4.1. Core dictionary (coreCIF)

By S. R. Hall, F. H. Allen and I. D. Brown

This is version 2.4 of the core CIF dictionary (coreCIF). A commentary on the use of this dictionary may be found in Chapter 3.2.

The data names defined here are central to the description and reporting of any crystal structure determination, and this dictionary collects the natural set of descriptors for small-unit-cell structures (typically inorganic or small-molecular organic and metal-organic compounds) determined in single-crystal experiments. These data items may be supplemented by additional items designed for use in powder-diffraction experiments (Chapter 3.3), modulated and composite structures (Chapter 3.4), or electron-density studies (Chapter 3.5).

The data items in this dictionary also form a suitable basis for the description of biological macromolecular structures, but the complexity of such structures requires a more extensive dictionary using a rigorously relational data model that expresses dependencies and inheritances between individual items. The macromolecular CIF (mmCIF) dictionary described in Chapter 3.6 and given in Chapter 4.5 provides a complete set of data items within this model, including the content of the core CIF dictionary in a modified formalism.
Categories are described in alphabetic order; data items are arranged alphabetically within each category.

ATOM_SITE

Data items in the ATOM_SITE category record details about the atom sites in a crystal structure, such as the positional coordinates, atomic displacement parameters, and magnetic moments and directions.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].							
```loop_ atom site label```							
_atom_site_fract_x							
_atom_site_fract_y							
_atom_site_fract_z							
_atom_site_U_iso_or_equiv							
atom_site_adp_type							
_atom_site_calc_flag							
-atom_site_calc_attached_atom							
01	. 4154 (4)	. 5699 (1)	. 3026 (0)	. 060 (1)	Uani	?	?
C2	. 5630 (5)	. 5087 (2)	. 3246 (1)	. 060 (2)	Uani	?	?
C3	. 5350 (5)	. 4920 (2)	. 3997 (1)	. 048 (1)	Uani	?	?
N4	. 3570 (3)	. 5558 (1)	. 4167 (0)	. 039 (1)	Uani	?	?
C5	. 3000 (5)	. 6122 (2)	. 3581 (1)	. 045 (1)	Uani	?	?
021	. 6958 (5)	. 4738 (2)	. 2874 (1)	. 090 (2)	Uani	?	?
C31	. 4869 (6)	. 3929 (2)	. 4143 (2)	. 059 (2)	Uani	?	?
\# - - - data truncated for brevity - - - -							
H321C	. 04 (1)	. 318 (3)	. 320 (2)	. 14000	Uiso	?	?
H322A	. 25 (1)	. 272 (4)	. 475 (3)	. 19000	Uiso	?	?
H322B	. 34976	. 22118	. 40954	.19000	Uiso	calc	C322
H322C	. 08 (1)	. 234 (4)	. 397 (3)	. 19000	Uiso	?	?

[^0]| Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277]. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```loop_ atom site aniso label``` |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| _atom_site_aniso_B_11 |  |  |  |  |  |  |  |
| _atom_site_aniso_B_22 |  |  |  |  |  |  |  |
| _atom_site_aniso_B_33 |  |  |  |  |  |  |  |
| atom_site_aniso_B_12 |  |  |  |  |  |  |  |
| atom_site_aniso_B_13 |  |  |  |  |  |  |  |
| _atom_site_aniso_B_23 |  |  |  |  |  |  |  |
| -atom_site_aniso_type_symbol |  |  |  |  |  |  |  |
| 01 | . 071 (1) | . 076 (1) | . 0342 (9) | . 008 (1) | . 0051 (9) | -. 0030 (9) | 0 |
| C2 | . 060 (2) | . 072 (2) | . 047 (1) | . 002 (2) | . 013 (1) | -. 000 (1) | C |
| C3 | . 038 (1) | . 060 (2) | . 044 (1) | . 007 (1) | . 001 (1) | -. 000 (1) | C |
| N4 | . 037 (1) | . 048 (1) | . 0325 (9) | . 0025 (9) | . 0011 (9) | -. 0011 (9) | N |
| C5 | . 043 (1) | . 060 (1) | . 032 (1) | . 001 (1) | -. 001 (1) | . 001 (1) | C |
| \# - - - data truncated for brevity - - - |  |  |  |  |  |  |  |
| 021 | . 094 (2) | . 109 (2) | . 068 (1) | . 023 (2) | . 038 (1) | -. 010 (1) | 0 |
| C51 | . 048 (2) | . 059 (2) | . 049 (1) | . 002 (1) | -. 000 (1) | . 007 (1) | C |
| C511 | . 048 (2) | . 071 (2) | . 097 (3) | -. 000 (2) | -. 0003 (2) | . 010 (2) | C |
| C512 | . 078 (2) | . 083 (2) | . 075 (2) | . 009 (2) | -. 000 (2) | . 033 (2) | C |
| C513 | . 074 (2) | . 055 (2) | . 075 (2) | . 004 (2) | . 001 (2) | -. 010 (2) | C |
| \# - - - data truncated for brevity - - - |  |  |  |  |  |  |  |

Example 3 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar \& bin Shawkataly [Acta Cryst. (1996), C52, 951-953].
loop_
_atom_site_label
-_atom_site_chemical_conn_number
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
S1 $1 \quad 0 . \overline{7} 4799(\overline{9}) \quad-0.12482(11) \quad 0.27574(9) \quad 0.0742(3)$
S2 $21.08535(10) \quad 0.16131(9) \quad 0.34061(9) \quad 0.0741(3)$
N1 $3 \quad 1.0650(2) \quad-0.1390(2) \quad 0.2918(2) \quad 0.0500(5)$
C1 $4 \quad 0.9619(3) \quad-0.0522(3) \quad 0.3009(2) \quad 0.0509(6)$
\# - - - - data truncated for brevity - - -
Example 4 - hypothetical example to illustrate the description of a disordered methyl group.
loop
_atom_site_label \# *_assembly m is a disordered methyl
_atom_site_occupancy \# with configurations 'A' and 'B':
_atom_site_disorder_assembly \#
_atom_site_disorder_group
C1
$\begin{array}{llll} & 1 & \text { M11A } & \text { M }\end{array}$ $\begin{array}{lllll}\text { H11A } & .5 & \text { M } & \text { A } \\ \text { H12A } & .5 & \text { M }\end{array}$ $\begin{array}{llll}\text { H12A } & .5 & \text { M } & \text { A }\end{array}$ H11B H12B H13B
_atom_site_adp_type
(char)
$\overline{\text { A }}$ standard code used to describe the type of atomic displacement parameters used for the site.
Appears in list containing_atom_site_label.
Related item: _atom_site_thermal_displace_type (alternate).
The data value must be one of the following:

Uani	anisotropic $U^{i j}$
Uiso	isotropic $U$
Uovl	overall $U$
Umpe	multipole expansion $U$
Bani	anisotropic $B^{i j}$
Biso	isotropic $B$
Bovl	overall $B$

-atom_site_aniso_B_11
-atom_site_aniso_B_12
-atom_site_aniso_B_13
-atom_site_aniso_B_22
-atom_site_aniso_B_23
-atom_site_aniso_B_33

These are the standard anisotropic atomic displacement compo nents in ångströms squared which appear in the structure-factor term

$$
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
$$

where $h=$ the Miller indices and $a^{*}=$ the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of $\mathbf{B}$ for reporting atomic displacement parameters. $\mathbf{U}$, being directly proportional to $\mathbf{B}$, is preferred.
Appears in list containing _atom_site_aniso_label.
Related item: _atom_site_aniso_u_(conversion).
[atom_site]

## _atom_site_aniso_label

(char)
Anisotropic atomic displacement parameters are usually looped in a separate list. If this is the case, this code must match the _atom_site_label of the associated atom in the atom coordinate list and conform with the same rules described in _atom_site_label.
Appears in list. Must match parent data name_atom_site_label. [atom_site]
atom_site_aniso_ratio
Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids.
Appears in list containing _atom_site_aniso_label.
The permitted range is $1.0 \rightarrow \infty$. [atom_site]
_atom_site_aniso_type_symbol
(char)
This _atom_type_symbol code links the anisotropic atom parameters to the atom-type data associated with this site and must match one of the _atom_type_symbol codes in this list.
Appears in list containing _atom_site_aniso_label. Must match parent data name _atom_site_type_symbol.
[atom_site]

```
_atom_site_aniso_U_11
_atom_site_aniso_U_12
__atom_site_-aniso_U_13
__atom_site_aniso_U_22
_atom_site_aniso_U_23
_atom_site_aniso_U_33
```

(numb, su)
These are the standard anisotropic atomic displacement components in ångströms squared which appear in the structure-factor term

$$
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
$$

where $h=$ the Miller indices and $a^{*}=$ the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row.

[^1][atom_site]
_atom_site_attached_hydrogens
(numb)
$\bar{T}$ The number of hydrogen atoms attached to the atom at this site excluding any hydrogen atoms for which coordinates (measured or calculated) are given.
Appears in list containing _atom_site_label.
The permitted range is $0 \rightarrow 8$. Where no value is given, the assumed value is ' 0 '.
Examples: ' 2 ' (water oxygen), ' 1 ' (hydroxyl oxygen), ' 4 ' (ammonium nitrogen).
[atom_site]
_atom_site_B_equiv_geom_mean
(numb, su)
$\overline{\text { Equivalent }}$ isotropic atomic displacement parameter, $B_{\text {equiv }}$, in ångströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.
$$
B_{\text {equiv }}=\left(B_{i} B_{j} B_{k}\right)^{1 / 3}
$$
where $B_{n}=$ the principal components of the orthogonalized $B^{i j}$.
The IUCr Commission on Nomenclature recommends against the use of $\mathbf{B}$ for reporting atomic displacement parameters. $\mathbf{U}$, being directly proportional to $\mathbf{B}$, is preferred.
Appears in list containing_atom_site_label.
The permitted range is $0.0 \rightarrow \infty$.
Related items:
_atom_site_B_iso_or_equiv(alternate),
_atom_site_U_equiv_geom_mean(conversion). [atom_site]
_atom_site_B_iso_or_equiv
(numb, su)
Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, $B_{\text {equiv }}$, in ångströms squared, calculated from anisotropic displacement components.
$$
B_{\text {equiv }}=(1 / 3) \sum_{i}\left[\sum_{j}\left(B^{i j} A_{i} A_{j} a_{i}^{*} a_{j}^{*}\right)\right],
$$
where $A=$ the real-space cell lengths and $a^{*}=$ the reciprocal-space cell lengths; $B^{i j}=8 \pi^{2} U^{i j}$.

Reference: Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

The IUCr Commission on Nomenclature recommends against the use of $\mathbf{B}$ for reporting atomic displacement parameters. $\mathbf{U}$, being directly proportional to $\mathbf{B}$, is preferred.
Appears in list containing_atom_site_label.
The permitted range is $0.0 \rightarrow \infty$.
Related items:
_atom_site_B_equiv_geom_mean (alternate),
_atom_site_U_iso_or_equiv(conversion). [atom_site]
_atom_site_calc_attached_atom (char)
The _atom_site_label of the atom site to which the 'geometrycalculated' ${ }^{-}$atom ${ }^{-}$site is attached.
Appears in list containing _atom_site_label. Where no value is given, the assumed
value is ' $\because$. [atom_site]
_atom_site_calc_flag
(char)
$\overline{\mathrm{A}}$ standard code to signal whether the site coordinates have been determined from the intensities or calculated from the geometry of surrounding sites, or have been assigned dummy coordinates. The abbreviation ' $c$ ' may be used in place of 'calc'.
Appears in list containing _atom_site_label.
The data value must be one of the following:
d determined from diffraction measurements
calc calculated from molecular geometry
C abbreviation for 'calc'
dum dummy site with meaningless coordinates
Where no value is given, the assumed value is ' $d$ '.
[atom_site]
atom_site_Cartn_x
-atom_site_Cartn_y
_atom_site_Cartn_z
atom site fract $x$
_atom_site_fract_y
_atom_site_fract_z (numb, su)
Atom-site coordinates as fractions of the _cell_length_ values.
Appears in list containing _atom_site_label.
Related item: _atom_site_Cartn_(alternate).
[atom_site]

## atom_site_label

## (char)

The _atom_site_label is a unique identifier for a particular site in the crystal. This code is made up of a sequence of up to seven components,_atom_site_label_component_0 to *_6, which may be specified as separate data items. Component 0 usually matches one of the specified _atom_type_symbol codes. This is not mandatory if an _atom_site_type_symbol item is included in the atomsite list. The _atom_site_type_symbol always takes precedence over an _atom_site_label in the identification of the atom type. The label components 1 to 6 are optional, and normally only components 0 and 1 are used. Note that components 0 and 1 are concatenated, while all other components, if specified, are separated by an underscore. Underscore separators are only used if higherorder components exist. If an intermediate component is not used, it may be omitted provided the underscore separators are inserted. For example, the label 'C233_ggg' is acceptable and represents the components C, 233, '' and ggg. Different labels may have a different number of components.
Appears in list as essential element of loop structure. May match child data name(s):
_atom_site_aniso_label,_geom_angle_atom_site_label_1,
_geom_angle_atom_site_label_2,_geom_angle_atom_site_label_3,
_geom_bond_atom_site_label_1,_geom_bond_atom_site_label_2,
_geom_contact_atom_site_label_1,
_geom_contact_atom_site_label_2,_geom_hbond_atom_site_label_D,
_geom_hbond_atom_site_label_H,_geom_hbond_atom_site_label_A,
_geom_torsion_atom_site_label_1,
_geom_torsion_atom_site_label_2,
_geom_torsion_atom_site_label_3,
_geom_torsion_atom_site_label_4.
Examples: ‘C12', ‘Ca3g28', 'Fe3+17', ‘H*251', ‘boron2a', ‘C_a_phe_83_a_0',
'Zn_Zn_301_A_0'.
[atom_site]

```
_atom_site_label_component_0
_atom_site_label_component_1
_atom_site_label_component_2
_atom_site_label_component_3
_atom_site_label_component_4
_atom_site_label_component_5
_atom_site_label_component_6 (char)
```

Component 0 is normally a code which matches identically with one of the _atom_type_symbol codes. If this is the case, then the rules governing the _atom_type_symbol code apply. If, however, the data item _atom_site_type_symbol is also specified in the atom-site list, component 0 need not match this symbol or adhere to any of the _atom_type_symbol rules. Component 1 is referred to as the 'atom number'. When component 0 is the atom-type code, it is used to number the sites with the same atom type. This component code must start with at least one digit which is not followed by $\mathrm{a}+$ or - sign (to distinguish it from the component 0 rules). Components 2 to 6 contain the identifier, residue, sequence, asymmetry identifier and alternate codes, respectively. These codes may be composed of any characters except an underscore.
Appears in list containing _atom_site_label.
[atom_site]
_atom_site_occupancy
(numb, su)
$\bar{T}$ The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site. The value must lie in the $99.97 \%$ Gaussian confidence interval $-3 u \leq x \leq 1+3 u$. The _enumeration_range of $0.0 \rightarrow 1.0$ is thus correctly interpreted as meaning $(0.0-3 u) \leq x \leq(1.0+3 u)$.
Appears in list containing_atom_site_label.
The permitted range is $0.0 \rightarrow 1.0$. Where no value is given, the assumed value is ' 1.0 '.
[atom_site]
_atom_site_refinement_flags
(char)
This definition has been superseded and is retained here only for archival purposes. Use instead _atom_site_refinement_flags_posn, _atom_site_refinement_flags_adp, _atom_site_refinement_flags_ occupancy.
A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site. This item should not be used. It has been replaced by _atom_site_refinement_flags_posn,
*_adp and *_occupancy. It is retained in this dictionary only to provide compatibility with legacy CIFs.
Appears in list containing_atom_site_label.
The data value must be one of the following:
no refinement constraints
special-position constraint on site
rigid-group refinement of site
riding-atom site attached to non-riding atom
distance or angle restraint on site
thermal displacement constraints
$U_{\text {iso }}$ or $U^{i j}$ restraint (rigid bond)
partial occupancy constraint
[atom_site]
_atom_site_refinement_flags_adp
(char)
$\overline{\mathrm{A}}$ code which indicates the refinement restraints or constraints applied to the atomic displacement parameters of this site.
Appears in list containing_atom_site_label.
Related item:_atom_site_refinement_flags (alternate).
The data value must be one of the following:

F	no constraints on atomic displacement parameters
T	special-position constraints on atomic displacement parameters
U	$U_{\text {iso }}$ or $U^{i j}$ restraint (rigid bond)
TU	both constraints applied

_atom_site_refinement_flags_occupancy (char)
$\overline{\text { A }}$ code which indicates that refinement restraints or constraints were applied to the occupancy of this site.
Appears in list containing_atom_site_label.
Related item: _atom_site_refinement_flags (alternate).
The data value must be one of the following:
. no constraints on site-occupancy parameters
P site-occupancy constraint
[atom_site]
_atom_site_refinement_flags_posn
(char)
$\overline{\mathrm{A}}$ code which indicates the $\overline{\text { refinement }}$ restraints or constraints applied to the positional coordinates of this site.
Appears in list containing _atom_site_label.
Related item: _atom_site_refinement_flags (alternate).
The data value must be one of the following:
no constraints on positional coordinates
distance or angle restraint on positional coordinates
rigid-group refinement of positional coordinates
riding-atom site attached to non-riding atom
special-position constraint on positional coordinates
combination of the above constraints
combination of the above constraints
combination of the above constraints combination of the above constraints combination of the above constraints combination of the above constraints combination of the above constraints combination of the above constraints RS combination of the above constraints GRS combination of the above constraints DGRS combination of the above constraints
_atom_site_restraints
A dec̄iption - (char) site during refinement. See also _atom_site_refinement_flags and _refine_ls_number_restraints.
Appears in list containing_atom_site_label.
Example: 'restrained to planar ring'.
[atom_site]
_atom_site_symmetry_multiplicity
(numb)
$\bar{T}$ The multiplicity of a site due to the space-group symmetry as given in International Tables for Crystallography Vol. A (2002).
Appears in list containing_atom_site_label.
The permitted range is $1 \rightarrow 192$.
[atom_site]
_atom_site_thermal_displace_type
(char)
$\bar{T}$ his definition has been superseded and is retained here only for archival purposes. Use instead _atom_site_adp_type.
A standard code used to describe the type of atomic displacement parameters used for the site.
Appears in list containing_atom_site_label.
The data value must be one of the following:
Uani anisotropic $U^{i j}$
Uiso isotropic $U$
Uovl overall $U$
Umpe multipole expansion $U$
Bani anisotropic $B^{i j}$
Biso isotropic B
Bovl overall B

## [atom_site]

_atom_site_type_symbol
(char)
A code to identify the atom species (singular or plural) occupying this site. This code must match a corresponding _atom_type_symbol. The specification of this code is optional if component 0 of the _atom_site_1abel is used for this purpose. See _atom_type_symbol.
Appears in list containing _atom_site_label. Must match parent data name
_atom_type_symbol. May match child data name(s):
_atom_site_aniso_type_symbol.
Examples: 'Cu', 'Cu2+', 'dummy', 'Fe3+Ni2+', 'S-', 'H*', 'H(SDS)'. [atom_site]
_atom_site_u_equiv_geom_mean
(numb, su)
 ångströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.

$$
U_{\text {equiv }}=\left(U_{i} U_{j} U_{k}\right)^{1 / 3}
$$

where $U_{n}=$ the principal components of the orthogonalized $U^{i j}$.
Appears in list containing_atom_site_label.
The permitted range is $0.0 \rightarrow \infty$.
Related items:
_atom_site_U_iso_or_equiv (alternate),
_atom_site_B_equiv_geom_mean (conversion).
[atom_site]
_atom_site_U_iso_or_equiv
(numb, su)
$\overline{\text { Isotropic }} \overline{\bar{i}}$ atomic $\overline{\text { displacement }} \overline{\text { and }}$ parameter, or equivalent isotropic atomic displacement parameter, $U_{\text {equiv }}$, in ångströms squared, calculated from anisotropic atomic displacement parameters.

$$
U_{\text {equiv }}=(1 / 3) \sum_{i}\left[\sum_{j}\left(U^{i j} A_{i} A_{j} a_{i}^{*} a_{j}^{*}\right)\right]
$$

where $A=$ the real-space cell lengths and $a^{*}=$ the reciprocal-space cell lengths.

Reference: Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776.
Appears in list containing _atom_site_label.
The permitted range is $0.0 \rightarrow \infty$.
Related items:
_atom_site_U_equiv_geom_mean(alternate),
_atom_site_B_iso_or_equiv(conversion).
[atom_site]
_atom_site_Wyckoff_symbol
(char)
The Wyckoff symbol (letter) as listed in the space-group tables of International Tables for Crystallography Vol. A (2002).
Appears in list containing _atom_site_label.
[atom_site]

## ATOM_SITES

Data items in the ATOM_SITES category record details about the crystallographic cell and cell transformations, which are common to all atom sites.
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

-atom_sites_Cartn_transform_axes	
'c along $^{\prime}$, astar along $x, ~ b$	along $y^{\prime}$
-atom_sites_Cartn_tran_matrix_11	58.39
-atom_sites_Cartn_tran_matrix_12	0.00
-atom_sites_Cartn_tran_matrix_13	0.00
-atom_sites_Cartn_tran_matrix_21	0.00
-atom_sites_Cartn_tran_matrix_22	86.70
-atom_sites_Cartn_tran_matrix_23	0.00
-atom_sites_Cartn_tran_matrix_31	0.00
-atom_sites_Cartn_tran_matrix_32	0.00
-atom_sites_Cartn_tran_matrix_33	46.27

```
_atom_sites_Cartn_tran_matrix_11
_atom_sites_Cartn_tran_matrix_12
_atom_sites_Cartn_tran_matrix_13
_atom_sites_Cartn_tran_matrix_21
_atom_sites_Cartn_tran_matrix_22
_atom_sites_Cartn_tran_matrix_23
_atom_sites_Cartn_tran_matrix_31
_atom_sites_Cartn_tran_matrix_32
_atom_sites_Cartn_tran_matrix_33 (numb)
```

Matrix elements used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The $3 \times 1$ translation is defined in _atom_sites_Cartn_tran_vector_.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

```
_atom_sites_Cartn_tran_vector_1
_atom_sites_Cartn_tran_vector_2
_atom_sites_Cartn_tran_vector_3
```

(numb)
Elements of a $3 \times 1$ translation vector used in the transformation of fractional coordinates in the ATOM_SITE category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

[^2]_atom_sites_fract_tran_matrix_11
_atom_sites_fract_tran_matrix_-12
_atom_sites_fract_tran_matrix_13
_atom_sites_fract_tran_matrix_21
_atom_sites_fract_tran_matrix_22
_atom_sites_fract_tran_matrix_23
_atom_sites_fract_tran_matrix_31
_atom_sites_fract_tran_matrix_32
_atom_sites_fract_tran_matrix_33 (numb)
Matrix elements used to transform ${ }^{-}$Cartesian coordinates in the ATOM_SITE category to fractional coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The $3 \times 1$ translation is defined in _atom_sites_fract_tran_vector_.
\[

\left($$
\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}
$$\right)_{fractional}=\left($$
\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}
$$\right)\left($$
\begin{array}{l}
x \\
y \\
z
\end{array}
$$\right)_{Cartesian}+\left($$
\begin{array}{l}
1 \\
2 \\
3
\end{array}
$$\right) .
\]

```
_atom_sites_fract_tran_vector_1
_atom_sites_fract_tran_vector_2
_atom_sites_fract_tran_vector_3 (numb)
```

Elements of a $3 \times 1$ translation vector used in the transformation of Cartesian coordinates in the ATOM_SITE category to fractional coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

```
_atom_sites_solution_primary
_atom_sites_solution_secondary
 _atom_sites_solution_hydrogens
```

(char)
$\overline{\text { Codes }}$ which identify the methods used to locate the initial atom sites. The *_primary code identifies how the first atom sites were determined; the *_secondary code identifies how the remaining non-hydrogen sites were located; and the *_hydrogens code identifies how the hydrogen sites were located.

Reference: Sheldrick, G. M., Hauptman, H. A., Weeks, C. M., Miller, R. and Usón, I. (2001). Ab initio phasing. In International Tables for Crystallography, Vol. F. Crystallography of biological macromolecules, edited by M. G. Rossmann and E. Arnold, ch. 16.1. Dordrecht: Kluwer Academic Publishers.

The data value must be one of the following:

difmap	difference Fourier map
vecmap	real-space vector search
heavy	heavy-atom method
direct	structure-invariant direct methods
geom	inferred from neighbouring sites
disper	anomalous-dispersion techniques
isomor	isomorphous structure methods
notdet	coordinates were not determined
dual	dual-space method (Sheldrick et al., 2001)
other	a method not included elsewhere in this list

_atom_sites_special_details
(char)
Additional information about the atomic coordinates not coded elsewhere in the CIF.

## ATOM_TYPE

Data items in the ATOM_TYPE category record details about properties of the atoms that occupy the atom sites, such as the atomic scattering factors.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
loop_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number_in_cell
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C 072 . 017 . 009 International_Tables_Vol_IV_Table_2.2B H 010000 International_Tables_Vol_IV_Table_2.2B ○ 012 . 047 . 032 International_Tables_Vol_IV_Table_2.2B N 04 . 029 . 018 International_Tables_Vol_IV_Table_2.2B
_atom_type_analytical_mass_\%
(numb)
Mass percentage of this atom type derived from chemical analysis. Appears in list containing _atom_type_symbol.
The permitted range is $0.0 \rightarrow 100.0$. [atom_type]
_atom_type_description
(char)
A description of the atom(s) designated by this atom type. In most cases, this will be the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species.
Appears in list containing _atom_type_symbol.
Examples: 'deuterium', '0.34Fe+0.66Ni'. [atom_type]

## _atom_type_number_in_cell

(numb)
$\bar{T}$ Total number of atoms of this atom type in the unit cell.
Appears in list containing _atom_type_symbol.
The permitted range is $0 \rightarrow \infty$.
[atom_type]
_atom_type_oxidation_number
Formal oxidation state of this atom type in the structure.
Appears in list containing_atom_type_symbol.
The permitted range is $-8 \rightarrow 8$. Where no value is given, the assumed value is ' 0 '.
[atom_type]
_atom_type_radius_bond
_atom_type_radius_contact
The effective intra- and intermolecular bonding radii in ångströms
of this atom type.
Appears in list containing_atom_type_symbol.
The permitted range is $0.0 \rightarrow 5.0$.

```
_atom_type_scat_Cromer_Mann_a1
_atom_type_scat_Cromer_Mann_a2
_atom_type_scat_Cromer_Mann_a3
_atom_type_scat_Cromer_Mann_a4
_atom_type_scat_Cromer_Mann_b1
__atom_type_scat_Cromer_Mann_b2
_atom_type_scat_Cromer_Mann_b3
_atom_type_scat_Cromer_Mann_b4
_atom_type_scat_Cromer_Mann_c
```

The Cromer-Mann scattering-factor coefficients used to calculate the scattering factors for this atom type.

References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
_atom_type_scat_dispersion_imag
-atom_type_scat_dispersion_real
(numb)
The imaginary and real components of the anomalous-dispersion scattering factor, $f^{\prime \prime}$ and $f^{\prime}$, in electrons for this atom type and the radiation given in _diffrn_radiation_wavelength.
Appears in list containing _atom_type_symbol. Where no value is given, the assumed value is ' 0.0 '.
[atom_type]
_atom_type_scat_dispersion_source (char)
$\bar{R}$ eference to source of real and imaginary dispersion corrections for scattering factors used for this atom type.
Appears in list containing _atom_type_symbol.
Example: 'International Tables Vol. IV Table 2.3.1'. [atom_type]
_atom_type_scat_length_neutron
(numb)
The bound coherent scattering length in femtometres for the atom type at the isotopic composition used for the diffraction experiment.
Appears in list containing _atom_type_symbol. Where no value is given, the assumed
value is ' 0.0 '.
[atom_type]
_atom_type_scat_source_ (char)
$\bar{R}$ eference to source of scattering factors or scattering lengths used for this atom type.
Appears in list containing _atom_type_symbol.
Example: ‘International Tables Vol. IV Table 2.4.6B'. [atom_type]
_atom_type_scat_versus_stol_list (char)
$\overline{\mathrm{A}}$ table of scattering factors as a function of $(\sin \theta) / \lambda$. This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended.
Appears in list containing _atom_type_symbol. [atom_type]
atom_type_symbol
(char)
$\bar{T}$ The code used to identify the atom species (singular or plural) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underscore with the additional proviso that digits designate an oxidation state and must be followed by a + or - character.
Appears in list as essential element of loop structure. May match child data name(s):
_atom_site_type_symbol.
Examples: ‘C', 'Cu2+', 'H(SDS)', 'dummy', 'FeNi'. [atom_type]


## _audit_block_code

(char) $\overline{\mathrm{A}}$ code intended to identify uniquely the current data block.
Example: ‘TOZ_1991-03-20'.
[audit]
_audit_creation_date
(char)
The date that the data block was created. The date format is yyyy$m m-d d$.
Example: ‘1990-07-12’.
[audit]
audit creation method
(char)
A description of how data were entered into the data block.
Example: 'spawned by the program QBEE'
[audit]
_audit_update_record
(char)
A record of any changes to the data block. The update format is a date (yyyy-mm-dd) followed by a description of the changes. The latest update entry is added to the bottom of this record.
Example: '1990-07-15 Updated by the Co-editor'.
[audit]

## AUDIT AUTHOR

Data items in the AUDIT_AUTHOR category record details about the author(s) of the data block.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop

audit_author_name
_audit_author_address
'Fitzgerald, Paula M. D.'
; Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway
New Jersey 07065
USA
;
'Van Middlesworth, J. F.'
; Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway
New Jersey 07065
USA
;

## _audit_author_address

(char)
The address of an author of this data block. If there are multiple authors, _audit_author_address is looped with _audit_author_ name.

Appears in list containing _audit_author_name.
Example
; Department
Institute
Street
City and postcode
COUNTRY
[audit_author]
_audit_author_name (char)
The name of an author of this data block. If there are multiple authors, audit author name is looped with _audit_author_address. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Appears in list as essential element of loop structure
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', ‘Simonov, Yu.A.', 'M प"uller, H.A.', 'Ross II, C.R.'
[audit_author]

## AUDIT_CONFORM

Data items in the AUDIT_CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant.

Example 1 - any file conforming to the current CIF core dictionary.

