

Fast Access to Big Molecules:
An Introduction to the OMG/LSR Macromolecular Structure API

Douglas S. Greer
University of California, San Diego

Alexy Khrabrov
Rutgers University

Philip E. Bourne
University of California, San Diego

John D. Westbrook
Rutgers University

In February 2002 the Board of Directors of the Object Management Group (OMG) voted to
approve the Macromolecular Structure Corba specification developed under the auspices of the
Life Sciences Research (LSR) task force. This Corba specification [1] provides an open,
standardized object-oriented interface that allows fast and efficient remote access to binary data
structures containing macromolecular structure data. While at first glance the large size and
complexity of this Application Programming Interface (API) may seem intimidating, once the
basic principles and core classes are understood, it is relatively simple to write programs with
the easy-to-use interface. This paper introduces the fundamental concepts and provides some
simple program fragments to illustrate the how the API can be used in developing client
applications that can quickly access the rich and extensive set of available data.

The Research Collaboratory for Structural Bioinformatics, which manages the Protein Data
Bank (PDB) [2] will support Corba, XML and Relational Database representations of
Macromolecular Structure (MMS) data that have been designed to address the needs of a wide
range of applications. These include many types of services and high performance programs that
require high-speed access to molecular structure information. The Java source code that
implements an OMG/LSR compliant Corba server is publicly available as part of the OpenMMS
toolkit [3][4]. The OpenMMS toolkit also includes a relational database loader and XML
converter. A second implementation of a compliant Corba server written in C++ is currently
under development at Rutgers University.

The Corba interface, the relational database Structured Query Language (SQL) schema and the
XML representations all use the same terminology definitions and interrelationships defined by
a standard scientific ontology developed under the auspices of the International Union of
Crystallography (IUCr). This ontology known as the macromolecular Crystallographic
Information File (mmCIF) standard [5][6][7] includes both data files and several dictionaries,
which define thousands of scientific terms and their attributes. While the amount of existing
software that uses the legacy PDB formatted files is so extensive as to insure that this format
will never go away, new applications can greatly benefit from the more precise and more
extensive mmCIF standard.

The standard representation that ties together the Corba, XML and SQL expressions of the MMS
data is the set of mmCIF flat files. Any errors or discrepancies in the expressed forms are
resolved by consulting these reference files. A very high quality set of “native” mmCIF files for
entire PDB contents is now available at the RCSB beta ftp site [8]. These new files are distinct
from the mmCIF files translated from the legacy PDB files by the software tool, pdb2cif. The
new API and supporting software tools described here should only be applied to the new beta set
of mmCIF data.

The overall view illustrating the MMS dataflow is shown in Figure 1. Among the four methods for
accessing MMS data shown in the figure, the mmCIF parsers are the most general purpose and
also provide the lowest level and most detailed access to the underlying data. XML files provide
a simple and powerful method for interchanging MMS data in a widely used and understood

format. However because of the open and close tags, the XML files tend to be many times larger
than the corresponding mmCIF files. Also shown in this figure is a SQL-92 compatible relational
database, which provides an appropriate interface for many applications, particularly ones that
require extensive string searches.

The delivery of data from a Corba server to client applications, show in figure 1 with thick
outlines, potentially provides the highest performance access to MMS data. The object-oriented
interface is used to define structures independent of platform and programming language, and
yet may be optimized to copy binary data quickly and efficiently across the network. When
reading the XML or mmCIF flat files, users are required to retrieve and parse the complete file in
order to use even a small portion of it. However the Corba and SQL interfaces provide granular
access, which allows client applications to quickly retrieve only a single small data element from
the server.

The OpenMMS toolkit contains two Corba servers, which correspond to two data paths shown in
figure 1: a “Reference” server that reads the data from the mmCIF flat files and a much faster
“DB” server that reads the data from a relational database. The C++ MMS server also reads data
from a relational database. Since in practice, some structures are accessed much more often
that others, and some types of data are read more often than others, a Corba server can gain
significant performance improvements by the appropriate caching of commonly read data.

Cobra’s Portable Object Adaptor (POA) manages association of objects and object references. It
comes with a POA manager, and allows for various policies to enable efficient implementation of
object invocations, including creating objects and starting servers on demand. The POA may
contain an active object map and do other forms of memory management transparently,
allowing the architect to specify a range of behaviors and memory/space tradeoffs with a list of
high-level policies[9]. The POA and Corba services allow for persistent and relocatable objects,
load-balancing and other infrastructural support for high efficiency and availability.

Data Model
An Entry, which represents a molecular structure, is the central object in the data model. An
Entry usually corresponds to the contents of a single PDB file (or an XML or mmCIF file). In the
Corba API, the Entry object is used to retrieve information about the structure such as the

Figure 1. Dataflow through derived Expressions of the mmCIF Data

A
p
p
l
i
c
a
t
i
o
n
s

mmCIF
Data Files

(Reference Standard)

CORBA
Server

Relational
Database

mmCIF
Parsers

XML Files

residue sequence or atom locations. An Entry object for a particular Structure ID e.g. “4HHB”
can be obtained from a Corba EntryFactory as shown in the example code in the next section.

