. A (1987). Appears in list containing _atom_site_label. The permitted range is 1 \rightarrow 192. [atom_site]

_atom_site_thermal_displace_type (char)
This definition has been superseded and is retained here only for
archival purposes. Use instead _atom_site_adp_type

A standard code used to describe the type of atomic displacement parameters used for the site.

[atom_site]

_atom_site_type_symbol (char)

A code to identify the atom specie(s) occupying this site. This code must match a corresponding <u>_atom_type_symbol</u>. The specification of this code is optional if component 0 of the <u>_atom_site_label</u> is used for this purpose. See <u>_atom_type_symbol</u>.

Appears in list containing _atom_site_label. May match subsidiary data name(s): _atom_site_aniso_type_symbol. Must match data name _atom_type_symbol.

Example(s): 'Cu', 'Cu2+', 'dummy', 'Fe3+Ni2+', 'S-', 'H*', 'H(SDS)'

[atom_site]

_atom_site_U_equiv_geom_mean (numb)

Equivalent isotropic atomic displacement parameter, U_{equiv} , in angströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.

$$U_{\rm equiv} = \left(U_i U_j U_k\right)^{1/3}$$

 U_n = the principal components of the orthogonalised U^{ij} .

Appears in list containing _atom_site_label. The permitted range is $0.0 \rightarrow \infty$. Related item(s): _atom_site_U_iso_or_equiv (alternate), _atom_site_B_equiv_geom_mean (conversion).

[atom_site]

Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, U_{equiv} , in ångströms squared, calculated from anisotropic atomic displacement parameters.

$$U_{\text{equiv}} = (1/3) \sum_{i} \left[\sum_{j} (U^{ij} a_i^* a_j^* a_i a_j) \right]$$

a = the real-space cell lengths, a^* = the reciprocal-space cell lengths.

Ref: Fischer, R. X. and Tillmanns, E. (1988). Acta Cryst. C44, 775–776.

Appears in list containing <code>_atom_site_label</code>. The permitted range is $0.0 \rightarrow \infty$. Related item(s): <code>_atom_site_U_equiv_geom_mean</code> (alternate), <code>_atom_site_B_iso_or_equiv</code> (conversion).

[atom_site]

(char)

_atom_site_Wyckoff_symbol

The Wyckoff symbol (letter) as listed in the space-group section of *International Tables for Crystallography*, Vol. A (1987).

Appears in list containing _atom_site_label. [atom_site]

_atom_sites_[]

Data items in the ATOM_SITES category record details about the crystallographic cell and cell transformations, which are common to all atom sites.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

_atom_sites_Cartn_transform_axes		
'c along z, astar	along x, b along y'	
_atom_sites_Cartn_tran_matrix_11	58.39	
_atom_sites_Cartn_tran_matrix_12	0.00	
_atom_sites_Cartn_tran_matrix_13	0.00	
_atom_sites_Cartn_tran_matrix_21	0.00	
_atom_sites_Cartn_tran_matrix_22	86.70	
_atom_sites_Cartn_tran_matrix_23	0.00	
_atom_sites_Cartn_tran_matrix_31	0.00	
_atom_sites_Cartn_tran_matrix_32	0.00	
_atom_sites_Cartn_tran_matrix_33	46.27	

Matrix elements used to transform fractional coordinates in the ATOM_SITES category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The 3×1 translation is defined in _atom_sites_Cartn_tran_vector_.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{Cartesian}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{fractional}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[atom_sites]

(numb)

_atom_sites_Cartn_transform_axes (char)

A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix _atom_sites_Cartn_tran_matrix_.

Example(s): 'a parallel to x; b in the plane of y & z' [atom_sites]

```
_atom_sites_Cartn_tran_vector_1
_atom_sites_Cartn_tran_vector_2
```

_atom_sites_Cartn_tran_vector_3

Elements of a 3×1 translation vector used in the transformation of fractional coordinates in the ATOM_SITES category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{Cartesian}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{fractional}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

```
_atom_sites_fract_tran_matrix_11
_atom_sites_fract_tran_matrix_12
_atom_sites_fract_tran_matrix_13
_atom_sites_fract_tran_matrix_21
_atom_sites_fract_tran_matrix_22
_atom_sites_fract_tran_matrix_23
_atom_sites_fract_tran_matrix_31
_atom_sites_fract_tran_matrix_32
_atom_sites_fract_tran_matrix_33
```

Matrix elements used to transform Cartesian coordinates in the ATOM_SITES category to fractional coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The 3 \times 1 translation is defined in _atom_sites_fract_tran_vector_.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{fractional}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{Cartesian}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[atom_sites]

Elements of a 3×1 translation vector used in the transformation of Cartesian coordinates in the ATOM_SITES category to fractional coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{fractional}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{Cartesian}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[atom_sites]

Codes which identify the methods used to locate the initial atomic sites. The *_primary code identifies how the first atom sites were determined; the *_secondary code identifies how the remaining non-hydrogen sites were located; and the *_hydrogens code identifies how the hydrogens were located.

difmap	difference Fourier map	
vecmap	real-space vector search	
heavy	heavy-atom method	
direct	structure-invariant direct methods	
geom	inferred from neighbouring sites	
disper	anomalous-dispersion techniques	
isomor	isomorphous structure methods	
		[atom_sites]

_atom_type_[] Data items in the ATOM_TYPE category record details about properties of the atoms that occupy the atom sites, such as the atomic scattering factors. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277]. loop_ _atom_type_symbol _atom_type_oxidation_number

[atom_sites]

(numb)

(numb)

_atom_type_number_in_cell _atom_type_scat_dispersion_real atom type scat dispersion imag _atom_type_scat_source С 0 72 .017 .009 International_Tables_Vol_IV_Table_2.2B н 0 100 0 0 International_Tables_Vol_IV_Table_2.2B 0 0 12 .047 .032 International_Tables_Vol_IV_Table_2.2B Ν 0 4 .029 .018 International_Tables_Vol_IV_Table_2.2B

_atom_type_analytical_mass_%

(numb)

(char)

Mass percentage of this atom type derived from chemical analvsis.

Appears in list containing _atom_type_symbol. The permitted range is $0.0 \rightarrow 100.0$. [atom_type]

_atom_type_description

A description of the atom(s) designated by this atom type. In most cases this will be the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species.

Appears in list containing _atom_type_symbol.

Example(s): 'deuterium', '0.34Fe+0.66Ni' [atom_type]

_atom_type_number_in_cell

(numb)

Total number of atoms of this atom type in the unit cell.

Appears in list containing _atom_type_symbol. The permitted range is $0 \rightarrow \infty$. [atom_type]

_atom_type_oxidation_number

(numb)

Formal oxidation state of this atom type in the structure.

Appears in list containing $_atom_type_symbol$. Where no value is given, the assumed value is '0'. The permitted range is $-8 \rightarrow 8$. [atom_type]

_at	om_type	_radi	us_b	ond			
_at	om_type	_radi	us_c	ontact		(nur	nb)
The	effective	intra-	and	intermolecular	bonding	radii	in

ångströms of this atom type.

Appears in list containing _atom_type_symbol. The permitted range is 0.0→5.0. [atom_type]

_atom_type_scat_Cromer_Mann_a1
_atom_type_scat_Cromer_Mann_a2
_atom_type_scat_Cromer_Mann_a3
_atom_type_scat_Cromer_Mann_a4
_atom_type_scat_Cromer_Mann_b1
_atom_type_scat_Cromer_Mann_b2
_atom_type_scat_Cromer_Mann_b3
_atom_type_scat_Cromer_Mann_b4
_atom_type_scat_Cromer_Mann_c

The Cromer–Mann scattering-factor coefficients used to calculate the scattering factors for this atom type.

Ref: International Tables for X-ray Crystallography, Vol. IV (1974) Table 2.2B, or International Tables for Crystallography, Vol. C (1991) Tables 6.1.1.4 and 6.1.1.5.

Appears in list containing _atom_type_symbol. [atom_type]

_atom_type_scat_dispersion_imag _atom_type_scat_dispersion_real

The imaginary and real components of the anomalous dispersion scattering factors, f'' and f', in electrons, for this atom type and the radiation given in _diffrn_radiation_wavelength.

Appears in list containing _atom_type_symbol. Where no value is given, the assumed value is '0.0'. [atom_type]

_atom_type_scat_length_neutron (numb)

The bound coherent scattering length in femtometres for the atom type at the isotopic composition used for the diffraction experiment.

Appears in list containing _atom_type_symbol. Where no value is given, the assumed value is '0.0'. [atom_type]

_atom_type_scat_source (char)

Reference to source of scattering factors or scattering lengths used for this atom type.

Appears in list containing _atom_type_symbol.

Example(s): 'International Tables Vol. IV Table 2.4.6B', [atom_type]

_atom_type_scat_versus_stol_list (char)

A table of scattering factors as a function of $(\sin \theta)/\lambda$. This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended.

Appears in list containing _atom_type_symbol. [atom_type]

_atom_type_symbol (char)

The code used to identify the atom specie(s) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underline with the additional proviso that digits designate an oxidation state and must be followed by a + or - character.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _atom_site_type_symbol.

Example(s): 'C', 'Cu2+', 'H(SDS)', 'dummy', 'FeNi' [atom_type]

creation and subsequent updating of the data block. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277]. audit block code TOZ 1991-03-20 audit creation date 1991-03-20 audit creation method from_xtal_archive_file_using_CIFIO _audit_update_record 1991-04-09 text and data added by Tony Willis. rec'd by co-editor as manuscript HL0007. 1991-04-15 1991-04-17 adjustments based on first referee report. 1991-04-18 adjustments based on second referee report.

audit[] Data items in the AUDIT category record details about the

_audit_block_code (char)

A code intended to identify uniquely the current data block.

Example(s): 'TOZ_1991-03-20'	[audit]
_audit_creation_date A date that the data block was created. The date mm-dd.	(<i>char</i>) e format is <i>yyyy</i> -
Example(s): '1990-07-12'	[audit]

_audit_creation_method	(char)
A description of how data were entered into the data bloc	ck.
Example(s): 'snowned by the program OBFE' [audi+1

Example(s): 'spawned by the program QBEE' [audit]

_audit_update_record (char)

A record of any changes to the data block. The update format is a date (*yyyy-mm-dd*) followed by a description of the changes. The latest update entry is added to the bottom of this record.

Example(s): '1990-07-15 Updated by the Co-editor' [audit]

_audit_author_[] Data items in the AUDIT_AUTHOR category record details about the author(s) of the data block.		
	mple 1 - based on PDB entry 5HVP and laboratory records for structure corresponding to PDB entry 5HVP.	
aud 'Fit ;	D dit_author_name dit_author_address :zgerald, Paula M. D.' Department of Biophysical Chemistry Merck Research Laboratories PO Box 2000, Ry80M203 Rahway New Jersey 07065 USA	
;	n Middlesworth, J. F.' Department of Biophysical Chemistry Merck Research Laboratories PO Box 2000, Ry80M203 Rahway New Jersey 07065 USA	

(numb)

cif_core.dic

7

AUDIT_CONTACT_AUTHOR

_audit_author_address

(char)

The address of an author of this data block. If there are multiple authors, _audit_author_address is looped with _audit_author_name.

Appears in list containing _audit_author_name.

Example(s):

; Department Institute Street City and postcode COUNTRY ;

[audit_author]

_audit_author_name (char)

The name of an author of this data block. If there are multiple authors, <u>_audit_author_name</u> is looped with <u>_audit_author_address</u>. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).

Appears in list as essential element of loop structure.

Example(s): 'Bleary, Percival R.', 'O'Neil, F. K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A', 'M\"uller, H. A.', 'Ross II, C. R.' [audit_author]

_audit_conform_[] Data items in the AUDIT_CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant.

Example 1 - Any file conforming to the current CIF core dictionary. _audit_conform_dict_name cif_core.dic _audit_conform_dict_version 2.1

_audit_conform_dict_location

ftp://ftp.iucr.org/pub/cif_core.2.1.dic

_audit_conform_dict_location (char)

A file name or uniform resource locator (URL) where the conformant dictionary resides.

May appear in list containing _audit_conform_dict_name. [audit_conform]

_audit_conform_dict_name (char)

The string identifying the highest-level dictionary defining datanames used in this file.

May appear in list as essential element of loop structure.

[audit_conform]

_audit_conform_dict_version (char)

The version number of the conformant dictionary.

May appear in list containing _audit_conform_dict_name.

[audit_conform]

_audit_contact_author_[] Data items in the AUDIT_CONTACT_AUTHOR category record details about the name and address of the author to be contacted concerning the contents of this data block.		
<i>Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.</i>		
<pre>loop_ _audit_contact_author_name _audit_contact_author_address _audit_contact_author_fax _audit_contact_author_fax _audit_contact_author_fax _audit_contact_author_phone 'Fitzgerald, Paula M. D.' ; Department of Biophysical Chemistry Merck Research Laboratories PO Box 2000, Ry80M203 Rahway New Jersey 07065 USA</pre>		
;		
'paula_fitzgerald@merck.com' '1(908)5945510' '1(908)5945510'		

_audit_contact_author_address

The mailing address of the author of the data block to whom correspondence should be addressed.

Example(s):

;

;

Department	
Institute	
Street	
City and postcode COUNTRY	
	[audit_contact_author]

_audit_contact_author_email (char)

The electronic mail address of the author of the data block to whom correspondence should be addressed, in a form recognisable to international networks.

Example(s): 'name@host.domain.country', 'bm@iucr.org'
[audit_contact_author]

_audit_contact_author_fax (char)

The facsimile telephone number of the author of the data block to whom correspondence should be addressed. The recommended style includes the international dialing prefix, the area code in parentheses, followed by the local number with no spaces.

Example(s): '12(34)9477334', '12()349477334' [audit_contact_author]

(char)

_audit_contact_author_name (char) The name of the author of the data block to whom correspondence should be addressed. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).

Example(s): 'Bleary, Percival R.', 'O'Neil, F. K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A', 'M\"uller, H. A.', 'Ross II, C. R.' [audit_contact_author]

_audit_contact_author_phone (char)
The telephone number of the author of the data block to whom
correspondence should be addressed. The recommended style

AUDIT_CONTACT_AUTHOR

includes the international dialing prefix, the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces.

Example(s): '12(34)9477330', '12(34)9477330x5543'

Г

'12()349477330', [audit_contact_author]

_audit_link_[] Data items in the AUDIT_LINK category record details about the relationships between data blocks in the current CIF.			
Example 1 - multiple structure paper, as illustrated in A Guide to CIF for Authors (1995). IUCr: Chester.			
<pre>loop_ _audit_link_block_code _audit_link_block_description . 'discursive text of paper with two structures' morA_(1) 'structure 1 of 2' morA_(2) 'structure 2 of 2'</pre>			
Example 2 - example file for the one-dimensional incommensurately modulated structure of K_2 SeO ₄ .			
<pre>loop_ _audit_link_block_code _audit_link_block_description . 'publication details' KSE_COM 'experimental data common to ref./mod. structures' KSE_REF 'reference structure' KSE_MOD 'modulated structure'</pre>			

_audit_link_block_code

(char)

The value of _audit_block_code associated with a data block in the current file related to the current data block. The special value '.' may be used to refer to the current data block for completeness.

Appears in list as essential element of loop structure. [audit_link]

_audit_link_block_description	(char)
-------------------------------	--------

A textual description of the relationship of the referenced data block to the current one.

Appears in list containing _audit_link_block_code.

[audit_link]

cell Data items in the CELL catego crystallographic cell parameters	bry record details about the
Example 1 - based on data set TO [(1991). Acta Cryst. C47, 2276–227	0
_cell_length_a	5.959(1)
_cell_length_b	14.956(1)
_cell_length_c	19.737(3)
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90
cell volume	1759.0(3)
_cell_measurement_temperature	293
_cell_measurement_reflns_used	25
_cell_measurement_theta_min	25
_cell_measurement_theta_max	31

(numb)

_cell_angle_alpha
_cell_angle_beta
_cell_angle_gamma

Unit-cell angles in degrees of the reported structure. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_length_a, *_b and *_c. The values of _diffrn_refln_index_h, *_k, *_1 may not correspond to these values if a cell transformation took place following the measurement of diffraction intensities. See also _diffrn_reflns_transf_matrix_.

Where no value is given, the assumed value is '90.0'. The permitted range is $0.0 \rightarrow 180.0$. [cell]

_cell_formula_units_Z	(numb)
-----------------------	--------

The number of the formula units in the unit cell as specified by _chemical_formula_structural, _chemical_formula_moiety or _chemical_formula_sum. The permitted range is $1 \rightarrow \infty$. [cell]

(numb)

Unit-cell lengths in angströms corresponding to the structure reported. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_angle_ values. The values of _diffrn_refln_index_h, *_k, *_1 may not correspond to these values if a cell transformation took place following the measurement of diffraction intensities. See also _diffrn_reflns_transf_matrix_.

```
The permitted range is 0.0 \rightarrow \infty. [cell]
```

_cell_measurement_pressure (numb) The pressure in kilopascals at which the unit-cell parameters were measured (not the pressure used to synthesize the sample).

_cell_measurement_radiation (char) Description of the radiation used to measure the unit-cell data.

See also _cell_measurement_wavelength.

Example(s): 'neutron', 'Cu K\a', 'synchrotron' [cell]

_cell_measurement_reflns_used (numb)

The total number of reflections used to determine the unit cell. These reflections may be specified as _cell_measurement_refln_ data items.

[cell]

[cell]

_cell_measurement_temperature	(numb)
The temperature in kelvins at which the unit-cell	parameters
were measured (not the temperature of synthesis).	

The permitted range is $0.0 \rightarrow \infty$. [cell]

_cell_measurement_theta_max

The permitted range is $0.0 \rightarrow \infty$.

_cell_measurement_theta_min (numb)

The maximum and minimum theta angles in degrees of reflections used to measure the unit cell.

The permitted range is $0.0 \rightarrow 90.0.$ [cell]

(char)

_cell_measurement_wavelength (numb) The wavelength in ångströms of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be the same as that given in _diffrn_radiation_wavelength. The permitted range is $0.0 \rightarrow \infty$. [cell]

A description of special aspects of the cell choice, noting possible alternative settings.

Example(s): 'pseudo-orthorhombic', 'standard setting from 45 deg rotation around c'[cell]

_cell_volume (numb)

Cell volume V in ångströms cubed.

$$V = abc[1 - \cos^{2}(\alpha) - \cos^{2}(\beta) - \cos^{2}(\gamma) + 2\cos(\alpha)\cos(\beta)\cos(\gamma)]^{1/2}$$

where

 $a = _cell_length_a, b = _cell_length_b, c = _cell_length_c, \alpha = _cell_angle_alpha, \beta = _cell_angle_beta, and \gamma = _cell_angle_gamma.$

The permitted range is $0.0 \rightarrow \infty$. [cell]

_cell_measurement_refln_[] Data items in the CELL_MEASUREMENT_REFLN category record details about the reflections used in determination of the crystallographic cell parameters. The _cell_measurement_refln_ data items would in general be used only for diffractometer measurements.

Example 1 - extracted from the CAD-4 listing of Rb₂S₂O₆ at room temperature (not yet published). loop_ _cell_measurement_refln_index_h _cell_measurement_refln_index_k _cell_measurement_refln_index_l

_cell_measurement_refln_theta			
-2	4	1	8.67
0	3	2	9.45
3	0	2	9.46
-3	4	1	8.93
-2	1	-2	7.53
10	0	0	23.77
0	10	0	23.78
-5	4	1	11.14
# -		- data	truncated for brevity

_cell_measurement_refln_index_h _cell_measurement_refln_index_k

	meabaremente		-THUCK-		
cell	measurement	refln	index	1	(numb)

Miller indices of a reflection used for measurement of the unit cell.

Appears in list as essential element of loop structure.

[cell_measurement_refln]

_cell_measurement_refln_theta (numb)

 θ angle in degrees for the reflection used for measurement of the unit cell with the indices <code>_cell_measurement_refln_index_</code>.

