
Programming with PyCIFRW and
PySTARRW

April 1, 2009

PyCIFRW provides facilities for reading, manipulating and writing CIF and
STAR files. In addition, CIF files and dictionaries may be validated against
DDL1/2 dictionaries.

1 Installing and Initialising PyCIFRW

Assuming python is installed, you can unpack the distribution into a tempo-
rary directory, and then type “python setup.py install” from within this
temporary directory. Upon completion of this command, a number files will
have been placed into the system python packages directory: CifFile.py,
StarFile.py, yapps compiled rt.py and YappsStarParser xx.py.
It is then sufficient to import CifFile.py into your python session or script
to access all PyCIFRW functionality:

>>> import CifFile

2 Working with CIF files

2.1 Creating a CifFile object

CIF files are represented in PyCIFRW as CifFile objects. These objects be-
have identically to Python dictionaries, with some additional methods. CifFile
objects can be created by calling the ReadCif function on a filename or URL:

>>> cf = CifFile.ReadCif("mycif.cif")
>>> df = CifFile.ReadCif("ftp://ftp.iucr.org/pub/cifdics/cifdic.register")

Errors are raised if CIF syntax/grammar violations are encountered in the in-
put file or line length limits are exceeded.

A compiled extension (StarScan.so) is available on Linux which increases
parsing speed by a factor of three or more. To use this facility, include the key-
word argument scantype=’flex’ in ReadCif/ReadStar commands:

cf = CifFile.ReadCif("mycif.cif",scantype="flex")

1



2.1.1 Grammar options

There are two slightly different variations in CIF file syntax. An early version of
the standard allowed non-quoted data strings to begin with bracket characters
(e.g. ’(’). This was disallowed in version 1.1 in order to reserve such usage for
the upcoming DDLm changes. A very few CIF files are produced according to
the old standard. Specification of the particular version to use is possible with
the grammar keyword:

cf = CifFile.ReadCif(’oldcif.cif’,grammar=’1.0’) #oldest CIF syntax
cf = CifFile.ReadCif(’normcif.cif’,grammar=’1.1’) #current standard (default)
cf = CifFile.ReadCif(’future.cif’,grammar=’DDLm’) #proposed standard

Note that the DDLm syntax has not been finalised and is subject to change. The
most important syntactical addition in DDLm is the use of nested, bracketed
tuple and list expressions, as in Python. The implementation in PyCIFRW is
one interpretation of the draft documentation.

2.1.2 Creating a new CifFile

A new CifFile object is usually created empty:

cf = CifFile.CifFile()

You will need to create at least one CifBlock object to hold your data:

myblock = CifFile.CifBlock()
cf[’a block’] = myblock

A CifBlock object may be initialised with another CifBlock, in which case
a copy operation is performed, or with a tuple or list of tuples containing key,
value pairs. These are inserted into the new CifBlock using AddCifItem
(see below).

2.2 Manipulating values in a CIF file

2.2.1 Accessing data

The simplest form of access is using standard Python square bracket notation.
Data blocks and data names within each data block are referenced identically
to normal Python dictionaries:

my data = cf[’a data block’][’ a data name’]

All values are strings with CIF syntactical elements stripped, that is, no en-
closing quotation marks or semicolons are included in the values. The value
associated with a CifFile dictionary key is always a CifBlock object. All

2



standard Python dictionary methods (e.g. get, update, items, keys)
are available for both CifFile and CifBlock objects. Note also the conve-
nience method first block, which will reference the first datablock in a CIF
file:

my data = cf.first block()

If a data name occurs in a loop, a list of string values is returned for the value
of that dataname - the next section describes ways to access looped data.

2.2.2 Tabular (“looped”) data

For the purpose of the following examples, we use the following example CIF
file:

data testblock
loop

item 5
item 7
item 6
1 a 5
2 b 6
3 c 7
4 d 8

PyCIFRW provides a shortcut to return all values taken by a particular dataname
inside a CIF loop (by using the square bracket notation, identically to non-
looped data), but more flexibility is provided by accessing CifLoopBlock ob-
jects.

A CifLoopBlock object can be obtained by calling CifBlock method
GetLoop(dataname). This object provides the same methods as a CifBlock.
For example, keys() returns a list of datanames in the loop. Additionally,
loop packets can be accessed by accessing the nth value in the CifLoopBlock
object1, and values can be obtained from these packets as attributes:

>>> lb = cb.GetLoop(" item 5")
>>> lb[0]
[’1’, ’a’, ’5’]
>>> lb[0]. item 7
’a’

An alternative way of accessing loop data uses Python iterators, allowing the
following syntax:

>>> for a in lb: print ‘a[" item 7"]‘
’a’ ’b’ ’c’ ’d’

1Warning: row order in a CIF loop is arbitrary; while PyCIFRW maintains the row order in the input
file, there is nothing in the CIF standards which mandates this behaviour.