```
audit_conform_dict_name cif core.dic
audit_conform_dict_version 2.3.1
_audit_conform_dict_location
 ftp://ftp.iucr.org/pub/cif_core.2.3.1.dic
```

audit conform dict location
(char)
A file name or uniform resource locator (URL) for the dictionary to which the current data block conforms.

May appear in list containing _audit_conform_dict_name. [audit_conform]

## audit_conform_dict_name <br> (char)

The string identifying the highest-level dictionary defining data names used in this file.

May appear in list as essential element of loop structure. [audit_conform]
_audit_conform_dict_version
(char)
The version number of the dictionary to which the current data block conforms.
May appear in list containing _audit_conform_dict_name. [audit_conform]

## AUDIT_CONTACT_AUTHOR

Data items in the AUDIT_CONTACT_AUTHOR category record details about the name and address of the author to be contacted concerning the contents of this data block.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop_

audit_contact_author_name
audit contact author address
_audit_contact_author_email
_audit_contact_author_fax
_audit_contact_author_phone
'Fitzgerald, Paula M. D.'
; Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway
New Jersey 07065
USA
;
'paula_fitzgerald@merck.com'
'1(908) 5945510 '
'1(908)5945510'
1(908)5945510

## audit_contact_author_address

The mailing address of the author of the data block to whom correspondence should be addressed.
Example:
; Department
Institute
Street
City and postcode
COUNTRY
;
[audit contact author]
audit_contact_author_email
(char)
The electronic mail address of the author of the data block to whom correspondence should be addressed, in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.

Examples: ‘name@host. domain. country’, ‘bm@iucr.org’.
[audit contact author]

## audit contact author fax

(char)
The facsimile telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces.
Examples: ‘12 (34) 9477334', '12()349477334'. [audit_contact_author]
4.1. CORE DICTIONARY (CORECIF)
_audit_contact_author_name
$\bar{T}$ The name of the author of the data block to whom correspondence should be addressed. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s)
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', ‘Simonov, Yu.A.’, 'M [audit_contact_author]
_audit_contact_author_phone
The telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by ' $x$ ', with no spaces.
Examples: ‘12 (34) 9477330 ’, ‘12 () $349477330 ’, ~ ‘ 12(34) 9477330 \times 5543$ ’.
[audit_contact_author]

## AUDIT_LINK

Data items in the AUDIT_LINK category record details about the relationships between data blocks in the current CIF

Example 1 - multiple structure paper, as illustrated in A Guide to CIF for Authors (1995). IUCr: Chester.

## loop_

audit_link_block_code
_audit_link_block_description
'discursive text of paper with two structures'
morA_(1) 'structure 1 of 2
morA_(2) 'structure 2 of 2 '
Example 2 - example file for the one-dimensional incommensurately modulated structure of $\mathrm{K}_{2} \mathrm{SeO}_{4}$.
loop
audit_link_block_code
audit_link_block_description
'publication details'

KSE_COM 'experimental data common to ref./mod. structures' KSE_REF 'reference structure'
KSE MOD 'modulated structure'

## audit link block code

(char)
The value of _audit_block_code associated with a data block in the current file related to the current data block. The special value '.' may be used to refer to the current data block for completeness.
Appears in list as essential element of loop structure.
[audit_link]
_audit_link_block_description
(char)
A textual description of the relationship of the referenced data block to the current one.
Appears in list containing _audit_link_block_code
[audit_link]

## CELL

Data items in the CELL category record details about the crystallographic cell parameters and their measurement.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

_cell_length_a	$5.959(1)$
_cell_length_b	$14.956(1)$
_cell_length_c	$19.737(3)$
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90
_cell_volume	$1759.0(3)$
_cell_measurement_temperature	293
_cell_measurement_reflns_used	25
_cell_measurement_theta_min	25
_cell_measurement_theta_max	31

## cell angle alpha <br> _cell_angle_beta <br> _cell_angle_gamma

(numb, su)
Unit-cell angles of the reported structure in degrees. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_length_a, *_b and *_c. The values of _diffrn_refln_index_h, *_k, *_1 may not correspond to these values if a cell transformation took place following the measurement of the diffraction intensities. See also diffrn_reflns_transf_matrix
The permitted range is $0.0 \rightarrow 180.0$. Where no value is given, the assumed value is ' $90.0^{\prime}$ '.
_cell_formula_units_Z
(numb)
The number of the formula units in the unit cell as specified by _chemical_formula_structural, _chemical_formula_moiety or _chemical_formula_sum.
The permitted range is $1 \rightarrow \infty$. [cell]

```
cell length a
cell_length_b
cell_length_c
```

(numb, su)
Unit-cell lengths in ångströms corresponding to the structure reported. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_angle_ values. The values of _diffrn_refln_index_h, *_k, *_1 may not correspond to these values if a cell transformation took place following the measurement of the diffraction intensities. See also _diffrn_reflns_transf_matrix_
The permitted range is $0.0 \rightarrow \infty$
[cell]

## cell measurement pressure

(numb, su)
The pressure in kilopascals at which the unit-cell parameters were measured (not the pressure at which the sample was synthesized). The permitted range is $0.0 \rightarrow \infty$.
[cell]
cell_measurement_radiation (char)
$\bar{D}$ escription of the radiation used to measure the unit-cell data. See also _cell_measurement_wavelength.
Examples: 'neutron', ‘Cu K\a', 'synchrotron'. [cell]

## cell_measurement_reflns_used <br> (numb)

$\bar{T}$ The total number of reflections used to determine the unit cell. These reflections may be specified as _cell_measurement_refln_ data items.
[cell]
_cell_measurement_temperature (numb, su)
The temperature in kelvins at which the unit-cell parameters were measured (not the temperature of synthesis).
The permitted range is $0.0 \rightarrow \infty$.
[cell
cell_measurement_theta max
(numb)
The maximum and minimum $\theta$ angles of reflections used to measure the unit cell in degrees.
The permitted range is $0.0 \rightarrow 90.0$.
[cell]
_cell_measurement_wavelength
$\bar{T}$ The wavelength in ångströms of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be the same as that given in _diffrn_radiation_wavelength.
The permitted range is $0.0 \rightarrow \infty$.
[cell]

```
cell reciprocal angle alpha
_cell_reciprocal_angle_beta
_cell_reciprocal_angle_gamma
```

(numb, su)
$\bar{T}$ The angles defining the reciprocal cell in degrees. These are related to those in the real cell by

$$
\begin{aligned}
\cos \alpha^{*} & =(\cos \beta \cos \gamma-\cos \alpha) /(\sin \beta \sin \gamma) \\
\cos \beta^{*} & =(\cos \gamma \cos \alpha-\cos \beta) /(\sin \gamma \sin \alpha) \\
\cos \gamma^{*} & =(\cos \alpha \cos \beta-\cos \gamma) /(\sin \alpha \sin \beta)
\end{aligned}
$$

Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is $0.0 \rightarrow 180.0$. Where no value is given, the assumed value is ' 90.0 '.

```
_cell_reciprocal_length_a
_cell_reciprocal_length_b
_cell_reciprocal_length_c
```

(numb, su)
$\bar{T}$ The reciprocal-cell lengths in inverse ångströms. These are related to the real cell by

$$
\begin{aligned}
a^{*} & =b c \sin \alpha / V \\
b^{*} & =c a \sin \beta / V \\
c^{*} & =a b \sin \gamma / V
\end{aligned}
$$

where $V$ is the cell volume.
Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is $0.0 \rightarrow \infty$.
[cell]
_cell_special_details
(char)
$\overline{\mathrm{A}}$ description of special aspects of the cell choice, noting possible alternative settings.
Examples: 'pseudo-orthorhombic',
'standard setting from 45 deg rotation around c'.

## cell_volume

(numb, su)
Cell volume $V$ in ångströms cubed.
$V=a b c\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)^{1 / 2}$,
where $a=$ _cell_length_a, $b=$ _cell_length_b, $c=$ _cell_ length_c, $\alpha=$ _cell_angle_alpha, $\beta=$ _cell_angle_beta and $\gamma=$ _cell_angle_gamma.
The permitted range is $0.0 \rightarrow \infty . \quad$ [cell]

## CELL_MEASUREMENT_REFLN

Data items in the CELL_MEASUREMENT_REFLN category record details about the reflections used in the determination of the crystallographic cell parameters. The _cell_measurement_refln_ data items would in general be used only for diffractometer measurements.
Example 1 - extracted from the CAD-4 listing for $\mathrm{Rb}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ at room temperature (unpublished).

## loop_

_cell_measurement_refln_index_h
_cell_measurement_refln_index_k
_cell_measurement_refln_index_l
_cell_measurement_refln_theta
$\begin{array}{llll}-2 & 4 & 1 & 8.67\end{array}$
$\begin{array}{llll}0 & 3 & 2 & 9.45 \\ 3 & 0 & 2 & 9.46\end{array}$
$\begin{array}{rrrr}3 & 0 & 2 & 9.46 \\ -3 & 4 & 1 & 8.9\end{array}$
$\begin{array}{llll}-2 & 1 & -2 & 7.53\end{array}$
$0 \quad 0 \quad 23.77$
23.78
11.14
data truncated for brevity - - -
_cell_measurement_refln_index_h
_cell_measurement_refln_index_k
_cell_measurement_refln_index_l
$\bar{M}$ iller indices of a reflection used for measurement of the unit cell. Appears in list as essential element of loop structure. [cell_measurement_refln]
_cell_measurement_refln_theta
(numb)
$\bar{\theta}$ angle in degrees for the reflection used for measurement of the unit cell with the indices _cell_measurement_refln_index_.
Appears in list containing _cell_measurement_refln_index_
The permitted range is $0.0 \rightarrow 90.0$. [cell_measurement_refln]

## CHEMICAL

Data items in the CHEMICAL category record details about the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and $Z$ values.
Example 1 - based on data set 9597gaus of Alyea, Ferguson \& Kannan [Acta Cryst. (1996), C52, 765-767J.
_chemical_name_systematic
trans-bis (tricyclohexylphosphine) tetracarbonylmolybdenum (0)

## chemical_absolute_configuration

$\overline{\text { Necessary }}$ conditions for the assignment of _chemical_ absolute_configuration are given by H. D. Flack and G. Bernardinelli (1999, 2000).

References: Flack, H. D. \& Bernardinelli, G. (1999). Acta Cryst. A55, 908-915; Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
The data value must be one of the following:
rm Absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration.
ad Absolute configuration established by anomalous-dispersion effects in diffraction measurements on the crystal.
rmad Absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration and confirmed by anomalous-dispersion effects in diffraction measurements on the crystal.
syn Absolute configuration has not been established by anomalousdispersion effects in diffraction measurements on the crystal. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure.
unk Absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous-dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made.
Inapplicable.
[chemical]
_chemical_compound_source
(char)
Description of the source of the compound under study, or of the parent molecule if a simple derivative is studied. This includes the place of discovery for minerals or the actual source of a natural product.
Examples: 'From Norilsk (USSR)',
'Extracted from the bark of Cinchona Naturalis'. [chemical]
chemical_enantioexcess_bulk
(numb, su)
The enantioexcess of the bulk material from which the crystals were grown. A value of 0.0 indicates the racemate. A value of 1.0 indicates that the compound is enantiomerically pure. Enantioexcess is defined in the IUPAC Recommendations (1996). The composition of the crystal and bulk must be the same.

Reference: Moss G.P. et al. (1996). Basic Terminology of Stereochemistry. Pure Appl. Chem. 68, 2193-2222. http://www.chem.qmul.ac.uk/iupac/stereo/index.html
The permitted range is $0.0 \rightarrow 1.0$.
[chemical]
chemical enantioexcess bulk technique
(char)
The experimental technique used to determine the enantioexcess of the bulk compound.
The data value must be one of the following:
OA Enantioexcess determined by measurement of the specific rotation of the optical activity of the bulk compound in solution.
CD Enantioexcess determined by measurement of the visible/near UV circular dichroism spectrum of the bulk compound in solution.
EC Enantioexcess determined by enantioselective chromatography of the bulk compound in solution.
other Enantioexcess determined by a technique not described in the enumeration list.
[chemical]

## _chemical_enantioexcess_crystal

(numb, su)
The enantioexcess of the crystal used for the diffraction study. A value of 0.0 indicates the racemate. A value of 1.0 indicates that the crystal is enantiomerically pure. Enantioexcess is defined in the IUPAC Recommendations (1996).

Reference: Moss G.P. et al. (1996). Basic Terminology of Stereochemistry. Pure Appl. Chem. 68, 2193-2222. http://www.chem.qmul.ac.uk/iupac/stereo/index.html
The permitted range is $0.0 \rightarrow 1.0$.
[chemical]
_chemical_enantioexcess_crystal_technique (char) The experimental technique used to determine the enantioexcess of the crystal.
The data value must be one of the following:
CD Enantioexcess determined by measurement of the visible/near UV circular dichroism spectrum of the crystal taken into solution.
EC Enantioexcess determined by enantioselective chromatography of the crystal taken into solution.
other Enantioexcess determined by a technique not described in the enumeration list.
[chemical]

## _chemical_melting_point

(numb, su)
The temperature in kelvins at which the crystalline solid changes to a liquid.
The permitted range is $0.0 \rightarrow \infty$.
[chemical]

$$
\begin{aligned}
& \text { _chemical_melting_point_gt } \\
& \text { _chemical_melting_point_lt }
\end{aligned}
$$

$\overline{\mathrm{A}}$ temperature in kelvins below which (*_1t) or above which (*_gt) the melting point (the temperature at which the crystalline solid changes to a liquid) lies. These items allow a range of temperatures to be given. _chemical_melting_point should always be used in preference to these items whenever possible.
The permitted range is $0.0 \rightarrow \infty$.
Related item: _chemical_melting_point (alternate).
[chemical]
_chemical_name_common (char) $\bar{T}$ rivial name $\bar{b} y$ which the compound is commonly known.
Example: '1-bromoestradiol'. [chemical]
_chemical_name_mineral
(char)
Mineral name accepted by the International Mineralogical Association. Use only for natural minerals. See also _chemical_ compound_source.
Example: 'chalcopyrite'.
[chemical]
_chemical_name_structure_type
(char)
Commonly used structure-type name. Usually only applied to minerals or inorganic compounds.
Examples: 'perovskite', 'sphalerite', ‘A15’.
[chemical]

[^3]chemical optical rotation
(char)
$\bar{T}$ he optical rotation in solution of the compound is specified in the following format:
$$
[\alpha]_{\text {WAVE }}^{\mathrm{TEMP}}=\operatorname{SORT} \quad(c=\mathrm{CONC}, \mathrm{SOLV}),
$$
where TEMP is the temperature of the measurement in degrees Celsius, WAVE is an indication of the wavelength of the light used for the measurement, CONC is the concentration of the solution given as the mass of the substance in ger 100 ml of solution, SORT is the signed value (preceded by a + or $\mathrm{a}-$ sign) of $100 \alpha /(l c)$, where $\alpha$ is the signed optical rotation in degrees measured in a cell of length $l$ in dm and $c$ is the value of $C O N C$ as defined above, and SOLV is the chemical formula of the solvent.
Example: ‘[\a] ${ }^{\wedge} 25^{\wedge} \sim D^{\sim}=+108$ ( $c=3.42$, CHCl $\sim 3 \sim$ )'. [chemical]

## chemical properties biological

(char)
A free-text description of the biological properties of the material.

## Examples:

; diverse biological activities including use as a laxative and strong antibacterial activity against
S. aureus and weak activity against
cyclooxygenase-1 (cox-1)
;
antibiotic activity against Bacillus subtilis
(ATCC 6051) but no significant activity against
Candida albicans (ATCC 14053), Aspergillus flavus
(NRRL 6541) and Fusarium verticillioides (NRRL
25457)
weakly potent lipoxygenase nonredox inhibitor
no influenza A virus sialidase inhibitory and
plaque reduction activities
low toxicity against Drosophila melanogaster
[chemical]
_chemical_properties_physical (char)
A free-text description of the physical properties of the material.
Examples: ‘air-sensitive', 'moisture-sensitive', 'hygroscopic',
'deliquescent', ‘oxygen-sensitive', 'photo-sensitive', 'pyrophoric', 'semiconductor', 'ferromagnetic at low temperature',
'paramagnetic and thermochromic'. [chemical]
_chemical_temperature_decomposition (numb, su) $\overline{\text { The temperature in kelvins at which the solid decomposes. }}$
The permitted range is $0.0 \rightarrow \infty$.
Example: ' 350 '.
[chemical]


## chemical_temperature_sublimation <br> (numb, su)

$\bar{T}$ The temperature in kelvins at which the solid sublimes.
The permitted range is $0.0 \rightarrow \infty$.
Example: '350'.
[chemical]
chemical temperature sublimation gt _chemical_temperature_sublimation_lt
A temperature in kelvins below which ( $*$ lt) or (* _gt) the solid is known to sublime. These items allow a range of temperatures to be given. _chemical_temperature_sublimation should always be used in preference to these items whenever possible.
The permitted range is $0.0 \rightarrow \infty$.
Related item: _chemical_temperature_sublimation (alternate).
Example: ‘350’.
[chemical]

## CHEMICAL_CONN_ATOM

Data items in the _chemical_conn_atom_and _chemical_conn_ bond_ categories $\bar{r}$ ecord details about the two- $\overline{\text { dimensional (2D) }}$ chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The _chemical_conn_atom_ data items provide information about the chemical properties of the atoms in the structure. In cases where crystallographic and molecular symmetry elements coincide, they must also contain symmetry-generated atoms, so that the _chemical_conn_atom_ and _chemical_conn_bond_ data items will always describe a complete chemical entity.
Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar \& bin Shawkataly [Acta Cryst. (1996), C52, 951-953].
loop_
_chemical_conn_atom_number
chemical conn atom type symbol
_chemical_conn_atom_display_x
_chemical_conn_atom_display_y
_chemical_conn_atom_NCA
_chemical_conn_atom_NH

1	S	.39	.81	1	0
2	S	.39	.96	2	0
3	N	.14	.88	3	0
4	C	.33	.88	3	0
5	C	.11	.96	2	2
6	C	.03	.96	2	2
7	C	.03	.80	2	2
8	C	.11	.80	2	2
9	S	.54	.81	1	0
10	S	.54	.96	2	0
11	N	.80	.88	3	0
12	C	.60	.88	3	0
13	C	.84	.96	2	2
14	C	.91	.96	2	2
15	C	.91	.80	2	2
16	C	.84	.80	2	2

_chemical_conn_atom_charge
(numb)
The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams.
Appears in list containing _chemical_conn_atom_type_symbol.
The permitted range is $-6 \rightarrow 6$. Where no value is given, the assumed value is ' 0 '.
Examples: ' 1 ' (for an ammonium nitrogen), ' -1 ' (for a chloride ion).
[chemical_conn_atom]

## _chemical_conn_atom_display_x _chemical_conn_atom_display_y

The 2D Cartesian coordinates $(x, y)$ of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the $x$ axis is horizontal and the $y$ axis is vertical. The coordinates must lie in the range 0.0 to 1.0. These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure.
Appears in list containing_chemical_conn_atom_type_symbol.
The permitted range is $0.0 \rightarrow 1.0$.
[chemical_conn_atom]
chemical conn atom NCA
(numb)
$\bar{T}$ The number ${ }^{-}$of connected $\overline{-}$ atoms excluding terminal hydrogen atoms.
Appears in list containing _chemical_conn_atom_type_symbol.
The permitted range is $0 \rightarrow \infty$.
[chemical_conn_atom]

## chemical_conn_atom_NH

(numb)
$\bar{T}$ The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the _atom_site_ list. This number will be the same as _atom_site_attached_hydrogens only if none of the hydrogen atoms appear in the _atom_site_ list.
Appears in list containing _chemical_conn_atom_type_symbol.
The permitted range is $0 \rightarrow \infty$.
[chemical_conn_atom]
_chemical_conn_atom_number
(numb)
The chemical sequence number to be associated with this atom.
Appears in list containing _chemical_conn_atom_type_symbol. May match child data name(s): _atom_site_chemical_conn_number,
_chemical_conn_bond_atom_1,_chemical_conn_bond_atom_2.
The permitted range is $1 \rightarrow \infty$. [chemical_conn_atom]
_chemical_conn_atom_type_symbol
(char)
A code identifying the atom type. This code must match an _atom_type_symbol code in the _atom_type_ list or be a recognizable element symbol.
Appears in list as essential element of loop structure.
[chemical_conn_atom]

## CHEMICAL_CONN_BOND

Data items in the _chemical_conn_atom_ and _chemical_conn_ bond_ categories record details about the two-dimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The _chemical_conn_bond_ data items specify the connections between the atoms in the _chemical_conn_atom_ list and the nature of the chemical bond between these atoms.
Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar \& bin Shawkataly [Acta Cryst. (1996), C52, 951-953].

## loop_

_chemical_conn_bond_atom_1
_chemical_conn_bond_atom_2

_chemical_conn_bond_type				
4	1	doub	4	3
4	2	sing	5	3
6	5	sing	7	6
8	7	sing	8	3
10	2	sing	12	9
12	11	sing	sing	
13	11	sing	12	10
15	14	sing	16	13
16	11	sing	17	15
18	5	sing		
20	6	sing	19	6
22	7	sing	21	7
24	8	sing	23	8
26	13	sing	25	13
28	14	sing	29	14
30	15	sing	31	16
32	16	sing		

_chemical_conn_bond_atom_1
_chemical_conn_bond_atom_2
Atom numbers which must match with chemical sequence numbers specified as _chemical_conn_atom_number values. These link the bond connection to the chemical numbering and atom sites.
Appears in list. Must match parent data name _chemical_conn_atom_number.
The permitted range is $1 \rightarrow \infty$.
[chemical_conn_bond]

## chemical_conn_bond_type

(char)
The chemical bond type associated with the connection between the two sites _chemical_conn_bond_atom_1 and *_2.
Appears in list containing _chemical_conn_bond_atom_
The data value must be one of the following:
sing single bond
doub double bond
trip triple bond
quad quadruple bond
arom aromatic bond
poly polymeric bond
delo delocalized double bond
pi $\quad \pi$ bond
Where no value is given, the assumed value is 'sing'.
[chemical conn bond]

## CHEMICAL_FORMULA

_chemical_formula_items specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and $Z$ values. The following rules apply to the construction of the data items _chemical_formula_analytical,*_structural and *_sum. For the data item *_moiety, the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see _chemical_formula_moiety). (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of ' 1 ' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count). (4) Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parenthesis. That is, all element and group multipliers are assumed to be printed as subscripted numbers. (An exception to this rule exists for *_moiety formulae where pre- and post-multipliers are permitted for molecular units.) (5) Unless the elements are ordered in a manner that corresponds to their chemical structure, as in _chemical_formula_structural, the order of the elements within any group or moiety depends on whether carbon is present or not. If carbon is present, the order should be: C , then H , then the other elements in alphabetical order of their symbol. If carbon is not present, the elements are listed purely in alphabetical order of their symbol. This is the 'Hill' system used by Chemical Abstracts. This ordering is used in _chemical_formula_moiety and _chemical_formula_sum.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

_chemical_formula_moiety	$\prime$ C18 H25 N O3'
chemical_formula_sum	'C18 H25 N O3'

chemical formula_sum
'C18 H25 N O3'
_chemical_formula_weight
303.40

Example 2 - based on data set 9597gaus of Alyea, Ferguson \& Kannan [Acta Cryst. (1996), C52, 765-767].

_chemical_formula_iupac	(Mo (C O) 4 (C18 H33 P)2]'	
-chemical_formula_moiety	C40 H66 Mo O4 P2'	
_chemical_formula_structural	'((C O) 4 (P (C6 H11) 3)2) Mo'	
_chemical_formula_sum	'C40 H66 Mo O4 P2'	
_chemical_formula_weight	768.81	

[^4]chemical formula iupac
(char)
Formula expressed in conformance with IUPAC rules for inorganic and metal-organic compounds where these conflict with the rules for any other _chemical_formula_ entries. Typically used for formatting a formula in accordance with journal rules. This should appear in the data block in addition to the most appropriate of the other chemical_formula_data names.

Reference: IUPAC (1990). Nomenclature of Inorganic Chemistry. Oxford: Blackwell Scientific Publications.
Example: ‘[Co $\operatorname{Re}(\mathrm{C} 12 \mathrm{H} 22 \mathrm{P}) 2$ (C O) 6].0.5C H3 O H’.
[chemical_formula]

## _chemical_formula_moiety (char)

Formula with each discrete bonded residue or ion shown as a separate moiety. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply: (1) Moieties are separated by commas ',' (2) The order of elements within a moiety follows general rule (5) in the CHEMICAL_FORMULA category description. (3) Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested. (4) Charges should be placed at the end of the moiety. The charge ' + ' or '-' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties.
Examples: ‘C7 H4 Cl Hg N O3 S’, ‘C12 H17 N4 O S 1+, C6 H2 N3 O7 1-', 'C12 H16 N2 O6, $5(\mathrm{H} 2 \mathrm{O})$ ), '( $\mathrm{Cd} 2+$ ) 3, ( $\mathrm{C} 6 \mathrm{~N} 6 \mathrm{Cr} 3-) 2,2(\mathrm{H} 2 \mathrm{O})$ ).
[chemical_formula]
_chemical_formula_structural
(char) $\bar{S}$ ee the CHEMICAL_FORMULA category description for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, i.e. trace elements not included in atom-type and atom-site lists should not be included in this formula (see also _chemical_formula_analytical).
Examples: ‘Ca ( (Cl O3) 2 O) 2 ( H 2 O ) 6’,
'(Pt (N H3) 2 (C5 H7 N3 O)2) (Cl O4)2’. [chemical_formula]
_chemical_formula_sum
(char)
See the CHEMICAL_FORMULA category description for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule (5) in the CHEMICAL_FORMULA category description. Parentheses are not normally used.
Example: ‘C18 H19 N7 O8 S'.
[chemical_formula]

## chemical formula weight

(numb)
$\overline{\text { Formula mass }}$ in daltons. This mass should correspond to the formulae given under_chemical_formula_structural, *_iupac, *_moiety or *_sum and, together with the $Z$ value and cell parameters, should yield the density given as _exptl_crystal_density_ diffrn.
The permitted range is $1.0 \rightarrow \infty$.
[chemical_formula]

## chemical formula weight meas

(numb)
$\overline{\text { Formula mass in daltons measured by a non-diffraction experi- }}$ ment.

## CITATION

Data items in the CITATION category record details about the literature cited as being relevant to the contents of the data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop_

_citation_id
citation coordinate_linkage
_citation_title
_citation_country
citation_page_first
_citation_page_last
citation_year
citation_journal_abbrev
citation_journal_volume
_citation_journal_issue
citation journal id ASTM
_citation_journal_id_ISSN
_citation_book_title
citation book publisher
_citation_book_id_ISBN
_citation_special_details
primary yes
; Crystallographic analysis of a complex between human
immunodeficiency virus type 1 protease and
acetyl-pepstatin at 2.0 -Angstroms resolution.
;
US 14209142191990 'J. Biol. Chem.' 265 .
HBCHA3 0021-9258 . . .
; The publication that directly relates to this coordinate set.
;
2 no
Three-dimensional structure of aspartyl-protease from
human immunodeficiency virus HIV-1.
;
UK 6156191989 'Nature' 337 .
NATUAS 0028-0836 . . .
Determination of the structure of the unliganded enzyme.
;
3 no
; Crystallization of the aspartylprotease from human
immunodeficiency virus, HIV-1.
US 191919211989 'J. Biol. Chem.' 264 .
HBCHA3 0021-9258 . . .
; Crystallization of the unliganded enzyme.
;

## citation abstract

(char)
$\overline{\text { Abstract for the citation. This is used most when the citation is }}$ extracted from a bibliographic database that contains full text or abstract information.
Appears in list containing _citation_id.
[citation]

_citation_abstract_id_CAS<br>(char)

The Chemical Abstracts Service (CAS) abstract identifier; relevant for journal articles.
Appears in list containing _citation_id. [citation]
_citation_book_id_ISBN (char)
The International Standard Book Number (ISBN) code assigned to the book cited; relevant for books or book chapters.
Appears in list containing citation_id. [citation]

## citation book publisher

(char)
The name of the publisher of the citation; relevant for books or book chapters.
Appears in list containing _citation_id.
Example: 'John Wiley'.
[citation]
citation book publisher city
(char)
The location of the publisher of the citation; relevant for books or book chapters.
Appears in list containing _citation_id.
Example: 'New York'. [citation]
_citation_book_title
(char)
The title of the book in which the citation appeared; relevant for books or book chapters.
Appears in list containing _citation_id. [citation]

## citation_coordinate_linkage

_citation_coordinate_linkage states whether or not this citation is concerned with precisely the set of coordinates given in the data block. If, for instance, the publication described the same structure, but the coordinates had undergone further refinement prior to creation of the data block, the value of this data item would be 'no'.
Appears in list containing _citation_id.
The data value must be one of the following:
no citation unrelated to current coordinates
n abbreviation for 'no'
yes citation related to current coordinates
Y abbreviation for 'yes'

## [citation]

_citation_country
(char)
The country of publication; relevant for books and book chapters.
Appears in list containing _citation_id. [citation]
citation_database_id_CSD
(char)
Identifier ('refcode') of the database record in the Cambridge Structural Database that contains details of the cited structure.
Appears in list containing _citation_id.
Example: 'LEKKUH'.
[citation]
_citation_database_id_Medline (numb)
Accession number used by Medline to categorize a specific bibliographic entry.
Appears in list containing _citation_id.
The permitted range is $1 \rightarrow \infty$.
Example: ‘89064067'. [citation]
_citation_id
(char)
The value of _citation_id must uniquely identify a record in the _citation_list. The _citation_id 'primary' should be used to indicate the citation that the author(s) consider to be the most pertinent to the contents of the data block. Note that this item need not be a number; it can be any unique identifier.
Appears in list as essential element of loop structure. May match child data name(s):
_citation_author_citation_id,_citation_editor_citation_id.
Examples: 'primary', '1', '2', '3'. [citation]
_citation_journal_abbrev
(char)
Abbreviated name of the journal cited as given in the Chemical Abstracts Service Source Index.
Appears in list containing _citation_id.
Example: ‘J. Mol. Biol.'. [citation
citation_journal_full
(char)
Full name of the journal cited; relevant for journal articles.
Appears in list containing _citation_id.
Example: 'Journal of Molecular Biology'.
_citation_journal_id_ASTM
(char)
The American Society for Testing and Materials (ASTM) code assigned to the journal cited (also referred to as the CODEN designator of the Chemical Abstracts Service); relevant for journal articles.
citation_journal_id_CSD
$\bar{T}$ The Cambridge Structural Database (CSD) code assigned to the journal cited; relevant for journal articles. This is also the system used at the Protein Data Bank (PDB).
Appears in list containing _citation_id.
Example: '0070’.
[citation]

## citation_journal_id_ISSN

(char)
The International Standard Serial Number (ISSN) code assigned to the journal cited; relevant for journal articles.
Appears in list containing _citation_id.
[citation]
_citation_journal_issue
(char)
Issue number of the journal cited; relevant for journal articles.
Appears in list containing _citation_id.
Example: ' 2 '.
[citation]

## citation_journal_volume

(char)
Volume number of the journal cited; relevant for journal articles.
Appears in list containing _citation_id.
Example: '174’.
[citation]
_citation_language
(char)
$\bar{L}$ Language in $\bar{w}$ hich the cited article is written.
Appears in list containing _citation_id.
Example: 'German'.
[citation]

## _citation_page_first <br> _citation_page_last

$\bar{T}$ The first and last pages of the citation; relevant for journal articles, books and book chapters.
Appears in list containing _citation_id. [citation]
_citation_special_details
(char)
$\overline{\mathrm{A}}$ description of special aspects of the relationship of the contents of the data block to the literature item cited.
Appears in list containing _citation_id.
Examples:
; citation relates to this precise coordinate set
; Citation relates to earlier low-resolution structure
; citation relates to further refinement of structure reported in citation 2
[citation]

## citation_title

(char)
$\bar{T}$ The title of the citation; relevant for journal articles, books and book chapters.

