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In February 2002 the Board of Directors of the Object Management Group (OMG) voted to 
approve the Macromolecular Structure Corba specification developed under the auspices of the 
Life Sciences Research (LSR) task force.  This Corba specification [1] provides an open, 
standardized object-oriented interface that allows fast and efficient remote access to binary data 
structures containing macromolecular structure data. While at first glance the large size and 
complexity of this Application Programming Interface (API) may seem intimidating, once the 
basic principles and core classes are understood, it is relatively simple to write programs with 
the easy-to-use interface. This paper introduces the fundamental concepts and provides some 
simple program fragments to illustrate the how the API can be used in developing client 
applications that can quickly access the rich and extensive set of available data. 
 
The Research Collaboratory for Structural Bioinformatics, which manages the Protein Data 
Bank (PDB) [2] will support Corba, XML and Relational Database representations of 
Macromolecular Structure (MMS) data that have been designed to address the needs of a wide 
range of applications. These include many types of services and high performance programs that 
require high-speed access to molecular structure information.  The Java source code that 
implements an OMG/LSR compliant Corba server is publicly available as part of the OpenMMS 
toolkit [3][4].  The OpenMMS toolkit also includes a relational database loader and XML 
converter.  A second implementation of a compliant Corba server written in C++ is currently 
under development at Rutgers University. 
 
The Corba interface, the relational database Structured Query Language (SQL) schema and the 
XML representations all use the same terminology definitions and interrelationships defined by 
a standard scientific ontology developed under the auspices of the International Union of 
Crystallography (IUCr).  This ontology known as the macromolecular Crystallographic 
Information File (mmCIF) standard [5][6][7] includes both data files and several dictionaries, 
which define thousands of scientific terms and their attributes. While the amount of existing 
software that uses the legacy PDB formatted files is so extensive as to insure that this format 
will never go away, new applications can greatly benefit from the more precise and more 
extensive mmCIF standard. 
 
The standard representation that ties together the Corba, XML and SQL expressions of the MMS 
data is the set of mmCIF flat files. Any errors or discrepancies in the expressed forms are 
resolved by consulting these reference files.  A very high quality set of “native” mmCIF files for 
entire PDB contents is now available at the RCSB beta ftp site [8]. These new files are distinct 
from the mmCIF files translated from the legacy PDB files by the software tool, pdb2cif.  The 
new API and supporting software tools described here should only be applied to the new beta set 
of mmCIF data. 
 
The overall view illustrating the MMS dataflow is shown in Figure 1. Among the four methods for 
accessing MMS data shown in the figure, the mmCIF parsers are the most general purpose and 
also provide the lowest level and most detailed access to the underlying data. XML files provide 
a simple and powerful method for interchanging MMS data in a widely used and understood 



 

 

format. However because of the open and close tags, the XML files tend to be many times larger 
than the corresponding mmCIF files. Also shown in this figure is a SQL-92 compatible relational 
database, which provides an appropriate interface for many applications, particularly ones that 
require extensive string searches. 
 
The delivery of data from a Corba server to client applications, show in figure 1 with thick 
outlines, potentially provides the highest performance access to MMS data. The object-oriented 
interface is used to define structures independent of platform and programming language, and 
yet may be optimized to copy binary data quickly and efficiently across the network. When 
reading the XML or mmCIF flat files, users are required to retrieve and parse the complete file in 
order to use even a small portion of it. However the Corba and SQL interfaces provide granular 
access, which allows client applications to quickly retrieve only a single small data element from 
the server. 

The OpenMMS toolkit contains two Corba servers, which correspond to two data paths shown in 
figure 1: a “Reference” server that reads the data from the mmCIF flat files and a much faster 
“DB” server that reads the data from a relational database. The C++ MMS server also reads data 
from a relational database.  Since in practice, some structures are accessed much more often 
that others, and some types of data are read more often than others, a Corba server can gain 
significant performance improvements by the appropriate caching of commonly read data. 
 