3



Note that in both the above examples the row packet is a copy of the looped
data, and therefore changes to it will not alter the data read from the CIF file,
unlike the lists returned when column-based access is used.

2.2.3 Key-based table row access (new in 3.2)

Rather than relying on a particular row ordering (remembering that row order
is not significant in CIF, unlike, for example, XML) or iterating through all
rows looking for a particular row, it is possible to refer to a particular row
based on the values taken by a given data item, using the CifLoopBlock
’GetKeyedPacket’ method:

>>> myrow = lb.GetKeyedPacket(’ item 7’,’c’)
>>> myrow. item 5
’3’

In this example, the first packet with a value of ’c’ for item 7 is returned, and
packet values can then be accessed using the dataname as an attribute of the
packet. Note that a KeyError is raised if more than one packet matches, or no
packets match, and that the packet returned is a copy of the data read in from
the file, and therefore can be changed without affecting the data that was read
in.

2.2.4 Changing or adding data values

If many operations are going to be performed on a single data block, it is con-
venient to assign that block to a new variable:

cb = cf[’my block’]

A new data name and value may be added, or the value of an existing name
changed, by straight assignment:

cb[’ new data name’] = 4.5
cb[’ old data name’] = ’cucumber’

Old values are overwritten silently. Note that values may be strings or num-
bers.

If a list is given as the value instead of a single string or number, a new loop
is created containing this one data name, looped. If this data name already
appeared in a loop, any looped data values which may have co-occurred in
the loop are deleted. As this is not necessarily the desired behaviour, you may
wish to access the loop block using the GetLoop method described above.

Alternatively, the AddCifItemmethod can be used to add multiple looped
and unlooped data items in a single command. AddCifItem is called with
a 2-element tuple argument. The first element of the tuple is either a single
dataname, or a list or tuple of datanames. The second element is either a single

4



value (in the case of a single name in the first element) or a list, each element
of which is a list of values taken by the corresponding dataname in the first
element. A nested tuple of datanames in the first element together with the
corresponding nested tuple of lists in the second element will become a loop
block in the Cif file. In general, however, it will be less confusing to create a
CifLoopBlock object, populate it with data items, and then insert it into a
CifBlock object (see below).

Another method, AddToLoop(dataname,newdata), adds newdata to
the pre-existing loop containing dataname, silently overwriting duplicate data.
Newdata should be a Python dictionary of dataname - datavalue pairs, with
datavalue a list of new/replacement values.

Note that lists (and other listlike objects except packets) returned by Py-
CIFRW actually represent the list currently inside the CifBlock, and therefore
any modification to them will modify the stored list. While this is often the
desired behaviour, if you intend to manipulate such a list in other parts of your
program while preserving the original CIF information, you should first copy
the list to avoid destroying the loop structure:

mysym = cb[’ symmetry ops’][:]
mysym.append(’x-1/2,y+1/2,z’)

Changing item order The ChangeItemOrder method allows the order in
which data items appear in the printed file to be changed:

mycif[’testblock’].ChangeItemOrder(’ item 5’,0)

will move item 5 to the beginning of the datablock. When changing the order
inside a loop block, the loop block’s method must be called i.e.:

aloop = mycif[’testblock’].GetLoop(’ loop item 1’)
aloop.ChangeItemOrder(’ loop item 1’,4)

Note also that the position of a loop within the file can be changed in this way
as well, simply by passing the CifLoopBlock object as the first argument:

mycif[’testblock’].ChangeItemOrder(aloop,0)
will move the loop block to the beginning of the printed datablock.

2.2.5 Adding and removing table rows (new in 3.2)

It is possible to add a new row into a loop using AddPacket(packet):

template = aloop.GetKeyedPacket(’ item 7’,’d’)
template. item 5 = ’5’
template. item 7 = ’e’
template. item 6 = ’9’
aloop.AddPacket(template)

5



Note we use an existing packet as a template in this example. If you wish to
create a packet from scratch, you should instantiate a StarPacket:

import StarFile #installed with PyCIFRW
newpack = StarFile.StarPacket()
newpack. item 5 = ’5’
...
aloop.AddPacket(newpack)

Note that an error will be raised if the packet attributes do not exactly match
the item names in the loop.

A packet may be removed using the RemoveKeyedPacket method:

aloop.RemoveKeyedPacket(’ item 7’,’a’)

Examples using loops Note the above methods for adding, accessing and
removing rows in pre-existing loops. The following examples show how to
perform column-based access.