```
Appears in list containing _citation_id.
Example:
; Structure of diferric duck ovotransferrin at 2.35\%A
 resolution.
; [citation]
_citation_year
\(\bar{T}\) The year of the citation; relevant for journal articles, books and book chapters.
Appears in list containing _citation_id.
Example: '1984'.
[citation]

Data items in the CITATION_AUTHOR category record details about the authors associated with the citations in the _citation_ list.
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_citation_author_citation_id
-citation_author_name
primary 'Fitzgerald, P.M.D.'
primary 'McKeever, B.M.'
primary 'Van Middlesworth, J.F.'
primary 'Springer, J.P.'
primary 'Heimbach, J.C.'
primary 'Leu, C.-T.'
primary 'Herber, W.K.'
primary 'Dixon, R.A.F.'
primary 'Darke, P.L.'
'Navia, M.A.'
'Fitzgerald, P.M.D.'
'McKeever, B.M.'
'Leu, C.-T.'
'Heimbach, J.C.'
'Herber, W.K.'
'Sigal, I.S.'
'Darke, P.L.'
'Springer, J.P.'
'McKeever, B.M.'
'Navia, M.A.'
'Fitzgerald, P.M.D.'
'Springer, J.P.'
'Leu, C.-T.'
'Heimbach, J.C.'
'Herber, W.K.'
'Sigal, I.S.'
'Darke, P.L.'

\section*{_citation_author_citation_id (char)}

The value of _citation_author_citation_id must match an identifier specified by _citation_id in the _citation_list.
Appears in list as essential element of loop structure. Must match parent data name _citation_id.
[citation_author]

\section*{citation_author_name}
(char)
Name of an author of the citation; relevant for journal articles, books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Appears in list as essential element of loop structure.
Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'.
[citation_author]
_citation_author_ordinal
(char)
This data name defines the order of the author's name in the list of authors of a citation.
Appears in list.
[citation_author]

\section*{CITATION_EDITOR}

Data items in the CITATION_EDITOR category record details about the editor associated with the book or book chapter citations in the _citation_list.
```

Example 1 - hypothetical example.
loop_
_citation_editor_citation_id
__citation_editor_name
5 'McKeever, B.M.'
'Navia, M.A.'
'Fitzgerald, P.M.D.'
'Springer, J.P.'

```
citation_editor_citation_id
(char)
The value of _citation_editor_citation_id must match an identifier specified by _citation_id in the _citation_list.
Appears in list as essential element of loop structure. Must match parent data name
_citation_id
[citation_editor]

\section*{citation_editor_name}
(char)
\(\bar{N}\) Name of an editor of the citation; relevant for books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Appears in list as essential element of loop structure
Examples: ‘Bleary, Percival R.', ‘O’Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'
[citation editor]
citation_editor_ordinal
(char)
This data name defines the order of the editor's name in the list of editors of a citation.

Appears in list. [citation_editor]

\section*{COMPUTING}

Data items in the COMPUTING category record details about the computer programs used in the crystal structure analysis.

Example 1 - Rodrìguez-Romero, Ruiz-Pérez \& Solans [Acta Cryst. (1996), C52, 1415-1417].
computing_data_collection 'CAD-4 (Enraf-Nonius, 1989)' computing cell refinement 'CAD-4 (Enraf-Nonius, 1989)' computing data reduction
'CFEO (Solans, 1978)'
computing_structure_solution computing molecular graphics ,OPTEPIT computing_publication_material 'PARST (Nardelli, 1983)'
```

computing cell refinement
_computing_data_collection
computing data reduction
_computing_molecular_graphics
_computing_publication_material
_computing_structure_refinement
_computing_structure_solution

```
(char)
Software used in the processing of the data. Give the program or package name and a brief reference.
Examples: ‘CAD-4 (Enraf-Nonius, 1989)’,
'DIFDAT, SORTRF, ADDREF (Hall \& Stewart, 1990)’,
'FRODO (Jones, 1986), ORTEP (Johnson, 1965)',
‘CRYSTALS (Watkin, 1988)’,‘SHELX85 (Sheldrick, 1985)’
[computing]

\section*{DATABASE}

Data items in the DATABASE category record details about the database identifiers of the data block. These data items are assigned by database managers and should only appear in a CIF if they originate from that source.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
database_code_CSD
, VOBYUG
_database_code_CAS
_database_code_CSD
database_code_ICSD
_database_code_MDF
_database_code_NBS
_database_code_PDB
database_code_PDF
(char)
The codes are assigned by databases: Chemical Abstracts; Cambridge Structural Database (organic and metal-organic compounds); Inorganic Crystal Structure Database; Metals Data File (metal structures); NBS (NIST) Crystal Data Database (lattice parameters); Protein Data Bank; and the Powder Diffraction File (JCPDS/ICDD).

\section*{[database]}
_database_code_depnum_ccdc_archive
(char)
Deposition numbers assigned by the Cambridge Crystallographic Data Centre (CCDC) to files containing structural information archived by the CCDC.
[database]
database_code_depnum_ccdc_fiz
(char)
Deposition numbers assigned by the Fachinformationszentrum Karlsruhe (FIZ) to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).
[database]
_database_code_depnum_ccdc_journal
(char)
Deposition numbers assigned by various journals to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).
[database]
database_CSD_history
(char)
A history of changes made by the Cambridge Crystallographic Data Centre and incorporated into the Cambridge Structural Database (CSD).
[database]
database_journal_ASTM
_database_journal_CSD
(char)
\(\bar{T}\) The ASTM CODEN designator for a journal as given in the Chemical Source List maintained by the Chemical Abstracts Service, and the journal code used in the Cambridge Structural Database
[database]

\section*{DIFFRN}

Data items in the DIFFRN category record details about the intensity measurements
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
_diffrn_special_details
; \(\backslash q\) scan width \((1.0+0.14 \tan \backslash q) \backslash \%, \backslash q\) scan rate
\(1.2 \backslash \% \min ^{\wedge}-1^{\wedge}\). Background counts for 5 s on each side
every scan.
;
diffrn ambient temperature 293

\section*{diffrn_ambient_environment \\ (char)}

The gas or liquid surrounding the sample, if not air.
Examples: 'He', 'vacuum', 'mother liquor'
[diffrn]
diffrn ambient pressure
(numb, su)
The mean hydrostatic pressure in kilopascals at which the intensities were measured.
The permitted range is \(0.0 \rightarrow \infty\)
[diffrn]

\section*{diffrn_ambient_pressure gt}
_diffrn_ambient_pressure_lt (numb)
The mean hydrostatic pressure in kilopascals above which (*_gt) or below which (*_lt) the intensities were measured. These items allow for a pressure range to be given. _diffrn_ambient_pressure should always be used in preference to these items whenever possible.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_ambient_pressure (alternate).
[diffrn]

\section*{diffrn_ambient_temperature}
(numb, su)
The mean temperature in kelvins at which the intensities were measured.
The permitted range is \(0.0 \rightarrow \infty\) [diffrn]
_diffrn_ambient_temperature_gt
_diffrn_ambient_temperature_lt (numb)
\(\bar{T}\) he mean temperature in kelvins above which (*_gt) or below which \(\left(*_{-} \_t\right)\) the intensities were measured. These items allow a range of temperatures to be given. _diffrn_ambient_temperature should always be used in preference to these items whenever possible.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_ambient_temperature (alternate). [diffrn]

\section*{_diffrn_crystal_treatment}
(char)
Remarks about how the crystal was treated prior to the intensity measurements. Particularly relevant when intensities were measured at low temperature.
Examples: 'equilibrated in hutch for 24 hours',
'flash frozen in liquid nitrogen',
'slow cooled with direct air stream'.
[diffrn]
_diffrn_measured_fraction_theta_full
(numb)
Fraction of unique (symmetry-independent) reflections measured out to _diffrn_reflns_theta_full.
The permitted range is \(0 \rightarrow 1\). . \(^{-} \quad\) [diffrn]

\section*{_diffrn_measured_fraction_theta_max}
(numb)
\(\bar{F}\) raction of unique (symmetry-independent) reflections measured out to _diffrn_reflns_theta_max.
The permitted range is \(0 \rightarrow 1.0\).
[diffrn]
_diffrn_special_details
(char)
\(\bar{S} p e c i a l\) details of the intensity-measurement process. Should include information about source instability, crystal motion, degradation and so on.

\section*{Example:}
; The results may not be entirely reliable as the measurement was made during a heat wave when the air-conditioning had failed.
;
[diffrn]
diffrn_symmetry_description
(char)
Observed diffraction point symmetry, systematic absences and possible space \(\operatorname{group}(s)\) or superspace group(s) compatible with these.
[diffrn]

\section*{DIFFRN_ATTENUATOR}

Data items in the DIFFRN_ATTENUATOR category record details about the diffraction attenuator scales employed.

\section*{Example 1 - hypothetical example.}
loop_
_diffrn_attenuator_code
_diffrn_attenuator_scale
1.00
16.97
33.89
_diffrn_attenuator_code
(char)
\(\overline{\text { A }}\) code associated with a particular attenuator setting. This code is referenced by the _diffrn_refln_attenuator_code which is stored with the intensities. See _diffrn_attenuator_scale.
Appears in list as essential element of loop structure. May match child data name(s):
_diffrn_refln_attenuator_code. [diffrn_attenuator]
-diffrn_attenuator_material
Material from which the attenuator is made.
Appears in list containing_diffrn_attenuator_code. [diffrn_attenuator]
_diffrn_attenuator_scale
(numb)
\(\bar{T}\) The scale \(\overline{\text { factor applied when an intensity measurement is reduced }}\) by an attenuator identified by _diffrn_attenuator_code. The measured intensity must be multiplied by this scale to convert it to the same scale as unattenuated intensities.
Appears in list containing _diffrn_attenuator_code.
The permitted range is \(1.0 \rightarrow \infty\).
[diffrn_attenuator]

\section*{DIFFRN_DETECTOR}

Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
_diffrn_detector 'multiwire'
_diffrn_detector_type 'Siemens'
_diffrn_detector
(char)
\(\bar{T}\) The general class of the radiation detector.
Related item: _diffrn_radiation_detector (alternate).
Examples: 'photographic film', 'scintillation counter', 'CCD plate',
'BF~3~ counter'. [diffrn_detector]
diffrn_detector_area_resol_mean
(numb)
\(\bar{T}\) The resolution of an area detector, in pixels \(\mathrm{mm}^{-1}\).
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_detector]
_diffrn_detector_details (char)
\(\overline{\mathrm{A}}\) description of special aspects of the radiation detector.
[diffrn_detector]
_diffrn_detector_dtime
(numb)
The deadtime in microseconds of the detector used to measure the diffraction intensities.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_radiation_detector_dtime (alternate).
[diffrn_detector]
_diffrn_detector_type
(char)
The make, model or name of the detector device used.
[diffrn_detector]
_diffrn_radiation_detector
(char)
This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_detector.
The detector used to measure the diffraction intensities.
[diffrn_detector]
(numb)
diffrn radiation detector dtime
This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_detector_dtime.
The deadtime in microseconds of the detector used to measure the diffraction intensities.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_detector]

\section*{DIFFRN_MEASUREMENT}

Data items in the DIFFRN_MEASUREMENT category refer to the mounting of the sample and to the goniometer on which it is mounted.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
diffrn_measurement_device_type
'Philips PW1100/20 diffractometer'
diffrn_measurement_method \(\quad\) q/2 \(\backslash \mathrm{q}\)
_diffrn_measurement_details
(char)
A description of special aspects of the intensity measurement.
Example: ‘440 frames of \(0.25 \backslash \frac{\circ}{\circ}\) '.
[diffrn_measurement]
_diffrn_measurement_device
(char)
The general class of goniometer or device used to support and orient the specimen.
Examples: 'three-circle diffractometer',
'four-circle diffractometer', '\k-geometry diffractometer',
'oscillation camera', 'precession camera'. [diffrn_measurement]
_diffrn_measurement_device_details (char)
A description of special aspects of the device used to measure the diffraction intensities.
Example:
; commercial goniometer modified locally to allow for \(90 \backslash \%\) \t arc
[diffrn_measurement]
_diffrn_measurement_device_type
(char)
The make, model or name of the measurement device (goniometer) used.
[diffrn_measurement]

\section*{_diffrn_measurement_method}
(char)
Method used to measure the intensities.
Example: 'profile data from \(\backslash q / 2 \backslash q\) scans'.
[diffrn_measurement]
diffrn_measurement_specimen_support (char)
The physical device used to support the crystal during data collection.
Examples: ‘glass capillary’, 'quartz capillary’, ‘fiber', ‘metal loop’.
[diffrn_measurement]

\section*{DIFFRN_ORIENT_MATRIX}

Data items in the DIFFRN_ORIENT_MATRIX category record details about the orientation matrix used in the measurement of the diffraction intensities.
Example 1 - data set n-alkylation_C-4 of Hussain, Fleming, Norman \& Chang [Acta Cryst. (1996), C52, 1010-1012].
\begin{tabular}{lr}
_diffrn_orient_matrix_UB_11 & -0.04170 \\
_diffrn_orient_matrix_UB_12 & -0.01429 \\
_diffrn_orient_matrix_UB_13 & -0.02226 \\
_diffrn_orient_matrix_UB_21 & -0.00380 \\
_diffrn_orient_matrix_UB_22 & -0.05578 \\
_diffrn_orient_matrix_UB_23 & -0.05048 \\
_diffrn_orient_matrix_UB_31 & 0.00587 \\
_diffrn_orient_matrix_UB_32 & -0.13766 \\
_diffrn_orient_matrix_UB_33 & 0.02277 \\
& \\
_diffrn_orient_matrix_type 'TEXSAN convention (MSC, 1989)'
\end{tabular}
_diffrn_orient_matrix_type
(char)
\(\overline{\mathrm{A}}\) description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes.
[diffrn_orient_matrix]
_diffrn_orient_matrix_UB_11
-diffrn_orient_matrix_UB_12
-diffrn_orient_matrix_UB_13
_diffrn_orient_matrix_UB_21
_diffrn_orient_matrix_UB_22
-diffrn_orient_matrix_UB_23
-diffrn_orient_matrix_UB_31
-diffrn_orient_matrix_UB_32
_diffrn_orient_matrix_UB_33
(numb)
\(\overline{\text { The }}\) elements of the diffractometer orientation matrix. These define the dimensions of the reciprocal cell and its orientation to the local diffractometer axes. See _diffrn_orient_matrix_type.
[diffrn_orient_matrix]

\section*{DIFFRN_ORIENT_REFLN}

Data items in the DIFFRN ORIENT REFLN category record details about the reflections that define the orientation matrix used in the measurement of the diffraction intensities.
Example 1 - typical output listing from an Enraf-Nonius CAD-4 diffractometer.

\section*{loop_}
_diffrn_orient_refln_index_h
_diffrn_orient_refln_index_k
_diffrn_orient_refln_index_l
_diffrn_orient_refln_angle_theta
_diffrn_orient_refln_angle_phi
_diffrn_orient_refln_angle_omega
_diffrn_orient_refln_angle_kappa
\begin{tabular}{rrrrrrr}
- & \(\overline{2}\) & 3 & 7.35 & 44.74 & 2.62 & 17.53 \\
-4 & 1 & 0 & 9.26 & 83.27 & 8.06 & 5.79 \\
0 & 0 & 6 & 5.85 & -43.93 & -25.36 & 86.20 \\
2 & 1 & 3 & 7.36 & -57.87 & 6.26 & 5.42 \\
0 & 0 & -6 & 5.85 & -161.59 & 36.96 & -86.79 \\
-3 & 1 & 0 & 6.74 & 80.28 & 5.87 & 2.60 \\
2 & 0 & 3 & 5.86 & -76.86 & -0.17 & 21.34 \\
0 & 0 & 12 & 11.78 & -44.02 & -19.51 & 86.41 \\
0 & 0 & -12 & 11.78 & -161.67 & 42.81 & -86.61 \\
-5 & 1 & 0 & 11.75 & 86.24 & 9.16 & 7.44 \\
0 & 4 & 6 & 11.82 & -19.82 & 10.45 & 4.19 \\
5 & 0 & 6 & 14.13 & -77.28 & 10.17 & 15.34 \\
8 & 0 & 0 & 20.79 & -77.08 & 25.30 & -13.96 \\
\hline
\end{tabular}
```

diffrn_orient_refln_angle_chi
diffrn orient refln angle kappa
_diffrn_orient_refln_angle_omega
_diffrn_orient_refln_angle_phi
diffrn_orient_refln_angle_psi
diffrn_orient_refln_angle_theta

```
(numb)
Diffractometer angles of a reflection used to define the orientation matrix in degrees. See diffrn orient matrix UB and _diffrn_orient_refln_index_h, *_k and *_1.
Appears in list containing _diffrn_orient_refln_index_.
[diffrn_orient_refln]
```

diffrn_orient_refln_index_h
_diffrn_orient_refln_index k
_diffrn_orient_refln_index_l

```
(numb)
The indices of a reflection used to define the orientation matrix. See diffrn orient matrix.
Appears in list as essential element of loop structure
[diffrn_orient_refln]

\section*{DIFFRN_RADIATION}

Data items in the DIFFRN_RADIATION category describe the radiation used in measuring the diffraction intensities, its collimation and monochromatization before the sample. Post-sample treatment of the beam is described by data items in the DIFFRN_DETECTOR category.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{ll}
_diffrn_radiation_type & 'Cu K \(\backslash\) ' \\
_diffrn_radiation_monochromator & 'graphite'
\end{tabular}

Thiffrn_radiation_collimation
The collimation or focusing applied to the radiation. (char)
Examples: ' 0.3 mm double-pinhole', ' 0.5 mm ', 'focusing mirrors'.
[diffrn_radiation]
_diffrn_radiation_filter_edge
Absorption edge in ångströms of the radiation filter used.
[diffrn_radiation]
The permitted range is \(0.0 \rightarrow \infty\).
diffrn_radiation_inhomogeneity
(numb)
Half-width in millimetres of the incident beam in the direction per-
pendicular to the diffraction plane.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_radiation]
_diffrn_radiation_monochromator
\(\bar{T}\) The method used to obtain monochromatic radiation. If a monochromator crystal is used, the material and the indices of the Bragg reflection are specified.
Examples: 'Zr filter', ‘Ge 220 ', 'none’, 'equatorial mounted graphite'.
[diffrn_radiation]

\section*{_diffrn_radiation_polarisn_norm}
(numb)
The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarization and the diffraction plane. See _diffrn_radiation_polarisn_ratio.
The permitted range is \(-180.0 \rightarrow 180.0\).
[diffrn_radiation]

\section*{diffrn radiation polarisn ratio}
(numb)
Polarization ratio of the diffraction beam incident on the crystal. It is the ratio of the perpendicularly polarized to the parallel polarized components of the radiation. The perpendicular component forms an angle of _diffrn_radiation_polarisn_norm to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams).
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_radiation]

\section*{diffrn radiation probe}
(char)
\(\bar{T}\) The nature of the radiation used (i.e. the name of the subatomic particle or the region of the electromagnetic spectrum). It is strongly recommended that this information be given, so that the probe radiation can be simply determined.
The data value must be one of the following:
x-ray
neutron
electron
gamma
[diffrn_radiation]
diffrn_radiation_type
(char)
The type of the radiation. This is used to give a more detailed description than diffrn_radiation_probe and is typically a description of the \(\overline{\mathrm{X}}\)-ray wavelength in Siegbahn notation.
Examples: ‘Cu \(\mathrm{K} \backslash \mathrm{a}\) ', ‘Cu K \(\backslash \mathrm{a} \mathrm{\sim 1} \mathrm{\sim}\) ’, ‘Cu K-L~2, 3~’, 'white-beam’.
[diffrn_radiation]

\section*{diffrn_radiation_xray_symbol}
(char)
\(\bar{T} h e\) IUPA \(\bar{C}\) symbol for the X-ray wavelength for the probe radiation.
The data value must be one of the following:
\begin{tabular}{ll}
\(\mathrm{K}-\mathrm{L} \sim 3^{\sim}\) & \(K \alpha_{1}\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{L} \sim 2^{\sim}\) & \(K \alpha_{2}\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{M}^{\sim} 3^{\sim}\) & \(K \beta\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{L} \sim 2,3 \sim\) & use where \(K-L_{3}\) and \(K-L_{2}\) are not resolved
\end{tabular}
[diffrn_radiation]
\begin{tabular}{l}
DIFFRN_RADIATION_WAVELENGTH \\
Data items in the DIFFRN_RADIATION_WAVELENGTH category \\
describe the wavelength of the radiation used in measuring the \\
diffraction intensities. Items may be looped to identify and assign \\
weights to distinct wavelength components from a polychro- \\
matic beam. \\
\begin{tabular}{l}
Example \(1-\) based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. \\
(1991), C47, 2276-2277]. \\
diffrn_radiation_wavelength
\end{tabular} \\
\hline
\end{tabular}
_diffrn_radiation_wavelength (numb)
The radiation wavelength in ångströms.
May appear in list containing _diffrn_radiation_wavelength_id.
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_radiation_wavelength]

\section*{_diffrn_radiation_wavelength_id \\ (char)}

An arbitrary code identifying each value of _diffrn_radiation wavelength. Items in the DIFFRN_RADIATION category are looped when multiple wavelengths are used. This code is used to link with the _diffrn_refln_list. It must match with one of the _diffrn_ refln_wavelength_idcodes.
Appears in list as essential element of loop structure. May match child data name(s):
_diffrn_refln_wavelength_id.
Examples: ' x 1 ', ' x 2 ', 'neut'.
[diffrn radiation wavelength]

\section*{diffrn_radiation_wavelength_wt}
(numb)
\(\bar{T}\) The relative weight of a wavelength identified by the code _diffrn_radiation_wavelength_id in the list of wavelengths.
\(\overline{\text { Appears in list containing _diffrn_radiation_wavelength_id. }}\)
The permitted range is \(0.0 \rightarrow 1.0\). Where no value is given, the assumed value is ' 1.0 '.

\section*{DIFFRN_REFLN}

Data items in the DIFFRN_REFLN category record details about the intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. (The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped.)