Appears in list containing _cell_measurement_refln_index_. The permitted range is 0.0 \rightarrow 90.0. [cell_measurement_refln]

chemical[]

Data items in the CHEMICAL category record details about the composition and chemical properties of the compounds. The formula data items must agree with those that specify the density, unit-cell and *Z* values.

Example 1 - based on data set 9597gaus of Alyea, Ferguson & Kannan [(1996). Acta Cryst. C52, 765–767].

_chemical_name_systematic trans-bis(tricyclohexylphosphine)tetracarbonylmolybdenum(0)

_chemical_absolute_configuration

Necessary conditions for the assignment of _chemical_absolute_configuration are as follows, in which Set *E* is defined to be the set of non-centrosymmetric crystal classes {1, 2, 3, 4, 6, 222, 32, 422, 622, 23, 432}, x(u) is the value of the Flack (1983) parameter as given by _refine_ls_abs_structure_Flack, NEAR = 1.6 and FAR = 5.0.

If the crystal class is *not* in Set *E* then _chemi-cal_absolute_configuration is 'inapplicable' and must take the value '.' if present.

For 'rm' to be valid the crystal class must be in Set E and the source of the chiral reference substance of known absolute configuration must be reported. The optical activity in solution or liquid state must be non-zero.

For 'ad' to be valid the crystal class must be in Set *E* and |x/u| < NEAR and |(1 - x)/u| > FAR. The optical activity in solution or liquid state must be non-zero.

For 'rmad' to be valid the conditions of both 'rm' and 'ad' must be fulfilled. The optical activity in solution or liquid state must be non-zero.

For 'syn' to be valid the crystal class must be in Set E and the chiral centre used to assign the enantiomer must be reported. The optical activity in solution or liquid state must be non-zero.

For 'unk' to be valid the crystal class must be in Set *E*. The optical activity in solution or liquid state must be non-zero.

Ref: Flack, H. D. (1983). Acta Cryst. A39, 876-881.

rm absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration

ad absolute configuration established by anomalous dispersion effects in diffraction measurements on the crystal

rmad absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration and confirmed by anomalous dispersion effects in diffraction measurements on the crystal

syn absolute configuration has not been established by anomalous dispersion effects in diffraction measurements on the crystal. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure

unk absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made

inapplicable

[chemical]

CHEMICAL

_chemical_compound_source (char)	
Description of the source of the compound under study, or of the	_chemical_conn_atom_[]
parent molecule if a simple derivative is studied. This includes	Data items in the _chemical_conn_atom_ and _chemi- cal_conn_bond_ categories record details about the 2D
the place of discovery for minerals or the actual source of a	chemical structure of the molecular species. They allow
natural product.	a 2D chemical diagram to be reconstructed for use in a
Example(s): 'From Norilsk (USSR)',	publication or in a database search for structural and sub-
'Extracted from the bark of Cinchona Naturalis'	structural relationships. The _chemical_conn_atom_ data items provide information about the chemical properties of
[chemical]	the atoms in the structure. In cases where crystallographic
	and molecular symmetry elements coincide they must also
abomical malting paint (unt)	contain symmetry-generated atoms, so that the _chemi-
_chemical_melting_point (numb)	cal_conn_atom_ and _chemical_conn_bond_ data items will always describe a complete chemical entity.
The temperature in kelvins at which a crystalline solid changes	
to a liquid.	Example 1 - based on data set DPTD of Yamin, Suwandi, Fun,
The permitted range is $0.0 \rightarrow \infty$. [chemical]	Sivakumar & bin Shawkataly [(1996). Acta Cryst. C52, 951–953].
	loop_ _chemical_conn_atom_number
_chemical_name_common (char)	_chemical_conn_atom_type_symbol
Trivial name by which the compound is commonly known.	_chemical_conn_atom_display_x _chemical_conn_atom_display_y
	_chemical_conn_atom_NCA
Example(s): '1-bromoestradiol' [chemical]	_chemical_conn_atom_NH 1 S .39 .81 1 0
	2 S .39 .96 2 0 3 N .14 .88 3 0
_chemical_name_mineral (char)	4 C .33 .88 3 0
Mineral name accepted by the International Mineralogical As-	5 C .11 .96 2 2 6 C .03 .96 2 2
sociation. Use only for natural minerals. See also _chemi-	7 C .03 .80 2 2
cal_compound_source.	8 C .11 .80 2 2 9 S .54 .81 1 0
Example(s): 'chalcopyrite' [chemical]	10 S .54 .96 2 0
	11 N .80 .88 3 0 12 C .60 .88 3 0
_chemical_name_structure_type (char)	13 C .84 .96 2 2 14 C .91 .96 2 2
	15 C .91 .80 2 2
Commonly used structure-type name. Usually only applied to minerals or inorganic compounds.	16 C .84 .80 2 2
Example(s): 'perovskite', 'sphalerite', 'A15' [chemical]	_chemical_conn_atom_charge (numb)
	The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams.
_chemical_name_systematic (char)	Appears in list containing _chemical_conn_atom_type_symbol.
-	Where no value is given, the assumed value is '0'. The permitted range
IUPAC or <i>Chemical Abstracts</i> full name of compound.	is $-6 \rightarrow 6$.
Example(s): '1-bromoestra-1,3,5(10)-triene-3,17\b-diol' [chemical]	Example(s): '1' (for an ammonium nitrogen), '-1' (for a chloride ion) [chemical_conn_atom]
	_chemical_conn_atom_display_x
_chemical_optical_rotation (char)	_chemical_conn_atom_display_y (numb)
The optical rotation in solution of the compound is specified in	The 2D Cartesian coordinates (x, y) of the position of this atom
the following format:	in a recognisable chemical diagram. The coordinate origin is at the lower left corner, the x axis is horizontal and the y axis
$[\alpha]_{WAVE}^{TEMP} = SORT (c = CONC, SOLV)$	is vertical. The coordinates must lie in the range 0.0 to 1.0.
where <i>TEMP</i> is the temperature of the measurement in degrees	These coordinates can be obtained from projections of a suitable
Celsius, WAVE is an indication of the wavelength of the light	uncluttered view of the molecular structure. If absent, values will be assigned by the journal or database staff.
used for the measurement, <i>CONC</i> is the concentration of the solution given as the mass of the substance in g in 100 ml of	Appears in list containing _chemical_conn_atom_type_symbol.
solution given as the mass of the substance in g in 100 ml of solution, <i>SORT</i> is the signed value (preceded by $a + or a - sign)$	The permitted range is $0.0 \rightarrow 1.0$. [chemical_conn_atom]
of $100\alpha/(lc)$, where α is the signed optical rotation in degrees	_chemical_conn_atom_NCA (numb)
measured in a cell of length <i>l</i> in dm and <i>c</i> is the value of <i>CONC</i>	The number of connected atoms excluding terminal hydrogen
in g, and <i>SOLV</i> is the chemical formula of the solvent.	atoms.
Example(s): '[\a]^25^~D~= +108 (c = 3.42, CHCl~3~)'	Appears in list containing _chemical_conn_atom_type_symbol.
[chemical]	The permitted range is $0 \rightarrow \infty$. [chemical_conn_atom]

(numb)

(char)

_chemical_conn_atom_NH

The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the _atom_site_ list. This number will be the same as _atom_site_attached_hydrogens only if none of the hydrogen atoms appear in the _atom_site_ list.

Appears in list containing _chemical_conn_atom_type_symbol. The permitted range is $0 \rightarrow \infty$. [chemical_conn_atom]

_chemical_conn_atom_number (numb)

The chemical sequence number to be associated with this atom.

Appears in list containing _chemical_conn_atom_type_symbol. May match subsidiary data name(s): _atom_site_chemical_conn_number, _chemical_conn_bond_atom_1, _chemical_conn_bond_atom_2. The permitted range is $1 \rightarrow \infty$. [chemical_conn_atom]

_chemical_conn_atom_type_symbol (char)

A code identifying the atom type. This code must match an _atom_type_symbol code in the _atom_type_ list; or be a recognisable element symbol.

Appears in list as essential element of loop structure.

 $[chemical_conn_atom]$

_chemical_conn_bond_[]

Data items in the _chemical_conn_atom_ and _chemical_conn_bond_ categories record details about the 2D chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The _chemical_conn_bond_ data items specify the connections between the atoms in the _chemical_conn_atom_ list and the nature of the chemical bond between these atoms.

Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [(1996). Acta Cryst. C52, 951–953].

_chemical_conn_bond_atom_1

_chemical_conn_bond_atom_2

che	mical	_conn_bond	d_type					
4	1	doub	4	3	sing	4	2	sing
5	3	sing	6	5	sing	7	6	sing
8	7	sing	8	3	sing	10	2	sing
12	9	doub	12	11	sing	12	10	sing
13	11	sing	14	13	sing	15	14	sing
16	15	sing	16	11	sing	17	5	sing
18	5	sing	19	6	sing	20	6	sing
21	7	sing	22	7	sing	23	8	sing
24	8	sing	25	13	sing	26	13	sing
27	14	sing	28	14	sing	29	15	sing
30	15	sing	31	16	sing	32	16	sing

_chemical_conn_bond_atom_1	
_chemical_conn_bond_atom_2	(numb)

Atom numbers which must match with chemical sequence numbers specified as _chemical_conn_atom_number values. These link the bond connection to the chemical numbering and atom sites.

Appears in list. **Must** match data name _chemical_conn_atom_number. The permitted range is $1 \rightarrow \infty$. [chemical_conn_bond] _chemical_conn_bond_type

The chemical bond type associated with the connection between the two sites _chemical_conn_bond_atom_1 and $*_2$.

sing	single bond
doub	double bond
trip	triple bond
quad	quadruple bond
arom	aromatic bond
poly	polymeric bond
delo	delocalized double bond
pi	π bond

Appears in list containing _chemical_conn_bond_atom_. Where no value is given, the assumed value is 'sing'. [chemical_conn_bond]

_chemical_formula_[]

_chemical_formula_ items specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and Z values. The following rules apply to the construction of the data items _chemical_formula_analytical, *_structural and *_sum. For the data item *_moiety the formula construction is broken up into residues or moieties, *i.e.* groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see _chemical_formula_moiety).

1. Only recognized element symbols may be used.

2. Each element symbol is followed by a 'count' number. A count of '1' may be omitted.

3. A space or parenthesis must separate each cluster of (element symbol + count).

4. Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parentheses. That is, all element and group multipliers are assumed to be printed as subscripted numbers. [An exception to this rule exists for *_moiety formulae where pre- and post-multipliers are permitted for molecular units].

5. Unless the elements are ordered in a manner that corresponds to their chemical structure, as in _chemi-cal_formula_structural, the order of the elements within any group or moiety depends on whether or not carbon is present. If carbon is present, the order should be: C, then H, then the other elements in alphabetical order of their symbol. If carbon is not present, the elements are listed purely in alphabetic order of their symbol. This is the 'Hill' system used by *Chemical Abstracts*. This ordering is used in _chemical_formula_moiety and _chemical_formula_sum.

`	
Example 1 - based on data set [(1991). Acta Cryst. C47, 2276-	t TOZ of Willis, Beckwith & Tozer -2277].
_chemical_formula_moiety	'C18 H25 N O3'
_chemical_formula_sum	'C18 H25 N O3'
_chemical_formula_weight	303.40
Example 2 - based on data se Kannan [(1996). Acta Cryst. C5	et 9597gaus of Alyea, Ferguson & 52, 765–767].
_chemical_formula_iupac	'[Mo (C O)4 (C18 H33 P)2]'
_chemical_formula_moiety	'C40 H66 Mo O4 P2'
_chemical_formula_structural	'((C O)4 (P (C6 H11)3)2)Mo'
_chemical_formula_sum	'C40 H66 Mo O4 P2'
chemical formula weight	768.81

_chemical_formula_analytical

Formula determined by standard chemical analysis including trace elements. See _chemical_formula_[] for rules for writing chemical formulae. Parentheses are used only for standard uncertainties (e.s.d.'s).

Example(s): 'Fe2.45(2) Ni1.60(3) S4' [chemical_formula]

_chemical_formula_iupac (char)

Formula expressed in conformance with IUPAC rules for inorganic and metal-organic compounds where these conflict with the rules for any other _chemical_formula_ entries. Typically used for formatting a formula in accordance with journal rules. This should appear in the data block in addition to the most appropriate of the other _chemical_formula_ data names.

Ref: IUPAC (1990). Nomenclature of Inorganic Chemistry. Oxford: Blackwell Scientific Publications.

Example(s): '[Co Re (C12 H22 P)2 (C O)6].0.5C H3 O H' [chemical formula]

Formula with each discrete bonded residue or ion shown as a separate moiety. See above _chemical_formula_[] for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply:

1. Moieties are separated by commas ','

_chemical_formula_moiety

2. The order of elements within a moiety follows general rule 5 in _chemical_formula_[].

3. Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested.

4. Charges should be placed at the end of the moiety. The charge '+' or '-' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties.

Example(s): 'C7 H4 Cl Hg N O3 S', 'C12 H17 N4 O S 1+, C6 H2 N3 O7 1-', 'C12 H16 N2 O6, 5(H2 O1)', '(Cd 2+)3, (C6 N6 Cr 3-)2, 2(H2 0)' [chemical_formula]

_chemical_formula_structural (char)

See _chemical_formula_[] for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, *i.e.* trace elements not included in atom type and atom site lists should not be included in this formula (see also _chemical_formula_analytical).

Example(s): 'Ca ((Cl O3)2 O)2 (H2 O)6', '(Pt (N H3)2 (C5 H7 N3 0)2) (C1 04)2' [chemical_formula]

_chemical_formula_sum (char)

See _chemical_formula_[] for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule 5 in _chemical_formula_[]. Parentheses are not normally used.

Example(s): 'C18 H19 N7 O8 S' [chemical_formula]

_chemical_formula_weight

(numb) Formula mass in daltons. This mass should correspond to the formulae given under _chemical_formula_structural,

*_iupac, *_moiety or *_sum and, together with the Z value and cell parameters, should yield the density given as _exptl_crystal_density_diffrn.

The permitted range is $1.0 \rightarrow \infty$.

(numb)

[chemical_formula]

_chemical_formula_weight_meas Formula mass in daltons measured by a non-diffraction experiment.

The permitted range is $1.0 \rightarrow \infty$. [chemical_formula]

citation[] Data items in the CITATION category record details about
the literature cited relevant to the contents of the data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_citation_id
_citation_coordinate_linkage
_citation_title
_citation_country
_citation_page_first
_citation_page_last
_citation_year _citation_journal_abbrev
_citation_journal_abbrev
_citation_journal_issue
_citation_journal_id_ASTM
_citation_journal_id_ISSN
citation_book_title
_citation_book_id_ISBN
_citation_special_details
primary yes
; Crystallographic analysis of a complex between human
immunodeficiency virus type 1 protease and
acetyl-pepstatin at 2.0-Angstroms resolution.
1
US 14209 14219 1990 'J. Biol. Chem.' 265 .
HBCHA3 0021-9258
; The publication that directly relates to this coordinate set.
set.
, 2 no
; Three-dimensional structure of aspartyl-protease from
human immunodeficiency virus HIV-1.
UK 615 619 1989 'Nature' 337 .
NATUAS 0028-0836
; Determination of the structure of the unliganded enzyme.
;
3 no
; Crystallization of the aspartylprotease from human
immunodeficiency virus, HIV-1.
US 1919 1921 1989 'J. Biol. Chem.' 264 .
HBCHA3 0021-9258
; Crystallization of the unliganded enzyme.

(char)

(char)

cif_core.dic

citation obstract (shar)	Approximited containing with the site of The committed concerning
_citation_abstract (char) Abstract for the citation. This is used most when the citation is	Appears in list containing _citation_id. The permitted range is $1 \rightarrow \infty$.
extracted from a bibliographic database that contains full text or abstract information.	Example(s): '89064067' [citation]
Appears in list containing _citation_id. [citation]	_citation_id (char)
	The value of _citation_id must uniquely identify a record in theidentify a record inidentify a record inidentify a record inidentify a record in
_citation_abstract_id_CAS (char)	the _citation_ list. The _citation_id 'primary' should be used to indicate the citation that the author(s) consider to be the
The <i>Chemical Abstracts</i> Service (CAS) abstract identifier; relevant for journal articles.	most pertinent to the contents of the data block. Note that this item need not be a number; it can be any unique identifier.
Appears in list containing _citation_id. [citation]	Appears in list as essential element of loop structure. May match sub- sidiary data name(s): _citation_author_citation_id, _cita-
_citation_book_id_ISBN (char)	tion_editor_citation_id.
The International Standard Book Number (ISBN) code assigned to the book cited; relevant for book chapters.	Example(s): 'primary', '1', '2', '3' [citation]
Appears in list containing _citation_id. [citation]	_citation_journal_abbrev (char)
_citation_book_publisher (char)	Abbreviated name of the journal cited as given in the <i>Chemical Abstracts</i> Service Source Index.
The name of the publisher of the citation; relevant for book	Appears in list containing _citation_id.
chapters.	Example(s): 'J. Mol. Biol.' [citation]
Appears in list containing _citation_id.	
Example(s): 'John Wiley' [citation]	_citation_journal_id_ASTM (char)
sitetion hash muhlishen site	The American Society for the Testing of Materials (ASTM) code assigned to the journal cited (also referred to as the CODEN des-
_citation_book_publisher_city (char) The location of the publisher of the citation; relevant for book	ignator of the <i>Chemical Abstracts</i> Service); relevant for journal articles.
chapters.	Appears in list containing _citation_id. [citation]
Appears in list containing _citation_id. Example(s): 'New York' [citation]	
Example(s). New Tork [citation]	_citation_journal_id_CSD (char)
_citation_book_title (char)	The Cambridge Structural Database (CSD) code assigned to the journal cited; relevant for journal articles. This is also the system
The title of the book in which the citation appeared; relevant for book chapters.	used at the Protein Data Bank (PDB).
Appears in list containing _citation_id. [citation]	Appears in list containing _citation_id. Example(s): '0070' [citation]
	Example(s). 0070 ⁻ [citation]
_citation_coordinate_linkage (char)	_citation_journal_id_ISSN (char)
_citation_coordinate_linkage states whether or not this ci- tation is concerned with precisely the set of coordinates given	The International Standard Serial Number (ISSN) code assigned to the journal cited; relevant for journal articles.
in the data block. If, for instance, the publication described the same structure, but the coordinates had undergone further refine-	Appears in list containing _citation_id. [citation]
ment prior to creation of the data block, the value of this data item would be 'no'.	_citation_journal_full (char)
no citation unrelated to current coordinates	Full name of the journal cited; relevant for journal articles.
n abbreviation for "no"	Appears in list containing _citation_id.
yes citation related to current coordinates y abbreviation for "yes"	Example(s): 'Journal of Molecular Biology' [citation]
Appears in list containing _citation_id. [citation]	
	_citation_journal_issue (char)
_citation_country (char)	Issue number of the journal cited; relevant for journal articles.
The country of publication; relevant for both journal articles and book chapters.	Appears in list containing _citation_id. Example(s): '2' [citation]
Appears in list containing _citation_id. [citation]	
	_citation_journal_volume (char)
_citation_database_id_Medline (numb)	
	Volume number of the journal cited; relevant for journal articles.
Accession number used by Medline to categorize a specific bib- liographic entry.	Volume number of the journal cited; relevant for journal articles. Appears in list containing _citation_id. Example(s): '174' [citation]

