## The Gnu Xtal System User's Manual



Edited by<br>Sydney Hall

## Douglas du Boulay

Roeli Olthof-Hazekamp

## The Gnu Xtal System User's Manual

Edited by Sydney Hall, Douglas du Boulay, and Roeli Olthof-Hazekamp

Xtal User's Guide version 12 for DocBook V3.0 Edition
Published 2002
Copyright © 1983-2001 The Xtal System of Crystallographic Software. The University of Western Australia. All Rights Reserved
Copyright © 2002 The Gnu Xtal System of Crystallographic Software.
This is the user's manual for the Gnu Xtal System of crystallographic software, version 3.7.2.
Program descriptions prepared by contributing authors.
Compiled and collated by the editors.
http://xtal.sourceforge.net

Permission is granted to copy or distribute this manual provided that it is not modified and this copyright notice is retained intact.

## Revision History

Revision 3.7.2 Feb 2003 Revised by: ddb
Twelfth edition. Docbook, sgml
Revision 3.7 Apr 2000 Revised by: srh, ddb
Eleventh edition. Html only
Revision 3.6 Apr 1997 Revised by: srh, ddb
Tenth edition. Linuxdoc - html only
Revision 3.5 Apr 1997 Revised by: srh
Ninth+1/2 edition
Revision 3.4 Feb 1996 Revised by: srh
Ninth edition. Last bound/published manual
Revision 3.2 Sept 1992 Revised by: srh
Eighth edition
Revision 3.0 Jun 1990 Revised by: srh
Seventh edition
Revision 2.6 Apr 1989 Revised by: srh
Sixth edition
Revision 2.4 Mar 1988 Revised by: srh
Fifth edition
Revision 2.2 Mar 1987 Revised by: srh
Fourth edition
Revision 2.0
Mar 1986 Revised by: srh
Third edition
Revision 1.5 Mar 1985 Revised by: srh
Second edition
Revision 1.0 Dec 1983 Revised by: srh
First edition of Xtal (derived from XRAY76)