Example 1 - extracted from the CAD-4 listing for \(\mathrm{Tl}_{2} \mathrm{Cd}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) at 85 K (unpublished).
loop_
_diffrn_refln_index_h
_diffrn_refln_index_k
_diffrn_refln_index_1
_diffrn_refln_angle_chi
_diffrn_refln_scan_rate
_diffrn_refln_counts_bg_1
_diffrn_refln_counts_total
_diffrn_refln_counts_bg_2
diffrn_refln_angle_theta
_diffrn_refln_angle_phi
_diffrn_refln_angle_omega
_diffrn_refln_angle_kappa
_diffrn_refln_scan_width
_diffrn_refln_elapsed_time
\(\begin{array}{lllllllllll}0 & 0 & -16 & 0 . & 4.12 & 28 & 127 & 36 & 33.157 & -75.846 & 16.4\end{array}\)
\(50.170 \quad 1.516 \quad 19.43\)
\(\begin{array}{lrrrlllllll}0 & 0 & -15 & 0 . & 4.12 & 38 & 143 & 28 & 30.847 & -75.846 & 14.094\end{array}\)
\(50.170 \quad 1.51619 .82\)
\(\begin{array}{lllllllllll}0 & 0 & -14 & 0 . & 1.03 & 142 & 742 & 130 & 28.592 & -75.846 & 11.839\end{array}\)
\(50.170 \quad 1.516 \quad 21.32\)
\(\begin{array}{rrrrrrrrrr}0 & 0 & -13 & 0 . & 4.12 & 26 & 120 & 37 & 26.384 & -75.846\end{array} 9.631\)
\(\begin{array}{llllllllll}0 & 0 & -12 & 0 . & 0.97 & 129 & 618 & 153 & 24.218 & -75.846\end{array} \quad 7.464\)
\(50.170 \quad 1.450 \quad 23.20\)
\(\begin{array}{lrrrrrrrrr}0 & 0 & -11 & 0.4 .12 & 33 & 107 & 38 & 22.087 & -75.846 & 5.334\end{array}\)
\(50.170 \quad 1.38423 .55\)
\(\begin{array}{lllllllllll}0 & 0 & -10 & 0 . & 4.12 & 37 & 146 & 33 & 19.989 & -75.846 & 3.235\end{array}\)
\(50.170 \quad 1.384 \quad 23.90\)
\(\begin{array}{lcccccccccc}0 & 0 & -9 & 0 . & 4.12 & 50 & 179 & 49 & 17.918 & -75.846 & 1.164\end{array}\)
\(50.170 \quad 1.38424 .25\)
\# - - - - data truncated for brevity - - -
\(\begin{array}{lllllllllll}3 & 4 & -4 & 0 . & 1.03 & 69 & 459 & 73 & 30.726 & -53.744 & 46.543\end{array}\)
\(-47.552 \quad 1.516 \quad 2082.58\)
\(\begin{array}{lllllllllll}3 & 4 & -5 & 0 . & 1.03 & 91 & 465 & 75 & 31.407 & -54.811 & 45.519\end{array}\)
\(-42.705 \quad 1.516 \quad 2084.07\)
\(\begin{array}{lllllllllll}3 & 14 & -6 & 0 . & 1.03 & 84 & 560 & 79 & 32.228 & -55.841 & 44.745\end{array}\)
-38.092 1.5162085 .57
\# - - - - data truncated for brevity - - - -
```

diffrn refln angle chi
_diffrn_refln_angle_kappa
_diffrn_refln_angle_omega
_diffrn_refln_angle_phi
_diffrn_refln_angle_psi
_diffrn_refln_angle_theta

```
(numb)
The diffractometer angles of a reflection in degrees. These correspond to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
Appears in list containing _diffrn_refln_index_.
[diffrn_refln]

\section*{diffrn_refln_attenuator_code}
(char)
The code identifying the attenuator setting for this reflection. This code must match one of the _diffrn_attenuator_code values. Appears in list containing _diffrn_refln_index_. Must match parent data name _diffrn_attenuator_code.
[diffrn_refln]

\section*{_diffrn_refln_class_code}
(char)
The code identifying the class to which this reflection has been assigned. This code must match a value of _diffrn_reflns_ class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are
the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal cell.

Appears in list containing _diffrn_refln_index_. Must match parent data name
_diffrn_reflns_class_code.
[diffrn_refln]
_diffrn_refln_counts_bg_1
_diffrn_refln_counts_bg_2
_diffrn_refln_counts_net
_diffrn_refln_counts_peak
_diffrn_refln_counts_total
(numb)
The diffractometer counts for the measurements: background before the peak, background after the peak, net counts after background removed, counts for peak scan or position, and the total counts (background plus peak).
Appears in list containing _diffrn_refln_index_. [diffrn_refln]
_diffrn_refln_crystal_id
(char)
\(\overline{\text { Code identifying each crystal if multiple crystals are used. Is used }}\) to link with _exptl_crystal_id in the _exptl_crystal_ list.
Appears in list containing _diffrn_refln_index_. Must match parent data name
_exptl_crystal_id. [diffrn_refln]

\section*{_diffrn_refln_detect_slit_horiz}
diffrn_refln_detect_slit_vert
(numb)
\(\bar{T}\) Total slit apertures in degrees in the diffraction plane (*_horiz) and perpendicular to the diffraction plane (*_vert).
Appears in list containing _diffrn_refln_index_.
The permitted range is \(0.0 \rightarrow 90.0\).
[diffrn_refln]
diffrn_refln_elapsed_time
(numb)
Elapsed time in minutes from the start of the diffraction experiment to the measurement of this intensity.
Appears in list containing _diffrn_refln_index_.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_refln]
-diffrn_refln_index_h
diffrn_refln_index_k
_diffrn_refln_index_l (numb)
\(\bar{M}\) Miller indices of a measured reflection. These need not match the _refln_index_h, *_k, *_l values if a transformation of the original measured cell has taken place. Details of the cell transformation are given in _diffrn_reflns_reduction_process. See also _diffrn_reflns_transf_matrix_.
Appears in list as essential element of loop structure. [diffrn_refln]

\section*{diffrn_refln_intensity_net}
(numb)
\(\overline{N e t ~ i n t e n s i t y ~ c a l c u l a t e d ~ f r o m ~ t h e ~ d i f f r a c t i o n ~ c o u n t s ~ a f t e r ~ t h e ~ a t t e n-~}\) uator and standard scales have been applied.
Appears in list containing _diffrn_refln_index_.
The permitted range is \(0 \rightarrow \infty\).
[diffrn_refln]
_diffrn_refln_intensity_sigma
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_refln_intensity_u.
Standard uncertainty (e.s.d.) of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.
Appears in list containing_diffrn_refln_index_
The permitted range is \(0 \rightarrow \infty\).
[diffrn_refln]

\section*{diffrn_refln_intensity_u}
(numb)
\(\bar{S}\) tandard uncertainty of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.
Appears in list containing _diffrn_refln_index_.
The permitted range is \(0 \rightarrow \infty\).
Related item: _diffrn_refln_intensity_sigma (alternate). [diffrn_refln]
_diffrn_refln_scale_group_code
(char)
The code identifying the scale applicable to this reflection. This code must match with a specified _diffrn_scale_group_code value.

Appears in list containing _diffrn_refln_index_. Must match parent data name
_diffrn_scale_group_code.
[diffrn_refln]

\section*{diffrn_refln_scan_mode \\ (char)}

The code identifying the mode of scanning for measurements using a diffractometer. See _diffrn_refln_scan_width and _diffrn_refln_scan_mode_backgd.
Appears in list containing _diffrn_refln_index_
The data value must be one of the following:
om \(\quad \omega\) scan
ot \(\quad \omega / 2 \theta\) scan
q \(\quad Q\) scans (arbitrary reciprocal directions)
[diffrn_refln]
_diffrn_refln_scan_mode_backgd (char)
The code identifying the mode of scanning a reflection to measure the background intensity
Appears in list containing _diffrn_refln_index_
The data value must be one of the following:
stationary counter background moving counter background
[diffrn_refln]
_diffrn_refln_scan_rate
(numb)
The rate of scanning a reflection in degrees per minute to measure the intensity.
Appears in list containing _diffrn_refln_index_
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_refln]

\section*{diffrn refln scan time backgd}

The time spent measuring each background in seconds.
Appears in list containing _diffrn_refln_index_
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_refln]

The scan width in degrees of the scan mode defined by the code _diffrn_refln_scan_mode.
Appears in list containing _diffrn_refln_index_
The permitted range is \(0.0 \rightarrow 90.0\)
[diffrn_refln]

\section*{_diffrn_refln_sint/lambda}

The \((\sin \theta) / \lambda\) value in reciprocal ångströms for this reflection.
Appears in list containing _diffrn_refln_index_
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_refln]

\section*{diffrn refln standard code}
(char)
\(\bar{A}\) code indicating that this reflection was measured as a standard reflection. The value must be '.' or match one of the diffrn standard refln code values.
Appears in list containing _diffrn_refln_index_. Must match parent data name _diffrn_standard_refln_code.
Examples: ' 1 ', ' 2 ', ' 3 ', 's1', 's2', 's3', 'A', 'B', 'C'
[diffrn_refln]

\section*{diffrn refln wavelength}
(numb)
The mean wavelength in ångströms of the radiation used to measure the intensity of this reflection. This is an important parameter for reflections measured using energy-dispersive detectors or the Laue method.
Appears in list containing _diffrn_refln_index_
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_refln]
_diffrn_refln_wavelength_id (char)
\(\overline{\text { Code identifying the wavelength in }}\) the _diffrn_radiation_list.
Appears in list containing _diffrn_refln_index_. Must match parent data name
_diffrn_radiation_wavelength_id.
Examples: 'x1', 'x2', 'neut'
[diffrn_refln]

\section*{DIFFRN REFLNS}

Data items in the DIFFRN_REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped. (The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists.)

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{ll}
diffrn_reflns_number & 1592 \\
-diffrn_reflns_av_R_equivalents & 0 \\
-diffrn_reflns_av_unetI/netI & .027 \\
_diffrn_reflns_limit_h_min & 0 \\
_diffrn_reflns_limit_h_max & 6 \\
_diffrn_reflns_limit_k_min & -17 \\
_diffrn_reflns_limit_k_max & 0 \\
_diffrn_reflns_limit_l_min & 0 \\
_diffrn_reflns_limit_l_max & 22 \\
_diffrn_reflns_theta_min & 3.71 \\
_diffrn_reflns_theta_max & 61.97
\end{tabular}

\section*{diffrn reflns av \(R\) equivalents}
(numb)
The residual \(\left[\sum \mathrm{av}|\Delta(I)| / \sum|\operatorname{av}(I)|\right]\) for symmetry-equivalent reflections used to calculate the average intensity av \((I)\). The \(\mathrm{av}|\Delta(I)|\) term is the average absolute difference between \(\mathrm{av}(I)\) and the individual symmetry-equivalent intensities.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn reflns]

\section*{_diffrn_reflns_av_sigmaI/netI}
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_reflns_av_unetI/netr.
Measure \(\left[\sum|u(\operatorname{net} I)| / \sum \mid\right.\) net \(\left.I \mid\right]\) for all measured reflections.
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_reflns]

\section*{diffrn reflns av unetI/netI \\ (numb)}
Measure \(\left[\sum \mid u(\right.\) net \(I)\left|/ \bar{\sum}\right|\) net \(\left.I \mid\right]\) for all measured reflections.
The permitted range is \(0.0 \rightarrow \infty\).
Related item:_diffrn_reflns_av_sigmaI/netI (alternate). [diffrn_reflns]
_diffrn_reflns_Laue_measured_fraction_full (numb) \(\overline{F r a c t i o n}\) of Laue unique reflections (symmetry-independent in the Laue group) measured out to the resolution given in _diffrn_reflns_resolution_full or _diffrn_reflns_theta_full. The Laue group always contains a centre of symmetry so that the reflection \(h, k, l\) is always equivalent to the reflection \(-h,-k,-l\) even in space groups without a centre of symmetry. This number should not be less than 0.95 , since it represents the fraction of reflections measured in the part of the diffraction pattern that is essentially complete.
The permitted range is \(0.95 \rightarrow 1.0\).
Related item: _diffrn_measured_fraction_theta_full (alternate)
[diffrn_reflns]
diffrn_reflns_Laue_measured_fraction_max (numb) \(\overline{F r a c t i o n}\) of Laue unique reflections (symmetry-independent in the Laue group) measured out to the resolution given in _diffrn_reflns_resolution_max or _diffrn_reflns_theta_max. The Laue group always contains a centre of symmetry so that the reflection \(h, k, l\) is always equivalent to the reflection \(-h,-k,-l\) even in space groups without a centre of symmetry.
The permitted range is \(0 \rightarrow 1.0\).
Related item: _diffrn_measured_fraction_theta_max (alternate).
[diffrn_reflns]
```

_diffrn_reflns_limit_h_max
_diffrn_reflns_limit_h_min
diffrn_reflns_limit_k_max
_diffrn_reflns_limit_k_min
diffrn_reflns_limit_l_max
_diffrn_reflns_limit_l_min

```
(numb)
The limits on the Miller indices of the intensities specified by _diffrn_refln_index_h, *_k, *_l.

> [diffrn_reflns]

\section*{diffrn_reflns_number}

The total number of measured intensities, excluding reflections that are classed as systematically absent arising from translational symmetry in the crystal unit cell.
The permitted range is \(0 \rightarrow \infty\). [diffrn_reflns]
_diffrn_reflns_point_group_measured_fraction_full (numb)
Fraction of crystal point-group unique reflections (i.e. symmetryindependent in the crystal point group) measured out to the resolution given in _diffrn_reflns_resolution_full or _diffrn_reflns_theta_full. For space groups that do not contain a centre of symmetry the reflections \(h, k, l\) and \(-h,-k,-l\) are independent. This number should not be less than 0.95 , since it represents the fraction of reflections measured in the part of the diffraction pattern that is essentially complete.
The permitted range is \(0.95 \rightarrow 1.0\)
Related item: _diffrn_measured_fraction_theta_full (alternate).
[diffrn_reflns]

\section*{_diffrn_reflns_point_group_measured_fraction_max (numb)}

Fraction of crystal point-group unique reflections (i.e. symmetryindependent in the crystal point group) measured out to the resolution given in _diffrn_reflns_resolution_max or _diffrn_reflns_theta_max. For space groups that do not contain a centre of symmetry the reflections \(h, k, l\) and \(-h,-k,-l\) are independent.
The permitted range is \(0 \rightarrow 1.0\).
Related item: _diffrn_measured_fraction_theta_max (alternate).
[diffrn_reflns]

\section*{_diffrn_reflns_reduction_process}
(char)
A description of the process used to reduce the intensities into structure-factor magnitudes.
Example: 'data averaged using Fisher test'. [diffrn_reflns]

\section*{diffrn_reflns_resolution_full}
(numb)
The resolution in reciprocal angströms at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_theta_full.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_reflns_theta_full (alternate).
[diffrn_reflns
diffrn reflns resolution max
(numb)
Maximum resolution in reciprocal ångströms of the measured diffraction pattern. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_theta_max The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_reflns_theta_max (alternate).
[diffrn_reflns]
_diffrn_reflns_theta_full
(numb)
\(\bar{T}\) The \(\theta\) angle (in degrees) at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_ theta_full.
The permitted range is \(0.0 \rightarrow 90.0\)
[diffrn_reflns]

\section*{diffrn_reflns_theta_max}
(numb)
Maximum \(\theta\) angle in degrees for the measured intensities. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_theta_max
The permitted range is \(0.0 \rightarrow 90.0\).
[diffrn_reflns]
diffrn_reflns_theta_min
(numb)
Minimum \(\theta\) angle in degrees for the measured intensities.
The permitted range is \(0.0 \rightarrow 90.0\).
[diffrn_reflns]
```

diffrn_reflns_transf_matrix_11
diffrn_reflns_transf_matrix_12
_diffrn_reflns_transf_matrix_13
_diffrn_reflns_transf_matrix_21
diffrn_reflns_transf_matrix_22
_diffrn_reflns_transf_matrix_23
_diffrn_reflns_transf_matrix_31
_diffrn_reflns_transf_matrix_32
_diffrn_reflns_transf_matrix_33

```

Elements of the matrix used to transform the diffraction reflection indices _diffrn_refln_index_h, *_k, *_1 into the _refln_index_h, *_k, *_ı indices.
\[
\left(\begin{array}{lll}
h & k & l
\end{array}\right)_{\text {diffraction }}\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)=\left(\begin{array}{lll}
h^{\prime} & k^{\prime} & l^{\prime}
\end{array}\right)
\]

\section*{DIFFRN_REFLNS_CLASS}

Data items in the DIFFRN_REFLNS_CLASS category record details about the classes of reflections measured in the diffraction experiment.

Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
Each reflection class is defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal lattice
loop_
_diffrn_reflns_class_number
_diffrn_reflns_class_d_res_high
_diffrn_reflns_class_d_res_low
diffrn_reflns_class_av_R_eq
_diffrn_reflns_class_code
_diffrn_reflns_class_description
15800.5516 .1360 .015 'Main'
'm=0; main reflections'
10450.5516 .1360 .010
'Sat1' 'm=1; first-order satellites'

\section*{diffrn reflns class av \(R\) eq (numb)}

For each reflection class, \(\overline{\text { the }}\) - residual \(\left[\sum \mathrm{av}|\Delta(I)| / \sum|\mathrm{av}(I)|\right]\) for symmetry-equivalent reflections used to calculate the average intensity \(\operatorname{av}(I)\). The \(\operatorname{av}|\Delta(I)|\) term is the average absolute difference between \(\operatorname{av}(I)\) and the individual symmetry-equivalent intensities.
Appears in list containing _diffrn_reflns_class_code
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_reflns_class]
_diffrn_reflns_class_av_sgI/I
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _differn_reflns_class_av_uI/I.
Measure \(\left[\sum|u(\overline{\operatorname{net}} I)| / \sum|\operatorname{net} I|\right]\) for all measured intensities in a reflection class.
Appears in list containing _diffrn_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_reflns_class]

\section*{_diffrn_reflns_class_av_uI/I}
(numb)
\(\bar{M}\) Measure \(\left[\bar{\sum}|u(\operatorname{net} I)| / \sum|\operatorname{net} I|\right]\) for all measured intensities in a reflection class.
Appears in list containing _diffrn_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_reflns_class_av_sgI/I (alternate)
[diffrn_reflns_class]
_diffrn_reflns_class_code
The code identifying a certain reflection class.
Appears in list as essential element of loop structure. May match child data name(s):
_diffrn_refln_class_code.
Examples: ' 1 ', 'm1', 's2'.
_diffrn_reflns_class_d_res_high
(numb)
The smallest value in ångströms of the interplanar spacings of the reflections in each reflection class. This is called the highest resolution for this reflection class.
Appears in list containing _diffrn_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_reflns_class]

\section*{_diffrn_reflns_class_d_res_low}
(numb)
The highest value in ångströms of the interplanar spacings of the reflections in each reflection class. This is called the lowest resolution for this reflection class.
Appears in list containing_diffrn_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_reflns_class]

\section*{diffrn_reflns_class_description}

Description of each reflection class.
Appears in list containing _diffrn_reflns_class_code.
Examples: 'm=1 first order satellites',
'HOLO common projection reflections'.
[diffrn_reflns_class]

\section*{diffrn_reflns_class_number}

The total number of measured intensities for each reflection class, excluding the systematic absences arising from centring translations.
Appears in list containing _diffrn_reflns_class_code.
The permitted range is \(0 \rightarrow \infty\).
[diffrn_reflns_class]

Data items in the DIFFRN_SCALE_GROUP category record details of the scaling factors applied to place all intensities in the reflection lists on a common scale. Scaling groups might, for instance, correspond to each film in a multi-film data set or each crystal in a multi-crystal data set.
Example 1 - hypothetical example
loop_
_diffrn_scale_group_code
_diffrn_scale_group_I_net
.86473
1.0654

\section*{diffrn scale group code}
(char)
\(\bar{T}\) The code identifying a specific measurement group (e.g. for multifilm or multi-crystal data). The code must match a _diffrn_ refln_scale_group_code in the reflection list.
Appears in list as essential element of loop structure. May match child data name(s):
_diffrn_refln_scale_group_code.
Examples: ' 1 ', '2', ' 3 ', 's1', ' \(A\) ', ' \(B\) ', ' \(C 1\) ', ' \(C 2\) ', ' \(c 3\) '. [diffrn_scale_group]
_diffrn_scale_group_I_net (numb)
The scale for a specific measurement group which is to be multiplied with the net intensity to place all intensities in the _diffrn_refln_or_refln_list on a common scale.
Appears in list containing _diffrn_scale_group_code.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_scale_group]

\section*{DIFFRN_SOURCE}

Data items in the DIFFRN_SOURCE category record details of the source of radiation used in the diffraction experiment.

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
\begin{tabular}{ll}
_diffrn_source & 'rotating anode X-ray tube' \\
-diffrn_source_type & 'Rigaku RU-200' \\
_diffrn_source_power & 50 \\
-diffrn_source_current & 180 \\
_diffrn_source_size & \(\prime 8 \mathrm{~mm} \mathrm{x} 0.4 \mathrm{~mm}\) broad focus'
\end{tabular}
_diffrn_radiation_source (char)
\(\bar{T}\) his definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_source.
The source of radiation.
[diffrn_source]

\section*{_diffrn_source}
(char)
The general class of the source of radiation.
Related item: _diffrn_radiation_source (alternate).
Examples: 'sealed X-ray tube', 'nuclear reactor', 'spallation source',
'electron microscope', 'rotating-anode X-ray tube', 'synchrotron'.
[diffrn_source]
_diffrn_source_current
(numb)
\(\bar{T}\) The current in milliamperes at which the radiation source was operated.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_source]
_diffrn_source_details
(char)
\(\overline{\mathrm{A}}\) description of special aspects of the source.
[diffrn_source]
_diffrn_source_power
(numb)
The power in kilowatts at which the radiation source was operated.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_source]
_diffrn_source_size (char)
\(\bar{T}\) The dimensions of the source as viewed from the sample.
Examples: ‘ \(8 \mathrm{~mm} \times 0.4 \mathrm{~mm}\) fine-focus', 'broad focus'. [diffrn_source]

\section*{_diffrn_source_take-off_angle}
(numb)
The complement of the angle in degrees between the normal to the surface of the X-ray tube target and the primary X-ray beam for beams generated by traditional X-ray tubes.
The permitted range is \(0 \rightarrow 90\).
Example: '1.53'.
[diffrn_source]
_diffrn_source_target
(char)
The chemical element symbol for the X-ray target (usually the anode) used to generate X-rays. This can also be used for spallation sources.
```

The data value must be one of the following:
H He Li Be B C N O F Ne Na Mg Al Si P
S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh
Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd
Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re
Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th
Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

```
[diffrn_source]
_diffrn_source_type (char)

The make, model or name of the source of radiation.
Examples: 'NSLS beamline X8C', 'Rigaku RU200'.
[diffrn_source]
_diffrn_source_voltage
(numb)
The voltage in kilovolts at which the radiation source was operated.
The permitted range is \(0.0 \rightarrow \infty\). [diffrn_source]

\section*{DIFFRN_STANDARD_REFLN}

Data items in the DIFFRN_STANDARD_REFLN category record details about the reflections treated as standards during the measurement of the diffraction intensities. Note that these are the individual standard reflections, not the results of the analysis of the standard reflections.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

\section*{loop_}
_diffrn_standard_refln_index_h
_diffrn_standard_refln_index_k
-diffrn_standard_refln_index_1

\section*{diffrn_standard_refln_code}
(char)
\(\bar{T}\) The code \(\overline{\text { identifying }} \overline{\mathrm{a}}\) reflection measured as a standard reflection with the indices _diffrn_standard_refln_index_. This is the same code as the _diffrn_refln_standard_code in the _diffrn_refln_list.
Appears in list containing _diffrn_standard_refln_index_. May match child data name(s): _diffrn_refln_standard_code.
Examples: ' 1 ', '2', ' 3 ', ' \(s 1^{\prime}\), ' \(A\) ', 'B'.
[diffrn_standard_refln]
```

_diffrn_standard_refln_index_h
_diffrn_standard_refln_index_k
_diffrn_standard_refln_index_1

```
(numb)
Miller indices of standard reflections used in the diffraction measurement process.
Appears in list as essential element of loop structure
[diffrn_standard_refln]

\section*{DIFFRN_STANDARDS}

Data items in the DIFFRN_STANDARDS category record details about the set of standard reflections used to monitor intensity stability during the measurement of diffraction intensities. Note that these records describe properties common to the set of standard reflections, not the standard reflections themselves.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
diffrn standards number 3
_diffrn_standards_interval_time 120
_diffrn_standards_decay_\% 0

\section*{diffrn_standards_decay_\% \\ (numb, su)}
\(\bar{T}\) The percentage decrease in the mean intensity of the set of standard reflections measured at the start of the measurement process and at the finish. This value usually affords a measure of the overall decay in crystal quality during the diffraction measurement process. Negative values are used in exceptional instances where the final intensities are greater than the initial ones. If no measurable decay has occurred, the standard uncertainty should be quoted to indicate the maximum possible value the decay might have. A range of 3 standard uncertainties is considered possible. Thus \(0.0(1)\) would indicate a decay of less than \(0.3 \%\) or an enhancement of less than \(0.3 \%\).
The permitted range is \(-\infty \rightarrow 100\).
Examples: ‘ \(0.5(1)\) ' (represents a decay between \(0.2 \%\) and \(0.8 \%\)), ' \(-1(1)\) ' (the change in the standards lies between a decay of \(2 \%\) and an increase of \(4 \%\)), ' 0.0 (2)' (the change in the standards lies between a decay of \(0.6 \%\) and an increase of \(0.6 \%\).).
[diffrn_standards]
\(\bar{T}\) The number of reflection intensities, or the time in minutes, between the measurement of standard reflection intensities.
The permitted range is \(0 \rightarrow \infty\). [diffrn_standards]

\section*{_diffrn_standards_number}
\(\bar{T}\) The number of unique standard reflections used during the measurement of the diffraction intensities.
The permitted range is \(0 \rightarrow \infty\).
[diffrn_standards]
_diffrn_standards_scale_sigma
(numb)
\(\bar{T}\) This definition has been superseded and is retained here only for archival purposes. Use instead _diffrn_standards_scale_u.
The standard uncertainty (e.s.d.) of the individual mean standard scales applied to the intensity data.
The permitted range is \(0.0 \rightarrow \infty\).
[diffrn_standards]

\section*{diffrn_standards_scale_u}
(numb)
\(\bar{T}\) The standard uncertainty of the individual mean standard scales applied to the intensity data.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _diffrn_standards_scale_sigma (alternate).
[diffrn_standards]

\section*{DISTRIBUTED_DENSITY}

Data items in the DISTRIBUTED_DENSITY category describe the geometric arrangement of an atom or atoms when they are distributed uniformly over a line or surface such as a ring, cylindrical shell or spherical shell, the line or surface being given a thickness through the application of an atomic displacement parameter.

Example 1 - This example is fictitious (and chemically implausible) but it is designed to illustrate how a complex system of distributed density can be recorded. In this example pentamethyl cyclopentadiene (\(C p^{*}\)) and borazole occupy the same location in the crystal in the ratio 5:1. The atoms of the borazole ring are fixed as are three quarters of the atoms in the \(C p^{*}\) ring, but the remaining quarter of the \(C p^{*}\) molecules are freely rotating around the cylindrical \(C p^{*}\) axis. The rotating \(C p^{*}\) molecules give rise to two concentric rings of density, one from the atoms in the ring and the other from the methyl groups (hydrogen atoms are ignored). On top of these rings lie the atoms of the fixed \(C p^{*}\) molecules. The atoms of the borazole molecule also lie over the inner Cp* ring. Full details of the chemical composition are given in the ATOM_SITE loop together with the positions of the fixed atoms. The coordinates of the atoms that give rise to the distributed ring of density are set to ' \(\quad\),' meaning that they have no significance as the atoms are dummy atoms. They are included to give the correct composition when_atom_site_occupancy and_atom_site_symmetry_multiplicity are given. The composition defined in the ATOM_SITE loop is linked to the DISTRIBUTED_DENSITY loop through the parent-child identifiers, 'an1' and 'an2' (for annulus 1 and 2). The one quarter of the \(C p^{*}\) molecules that are rotating have the occupation number of \(0.208=2 / 24=5 / 6\) (the total occupancy of the Cp \({ }^{*}\)) \(x 1 / 4\) (the portion rotating). The three quarters that are in fixed positions have the occupation number of \(0.625=15 / 24=5 / 6 \times 3 / 4\).