CITATION

_citation_language (cha	r) _citation_author_citation_id (char)
Language in which the citation appears.	The value of _citation_author_citation_id must match an
Appears in list containing _citation_id.	identifier specified by _citation_id in the _citation_ list.
Example(s): 'german' [citation	Appears in list as essential element of loop structure. Must match data name_citation_id. [citation_author]
_citation_page_first	
_citation_page_last (cha	r) _citation_author_name (char)
The first and last pages of the citation; relevant for both journ	¹ Name of an author of the citation; relevant for both journal
articles and book chapters. Appears in list containing _citation_id. [citation]	articles and book chapters. The family name(s), followed by
	first name(s) or initial(s)
_citation_special_details (cha	Appears in list as essential element of loop structure
A description of special aspects that describe the relationship of the contents of the data block to the literature item cited.	Example(s): 'Bleary, Percival R.', 'O'Neil, F. K.',
Appears in list containing _citation_id.	'Van den Bossche, G.', 'Yang, DL.', 'Simonov, Yu.A',
Example(s):	'M\"uller, H. A.', 'Ross II, C. R.' [citation_author]
'citation relates to this precise coordinate set', 'relates to earlier low-resolution structure',	sitution outhor ordinal (due)
; citation relates to further refinement of structure	
reported in citation 2	of authors of a citation.
; [citation	Appears in list.
_citation_title (cha	r) [citation_author]
The title of the citation; relevant for both journal articles an	d
book chapters. Appears in list containing _citation_id.	_citation_editor_[]
Example(s):	Data items in the CITATION_EDITOR category record de-
; Structure of Diferric Duck Ovotransferrin at	tails about the editor associated with the book or book chapter citations in the _citation_ list.
2.35 \%A Resolution. ; [citation]	
-	Example 1 - hypothetical example.
_citation_year (num. The year of the citation; relevant for both journal articles ar	id
book chapters.	5 'McKeever, B. M.'
Appears in list containing _citation_id.	5 'Navia, M. A.' 5 'Fitzgerald, P. M. D.'
Example(s): '1984' [citation	
_citation_author_[] Data items in the CITATION_AUTHOR category record de-	_citation_editor_citation_id (char)
tails about the authors associated with the citations in the	The value of _citation_editor_citation_id must match an
citation list.	identifier specified by _citation_id in the _citation_ list.
<i>Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.</i>	Appears in list as essential element of loop structure. Must match data name _citation_id. [citation_editor]
loop_	_citation_editor_name (char)
_citation_author_citation_id _citation_author_name	Name of an editor of the citation; relevant for book chapters.
primary 'Fitzgerald, P. M. D.' primary 'McKeever, B. M.'	The family name(s), followed by a comma and including any
primary 'Van Middlesworth, J. F.'	dynastic components, precedes the first name(s) or initial(s). Appears in list as essential element of loop structure.
primary 'Springer, J. P.' primary 'Heimbach, J. C.'	
primary 'Leu, CT.' primary 'Herber, W. K.'	Example(s): 'Bleary, Percival R.', 'O'Neil, F. K.', 'Van den Bossche, G.', 'Yang, DL.', 'Simonov, Yu.A',
primary 'Dixon, R. A. F.'	'M\"uller, H. A.', 'Ross II, C. R.' [citation_editor]
primary 'Darke, P. L.' 2 'Navia, M. A.' 2 'Fitzgerald, P. M. D.'	
primary 'Darke, P. L.'	_citation_editor_ordinal (char)
primary 'Darke, P. L.' 2 'Navia, M. A.' 2 'Fitzgerald, P. M. D.' 2 'McKeever, B. M.' 2 'Leu, CT.' 2 'Heimbach, J. C.' 2 'Herber, W. K.' 2 'Sigal, I. S.' 2 'Darke, P. L.'	_citation_editor_ordinal (char) This data name defines the order of the editor's name in the list
primary 'Darke, P. L.' 2 'Navia, M. A.' 2 'Fitzgerald, P. M. D.' 2 'McKeever, B. M.' 2 'Leu, CT.' 2 'Heimbach, J. C.' 2 'Herber, W. K.' 2 'Sigal, I. S.' 2 'Darke, P. L.' 2 'Springer, J. P.' 3 'McKeever, B. M.' 3 'Navia, M. A.' 3 'Fitzgerald, P. M. D.'	_citation_editor_ordinal (char) This data name defines the order of the editor's name in the list of editors of a citation.
primary 'Darke, P. L.' 2 'Navia, M. A.' 2 'Fitzgerald, P. M. D.' 2 'McKeever, B. M.' 2 'Leu, CT.' 2 'Heimbach, J. C.' 2 'Herber, W. K.' 2 'Sigal, I. S.' 2 'Darke, P. L.' 2 'Springer, J. P.' 3 'McKeever, B. M.'	_citation_editor_ordinal (char) This data name defines the order of the editor's name in the list

computing[] Data items in the COMPUTING category record details about the computer programs used in the crystal structure analysis.		
Example 1 - Rodríguez-Romero, F Cryst. C52, 1415–1417].	Ruiz-Pérez & Solans [(1996). Acta	
_computing_data_collection _computing_cell_refinement _computing_data_reduction _computing_structure_solution _computing_structure_refinemen	'CAD-4 (Enraf-Nonius, 1989)' 'CAD-4 (Enraf-Nonius, 1989)' 'CFEO (Solans, 1978)' 'SHELXS86 (Sheldrick, 1990)' t	
_computing_molecular_graphics _computing_publication_materia	'SHELXL93 (Sheldrick, 1993)' 'ORTEPII (Johnson, 1976)' l 'PARST (Nardelli, 1983)'	

. .

F7

_computing_cell_refinement _computing_data_collection _computing_data_reduction

_computing_molecular_graphics

_computing_publication_material

_computing_structure_refinement _computing_structure_solution

Software used in the processing of this data. Give the program or package name and a brief reference.

Example(s): 'CAD-4 (Enraf-Nonius, 1989)', 'DIFDAT, SORTRF, ADDREF (Hall & Stewart, 1990)', 'FRODO (Jones, 1986), ORTEP (Johnson, 1965)', 'CRYSTALS (Watkin, 1988)', 'SHELX85 (Sheldrick, 1985)' [computing]

database[]

Data items in the DATABASE category record details about the database identifiers of the data block. These data items are assigned by database managers and should only appear in a CIF if they originate from that source.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277]. _database_code_CSD 'VOBYUG'

_database_code_CAS _database_code_CSD _database_code_ICSD _database_code_MDF _database_code_NBS _database_code_PDB _database_code_PDF

(char)

(char)

The codes are assigned by databases: Chemical Abstracts; Cambridge Structural (organic and metal-organic compounds); Inorganic Crystal Structure; Metals Data File (metal structures); NBS (NIST) Crystal Data Database (lattice parameters); Protein Data Bank; and the Powder Diffraction File (JCPDS/ICDD).

[database]

_database_journal_ASTM _database_journal_CSD (char)

The ASTM CODEN designator for a journal as given in the Chemical Source List maintained by the Chemical Abstracts Service, and the journal code used in the Cambridge Structural Database.

[database]

diffrn[] Data items in the DIFFRN category record details about the intensity measurements.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].
<pre>_diffrn_special_details ; \q scan width (1.0 + 0.14tan\q)\%, \q scan rate 1.2 \% min^-1^. Background counts for 5 s on each side every scan. ;</pre>
_diffrn_ambient_temperature 293

_diffrn_ambient_environment	(char)
The gas or liquid surrounding the sample, if not air.	
<pre>Example(s): 'He', 'vacuum', 'mother liquor'</pre>	[diffrn]
_diffrn_ambient_pressure	(numb)
The mean pressure in kilopascals at which the intensime as ured.	sities were
The permitted range is $0.0 \rightarrow \infty$.	[diffrn]
_diffrn_ambient_temperature	(numb)
The mean temperature in kelvins at which the intensime as ured.	sities were
The permitted range is $0.0 \rightarrow \infty$.	[diffrn]
_diffrn_crystal_treatment	(char)
Remarks about how the crystal was treated prior to measurement. Particularly relevant when intensities sured at low temperature.	2
Example(s): 'equilibrated in hutch for 24 hours 'flash frozen in liquid nitrogen',	΄,
'slow cooled with direct air stream'	[diffrn]
_diffrn_measured_fraction_theta_full Fraction of unique (symmetry-independent) reflect	. ,
sured out to _diffrn_reflns_theta_full. Appears in list. The permitted range is $0 \rightarrow 1.0$.	[diffrn]
_diffrn_measured_fraction_theta_max Fraction of unique (symmetry-independent) reflect sured out to _diffrn_reflns_theta_max.	(<i>numb</i>) ions mea-
Appears in list. The permitted range is $0 \rightarrow 1.0$.	[diffrn]
	<i>(</i> 1)

_diffrn_special_details (char) Special details of the diffraction measurement process. Should include information about source instability, crystal motion, degradation and so on.

[diffrn]

Example(s):

; The results may not be entirely reliable as the measurement was made during a heat

wave when the air-conditioning had failed.

_diffrn_symmetry_description

Observed diffraction point symmetry, systematic absences and possible space group(s) or superspace group(s) compatible with these.

[diffrn]

(char)

(char)

_diffrn_attenuator_[] Data items in the DIFFRN_ATTENUATOR category record details about the diffraction attenuator scales employed.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

16.976

_diffrn_attenuator_code

_diffrn_attenuator_scale 1

_diffrn_attenuator_code

_diffrn_attenuator_material (char)

Material from which the attenuator is made.

Appears in list containing _diffrn_attenuator_code.

[diffrn_attenuator]

_diffrn_attenuator_scale (numb) The scale factor applied when an intensity measurement is reduced by an attenuator identified by _diffrn_attenuator_code. This scale must be multiplied by the measured intensity to convert it to the same scale as unattenuated intensities. Appears in list containing _diffrn_attenuator_code. The permitted range is $1.0 \rightarrow \infty$. [diffrn_attenuator]

_diffrn_detector_[]

Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation.

<i>Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.</i>		
_diffrn_detector	'multiwire'	
_diffrn_detector_type	'Siemens'	

_diffrn_detector

The general class of the radiation detector.

 $\label{eq:Example(s): 'photographic film', 'scintillation counter', 'CCD plate', 'BF~3~ counter'$

Related item(s): _diffrn_radiation_detector (alternate). [diffrn_detector]

_diffrn_detector_area_resol_mean (*numb*) The resolution of an area detector, in pixels/mm. cn_corc.ui

The permitted range is $0.0 \rightarrow \infty$. [diffrn_detector]

_diffrn_detector_details

A description of special aspects of the radiation detector.

[diffrn_detector]

(char)

_diffrn_detector_dtime (numb)

The deadtime in microseconds of the detector used to measure the diffraction intensities.

 $\label{eq:related_relation_detector_dtime} (alternate). \\ The permitted range is 0.0 \rightarrow \infty. \qquad [diffrn_detector] \\$

_diffrn_detector_type (char)

The make, model or name of the detector device used.

[diffrn_detector]

_diffrn_radiation_detector (char)

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_detector The detector used to measure the diffraction intensities.

[diffrn_detector]

(numb)

(char)

_diffrn_radiation_detector_dtime

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_detector_dtime The deadtime in microseconds of the detector used to measure the diffraction intensities.

[diffrn_detector]

_diffrn_measurement_[] Data items in the DIFFRN_MEASUREMENT category refer to the mounting of the sample and to the goniometer on which it is mounted.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

_diffrn_measurement_device_type

'Philips PW1100/20 diffractometer' _diffrn_measurement_method $\q/2\q$

_diffrn_measurement_details

A description of special aspects of the intensity measurement.

Example(s): '440 frames of 0.25\%' [diffrn_measurement]

_diffrn_measurement_device (char)

The general class of goniometer or device used to support and orient the specimen.

Example(s): 'three-circle diffractometer', 'four-circle diffractometer', '\k-geometry diffractometer', 'oscillation camera', 'precession camera' [diffrn_measurement]

16

_diffrn_measurement_device_details (char) A description of special aspects of the device used to measure the diffraction intensities.

Example(s):

; commercial goniometer modified locally to

allow for 90\% \t arc ; [diffrn_

[diffrn_measurement]

_diffrn_measurement_device_type (char) The make, model or name of the measurement device (goniometer) used.

[diffrn_measurement]

_diffrn_measurement_method (char) Method used to measure intensities.

Example(s): 'profile data from q/2q scans'

[diffrn_measurement]

_diffrn_measurement_specimen_support (char) The physical device used to support the crystal during data collection.

Example(s): 'glass capillary',	'quartz capillary',
'fiber', 'metal loop'	[diffrn_measurement]

_diffrn_orient_matrix_[] Data items in the DIFFRN_ORIENT_MATRIX category record details about the orientation matrix used in data measurement. Example 1 - data set n-alkylation_C-4 of Hussain, Fleming, Norman

& Chang [(1996). Acta Cryst. C52, 1010–1012].

_diffrn_orient_matrix_UB_11	-0.04170	
_diffrn_orient_matrix_UB_12	-0.01429	
_diffrn_orient_matrix_UB_13	-0.02226	
_diffrn_orient_matrix_UB_21	-0.00380	
_diffrn_orient_matrix_UB_22	-0.05578	
_diffrn_orient_matrix_UB_23	-0.05048	
_diffrn_orient_matrix_UB_31	0.00587	
_diffrn_orient_matrix_UB_32	-0.13766	
_diffrn_orient_matrix_UB_33	0.02277	
diffrn orient matrix type	'TEXSAN convention	(MSC, 1989)'

_diffrn_orient_matrix_type

(char)

A description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes.

[diffrn_orient_matrix]

The elements of the diffractometer orientation matrix. These define the dimensions of the reciprocal cell and its orientation to the local diffractometer axes. See _diffrn_orient_matrix_type. [diffrn_orient_matrix]

_diffrn_orient_refln_[] Data items in the DIFFRN_ORIENT_REFLN category record details about the reflections that define the orienta- tion matrix used in measurement of diffraction intensities.							
			ypical o	utput list	ing from	Enraf–Non	nius CAD-4 diffrac-
tome	eter.						
loop	_						
_dif	frn	_orie	ent_refl	n_index	h		
_		_	_	n_index_	_		
_		_	_	n_index	_		
_		_	_	.n_angle_	-		
_		_	_	.n_angle_	-		
_		_	_	.n_angle_			
				.n_angle_			
-3				44.74		17.53	
						5.79 86.20	
				-43.93			
0	1	-6	5 85	-161 59	36 96	-86.79	
-3				80.28			
2				-76.86			
0	0	12	11.78	-44.02	-19.51	86.41	
0	0	-12	11.78	-161.67	42.81	-86.61	
-5	1	0	11.75	86.24	9.16	7.44	
0	4	6	11.82	-19.82	10.45	4.19	
5	0	6	14.13	-77.28	10.17	15.34	
8	0	0	20.79	-77.08	25.30	-13.96	

```
_diffrn_orient_refln_angle_chi
_diffrn_orient_refln_angle_kappa
_diffrn_orient_refln_angle_omega
_diffrn_orient_refln_angle_phi
_diffrn_orient_refln_angle_psi
_diffrn_orient_refln_angle_theta
```

Diffractometer angles in degrees of a reflection used to define the orientation matrix. See _diffrn_orient_matrix_UB_ and _diffrn_orient_refln_index_h, *_k and *_1.

Appears in list containing _diffrn_orient_refln_index_. [diffrn_orient_refln]

_diffrn_orient_refln_index_h

_diffrn_orient_refln_index_k

_diffrn_orient_refln_index_l

The indices of a reflection used to define the orientation matrix. See _diffrn_orient_matrix_.

Appears in list as essential element of loop structure.

[diffrn_orient_refln]

(numb)

(numb)

c]	_diffrn_radiation_[] Data items in the DIFFRN_RADIATION category describe the radiation used in measuring diffraction intensities, its col- limation and monochromatisation before the sample. Post- sample treatment of the beam is described by data items in the DIFFRN_DETECTOR category.			
	<i>Example 1 - based on data set TOZ of Willis, Beckwith & Tozer</i> [(1991). Acta Cryst. C47, 2276–2277].			
5)	_diffrn_radiation_type _diffrn_radiation_monochromator	'Cu K\a' 'graphite'		

DIFFRN_RADIATION

_diffrn_radiation_collimation (char) The collimation or focusing applied to the radiation. '0.5 mm', Example(s): '0.3 mm double-pinhole', 'focusing mirrors' [diffrn_radiation] _diffrn_radiation_filter_edge (numb) Absorption edge in ångströms of the radiation filter used. The permitted range is $0.0 \rightarrow \infty$. [diffrn_radiation] _diffrn_radiation_inhomogeneity (numb) Half-width in millimetres of the incident beam in the direction perpendicular to the diffraction plane. The permitted range is $0.0 \rightarrow \infty$. [diffrn_radiation] _diffrn_radiation_monochromator (char)

The method used to obtain monochromatic radiation. If a monochromator crystal is used the material and the indices of the Bragg reflection are specified.

<pre>Example(s): 'Zr filter',</pre>	ʻGe	220',	'none',
'equatorial mounted graphite'		[diffrn	_radiation]

_diffrn_radiation_polarisn_norm (numb)

The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarisation and the diffraction plane. See _diffrn_radiation_polarisn_ratio.

The permitted range is $-180.0 \rightarrow 180.0$. [diffrn_radiation]

_diffrn_radiation_polarisn_ratio (numb)

Polarisation ratio of the diffraction beam incident on the crystal. It is the ratio of the perpendicularly polarised to the parallel polarised component of the radiation. The perpendicular component forms an angle of _diffrn_radiation_polarisn_norm to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams).

The permitted range is $0.0 \rightarrow \infty$. [diffrn_radiation]

_diffrn_radiation_probe (char)

The nature of the radiation used (i.e. name of subatomic particle or region of the electromagnetic spectrum). It is strongly encouraged that this field be specified so that the probe radiation can be simply determined.

x-ray	
neutron	
electron	
gamma	[diffrn_radiation]

The type of the radiation. This represents a finer-grained level of description than _diffrn_radiation_probe and is typically a description of the X-ray wavelength in Siegbahn notation.

_diffrn_radiation_type

Example(s): 'Cu K\a', 'Cu K\a~1~', 'Cu K-L~2,3~', 'white-beam' [diffrn_radiation] The IUPAC symbol for the X-ray wavelength for probe radiation.

K-L~3~	$K\alpha_1$ in older Siegbahn notation
K-L~2~	$K\alpha_2$ in older Siegbahn notation
K-M~3~	$K\beta_1$ in older Siegbahn notation
K-L~2,3~	use where K-L ₃ and K-L ₂ are not resolved

[diffrn_radiation]

_diffrn_radiation_wavelength_[]

Data items in the DIFFRN_RADIATION_WAVELENGTH category describe the wavelength of the radiation used in measuring diffraction intensities. Items may be looped to identify and assign weights to distinct wavelength components from a polychromatic beam.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277]. _diffrn_radiation_wavelength 1.5418

_diffrn_radiation_wavelength

The radiation wavelength in ångströms.

May appear in list containing _diffrn_radiation_wavelength_id. The permitted range is $0.0 \rightarrow \infty$.

[diffrn_radiation_wavelength]

_diffrn_radiation_wavelength_id

An arbitrary code identifying each value of _diffrn_radiation_wavelength. Items in the DIFFRN_RADIATION category are looped when multiple wavelengths are used. This code is used to link with the _diffrn_refln_ list. It must match with one of the _diffrn_refln_wavelength_id codes.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _diffrn_refln_wavelength_id.

Example(s): 'x1', 'x2', 'neut'

[diffrn_radiation_wavelength]

_diffrn_radiation_wavelength_wt

(numb)

(numb)

(char)

The relative weight of a wavelength identified by the code _diffrn_radiation_wavelength_id in the list of wavelengths.

Appears in list containing _diffrn_radiation_wavelength_id. Where no value is given, the assumed value is '1.0'. The permitted range is $0.0 \rightarrow 1.0$. [diffrn_radiation_wavelength]

(char)

18

(char)

Appears in list containing _diffrn_refln_index_. Must match data name _diffrn_attenuator_code. [diffrn_refln]

_diffrn_refln_class_code

(char)

The code identifying the class to which this reflection has been assigned. This code must match a value of _diffrn_reflns_class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number $m = \sum |m_i|$, where the m_i are the integer coefficients that, in addition to h, k, l, index the corresponding diffraction vector in the basis defined for the reciprocal cell.

Appears in list containing _diffrn_refln_index_. Must match data name _diffrn_reflns_class_code. [diffrn_refln]

_diffrn_refln_counts_bg_1	
_diffrn_refln_counts_bg_2	
_diffrn_refln_counts_net	
_diffrn_refln_counts_peak	
_diffrn_refln_counts_total	(numb)

The diffractometer counts for the measurements: background before the peak, background after the peak, net counts after background removed, counts for peak scan or position, and the total counts (background plus peak).