Adding/replacing a single item with looped values:

cb[’ symmetry’] = [’x,y,z’,’-x,-y,-z’,’x+1/2,y,z’]

results in an output fragment

loop
symmetry
x,y,z
-x,-y,-z
x+1/2,y,z

Adding a complete loop:

cb.AddCifItem(([[’ example’,’ example detail’]],
[[[’123.4’,’4567.8’],
[’small cell’,’large cell’]]]))

results in an output fragment:

loop
example
example detail
123.4 ’small cell’
4567.8 ’large cell’

6



Appending a new dataname to a pre-existing loop:

cb.AddToLoop(
’ example’,{’ comment’:["not that small","Big and beautiful"]}

)

changes the previous output to be

loop
example
example detail
comment
123.4 ’small cell’ ’not that small’
4567.8 ’large cell’ ’Big and beautiful’

Changing pre-existing data in a loop:

cb.AddToLoop(’ comment’,{’ example’:[’12.2’,’12004’]})
changes the previous example to

loop
example
example detail
comment
12.2 ’small cell’ ’not that small’
12004 ’large cell’ ’Big and beautiful’

2.3 Writing Cif Files

The CifFile method WriteOut returns a string which may be passed to an
open file descriptor:

>>>outfile = open("mycif.cif")
>>>outfile.write(cf.WriteOut())

An alternative method uses the built-in Python str() function:

>>>outfile.write(str(cf))

WriteOut takes an optional argument, comment, which should be a string
containing a comment which will be placed at the top of the output file. This
comment string must already contain # characters at the beginning of lines:

>>>outfile.write(cf.WriteOut("#This is a test file"))

7



Two additional keyword arguments control line length in the output file: wraplength
and maxoutlength. Lines in the output file are guaranteed to be shorter than
maxoutlength characters, and PyCIFRW will additionally insert a line break
if putting two data values or a dataname/datavalue pair together on the same
line would exceed wraplength. In other words, unless data values are longer
than maxoutlength characters long, no line breaks will be inserted in the out-
put file. By default, wraplength = 80 and maxoutlength = 2048.

These values may be set on a per block/loop basis by calling the SetOutputLength
method of the loop or block.

The order of output of items within a CifFile or CifBlock is specified
using the ChangeItemOrder method (see above). The default order is the
order that items were inserted or read in to the CifFile/CifBlock.

3 Dictionaries and Validation

3.1 Dictionaries

DDL dictionaries may also be read into CifFile objects. For this purpose,
CifBlock objects automatically support save frames (used in DDL2 dictio-
naries), which are accessed using the saves key. The value of this key is a
collection of CifBlock objects indexed by save frame name, and available op-
erations are similar to those available for a CifFile, which is also a collection
of CifBlocks.

A CifDic object hides the difference between DDL1 dictionaries, where all
definitions are separate data blocks, and DDL2 dictionaries, where all defini-
tions are in save frames of a single data block. A CifDic is initialised with a
single file name or CifFile object:

cd = CifFile.CifDic("cif core.dic")

Definitions are accessed using the usual notation, e.g. cd[’ atom site aniso label’].
Return values are always CifBlock objects. Additionally, the CifDic object
contains a number of instance variables derived from dictionary global data:

dicname The dictionary name + version as given in the dictionary

diclang ’DDL1’,’DDL2’, or ’DDLm’

typedic A Python dictionary matching typecode to compiled regular expres-
sion

CifDic objects provide a large number of validation functions, which all re-
turn a Python dictionary which contains at least the key result. result
takes the values True, False or None depending on the success, failure or
non-applicability of each test. In case of failure, additional keys are returned
depending on the nature of the error.

8



3.2 Validation

A top level function is provided for convenient validation of CIF files:

CifFile.validate("mycif.cif",dic = "cif core.dic")

This returns a tuple (valid result, no matches). valid result and
no matches are Python dictionaries indexed by block name. For valid result,
the value for each block is itself a dictionary indexed by item name. The value
attached to each item name is a list of (check function, check result)
tuples, with check result a small dictionary containing at least the key result.
All tests which passed or were not applicable are removed from this dictionary,
so result is always False. Additional keys contain auxiliary information de-
pending on the test. Each of the items in no matches is a simple list of item
names which were not found in the dictionary.

If a simple validation report is required, the function validate report
can be called on the output of the above function, printing a simple ASCII
report. This function can be studied as an example of how to process the struc-
ture returned by the ’validate’ function.

A somewhat nicer interface to validation is provided in the ValidationResult
class (thanks to Boris Dusek), which is initialised with the return value from
validate:

val report = ValidationResult(validate("mycif.cif",dic="cif core.dic"))

This class provides the report method, producing a human-readable report,
as well as Boolean methods which return whether or not the block is valid or
if items appear in the block that are not present in the dictionary - is valid
and has no match items respectively.