\section*{oop}
atom_site_label
atom_site_type_symbol
atom_site_fract_x
atom_site_fract_y
atom_site_fract_z
atom_site_U_iso_or_equiv
atom_site_occupancy

atom_site_adp_type
atom_site_distributed_density_id
atom_site_calc_flag
\# Inner ring of cyclopentadiene carbon atoms and borazole
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C1 & c -0.1362(8) & -0.0974 (8) & -0.3116(10) & \(0.0662(18)\) & 0.625 (1) & Jiso & . d \\
\hline C2 & c -0.1060 (8) & -0.2165 (8) & -0.1837(10) & \(0.071(2)\) & 0.625 (1) & 4 Uiso & d \\
\hline C3 & c -0.1774(9) & -0.1939(9) & -0.0820(11) & \(0.082(2)\) & 0.625 (1) & Uiso & d \\
\hline C4 & c -0.2529(9) & -0.0561(9) & -0.1479(12) & \(0.084(2)\) & 0.625 (1) & Uis & d \\
\hline C5 & c -0.2261(8) & -0.0002(8) & -0.2891(10) & \(0.072(2)\) & 0.625 (1) & Uiso & d \\
\hline C1a & c & & . & . & 0.208 (1) & 4. & an1 \\
\hline C2a & c & - & . & . & \(0.208(1)\) & 4. & an1 dum \\
\hline C3a & c . & & & & \(0.208(1)\) & 4. & n1 dum \\
\hline C4a & c & . & . & . & 0.208 (1) & 4. & an1 dum \\
\hline C5a & c & . & . & . & \(0.208(1)\) & 4. & an1 dum \\
\hline N1 & N -0.1375 (8) & -0.0968(8) & -0.3201(10) & 0.065 (2) & 0.167 (1) & Jis & d \\
\hline B1 & B -0.1002(8) & -0.2265 (8) & -0.1728(10) & \(0.071(2)\) & 0.167 (1) & 4 Uiso & d \\
\hline N2 & N -0.1402(8) & -0.1034(8) & -0.0765(10) & 0.076 (2) & 0.167 (1) & Uiso & d \\
\hline B2 & B -0.2370 (9) & -0.0364(9) & -0.1832(10) & 0.085 (2) & 0.167 (1) & Uis & d \\
\hline N3 & \(\mathrm{N}-0.2893\) (8) & \(0.0034(8)\) & -0.3621(10) & \(0.062(2)\) & 0.167 (1) & Uiso & d \\
\hline B3 & B -0.2246(9) & -0.0452(9) & -0.3004(11) & 0.073 (2) & 0.167 (1) & 4 Uiso & d \\
\hline \multicolumn{8}{|l|}{\# Outer ring of methyl groups} \\
\hline C11 & c -0.0951 & -0.0733 & -0.4330 & 0.1901 & 0.625 (1) & 4 Uani & d \\
\hline C12 & c -0.0272 & -0.3236 & -0.1750 & 0.1990 & 0.625 (1) & Uani & d \\
\hline C13 & c -0.1719 & -0.2833 & 0.0404 & 0.2483 & 0.625 (1) & Uani & d \\
\hline C14 & c -0.3291 & -0.0080 & -0.0844 & 0.2450 & 0.625 (1) & 4 Uani & d \\
\hline C15 & C -0.2817 & 0.1218 & -0.3770 & 0.2219 & 0.625 (1) & Uani & - d \\
\hline c11a & c . & . & . & . & \(0.208(1)\) & 4 . & an2 dum \\
\hline C12a & c . & . & . & . & 0.208 (1) & 4. & an2 dum \\
\hline C13a & c & . & . & & \(0.208(1)\) & 4. & an2 dum \\
\hline C14a & c . & - & - & - & 0.208 (1) & 4. & 2 dum \\
\hline c15a & & & & & 0.208 & 4 & an2 d \\
\hline
\end{tabular}
\# Details of the two rings of distributed density are give
\# in the following loop
loop_
distributed_density_id
distributed_density_shape
-distributed_density_position_x
distributed_density_position_y
distributed_density_position_z
distributed_density_radius
distributed_density_direction_h
distributed_density_direction_k
distributed_density_direction_1
distributed_density_Uiso
distributed_density_symmetry_multiplicity
an1 ring \(-0.1810(8) \quad-0.1133(8) \quad-0.2058(8)\)
1.198(6) \(\quad 1.35(2) \quad 0.07(2)-0.45(2) \quad 0.052(2) \quad 4\)
an \(2 r\) ing \(-0.1873(14)-0.1156(14)-0.2210(2)\)
\(2.626(6) \quad 1.30(2) \quad 0.10(2)-0.40(2) \quad 0.131(3) \quad 4\)
distributed_density_details
(char)
Information about the distribution of density not given in other items.
May appear in list containing _distributed_density_id.
Example:
; The distribution was modelled using a disk of density of the given radius.
;
[distributed_density]
distributed_density_direction_h
-distributed_density_direction_k
_distributed_density_direction_1
distributed_density_direction_l (numb, su)
\(\bar{T}\) The (covariant) components on a reciprocal-lattice basis of a vector of arbitrary length used to indicate the direction of the unique axis of the distribution, e.g. the axis of a cylindrical shell or the normal to the plane of a ring.
May appear in list containing _distributed_density_id.
[distributed_density]

\section*{distributed density id}
(char)
An identifier that links the atom defined by _atom_site_label with a distributed density defined in the DISTRIBUTED_DENSITY category.
May appear in list as essential element of loop structure. May match child data name(s):
_atom_site_distributed_density_id.
[distributed_density]

\section*{distributed_density_length}
(numb, su)
The length of the line or cylindrical shell of distributed density in Ångström units.
May appear in list containing _distributed_density_id
The permitted range is \(0.0 \rightarrow \infty\).
[distributed_density]

\section*{distributed_density_position_x \\ _distributed_density_position_y \\ distributed_density_position_z}
(numb, su)
\(\bar{T}\) The position of the centroid of the distributed density in fractions of the unit cell values.
May appear in list containing _distributed_density_id.
[distributed_density]
_distributed_density_radius
(numb, su)
The radius of the ring, or of the cylindrical or spherical shell, of distributed density in Ångström units.
May appear in list containing _distributed_density_id.
The permitted range is \(0.0 \rightarrow \infty\).
[distributed_density]
_distributed_density_shape
(char)
A flag that indicates the shape of the distributed density. The lines and ring are one-dimensional distributions of atoms and the cylindrical shell and spherical shell are two-dimensional distributions. In each case the root-mean-square thickness of the distribution is given by the atomic displacement parameter defined in _distributed_density_Uiso.
May appear in list containing _distributed_density_id.
The data value must be one of the following:
\begin{tabular}{ll}
line & line segment \\
infline & infinite line running through the crystal \\
ring & circular ring \\
cylshell & cylindrical shell of finite length \\
infcylshell & cylindrical shell running through the crystal \\
sphereshell & \begin{tabular}{l}
spherical shell \\
other
\end{tabular} \\
give details in distributed density details
\end{tabular}
[distributed_density]
distributed density symmetry multiplicity (numb) \(\bar{T}\) The number of images of the centroid of the distributed density that the space group symmetry generates in the unit cell reported in the CELL category. It is the number that appears in International Tables for Crystallography Vol. A (2002) for the Wyckoff position occupied by the centroid. In this treatment the symmetry of the distribution itself is ignored, including any operations of its point group that are part of the crystallographic site symmetry of the centroid. All the atoms that give rise to the distributed density should therefore be listed in the ATOM_SITE category even if they, or the centroid of the distribution, lie on crystallographic special positions. For example, if the distribution is a ring and the centroid of the ring lies on a crystallographic mirror plane, all the atoms in the ring are listed if the ring lies either in or perpendicular to the mirror plane since the mirror image of the ring lies over the ring itself. If the ring is at some arbitrary angle to the mirror plane, the mirror generates a second ring and both rings should be described independently. However, because both rings cannot be simultaneously occupied, the occupation numbers given in the ATOM_SITE category must have a value equal to or less than 0.5 .
May appear in list containing _distributed_density_id.
The permitted range is \(1 \rightarrow 192\).
[distributed_density]

\section*{distributed_density_Uiso}
(numb, su)
\(\bar{T}\) The factor \(\exp \left(-U x^{-2}\right)\) is applied to all parts of the distribution, where \(U=\) _distributed_density_Uiso and \(x\) is the distance from the ideal one- or two-dimensional shape. This emulates the effects of thermal motion or static displacement from the ideal positions described in this category and has the effect of converting the simple one- or two-dimensional geometric shapes into threedimensional objects of mean square thickness \(U\).
May appear in list containing _distributed_density_id.
The permitted range is \(0.0 \rightarrow \infty\).
Example: ‘0.018(3)’.
[distributed_density]

\section*{EXPTL}

Data items in the EXPTL category record details about the experimental work prior to the intensity measurements and details about the absorption-correction technique employed
```

Example 1 - based on a paper by Steiner [Acta Cryst. (1996), C52, 2554-2556].
_exptl_absorpt_coefficient_mu 0.962
exptl absorpt correction type psi-scan
exptl_absorpt_process_details
'North, Phillips \& Mathews (1968)'
exptl absorpt correction T min 0.929
exptl_absorpt_correction_T_max 0.997

```

\section*{_exptl_absorpt_coefficient_mu}
(numb)
\(\bar{T}\) The absorption coefficient \(\mu\) in reciprocal millimetres calculated from the atomic content of the cell, the density and the radiation wavelength.
The permitted range is \(0.0 \rightarrow \infty\).
[exptl]
exptl absorpt correction type
(char)
The absorption-correction type and method. The value 'empirical' should not be used unless more detailed information is not available.
\begin{tabular}{ll}
The data value must be one of the following: \\
analytical & analytical from crystal shape \\
cylinder & cylindrical \\
empirical & empirical from intensities \\
gaussian & Gaussian from crystal shape \\
integration & integration from crystal shape \\
multi-scan & symmetry-related measurements \\
none & no absorption correction applied \\
numerical & numerical from crystal shape \\
psi-scan & \(\psi\)-scan corrections \\
refdelf & refined from \(\Delta F\) \\
sphere & spherical
\end{tabular}
_exptl_absorpt_process_details (char)
Description of the absorption process applied to the intensities. A literature reference should be supplied for \(\psi\)-scan techniques.
Examples: ‘Tompa analytical', 'MolEN (Fair, 1990)',
'(North, Phillips \& Mathews, 1968)’. [exptl]
exptl crystals number
The total number of crystals used for the measurement of intensities.
The permitted range is \(1 \rightarrow \infty\) [exptl]

exptl_special details

(char)

Any special information about the experimental work prior to the intensity measurements. See also _exptl_crystal_preparation.
[exptl]

\section*{exptl transmission factor max}
(numb, su)
The calculated maximum value of the transmission factor for the specimen. Its value does not include the effects of absorption in the specimen mount. The presence of this item does not imply that the structure factors have been corrected for absorption. The applied correction should be given by _exptl_absorpt_correction_T_max.
The permitted range is \(0.0 \rightarrow 1.0\).
[exptl]
_exptl_absorpt_correction_T_max
(numb)
The maximum and minimum transmission factors applied to the diffraction pattern measured in this experiment. These factors are also referred to as the absorption correction \(A\) or \(1 / A *\). As this value is the one that is applied to the measured intensities, it includes the correction for absorption by the specimen mount and diffractometer as well as by the specimen itself.
The permitted range is \(0.0 \rightarrow 1.0\).
[expt1]
_exptl_transmission_factor_min (numb, su) The calculated minimum value of the transmission factor for the specimen. Its value does not include the effects of absorption in the specimen mount. The presence of this item does not imply that the structure factors have been corrected for absorption. The applied correction should be given by _exptl_absorpt_correction_T_min.
\(\bar{T}\) The permitted range is \(0.0 \rightarrow 1.0\).
[exptl]

\section*{EXPTL_CRYSTAL}

Data items in the EXPTL_CRYSTAL category record details about experimental measurements on the crystal or crystals used, such as shape, size or density.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{ll}
-exptl_crystal_description & prism \\
-exptl_crystal_colour & colourless \\
-exptl_crystal_size_max & 0.32 \\
-exptl_crystal_size_mid & 0.27 \\
-exptl_crystal_sizemin & 0.10 \\
-exptl_crystal_density_diffrn & 1.146 \\
-exptl_crystal_density_meas & \(?\) \\
-exptl_crystal_density_method & not measured' \\
-exptl_crystal_F_000 & 656 \\
\hline Example 2 - using separate items to define upper and lower limits for a value. \\
exptl_crystal_density_meas_gt & 2.5 \\
-exptl_crystal_density_meas_lt & 5.0
\end{tabular}

Example 3 - here the density was measured at some unspecified temperature below room temperature.
_exptl_crystal_density_meas_temp_lt 300

\section*{exptl_crystal_colour}
(char)
\(\overline{\text { The colour of the crystal. }}\)
May appear in list containing _exptl_crystal_id.
Related items:
_exptl_crystal_colour_lustre (alternate),
_exptl_crystal_colour_modifier (alternate),
_exptl_crystal_colour_primary (alternate).
Example: 'dark green'.
[exptl_crystal]

\section*{_exptl_crystal_colour_lustre}
(char)
\(\bar{T}\) The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal_colour_modifier with _exptl_crystal_colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal_ colour_lustre, as in 'metallic-green'.
May appear in list containing _exptl_crystal_id.
Related item: _exptl_crystal_colour (alternate).
The data value must be one of the following:
metallic
dull
clear
[exptl_crystal]

\section*{_exptl_crystal_colour_modifier}
(char)
The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal_colour_modifier with _exptl_crystal_colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal_ colour_lustre, as in 'metallic-green'.
May appear in list containing _exptl_crystal_id.
Related item: _exptl_crystal_colour (alternate).
The data value must be one of the following:
light
dark
whitish
blackish
grayish
brownish
reddish
pinkish
orangish
yellowish
greenish
bluish
_exptl_crystal_colour_primary
(char)
\(\bar{T}\) he enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal_colour_modifier with _exptl_crystal_colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal_ colour_lustre, as in 'metallic-green'.
May appear in list containing _exptl_crystal_id.
Related item: _exptl_crystal_colour (alternate).
The data value must be one of the following:
colourless
white
black
gray
brown
red
pink
orange
yellow
green
blue
violet
[exptl_crystal]
exptl_crystal_density_diffrn
(numb)
\(\bar{D}\) Density values calculated from the crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centimetre).
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
[exptl_crystal]
_exptl_crystal_density_meas
(numb, su)
\(\bar{D}\) Density \(\bar{v}\) values measured using standard chemical and physical methods. The units are megagrams per cubic metre (grams per cubic centimetre).
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
[exptl_crystal]
_exptl_crystal_density_meas_gt
(numb)
\(\bar{T}\) The value above \(\bar{w}\) wich the \(\overline{\text { density }}\) - measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _exptl_crystal_ density_meas_gt and _exptl_crystal_density_meas_lt should not be used to report new experimental work, for which _exptl_crystal_density_meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under _exptl_crystal_density_meas.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _exptl_crystal_density_meas (alternate).
Example: ' 2.5 ' (lower limit for the density (only the range within which the density lies was given in the original paper)).
[exptl_crystal]
_exptl_crystal_density_meas_lt (numb)
\(\bar{T}\) The value below \(\overline{\text { which }}\) the \(\overline{\text { density }}\) - measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _exptl_crystal_ density_meas_gt and _exptl_crystal_density_meas_lt should not be used to report new experimental work, for which _exptl_crystal_density_meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under _exptl_crystal_density_meas.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _exptl_crystal_density_meas (alternate).
Examples: ' 1.0 ' (specimen floats in water), '5.0' (upper limit for the density (only the range within which the density lies was given in the original paper)). [expt1_crystal]

\section*{exptl_crystal_density_meas_temp}
(numb, su)
\(\overline{\text { Temperature in kelvins at which _exptl_crystal_density_meas }}\) was determined.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
[exptl_crystal]
exptl_crystal_density_meas_temp_gt (numb) density_meas was determined. _exptl_crystal_density_meas_ temp_gt and exptl_crystal_density_meas_temp_lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under _exptl_crystal_density_meas_temp.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _exptl_crystal_density_meas_temp (alternate).
[exptl_crystal]

\section*{_exptl_crystal_density_meas_temp_lt (numb)}

Temperature in kelvins below which _exptl_crystal_ density_meas was determined. exptl_crystal_density_meas_ temp_gt and _exptl_crystal_density_meas_temp_lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under
_exptl_crystal_density_meas_temp.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _exptl_crystal_density_meas_temp (alternate).
Example: ' 300 ’ (The density was measured at some unspecified temperature below room temperature.).
[exptl_crystal]
_exptl_crystal_density_method
(char)
The method used to measure _exptl_crystal_density_meas.
May appear in list containing _exptl_crystal_id.
Examples: ‘flotation in aqueous KI ', 'not measured',
'Berman density torsion balance'.
[exptl_crystal]
_exptl_crystal_description
(char)
\(\overline{\mathrm{A}}\) description of the quality and habit of the crystal. The crystal dimensions should not normally be reported here; use instead _exptl_crystal_size_for the gross dimensions of the crystal and _exptl_crystal_face_ to describe the relationship between individual faces.
May appear in list containing _exptl_crystal_id.
[exptl_crystal]
_exptl_crystal_F_000
(numb)
The effective number of electrons in the crystal unit cell contributing to \(F(000)\). This may contain dispersion contributions and is calculated as
\[
F(000)=\left[\left(\sum f_{r}\right)^{2}+\left(\sum f_{i}\right)^{2}\right]^{1 / 2}
\]
where \(f_{r}=\) real part of the scattering factors at \(\theta=0^{\circ}, f_{i}=\) imaginary part of the scattering factors at \(\theta=0^{\circ}\) and the sum is taken over each atom in the unit cell.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).
[exptl_crystal]
_exptl_crystal_id
(char)
\(\overline{\text { Code }}\) identifying each crystal if multiple crystals are used. It is used to link with _diffrn_refln_crystal_id in the intensity measurements and with _refln_crystal_id in the _refln_ list.
Appears in list as essential element of loop structure. May match child data name(s):
_diffrn_refln_crystal_id,_refln_crystal_id. [exptl_crystal]
_exptl_crystal_preparation
(char)
Details of crystal growth and preparation of the crystal (e.g. mounting) prior to the intensity measurements.
May appear in list containing _exptl_crystal_id.
Example: 'mounted in an argon-filled quartz capillary'
[exptl_crystal]
exptl crystal pressure history
(char)
\(\bar{R}\) elevant details concerning the pressure history of the sample.
May appear in list containing _exptl_crystal_id.
[exptl_crystal]
exptl_crystal_recrystallization_method (char)
\(\bar{D}\) escribes the method used to recrystallize the sample. Sufficient details should be given for the procedure to be repeated. The temperature or temperatures should be given as well as details of the solvent, flux or carrier gas with concentrations or pressures and ambient atmosphere.
[exptl_crystal]
```

_exptl_crystal_size_length
_exptl_crystal_size_max
_exptl_crystal_size_mid
_exptl_crystal_size_min
_exptl_crystal_size_rad

```
(numb)
The maximum, medial and minimum dimensions in millimetres of the crystal. If the crystal is a sphere, then the *_rad item is its radius. If the crystal is a cylinder, then the \({ }^{*}\) rad item is its radius and the \({ }^{*}\) _length item is its length. These may appear in a list with _exptl_crystal_id if multiple crystals are used in the experiment.
May appear in list containing _exptl_crystal_id.
The permitted range is \(0.0 \rightarrow \infty\).

\section*{[exptl_crystal]}
_exptl_crystal_thermal_history
(char)
\(\bar{R}\) elevant details concerning the \(\overline{-}\) hermal history of the sample.
May appear in list containing _exptl_crystal_id. [exptl_crystal]

\section*{EXPTL_CRYSTAL_FACE}

Data items in the EXPTL_CRYSTAL_FACE category record details of the crystal faces.
Example 1 - based on structure PAWD2 of Vittal \& Dean [Acta Cryst. (1996), C52, 1180-1182].
loop_
_exptl_crystal_face_index_h
_exptl_crystal_face_index_k
_exptl_crystal_face_index_l
_exptl_crystal_face_perp_dist
\begin{tabular}{rrrr}
0 & -1 & -2 & .18274 \\
1 & 0 & -2 & .17571 \\
-1 & 1 & -2 & .17845 \\
-2 & 1 & 0 & .21010 \\
-1 & 0 & 2 & .18849 \\
1 & -1 & 2 & .20605 \\
2 & -1 & 0 & .24680 \\
-1 & 2 & 0 & .19688 \\
0 & 1 & 2 & .15206
\end{tabular}
```

_exptl_crystal_face_diffr_chi
exptl crystal face diffr kappa
_exptl_crystal_face_diffr_phi
_exptl_crystal_face_diffr_psi (numb)

```
\(\bar{T} h e\) goniometer angle settings in degrees when the perpendicular to the specified crystal face is aligned along a specified direction (e.g. the bisector of the incident and reflected beams in an optical goniometer).
Appears in list containing _exptl_crystal_face_index_.
[exptl_crystal_face]
```

_exptl_crystal_face_index_h
_exptl_crystal_face_index_k
_exptl_crystal_face_index_l

```
(numb)
Miller indices of the crystal face associated with the value _exptl_crystal_face_perp_dist.
Appears in list as essential element of loop structure. [exptl_crystal_face]

\section*{exptl_crystal_face_perp_dist}
(numb)
The perpendicular distance in millimetres from the face to the centre of rotation of the crystal.
Appears in list containing _exptl_crystal_face_index_
The permitted range is \(0.0 \rightarrow \infty\).
[exptl_crystal_face]

\section*{GEOM}

Data items in the GEOM and related (GEOM_ANGLE, GEOM_BOND, GEOM_CONTACT, GEOM_HBOND and GEOM_TORSION) categories record details about the molecular and crystal geometry as calculated from the ATOM, CELL and SYMMETRY data. Geometry data are usually redundant, in that they can be calculated from other more fundamental quantities in the data block. However, they serve the dual purposes of providing a check on the correctness of both sets of data and of enabling the most important geometric data to be identified for publication by setting the appropriate publication flag.
Example 1 - based on data set bagan of Yamane \& DiSalvo [Acta Cryst. (1996), C52, 760-761].

\section*{_geom_special_details}

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

\section*{_geom_special_details}
(char)
The description of geometrical information not covered by the existing data names in the geometry categories, such as leastsquares planes.
[geom]

\section*{GEOM_ANGLE}

Data items in the GEOM_ANGLE category record details about the bond angles as calculated from the ATOM, CELL and SYMMETRY data.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

\section*{loop_}
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C2 O1 C5 \(111.6(2) \quad 1 \_555 \quad\) 1_555 \(\quad\) 1_555 yes
01 C2 C3 110.9(2) 1_555 1_555 1_555 yes
01 C2 021 122.2(3) 1_555 1_555 1_555 yes
C3 C2 \(021 \quad 127.0(3) \quad 1 \_555\) 1_555 \(1^{-} 555\) yes
\(\begin{array}{llllllll}\mathrm{C} 2 & \mathrm{C} 3 & \mathrm{~N} 4 & 101.3(2) & 1 \_555 & 1 \_555 & 1 \_555 & \text { yes }\end{array}\)
C2 C3 H3 \(107(1) \quad 1 \_555 \quad 1 \_555\) 1_555 no
N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes
\# - - - - data truncated for brevity - - -

\section*{geom angle}
(numb, su)
Angle in degrees defined by the three sites _geom_angle_atom_ site_label_1, *_2 and *_3. The site at *_2 is at the apex of the angle.
Appears in list containing _geom_angle_atom_site_label_
geom angle atom site label 1 _geom_angle_atom_site_-label_2 _geom_angle_atom_site_label_3
(char)
The labels of the three atom sites which define the angle given by _geom_angle. These must match labels specified as _atom_site_label in the atom list. Label 2 identifies the site at \(\overline{\text { the apex }}\) of the angle.
Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label. [geom_angle]
_geom_angle_publ_flag
(char)
This code signals whether the angle is referred to in a publication or should be placed in a table of significant angles.
Appears in list containing _geom_angle_atom_site_label_.
The data value must be one of the following:
\begin{tabular}{ll}
no & do not include angle in special list \\
n & abbreviation for 'no' \\
yes & do include angle in special list \\
y & abbreviation for 'yes'
\end{tabular}

Where no value is given, the assumed value is 'no'.
[geom_angle]
```

_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3 (char)

```

The symmetry code of each atom site as the symmetry-equivalent position number ' \(n\) ' and the cell translation number ' \(k l m\) '. These numbers are combined to form the code ' \(n \mathrm{klm}\) ' or \(n_{\_} k l m\). The character string \(n_{-} k l m\) is composed as follows: \(n\) refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x,_atom_site_fract_y and _atom_site_fract_z. It must match a number given in _space_group_symop_id. \(k, l\) and \(m\) refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations \((x, y, z)\) are related to \((k, l, m)\) by the relations \(k=5+x\), \(l=5+y, m=5+z\). By adding 5 to the translations, the use of negative numbers is avoided.
Appears in list containing _geom_angle_atom_site_label_.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\)). [geom_angle]

\section*{GEOM_BOND}

Data items in the GEOM_BOND category record details about bonds as calculated from the ATOM, CELL and SYMMETRY data.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

\section*{loop_}
geom bond atom site label 1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
01 C2 1.342(4) 1_555 1 555 yes
01 C5 \(1.439(3) \quad 1 \_555\) 1_555 yes
C2 C3 \(1.512(4)\) 1_555 1_555 yes
C2 021 1.199(4) 1_555 1_555 yes
\(\begin{array}{llllll}\text { C3 } & \text { N4 } & 1.465(3) & 1 \_555 & 1 \_555 & \text { yes } \\ \text { C3 } & \text { C31 } & 1.537(4) & 1-555 & 1-555 & \text { yes }\end{array}\)
C3 H3 \(1.00(3)\) 1_555 1_555 no
N4 C5 \(1.472(3) \quad\) 1_555 1_555 yes
\# - - - - data truncated for brevity - - - -

Example 2 - An example showing a listing of only symmetry unique bonds. In high-symmetry structures when many bonds are related by symmetry, it may not be necessary or desirable to list all the bonds in the environment of the first named atom. Some users may wish to give only the symmetry independent distances and supply a multiplicity to indicate how many such bonds are found in the atomic environment.
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_multiplicity
\(\begin{array}{llll}\text { Ca1 } & \text { F1 } & 2.495(9) & 1 \\ \text { Ca1 } & \text { F2 } & 2.291(10) & 2\end{array}\)
Ca1 F2 2.391(11) 2
Ca1 F3 \(2.214(11) \quad 2\)
Cr1 F1 \(1.940(11) \quad 2\)
\(\begin{array}{llll}\text { Cr1 } & \text { F2 } & 1.918(9) & 2 \\ \text { Cr } & \text { F3 } & 1.848(10) & 2\end{array}\)
Example 3 - The same structure as in Example 2, but where the multiplicity is given with a full bond list. Note the use of a value of 0 for _geom_bond_multiplicityin such a case.
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_site_symmetry_2
_geom_bond_distance
_geom_bond_multiplicity
Ca1 F1 1_555 2.495(9) 1
Ca1 F2 1_555 2.291(10) 2
Ca1 F2 2_555 2.291(10) 0
\(\begin{array}{lllll}\text { Ca1 } & \text { F2 } & 3 \_565 & 2.391(11) & 2\end{array}\)
Ca1 F2 4_555 2.391(11) 0
Ca1 F3 2_545 \(2.214(11) \quad 2\)
Ca1 F3 5 5_555 \(2.214(11) \quad 0\)
Cr1 F1 1_555 1.940(11) 2