Appears in list containing _diffrn_refln_index_.

[diffrn_refln]

_diffrn_refln_crystal_id

(char)

Code identifying each crystal if multiple crystals are used. Is used to link with _exptl_crystal_id in the _exptl_crystal_ list.

Appears in list containing _diffrn_refln_index_. Must match data name _exptl_crystal_id. [diffrn_refln]

_diffrn_refln_detect_slit_horiz _diffrn_refln_detect_slit_vert (numb)

Total slit apertures in degrees in the diffraction plane (*_horiz) and perpendicular to the diffraction plane (*_vert).

Appears in list containing _diffrn_refln_index_. The permitted range is 0.0 \rightarrow 90.0. [diffrn_refln]

_diffrn_refln_elapsed_time (numb)

Elapsed time in minutes from the start of diffraction measurement to the measurement of this intensity.

_diffrn_refln_index_h	
_diffrn_refln_index_k	
_diffrn_refln_index_l	(numb)

Miller indices of a measured reflection. These need not match the _refln_index_h, *_k, *_l values if a transformation of the original measured cell has taken place. Details of the cell transformation are described in _diffrn_reflns_reduction_process. See also _diffrn_reflns_transf_matrix_.

Appears in list as essential element of loop structure. [diffrn_refln]

diffrn	_refln_	IJ
----------	---------	----

Data items in the DIFFRN_REFLN category record details about the intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements, and must be included in looped lists. (The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped.)

_diffrn_refln_counts_bg_1							
_diffrn_refln_counts_total							
_diffrn_refln_counts_bg_2							
_diffrn_refln_angle_theta							
_diffrn_refln_angle_phi							
_diffrn_refln_angle_omega							
_diffrn_refln_angle_kappa							
_diffrn_refln_scan_width							
_diffrn_refln_elapsed_time							
0 0 -16 0. 4.12 28 127 36 33.157 -75.846 16.404							
50.170 1.516 19.43							
0 0 -15 0. 4.12 38 143 28 30.847 -75.846 14.094							
50.170 1.516 19.82							
0 0 -14 0. 1.03 142 742 130 28.592 -75.846 11.839							
50.170 1.516 21.32							
0 0 -13 0. 4.12 26 120 37 26.384 -75.846 9.631 50.170 1.450 21.68							
0 0 -12 0. 0.97 129 618 153 24.218 -75.846 7.464							
50.170 1.450 23.20							
0 0 -11 0. 4.12 33 107 38 22.087 -75.846 5.334							
50.170 1.384 23.55							
0 0 -10 0. 4.12 37 146 33 19.989 -75.846 3.235							
50.170 1.384 23.90							
0 0 -9 0. 4.12 50 179 49 17.918 -75.846 1.164							
50.170 1.384 24.25							
# data truncated for brevity							
3 4 -4 0.1.03 69 459 73 30.726 -53.744 46.543							
-47.552 1.516 2082.58							
3 4 -5 0.1.03 91 465 75 31.407 -54.811 45.519							
-42.705 1.516 2084.07							
3 14 -6 0. 1.03 84 560 79 32.228 -55.841 44.745							
-38.092 1.516 2085.57							
# data truncated for brevity							

_diffrn_refln_angle_chi _diffrn_refln_angle_kappa _diffrn_refln_angle_omega _diffrn_refln_angle_phi _diffrn_refln_angle_psi _diffrn_refln_angle_theta

(numb)

The diffractometer angles in degrees of a reflection. These correspond to the specified orientation matrix and the original measured cell before any subsequent cell transformations.

Appears in list containing _diffrn_refln_index_.

[diffrn_refln]

_diffrn_refln_attenuator_code (char)

The code identifying the attenuator setting for this reflection. This code must match one of the _diffrn_attenuator_code values.

_diffrn_refln_intensity_net

Net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.

Appears in list containing _diffrn_refln_index_. The permitted range is $0 \rightarrow \infty$. [diffrn_refln]

_diffrn_refln_intensity_sigma

_diffrn_refln_intensity_u

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_refln_intensity_u Standard uncertainty (e.s.d.) of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.

Standard uncertainty of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.

Related item(s): _diffrn_refln_intensity_sigma (alternate). Appears in list containing _diffrn_refln_index_. The permitted range is $0 \rightarrow \infty$. [diffrn_refln]

_diffrn_refln_scale_group_code (char)

The code identifying the scale applying to this reflection. This code must match with a specified _diffrn_scale_group_code value.

Appears in list containing _diffrn_refln_index_. Must match data name _diffrn_scale_group_code. [diffrn_refln]

_diffrn_refln_scan_mode (char)

The code identifying the mode of scanning with a diffractometer. See _diffrn_refln_scan_width and _diffrn_refln_scan_mode_backgd.

 ω scan om $\omega/2\theta$ scan ot Q-scans (arbitrary reciprocal directions) q

Appears in list containing _diffrn_refln_index_.

[diffrn_refln]

_diffrn_refln_scan_mode_backgd (char)

The code identifying the mode of scanning a reflection to measure the background intensity.

st	stationary counter background
mo	moving counter background
Appears	in list containing _diffrn_refln_index

[diffrn_refln]

_diffrn_refln_scan_rate (numb)

The rate of scanning a reflection to measure the intensity in degrees per minute. Appears in list containing _diffrn_refln_index_. The permitted

[diffrn_refln] range is $0 \rightarrow \infty$.

_diffrn_refln_scan_time_backgd (numb) The time spent measuring each background in seconds.

Appears in list containing _diffrn_refln_index_. The permitted

range is $0 \rightarrow \infty$. [diffrn_refln]

_diffrn_refln_scan_width

The scan width in degrees of the scan mode defined by the code _diffrn_refln_scan_mode.

Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow 90.0$. [diffrn_refln]

_diffrn_refln_sint/lambda

The $(\sin \theta)/\lambda$ value in reciprocal ångströms for this reflection. Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow \infty$. [diffrn_refln]

_diffrn_refln_standard_code (char)

A code identifying that this reflection was measured as a standard intensity. The value must be '.' or match one of the _diffrn_standard_refln_code values.

Appears in list containing _diffrn_refln_index_. Must match data name _diffrn_standard_refln_code.

Example(s): '1', '2', '3', 's1', 's2', 's3', 'A', 'B', [diffrn_refln]

_diffrn_refln_wavelength

The mean wavelength in ångströms of radiation used to measure the intensity of this reflection. This is an important parameter for reflections measured using energy dispersive detectors or the Laue method.

Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow \infty$. [diffrn refln]

_diffrn_refln_wavelength_id

Code identifying the wavelength in the _diffrn_radiation_ list.

Appears in list containing _diffrn_refln_index_. Must match data name _diffrn_radiation_wavelength_id.

Example(s): 'x1', 'x2', 'neut'

_diffrn_reflns_[]

Data items in the DIFFRN_REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped. (The DIFFRN_REFLN data items refer to individual intensity measurements, and must be included in looped lists.)

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277].

_diffrn_reflns_number	1592
_diffrn_reflns_av_R_equivalents	0
_diffrn_reflns_av_unetI/netI	.027
_diffrn_reflns_limit_h_min	0
_diffrn_reflns_limit_h_max	6
_diffrn_reflns_limit_k_min	-17
_diffrn_reflns_limit_k_max	0
_diffrn_reflns_limit_l_min	0
_diffrn_reflns_limit_l_max	22
_diffrn_reflns_theta_min	3.71
_diffrn_reflns_theta_max	61.97

(numb)

(numb)

(numb)

(numb)

(numb)

[diffrn refln]

(numb)

(char)

[diffrn_refln]

The residual $\left[\sum av |\Delta(I)| / \sum |av(I)|\right]$ for symmetry-equivalent reflections used to calculate the average intensity av(I). The $av |\Delta(I)|$ term is the average absolute difference between av(I) and the individual symmetry-equivalent intensities. The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns]

_diffrn_reflns_av_sigmaI/netI (numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_reflns_av_unetI/netI Measure $\left[\sum |u(netI)| / \sum |netI|\right]$ for all measured reflections.

[diffrn_reflns]

_diffrn_reflns_av_unetI/netI (numb)

Measure $[\sum |u(netI)| / \sum |netI|]$ for all measured reflections. Related item(s): _diffrn_reflns_av_sigmal/netI (alternate). The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns]

_diffrn_reflns_limit_h_max
_diffrn_reflns_limit_h_min
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_l_max
diffrn reflns limit l min

The limits on the Miller indices of the intensities specified by _diffrn_refln_index_h, *_k, *_1.

[diffrn_reflns]

(numb)

_diffrn_reflns_number (numb)

The total number of measured intensities, excluding reflections that are classed as systematically absent arising from translational symmetry in the crystal unit cell.

The permitted range is $0 \rightarrow \infty$. [diffrn_reflns]

_diffrn_reflns_reduction_process (char)

A description of the process used to reduce the intensities into structure-factor magnitudes.

Example(s): 'data averaged using Fisher test' [diffrn_reflns]

_diffrn_reflns_theta_full (numb) The θ angle (in degrees) at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by

The permitted range is $0.0 \rightarrow 90.0$. [diffrn_reflns]

_diffrn_measured_fraction_theta_full.

_diffrn_reflns_theta_max (numb)

Maximum θ angle in degrees for the measured intensities. The permitted range is $0.0 \rightarrow 90.0$. [diffrn_reflns]

_diffrn_reflns_theta_min (numb) Minimum θ angle in degrees for the measured intensities. The permitted range is $0.0 \rightarrow 90.0$. [diffrn_reflns]

_diffrn_reflns_transf_matrix_12 _diffrn_reflns_transf_matrix_13 _diffrn_reflns_transf_matrix_21 _diffrn_reflns_transf_matrix_22 _diffrn_reflns_transf_matrix_23 _diffrn_reflns_transf_matrix_31 _diffrn_reflns_transf_matrix_32 _diffrn_reflns_transf_matrix_33

_diffrn_reflns_transf_matrix_11

Elements of the matrix used to transform the diffraction reflection indices _diffrn_refln_index_h, *_k, *_l into the _refln_index_h, *_k, *_l indices.

$$\begin{pmatrix} h & k & l \end{pmatrix}_{\text{diffraction}} \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} = \begin{pmatrix} h' & k' & l' \end{pmatrix}$$

_diffrn_reflns_class_[]

[diffrn_reflns]

(numb)

	Data items in the DIFFRN_REFLNS_CLASS category					
	record details about the classes of reflections measured in					
	the diffraction experiment.					
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of K_2SeO_4 . Each reflection class is defined by the number $m = \sum_{i=1}^{n} m_i $, where the m_i are the integer coefficients that, in addition to h, k, l , index the corresponding diffraction vector in the basis defined for the reciprocal lattice.						
	diffraction vector in the basis defined for the reciprocal lattice.					
	diffraction vector in the basis defined for the reciprocal lattice.					
	55 5 F					
	loop_					
	loop_ _diffrn_reflns_class_number					
	loop_ 					
	loop_ _diffrn_reflns_class_number _diffrn_reflns_class_d_res_high _diffrn_reflns_class_d_res_low _diffrn_reflns_class_av_R_eq					
	loop_ _diffrn_reflns_class_number _diffrn_reflns_class_d_res_high _diffrn_reflns_class_d_res_low _diffrn_reflns_class_av_R_eq _diffrn_reflns_class_code					

_diffrn_reflns_class_av_R_eq (numb) For each reflection class, the residual $[\sum av|\Delta(I)|/\sum |av(I)|]$ for symmetry-equivalent reflections used to calculate the average intensity av(I). The $av|\Delta(I)|$ term is the average absolute difference between av(I) and the individual symmetry-equivalent

Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

_diffrn_reflns_class_av_sgI/I

intensities.

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_reflns_class_av_uI/I Measure $[\sum |u(netI)| / \sum |netI|]$ for all measured intensities in a reflection class.

[diffrn_reflns_class]

(numb)

_diffrn_reflns_class_av_uI/I (*numb*) Measure $\left[\sum |u(netI)|/\sum |netI|\right]$ for all measured intensities in a reflection class.

Related item(s): _diffrn_reflns_class_av_sgI/I (alternate). Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

DIFFRN_REFLNS_CLASS

(char)

(char)

_diffrn_reflns_class_code

The code identifying a certain reflection class.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _diffrn_refln_class_code.

Example(s): '1', 'm1', 's2' [diffrn_reflns_class]

_diffrn_reflns_class_description (char)

Description of each reflection class.

Appears in list containing _diffrn_reflns_class_code.

Example(s): 'm=1 first order satellites', 'HOLO common projection reflections'

[diffrn_reflns_class]

_diffrn_reflns_class_d_res_high (numb)

The highest resolution in ångströms for the interplanar spacing in the reflections of each measured reflection class. This is the smallest d value for this reflection class.

Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

_diffrn_reflns_class_d_res_low (numb)

The lowest resolution in angströms for the interplanar spacing in the reflections of each measured reflection class. This is the largest d value for this reflection class.

Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

_diffrn_reflns_class_number (numb)

The total number of measured intensities for each reflection class, excluding the systematic absences arising from centring translations.

Appears in list containing _diffrn_reflns_class_code. The permitted range is $0 \rightarrow \infty$. [diffrn_reflns_class]

_diffrn_scale_group_[]

Data items in the DIFFRN_SCALE_GROUP category record details of the scaling factors applied to place all intensities in the reflection lists on a common scale. Scaling groups might, for instance, correspond to each film in a multi-film data set, or each crystal in a multi-crystal data set.

Example 1 - hypothetical example.

loop_

_diffrn_scale_group_code _diffrn_scale_group_I_net

1 .86473 2 1.0654 _diffrn_scale_group_code

The code identifying a specific measurement group (*e.g.* for multi-film or multi-crystal data). The code must match a _diffrn_refln_scale_group_code in the reflection list.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _diffrn_refln_scale_group_code.

Example(s): '1', '2', '3', 's1', 'A', 'B', 'c1', 'c2', 'c3' [diffrn_scale_group]

_diffrn_scale_group_I_net (numb) The scale for a specific measurement group which is to be multiplied with the net intensity to place all intensities in the _diffrn_refln_ or _refln_ list on a common scale.

_diffrn_source_[] Data items in the DIFFRN_SOURCE category record details of the source of radiation used in the diffraction experiment.						
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.						
_diffrn_source	'rotating anode X-ray tube'					
_diffrn_source_type						
_diffrn_source_power 50						
_diffrn_source_current 180						
_diffrn_source_size '8 mm x 0.4 mm broad focus'						

_diffrn_radiation_source (char) This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_source

The source of radiation.

[diffrn_source]

(char)

_diffrn_source The general class of the source of radiation. Related item(s): _diffrn_radiation_source (alternate).

Example(s): 'sealed X-ray tube', 'nuclear reactor', 'spallation source', 'electron microscope', 'rotating-anode X-ray tube', 'synchrotron'

[diffrn_source]

_diffrn_source_current	(char)
The current in milliamperes at which the rac operated.	liation source was
The permitted range is $0.0 \rightarrow \infty$.	[diffrn_source]
_diffrn_source_details	(char)
A description of special aspects of the source	used.
	[diffrn_source]
_diffrn_source_power The power in kilowatts at which the radiation ated.	(<i>numb</i>) n source was oper-
The permitted range is $0.0 \rightarrow \infty$.	[diffrn_source]
_diffrn_source_size	(char)
The dimensions of the source as viewed from	the sample.
<pre>Example(s): '8mm x 0.4 mm fine-focus', 'bu</pre>	road focus'

[diffrn_source]

(char)

[diffrn_source]

_diffrn_source_target (char) The chemical element symbol for the X-ray target (usually the anode) used for generation of X-rays. This can be used also for spallation sources. н He Li Be В С N 0 F Ne Na

Mg	Al	Si	Р	S	Cl	Ar	K	Ca	Sc	Ti
V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As
Se	Br	Kr	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru
Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	Cs
Ba	La	Ce	Pr	Nd	Pm	\mathtt{Sm}	Eu	Gd	Tb	Dy
Ho	Er	Tm	Yb	Lu	Hf	Ta	W	Re	0s	Ir
Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn	Fr	Ra
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
Fm	Md	No	Lr					[dif	frn_	source]

_diffrn_source_type

The make, model or name of the source of radiation.

Example(s): 'NSLS beamline X8C', 'Rigaku RU200'

_diffrn_source_voltage (char)

The voltage in kilovolts at which the radiation source was operated.

The permitted range is $0.0 \rightarrow \infty$. [diffrn_source]

_diffrn_standard_refln_[] Data items in the DIFFRN_STANDARD_REFLN category record details about the reflections treated as standards during the measurement of diffraction intensities. Note that these are the individual standard reflections, not the results of the analysis of the standard reflections. <u>Example 1 - based on data set TOZ of Willis, Beckwith & Tozer</u>

[(1991). Acta Cryst. C47, 2276-2277]. loop_ _diffrn_standard_refln_index_h _diffrn_standard_refln_index_k

_diffrn_standard_refln_code

(char)

(numb)

The code identifying a reflection measured as a standard reflection with the indices _diffrn_standard_refln_index_. This is the same code as the _diffrn_refln_standard_code in the _diffrn_refln_ list.

Appears in list containing _diffrn_standard_refln_index_. May match subsidiary data name(s): _diffrn_refln_standard_code.

Example(s): '1', '2', '3', 's1', 'A', 'B'

[diffrn_standard_refln]

_diffrn_standard_refln_index_h

_diffrn_standard_refln_index_k _diffrn_standard_refln_index_1

Miller indices of standard reflections used in the diffraction measurement process.

Appears in list as essential element of loop structure. [diffrn_standard_refln] _diffrn_standards_[]

Data items in the DIFFRN_STANDARDS category record details about the set of standard reflections used to monitor intensity stability during measurement of diffraction intensities. Note that these records describe properties common to the set of standard reflections, not the standard reflections themselves.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277]. _diffrn_standards_number 3 _diffrn_standards_interval_time 120 _diffrn_standards_decay_% 0

_diffrn_standards_decay_%

(numb)

(numb)

The percentage decrease in the mean of the intensities for the set of standard reflections at the start of the measurement process and at the finish. This value usually affords a measure of the overall decay in crystal quality during the diffraction measurement process. Negative values are used in exceptional instances where the final intensities are greater than the initial ones.

The permitted range is $-\infty \rightarrow 100$. [diffrn_standards]

_diffrn_standards_interval_count

_diffrn_standards_interval_time (*numb*) The number of reflection intensities, or the time in minutes, between the measurement of standard reflection intensities.

The permitted range is $0 \rightarrow \infty$. [diffrn_standards]

_diffrn_standards_number

The number of unique standard reflections used in the diffraction measurements.

The permitted range is $0 \rightarrow \infty$. [diffrn_standards] _diffrn_standards_scale_sigma (numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_standards_scale_u The standard uncertainty (e.s.d.) of the individual mean standard scales applied to the intensity data.

[diffrn_standards]

_diffrn_standards_scale_u (numb)

The standard uncertainty of the individual mean standard scales applied to the intensity data.

$$\label{eq:related_relation} \begin{split} \text{Related item(s): _diffrn_standards_scale_sigma (alternate).} \\ \text{The permitted range is } 0.0 \rightarrow \infty. \\ \end{split} \end{split}$$

exptl[]

Data items in the EXPTL category record details about the experimental work prior to the intensity measurement, and about the absorption correction technique employed.