## Table of Contents

1. Preface ..... 1
1.1. Support and communications ..... 2
1.2. Acknowledgement of Xtal programs ..... 2
2. Primer ..... 5
2.1. Xtal Files ..... 5
2.2. System Terminology .....  8
2.3. Example Inputs ..... 10
3. Program controls ..... 17
3.1. System Commands ..... 17
3.2. ABSORB: Absorption corrections ..... 18
3.3. ADDATM : Load atom parameters ..... 20
3.4. ADDPAT: Create powder pattern bdf ..... 22
3.5. ADDREF: Load reflection data ..... 23
3.6. ATABLE: Tabulate atomic parameters ..... 26
3.7. BAYEST: Bayesian estimates of $|\mathrm{I}|$ and $|\mathrm{F}|$ ..... 26
3.8. BONDAT: Generate atom coordinates ..... 26
3.9. BONDLA: Bond lengths and angles ..... 27
3.10. BUNYIP: Search for Additional Symmetry ..... 28
3.11. $C B A Z A$ : Add crystal based azimuthal PSI angle ..... 29
3.12. CHARGE: Atomic charges from difference density ..... 30
3.13. CIFIO: Input and output CIF data ..... 30
3.14. CIFENT: CIF entry of diffractometer data ..... 31
3.15. CONTRS: Contour a map ..... 31
3.16. CREDUC: Check cell choice ..... 33
3.17. CRILSQ: Structure factor least-squares refinement 2 ..... 33
3.18. CRISP: Well baked structural solution ..... 34
3.19. CRYLSQ: Structure factor least-squares refinement ..... 36
3.20. DIFDAT: Process diffractometer data ..... 39
3.21. DYNAMO: Molecular Dynamics structure factor calculation NEW ..... 42
3.22. EXPAND: Expand archive atom sites NEW ..... 43
3.23. $F C$ : Calculated structure factors ..... 44
3.24. FOURR: Fourier maps ..... 45
3.25. GENEV: Normalized structure factors (E values) ..... 47
3.26. GENSIN: Generate triplets and quartets ..... 49
3.27. GENTAN: Tangent phasing ..... 51
3.28. GIP: Reciprocal space PIG ..... 55
3.29. LATCON: Refine lattice parameters ..... 55
3.30. LISTFC: List formated reflection data ..... 56
3.31. LSABS: Absorption corrections ..... 57
3.32. $L S L S$ : Structure factor least-squares refinement ..... 58
3.33. LSQPL: Least-squares planes \& lines ..... 60
3.34. LSRES: Restraint editor ..... 60
3.35. MAPLST: List map densities ..... 61
3.36. MAPXCH: Import theoretical electron density maps NEW ..... 61
3.37. MODEL: Build molecule from map ..... 61
3.38. MODHKL: Modify reflection data ..... 62
3.39. NEWCEL: Apply unit-cell change ..... 63
3.40. NEWMAN: Newman projection of model. ..... 64
3.41. ORTEP: Molecular plot ..... 65
3.42. OUTSRC: Export archive for external software NEW ..... 75
3.43. PARTN: Hirshfield partitioning ..... 75
3.44. PATSEE: Search for molecular fragment ..... 75
3.45. PEKPIK: Search map for peaks ..... 77
3.46. PIG: Display and manipulate model ..... 78
3.47. PLOTX: Interface to graphics devices ..... 79
3.48. POWGEN: Powder pattern graphics ..... 81
3.49. PREABS: Interactive crystal shape manipulation. ..... 85
3.50. PREPUB: Pre-publication tests on CIF structural data. ..... 87
3.51. PREVUE: Modify text in plots. ..... 87
3.52. REFCAL: Process reflection data ..... 87
3.53. REFM90: Convert SCFS-90 file to/from a BDF ..... 88
3.54. REGFE: Analyse errors ..... 88
3.55. REGWT: Analyse weights ..... 90
3.56. RFOURR: Reverse Fourier transform ..... 91
3.57. RIGBOD: Generate a Rigid Group ..... 92
3.58. RMAP: Search for translated fragment ..... 93
3.59. RSCAN: Analyse R-factors ..... 94
3.60. SCATOM: Calculate pseudo-atom form factor. NEW ..... 94
3.61. SHAPE: Patterson deconvolution for structure solution ..... 94
3.62. SHELIN: Enter SHELX file ..... 95
3.63. SIMPEL: Symbolic-addition phasing ..... 95
3.64. SLANT: Slanted map ..... 97
3.65. SORTRF: Sort/merge reflection data ..... 99
3.66. STARTX: Create initial archive file ..... 99
3.67. SURFIN: Render 3D electron density isosurfaces NEW ..... 102
3.68. VUBDF: Dump archive file. ..... 102
3.69. XTINCT: Extinction from equivalent reflections ..... 103
4. Reference Manual ..... 105
4.1. System Control Lines. ..... 105
4.2. ABSORB: Absorption corrections ..... 108
4.3. ADDATM: Load atom parameters ..... 113
4.4. ADDPAT: Create powder pattern bdf ..... 115
4.5. ADDREF: Load reflection data ..... 119
4.6. ATABLE: Tabulate atomic parameters ..... 125
4.7. BAYEST: Bayesian estimates of $|\mathrm{I}|$ and $|\mathrm{F}|$ ..... 126
4.8. BONDAT: Generate atom coordinates ..... 128
4.9. BONDLA: Bond lengths and angles ..... 131
4.10. BUNYIP: Search for Additional Symmetry ..... 133
4.11. $C B A Z A$ : Add crystal based azimuthal PSI angle ..... 134
4.12. CHARGE: Atomic charges from difference density ..... 135
4.13. CIFIO: Input and output CIF data ..... 137
4.14. CIFENT: CIF entry of diffractometer data ..... 139
4.15. CONTRS: Contour a map ..... 139
4.16. CREDUC: Check cell choice ..... 144
4.17. CRILSQ: Structure factor least-squares refinement 2 ..... 147
4.18. CRISP: Well baked structural solution ..... 149
4.19. CRYLSQ: Structure factor least-squares refinement ..... 151
4.20. DIFDAT: Process diffractometer data ..... 162
4.21. DYNAMO: Molecular Dynamics structure factor calculation NEW ..... 168
4.22. EXPAND: EXPAND archive atom sites NEW ..... 171
4.23. $F C$ : Calculated structure factors. ..... 172
4.24. FOURR: Fourier maps ..... 173
4.25. GENEV: Normalized structure factors (E values) ..... 178
4.26. GENSIN: Generate triplets and quartets ..... 185
4.27. GENTAN: Tangent phasing ..... 192
4.28. GIP: Reciprocal space PIG ..... 203
4.29. LATCON: Refine lattice parameters ..... 207
4.30. LISTFC: List formated reflection data ..... 210
4.31. LSABS: Absorption corrections ..... 212