Cr1 F1 2 2_555 \(1.940(11) \quad 0\)
\(\begin{array}{lllll}\text { Cr1 } & \text { F2 } & 1 \_555 & 1.918(9) & 2 \\ \text { Cr1 } & \text { F2 } & 2 \_555 & 1.918(9) & 0\end{array}\)
Cr1 F3 \(1 \_555\) 1.848(10) 2
Cr1 F3 2_555 1.848(10) 0
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
(char)
The labels of two atom sites that form a bond. These must match labels specified as _atom_site_label in the atom list.
Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label.
```

                        [geom_bond]
    ```

\section*{_geom_bond_distance}
(numb, su)
The intramolecular bond distance in ångströms.
Appears in list containing _geom_bond_atom_site_label_.
The permitted range is \(0.0 \rightarrow \infty\). [geom_bond]

\section*{_geom_bond_multiplicity}
(numb)
The number of times the given bond appears in the environment of the atoms labelled _geom_bond_atom_site_label_1. In cases where the full list of bonds is given, one of the series of equivalent bonds may be assigned the appropriate multiplicity while the others are assigned a value of 0 .
Appears in list containing _geom_bond_atom_site_label_.
The permitted range is \(0 \rightarrow \infty\). Where no value is given, the assumed value is ' 1 '.
[geom_bond]
_geom_bond_publ_flag
(char)
This code signals whether the bond distance is referred to in a publication or should be placed in a list of significant bond distances.
Appears in list containing _geom_bond_atom_site_label_.
The data value must be one of the following:
\begin{tabular}{ll}
no & do not include bond in special list \\
n & abbreviation for 'no' \\
yes & do include bond in special list \\
y & abbreviation for 'yes'
\end{tabular}

Where no value is given, the assumed value is 'no'.
[geom_bond]
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
(char)
The symmetry code of each atom site as the symmetry-equivalent position number ' \(n\) ' and the cell translation number ' \(k l m\) '. These numbers are combined to form the code ' \(n \mathrm{klm}\) ' or \(n_{-} k l m\). The character string \(n_{-} k l m\) is composed as follows: \(n\) refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in _space_group_symop_id. \(k, l\) and \(m\) refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the bond. These translations \((x, y, z)\) are related to \((k, l, m)\) by the relations \(k=5+x\), \(l=5+y, m=5+z\). By adding 5 to the translations, the use of negative numbers is avoided.
Appears in list containing _geom_bond_atom_site_label_.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\)). [geom_bond]
_geom_bond_valence
(numb)
The bond valence calculated from _geom_bond_distance.
Appears in list containing _geom_bond_atom_site_label_. [geom_bond]

\section*{GEOM_CONTACT}

Data items in the GEOM_CONTACT category record details about interatomic contacts as calculated from the ATOM, CELL and SYMMETRY data.
Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey \& Browne [Acta Cryst. (1992), C48, 2262-2264].
loop_
_geom_contact_atom_site_label_1
_geom_contact_atom_site_label_2
_geom_contact_distance
_geom_contact_site_symmetry_1
_geom_contact_site_symmetry_2
_geom_contact_publ_flag
O(1) O(2) \(2.735(3)\). . yes
\(\mathrm{H}(\mathrm{O1}) \mathrm{O}(2) \quad 1.82\). . no

\section*{_geom_contact_atom_site_label_1 -geom contact atom site-label-2}

The labels of two atom sites that are within contact distance. The labels must match_atom_site_label codes in the atom list. Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label. [geom_contact]

\section*{_geom_contact_distance}
(numb, su)
The interatomic contact distance in ångströms.
Appears in list containing _geom_contact_atom_site_label_
The permitted range is \(0.0 \rightarrow \infty\).
[geom_contact]

\section*{_geom_contact_publ_flag}
(char)
This code signals whether the contact distance is referred to in a publication or should be placed in a list of significant contact distances.
Appears in list containing_geom_contact_atom_sit
The data value must be one of the following:
no
n
yes not include distance in special list
y \(\quad\)\begin{tabular}{l}
abbreviation for 'no' \\
do include distance in special list
\end{tabular}

Where no value is given, the assumed value is 'no'.
_geom_contact_site_symmetry_1
- _- - -

The symmetry code of each atom site as the symmetry-equivalent position number ' \(n\) ' and the cell translation number ' \(k l m\) '. These numbers are combined to form the code ' \(n \mathrm{klm}\) ' or \(n_{-} k l m\). The character string \(n_{-} k l m\) is composed as follows: \(n\) refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x,_atom_site_fract_y and _atom_site_fract_z. It must match a number given in _space_group_symop_id. \(k, l\) and \(m\) refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the contact. These translations \((x, y, z)\) are related to \((k, l, m)\) by the relations \(k=5+x\), \(l=5+y, m=5+z\). By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_contact_atom_site_label_
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\)). [geom_contact]

\section*{GEOM_HBOND}

Data items in the GEOM_HBOND category record details about hydrogen bonds as calculated from the ATOM, CELL and SYMMETRY data.
Example 1 - based on \(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}\), reported by Palmer, Puddle \& Lisgarten [Acta Cryst. (1993), C49, 1777-1779].
loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
geom_hbond_angle_DHA
_geom_hbond_publ_flag
\begin{tabular}{llllllll}
N6 & HN6 & OW & \(0.888(8)\) & \(1.921(12)\) & \(2.801(8)\) & \(169.6(8)\) & yes \\
OW & HO2 & O7 & \(0.917(6)\) & \(1.923(12)\) & \(2.793(8)\) & \(153.5(8)\) & yes \\
OW & HO1 & N10 & \(0.894(8)\) & \(1.886(11)\) & \(2.842(8)\) & \(179.7(9)\) & yes
\end{tabular}
_geom_hbond_angle_DHA
(numb, su)
Angle in degrees defined by the three sites _geom_hbond_atom_ site_label_d, *_н and *_A. The site at *_н (the hydrogen atom participating in the interaction) is at the apex of the angle.
Appears in list containing _geom_hbond_atom_site_label_. [geom_hbond]
```

_geom_hbond_atom_site_label_D
geom-hbond atom_site- label H

```
_geom_hbond_atom_site_label_A (char)

The labels of three atom sites (respectively, the donor atom, hydrogen atom and acceptor atom) participating in a hydrogen bond. These must match labels specified as _atom_site_label in the atom list.

Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label.
[geom_hbond]
geom hbond publ flag
(char)
This code signals whether the hydrogen-bond information is referred to in a publication or should be placed in a table of significant hydrogen-bond geometry.
Appears in list containing _geom_hbond_atom_site_label_.
The data value must be one of the following:
no do not include bond in special list
n abbreviation for 'no'
yes do include bond in special list
y abbreviation for 'yes'
Where no value is given, the assumed value is ' \(n\) '. [geom_hbond]
_geom_hbond_site_symmetry_D
_geom_hbond_site_symmetry_H
geom hbond site symmetry \(A\) (char)
The symmetry code of each atom site as the symmetry-equivalent position number ' \(n\) ' and the cell translation number ' \(k l m\) '. These numbers are combined to form the code ' \(n \mathrm{klm}\) ' or \(n_{-} k l m\). The character string \(n \_k l m\) is composed as follows: \(n\) refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x,_atom_site_fract_y and _atom_site_fract_z. It must match a number given in _space_group_symop_id. \(k, l\) and \(m\) refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the hydrogen bond. These translations \((x, y, z)\) are related to \((k, l, m)\) by the relations \(k=5+x, l=5+y, m=5+z\). By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_hbond_atom_site_label_
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
7.645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\)). [geom_hbond]

\section*{GEOM_TORSION}

Data items in the GEOM_TORSION category record details about interatomic torsion angles as calculated from the ATOM, CELL and SYMMETRY data.

Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey \& Browne [Acta Cryst. (1992), C48, 2262-2264].
loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag

geom torsion
(numb, su)
The torsion angle in degrees bounded by the four atom sites identified by the _geom_torsion_atom_site_label_codes. These must match labels specified as atom_site_label in the atom list. The torsion-angle definition should be that of Klyne and Prelog.
Reference: Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.

Appears in list containing _geom_hbond_atom_site_label_.
The permitted range is \(0.0 \rightarrow \infty\).
```

geom torsion atom site label 1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
geom torsion atom site label 4

```
(char)
The labels of the four atom sites which define the torsion angle specified by _geom_torsion. These must match codes specified as _atom_site_label in the atom list. The torsion-angle definition should be that of Klyne and Prelog. The vector direction *_label_2 to *_label_3 is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector between site 2 and site 1 onto the projection of the vector between site 3 and site 4 . Clockwise torsions are positive, anticlockwise torsions are negative.

Reference: Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.

Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label.
[geom_torsion]
_geom_torsion_publ_flag (char)
This code signals whether the torsion angle is referred to in a publication or should be placed in a table of significant torsion angles.
Appears in list containing _geom_torsion_atom_site_label_
The data value must be one of the following:
no do not include angle in special list
\(\mathrm{n} \quad\) abbreviation for 'no'
yes do include angle in special list
Y abbreviation for 'yes'
Where no value is given, the assumed value is 'no'.
[geom_torsion]
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
char)
The symmetry code of each atom site as the symmetry-equivalent position number ' \(n\) ' and the cell translation number ' \(k l m\) '. These numbers are combined to form the code ' \(n \mathrm{klm}\) ' or \(n_{\_} k l m\). The character string \(n_{-} k l m\) is composed as follows: \(n\) refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x,_atom_site_fract_y and _atom_site_fract_z. It must match a number given in _space_group_symop_id. \(k, l\) and \(m\) refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations \((x, y, z)\) are related to \((k, l, m)\) by the relations \(k=5+x\), \(l=5+y, m=5+z\). By adding 5 to the translations, the use of negative numbers is avoided.
Appears in list containing _geom_torsion_atom_site_label_
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\))

\section*{JOURNAL}

Data items in the Journal category record details about the book-keeping by the journal staff when processing a CIF submitted for publication. The creator of a CIF will not normally specify these data items. The data names are not defined in the dictionary because they are for journal use only.

Example 1 - based on Acta Cryst. file for entry HLOOO7 [Willis, Beckwith \& Tozer (1991). Acta Cryst. C47, 2276-2277].
journal date recd electronic 91-04-15
_journal_date_from_coeditor 91-04-18
_journal_date_accepted 91-04-18
journal date_printers_first 91-08-07
_journal_date_proofs_out 91-08-07
_journal_coeditor_code HL0007
journal techeditor_code C910963
journal_coden_ASTM ACSCEE
_journal_name_full 'Acta Crystallographica Section C'
journal page first 2276
_journal_page_last 2277
journal coden ASTM
journal coden Cambridge
_journal_coeditor_address
_journal_coeditor_code
journal coeditor email
_journal_coeditor_fax
journal_coeditor_name
journal coeditor notes
_journal_coeditor_phone
_journal_data_validation_number
_journal_date_accepted
_journal_date_from_coeditor
journal date to coeditor
_journal_date_printers_final
_journal_date_printers_first
journal date proofs in
_journal_date_proofs_out
_journal_date_recd_copyright
_journal_date_recd_electronic
_journal_date_recd_hard_copy
journal issue
_journal_language
_journal_name_full
journal_page_first
_journal_page_last
_journal_paper_category
journal suppl publ number
_journal_suppl_publ_pages
journal_techeditor_address
journal_techeditor_code
_journal_techeditor_email
journal techeditor fax
_journal_techeditor_name
_journal_techeditor_notes
_journal_techeditor_phone
_journal_volume
journal_year
(char)
Data items specified by the journal staff.

\section*{JOURNAL_INDEX}

Data items in the JOURNAL_INDEX category are used to list terms used to generate the journal indexes. The creator of a CIF will not normally specify these data items.

Example 1 - based on a paper by Zhu, Reynolds, Klein \& Trudell [Acta Cryst. (1994), C50, 2067-2069].

\section*{loop_}
_journal_index_type
_journal_index_term
_journal_index_subterm
C16H19NO4
alkaloids (-)-norcocaine
(-) -norcocaine
S
; \(\quad[2 R, 3 S-(2 \backslash b, 3 \backslash b)]\)-methyl
3-(benzoyloxy)-8-azabicyclo[3.2.1]octane-2-carboxylate
;
```

_journal_index_subterm
_journal_index_term
_journal_index_type
Indexing terms supplied by the journal staff.

```
(char)
[journal_index]

\section*{PUBL}

Data items in the PUBL category are used when submitting a manuscript for publication. They refer either to the paper as a whole, or to specific named elements within a paper (such as the title and abstract, or the Comment and Experimental sections of Acta Crystallographica Section C). The data items in the PUBL_BODY category should be used for the text of other submissions. Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.
Example 1 - based on Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 22762277].
```

_publ_section_title

```
; trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-
 1,3-oxazolidin-5-one
;
_publ_section_abstract
; The oxazolidinone ring is a shallow envelope
 conformation with the tert-butyl and iso-butyl groups
 occupying trans-positions with respect to the ring. The
 angles at the N atom sum to \(356.2 \backslash \%\), indicating a very
 small degree of pyramidalization at this atom. This is
 consistent with electron delocalization between the \(N\)
 atom and the carbonyl centre \([\mathrm{N}-\mathrm{C}=\mathrm{O}=1.374(3) \backslash \% \mathrm{~A}]\).
;
Example 2 - based on \(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{4}\), reported by Coleman, Patrick, Andersen \&
Rettig [Acta Cryst. (1996), C52, 1525-1527].
_publ_section_title
; Hemiasterlin methyl ester
;
_publ_section_title_footnote
; IUPAC name: methȳ1 2,5-dimethyl-4-2-[3-methyl-
 2-methylamino-3-(N-methylbenzo[b] pyrrol-
 3-yl)butanamido]-3,3-dimethyl-N-methyl-
 butanamido-2-hexenoate.
;

\section*{publ_contact_author}
(char)
The name and address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. It is preferable to use the separate data
items _publ_contact_author_name and _publ_contact_author_ address.
Example:
; Professor George Ferguson
Department of Chemistry and Biochemistry
University of Guelph
Ontario
Canada
N1G 2W1
;
[publ]
_publ_contact_author_address
(char)
The address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.
Example:
; Department of Chemistry and Biochemistry
University of Guelph
Ontario
Canada
N1G 2W1
_publ_contact_author_email (char)
\(\overline{\text { E-mail }}\) address in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.
Examples: 'name@host.domain.country', 'bm@iucr.org'. [publ]
_publ_contact_author_fax
(char)
Facsimile telephone number of the author submitting the manuscript and data block. The recommended style is the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended.
Examples: ‘12(34)9477334', '12()349477334'. [publ]
_publ_contact_author_id_iucr
(char)
Identifier in the IUCr contact database of the author submitting the manuscript and data block. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org).
Example: ‘2985'.
[publ]
_publ_contact_author_name
(char)
\(\bar{T}\) The name of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.
Example: ‘Professor George Ferguson'. [publ]
_publ_contact_author_phone
(char)
Telephone number of the author submitting the manuscript and data block. The recommended style is the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by ' \(x\) ', with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended.
Examples: '12(34)9477330', '12()349477330', '12(34)9477330×5543'.
[publ]
_publ_contact_letter
(char)
A letter submitted to the journal editor by the contact author.
[publ]
_publ_manuscript_creation
(char)
\(\overline{\mathrm{A}}\) description of the word-processor package and computer used to create the word-processed manuscript stored as _publ_ manuscript_processed.
Example: 'Tex file created by FrameMaker on a Sun 3/280'. [publ]
publ manuscript processed
The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item _publ_manuscript_creation.
publ_manuscript_text
[publ]

The full manuscript of a paper (excluding figures and possib tables) output as standard ASCII text.
_publ_requested_category
(char)
The category of paper submitted. For submission to Acta Crystallographica Section C or Acta Crystallographica Section E, only the codes indicated for use with these journals should be used.
The data value must be one of the following:
FA Full article
FI Full submission - inorganic (Acta C)
FO Full submission - organic (Acta C)
FM Full submission - metal-organic (Acta C)
CI CIF-access paper - inorganic (Acta C) (no longer in use)
CO CIF-access paper - organic (Acta C) (not longer in use)
CM CIF-access paper - metal-organic (Acta C) (no longer in use)
EI Electronic submission - inorganic (Acta E)
EO Electronic submission - organic (Acta E)
EM Electronic submission - metal-organic (Acta E)
QI Inorganic compounds (Acta E)
QO Organic compounds (Acta E)
QM Metal-organic compounds (Acta E)
AD Addenda and Errata (Acta C, Acta E)
SC Short communication
Where no value is given, the assumed value is 'FA'. [publ]
_publ_requested_coeditor_name
(char)
The name of the co-editor whom the authors would like to handle the submitted manuscript.
[publ]
_publ_requested_journal
(char)
The name of the journal to which the manuscript is being submitted.
[publ]
```

publ section title
publ_section_title_footnote
publ section synopsis
publ_section_abstract
publ_section_comment
publ section introduction
publ_section_experimental
_publ_section_exptl_prep
publ section exptl refinement
publ_section_exptl_solution
publ section discussion
publ section acknowledgements
publ_section_references
_publ_section_related_literature
_publ_section_figure_captions
publ_section_table_legends
publ_section_keywords

```
(char)
The sections of a manuscript if submitted in parts. As an alternative, see _publ_manuscript_text and _publ_manuscript_ processed. The _publ_section_exptl_prep, _publ_section_ exptl_refinement and _publ_section_exptl_solution items are preferred for separating the chemical preparation, refinement and structure solution aspects of the experimental description.
[publ]

PUBL_AUTHOR
Data items in the PUBL_AUTHOR category record details of the authors of a manuscript submitted for publication.

Example 1 - based on Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 22762277].

\section*{loop_}
publ_author_name
_publ_author_address
'Willis, Anthony C.
; Research School of Chemistry
Australian National University
GPO Box 4
Canberra, ACT
Australia 2601
;

\section*{publ author address}
(char)
The address of a publication author. If there is more than one author, this will be looped with _publ_author_name.
May appear in list containing _publ_author_name.
Example:
; Department
Institute
Street
City and postcode
COUNTRY
;
[publ_author]
_publ_author_footnote (char)
A footnote accompanying an author's name in the list of authors of a paper. Typically indicates sabbatical address, additional affiliations or date of decease.
May appear in list containing _publ_author_name.
Examples: 'On leave from U. Western Australia',
'Also at Department of Biophysics'.
[publ author]
_publ_author_email
(char)
The e-mail address of a publication author. If there is more than one author, this will be looped with _publ_author_name. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.
May appear in list containing _publ_author_name
Examples: 'name@host. domain. country', 'bm@iucr. org'.
[publ_author]
publ author id iucr
(char)
\(\overline{\text { Identifier }} \overline{\text { in }}\) the IUCr \(\overline{\text { contact }}\) database of a publication author. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org).
May appear in list.
Example: '2985'.
[publ_author]

\section*{publ author name}
(char)
The name of a publication author. If there are multiple authors, this will be looped with _publ_author_address. The family name(s), followed by a comma and including any dynastic components, precedes the first names or initials.
May appear in list as essential element of loop structure.
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.',
'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'
[publ_author

\section*{_publ_body_contents}
(char)
A text section of a paper.
Appears in list containing _publ_body_label. [publ_body]
_publ_body_element
(char)
The functional role of the associated text section.
Appears in list containing _publ_body_label.
The data value must be one of the following:
section
subsection
subsubsection
appendix
footnote

Code indicating the appropriate typesetting conventions for accented characters and special symbols in the text section.
Appears in list containing _publ_body_label.
The data value must be one of the following:
ascii no coding for special symbols
cif CIF convention
\begin{tabular}{ll}
latex & LaTeX \\
rtf & Rich Text Format \\
sgml & SGML (ISO 8879) \\
tex & TeX \\
troff & troff or nroff
\end{tabular}

Where no value is given, the assumed value is ' cif '.
_publ_body_label
(char)
Code identifying the section of text. The combination of this with _publ_body_element must be unique.
Appears in list as essential element of loop structure.
Examples: '1', '1.1', '2.1.3'.
[publ_body]
_publ_body_title
(char)
Title of the associated section of text.
Appears in list containing _publ_body_label. [publ_body]

\section*{PUBL_MANUSCRIPT_INCL}

Data items in the PUBL_MANUSCRIPT_INCL category allow the authors of a manuscript submitted for publication to list data names that should be added to the standard request list used by the journal printing software. Although these fields are primarily intended to identify CIF data items that the author wishes to include in a published paper, they can also be used to identify data names created so that non-CIF items can be included in the publication. Note that *_item names must be enclosed in single quotes.
Example 1 -directive to include a hydrogen-bonding table, including cosmetic headings in comments.

\section*{loop}
_publ_manuscript_incl_extra_item
_publ_manuscript_incl_extra_info
_publ_manuscript_incl_extra_defn
\#
\# Include Hydrogen Bonding Geometry Description
\begin{tabular}{|c|c|c|}
\hline \# Name & explanation st & standard? \\
\hline \# ---- & & \\
\hline '_geom_hbond_atom_site_label_D' & 'H-bond donor' & yes \\
\hline '_geom_hbond_atom_site_label_H' & 'H-bond hydrogen' & yes \\
\hline '_geom_hbond_atom_site_label_A' & 'H-bond acceptor' & yes \\
\hline '_geom_hbond_distance_DH' & 'H-bond D-H' & yes \\
\hline '_geom_hbond_distance_HA' & 'H-bond H...A' & yes \\
\hline '_geom_hbond_distance_DA' & 'H-bond D...A' & yes \\
\hline '_geom_hbond_angle_DHA' & 'H-bond D-H...A' & yes \\
\hline
\end{tabular}

Example 2 - hypothetical example including both standard CIF data items and a non-CIF quantity which the author wishes to list.
loop_
publ manuscript incl extra item
_publ_manuscript_incl_extra_info
_publ_manuscript_incl_extra_defn
'_atom_site_symmetry_multiplicity'
'to emphasise special sites' '_chemical_compound_source'
'rare material, unusual source' yes
'_reflns_d_resolution_high'
'limited data is a problem here' yes
'_crystal_magnetic_permeability'
'unusual value for this material' no
_publ_manuscript_incl_extra_defn (char)
Flags whether the corresponding data item marked for inclusion in a journal request list is a standard CIF definition or not.
Appears in list containing _publ_manuscript_incl_extra_item.
The data value must be one of the following:
\begin{tabular}{ll}
no & not a standard CIF data name \\
n & abbreviation for 'no' \\
yes & a standard CIF data name \\
y & abbreviation for 'yes'
\end{tabular}
abbreviation for yes
Where no value is given, the assumed value is 'yes'. [publ_manuscript_incl]
publ manuscript incl extra info
(char)
A short note indicating the reason why the author wishes the corresponding data item marked for inclusion in the journal request list to be published.
Appears in list containing _publ_manuscript_incl_extra_item.
[publ_manuscript_incl]
_publ_manuscript_incl_extra_item (char)
Specifies the inclusion of specific data into a manuscript which are not normally requested by the journal. The values of this item are the extra data names (which must be enclosed in single quotes) that will be added to the journal request list.
Appears in list as essential element of loop structure.
[publ_manuscript_incl]

\section*{REFINE}

Data items in the REFINE category record details about the structure-refinement parameters.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{ll}
_refine_special_details & sfls:_F_calc_weight_full_matrix \\
refine_ls_structure_factor_coef & F \\
-refine_ls_matrix_type & full \\
-refine_ls_weighting_scheme & calc \\
refine_ls_weighting_details & w=1/(u^2^(F)+0.0004F~2^)' \\
-refine_ls_hydrogen_treatment & refxyz \\
-refine_ls_extinction_method & Zachariasen \\
-refine_ls_extinction_coef & \(3514(42)\)
\end{tabular}

Larson, A. C. (1970). "Crystallographic Computing", edited by F. R. Ahmed. Eq. (22) p. 292. Copenhagen: Munksgaard.
refine ls abs structure details
; The absolute configuration was assigned to agree with that of its precursor l-leucine at the chiral centre C3.
;
_refine_ls_number_reflns 1408
refine ls number parameters 272
refine_ls_number_restraints 0
refine_ls_number_constraints 0
refine_ls_R_factor_all . 038
refine_ls_R_factor_gt . 034
refine_ls_wR_factor_all . 044
refine ls wR factor gt . 042
refine_ls_goodness of fit all 1.462
refine_ls_goodness_of_fit_gt 1.515
refine ls shift/su max . 535
refine_ls_shift/su_mean . 044
refine_diff_density_min -. 108
refine_diff_density_max . 131
```