Example 1 - based on a paper by Steiner [(1996). Acta Cryst. C52, 2554-2556]. _exptl_absorpt_coefficient_mu 0.962 _exptl_absorpt_correction_type psi-scan _exptl_absorpt_process_details

'North, Phillips & Mathews (1968)' _exptl_absorpt_correction_T_min 0.929 _exptl_absorpt_correction_T_max 0.997

_exptl_absorpt_coefficient_mu (numb)	_exptl_crystal_colour (char)
The absorption coefficient μ in reciprocal millimetres calculated	The colour of the crystal.
from the atomic content of the cell, the density and the radiation	May appear in list containing _exptl_crystal_id.
wavelength. The permitted range is $0.0 \rightarrow \infty$. [expt1]	Example(s): 'dark green' [exptl_crystal]
_exptl_absorpt_correction_T_max	_exptl_crystal_density_diffrn (numb)
_exptl_absorpt_correction_T_min (numb)	
The maximum and minimum transmission factors for the crystal and radiation. These factors are also referred to as the absorption correction A or $1/A^*$.	Density values calculated from crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centime- tre).
The permitted range is $0.0 \rightarrow 1.0.$ [expt1]	May appear in list containing _exptl_crystal_id. The permitted
_exptl_absorpt_correction_type (char)	range is $0.0 \rightarrow \infty$. [exptl_crystal]
The absorption correction type and method. The value 'empiri-	
cal' should <i>not</i> be used unless no more detailed information is	_exptl_crystal_density_meas (numb)
available.	Density values measured using standard chemical and physical
analytical analytical from crystal shape cylinder cylindrical	methods. The units are megagrams per cubic metre (grams per cubic centimetre).
empirical empirical from intensities gaussian Gaussian from crystal shape	May appear in list containing _exptl_crystal_id. The permitted
integration integration from crystal shape	range is $0.0 \rightarrow \infty$. [exptl_crystal]
multi-scansymmetry-related measurementsnoneno absorption correction applied	
numerical numerical from crystal shape	_exptl_crystal_density_meas_temp (numb)
psi-scan ψ -scan corrections	Temperature in kelvins at which _exptl_crystal_dens-
refdelfrefined from ΔF spherespherical	ity_meas was determined.
[expt]	May appear in list containing _exptl_crystal_id. The permitted
_exptl_absorpt_process_details (char)	range is $0.0 \rightarrow \infty$. [exptl_crystal]
Description of the absorption process applied to the intensities.	
A literature reference should be supplied for ψ -scan techniques.	_exptl_crystal_density_method (char)
Example(s): 'Tompa analytical', 'MolEN (Fair, 1990)',	The method used to measure _exptl_crystal_density_meas.
'(North, Phillips & Mathews, 1968)' [exptl]	May appear in list containing _exptl_crystal_id.
•	Example(s): 'flotation in aqueous KI', 'not measured',
_exptl_crystals_number (numb)	'Berman density torsion balance' [exptl_crystal]
The total number of crystals used in the measurement of inten- sities.	
The permitted range is $1 \rightarrow \infty$. [expt1]	
	_exptl_crystal_description (char)
_exptl_special_details (char)	A description of the quality and habit of the crystal. The crystal
Any special information about the experimental work prior to	dimensions should not normally be reported here; use instead _exptl_crystal_size_ for the gross dimensions of the crys-
the intensity measurement. See also _exptl_crystal_prep- aration.	tal, and _exptl_crystal_face_ to describe the relationship
[expt]	between individual faces.
[0,p01]	May appear in list containing _exptl_crystal_id.
_exptl_crystal_[]	[exptl_crystal]
Data items in the EXPTL_CRYSTAL category record details	
about experimental measurements on the crystal or crystals	_exptl_crystal_F_000 (numb)
used, such as shape, size, density, and so on.	The effective number of electrons in the crystal unit cell con-
Example 1 - based on data set TOZ of Willis Beckwith & Tozer	tributing to $F(000)$. It may contain dispersion contributions, and

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

_exptl_crystal_description	prism
_exptl_crystal_colour	colourless
_exptl_crystal_size_max	0.32
_exptl_crystal_size_mid	0.27
_exptl_crystal_size_min	0.10
_exptl_crystal_density_diffrn	1.146
_exptl_crystal_density_meas	?
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	656

tributing to F(000). It may contain dispersion contributions, and is calculated as

$$F(000) = \left[\left(\sum f_r \right)^2 + \left(\sum f_i \right)^2 \right]^{1/2}$$

 f_r = real part of the scattering factors at $\theta = 0$, f_i = imaginary part of the scattering factors at $\theta = 0$, and the sum is taken over each atom in the unit cell.

May appear in list containing _exptl_crystal_id. The permitted range is $0.0 \rightarrow \infty$. [exptl_crystal] _exptl_crystal_id

Code identifying each crystal if multiple crystals are used. It is used to link with _diffrn_refln_crystal_id in intensity measurement and with _refln_crystal_id in the _refln_ list. Appears in list as essential element of loop structure. May match subsidiary data name(s): _diffrn_refln_crystal_id. [exptl_crystal]

_exptl_crystal_preparation (char)

Details of crystal growth and preparation of the crystal (*e.g.* mounting) prior to the intensity measurements.

May appear in list containing _exptl_crystal_id.

Example(s):

'mounted in an argon-filled quartz capillary' [exptl_crystal]

_exptl_crystal_pressure_history (char) Relevant details concerning the pressure history of the sample.

May appear in list containing _exptl_crystal_id.

[exptl_crystal]

_exptl_crystal_size_length
_exptl_crystal_size_max
_exptl_crystal_size_mid
_exptl_crystal_size_min
_exptl_crystal_size_rad (numb)

The maximum, medial and minimum dimensions in millimetres of the crystal. If the crystal is a sphere then the *_rad item is its radius. If the crystal is a cylinder then the *_rad item is its radius and the *_length item is its length. These may appear in a list with _exptl_crystal_id if multiple crystals are used in the experiment.

May appear in list containing <code>_exptl_crystal_id</code>. The permitted range is $0.0 \rightarrow \infty$. [exptl_crystal]

_exptl_crystal_thermal_history (char)

Relevant details concerning the thermal history of the sample. May appear in list containing _exptl_crystal_id.

[exptl_crystal]

	_exptl_crystal_face_[] Data items in the EXPTL_CRYSTAL_FACE category record details of the crystal faces.				
			sed on structure PAWD2 of Vittal & Dean [(199	6).	
Acta	ı Cry	st. C52	2, 1180–1182].		
loop	_				
_exp	tl_c:	rystal	_face_index_h		
_exp	tl_c	rystal	_face_index_k		
_exp	tl_c	rystal	_face_index_1		
_exp	tl_c	rystal	_face_perp_dist		
			.18274		
1	0	-2	.17571		
			.17845		
			.21010		
			.18849		
			.20605		
2			.24680		
-1	2		.19688		
0	1	2	.15206		

GEOM

(numb)

_exptl_crystal_face_diffr_chi
_exptl_crystal_face_diffr_kappa
_exptl_crystal_face_diffr_phi
_exptl_crystal_face_diffr_psi

The goniometer angle settings in degrees when the perpendicular to the specified crystal face is aligned along a specified direction (*e.g.* the bisector of the incident and reflected beams in an optical goniometer).

Appears in list containing _exptl_crystal_face_index_. [exptl_crystal_face]

_exptl_crystal_face_index_h	
_exptl_crystal_face_index_k	
_exptl_crystal_face_index_l	(numb)

Miller indices of the crystal face associated with the value _ex-ptl_crystal_face_perp_dist.

Appears in list as essential element of loop structure.

[exptl_crystal_face]

_exptl_crystal_face_perp_dist (numb)

The perpendicular distance in millimetres of the face to the centre of rotation of the crystal.

geom_[]

Data items in the GEOM and related (GEOM_ANGLE, GEOM_BOND, GEOM_CONTACT, GEOM_HBOND and GEOM_TORSION) categories record details about the molecular and crystal geometry, as calculated from the contents of the ATOM, CELL, and SYMMETRY data. Geometry data are usually redundant, in that they can be calculated from other more fundamental quantities in the data block. They serve, however, the dual purpose of providing a check on the correctness of both sets of data, and of enabling the most important geometric data to be identified for publication by setting the appropriate publication flag.

Example 1 - based on data set bagan of Yamane & DiSalvo [(1996). Acta Cryst. C52, 760–761].

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

_geom_special_details

(char)

The description of geometrical information not covered by the existing data names in the geometry categories, such as least-squares planes.

[geom]

(char)

Data items in the GEOM_ANGLE category record details about the bond angles, as calculated from the contents of the ATOM, CELL, and SYMMETRY data. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 1 555 C2 01 C5 111.6(2) 1 555 1 555 yes O1 C2 C3 110.9(2) 1_555 1_555 1_555 yes 01 C2 021 122.2(3)1 555 1 555 1 555 yes C2 021 127.0(3) 1_555 1 555 1 555 C3 yes C2 C3 N4 101.3(2) 1_555 1 555 1 555 yes C2 C3 C31 111.3(2) 1_555 1 555 1 555 yes C2 C3 H3 107(1) 1 555 1 555 1 555 no N4 C3 C31 116.7(2) 1_555 1 555 1 555 yes - data truncated for brevity

_geom_angle

(numb)

(char)

Angle in degrees defined by the three sites _geom_angle_atom_site_label_1, *_2 and *_3. Site at *_2 is at the apex of the angle.

Appears in list containing _geom_angle_atom_site_label_. [geom_angle]

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 (char)

The labels of the three atom sites which define the angle specified by _geom_angle. These must match labels specified as _atom_site_label in the atom list. Label 2 identifies the site at the apex of the angle.

Appears in list as essential element of loop structure. Must match data name_atom_site_label. [geom_angle]

_geom_angle_publ_flag

This code signals if the angle is referred to in a publication or should be placed in a table of significant angles.

no	do not include angle in special list
n	abbreviation for "no"
yes	do include angle in special list
У	abbreviation for "yes"

Appears in list containing _geom_angle_atom_site_label_. Where no value is given, the assumed value is 'no'. [geom_angle]

_geom_angle_site_symmetry_1	
_geom_angle_site_symmetry_2	
_geom_angle_site_symmetry_3	(char)

The symmetry code of each atom site as the symmetryequivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n_klm . The character string n_klm is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _symmetry_equiv_pos_site_id. k, l and m refer to the translations that are subsequently applied to the symmetry transformed coordinates to generate the atom used in calculating the angle. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_angle_atom_site_label_.

Example(s): '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symm. posn.; +a on x; -b on y) [geom_angle]

_geom_bond_[] Data items in the GEOM_BOND category record details about bonds, as calculated from the contents of the ATOM, CELL, and SYMMETRY data.							
		1 - based Acta Cryst.				s, Beckwith &	Tozer
_geo _geo	od_mc od_mc od_mc od_mc od_mc	nd_atom_si nd_atom_si nd_distanc nd_site_sy nd_site_sy nd_publ_fl	te_labe e mmetry_ mmetry_	1_2 1_2			
		1.342(4)			-		
		1.439(3)			-		
		1.512(4) 1.199(4)			-		
C2 C3		1.465(3)	_	_	-		
	C31				-		
C3 N4		1.00(3)	1_555	1_555	no		

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

- data truncated for brevity - - -

The labels of two atom sites that form a bond. These must match labels specified as <u>_atom_site_label</u> in the atom list.

Appears in list as essential element of loop structure. Must match data name _atom_site_label. [geom_bond]

_geom_bond_distance (numb)

(char)

The intramolecular bond distance in ångströms.

_geom_bond_publ_flag	(char)
----------------------	--------

This code signals if the bond distance is referred to in a publication or should be placed in a list of significant bond distances.

no	do not include bond in special list
n	abbreviation for "no"
yes	do include bond in special list
v	abbreviation for "yes"

Appears in list containing _geom_bond_atom_site_label_. Where no value is given, the assumed value is 'no'. [geom_bond]

_geom_bond_site_symmetry_1

g	eom_bond.	site s	vmmetrv	2	(char)
-0		_~_~_~	J		(cincin)

The symmetry code of each atom site as the symmetryequivalent position number n' and the cell translation number '*klm*'. These numbers are combined to form the code '*n klm*' or *n_klm*. The character string *n_klm* is composed as follows: *n* refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _symmetry_equiv_pos_site_id. *k*, *l* and *m* refer to the translations that are subsequently applied to the symmetry transformed coordinates to generate the atom used in calculating the bond. These translations (*x*, *y*, *z*) are related to (*k*, *l*, *m*) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_bond_atom_site_label_.

Example(s): '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symm. posn.; +a on x; -b on y) [geom_bond]

_geom_contact_[]

Data items in the GEOM_CONTACT category record details about interatomic contacts, as calculated from the contents of the ATOM, CELL, and SYMMETRY data.

Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [(1991). Acta Cryst. C48, 2262–2264].

loop

H(01) O(2)

_geom_contact_atom_site_label_1

_geom_contact_atom_site_label_2 _geom_contact_distance

_geom_contact_site_symmetry_1 geom_contact_site_symmetry_2

_geom_contact_publ_flag O(1) O(2) 2.735(3) . .

1.82

_geom_contact_atom_site_label_1 _geom_contact_atom_site_label_2 (char)

yes

The labels of two atom sites that are within contact distance. The labels must match _atom_site_label codes in the atom list.

Appears in list as essential element of loop structure. Must match data name_atom_site_label. [geom_contact]

_geom_contact_distance (numb)

The interatomic contact distance in ångströms.

Appears in list containing _geom_contact_atom_site_label_. The permitted range is $0.0 \rightarrow \infty$. [geom_contact]

_geom_contact	_publ_flag	(char))
---------------	------------	--------	---

This code signals if the contact distance is referred to in a publication or should be placed in a list of significant contact distances.

no	do not include distance in special list
n	abbreviation for "no"
yes	do include distance in special list
У	abbreviation for "yes"

Appears in list containing _geom_contact_atom_site_label_. Where no value is given, the assumed value is 'no'. [geom_contact]

_geom_contact_site_s	symmetry_1	
_geom_contact_site_s	symmetry_2	(char)

The symmetry code of each atom site as the symmetryequivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n_klm . The character string n_klm is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _symmetry_equiv_pos_site_id. k, l and m refer to the translations that are subsequently applied to the symmetry transformed coordinates to generate the atom used in calculating the contact. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_contact_atom_site_label_.

Example(s): '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symm. posn.; +a on x; -b on y) [geom_contact]

about hydrog	_geom_hbond_[] n the GEOM_HBOND category record details gen bonds, as calculated from the contents of the L, and SYMMETRY data.		
	Example 1 - based on $C_{14}H_{13}ClN_2O.H_2O$, reported by Palmer, Pud- dle & Lisgarten [(1993). Acta Cryst. C49, 1777–1779].		
*	atom_site_label_D		
_geom_hbond_a	atom_site_label_H		
_geom_hbond_a	atom_site_label_A		
_geom_hbond_d	listance_DH		
_geom_hbond_d	listance_HA		
_geom_hbond_d	listance_DA		
_geom_hbond_a	angle_DHA		

_geom_hbond_angle_DHA

0.888(8)

0.894(8)

_geom_hbond_publ_flag

HN6 OW

но2 07

HO1 N10

N6

OW

OW

(numb)

yes

yes

ves

179.7(9)

Angle in degrees defined by the three sites <u>_geom_hbond_atom_site_label_D</u>, *_H and *_A. Site at *_D (the hydrogen atom participating in the interaction) is at the apex of the angle.

1.886(11)

1.921(12) 2.801(8) 169.6(8)

2.842(8)

0.917(6) 1.923(12) 2.793(8) 153.5(8)

Appears in list containing _geom_hbond_atom_site_label_. [geom_hbond]

_geom_hbond_atom_site_label_D	
_geom_hbond_atom_site_label_H	
_geom_hbond_atom_site_label_A	(char)

The labels of three atom sites (respectively the donor, hydrogen atom and acceptor atom) participating in a hydrogen bond. These must match labels specified as <u>_atom_site_label</u> in the atom list.

Appears in list as essential element of loop structure. **Must** match data name_atom_site_label. [geom_hbond]

_geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA (numb)

Distances in ångströms between the donor and hydrogen (*_DH), hydrogen and acceptor (*_HA) and donor and acceptor (*_DA) sites in a hydrogen bond.

Appears in list containing _geom_hbond_atom_site_label_. The permitted range is $0.0 \rightarrow \infty$. [geom_hbond]

This code signals if the hydrogen bond information is referred to in a publication or should be placed in a table of significant hydrogen-bond geometry.

no	do not include bond in special list
n	abbreviation for "no"
yes	do include bond in special list
у	abbreviation for "yes"

Appears in list containing _geom_hbond_atom_site_label_. Where no value is given, the assumed value is 'no'. [geom_hbond]

_geom_hbond_site_symmetry_D	
_geom_hbond_site_symmetry_H	
_geom_hbond_site_symmetry_A	(char)

The symmetry code of each atom site as the symmetryequivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n_klm. The character string n_klm is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _symmetry_equiv_pos_site_id. k, l and m refer to the translations that are subsequently applied to the symmetry transformed coordinates to generate the atom used in calculating the hydrogen bond. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_hbond_atom_site_label_.

Example(s): '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symm. posn.; +a on x; -b on y) [geom_hbond]

_geom_torsion_[]

Data items in the GEOM_TORSION category record details about interatomic torsion angles, as calculated from the contents of the ATOM, CELL, and SYMMETRY data.

Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [(1991). Acta Cryst. C48, 2262–2264].								
loop_	loop_							
_geom_torsion_atom	_site_label_1							
_geom_torsion_atom	_site_label_2							
_geom_torsion_atom	_site_label_3							
_geom_torsion_atom	_site_label_4							
_geom_torsion								
_geom_torsion_site	_symmetry_1							
_geom_torsion_site	_symmetry_2							
_geom_torsion_site_symmetry_3								
_geom_torsion_site_symmetry_4								
_geom_torsion_publ_flag								
C(9) O(2) C(7)	C(2) 71.8(2).	•			yes		
C(7) O(2) C(9)	C(10) -168.0(3).			2_666	yes		
C(10) O(3) C(8)	C(6) -167.7(3).				yes		
C(8) O(3) C(10)	C(9) -69.7(2).			2_666	yes		
O(1) C(1) C(2)	C(3) -179.5(4).				no		
O(1) C(1) C(2)	C(7) -0.6(1).	•		•	no		

_geom_torsion

The torsion angle in degrees bounded by the four atom sites identified by the _geom_torsion_atom_site_label_ codes. These must match labels specified as _atom_site_label in the atom list. The torsion angle definition should be that of Klyne and Prelog.

Ref: Klyne, W. & Prelog, V. (1960). *Experientia*, 16, 521–523.

Appears in list containing _geom_torsion_atom_site_label_. [geom_torsion]

_geom_torsion_atom_site_label_1	
_geom_torsion_atom_site_label_2	
_geom_torsion_atom_site_label_3	

_geom_torsion_atom_site_label_4 (char)

The labels of the four atom sites which define the torsion angle specified by _geom_torsion. These must match codes specified as _atom_site_label in the atom list. The torsion angle definition should be that of Klyne and Prelog. The vector direction *_label_2 to *_label_3 is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector site2-site1 onto the projection of the vector site3-site4. Clockwise torsions are positive, anticlockwise torsions are negative.

Ref: Klyne, W. & Prelog, V. (1960). *Experientia*, **16**, 521–523.

Appears in list as essential element of loop structure. Must match data name _atom_site_label. [geom_torsion]

_g	eom	_torsio	1_publ	flag	(1	char)

This code signals if the torsion angle is referred to in a publication or should be placed in a table of significant torsion angles.

no	do not include angle in special list
n	abbreviation for "no"
yes	do include angle in special list
у	abbreviation for "yes"

Appears in list containing _geom_torsion_atom_site_label_. Where no value is given, the assumed value is 'no'. [geom_torsion]

_geom_torsion_site_symmetry_1	
_geom_torsion_site_symmetry_2	
_geom_torsion_site_symmetry_3	
_geom_torsion_site_symmetry_4	(char)

The symmetry code of each atom site as the symmetryequivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n_klm. The character string n_klm is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _symmetry_equiv_pos_site_id. k, l and m refer to the translations that are subsequently applied to the symmetry transformed coordinates to generate the atom used in calculating the angle. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_torsion_atom_site_label_.

Example(s): '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symm. posn.; +a on x; -b on y) [geom_torsion]

journal_[]

Data items in the JOURNAL category record details about the book keeping entries used by the journal staff when processing a CIF submitted for publication. Normally the creator of a CIF will not specify these data items. The data names are not defined in the Dictionary because they are for journal use only.