Cobra’s Portable Object Adaptor (POA) manages association of objects and object references.  It 
comes with a POA manager, and allows for various policies to enable efficient implementation of 
object invocations, including creating objects and starting servers on demand.  The POA may 
contain an active object map and do other forms of memory management transparently, 
allowing the architect to specify a range of behaviors and memory/space tradeoffs with a list of 
high-level policies[9]. The POA and Corba services allow for persistent and relocatable objects, 
load-balancing and other infrastructural support for high efficiency and availability. 
 
Data Model 
An Entry, which represents a molecular structure, is the central object in the data model.  An 
Entry usually corresponds to the contents of a single PDB file (or an XML or mmCIF file). In the 
Corba API, the Entry object is used to retrieve information about the structure such as the 

Figure 1. Dataflow through derived Expressions of the mmCIF Data 
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residue sequence or atom locations. An Entry object for a particular Structure ID e.g. “4HHB” 
can be obtained from a Corba EntryFactory as shown in the example code in the next section.  
 
The mmCIF ontology defines information about an Entry using an Entity-Relationship model 
[10][11]. While there are several hundred tables containing several thousand scientific terms 
defined in the mmCIF ontology, only a few of these, including those listed in Table 1 are 
required inorder to describe molecular structure.  The first column of Table 1 lists the name 
used by mmCIF and the MMS API. In general, names that begin with Entity describe essential 
biological and chemical features that are known before a structure determination experiment is 
performed. Names that begin with Struct denote information determined during the experiment 
(the AtomSite table is also in this group). Both of these groups are contained in the “Core” MMS 
API module DsLSRMacromolecularStructure. Separate modules are used to store the details 
of the X-Ray Crystallography experiment and information about citations and bibliographic 
references regarding a particular structure. A new module that will contain information about 
Nuclear Magnetic Resonance (NMR) experiments is under development. 
 
 

mmCIF Category / 
SQL Table Name / 
Corba Struct Name 

Common 
Designation 

Description 

AtomSite Atoms List of all atoms in an Entry with their atomic 
coordinates. One atom per row. 

Entity Molecule 
“Classes” 

List of molecular entities, each having a 
unique sequence or chemical formula that are 
contained in this particular Entry. 

StructAsym “Instances” of 
Molecules 

List of molecular entities contained in the 
asymmetric unit as determined during the 
experiment. A particular Entity may appear in 
this list multiple times. 

StructBiolGen “Instances” of 
Biomolecules. 

List of molecules comprising a functional 
biological assembly. A particular Entity may 
appear in this list multiple times. 

ChemComp Residue types List of unique monomers or ligands contained 
in the structure. E.g. Glycine, Tyrosine... 

ChemCompAtom Residue atom 
types 

E.g. alpha carbon, gamma carbon, ... 

EntityPolySeq Residue 
sequence 

Actual sequence of monomers that make up a 
particular polymer Entity. 

StructConf Alpha helices 
and turns 

List of structural confirmations that include 
helices and turns  

StructSheet and 
StructSheetOrder 

Beta sheets Lists of beta sheets and their ordering 

 
Although our primary focus here is the Corba API, the same model applies to the XML, mmCIF 
and relational database representations. In a relational database, the information about an Entry 
is stored in a collection of tables. In mmCIF the tables are called “Categories” and the table 
columns are called “Items”.  Within an mmCIF file, the “_loop” construct is used to represent 
tables with more that one row. In the Corba specification each table corresponds to a specific type 
of data structure. An instance of type X represents a single data structure of that type, which in a 
relational database would correspond to a single row of table X. The columns of the table 
correspond to specific fields in the data structure. Tables with more than one row correspond to 



 

 

Arrays of structures of that type. If in the relational database representation a table has N rows 
then in a Corba representation the Array will have N elements. The Corba Interface Definition 
Language (IDL) construct “sequence<X>” is used to specify the abstract type representing an 
array of type X. This construct compiles to actual objects of type X[] (array of X) in Java and 
C/C++. For details on individual categories the complete set of Java Documentation for the API is 
available online [12], as are the mmCIF dictionaries [7]. 
 
Program Examples 
A primary requirement of the design was that it present an interface that was clearly defined 
and easy to use from the point of view of developing new applications. The code examples in this 
section illustrate how client programs can use the API to quickly access macromolecular 
structure data. For the sake of brevity, many details such as exception handling, error checking 
and some of the required declarations have been left out. A compete test client application, 
TxClient.java, is included with the OpenMMS software. 
 