_refine_diff_density_max
_refine_diff_density_min
refine_diff_density_rms

```
(numb, su)
The largest and smallest values and the root-mean-square deviation, in electrons per ångström cubed, of the final difference electron density. The *_rms value is measured with respect to the arithmetic mean density and is derived from summations over each grid point in the asymmetric unit of the cell. This quantity is useful for assessing the significance of \(*_{\text {min }}\) and \(*_{\text {_max }}\) values, and also for defining suitable contour levels.
[refine]
_refine_ls_abs_structure_details
(char)
The nature of the absolute structure and how it was determined
refine_ls_abs_structure_Flack
(numb, su)
The measure of absolute structure as defined by Flack (1983). For centrosymmetric structures, the only permitted value, if the data name is present, is 'inapplicable', represented by '.'. For noncentrosymmetric structures, the value must lie in the \(99.97 \%\) Gaussian confidence interval \(-3 u \leq x \leq 1+3 u\) and a standard uncertainty (e.s.d.) \(u\) must be supplied. The _enumeration_range of \(0.0 \rightarrow\) 1.0 is correctly interpreted as meaning \((0.0-3 u) \leq x \leq(1.0+3 u)\).

Reference: Flack, H. D. (1983). Acta Cryst. A39, 876-881.
The permitted range is \(0.0 \rightarrow 1.0\).
[refine]
refine_ls_abs_structure_Rogers (numb, su)
The measure of absolute structure as defined by Rogers (1981). The value must lie in the \(99.97 \%\) Gaussian confidence interval \(-1-3 u \leq \eta \leq 1+3 u\) and a standard uncertainty (e.s.d.) \(u\) must be supplied. The _enumeration_range of \(-1.0 \rightarrow 1.0\) is correctly interpreted as meaning \((-1.0-3 u) \leq \eta \leq(1.0+3 u)\).
Reference: Rogers, D. (1981). Acta Cryst. A37, 734-741.
The permitted range is \(-1.0 \rightarrow 1.0\). [refine]
_refine_ls_d_res_high
(numb)
The smallest value in ångströms of the interplanar spacings of the reflections used in the refinement. This is called the highest resolution.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
_refine_ls_d_res_low
(numb)
The largest value in ångströms of the interplanar spacings of the reflections used in the refinement. This is called the lowest resolution.
The permitted range is \(0.0 \rightarrow \infty\). [refine]
refine_ls_extinction_coef
(numb, su)
The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions of _refine_ls_extinction_expression and _refine_ls extinction_method. For the 'Zachariasen' method it is the \(r^{*}\) value; for the 'Becker-Coppens type 1 isotropic' method it is the ' \(g\) ' value and for 'Becker-Coppens type 2 isotropic' corrections it is the ' \(\rho\) ' value. Note that the magnitude of these values is usually of the order of 10000 .

References: Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665
Example: ‘3472 (52)’ (Zachariasen coefficient \(\left.r^{*}=0.347(5) \mathrm{E} 04\right) . \quad\) [refine]
_refine_ls_extinction_expression (char)
A description of or reference to the extinction-correction equation used to apply the data item _refine_1s_extinction_coef. This information must be sufficient to reproduce the extinctioncorrection factors applied to the structure factors.
Example:
; Larson, A. C. (1970). "Crystallographic Computing" edited by F. R. Ahmed. Eq. (22), p. 292.
Copenhagen: Munksgaard.
cif_core.dic
4.1. CORE DICTIONARY (CORECIF)
(char)
_refine_ls_extinction_method
\(\overline{\mathrm{A}}\) description \(\overline{\text { of }}\) the extinction-correction method applied. This description should include information about the correction method, either 'Becker-Coppens' or 'Zachariasen'. The latter is sometimes referred to as the 'Larson' method even though it employs Zachariasen's formula. The Becker-Coppens procedure is referred to as 'type 1 ' when correcting secondary extinction dominated by the mosaic spread; as 'type 2 ' when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the Becker-Coppens method, it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian' and the nature of the extinction as 'isotropic' or 'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied, the multiple coefficients cannot be contained in *_extinction_coef and must be listed in _refine_special_details.

References: Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Where no value is given, the assumed value is 'Zachariasen'.
Examples: 'B-C type 2 Gaussian isotropic', 'none'.

\section*{_refine_ls_F_calc_details}
(char)
Details concerning the evaluation of the structure factors using the expression given in _refine_1s_F_calc_formula.
Examples: 'Gaussian integration using 16 points',
; Bessel functions expansion up to 5th order.
Bessel functions estimated accuracy: better
than 0.001 electrons.
; . [refine]
_refine_ls_F_calc_formula (char)
Analytical expression used to calculate the structure factors.
[refine]

\section*{refine ls \(F\) calc precision}
(numb)
This item gives an estimate of the precision resulting from the numerical approximations made during the evaluation of the structure factors using the expression given in _refine_ls_F_calc_formula following the method outlined in _refine_ls_F_calc_details. For X-ray diffraction the result is given in electrons.
The permitted range is \(0.0 \rightarrow \infty\). [refine]

\section*{refine ls goodness of fit all}
(numb, su)
The least-squares goodness-of-fit parameter \(S\) for all reflections after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also _refine_1s_restrained_s_definitions.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\mathrm{param}}}\right)^{1 / 2},
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see _refine_1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine_1s_structure_factor_coef), \(w=\) the least-squares \(\overline{\text { reflection weight }}\left(1 / u^{2}\right), u=\) the standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement, \(N_{\text {param }}=\) the number of refined parameters and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
refine_ls_goodness_of_fit_gt
REFINE
(numb, su) The least-squares goodness-of-fit parameter \(S\) for significantly intense reflections (see _reflns_threshold_expression) after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also _refine_ls_restrained_s_definitions.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\mathrm{param}}}\right)^{1 / 2},
\]
where \(Y_{\mathrm{obs}}=\) the observed coefficients (see _refine_1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine_ls_structure_factor_coef), \(w=\) the least-squares reflection weight \(\left(1 / u^{2}\right), u=\) the standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement, \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: refine_ls_goodness_of_fit_obs (alternate). [refine]
refine_ls_goodness_of_fit_obs (numb, su)
This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_goodness_of_fit_gt.
The least-squares goodness-of-fit parameter S for observed reflections (see _reflns_observed_criterion) after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the leastsquares refinement. See also _refine_1s_restrained_s_definitions.
\[
S=\left(\frac{\sum|w| Y_{\text {obs }}-\left.Y_{\text {calc }}\right|^{2} \mid}{N_{\text {ref }}-N_{\text {param }}}\right)^{1 / 2}
\]
where \(Y_{\mathrm{obs}}=\) the observed coefficients (see _refine_1s_structure_ factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine_1s_ structure_factor_coef), \(w=\) the least-squares reflection weight \(\left(1 / u^{2}\right), u=\overline{t h e}\) standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement, \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\) [refine]
_refine_ls_goodness_of_fit_ref (numb, su)
The least-squares goodness-of-fit parameter \(S\) for all reflections included in the refinement after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the leastsquares refinement. See also _refine_1s_restrained_s_ definitions.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\mathrm{param}}}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see _refine_1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine_ls_structure_factor_coef), \(w=\) the least-squares reflection weight \(\left(1 / u^{2}\right), u=\) the standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement, \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
_refine_ls_hydrogen_treatment
(char)
\(\overline{\text { Treatment }}\) of hydrogen ato \(\bar{m} s\) in the least-squares refinement.
The data value must be one of the following:
\begin{tabular}{ll}
refall & refined all H-atom parameters \\
refxyz & refined H -atom coordinates only \\
refU & refined H-atom \(U\) 's only \\
noref & no refinement of H-atom parameters \\
constr & H-atom parameters constrained \\
mixed & some constrained, some independent \\
undef & H-atom parameters not defined
\end{tabular}

Where no value is given, the assumed value is 'undef'.

\section*{refine ls matrix type}
(char)
Type of matrix used to accumulate the least-squares derivatives.
The data value must be one of the following:
\begin{tabular}{ll}
full & full \\
fullcycle & full with fixed elements per cycle \\
atomblock & block diagonal per atom \\
userblock & user-defined blocks \\
diagonal & diagonal elements only \\
sparse & selected elements only
\end{tabular}

Where no value is given, the assumed value is ' \(f u l l\) '.
[refine]
refine_ls_number_constraints (numb)
The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigid-body refinement). See also _atom_site_constraints and _atom_site_ refinement_flags. A general description of constraints may appear in _refine_special_details.

The permitted range is \(0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0 '
[refine]

\section*{_refine_ls_number_parameters}
(numb)
The number of parameters refined in the least-squares process. If possible, this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Leastsquares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess.
The permitted range is \(0 \rightarrow \infty\). [refine]

\section*{refine_ls_number_reflns \\ (numb)}

The number of unique reflections contributing to the least-squares refinement calculation.
The permitted range is \(0 \rightarrow \infty\). [refine]

\section*{refine ls number restraints}
(numb)
The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Restrained parameters often involve geometry or energy dependencies. See also _atom_site_constraints and _atom_site_ refinement_flags. A general description of refinement constraints may appear in _refine_special_details.
The permitted range is \(0 \rightarrow \infty\).
[refine]

\section*{_refine_ls_R_factor_all \\ (numb)}

Residual factor for all reflections satisfying the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_ res_low. This is the conventional \(R\) factor. See also _refine_1s_ wR_factor_definitions.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|},
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
refine ls \(R\) factor gt
(numb)
Residual factor for the reflections (with number given by reflns_number_gt) judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_1s_d_res_high and _refine_1s_d_res_low. This is the conventional \(R\) factor. See also _refine_ls_wR_factor_definitions.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|},
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _refine_ls_R_factor_obs (alternate).
[refine]
_refine_ls_R_factor_obs
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_R_factor_gt.
Residual factor for the reflections classified as 'observed' (see reflns_observed_criterion) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and_refine_1s_d_res_low. This is the conventional \(R\) factor. See also _refine_1s_wR_factor_definitions.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\mathrm{obs}}=\) the observed structure-factor amplitudes, \(F_{\mathrm{calc}}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\)
[refine]

\section*{refine ls \(R\) Fsqd factor}
(numb)
Residual factor \(R\left(F^{2}\right)\), calculated on the squared amplitudes of the observed and calculated structure factors, for significantly intense reflections (satisfying reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low.
\[
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
\]
where \(F_{\mathrm{obs}}^{2}=\) squares of the observed structure-factor amplitudes, \(F_{\text {calc }}^{2}=\) squares of the calculated structure-factor amplitudes and the sum is taken over the specified reflections
The permitted range is \(0.0 \rightarrow \infty\)
[refine]
refine ls R I factor
(numb)
\(\overline{\text { Residual factor }} \overline{R(I)}\) for significantly intense reflections (satisfying reflns_threshold_expression) and included in the refinement This is most often calculated in Rietveld refinements against powder data, where it is referred to as \(R_{B}\) or \(R_{\text {Bragg }}\).
\[
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|},
\]
where \(I_{\text {obs }}=\) the net observed intensities, \(I_{\text {calc }}=\) the net calculated intensities and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
\(\bar{T}\) The least-squares goodness-of-fit parameter \(S^{\prime}\) for all reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_1s_goodness_of_fit_definitions.
\[
S^{\prime}=\left(\frac{\sum|w| Y_{\text {obs }}-\left.Y_{\text {calc }}\right|^{2}\left|+\sum_{r}\right| w_{r}\left|P_{\text {calc }}-P_{\text {targ }}\right|^{2} \mid}{N_{\text {ref }}+N_{\text {restr }}-N_{\text {param }}}\right)^{1 / 2},
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see _refine_1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see refine ls structure factor coef), \(w=\) the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], \(P_{\text {calc }}=\) the calculated restraint values, \(P_{\text {targ }}=\) the target restraint values, \(w_{r}=\) the restraint weight, \(N_{\text {ref }}=\) the number of reflections used in the refinement (see _refine_1s_ number_reflns_obs), \(N_{\text {restr }}=\) the number of restraints (see _refine_ls_number_restraints) and \(N_{\text {param }}=\) the number of refined parameters (see _refine_ls_number_parameters); the sum \(\sum\) is taken over the specified reflections and the sum \(\sum_{r}\) is taken over the restraints.
The permitted range is \(0.0 \rightarrow \infty\). [refine]

\section*{_refine_ls_restrained_s_gt}
(numb)
The least-squares goodness-of-fit parameter \(S^{\prime}\) for significantly intense reflections (satisfying _reflns_threshold_expression) after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_definitions.
\[
S^{\prime}=\left(\frac{\sum|w| Y_{\text {obs }}-\left.Y_{\text {calc }}\right|^{2}\left|+\sum_{r}\right| w_{r}\left|P_{\text {calc }}-P_{\text {targ }}\right|^{2} \mid}{N_{\text {ref }}+N_{\text {restr }}-N_{\text {param }}}\right)^{1 / 2},
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see refine_1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see refine_ls_structure_factor_coef), \(w=\) the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], \(P_{\text {calc }}=\) the calculated restraint values, \(P_{\text {targ }}=\) the target restraint values, \(w_{r}=\) the restraint weight, \(N_{\text {ref }}=\) the number of reflections used in the refinement (see refine ls number_reflns_obs), \(N_{\text {restr }}=\) the number of restraints (see _refine_1s_number_restraints) and \(N_{\text {param }}=\) the number of refined parameters (see refine_ls_number_parameters); the sum \(\sum\) is taken over the specified reflections and the sum \(\sum_{r}\) is taken over the restraints.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _refine_1s_restrained_s_obs (alternate).
_refine_ls_restrained_S_obs
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _refine_1s_restrained_s_gt.
The least-squares goodness-of-fit parameter \(S^{\prime}\) for observed reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_1s_goodness_of_fit_definitions.
\[
S^{\prime}=\left(\frac{\sum|w| Y_{\text {obs }}-\left.Y_{\text {calc }}\right|^{2}\left|+\sum_{r}\right| w_{r}\left|P_{\text {calc }}-P_{\text {targ }}\right|^{2} \mid}{N_{\text {ref }}+N_{\text {restr }}-N_{\text {param }}}\right)^{1 / 2},
\]
where \(Y_{\mathrm{obs}}=\) the observed coefficients (see _refine_1s_structure_ factor coef), \(Y_{\text {calc }}=\) the calculated coefficients (see refine ls structure_factor_coef), \(w=\) the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], \(P_{\text {calc }}=\) the calculated restraint values, \(P_{\operatorname{targ}}=\) the target restraint values, \(w_{r}=\) the restraint weight, \(N_{\mathrm{ref}}=\) the number of reflections used in the refinement (see _refine_ls_number_reflns_obs), \(N_{\text {restr }}=\) the number of restraints \(\overline{(}\) see _rē \(\left.\bar{f} \overline{i n e}_{-} 1 s \_n u m b e r \_r e \bar{s} t r a i n t s\right) ~ a n d ~ N_{\text {param }}=\) the number of
refined parameters (see_refine_ls_number_parameters); the sum \(\sum\) is taken over the specified reflections and the sum \(\sum_{r}\) is taken over the restraints.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
_refine_ls_shift/esd_max
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_shift/su_max.
The largest ratio of the final least-squares parameter shift to the final standard uncertainty (s.u., formerly described as estimated standard deviation, e.s.d.).
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
_refine_ls_shift/esd_mean
(numb)
\(\bar{T}\) This definition has been superseded and is retained here only for archival purposes. Use instead _refine_1s_shift/su_mean.
The average ratio of the final least-squares parameter shift to the final standard uncertainty (s.u., formerly described as estimated standard deviation, e.s.d.).
The permitted range is \(0.0 \rightarrow \infty\). [refine]
refine_ls_shift/su_max
(numb)
The largest ratio of the final least-squares parameter shift to the final standard uncertainty.
The permitted range is \(0.0 \rightarrow \infty\).
Related item:_refine_ls_shift/esd_max (alternate).
[refine]
_refine_ls_shift/su_max_lt
(numb)
An upper limit for the largest ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the largest value of the shift divided by the final standard uncertainty is too small to measure.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _refine_ls_shift/su_max (alternate).
[refine]
refine_ls_shift/su_mean
(numb)
The average ratio of the final least-squares parameter shift to the final standard uncertainty.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _refine_ls_shift/esd_mean (alternate).
[refine]
_refine_ls_shift/su_mean_lt
(numb)
\(\bar{A}\) n upper \(\overline{\text { limit }} \overline{\text { in }}\) for the average \(\overline{\text { ratio }}\) of the final least-squares parameter shift to the final standard uncertainty. This item is used when the average value of the shift divided by the final standard uncertainty is too small to measure.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _refine_1s_shift/su_mean(alternate). [refine]
refine ls structure factor coef
(char)
\(\overline{\text { Structure-factor coefficient } \mid}|\bar{F}|, F^{2}\) or \(\bar{I}\) used in the least-squares refinement process.
\begin{tabular}{ll}
The data value must be one of the following: \\
F & structure-factor magnitude \\
Fsqd & structure factor squared \\
Inet & net intensity
\end{tabular}

Where no value is given, the assumed value is ' \(F\) '.
[refine]
_refine_ls_weighting_details
(char)
\(\overline{\text { A description of special aspects of the weighting scheme used in }}\) the least-squares refinement. Used to describe the weighting when the value of _refine_ls_weighting_scheme is specified as 'calc'.
Example:
; Sigdel model of Konnert-Hendrickson:
Sigdel \(=A f s i g+B f s i g *(\sin (\backslash q) / \backslash 1-1 / 6)\)
Afsig \(=22.0, \mathrm{Bfsig}=150.0\) at the beginning of refinement.
Afsig \(=16.0, \mathrm{Bfsig}=60.0\) at the end of refinement.

\section*{refine_ls_weighting_scheme}
(char)
The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight (but see _refine_ls_weighting_details for a preferred approach).
The data value must be one of the following:
sigma based on measured s.u.'s
unit unit or no weights applied
calc calculated weights applied
Where no value is given, the assumed value is 'sigma'.
[refine]

\section*{_refine_ls_wR_factor_all}
(numb)
Weighted residual factors for all reflections. The reflections also satisfy the resolution limits established by _refine_ls_d_res_ high and _refine_ls_d_res_low. See also the _refine_ls_R_ factor_definitions.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine_ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude \(\overline{\text { spec- }}\) ified by _refine_ls_structure_factor_coef, \(w=\) the leastsquares weight and the sum is taken over the specified reflections. The permitted range is \(0.0 \rightarrow \infty\).
[refine]

\section*{_refine_ls_wR_factor_gt}
(numb)
Weighted residual factors for significantly intense reflections (satisfying _reflns_threshold_expression) included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and_refine_ls_d_res_low. See also the _refine_ls_R_factor_definitions.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine_ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine_ls_structure_factor_coef, \(w=\) the leastsquares weight and the sum is taken over the specified reflections. The permitted range is \(0.0 \rightarrow \infty\).
Related item: refine ls wR factor obs (alternate). [refine]

\section*{refine ls wR factor obs}
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_wR_factor_gt.
Weighted residual factors for the reflections classified as 'observed' (see _reflns_observed_criterion) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_1s_d_res_high and_refine_1s_d_res_low. See also the _refine_1s_R_factor_definitions.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\mathrm{obs}}=\) the observed amplitude specified by _refine_1s_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine_1s_structure_factor_coef, \(w=\) the least-squares weight and the sum is taken over the specified reflections.
The permitted range is \(0.0 \rightarrow \infty\).
[refine]
refine ls wR factor ref
(numb)
Weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and_refine_ls_d_res_low. See also the _refine_ls_R_factor_definitions.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine_1s_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine_ls_structure_factor_coef, \(w=\) the leastsquares weight and the sum is taken over the specified reflections. The permitted range is \(0.0 \rightarrow \infty\).
[refine]
_refine_special_details
(char)
Description of special aspects of the refinement process.
[refine]

\section*{REFINE LS_CLASS}

Data items in the REFINE_LS_CLASS category record details (for each reflection class separately) about the reflections used for the structure refinement.

Example 1 - example for a modulated structure extracted from van Smaalen [J. Phys. Condens. Matter (1991), 3, 1247-1263.]
loop_
refine_ls_class_R_factor_gt
_refine_ls_class_code
0.057 'Main'
0.074 'Com'
0.064 'NbRefls'
0.046 'LaRefls'
0.112 'Sat1'
0.177 'Sat2'
refine_ls_class_code
(char)
The code identifying a certain reflection class. This code must match a_reflns_class_code.
Appears in list. Must match parent data name _reflns_class_code
Examples: ‘1', 'm1', ‘s2'. [refine_ls_class]
_refine_ls_class_d_res_high
For each reflection class, the highest resolution in ångströms for the reflections used in the refinement. This is the lowest \(d\) value in a reflection class
Appears in list containing _refine_ls_class_code
The permitted range is \(0.0 \rightarrow \infty\)
[refine_ls_class

\section*{refine_ls_class_d_res_low}
\(\bar{F}\) or each reflection class, the lowest resolution in ångströms for the reflections used in the refinement. This is the highest \(d\) value in a reflection class
Appears in list containing _refine_1s_class_code
The permitted range is \(0.0 \rightarrow \infty\)
[refine_ls_class]

\section*{refine_ls_class_R_factor all \\ refine_ls_class_R_factor_gt}

For each reflection class, the residual tions, and for significantly intense reflections (see reflns threshold_expression), included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_ class d res high and refine ls class d res low. This is the conventional \(R\) factor.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}\) \(=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections. See also _refine_ls_class_ wR_factor_all definitions.
Appears in list containing _refine_ls_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[refine_ls_class]

\section*{refine_ls_class_R_Fsqd_factor}

For each reflection class, the residual factor \(R\left(F^{2}\right)\) calculated on the squared amplitudes of the observed and calculated structure factors for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_d_res_high and _refine_ls_class_d_res_low.
\[
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
\]
where \(F_{\mathrm{obs}}^{2}=\) squares of the observed structure-factor amplitudes, \(F_{\text {calc }}^{2}=\) squares of the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
Appears in list containing _refine_ls_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[refine_ls_class]
_refine_ls_class_R_I_factor (numb)
For each reflection class, the residual factor \(R(I)\) for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as \(R_{B}\) or \(R_{\text {Bragg }}\).
\[
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|}
\]
where \(I_{\text {obs }}=\) the net observed intensities, \(I_{\text {calc }}=\) the net calculated intensities and the sum is taken over the specified reflections.
Appears in list containing _refine_1s_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[refine_ls_class]

\section*{refine ls class wR factor all}
(numb)
For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_ d_res_high and _refine_ls_class_d_res_low.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitudes specified by _refine_1s_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitudes specified by _refine_ls_structure_factor_coef, \(w=\) the leastsquares weights and the sum is taken over the reflections of this class. See also _refine_ls_class_R_factor_definitions.
Appears in list containing_refine_ls_class_code.
The permitted range is \(0.0 \rightarrow \infty\).

\section*{REFLN}

Data items in the REFLN category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.

Example 1 - based on data set fetod of Todres, Yanovsky, Ermekov \& Struchkov [Acta Cryst. (1993), C49, 1352-1354].

\section*{loop}
_refln_index_h
refln index \(k\)
_refln_index_l
_refln_F_squared_calc
_refln_F_squared_meas
_refln_F_squared_sigma
_refln_include_status
\begin{tabular}{lllrrrl}
2 & 0 & 0 & 85.57 & 58.90 & 1.45 & \(\circ\) \\
3 & 0 & 0 & 15718.18 & 15631.06 & 30.40 & \(\circ\) \\
4 & 0 & 0 & 55613.11 & 49840.09 & 61.86 & \(\circ\) \\
5 & 0 & 0 & 246.85 & 241.86 & 10.02 & \(\circ\) \\
6 & 0 & 0 & 82.16 & 69.97 & 1.93 & \(\circ\) \\
7 & 0 & 0 & 1133.62 & 947.79 & 11.78 & \(\circ\) \\
8 & 0 & 0 & 2558.04 & 2453.33 & 20.44 & \(\circ\) \\
9 & 0 & 0 & 283.88 & 393.66 & 7.79 & \(\circ\) \\
10 & 0 & 0 & 283.70 & 171.98 & 4.26 & \(\circ\)
\end{tabular}

Example 2 - based on standard test data set p6122 of the Xtal distribution [Hall, King \& Stewart (1995). Xtal3.4 User's Manual. University of Western Australia].
loop_
_refln_index_h
refln_index k
refln_index_1
_refln_F_meas
_refln_F_calc
refln_F_sigma
_refln_include_status
_refln_scale_group_code
\begin{tabular}{rrrrrrll}
0 & 0 & 6 & 34.935 & 36.034 & 3.143 & \(\circ\) & 1 \\
0 & 0 & 12 & 42.599 & 40.855 & 2.131 & \(\circ\) & 1 \\
0 & 1 & 0 & 42.500 & 42.507 & 4.719 & \(\circ\) & 1 \\
0 & 1 & 1 & 59.172 & 57.976 & 4.719 & \(\circ\) & 1 \\
0 & 1 & 2 & 89.694 & 94.741 & 4.325 & \(\circ\) & 1 \\
0 & 1 & 3 & 51.743 & 52.241 & 3.850 & \(\circ\) & 1 \\
0 & 1 & 4 & 9.294 & 10.318 & 2.346 & \(\circ\) & 1 \\
0 & 1 & 5 & 41.160 & 39.951 & 3.313 & \(\circ\) & 1 \\
0 & 1 & 6 & 6.755 & 7.102 & .895 & \(<\) & 1 \\
0 & 1 & 7 & 30.693 & 31.171 & 2.668 & \(\circ\) & 1 \\
0 & 1 & 8 & 12.324 & 12.085 & 2.391 & \(\circ\) & 1 \\
0 & 1 & 9 & 15.348 & 15.122 & 2.239 & \(\circ\) & 1 \\
0 & 1 & 10 & 17.622 & 19.605 & 1.997 & \(\circ\) & 1
\end{tabular}
_refln_A_calc
(numb)
\(\bar{T}\) The calculated and measured structure-factor component \(A\) (in electrons for X-ray diffraction).
\[
A=|F| \cos (\text { phase })
\]

Appears in list containing _refln_index_
[refln]
_refln_B_calc _refln_B_meas
\(\bar{T}\) The calculated and measured structure-factor component \(B\) (in electrons for X-ray diffraction).
\[
B=|F| \sin \text { (phase). }
\]

\section*{refln class code}
(char)
The code identifying the class to which this reflection has been assigned. This code must match a value of _reflns_class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal lattice
Appears in list containing _refln_index_. Must match parent data name
_reflns_class_code.
[refln]
_refln_d_spacing
(numb)
The \(d\) spacing in ångströms for this reflection. This is related to the \((\sin \theta) / \lambda\) value by the expression _refln_d_spacing \(=\) 2/(_refln_sint/lambda).
Appears in list containing _refln_index_
The permitted range is \(0.0 \rightarrow \infty\).
[refln]

\section*{refln crystal id}
(char)
Code identifying each crystal if multiple crystals are used. Is used to link with _exptl_crystal_id in the _exptl_crystal_ list.
Appears in list containing_refln_index_. Must match parent data name
_exptl_crystal_id.
[refln]
\[
\begin{aligned}
& \text { _refln_F_calc } \\
& \text { _refln_F_meas } \\
& \text { _refln_F_sigma }
\end{aligned}
\]
(numb)
The calculated, measured and standard uncertainty (derived from measurement) of the structure factors (in electrons for X-ray diffraction).
Appears in list containing _refln_index_
[refln]
```

_refln_F_squared_calc
_refln_F_squared_meas
refln F squared sigma

```
\(\overline{\text { Calculated, }}\), measured and estimated standard uncertainty (derived from measurement) of the squared structure factors (in electrons squared for X-ray diffraction).
Appears in list containing _refln_index_.
[refln]

\section*{refln include status}

Classification of a reflection indicating its status with respect to inclusion in the refinement and the calculation of \(R\) factors.
Appears in list containing _refln_index_.
Related item: _refln_observed_status (alternate).
The data value must be one of the following:
o (lower-case letter o for 'observed') satisfies _refine_ls_d_ res high, satisfies refine ls d res low and exceeds

satisfies refine_ls_d_res high, satisfies refine ls d_res_low and does not exceed _reflns_threshōld_ expression
systematically absent reflection
unreliable measurement - not used
does not satisfy _refine_ls_d_res_high
does not satisfy _refine_ls_d_res_low
Where no value is given, the assumed value is ' 0 '.
[refln]
```

_refln_index_h
_refln_index_k
refln index l

```
(numb)
\(\bar{M}\) Miller indices of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by the cell lengths and cell angles in the CELL category.

Appears in list as essential element of loop structure.
[refln]

\section*{refln_intensity_calc \\ _refln_intensity_meas}
refln_intensity_sigma
(numb)
The calculated, measured and standard uncertainty (derived from measurement) of the intensity, all in the same arbitrary units as _refln_intensity_meas.
Appears in list containing _refln_index_. [refln]

\section*{refln_mean_path_length_tbar}
(numb)
Mean path length in millimetres through the crystal for this reflection.

Appears in list containing _refln_index_.
The permitted range is \(0.0 \rightarrow \infty\). [refln]
refln observed status
(char)
\(\bar{T}\) This definition has been superseded and is retained here only for archival purposes. Use instead _refln_include_status.
Classification of a reflection indicating its status with respect to inclusion in the refinement and the calculation of \(R\) factors.
Appears in list containing_refln_index_
The data value must be one of the following:
\[
\begin{aligned}
& \text { o satisfies _refine_ls_d_res_high, satisfies_refine_ls } \\
& \text { dres low and observed by reflns observed } \\
& \text { criterion } \\
& \text { satisfies _refine_ls_d_res_high, satisfies _refine_ls_ } \\
& \text { d_res_low and unobserved by _reflns_observed } \\
& \text { unreliable measurement - not used } \\
& \text { does not satisfy _refine_1s_d_res_high } \\
& \text { does not satisfy_refine_1s_d_res_low } \\
& \text { Where no value is given, the assumed value is 'o'. [refln] }
\end{aligned}
\]
refln_phase_calc
(numb)
\(\bar{T}\) The calculated structure-factor phase in degrees.
Appears in list containing _refln_index_. [refln]
refln_phase_meas
(numb, su)
The measured structure-factor phase in degrees.
Appears in list containing _refln_index_.
[refln]
_refln_refinement_status
(char)
\(\bar{S}\) tatus of a reflection in the structure-refinement process.
Appears in list containing_refln_index_.
The data value must be one of the following:
incl included in least-squares process
excl excluded from least-squares process
extn excluded due to extinction
Where no value is given, the assumed value is 'incl'.
refln_scale_group_code (char)
\(\overline{\text { Code identifying the structure-factor scale. This code must corre- }}\) spond to one of the _reflns_scale_group_code values.
Appears in list containing _refln_index_. Must match parent data name
_reflns_scale_group_code.
Examples: '1', '2', '3', 's1', 'A', ‘B', ‘c1', ' C 2 ', ' C 3 '. [refln]
refln sint/lambda
(numb)
\(\overline{\text { The }}(\sin \bar{\theta}) / \lambda\) value in reciprocal ångströms for this reflection.
Appears in list containing _refln_index_.
The permitted range is \(0.0 \rightarrow \infty\). [refln]
_refln_symmetry_epsilon
(numb)
The symmetry reinforcement factor corresponding to the number of times the reflection indices are generated identically from the space-group symmetry operations.
Appears in list containing _refln_index_
The permitted range is \(1 \rightarrow 48\).
[refln]
refln symmetry multiplicity
(numb)
The number of reflections symmetry-equivalent under the Laue symmetry to the present reflection. In the Laue symmetry, Friedel opposites (\(h k l\) and \(-h-k-l\)) are equivalent. Tables of symmetryequivalent reflections are available in International Tables for Crystallography Volume A (2002), Chapter 10.1.
Appears in list containing _refln_index_.
The permitted range is \(1 \rightarrow 48\).
[refln]

\section*{refln_wavelength}
(numb)
The mean wavelength in ångströms of the radiation used to measure this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method.
Appears in list containing _refln_index_
The permitted range is \(0.0 \rightarrow \infty\). [refln]
refln_wavelength_id
(char)
Code identifying the wavelength in the _diffrn_radiation_ list. See _diffrn_radiation_wavelength_id.
Appears in list containing _refln_index_. Must match parent data name _diffrn_radiation_wavelength_id.
[refln]

\section*{REFLNS}

Data items in the REFLNS category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REfLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{|c|c|}
\hline _reflns_limit_h_min & 0 \\
\hline _reflns_limit_h_max & 6 \\
\hline _reflns_limit_k_min & 0 \\
\hline _reflns_limit_k_max & 17 \\
\hline _reflns_limit_l_min & 0 \\
\hline _reflns_limit_l_max & 22 \\
\hline _reflns_number_total & 1592 \\
\hline _reflns_number_gt & 1408 \\
\hline _reflns_threshold_expression & 'F > 6.0u(F)' \\
\hline _reflns_d_resolution_high & 0.8733 \\
\hline _reflns_d_resolution_low & 11.9202 \\
\hline
\end{tabular}

\section*{_reflns_d_resolution_high \\ _reflns_d_resolution_low}
(numb)
The highest and lowest resolution in ångströms for the reflections. These are the smallest and largest \(d\) values.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns]
reflns_Friedel_coverage
(numb)
The proportion of Friedel-related reflections present in the number of 'independent' reflections specified by the item _reflns_number_total. This proportion is calculated as the ratio
\[
\frac{[N(\text { crystal class })-N(\text { Laue symmetry })]}{N(\text { Laue symmetry })},
\]
where, working from the _diffrn_refln_ list, \(N\) (crystal class) is the number of reflections \({ }^{-}\)obtaine \(\bar{d}\) on averaging under the symmetry of the crystal class and \(N\) (Laue symmetry) is the number of reflections obtained on averaging under the Laue symmetry.

Examples: (a) For centrosymmetric structures, _reflns_ Friedel_coverage is necessarily equal to 0.0 as the crystal class is identical to the Laue symmetry. (b) For whole-sphere data for a crystal in the space group \(P 1\),_reflns_Friedel_coverage is equal to 1.0 , as no reflection \(h k l\) is equivalent to \(-h-k-l\) in the crystal class and all Friedel pairs \(\{h k l ;-h-k-l\}\) have been measured. (c) For whole-sphere data in space group Pmm2,
reflns Friedel coverage will be \(<1.0\) because although reflections \(h k l\) and \(-h-k-l\) are not equivalent when \(h k l\) indices are nonzero, they are when \(l=0\). (d) For a crystal in the space group Pmm2, measurements of the two inequivalent octants \(h \geq\) \(0, k \geq 0, l\) lead to the same value as in \((c)\), whereas measurements of the two equivalent octants \(h \geq 0, k, l \geq 0\) will lead to a value of zero for_reflns_Friedel_coverage.
The permitted range is \(0.0 \rightarrow 1.0\).
[reflns]
_reflns_limit_h_max
-reflns_limit_h_min
-reflns_limit_k_max
-reflns_limit_k_min
-reflns_limit_l_max
_reflns_limit_l_min
(numb)
Miller indices limits for the reported reflections. These need not be the same as the _diffrn_reflns_limit_ values.

> [reflns]
reflns_number_gt (numb)
The number of reflections in the _refln_ list (not the diffrn_refln_ list) that are significantly intense, satisfying the criterion specified by _reflns_threshold_expression. This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.
The permitted range is \(0 \rightarrow \infty\).
Related item: _reflns_number_observed (alternate).
[reflns]
_reflns_number_observed
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_number_gt.
The number of 'observed' reflections in the _refln_ list (not the _diffrn_refln_list). The observed reflections satisfy the threshold criterion specified by _reflns_threshold_expression (or the deprecated item_reflns_observed_criterion). They may include Friedelequivalent reflections according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_list should be given in the item_reflns_special_details.
The permitted range is \(0 \rightarrow \infty\). - - [reflns]
reflns_number_total
(numb)
The total number of reflections in the _refin_ list (not the diffrn_refln_list). This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.
The permitted range is \(0 \rightarrow \infty\).
[reflns]
_reflns_observed_criterion (char)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_threshold_expression.
The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of a \(\sigma(I)\) or \(\sigma(F)\) threshold.
Example: ' \(I>2 u(I)\) '.
[reflns]
_reflns_special_details
(char)
\(\bar{D}\) escription of the properties of the reported reflection list that are not given in other data items. In particular, this should include information about the averaging (or not) of symmetry-equivalent reflections including Friedel pairs.
[reflns]

\section*{reflns_threshold_expression}
(char)
The threshold, usually based on multiples of \(u(I), u\left(F^{2}\right)\) or \(u(F)\), that serves to identify significantly intense reflections, the number of which is given by _reflns_number_gt. These reflections are used in the calculation of _refine_ls_R_factor_gt.
Related item: _reflns_observed_criterion (alternate).
Example: 'I>2u(I)'.
[reflns]

\section*{REFLNS_CLASS}

Data items in the REFLNS_CLASS category record details, for each reflection class, about the reflections used to determine the structural parameters.

Example 1-corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
loop_
_reflns_class_number_gt
_reflns_class_code
584 'Main'
226 'Sat1'

\section*{_reflns_class_code}
(char)
The code identifying a certain reflection class.
Appears in list. May match child data name(s): _refln_class_code,
_refine_ls_class_code.
Examples: '1', 'm1', 's2'.
[reflns_class]
_reflns_class_d_res_high
(numb)
For each reflection class, the highest resolution in ångströms for the reflections used in the refinement. This is the smallest \(d\) value. Appears in list containing _reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\). [reflns_class]
_reflns_class_d_res_low
(numb)
\(\overline{\text { For each reflection class, the lowest resolution in ångströms for the }}\) reflections used in the refinement. This is the largest \(d\) value.
Appears in list containing _reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_description
(char)
Description of each reflection class.
Appears in list containing_reflns_class_code.
Examples: ‘m=1 first order satellites',
'HOLO common projection reflections'.
[reflns_class]
_reflns_class_number_gt
(numb)
For each reflection class, the number of significantly intense reflections (see _reflns_threshold_expression) in the _refln_ list (not the _diffrn_refln_ list). This may include Friedelequivalent reffections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.
Appears in list containing_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_number_total
(numb)
\(\bar{F}\) or each \(\overline{\text { reflection }}\) class, the total number of reflections in the _refln_ list (not the _diffrn_refln_ list). This may include \(\overline{\text { Friedel-equivalent reflections (i.e. those which are symmetry- }}\) equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details.
Appears in list containing_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_R_factor_all
_reflns_class_R_factor_gt
(numb)
For each reflection class, the residual factors for all reflections, and for significantly intense reflections (see _reflns_ threshold_expression), included in the refinement. The reflections also satisfy the resolution limits established by _reflns_ class_d_res_high and _reflns_class_d_res_low. This is the conventional \(R\) factor.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. See also _reflns_class_ wR_factor_all definitions.
Appears in list containing _reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_R_Fsqd_factor
(numb)
For each reflection class, the residual factor \(R\left(F^{2}\right)\) calculated on the squared amplitudes of the observed and calculated structure factors, for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low.
\[
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
\]
where \(F_{\text {obs }}^{2}=\) squares of the observed structure-factor amplitudes, \(F_{\text {calc }}^{2}=\) squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
Appears in list containing _reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_R_I_factor
(numb)
\(\overline{\text { For each reflection class, }} \overline{-}\) the residual factor \(R(I)\) for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as \(R_{B}\) or \(R_{\text {Bragg }}\).
\[
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|}
\]
where \(I_{\mathrm{obs}}=\) the net observed intensities, \(I_{\mathrm{calc}}=\) the net calculated intensities and the sum is taken over the reflections of this class.
Appears in list containing_reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]
_reflns_class_wR_factor_all
(numb)
\(\overline{\text { For each }}\) reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitudes specified by _refine_1s_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitudes specified by _refine_ls_structure_factor_coef, \(w=\) the leastsquares weights and the sum is taken over the reflections of this class. See also _reflns_class_R_factor_definitions.
Appears in list containing _reflns_class_code.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_class]

\section*{REFLNS_SCALE}

Data items in the REFLNS_SCALE category record details about the structure-factor scales. They are referenced from within the REFLN list through _refln_scale_group_code.

Example 1 - based on standard test data set p6122 of the Xtal distribution [Hall, King \& Stewart (1995). Xtal3.4 User's Manual. University of Western Australia].
loop_
_reflns_scale_group_code
_reflns_scale_meas_F
\(1.8 \overline{9} 447\)
2.912743

\section*{reflns_scale_group_code}
(char)
The code \(\overline{\text { identifying a scale _reflns_scale_meas_. These are }}\) linked to the _refln_ list by the _refln_scale_group_code. These codes need not correspond to those in the _diffrn_scale_ list.
Appears in list as essential element of loop structure. May match child data name(s):
```