Example 1 - based on Acta Cryst. file for entry HL0007 [Willis, Beckwith & Tozer (1991). Acta Cryst. C47, 2276-2277].

_journal_date_recd_electronic 91-04-15 _journal_date_from_coeditor 91-04-18 _journal_date_accepted 91-04-18 _journal_date_printers_first 91-08-07
_journal_date_accepted 91-04-18
_journal_date_printers_first 91-08-07
_journal_date_proofs_out 91-08-07
_journal_coeditor_code HL0007
_journal_techeditor_code C910963
_journal_coden_ASTM ACSCEE
_journal_name_full 'Acta Crystallographica Section C'
_journal_year 1991
_journal_volume 47
_journal_issue NOV91
_journal_page_first 2276
_journal_page_last 2277

_journal_coden_ASTM _journal_coden_Cambridge _journal_coeditor_address _journal_coeditor_code _journal_coeditor_email _journal_coeditor_fax _journal_coeditor_name _journal_coeditor_notes _journal_coeditor_phone _journal_data_validation_number _journal_date_accepted _journal_date_from_coeditor _journal_date_to_coeditor _journal_date_printers_final _journal_date_printers_first _journal_date_proofs_in _journal_date_proofs_out _journal_date_recd_copyright _journal_date_recd_electronic _journal_date_recd_hard_copy _journal_issue _journal_language _journal_name_full _journal_page_first _journal_page_last _journal_paper_category _journal_suppl_publ_number _journal_suppl_publ_pages _journal_techeditor_address _journal_techeditor_code _journal_techeditor_email _journal_techeditor_fax _journal_techeditor_name _journal_techeditor_notes _journal_techeditor_phone _journal_volume _journal_year Data items specified by the journal staff.

journal_index_[] Data items in the JOURNAL_INDEX category are used to list terms employed in generating the journal indexes. Normally the creator of a CIF will not specify these data items.

Example 1 - based on a paper by Zhu, Reynolds, Klein & Trudell [(1994). Acta Cryst. C50, 2067–2069].

oop	
journal_index_type	
journal_index_term	
journal_index_subterm	
C16H19NO4	
3 alkaloids	(-)-norcocaine
G (-)-norcocaine	
3	

; [2R,3S-(2\b,3\b)]-methyl 3-(benzoyloxy)-8-azabicyclo[3.2.1]octane-2-carboxylate

_journal_index_subterm

_journal_index_term

_journal_index_type

(char)

Indexing terms supplied by journals staff.

[journal index]

publ[]

Data items in the PUBL category are used when submitting a manuscript for publication. They refer either to the paper as a whole, or to specific named elements within a paper (such as the title and abstract, or the Comment and Experimental sections of Acta Crystallographica Section C). The data items in the PUBL_BODY category should be used for the textual content of other submissions. Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.

```
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[(1991). Acta Cryst. C47, 2276-2277].
```

_publ_section_title

```
; trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-
 1,3-oxazolidin-5-one
```

_publ_section_abstract

The oxazolidinone ring is a shallow envelope conformation with the tert-butyl and iso-butyl groups occupying trans-positions with respect to the ring. The angles at the N atom sum to 356.2 $\$, indicating a very small degree of pyramidalization at this atom. This is consistent with electron delocalization between the N atom and the carbonyl centre [N--C=O = 1.374(3) \%A].

Example 2 - based on C₃₁H₄₈N₄O₄, reported by Coleman, Patrick, Andersen & Rettig [(1996). Acta Cryst. C52, 1525–1527.

```
_publ_section_title
    Hemiasterlin Methyl Ester
_publ_section_title_footnote
```

```
IUPAC name: methyl 2,5-dimethyl-4-{2-[3-methyl-
2-methylamino-3-(N-methylbenzo[b]pyrrol-
3-yl)butanamido]-3,3-dimethyl-N-methyl-
butanamido -2-hexenoate.
```

_publ_contact_author

The name and address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. It is preferable to use

[journal]

(char)

(char)

[publ]

Example(s):

;	Professor George Ferguson	
	Department of Chemistry and Biochemistry	
	University of Guelph	
	Ontario	
	Canada	
	N1G 2W1	
;		[publ]

_publ_contact_author_address (char)

The address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.

Example(s):

;	Department	of	Chemistry	and	Biochemistry	
	University	of	Guelph			
	Ontario		-			
	Canada					
	N1G 2W1					
;						

(char) _publ_contact_author_email Email address in a form recognisable to international networks.

Example(s): 'name@host.domain.country', 'bm@iucr.org'

[publ]

_publ_contact_author_fax (char)

Facsimile telephone number of the author submitting the manuscript and data block. The recommended style includes the international dialing prefix, the area code in parentheses, followed by the local number with no spaces. The earlier convention of including the international dialing prefixes in parentheses is no longer recommended.

Example(s):	<pre>'12(34)9477334'.</pre>	'12()349477334'	[publ]

The name of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.

Example(s): 'Professor George Ferguson' [publ]

```
_publ_contact_author_phone
                                            (char)
```

Telephone number of the author submitting the manuscript and data block. The recommended style includes the international dialing prefix, the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces. The earlier convention of including the international dialing prefixes in parentheses is no longer recommended.

Example(s): '12(34)9477330',	'12()349477330',
'12(34)9477330x5543'	[publ]
_publ_contact_letter	(char)
_publ_contact_retter	(cnur)

A letter submitted to the journal editor by the contact author.

[publ]

_publ_manuscript_creation (char)

A description of the wordprocessor package and computer used to create the word processed manuscript stored as _publ_manuscript_processed.

Example(s):

'Tex file created by FrameMaker on a Sun 3/280' [publ]

(char)

cif_core.dic

_publ_manuscript_processed The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item _publ_manuscript_creation.

[publ]

_publ_manuscript_text (char)

The full manuscript of a paper (excluding figures and possibly the tables) output as standard ASCII text.

[publ]

_publ_requested_category (char)

The category of paper submitted. For submission to Acta Crystallographica Section C, only those codes indicated for use with that journal should be used. E-11 - 41-1-

FA	Full article	
FI	Full submission - inorganic (Acta C)	
FO	Full submission - organic (Acta C)	
FM	Full submission - metal-organic (Acta C)	
CI	CIF-access paper - inorganic (Acta C)	
CO	CIF-access paper - organic (Acta C)	
CM	CIF-access paper - metal-organic (Acta C)	
AD	Addenda & Errata (Acta C)	
SC	Short Communication	
Where no val	ue is given, the assumed value is 'FA'.	[publ]

Where no value is given, the assumed value is 'FA'. [publ]

_publ_requested_coeditor_name (char)

The name of the Co-editor whom the authors would like to process the submitted manuscript.

[publ]

_publ_requested_journal	(char)
-------------------------	--------

The name of the journal to which the manuscript is being submitted.

[publ]

_publ_section_title _publ_section_title_footnote _publ_section_synopsis _publ_section_abstract _publ_section_comment _publ_section_introduction _publ_section_experimental _publ_section_exptl_prep _publ_section_exptl_refinement _publ_section_exptl_solution _publ_section_discussion _publ_section_acknowledgements _publ_section_references _publ_section_figure_captions	(char)
_publ_section_table_legends	(char)

The sections of a manuscript if submitted in parts. As an alternative see _publ_manuscript_text and _publ_manuscript_processed. The _publ_section_exptl_prep, _publ_section_exptl_refinement and _publ_section_exptl_solution items are preferred for separating the chemical preparation, refinement and structure solution aspects of the experimental description.

[publ]

_publ_author_[] Data items in the PUBL_AUTHOR category record details of the authors of a manuscript submitted for publication. <i>Example 1 - based on data set TOZ of Willis, Beckwith & Tozer</i> [(1991). Acta Cryst. C47, 2276–2277]. loop_ _publ_author_name _publ_author_address	_publ_body_[] Data items in the PUBL_BODY category permit labelling of different text sections within the body of a submitted paper. Note that these should not be used in a paper which has a standard format with sections tagged by specific data names (such as in <i>Acta Crystallographica Section C</i>). Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.
<pre>'Willis, Anthony C.' ; Research School of Chemistry Australian National University GPO Box 4 Canberra, ACT Australia 2601 ;</pre>	Example 1 - based on a paper by R. Restori & D. Schwarzenbach (1996), Acta Cryst. A52, 369-378. loop_ _publ_body_element _publ_body_label _publ_body_title _publ_body_format
_publ_author_address (char)	_publ_body_contents section 1 Introduction cif ; X-ray diffraction from a crystalline material provides information on the thermally and spatially averaged electron density in the crystal
The address of a publication author. If there is more than one author this will be looped with _publ_author_name. May appear in list containing _publ_author_name. Example(s): ; Department	<pre>; section 2 Theory tex ; In the rigid-atom approximation, the dynamic electron density of an atom is described by the convolution product of the static atomic density and a probability density function, \$\rho_{dyn}(\bf r)=\rho_{stat}(\bf r)*P(\bf r). \eqno(1)\$</pre>
<pre>, Department Institute Street City and postcode COUNTRY ; [publ_author]</pre>	; Example 2 - based on a paper by R. J. Papoular, Y. Vekhter & P. Coppens (1996), Acta Cryst. A52, 397-407. loop_ _publ_body_element _publ_body_label _publ_body_title
	_publ_body_contents section 3 ; The two-channel method for retrieval of the deformation electron density ;
_publ_author_footnote (char) A footnote accompanying an author's name in the list of authors of a paper. Typically indicates sabbatical address, additional affiliations or date of decease.	<pre>. subsection 3.1 'The two-channel entropy S[\D\r(r)]' ; As the wide dynamic range involved in the total electron density ; subsection 3.2</pre>
May appear in list containing _publ_author_name. Example(s): 'On leave from U. Western Australia', 'Also at Department of Biophysics' [publ_author]	<pre>'Uniform vs informative prior model densities' subsubsection 3.2.1 'Use of uniform models' ; Straightforward algebra leads to expressions analogous to;</pre>
_publ_author_name (char)	_publ_body_contents (char) A text section of a submitted paper. Appears in list containing _publ_body_label. [publ_body]

The name of a publication author. If there are multiple authors they will be looped with _publ_author_address. The family name(s), followed by a comma and including any dynastic components, precedes the first names or initials.

May appear in list as essential element of loop structure.

Example(s): 'Bleary, Percival R.',	'O'Neil, F. K.',
'Van den Bossche, G.', 'Yang, DL.',	'Simonov, Yu.A',
'M\"uller, H. A.', 'Ross II, C. R.'	[publ_author]

Appears in list containing _publ_body_label. [publ_body] _publ_body_element (char) The functional role of the associated text section. section subsection subsubsection appendix footnote Appears in list containing _publ_body_label. [publ_body] _publ_body_format

Code indicating the appropriate typesetting conventions for accented characters and special symbols in the text section.

ascii	no coding for special symbols
cif	CIF convention
latex	LaT _E X
rtf	Rich Text Format
sgml	SGML (ISO 8879)
tex	T _E X
troff	troff or nroff

Appears in list containing _publ_body_label. Where no value is given, the assumed value is 'cif'. [publ_body]

_publ_body_label (char)

Code identifying the section of text. The combination of this with _publ_body_element must be unique.

Appears in list as essential element of loop structure. Uniqueness of loop packet tested on _publ_body_element.

Example(s): '1', '1.1', '2.1.3' [publ_body]

_publ_body_title (char)

Title of the associated section of text.

Appears in list containing _publ_body_label. [publ_body]

_publ_manuscript_incl_[]

Data items in the PUBL_MANUSCRIPT_INCL category allow the authors of a manuscript submitted for publication to list data names that should be added to the standard request list employed by journal printing software. Although these fields are primarily intended to identify CIF data items that the author wishes to include in a published paper, they can also be used to identify data names created so that non-CIF items can be included in the publication. Note that *_item names must be enclosed in single quotes.

Example 1 - directive to include hydrogen bonding table, including cosmetic headings in comments.

]	00	pÈ	-	

_publ_manuscript_incl_extra_item _publ_manuscript_incl_extra_info _publ_manuscript_incl_extra_defn # Include Hydrogen Bonding Geometry Description # ------# Name explanation standard? # ----'_geom_hbond_atom_site_label_D' 'H-bond donor' yes '_geom_hbond_atom_site_label_H' 'H-bond hydrogen' geom hbond atom site label A' 'H-bond acceptor' yes _geom_hbond_distance_DH' 'H-bond D-H' yes _geom_hbond_distance_HA' 'H-bond H...A' yes _geom_hbond_distance_DA' 'H-bond D...A' yes _geom_hbond_angle_DHA' 'H-bond D-H...A yes Example 2 - hypothetical example including both standard CIF data items and a non-CIF quantity which the author wishes to list. qool publ manuscript incl extra item publ manuscript incl extra info _publ_manuscript_incl_extra_defn _atom_site_symmetry_multiplicity' 'to emphasise special sites' _chemical_compound_source' 'rare material, unusual source' yes _reflns_d_resolution_high' 'limited data is a problem here' ves

(char)

_publ_manuscript_incl_extra_defn (char)

Flags whether the corresponding data item marked for inclusion in a journal request list is a standard CIF definition or not.

no	not a standard CIF data name
n	abbreviation for "no"
yes	a standard CIF data name

abbreviation for "yes" v

Appears in list containing _publ_manuscript_incl_extra_item. given, Where no value the assumed value is is 'yes'. [publ_manuscript_incl]

_publ_manuscript_incl_extra_info (char)

A short note indicating the reason why the author wishes the corresponding data item marked for inclusion in the journal request list to be published.

Appears in list containing _publ_manuscript_incl_extra_item. [publ_manuscript_incl]

_publ_manuscript_incl_extra_item (char) Specifies the inclusion of specific data into a manuscript which is not normally requested by the journal. The values of this item are the extra data names (which *must* be enclosed in single quotes) that will be added to the journal request list.

Appears in list as essential element of loop structure.

[publ_manuscript_incl]

_refine. Data items in the REFINE categor structure refinement parameters.	
Example 1 - based on data set TOZ [(1991). Acta Cryst. C47, 2276–2277	5
_refine_special_details	
sfls: _F_calc_weight_fu	ull_matrix
_refine_ls_structure_factor_coef	F
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	
'w=1/(u^2	(F)+0.0004F ²)'
_refine_ls_hydrogen_treatment	refxyz
_refine_ls_extinction_method	Zachariasen
_refine_ls_extinction_coef	3514(42)
_refine_ls_extinction_expression	
; Larson, A. C. (1970). "Crystalle	
edited by F. R. Ahmed. Eq. (22)	p. 292. Copenhagen:
Munksgaard.	
;	
_refine_ls_abs_structure_details	
; The absolute configuration was a	
with that of its precursor 1-lew centre C3.	icine at the chiral
centre C3.	
, refine ls number reflns	1408
refine ls number parameters	272
_refine_ls_number_restraints	0
_refine_ls_number_constraints	0
_refine_ls_R_factor_all	. 038
_refine_ls_R_factor_gt	.034
_refine_ls_wR_factor_all	.044
_refine_ls_wR_factor_gt	.042
_refine_ls_goodness_of_fit_all	1.462
_refine_ls_goodness_of_fit_gt	1.515
_refine_ls_shift/su_max	.535
 _refine_ls_shift/su_mean	.044
	108
	.131
_rerine_diff_density_max	. 1 3 1

_refine_diff_density_max
_refine_diff_density_min
_refine_diff_density_rms (numb)

The largest, smallest and root-mean-square-deviation, in electrons per ångström cubed, of the final difference electron density. The *_rms value is measured with respect to the arithmetic mean density, and is derived from summations over each grid point in the asymmetric unit of the cell. This quantity is useful for assessing the significance of *_min and *_max values, and also for defining suitable contour levels.

[refine]

_refine_ls_abs_structure_details (char)

The nature of the absolute structure and how it was determined. [refine]

_refine_ls_abs_structure_Flack (numb)

The measure of absolute structure as defined by Flack. For centrosymmetric structures the only permitted value, if the data name is present, is 'inapplicable' represented by '.'. For non-centrosymmetric structures the value must lie in the 99.97% Gaussian confidence interval $-3u \le x \le 1 + 3u$ and a standard uncertainty (e.s.d.) u must be supplied. The _enumeration_range of 0.0:1.0 is correctly interpreted as meaning $(0.0 - 3u) \le x \le (1.0 + 3u)$.

Ref: Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881. The permitted range is 0.0→1.0. [refine]

_refine_ls_abs_structure_Rogers (numb)

The measure of absolute structure as defined by Rogers. The value must lie in the 99.97% Gaussian confidence interval $-1 - 3u \le \eta \le 1 + 3u$ and a standard uncertainty (e.s.d.) u must be supplied. The _enumeration_range of -1.0:1.0 is correctly interpreted as meaning $(-1.0 - 3u) \le \eta \le (1.0 + 3u)$.

Ref: Rogers, D. (1981). Acta Cryst. A**37**, 734–741. The permitted range is $-1.0 \rightarrow 1.0$. [refine]

_refine_ls_d_res_high (numb)

The highest resolution in ångströms for the interplanar spacing in the reflections used in refinement. This is the smallest d value. The permitted range is $0.0 \rightarrow \infty$. [refine]

_refine_ls_d_res_low (numb)

The lowest resolution in ångströms for the interplanar spacing in the reflections used in refinement. This is the highest d value. The permitted range is $0.0 \rightarrow \infty$. [refine]

_refine_ls_extinction_coef (numb)

The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions of <u>_refine_ls_extinction_expression</u> and <u>_refine_ls_extinction_method</u>. For the 'Zachariasen' method it is the r^* value; for the 'Becker-Coppens type 1 isotropic' method it is the 'g' value, and for 'Becker-Coppens type 2 isotropic' corrections it is the '\rho' value. Note that the magnitude of these values is usually of the order of 10000.

(char)

(char)

Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A**30**, 129–153. Zachariasen, W. H. (1967). Acta Cryst. **23**, 558–564. Larson, A. C. (1967). Acta Cryst. **23**, 664–665.

Example(s): '3472(52)' (Zachariasen coefficient $r^* = 0.347(5) \times 10^4$) [refine]

_refine_ls_extinction_expression

A description or reference of the extinction correction equation used to apply the data item <u>_refine_ls_extinction_coef</u>. This information must be sufficient to reproduce the extinction correction factors applied to the structure factors.

Example(s):

;

; Larson, A. C. (1970). "Crystallographic Computing", edited by F. R. Ahmed. Eq. (22) p. 292. Copenhagen: Munksgaard.

[refine]

_refine_ls_extinction_method

A description of the extinction correction method applied with the data item _refine_ls_extinction_coef. This description should include information about the correction method, either 'Becker-Coppens' or 'Zachariasen'. The latter is sometimes referred to as the 'Larson' method even though it employs Zachariasen's formula. The Becker-Coppens procedure is referred to as 'type 1' when correcting secondary extinction dominated by the mosaic spread; as 'type 2' when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the Becker-Coppens method it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian'; and the nature of the extinction as 'isotropic' or 'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied the multiple coefficients cannot be contained in *_extinction_coef and must be listed in _refine_special_details.

Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A**30**, 129–153. Zachariasen, W. H. (1967). Acta Cryst. **23**, 558–564. Larson, A. C. (1967). Acta Cryst. **23**, 664–665.

Where no value is given, the assumed value is 'Zachariasen'.

Example(s): 'B-C type 2 Gaussian isotropic', 'none'

[refine]

(numb)

_refine_ls_goodness_of_fit_all

The least-squares goodness-of-fit parameter *S* for all reflections after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least squares. See also _refine_ls_restrained_S_ definitions.

$$S = \left(\frac{\sum\{w[Y(obs) - Y(calc)]^2\}}{N_{ref} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight $(1/u^2)$, u = standard uncertainty, N_{ref} = the number of reflections used in the refinement, N_{param} = the number of refined parameters, and the sum \sum is taken over the specified reflections.