3.2.1 Limitations on validation

1. (DDL2 only) When validating data dictionaries themselves, no checks are
made on group and subgroup consistency (e.g. that a specified subgroup
is actually defined).

2. (DDL1 only) Some type construct attributes in the DDL1 spec file
are not machine-readable, so values cannot be checked for consistency

3.3 ValidCifFile objects

A ValidCifFile object behaves identically to a CifFile object with the ad-
ditional characteristic that it is valid against the given dictionary object. Any
attempt to set a data value, or add or remove a data name, that would invali-
date the object raises a ValidCifFile error. This class is slow, experimental

9



and it is relatively easy to get around the validity checks; it is probably more
efficient to construct a complete file and then run a validity check.

Additional keywords for initialisation are:

dic A CifDic object to use in validation

diclist A list of CifFile objects or filenames to be merged into a CifDic
object (see below)

mergemode Choose merging method (one of ’strict’,’overlay’, ’replace’)

3.4 Merging dictionaries

PyCIFRW provides a top-level function to merge DDL1/2 dictionary files. It
takes a list of CIF filenames or CifFile objects, and a mergemode keyword
argument. CIF files are merged from left to right, that is, the second file in the
list is merged into the first file in the list and so on.

For completeness we list the arguments of the CifFile merge method:

new block set (first argument, no keyword) The new dictionary to be merged
into the current dictionary

mode merging mode to use (’strict’, ’overlay’ or ’replace’)

single block a two element list [oldblockname, newblockname], where
oldblockname in the current file is merged with newblockname in the
new file. This is useful when blocknames don’t match

idblock This block is ignored when merging - useful when merging DDL1
dictionaries in strict mode, in which case the on this dictionary
block would cause an error.

3.4.1 Limitations on merging

In overlay mode, the COMCIFS recommendations require that, when both def-
initions contain identical attributes which can be looped, the merging process
should construct those loops and include both sets of data in the new loop.

This is not yet implemented in PyCIFRW, as it involves checking the DDL1/DDL2
spec to determine which attributes may be looped together.

4 Working with STAR files

4.1 Creating STAR files

Star files are created entirely analogously to CIF files, using the StarFile
object or ReadStar function.

10



4.2 Manipulating values

The usual square bracket notation applies, as for CifFile and CifBlock ob-
jects. StarFiles are built out of StarBlock objects in exactly the same way
as CifFile objects are built out of CifBlock objects. StarBlock objects
can contain any number of LoopBlock objects, which represent STAR loop
blocks. Crucially, these LoopBlock objects may contain nested loops, which
are also LoopBlock objects. Loops are inserted into a LoopBlock by calling
the insert loop method, and may be nested to an arbitrary level.

4.2.1 Iterators

Any LoopBlock object has two iterator methods: recursive iter and flat iterator.
On each call of the iterator created by a recursive iter call, a Python dic-
tionary is returned with single-valued keys corresponding to a single set of
values. If there are multiple trees of nested loops in a LoopBlock, each tree is
iterated over separately, as there is no reason that looped values inside a second
loop block would have any relationship with values inside a first loop block.
This iterator will thus return all possible sets of values for the LoopBlock.

The flat iterator method does not dig down into nested loops. In-
stead, iterators created from it return a new LoopBlock with key-value pairs
corresponding to a single top-level packet; nested loops are included, but they
also have only data corresponding to the selected top-level packet available.
This iterator thus iterates through the top-level packets, collapsing the nesting
level by one.

The default iterator (that used in list comprehensions and for loops) for
CifBlocks (as opposed to StarBlocks) is recursive iter.

5 Example programs

A program which uses PyCIFRW for validation, validate cif.py, is in-
cluded in the distribution in the Programs subdirectory. It will validate a
CIF file (including dictionaries) against one or more dictionaries which may
be specified by name and version or as a filename on the local disk. If name
and version are specified, the IUCr canonical registry or a local registry is used
to find the dictionary and download it if necessary.

5.1 Usage

python validate cif.py [options] ciffile

5.2 Options

–version show version number and exit

-h,–help print short help message

11



-d dirname directory to find/store dictionary files

-f dictname filename of locally-stored dictionary

-u version dictionary version to resolve using registry

-n name dictionary name to resolve using registry

-s store downloaded dictionary locally (default True)

-c fetch and use canonical registry from IUCr

-r registry location of registry as filename or URL

-t The file to be checked is itself a DDL2 dictionary

6 Further information

The source files are in a literate programming format (noweb) with file exten-
sion .nw. HTML documentation generated from these files and containing both
code and copious comments is included in the downloaded package. Details
of interpretation of the current standards as relates to validation can be found
in these files.

12