_refln_scale_group_code.
[reflns_scale]
_reflns_scale_meas_F
_reflns_scale_meas_F_squared
_reflns_scale_meas_intensity
(numb, su)
$\overline{\text { S }}$ cales associated $\overline{\text { with _reflns_scale_group_code. }}$
Appears in list containing _reflns_scale_group_code.
The permitted range is $0.0 \rightarrow \infty$.
[reflns_scale]

```

\section*{REFLNS_SHELL}

Data items in the REFLNS_SHELL category record details about the reflections used to determine the ATOM_SITE data items, as broken down by shells of resolution.

_reflns_shell_d_res_high
(numb)
The highest resolution in ångströms for the reflections in this shell. This is the smallest \(d\) value.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]

\section*{reflns_shell_d_res_low}
(numb)
The lowest resolution in ångströms for the reflections in this shell. This is the largest \(d\) value.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]
_reflns_shell_meanI_over_sigI_all
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_uI_all.
The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in the resolution shell.
Appears in list.
[reflns_shell]
_reflns_shell_meanI_over_sigI_gt
(numb)
\(\bar{T} h i s\) definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_uI_gt.
The ratio of the mean of the intensities of the significantly intense reflections (see _reflns_threshold_expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell.
Appears in list.
[reflns_shell]
_reflns_shell_meanl_over_sigI_obs
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_sigI_gt.
The ratio of the mean of the intensities of the reflections classified as 'observed' (see _reflns_observed_criterion) in this shell to the mean of the standard uncertainties of the intensities of the 'observed' reflections in the resolution shell.
Appears in list.
[reflns_shell]
_reflns_shell_meanI_over_uI_all
(numb)
\(\bar{T}\) The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in the resolution shell.
Appears in list.
Related item: _reflns_shell_meanI_over_sigI_all (alternate).
[reflns_shell]

\section*{_reflns_shell_meanI_over_uI_gt}
(numb)
The ratio of the mean of the intensities of the significantly intense reflections (see _refins_threshold_expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell.
Appears in list.
Related items:
_reflns_shell_meanI_over_sigI_gt (alternate),
_reflns_shell_meanI_over_sigI_obs (alternate). [reflns_shell]
reflns_shell_number_measured_all (numb)
\(\overline{\text { The total }}\) number of reflections measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\). [reflns_shell]
_reflns_shell_number_measured_gt
(numb)
\(\bar{T}\) The number of significantly intense reflections (see _reflns_ threshold_expression) measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _reflns_shell_number_measured_obs (alternate).
[reflns_shell]
_reflns_shell_number_measured_obs (numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_number_measured_gt.
The number of reflections classified as 'observed' (see _reflns_ observed_criterion) measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]
reflns_shell_number_possible
(numb)
\(\overline{\text { The number of unique reflections it is possible to measure in this }}\) reflection shell.
Appears in list.
The permitted range is \(0 \rightarrow \infty\).
[reflns_shell]
_reflns_shell_number_unique_all
(numb)
\(\bar{T}\) The total number of measured reflections resulting from merging measured symmetry-equivalent reflections for this resolution shell. Appears in list.
The permitted range is \(0 \rightarrow \infty\).
[reflns_shell]

REFLNS_SHELL
(numb)
reflns shell_number_unique gt
The total number of significantly intense reflections (see _reflns_threshold_expression) resulting from merging measured symmetry-equivalent reflections for this resolution shell.
Appears in list.
The permitted range is \(0 \rightarrow \infty\).
Related item: _reflns_shell_number_unique_obs (alternate). [reflns_shell]
_reflns_shell_number_unique_obs
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_number_unique_gt.
The total number of reflections classified as 'observed' (see _reflns_ observed_criterion) resulting from merging measured symmetryequivalent reflections for this resolution shell.
Appears in list.
The permitted range is \(0 \rightarrow \infty . \quad\) [reflns_shell]
_reflns_shell_percent_possible_all (numb)
The percentage of geometrically possible reflections represented by all reflections measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow 100.0\).
[reflns shell]
_reflns_shell_percent_possible_gt
(numb)
The percentage of geometrically possible reflections represented by significantly intense reflections (see _reflns_ threshold_expression) measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow 100.0\).
Related item: _reflns_shell_percent_possible_obs (alternate).
[reflns shell]
_reflns_shell_percent_possible_obs
(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_percent_possible_gt.
The percentage of geometrically possible reflections represented by reflections classified as 'observed' (see _reflns_observed_criterion) measured for this resolution shell.
Appears in list.
The permitted range is \(0.0 \rightarrow\) 100.0.
[reflns_shell]
_reflns_shell_Rmerge_F_all
(numb)
\(\bar{T}\) he value of \(R_{\text {merge }}(F)\) for all reflections in a given shell.
\[
R_{\mathrm{merge}}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
\]
where \(F_{j}=\) the amplitude of the \(j\) th observation of reflection \(i,\langle F\rangle\) \(=\) the mean of the amplitudes of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]
reflns_shell_Rmerge_F_gt
(numb)
\(\bar{T}\) The value of \(R_{\text {merge }}(F)\) for significantly intense reflections (see _reflns_threshold_expression) in a given shell.
\[
R_{\mathrm{merge}}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
\]
where \(F_{j}=\) the amplitude of the \(j\) th observation of reflection \(i,\langle F\rangle\) \(=\) the mean of the amplitudes of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
Related item: _reflns_shell_Rmerge_F_obs (alternate).
[reflns_shell]
reflns_shell_Rmerge_F_obs
(numb)
\(\bar{T}\) This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_Rmerge_F_gt.
The value of \(R_{\text {merge }}(F)\) for reflections classified as 'observed' (see _reflns_observed_criterion) in a given shell.
\[
R_{\text {merge }}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
\]
where \(F_{j}=\) the amplitude of the jth observation of reflection \(i,\langle F\rangle=\) the mean of the amplitudes of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]
_reflns_shell_Rmerge_I_all
(numb)
\(\bar{T}\) The value of \(R_{\text {merge }}(I)\) for all reflections in a given shell.
\[
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)}
\]
where \(I_{j}=\) the intensity of the \(j\) th observation of reflection \(i,\langle I\rangle=\) the mean of the intensities of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty . \quad\) [reflns_shell]
_reflns_shell_Rmerge_I_gt
(numb)
The value of \(R_{\text {merge }}(I)\) for significantly intense reflections (see _reflns_threshold_expression) in a given shell.
\[
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)}
\]
where \(I_{j}=\) the intensity of the \(j\) th observation of reflection \(i,\langle I\rangle=\) the mean of the intensities of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
Related item:_reflns_shell_Rmerge_I_obs (alternate).
[reflns_shell]
reflns_shell_Rmerge_I_obs

\section*{(numb)}

This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_Rmerge_I_gt.
The value of \(R_{\text {merge }}(I)\) for reflections classified as 'observed' (see _reflns_observed_criterion) in a given shell.
\[
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)}
\]
where \(I_{j}=\) the intensity of the \(j\) th observation of reflection \(i,\langle I\rangle=\) the mean of the intensities of all observations of reflection \(i, \sum_{i}\) is taken over all reflections and \(\sum_{j}\) is taken over all observations of each reflection.
Appears in list.
The permitted range is \(0.0 \rightarrow \infty\).
[reflns_shell]

\section*{SPACE_GROUP}

Contains all the data items that refer to the space group as a whole, such as its name or crystal system. They may be looped, for example, in a list of space groups and their properties. Only a subset of the SPACE_GROUP category items appear in the core dictionary. The remainder are found in the symmetry CIF dictionary. Space-group types are identified by their number as given in International Tables for Crystallography Vol. A. Specific settings of the space groups can be identified either by their Hall symbol or by specifying their symmetry operations. The commonly used Hermann-Mauguin symbol determines the spacegroup type uniquely but several different Hermann-Mauguin symbols may refer to the same space-group type. A HermannMauguin symbol contains information on the choice of the basis, but not on the choice of origin. Different formats for the Hermann-Mauguin symbol are found in the symmetry CIF dictionary.
Example 1 - the monoclinic space group No. 15 with unique axis \(b\).
\begin{tabular}{ll}
_space_group_id & 1 \\
_space_group_name_H-M_alt & 'C 2/c' \\
_space_group_IT_number & 15 \\
_space_group_name_Hall & '-C 2yc' \\
_space_group_crystal_system & monoclinic
\end{tabular}
_space_group_crystal_system
(char)
\(\bar{T}\) The name of the system of geometric crystal classes of space groups (crystal system) to which the space group belongs. Note that rhombohedral space groups belong to the trigonal system.
```

May appear in list containing _space_group_id.
Related item: _symmetry_cell_setting (alternate).
The data value must be one of the following:
triclinic
monoclinic
orthorhombic
tetragonal
trigonal
hexagonal

```
 cubic [space_group]
 space_group_id

This is an identifier needed if _space_group_items are looped.
Appears in list as essential element of loop structure. May match child data name(s):
_space_group_symop_sg_id.
[space_group]

\section*{_space_group_IT_number}
(numb)
The number as assigned in International Tables for Crystallography Vol. A, specifying the proper affine class (i.e. the orientationpreserving affine class) of space groups (crystallographic spacegroup type) to which the space group belongs. This number defines the space-group type but not the coordinate system in which it is expressed.
May appear in list containing _space_group_id.
The permitted range is \(1 \rightarrow 230\).
Related item: _symmetry_Int_Tables_number (alternate). [space_group]
```

_space_group_name_H-M_alt
_space_group_name_H-M_alt allows any Hermann-Mauguin symbol to be given. The way in which this item is used is determined by the user and in general is not intended to be interpreted by computer. It may, for example, be used to give one of the extended Hermann-Mauguin symbols given in Table 4.3.2.1 of International Tables for Crystallography Vol. A (2002) or a Hermann-Mauguin symbol for a conventional or unconventional setting. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in older files. It should not be used in new CIFs. Subscripts should
appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space-group type uniquely but a given space-group type may be described by more than one Hermann-Mauguin symbol. The space-group type is best described using _space_group_rt_number. The HermannMauguin symbol may contain information on the choice of basis, but not on the choice of origin. To define the setting uniquely, use
_space_group_name_Hall or list the symmetry operations.

```
May appear in list containing _space_group_id.
Related item:_symmetry_space_group_name_H-M(alternate).
Example:
 ; loop_
 _space_group_id
 _space_group_name_H-M_alt
 'C m c m'
 'C 2/c 2/m 21/m'
 'A m a m'
 ; (three examples for space group No. 63)
```

        [space_group]
        _space_group_name_Hall
        (char)
        Space-group symbol defined by Hall. Each component of the
        space-group name is separated by a space or an underscore. The
        use of a space is strongly recommended. The underscore is only
        retained because it was used in older files. It should not be used in
        new CIFs. _space_group_name_Hall uniquely defines the space
        group and its reference to a particular coordinate system.
            References: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erra-
        tum (1981), A37, 921. [See also International Tables for Crystal-
        lography, Vol. B (2001), Chapter 1.4, Appendix 1.4.2].
        May appear in list containing _space_group_id.
        Related item: _symmetry_space_group_name_Hall (alternate).
        Examples: ‘P 2c -2ac' (equivalent to \(P c a 2_{1}\) ), '-I 4bd 2 ab 3 ' (equivalent to \(I a \overline{3} d\) ).
                            [space_group]
    
## SPACE_GROUP_SYMOP

Contains information about the symmetry operations of the space group.
Example 1 - the symmetry operations for the space group $P 2_{1} / c$.
loop_
_space_group_symop_id
_space_group_symop_operation_xyz
$x, y, z$
$-x,-y,-z$
$-x, 1 / 2+y, 1 / 2-z$
$x, 1 / 2-y, 1 / 2+z$
space_group_symop_id
An arbitrary identifier that uniquely labels each sym-
metry operation in the list. In order for the defaults
to work correctly, the identity operation should have
space_group_symop_id or _symmetry_equiv_pos_site_id
set to 1, and _space_group_symop_operation_xyz or
symmetry_equiv_pos_as_xyz set to $x, y, y$; i.e. the operation
labelled 1 should be the identity operation.
Appears in list as essential element of loop structure.
Related item: _symmetry_equiv_pos_site_id (alternate). Where no value is given,
the assumed value is ' 1 '.
[space_group_symop]

An arbitrary identifier that uniquely labels each symthe defauts space roup id or symetry equiv pos ite set to 1 , and space group symop operation $x y z$ or _symmetry_equiv_pos_as_xyz set to $x, y, z$; i.e. the operation abelled 1 should be the identity operation.

Related item: _symmetry_equiv_pos_site_id (alternate). Where no value is given, the assumed value is ' 1 '.
space group symop operation xyz
(char) $\overline{\mathrm{A}}$ parsable string giving one of the symmetry operations of the space group in algebraic form. If $W$ is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of $x, y$ and $z$, and $\mathbf{w}$ is a column of translations defined by fractions, an equivalent position $\boldsymbol{x}^{\prime}$ is generated from a given position $x$ by

$$
\boldsymbol{x}^{\prime}=W \boldsymbol{x}+\mathbf{w}
$$

When a list of symmetry operations is given, it must contain a complete set of coordinate representatives which generates all the operations of the space group by the addition of all primitive translations of the space group. Such representatives are to be found as the coordinates of the general-equivalent position in International Tables for Crystallography Vol. A (2002), to which it is necessary to add any centring translations shown above the general-equivalent position. That is to say, it is necessary to list explicitly all the symmetry operations required to generate all the atoms in the unit cell defined by the setting used. In order for the defaults to work correctly, the identity operation should have _space_group_symop_id or_symmetry_equiv_pos_site_id set to 1, and _space_group_symop_operation_xyz or symmetry_equiv_pos_as_xyz set to $x, y, z$; i.e. the operation labelled 1 should be the identity operation.
May appear in list containing _space_group_symop_id.
Related item: _symmetry_equiv_pos_as_xyz (alternate). Where no value is given, the assumed value is ' $x, y, z$ '.
Example: ' $\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$ ' (glide reflection through the plane $(x, 1 / 4, z$ ), with glide vector (1/2)c). [space_group_symop]

## space group symop sg id

(numb)
This must match a particular value of space_group_id, allowing the symmetry operation to be identified with a particular space group.
May appear in list. containing _space_group_symop_id. Must match parent data name _space_group_id. [space_group_symop]

## SYMMETRY

Data items in the SYMMETRY category record details about the space-group symmetry.
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

| _symmetry_cell_setting | orthorhombic |
| :--- | :--- |
| _symmetry_space_group_name_H-M | 'P 21 21 21' |
| _symmetry_space_group_name_Hall | 'P 2ac 2ab' |

## symmetry_cell_setting

(char)
This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_crystal_system.
The cell settings for this space-group symmetry.
The data value must be one of the following:

## triclinic

monoclinic
orthorhombic
tetragonal
rhombohedral
trigonal
hexagonal
cubic
[symmetry]

## symmetry Int Tables number

(numb)
This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_IT_number.
Space-group number from International Tables for Crystallography Vol. A (2002).
The permitted range is $1 \rightarrow 230$.
[symmetry]
symmetry space group name H-M
(char)
$\bar{T}$ This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_name_H-M_alt.
Hermann-Mauguin space-group symbol. Note that the HermannMauguin symbol does not necessarily contain complete information about the symmetry and the space-group origin. If used, always supply the full symbol from International Tables for Crystallography Vol. A (2002) and indicate the origin and the setting if it is not implicit. If there is any doubt that the equivalent positions can be uniquely deduced from this symbol, specify the _symmetry_equiv_pos_as_xyz or *_Hall data items as well. Leave spaces between symbols referring to different axes.
Examples: ' $P$ I 21/m I', ' $P 2 / n 2 / n 2 / n$ (origin at -1 )', ' $R-32 / m$ '.
[symmetry]
_symmetry_space_group_name_Hall
(char)
This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_name_Hall.
Space-group symbol as described by Hall. This symbol gives the spacegroup setting explicitly. Leave spaces between the separate components of the symbol.

Reference: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981), A37, 921.

Examples: '-P 2ac 2n', '-R 3 2"', 'P 6122 ( 0 O 0 -1)'. [symmetry]

## SYMMETRY_EQUIV

Data items in the SYMMETRY_EQUIV category list the symmetryequivalent positions for the space group.

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
loop_
_symmetry_equiv_pos_as_xyz

$$
+x,+y,+z \quad 1 / 2-x,-y, 1 / 2+z \quad 1 / 2+x, 1 / 2-y,-z \quad-x, 1 / 2+y, 1 / 2-z
$$

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

Formally, the value of symmetry equiv pos site id can be any unique character string; it is recommended that it be assigned the sequence number of the list of equivalent positions for compatibility with older files in which it did not appear
loop_
symmetry equiv pos site id
_symmetry_equiv_pos_as_xyz
$1 \quad \mathrm{x}, \mathrm{y}, \mathrm{z}$
$21 / 2-x,-y, 1 / 2+z$
$31 / 2+x, 1 / 2-y,-z$
$4-x, 1 / 2+y, 1 / 2-z$
_symmetry_equiv_pos_as_xyz
(char)
This definition has been superseded and is retained here only for archival purposes. Use instead_space_group_symop_operation_xyz.
Symmetry-equivalent position in the 'xyz' representation. Except for the space group $P 1$, these data will be repeated in a loop. The format of the data item is as per International Tables for Crystallography Vol. A. (2002). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present. In order for the defaults to work correctly, the identity operation should have _space_group_symop_idor_symmetry_equiv_pos_site_id set to 1, and _space_group_symop_operation_xyz or symmetry equiv pos as xyz set to $x, y, z$; i.e. the operation labelled 1 should be the identity operation.
May appear in list. Where no value is given, the assumed value is ' $x, y, z$ '.
Example: ' $-y+x,-y, 1 / 3+z$ '.
[symmetry_equiv]
_symmetry_equiv_pos_site_id
(numb)
$\bar{T} h i s$ definition has been superseded and is retained here only for archival purposes. Use instead _space_group_symop_id.
A code identifying each entry in the _symmetry_equiv_pos_as_xyz list. It is normally the sequence number of the entry in that list, and should be identified with the code ' $n$ ' in _geom_*_symmetry_ codes of the form ' $n$ _klm'. In order for $\overline{\text { the defaults to work correctly, the identity operation should have }}$ _space_group_symop_id or _symmetry_equiv_pos_site_id set to 1, and _space_group_symop_operation_xyz or _symmetry_equiv_pos_as_xyz set to $x, y, z ;$ i.e. the operation labelled $\overline{1}$ should be the identity operation.
Appears in list containing _symmetry_equiv_pos_as_xyz. Where no value is given, the assumed value is ' 1 '.
[symmetry_equiv]

## VALENCE_PARAM

Data items in the VALENCE_PARAM category define the parameters used for calculating bond valences from bond lengths. In addition to the parameters, a pointer is given to the reference (in VALENCE_REF) from which the bond-valence parameters were taken.

Example 1 - a bond-valence parameter list with accompanying references.
loop_
_valence_param_id
_valence_param_atom_1
_valence_param_atom_1_valence
_valence_param_atom_2
_valence_param_atom_2_valence
_valence_param_Ro
_valence_param_B
_valence_param_ref_id
_valence_param_details
Cu $20-\overline{2} 1.6790 .37 \mathrm{a}$.
$\mathrm{Cu} 20-21.6490 .37 \mathrm{j}$.
Cu $2 \mathrm{~N}-31.64 \quad 0.37 \mathrm{~m} \mathbf{\prime}^{\prime} 2$-coordinate $\mathrm{N}^{\prime}$
Cu $2 \mathrm{~N}-31.76 \quad 0.37 \mathrm{~m} \quad 3$-coordinate $\mathrm{N}^{\prime}$
loop
valence_ref_id
_valence_ref_reference
a 'Brown \& Altermatt (1985), Acta Cryst. B41, 244-247'
$j$ 'Liu \& Thorp (1993), Inorg. Chem. 32, 4102-4205'
m 'See, Krause \& Strub (1998), Inorg. Chem. 37, 5369-5375'

## valence param atom 1

(char)
$\bar{T}$ The element symbol of the first atom forming the bond whose bond-valence parameters are given in this category.
Appears in list containing _valence_param_id. [valence_param]
_valence_param_atom_1_valence
(numb)
The valence (formal charge) of the first atom whose bond-valence parameters are given in this category.
Appears in list containing _valence_param_id. [valence_param]
_valence_param_atom_2
(char)
$\bar{T}$ The element symbol of the second atom forming the bond whose bond-valence parameters are given in this category.
Appears in list containing _valence_param_id.
[valence_param]
valence param atom 2 valence (numb)
$\bar{T}$ The valence (formal charge) of the second atom whose bondvalence parameters are given in this category.
Appears in list containing _valence_param_id. [valence_param]

## valence_param_B

(numb)
The bond-valence parameter $B$ used in the expression

$$
s=\exp \left[\left(R_{o}-R\right) / B\right]
$$

where $s$ is the valence of a bond of length $R$.
Appears in list containing _valence_param_id.
[valence_param]
_valence_param_details
(char)
$\bar{D}$ etails of or comments on the bond-valence parameters.
Appears in list containing _valence_param_id.
[valence_param]
_valence_param_id
(char)
$\bar{A} \mathrm{n}$ identifier for the valence parameters of a bond between the given atoms.
Appears in list.
[valence_param]
_valence_param_ref_id
(char)
An identifier which links to the reference to the source from which the bond-valence parameters are taken. A child of _valence_ref_id, which it must match.
Appears in list containing _valence_param_id. Must match parent data name
_valence_ref_id. [valence_param]
_valence_param_Ro
(numb)
The bond-valence parameter $R_{o}$ used in the expression

$$
s=\exp \left[\left(R_{o}-R\right) / B\right]
$$

where $s$ is the valence of a bond of length $R$.
Appears in list containing _valence_param_id.
[valence_param]

## VALENCE_REF

Data items in the VALENCE_REF category list the references from which the bond-valence parameters have been taken.
_valence_ref_id
(char)
An identifier for items in this category. Parent of _valence_ param_ref_id, which must have the same value.
Appears in list containing _valence_ref_id. May match child data name(s):
_valence_param_ref_id. [valence_ref]
valence_ref_reference
(char)
Literature reference from which the valence parameters identified by _valence_param_id were taken.
Appears in list containing _valence_ref_id. [valence_ref]


[^0]:    Affiliations: Sydney R. Hall, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Perth, WA 6009, Australia; Frank H. Allen, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, England; I. David Brown, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1.

[^1]:    Appears in list containing _atom_site_aniso_label.
    Related item: _atom_site_aniso_B_(conversion).

[^2]:    _atom_sites_Cartn_transform_axes
    (char)
    A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix _atom_sites_Cartn_tran_matrix_.
    Example: 'a parallel to $x ; b$ in the plane of $y$ and $z$ '.

[^3]:    _chemical_name_systematic
    (char)
    $\overline{\text { IUPAC }}$ or Chemical Abstracts full name of the compound.
    Example: '1-bromoestra-1,3,5(10)-triene-3,17\b-diol'. [chemical]

[^4]:    _chemical_formula_analytical
    (char)
    Formula determined by standard chemical analysis including trace elements. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. Parentheses are used only for standard uncertainties (e.s.d.'s).