A single instance of the AtomSite structure stores the Cartesian coordinates and other 
information about an atom just as a single ATOM record does in this legacy PDB format. The 
complete list (an IDL sequence) of all atoms in a macromolecular structure is returned by 
invoking the get_atom_site_list() method on an instance of the Entry interface object.  As a 
simple example the following Java code fragment will print out the atom identifier, atom type 
and the Cartesian (x, y, z) position for all atoms in the macromolecule 4hhb. 
 
Example 1. Retrieving the AtomSite list for hemoglobin (4HHB) and printing the atomic coordinates. 
  
Entry e = entryFactory.get_entry_from_id("4hhb"); 
AtomSite[] a = e.get_atom_site_list(); 
for (int i = 0; i < a.length; i++)  { 
    System.out.println(a[i].id + " " + a[i].type_symbol.id  
        + " (" + a[i].cartn.x + ", " + a[i].cartn.y  
        + ", " + a[i].cartn.z + ")"); 
    } 
 
Here is an excerpt of the output produced by the code in Example 1: 
... 
6 C (7.002, 20.127, 5.418) 
7 C (5.246, 18.533, 5.681) 
8 N (9.096, 18.040, 3.857) 
9 C (10.60, 17.889, 4.283) 
... 
 
Note that in the Example 1 code fragment above, only the first two lines are required to retrieve 
a reference to an instance of a "4HHB". The first line fetches an Entry object corresponding to 
hemoglobin (4hhb) using the EntryFactory method get_entry_from_id(). 
The second line then uses this Entry reference (stored in the variable “e”) to obtain the complete 
list of atomic coordinates using the method get_atom_site_list(). Once a program has a 
Corba EntryFactory object, it can execute these two lines over and over to quickly obtain the 
atomic coordinates (in IEEE floating point format) for any structure in the PDB. 
  
The following example shows a program that lists all of the alpha helices in the structure 4HHB 
and for each helix lists all of the residues that it comprises. The first line in the Example 2 
program fragment obtains an Entry object as above. The three following lines fetch the 
StructConf, EntryPolySeq and ChemComp arrays from the server. The program then iterates 
through the entire list of structure confirmations and for each one lists all of the residues it 
contains. Note that the StructConf table may contain other information such as “TURNs” but 
information about beta sheets is contained in a separate table since it is useful to build a 
related table expressing the beta sheet connectivity. 
 
Example 2. Listing the residues contained in all of the hemoglobin (4HHB) alpha helices.  
 
Entry e = entryFactory.get_entry_from_id("4hhb"); 
... 
StructConf[] scf = e.get_struct_conf_list(); 
EntityPolySeq[] eps = e.get_entity_poly_seq_list(); 



 

 

ChemComp[] cc = e.get_chem_comp_list(); 
for (int j = 0; j < scf.length; j++) { 
    System.out.println("Structure Conformation " + scf[j].id 
        + " in chain " + scf[j].beg_label.asym.id + " contains:"); 
    int start = scf[j].beg_label.seq.index; 
    int end = scf[j].end_label.seq.index; 
    for (int i = start; i <= end; i++) { 
        System.out.println("    Monomer: " + cc[eps[i].mon.index].name 
            + " (" + eps[i].mon.id + ") at position " + eps[i].num); 
    } 
} 
 
The actual output of this program is quite long since there are 32 alpha helices in 4HHB. Below 
is a small excerpt of the printout for Helix 24 (i.e. when j = 23 in the Example 2 code fragment 
above): 
 
... 
Structure Conformation HELX_P24 in chain C contains: 
    Monomer: THREONINE (THR) at position 118 
    Monomer: PROLINE (PRO) at position 119 
    Monomer: ALANINE (ALA) at position 120 
    Monomer: VALINE (VAL) at position 121 
    Monomer: HISTIDINE (HIS) at position 122 
    Monomer: ALANINE (ALA) at position 123 
    Monomer: SERINE (SER) at position 124 
... 
 
Unfortunately, a paper of this size can only provide a brief glimpse into the content and 
functionality of this API. For more in-depth information the reader is encouraged to consult the 
online references listed below. 
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