The mmCIF ontology defines information about an Entry using an Entity-Relationship model
[10][11]. While there are several hundred tables containing several thousand scientific terms
defined in the mmCIF ontology, only a few of these, including those listed in Table 1 are
required inorder to describe molecular structure. The first column of Table 1 lists the name
used by mmCIF and the MMS API. In general, names that begin with Entity describe essential
biological and chemical features that are known before a structure determination experiment is
performed. Names that begin with Struct denote information determined during the experiment
(the AtomSite table is also in this group). Both of these groups are contained in the “Core” MMS
API module DsLSRMacromolecularStructure. Separate modules are used to store the details
of the X-Ray Crystallography experiment and information about citations and bibliographic
references regarding a particular structure. A new module that will contain information about
Nuclear Magnetic Resonance (NMR) experiments is under development.

mmCIF Category /
SQL Table Name /
Corba Struct Name

Common
Designation

Description

AtomSite Atoms List of all atoms in an Entry with their atomic
coordinates. One atom per row.

Entity Molecule
“Classes”

List of molecular entities, each having a
unique sequence or chemical formula that are
contained in this particular Entry.

StructAsym “Instances” of
Molecules

List of molecular entities contained in the
asymmetric unit as determined during the
experiment. A particular Entity may appear in
this list multiple times.

StructBiolGen “Instances” of
Biomolecules.

List of molecules comprising a functional
biological assembly. A particular Entity may
appear in this list multiple times.

ChemComp Residue types List of unique monomers or ligands contained
in the structure. E.g. Glycine, Tyrosine...

ChemCompAtom Residue atom
types

E.g. alpha carbon, gamma carbon, ...

EntityPolySeq Residue
sequence

Actual sequence of monomers that make up a
particular polymer Entity.

StructConf Alpha helices
and turns

List of structural confirmations that include
helices and turns

StructSheet and
StructSheetOrder

Beta sheets Lists of beta sheets and their ordering

Although our primary focus here is the Corba API, the same model applies to the XML, mmCIF
and relational database representations. In a relational database, the information about an Entry
is stored in a collection of tables. In mmCIF the tables are called “Categories” and the table
columns are called “Items”. Within an mmCIF file, the “_loop” construct is used to represent
tables with more that one row. In the Corba specification each table corresponds to a specific type
of data structure. An instance of type X represents a single data structure of that type, which in a
relational database would correspond to a single row of table X. The columns of the table
correspond to specific fields in the data structure. Tables with more than one row correspond to

Arrays of structures of that type. If in the relational database representation a table has N rows
then in a Corba representation the Array will have N elements. The Corba Interface Definition
Language (IDL) construct “sequence<X>” is used to specify the abstract type representing an
array of type X. This construct compiles to actual objects of type X[] (array of X) in Java and
C/C++. For details on individual categories the complete set of Java Documentation for the API is
available online [12], as are the mmCIF dictionaries [7].

Program Examples
A primary requirement of the design was that it present an interface that was clearly defined
and easy to use from the point of view of developing new applications. The code examples in this
section illustrate how client programs can use the API to quickly access macromolecular
structure data. For the sake of brevity, many details such as exception handling, error checking
and some of the required declarations have been left out. A compete test client application,
TxClient.java, is included with the OpenMMS software.

A single instance of the AtomSite structure stores the Cartesian coordinates and other
information about an atom just as a single ATOM record does in this legacy PDB format. The
complete list (an IDL sequence) of all atoms in a macromolecular structure is returned by
invoking the get_atom_site_list() method on an instance of the Entry interface object. As a
simple example the following Java code fragment will print out the atom identifier, atom type
and the Cartesian (x, y, z) position for all atoms in the macromolecule 4hhb.

Example 1. Retrieving the AtomSite list for hemoglobin (4HHB) and printing the atomic coordinates.

Entry e = entryFactory.get_entry_from_id("4hhb");
AtomSite[] a = e.get_atom_site_list();
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i].id + " " + a[i].type_symbol.id
 + " (" + a[i].cartn.x + ", " + a[i].cartn.y
 + ", " + a[i].cartn.z + ")");
 }

Here is an excerpt of the output produced by the code in Example 1:
...
6 C (7.002, 20.127, 5.418)
7 C (5.246, 18.533, 5.681)
8 N (9.096, 18.040, 3.857)
9 C (10.60, 17.889, 4.283)
...