The permitted range is $0.0 \rightarrow \infty$. [refine]

_refine_ls_goodness_of_fit_gt

The least-squares goodness-of-fit parameter S for significantly intense reflections, (see _reflns_threshold_expression), after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least squares. See also _refine_ls_restrained_S_ definitions.

$$S = \left(\frac{\sum\{w[Y(obs) - Y(calc)]^2\}}{N_{ref} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight $(1/u^2)$, u = standard uncertainty, $N_{ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters, and the sum \sum is taken over the specified reflections.

Related item(s): _refine_ls_goodness_of_fit_obs (alternate). The permitted range is $0.0 \rightarrow \infty$. [refine]

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_goodness_of_fit_gt

The least-squares goodness-of-fit parameter S for observed reflections (see _reflns_observed_criterion), after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least squares. See also _refine_ls_restrained_S_ definitions.

$$S = \left(\frac{\sum \{w[Y(obs) - Y(calc)]^2\}}{N_{ref} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight $(1/u^2)$, u = standard uncertainty, $N_{ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters, and the sum \sum is taken over the specified reflections.

[refine]

The least-squares goodness-of-fit parameter S for all reflections included in the refinement, after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least squares. See also _refine_ls_restrained_S_ definitions.

$$S = \left(\frac{\sum |w|Y(obs) - Y(calc)|^2|}{N_{ref} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight $(1/u^2)$, u = standard uncertainty, $N_{ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters, and the sum \sum is taken over the specified reflections. [rofino]

The permitted range is
$$0.0 \rightarrow \infty$$
. [refine]

Treatment of hydrogen atoms in the least-squares refinement.

refall	refined all H parameters
refxyz	refined H coordinates only
refU	refined H U only
noref	no refinement of H parameters

(numb)

(numb)

constr	H parameters constrained	
mixed	some constrained, some independent	
undef	H-atom parameters not defined	
Whore no vol	us is siven the assumed value is (undef)	[

Where no value is given, the assumed value is 'undef'. [refine]

Type of matrix used to accumulate the least-squares derivatives.

full	full	
fullcycle	full with fixed elements per cycle	
atomblock	block diagonal per atom	
userblock	user-defined blocks	
diagonal	diagonal elements only	
sparse	selected elements only	
Where no value	is given, the assumed value is 'full'.	[refine]

_refine_ls_number_constraints

The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigidbody refinement). See also _atom_site_constraints and _atom_site_refinement_flags. A general description of constraints may appear in _refine_special_details.

Where no value is given, the assumed value is '0'. The permitted range is $0 \rightarrow \infty$. [refine]

_refine_ls_number_parameters (numb)

The number of parameters refined in the least-squares process. If possible this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Leastsquares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess.

The permitted range is $0 \rightarrow \infty$. [refine]

The number of unique reflections contributing to the leastsquares refinement calculation.

The permitted range is
$$0 \rightarrow \infty$$
. [refine]

_refine_ls_number_restraints

The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Often restrained parameters involve geometry or energy dependencies. See also _atom_site_constraints and _atom_site_refinement_flags. A general description of refinement constraints may appear in _refine_special_details. The permitted range is $0 \rightarrow \infty$. [refine]

Residual factor for all reflections satisfying the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. This is the conventional *R* factor. See also _refine_ls_wR_factor_ definitions.

$$R = \frac{\sum |F(obs) - F(calc)|}{\sum |F(obs)|}$$

F(obs) = the observed structure-factor amplitudes, F(calc) = the calculated structure-factor amplitudes, and the sum \sum is taken over the specified reflections.

The permitted range is
$$0.0 \rightarrow \infty$$
. [refine]

Residual factor for the reflections (with number given by _reflns_number_gt) judged significantly intense (*i.e.* satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. This is the conventional *R* factor. See also _refine_ls_wR_factor_ definitions.

$$R = \frac{\sum |F(obs) - F(calc)|}{\sum |F(obs)|}$$

F(obs) = the observed structure-factor amplitudes, F(calc) = the calculated structure-factor amplitudes, and the sum \sum is taken over the specified reflections.

Residual factor for the reflections classified as 'observed' (see _reflns_observed_criterion) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. This is the conventional R factor. See also _refine_ls_wR_factor_definitions.

$$R = \frac{\sum |F(obs) - F(calc)|}{\sum |F(obs)|}$$

 $F(obs) = the observed structure-factor amplitudes, F(calc) = the calculated structure-factor amplitudes, and the sum <math>\sum$ is taken over the specified reflections.

(numb)

Residual factor $R(F^2)$, calculated on the squared amplitudes of the observed and calculated structure factors, for significantly intense reflections (satisfying _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low.

$$R(F^2) = \frac{\sum |F(obs)^2 - F(calc)^2|}{\sum F(obs)^2}$$

 $F(obs)^2$ = squares of the observed structure-factor amplitudes, $F(calc)^2$ = squares of the calculated structure-factor amplitudes, and the sum \sum is taken over the specified reflections.

The permitted range is
$$0.0 \rightarrow \infty$$
. [refine]

S' =

(numb)

Residual factor R(I) for significantly intense reflections (satisfying _reflns_threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements of powder data, where it is referred to as R_B or R_{Bragg} .

$$R(I) = \frac{\sum |I(obs) - I(calc)|}{\sum |I(obs)|}$$

I(obs) = the net observed intensities, I(calc) = the net calculated intensities, and the sum \sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

The least-squares goodness-of-fit parameter S' for all reflections after the final cycle of least squares. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_ definitions.

$$\left(\frac{\sum\{w[Y(obs) - Y(calc)]^2\} + \sum_r \{w_r[P(calc) - P(targ)]^2\}}{N_{ref} + N_{restr} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the observed coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], P(calc) = the calculated restraint values, P(targ) = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see _refine_ls_number_reflns), N_{restr} = the number of restraints (see _refine_ls_number_restraints), N_{param} = the number of refined parameters (see _refine_ls_number_parameters), the sum \sum is taken over the specified reflections, and the sum \sum_r is taken over the restraints.

The permitted range is $0.0 \rightarrow \infty$. [refine]

The least-squares goodness-of-fit parameter S' for significantly intense reflections (satisfying _reflns_threshold_expression) after the final cycle of least squares. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_ definitions.

$$S' = \left(\frac{\sum\{w[Y(obs) - Y(calc)]^2\} + \sum_r \{w_r[P(calc) - P(targ)]^2\}}{N_{ref} + N_{restr} - N_{param}}\right)^{1/2}$$

Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), Y(calc) = the observed coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], P(calc) = the calculated restraint values, P(targ) = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see _refine_ls_number_reflns), N_{restr} = the number of restraints (see _refine_ls_number_restraints), N_{param} = the number of refined parameters (see _refine_ls_number_parameters), the sum \sum is taken over the specified reflections, and the sum \sum_r is taken over the restraints.

Related item(s): _refine_ls_restrained_S_obs (alternate). The permitted range is $0.0 \rightarrow \infty$. [refine]

c/

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_restrained_S_gt The least-squares goodness-of-fit parameter S' for observed reflections, after the final cycle of least squares. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_definitions.

$$\left(\frac{\sum\{w[Y(obs) - Y(calc)]^2\} + \sum_r\{w_r[P(calc) - P(targ)]^2\}}{N_{ref} + N_{restr} - N_{param}}\right)^{1/2}$$

 $Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef), <math>Y(calc) = the observed coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], <math>P(calc) = the calculated restraint values, P(targ) = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see _refine_ls_number_reflns), N_{restr} = the number of reflections (see _refine_ls_number_restraints), N_{param} = the number of reflections (see _refine_ls_number_restraints), N_{param} = the number of reflections, and the sum <math>\sum_r$ is taken over the specified reflections, and the sum \sum_r is taken over the restraints.

[refine]

(numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_shift/su_max The largest ratio of the final least-squares parameter shift divided by

the final standard uncertainty (s.u., formerly described as estimated standard deviation, e.s.d.).

[refine]

_refine_ls_shift/esd_mean

standard deviation, e.s.d.).

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_shift/su_mean The average ratio of the final least-squares parameter shift divided by the final standard uncertainty (s.u., formerly described as estimated

[refine]

_refine_ls_shift/su_max (numb)

The largest ratio of the final least-squares parameter shift divided by the final standard uncertainty.

Related item(s): <code>_refine_ls_shift/esd_max</code> (alternate). The permitted range is $0.0 \rightarrow \infty$. [refine]

_refine_ls_shift/su_mean (numb)

The average ratio of the final least-squares parameter shift divided by the final standard uncertainty.

 $\label{eq:refine_ls_shift/esd_mean} Related item(s): _refine_ls_shift/esd_mean (alternate). The permitted range is 0.0 \rightarrow \infty. \qquad [refine]$

Structure-factor coefficient |F|, F^2 or I, used in the least-squares refinement process.

(char)

_refine_ls_weighting_details

A description of special aspects of the weighting scheme used in least-squares refinement. Used to describe the weighting when the value of _refine_ls_weighting_scheme is specified as 'calc'.

Example(s):

; Sigdel model of Konnert-Hendrickson:

Sigdel = Afsig + Bfsig* $(sin(\langle q) / \langle 1 - 1/6 \rangle)$ Afsig = 22.0, Bfsig = 150.0 at the beginning of refinement.

Afsig = 16.0, Bfsig = 60.0 at the end of refinement.

[refine]

_refine_ls_weighting_scheme

The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight (but see _refine_ls_weighting_details for a preferred approach).

sigma	based on measured s.u.'s
unit	unit or no weights applied
calc	calculated weights applied

Where no value is given, the assumed value is 'sigma'. [refine]

_refine_ls_wR_factor_all (numb)

Weighted residual factors for all reflections. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the _refine_ls_R_factor_ definitions.

$$wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$$

Y(obs) = the observed amplitude specified by _refine_ls_structure_factor_coef, Y(calc) = the calculated amplitude specified by _refine_ls_structure_factor_coef, w = the least-squares weight, and the sum \sum is taken over the specified reflections.

The permitted range is $0.0 \rightarrow \infty$. [refine]

Weighted residual factors for significantly intense reflections (satisfying _reflns_threshold_expression) included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the _refine_ls_R_factor_ definitions.

$$wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$$

Y(obs) = the observed amplitude specified by _refine_ls_structure_factor_coef, Y(calc) = the calculated amplitude specified by _refine_ls_structure_factor_coef, w = the least-squares weight, and the sum \sum is taken over the specified reflections.

$$\label{eq:relation} \begin{split} \mbox{Related item(s): _refine_ls_wR_factor_obs (alternate). The permitted range is $0.0 $\rightarrow ∞. [refine] \end{split}$$

(numb)

(char)

_ref

(numb)

(numb)

_refine_ls_wR_factor_obs

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_wR_factor_gt Weighted residual factors for the reflections classified as 'observed' (see _reflns_observed_criterion) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the _refine_ls_R_factor_ definitions.

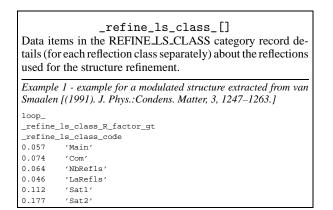
$$wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$$

Y(obs) = the observed amplitude specified by _refine_ls_struc $ture_factor_coef$, Y(calc) = the calculated amplitude specifiedby _refine_ls_structure_factor_coef, w = the least-squares weight, and the sum \sum is taken over the specified reflections.

[refine]

Weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the _refine_ls_R_factor_ definitions.

$$wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$$


Y(obs) = the observed amplitude specified by _refine_ls_structure_factor_coef, Y(calc) = the calculated amplitude specified by _refine_ls_structure_factor_coef, w = the least-squares weight, and the sum \sum is taken over the specified reflections.

The permitted range is $0.0 \rightarrow \infty$. [refine]

Description of special aspects of the refinement process.

[refine]

(char)

_refine_ls_class_code The code identifying a certain reflection class. This code must

match a _reflns_class_code. Appears in list. Must match data name _reflns_class_code.

Example(s): '1', 'm1', 's2' [refine_ls_class]

For each reflection class, the highest resolution in ångströms for the spacing in the reflections used in refinement. This is the lowest *d* value in a reflection class.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

For each reflection class, the lowest resolution in ångströms for the spacing in the reflections used in refinement. This is the highest d value in a reflection class.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

For each reflection class, the residual factors for all reflections, and for significantly intense reflections (see _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_d_res_high and _refine_ls_class_d_res_low. This is the conventional *R* factor.

$$R = \frac{\sum |F(obs) - F(calc)|}{\sum |F(obs)|}$$

F(obs) = the observed structure-factor amplitudes, F(calc) = the calculated structure-factor amplitudes, and the sum \sum is taken over the reflections of this class. See also _refine_ls_class_wR_factor_all definitions.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

For each reflection class, the residual factor $R(F^2)$ calculated on the squared amplitudes of the observed and calculated structure factors, for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_d_res_high and _refine_ls_class_d_res_low.

$$R(F^2) = \frac{\sum |F(obs)^2 - F(calc)^2|}{\sum F(obs)^2}$$

 $F(obs)^2$ = squares of the observed structure-factor amplitudes, $F(calc)^2$ = squares of the calculated structure-factor amplitudes, and the sum \sum is taken over the reflections of this class.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

_refine_ls_class_R_I_factor (numb)

For each reflection class, the residual factor R(I) for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements of powder data, where it is referred to as R_B or R_{Bragg}

$$R(I) = \frac{\sum |I(obs) - I(calc)|}{\sum |I(obs)|}$$

I(obs) = the net observed intensities, I(calc) = the net calculated intensities, and the sum \sum is taken over the reflections of this class.

Appears in list containing $refine_ls_class_code$. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

_refine_ls_class_wR_factor_all (numb) For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_d_res_high and _refine_ls_class_d_res_low.

$$wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$$

Y(obs) = the observed amplitude specified by _refine_ls_structure_factor_coef, Y(calc) = the calculated amplitude specified by _refine_ls_structure_factor_coef, w= the least-squares weight, and the sum \sum is taken over the reflections of this class. See also _refine_ls_class_R_factor_ definitions.

Appears in list containing $refine_ls_class_code$. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

refln[]

Data items in the REFLN category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.

Example 1 - based on data set fetod of Todres, Yanovsky, Ermekov & Struchkov [(1993). Acta Cryst. C49, 1352-1354]. loop_ _refln_index_h _refln_index_k _refln_index_l _refln_F_squared_calc _refln_F_squared_meas refln F squared sigma

_1	ref	lr	ı_i	ind	clude_status			
2		0		0	85.57	58.90	1.45	0
3		0		0	15718.18	15631.06	30.40	0
4		0		0	55613.11	49840.09	61.86	0
5		0		0	246.85	241.86	10.02	0
6		0		0	82.16	69.97	1.93	0
#	-	_	_	_	data truncated	for brevity		-

Example 2 - based on standard test data set p6122 of the Xtal distribution [Hall, King & Stewart (1995). Xtal3.4 User's Manual. Univ. Western Australia].

loop _refln_index_h _refln_index_k _refln_index_l _refln_F_meas _refln_F_calc _refln_F_sigma refln include status refln scale group code 6 34.935 36.034 3.143 o 1 0 0 0 12 42.599 40.855 2.131 o 0 1 1 59.172 57.976 0 1 4.719 0 0 1 2 89.694 94.741 4.325 o 1 0 6.755 7.102 .895 < 1 1 6 - - - data truncated for brevity - - - -

The calculated and measured structure-factor component A (in electrons for X-ray diffraction).

$$A = |F| \cos(phase)$$

Appears in list containing _refln_index_. [refln]

The calculated and measured structure-factor component B (in electrons for X-ray diffraction).

$$B = |F| \sin(phase)$$

Appears in list containing _refln_index_. [refln]

The code identifying the class to which this reflection has been assigned. This code must match a value of _re-flns_class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number $m = \sum |m_i|$, where the m_i are the integer coefficients that, in addition to h, k, l, index the corresponding diffraction vector in the basis defined for the reciprocal lattice.

Appears in list containing _refln_index_. Must match data name _reflns_class_code. [refln]

(char)

The *d* spacing in angströms for this reflection. It is related to the $(\sin \theta)/\lambda$ value by the expression _refln_d_spacing = $2/(_refln_sint/lambda)$

Appears in list containing <code>_refln_index_</code>. The permitted range is $0.0 \rightarrow \infty$. [geom_bond]

Code identifying each crystal if multiple crystals are used. Is used to link with _exptl_crystal_id in the _exptl_crystal_ list.

Appears in list containing _refln_index_. Must match data name _exptl_crystal_id. [refln]

The calculated, measured and standard uncertainty (derived from measurement) of the structure factors (in electrons for X-ray diffraction).

Appears in list containing _refln_index_. [refln]

_refln_F_squared_calc _refln_F_squared_meas _refln_F_squared_sigma

Calculated, measured and estimated standard uncertainty (derived from measurement) of the squared structure factors (in electrons squared for X-ray diffraction).

Appears in list containing _refln_index [re	fln]
---	-----	---

_refln_include_status (char)

Classification of a reflection so as to indicate its status with respect to inclusion in refinement and calculation of R factors.

С)	(lower-case letter o for 'observed')
		satisfies _refine_ls_d_res_high
		satisfies _refine_ls_d_res_low
		exceeds _reflns_threshold_expression
<	:	satisfies _refine_ls_d_res_high
		satisfies _refine_ls_d_res_low
		does not exceed _reflns_threshold_expression
-		systematically absent reflection
х	2	unreliable measurement - not used
h	L	does not satisfy _refine_ls_d_res_high
1		does not satisfy _refine_ls_d_res_low

Related item(s): _refln_observed_status (alternate). Appears in list containing _refln_index_. Where no value is given, the assumed value is 'o'. [refln]

_refln_index_h					
_refln_index_k					
_refln_index_l					(numb)
	~		_	 	

Miller indices of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category.

Appears in list as essential element of loop structure. [refln]

```
_refln_intensity_calc
_refln_intensity_meas
_refln_intensity_sigma
                                               (numb)
The calculated, measured and standard uncertainty (derived from
```

measurement) of the intensity, in the measured units. Appears in list containing _refln_index_. [refln]

_refln_mean_path_length_tbar (numb) Mean path length in millimetres through the crystal for this reflection.

Appears in list containing _refln_index_. [refln]

_refln_observed_status (char)

This definition has been superseded and is retained here only for archival purposes. Use instead _refln_include_status Classification of a reflection so as to indicate its status with respect to inclusion in refinement and calculation of R factors. [refln] _refln_phase_calc (numb) The calculated structure-factor phase in degrees. Appears in list containing _refln_index_. [refln] _refln_phase_meas (numb) The measured structure-factor phase in degrees.

_refln_refinement_status	(char)
--------------------------	--------

Status of reflection in the structure refinement process.

incl	included in ls process
excl	excluded from ls process
extn	excluded due to extinction

Appears in list containing _refln_index_. Where no value is given, the assumed value is 'incl'. [refln]

Code identifying the structure-factor scale. This code must correspond to one of the _reflns_scale_group_code values.

Appears in list containing _refln_index_. Must match data name _reflns_scale_group_code.

Example(s): '1', '2', '3', 's1', 'A', 'B', 'c1', 'c2', 'c3' [refln]

_refln_sint/lambda

(numb)

The $(\sin \theta)/\lambda$ value in reciprocal ångströms for this reflection. Appears in list containing _refln_index_. The permitted range is $0.0 \rightarrow \infty$. [refln]

_refln_symmetry_epsilon

```
(numb)
```

The symmetry reinforcement factor corresponding to the number of times the reflection indices are generated identically from the space-group symmetry operations.

Appears in list containing _refln_index_. The permitted range is $1 \rightarrow 48$ [refln]

_refln_symmetry_multiplicity (numb)

The number of reflections symmetry-equivalent under the Laue symmetry to the present reflection. In the Laue symmetry, Friedel opposites (*hkl* and -h - k - l) are equivalent. Tables of symmetry-equivalent reflections are available in International Tables for Crystallography, Volume A (1987), section 10.2.

Appears in list containing _refln_index_. The permitted range is $1 \rightarrow 48$. [refln]

_refln_wavelength	(numb
_iciin_waverengen	(nume

The mean wavelength in ångströms of radiation used to measure this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method.