Note that in the Example 1 code fragment above, only the first two lines are required to retrieve
a reference to an instance of a "4HHB". The first line fetches an Entry object corresponding to
hemoglobin (4hhb) using the EntryFactory method get_entry_from_id().
The second line then uses this Entry reference (stored in the variable “e”) to obtain the complete
list of atomic coordinates using the method get_atom_site_list(). Once a program has a
Corba EntryFactory object, it can execute these two lines over and over to quickly obtain the
atomic coordinates (in IEEE floating point format) for any structure in the PDB.

The following example shows a program that lists all of the alpha helices in the structure 4HHB
and for each helix lists all of the residues that it comprises. The first line in the Example 2
program fragment obtains an Entry object as above. The three following lines fetch the
StructConf, EntryPolySeq and ChemComp arrays from the server. The program then iterates
through the entire list of structure confirmations and for each one lists all of the residues it
contains. Note that the StructConf table may contain other information such as “TURNs” but
information about beta sheets is contained in a separate table since it is useful to build a
related table expressing the beta sheet connectivity.

Example 2. Listing the residues contained in all of the hemoglobin (4HHB) alpha helices.

Entry e = entryFactory.get_entry_from_id("4hhb");
...
StructConf[] scf = e.get_struct_conf_list();
EntityPolySeq[] eps = e.get_entity_poly_seq_list();

ChemComp[] cc = e.get_chem_comp_list();
for (int j = 0; j < scf.length; j++) {
 System.out.println("Structure Conformation " + scf[j].id
 + " in chain " + scf[j].beg_label.asym.id + " contains:");
 int start = scf[j].beg_label.seq.index;
 int end = scf[j].end_label.seq.index;
 for (int i = start; i <= end; i++) {
 System.out.println(" Monomer: " + cc[eps[i].mon.index].name
 + " (" + eps[i].mon.id + ") at position " + eps[i].num);
 }
}

The actual output of this program is quite long since there are 32 alpha helices in 4HHB. Below
is a small excerpt of the printout for Helix 24 (i.e. when j = 23 in the Example 2 code fragment
above):

...
Structure Conformation HELX_P24 in chain C contains:
 Monomer: THREONINE (THR) at position 118
 Monomer: PROLINE (PRO) at position 119
 Monomer: ALANINE (ALA) at position 120
 Monomer: VALINE (VAL) at position 121
 Monomer: HISTIDINE (HIS) at position 122
 Monomer: ALANINE (ALA) at position 123
 Monomer: SERINE (SER) at position 124
...

Unfortunately, a paper of this size can only provide a brief glimpse into the content and
functionality of this API. For more in-depth information the reader is encouraged to consult the
online references listed below.

Acknowledgements
This work has been supported by the Protein Data Bank (PDB) and National Partnership for
Advanced Computing Infrastructure (NPACI). The Protein Data Bank (PDB) is operated by
Rutgers, The State University of New Jersey; the San Diego Supercomputer Center at the
University of California, San Diego; and the National Institute of Standards and Technology –
three members of the Research Collaboratory for Structural Bioinformatics (RCSB). This work is
supported by grants from the National Science Foundation, the Department of Energy, and two
units of the National Institutes of Health: the National Institute of General Medical Sciences and
the National Library of Medicine.

References

1. http://www.omg.org/technology/documents/formal/macro_molecular.htm
2. H.M. Berman, J.D. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.

Shindyalov, and P.E. Bourne, (2000) The Protein Data Bank. Nucleic Acid Research 28(1),
235-242.

3. http://openmms.sdsc.edu
4. D.S. Greer, J.D. Westbrook and P.E. Bourne, (2002) An Ontology Driven Architecture for

Derived Representations of Macromolecular Structure, Bioinformatics 18(9): 1280
5. J.D. Westbrook and P.E. Bourne, (2000) STAR/mmCIF: An Extensive Ontology for

Macromolecular Structure and Beyond. Bioinformatics 16(2) 159-168
6. P.E. Bourne, H.M. Berman, B. McMahon, K. Watenpaugh, J. Westbrook. and P.M.D.

Fitzgerald, (1997) The Macromolecular CIF Dictionary. Methods in Enzymology. 1997
227, 571-590.

7. http://pdb.rutgers.edu/mmcif
8. ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/divided/
9. M. Henning, S. Vinoski, Advanced CORBA Programming with C++ Addison-Wesley, 1999
10. T.M. Connolly, C.E. Begg, A.D. Strachan, Database Systems, A Practical Approach to

Design, Implementation and Management. Addison-Wesley, 1995
11. C. J. Date, An Introduction to Database Systems. Addison-Wesley, 1981
12. http://openmms.sdsc.edu/OpenMMS-1.2.8_LSR-1.0/openmms/docs/api/index.html

Authors Contact Address
 Douglas S. Greer
 San Diego Supercomputer Center
 University of California, San Diego
 9500 Gilman Drive
 La Jolla, CA, 92093-0527, USA
 Email: dsg@sdsc.edu