Appears in list containing _refln_index_. The permitted range is $0.0 \rightarrow \infty$. [refln]

Code identifying the wavelength in the _diffrn_radiation_ list. See _diffrn_radiation_wavelength_id.

Appears in list containing _refln_index_. Must match data name _diffrn_radiation_wavelength_id. [refln]

Data items in the REFLNS category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The RE-FLNS data items are not looped.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277].

_reflns_limit_h_min	0
_reflns_limit_h_max	6
_reflns_limit_k_min	0
_reflns_limit_k_max	17
_reflns_limit_l_min	0
_reflns_limit_l_max	22
_reflns_number_total	1592
_reflns_number_gt	1408
_reflns_threshold_expression	'F > 6.0u(F)'
_reflns_d_resolution_high	0.8733
_reflns_d_resolution_low	11.9202

_reflns_d_resolution_high _reflns_d_resolution_low The highest and lowest resolution in angströms f

The highest and lowest resolution in angströms for the interplanar spacings in the reflections. These are the smallest and largest d values.

The permitted range is $0.0 \rightarrow \infty$. [reflns]

_reflns_Friedel_coverage (numb)

The proportion of Friedel related reflections present in the number of the 'independent reflections' specified by the item _reflns_number_total. This proportion is calculated as the ratio:

 $\frac{[N(\text{Crystal class}) - N(\text{Laue symmetry})]}{N(\text{Laue symmetry})}$

where, working from the _diffrn_refln_list, *N*(Crystal class) is the number of reflections obtained on averaging under the symmetry of the crystal class, *N*(Laue symmetry) is the number of reflections obtained on averaging under the Laue symmetry.

Examples: (a) For centrosymmetric structures its value is necessarily equal to 0.0 as the crystal class is identical to the Laue symmetry. (b) For whole-sphere data for a crystal in the space group P1, _reflns_Friedel_coverage is equal to 1.0, as no reflection *hkl* is equivalent to -h-k-l in the crystal class and all Friedel pairs {*hkl*; -h - k - l} have been measured. (c) For whole-sphere data in space group *Pmm2*, the value will be < 1.0 because although reflections *hkl* and -h-k-l are not equivalent when *hkl* indices are non-zero, they are when l = 0. (d) For a crystal in the group *Pmm2* measurements of the two inequivalent octants $h \ge 0, k \ge 0, l$ lead to the same value as in (c), whereas measurements of the two equivalent octants $h \ge 0, k, l \ge 0$ will lead to a zero value for _reflns_Friedel_coverage. The permitted range is $0.0 \rightarrow 1.0$. [reflns]

Miller indices limits for the reported reflections. These need not be the same as the _diffrn_reflns_limit_ values.

[reflns]

(numb)

_reflns_number_gt (numb)

The number of reflections in the _refln_ list (not the _diffrn_refln_ list) that are significantly intense, satisfying the criterion specified by _reflns_threshold_expression. It may include Friedel equivalent reflections (*i.e.* those which are symmetry equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. The special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.

Related item(s): _reflns_number_observed (alternate). The permitted range is $0 \rightarrow \infty$. [reflns]

(numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_number_gt

The number of 'observed' reflections, in the _refln_ list (not the _diffrn_refln_ list). The observed reflections satisfy the threshold criterion specified by _reflns_threshold_expression (or the deprecated _reflns_observed_criterion). They may include Friedel equivalent reflections according to the nature of the structure and the procedures used. The special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.

[reflns]

_reflns_number_total

_reflns_number_observed

(numb)

The total number of reflections in the _refln_ list (not the _diffrn_refln_ list). It may include Friedel equivalent reflections (*i.e.* those which are symmetry equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. The special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.

The permitted range is $0 \rightarrow \infty$. [reflns]

```
_reflns_observed_criterion
```

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_threshold_expression The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of a $\sigma(I)$ or $\sigma(F)$ threshold.

[reflns]

(char)

(char)

_reflns_special_details

Description of the properties of the reported reflection list that is not given in other data items. In particular it should include information about the averaging (or not) of symmetry-equivalent reflections including Friedel pairs.

[reflns]

_reflns_threshold_expression (char)

The threshold, usually based on multiples of u(I), $u(F^2)$ or u(F), that serves to identify significantly intense reflections, the number of which is given by <code>_reflns_number_gt</code>. These reflections are used in the calculation of <code>_refine_ls_R_factor_gt</code>.

Related item(s): _reflns_observed_criterion (alternate). Example(s): 'I>2u(I)' [reflns]

(char)

$_reflns_class_[]$ Data items in the REFLNS_CLASS category record details, for each reflection class, about the reflections used to deter- mine the structural parameters. Example 1 - example corresponding to the one-dimensional incom- mensurately modulated structure of K ₂ SeO ₄ .				
loop_				
_reflns_class_number_gt				
_reflns_class_code				
584	'Main'			
226	'Satl'			
50	'Sat2'			

_reflns_class_code

The code identifying a certain reflection class.

Appears in list. May match subsidiary data name(s): <u>_re-fln_class_code</u>.

Example(s): '1', 'm1', 's2' [reflns_class]

_reflns_class_description (char)

Description of each reflection class.

Appears in list containing _reflns_class_code.

Example(s): 'm=1 first order satellites', 'HOLO common projection reflections' [reflns_class]

_reflns_class_d_res_high (numb)

For each reflection class the highest resolution in angströms for the interplanar spacing in the reflections used in refinement. This is the smallest d value.

_reflns_class_d_res_low (numb)

For each reflection class the lowest resolution in angströms for the interplanar spacing in the reflections used in refinement. This is the largest d value.

Appears in list containing _reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [reflns_class]

_reflns_class_number_gt (numb)

For each reflection class, the number of significantly intense reflections (see _reflns_threshold_expression) in the _refln_ list (not the _diffrn_refln_ list). It may include Friedel equivalent reflections (*i.e.* those which are symmetry equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. The special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.

For each reflection class, the total number of reflections in the <u>_refln_</u> list (not the <u>_diffrn_refln_</u> list). It may include Friedel equivalent reflections (*i.e.* those which are symmetry equivalent under the Laue symmetry but inequivalent under

the crystal class) according to the nature of the structure and the procedures used. The special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.

_reflns_class_R_factor_all _reflns_class_R_factor_gt

For each reflection class, the residual factors for all reflections, and for significantly intense reflections (see _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low. This is the conventional *R* factor.

$$R = \frac{\sum |F(obs) - F(calc)|}{\sum |F(obs)|}$$

F(obs) = the observed structure-factor amplitudes, F(calc) = the calculated structure-factor amplitudes, and the sum \sum is taken over the reflections of this class. See also _reflns_class_wR_factor_all definitions.

_reflns_class_R_Fsqd_factor (numb)

For each reflection class, the residual factor $R(F^2)$ calculated on the squared amplitudes of the observed and calculated structure factors, for the reflections judged significantly intense (*i.e.* satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low.

$$R(F^2) = \frac{\sum |F(obs)^2 - F(calc)^2|}{\sum |F(obs)^2|}$$

 $F(obs)^2$ =squares of the observed structure-factor amplitudes, $F(calc)^2$ =squares of the calculated structure-factor amplitudes, and the sum \sum is taken over the reflections of this class.

For each reflection class, the residual factor R(I) for the reflections judged significantly intense (*i.e.* satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements of powder data, where it is referred to as R_B or R_{Bragg} .

$$R(I) = \frac{\sum |I(obs) - I(calc)|}{\sum |I(obs)|}$$

I(obs) = the net observed intensities, I(calc) = the net calculated intensities, and the sum \sum is taken over the reflections of this class.

Appears in list containing _reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [reflns_class]

REFLNS_CLASS

_reflns_class_wR_factor_all

(numb)

42

For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low.

 $wR = \left(\frac{\sum w[Y(obs) - Y(calc)]^2}{\sum wY(obs)^2}\right)^{1/2}$

Y(obs) = the observed amplitude specified by _refine_ls_structure_factor_coef, Y(calc) = the calculated amplitude specified by _refine_ls_structure_factor_coef, w = the least-squares weight, and the sum \sum is taken over the reflections of this class. See also _reflns_class_R_factor_ definitions.

_reflns_scale_[]

Data items in the REFLNS_SCALE category record details about the structure factor scales. They are referenced from within the REFLN list through _refln_scale_group_code.

Example 1 - based on standard test data set p6122 of the Xtal distribution [Hall, King & Stewart (1995). Xtal3.4 User's Manual. Univ. Western Australia]

loop_

_reflns_scale_group_code _reflns_scale_meas_F

1 .895447

_reflns_scale_group_code

(char)

The code identifying a scale _reflns_scale_meas_. These are linked to the _refln_ list by the _refln_scale_group_code. These codes need not correspond to those in the _diffrn_scale_ list.

Appears in list as essential element of loop structure. May match subsidiary data name(s): _refln_scale_group_code. [reflns_scale]

_reflns_scale_meas_F	
_reflns_scale_meas_F_squared	
_reflns_scale_meas_intensity	(numb)

Scales associated with _reflns_scale_group_code.

Appears in list containing _reflns_scale_group_code. The permitted range is $0.0 \rightarrow \infty$. [reflns_scale]

_reflns_shell_[] Data items in the REFLNS_SHELL category record details about the reflections used to determine the ATOM_SITE data items, as broken down by shells of resolution.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

	_reflr	ns_she	ll_d_re	es_higl	n		
	_reflr	ns_she	ll_d_re	es_low			
	_reflr	ns_she	ll_mear	nI_ove	r_uI_gi	t	
_reflns_shell_number_measured_gt							
_reflns_shell_number_unique_gt							
_reflns_shell_percent_possible_gt							
	_reflr	ns_she	ll_Rmei	ge_F_	gt		
	31.38	3.82	69.8	9024	2540	96.8	1.98
	3.82	3.03	26.1	7413	2364	95.1	3.85
	3.03	2.65	10.5	5640	2123	86.2	6.37
	2.65	2.41	6.4	4322	1882	76.8	8.01
	2.41	2.23	4.3	3247	1714	70.4	9.86
	2.23	2.10	3.1	1140	812	33.3	13.99

_reflns_shell_d_res_high

_reflns_shell_d_res_low

The highest resolution in angströms for the interplanar spacing in the reflections in this shell. This is the smallest d value.

Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

(numb)

(numb)

The lowest resolution in ångströms for the interplanar spacing in the reflections in this shell. This is the largest *d* value.

Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_meanI_over_sigI_all (numb)
This definition has been superseded and is retained here only
for archival purposes. Use instead _reflns_shell_meanI_over_uI_all

The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in the resolution shell.

Appears in list. [reflns_shell]

_reflns_shell_meanI_over_sigI_gt (numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_uI_gt

The ratio of the mean of the intensities of the significantly intense reflections (see _reflns_threshold_expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell.

Appears in list.

[reflns_shell]

_reflns_shell_meanI_over_sigI_obs (numb)
This definition has been superseded and is retained here only
for archival purposes. Use instead _reflns_shell_meanI_over_uI_gt

The ratio of the mean of the intensities of the reflections classified as 'observed' (see _reflns_observed_criterion) in this shell to the mean of the standard uncertainties of the intensities of the 'observed' reflections in the resolution shell.

[reflns_shell]

_reflns_shell_meanI_over_uI_all (numb) The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in the resolution shell.

Related item(s): _reflns_shell_meanI_over_sigI_all (alternate). Appears in list. [reflns_shell] (numb)

_reflns_shell_meanI_over_uI_gt

The ratio of the mean of the intensities of the significantly intense reflections (see _reflns_threshold_expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell.

Related item(s): _reflns_shell_meanI_over_sigI_gt (alternate). Appears in list. [reflns_shell]

_reflns_shell_number_measured_all (*numb*) The total number of reflections measured for this resolution shell.

Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_number_measured_gt (numb)

The number of significantly intense reflections (see _re-flns_threshold_expression) measured for this resolution shell.

Related item(s): _reflns_shell_number_measured_obs (alternate). Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_number_measured_obs (numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_number_measured_gt

The number of reflections classified as 'observed' (see _re-flns_observed_criterion) measured for this resolution shell.

[reflns_shell]

The number of unique reflections it is possible to measure in this reflection shell.

Appears in list. The permitted range is $0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_number_unique_all (numb)

The total number of measured reflections resulting from merging measured symmetry-equivalent reflections for this resolution shell.

Appears in list. The permitted range is $0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_number_unique_gt (numb)

The total number of significantly intense reflections (see _re-flns_threshold_expression) resulting from merging measured symmetry-equivalent reflections for this resolution shell.

Related item(s): _reflns_shell_number_unique_obs (alternate). Appears in list. The permitted range is $0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_number_unique_obs (numb)
This definition has been superseded and is retained here
only for archival purposes. Use instead _reflns_shell_number_unique_gt

The total number of reflections classified as 'observed' (see _reflns_observed_criterion) resulting from merging measured symmetry-equivalent reflections for this resolution shell.

[reflns_shell]

_reflns_shell_percent_possible_all (*numb*) The percentage of geometrically possible reflections represented by all reflections measured for this resolution shell.

Appears in list. The permitted range is $0.0 \rightarrow 100.0$. [reflns_shell]

_reflns_shell_percent_possible_gt (numb) The percentage of geometrically possible reflections represented by significantly intense reflections (see _reflns_threshold_expression) measured for this resolution shell.

Related item(s): _reflns_shell_percent_possible_obs (alternate). Appears in list. The permitted range is 0.0→100.0. [reflns_shell]

_reflns_shell_percent_possible_obs (numb)
This definition has been superseded and is retained here only for
archival purposes. Use instead _reflns_shell_percent_possible_gt

The percentage of geometrically possible reflections represented by reflections classified as 'observed' (see _reflns_observed_criterion) measured for this resolution shell.

[reflns_shell]

The value of $R_{merge}(F)$ for all reflections in a given shell.

$$R_{\text{merge}}(F) = \frac{\sum_{i} (\sum_{j} |F_{j} - \langle F \rangle|)}{\sum_{i} (\sum_{j} \langle F \rangle)}$$

 F_j = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection *i*, the sum \sum_i is taken over all reflections, and the sum \sum_j is taken over all observations of each reflection.

Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

The value of $R_{\text{merge}}(F)$ for significantly intense reflections (see _reflns_threshold_expression) in a given shell.

$$R_{\text{merge}}(F) = \frac{\sum_{i} (\sum_{j} |F_{j} - \langle F \rangle|)}{\sum_{i} (\sum_{j} \langle F \rangle)}$$

 F_j = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection *i*, the sum \sum_i is taken over all reflections, and the sum \sum_j is taken over all observations of each reflection.

Related item(s): _reflns_shell_Rmerge_F_obs (alternate). Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_Rmerge_F_gt The value of $R_{merge}(F)$ for reflections classified as 'observed' (see _re-

flns_observed_criterion) in a given shell.

$$R_{\text{merge}}(F) = \frac{\sum_{i} (\sum_{j} |F_{j} - \langle F \rangle|)}{\sum_{i} (\sum_{j} \langle F \rangle)}$$

 F_j = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection *i*, the sum \sum_i is taken over all reflections, and the sum \sum_j is taken over all observations of each reflection.

[reflns_shell]

REFLNS_SHELL

_reflns_shell_Rmerge_I_all

The value of $R_{merge}(I)$ for all reflections in a given shell.

$$R_{\text{merge}}(I) = \frac{\sum_{i} (\sum_{j} |I_{j} - \langle I \rangle|)}{\sum_{i} (\sum_{j} \langle I \rangle)}$$

 I_j = the intensity of the *j*th observation of reflection *i*, $\langle I \rangle$ = the mean of the intensities of all observations of reflection i, the sum \sum_{i} is taken over all reflections, and the sum \sum_{i} is taken over all observations of each reflection.

Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

The value of $R_{merge}(I)$ for significantly intense reflections (see _reflns_threshold_expression) in a given shell.

$$R_{\text{merge}}(I) = \frac{\sum_{i} (\sum_{j} |I_{j} - \langle I \rangle|)}{\sum_{i} (\sum_{i} \langle I \rangle)}$$

 I_i = the intensity of the *j*th observation of reflection *i*, $\langle I \rangle$ = the mean of the intensities of all observations of reflection *i*, the sum \sum_i is taken over all reflections, and the sum \sum_j is taken over all observations of each reflection.

Related item(s): _reflns_shell_Rmerge_I_obs (alternate). Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

_reflns_shell_Rmerge_I_obs (numb)

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_Rmerge_I_obs The value of $R_{merge}(I)$ for reflections classified as 'observed' (see _reflns_observed_criterion) in a given shell.

$$R_{\text{merge}}(I) = \frac{\sum_{i} (\sum_{j} |I_{j} - \langle I \rangle|)}{\sum_{i} (\sum_{j} \langle I \rangle)}$$

 I_j = the intensity of the jth observation of reflection i, $\langle I \rangle$ = the mean of the intensities of all observations of reflection i, the sum \sum_{i} is taken over all reflections, and the sum \sum_{i} is taken over all observations of each reflection.

[reflns_shell]

symmetry[] tems in the SYMMETRY category record details about ace-group symmetry.
ole 1 - based on data set TOZ of Willis, Beckwith & Tozer

[(1991). Acta Cryst. C47, 2270–2277].				
_symmetry_cell_setting	orthorhombic			
_symmetry_space_group_name_H-M	'P 21 21 21'			
_symmetry_space_group_name_Hall	'P 2ac 2ab'			

rhombohedral trigonal hexagonal

The cell settings for this space-group symmetry.

_symmetry_cell_setting

triclinic monoclinic orthorhombic tetragonal

cubic

_symmetry_Int_Tables_number (numb) Space-group number from International Tables for Crystallography, Vol. A (1987).

The permitted range is $1 \rightarrow 230$. [symmetry]

_symmetry_space_group_name_Hall (char) Space-group symbol as described by Hall. This symbol gives the space-group setting explicitly. Leave spaces between the separate components of the symbol.

Ref: Hall, S. R. (1981). Acta Cryst. A37, 517-525.

Example(s): '-P 2ac 2n', '-R 3 2"', 'P 61 2 2 (0 0 -1)' [symmetry]

_symmetry_space_group_name_H-M (char)

Hermann-Mauguin space-group symbol. Note that the H-M symbol does not necessarily contain complete information about the symmetry and the space-group origin. If used always supply the full symbol from International Tables for Crystallography, Vol. A (1987) and indicate the origin and the setting if it is not implicit. If there is any doubt that the equivalent positions can be uniquely deduced from this symbol specify the _symmetry_equiv_pos_as_xyz or *_Hall data items as well. Leave spaces between symbols referring to different axes.

Example(s): 'P 1 21/m 1', 'P 2/n 2/n 2/n (origin at -1)', 'R -3 2/m' [svmmetrv]

_symmetry_equiv_[] Data items in the SYMMETRY_EQUIV category list the symmetry equivalent positions for the space group. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer			
[(1991). Acta Cryst. C47, 2276–2277].			
loop_ _symmetry_equiv_pos_as_xyz +x,+y,+z 1/2-x,-y,1/2+z 1/2+x,1/2-y,-z -x,1/2+y,1/2-z			
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276–2277]. Formally the value of _sym- metry_equiv_pos_site_id can be any unique character string; it is recommended that it be assigned the sequence number of the list of equivalent positions for compatibility with older files in which it did not appear.			
<pre>loopsymmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz l</pre>			

(char)

[symmetry]

(char)

_symmetry_equiv_pos_as_xyz

Symmetry equivalent position in the 'xyz' representation. Except for the space group P1, this data will be repeated in a loop. The format of the data item is as per *International Tables for Crystallography*, Vol. A. (1987). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present.

May appear in list.

Example(s): '-y+x,-y,1/3+z'

[symmetry_equiv]

(numb)

A code identifying each entry in the _symmetry_equiv_pos_as_xyz list. It is normally the sequence number of the entry in that list, and should be identified with the code 'n' in _geom_*_symmetry_ codes of the form 'n_klm'.

Appears in list containing _symmetry_equiv_pos_as_xyz. [symmetry_equiv]