4.32. $L S L S$ : Structure factor least-squares refinement ..... 215
4.33. LSQPL: Least-squares planes \& lines ..... 224
4.34. LSRES: Restraint editor ..... 226
4.35. MAPLST: List map densities ..... 227
4.36. MAPXCH: Import theoretical electron density maps NEW ..... 228
4.37. MODEL: Build molecule from map ..... 230
4.38. MODHKL: Modify reflection data ..... 233
4.39. NEWCEL: Apply unit-cell change ..... 235
4.40. NEWMAN: Newman projection of model ..... 236
4.41. ORTEP: Molecular plot ..... 238
4.42. OUTSRC: Export archive for external software NEW ..... 243
4.43. PARTN: Hirshfield partitioning ..... 244
4.44. PATSEE: Search for molecular fragment ..... 246
4.45. PEKPIK: Search map for peaks ..... 250
4.46. PIG: Display and manipulate model ..... 252
4.47. PLOTX: Interface to graphics devices ..... 261
4.48. POWGEN: Powder pattern graphics ..... 263
4.49. PREABS: Interactive crystal shape manipulation ..... 265
4.50. PREPUB: Pre-publication tests on CIF structural data ..... 270
4.51. PREVUE: Modify text in plots. ..... 272
4.52. REFCAL: Process reflection data ..... 274
4.53. REFM90: Convert SCFS-90 file to/from a BDF ..... 278
4.54. REGFE: Analyse errors ..... 280
4.55. REGWT: Analyse weights ..... 282
4.56. RFOURR: Reverse Fourier transform ..... 286
4.57. RIGBOD: Generate a Rigid Group ..... 289
4.58. RMAP: Search for translated fragment ..... 292
4.59. RSCAN: Analyse R-factors ..... 293
4.60. SCATOM: Calculate pseudo-atom form factor. NEW ..... 294
4.61. SHAPE: Patterson deconvolution for structure solution ..... 296
4.62. SHELIN: Enter SHELX file ..... 299
4.63. SIMPEL: Symbolic-addition phasing ..... 302
4.64. SLANT: Slanted map ..... 309
4.65. SORTRF: Sort/merge reflection data ..... 311
4.66. STARTX: Create initial archive file ..... 315
4.67. SURFIN: Render 3D electron density isosurfaces NEW ..... 318
4.68. VUBDF: Dump archive file ..... 320
4.69. XTINCT: Extinction from equivalent reflections ..... 322
A. Archive file map ..... 327
A.1. 1 hist (F) File History ..... 328
A.2. $2 \operatorname{labl}(\mathrm{~F})$ Label Information. ..... 328
A.3. $4 \operatorname{cell}(\mathrm{~F}) \mathrm{Cell}$ Constants ..... 328
A.4. 5 symm (F) Symmetry Information ..... 329
A.5. 6 sgnm (F) Space Group Names ..... 330
A.6. 7 twin (F) Twin Laws ..... 330
A.7. 8 scat (D) Atom-type Parameters ..... 330
A.8. 9 sequ (F) Protein Atom Sequence Information ..... 331
A.9. $10 \operatorname{ddef}(\mathrm{~F})$ Dataset Names ..... 331
A.10. $11 \operatorname{expl}$ (D) Experimental Parameters ..... 331
A.11. 12 dset (D) General Data per Dataset ..... 334
A.12. $13 \operatorname{dict}(\mathrm{D})$ Macromolecular Residue Information ..... 335
A.13. $14 \operatorname{graf}(\mathrm{D})$ Molecular Graphing Information ..... 335
A.14. 16 atom (D) Atom Parameters. ..... 336
A.15. 17 cons (D) Refinement Constraints ..... 337
A.16. 18 slav (F) Protein Atom Link Information ..... 337
A.17. 19 mole (D) Molecular Information ..... 338
A.18. 20 refl (D) Reflection Information ..... 338
A.19. 21 thet(F) Precise Angle Data for Cell Dimensions ..... 341
A.20. 30 sfls (D) Structure Factor Least Squares Data ..... 341
A.21. 31 rfac (F) Refinement History ..... 342
A.22. 35 dens(D) Electron Density Data ..... 342
A.23. 40 bond(D) Bond Distances ..... 342
A.24. 41 cont (D) Contact Distances ..... 343
A.25. 42 angl (D) Bond Angles ..... 343
A.26. 43 dihe (D) Dihedral Angles ..... 344
A.27. 44 rigi(D) Rigid Link Restraint Information ..... 344
A.28. 65535 endrecord: (F) EOF Record ..... 345
B. Symmap file. ..... 347

## List of Figures

4-1. Screen shot of GIP......................................................................................................................... 203
4-2. Screen shot of PIG......................................................................................................................... 253
4-3. Screen shot of POWGEN ............................................................................................................... 264
4-4. Screen shot of PREABS ................................................................................................................... 266
4-5. Screen shot of PREVUE.................................................................................................................. 272
4-6. Screen shot of SURFIN ................................................................................................................. 318

## Chapter 1. Preface

In most respects the structure, and the presentation, of the Gnu Xtal System ${ }^{1}$ of Crystallographic Programs is little different to that of any recent versions. Previous users of this system will find that standard calculations are largely unchanged, though perhaps with the exception of STARTX.

In fact little change can be expected in the future. With the termination of actively funded maintenance any future advances of the suite lie in the hands of any volunteers with a penchant for hacking RATMAC/fortran77/C/tcl/tk code.

Xtal was originally developed with a goal toward being as versatile and comprehensive a suite of crystallographic software as was realistically possible. The cessation of actively funded development has dictated a more concessionary approach towards complementary software. To that end the program SHELIN has been modified slightly to read supplementary SHELX .ins files ${ }^{2}$ and DIFDAT has been modified to read SHELX fixed format . hk 1 files ( $\mathrm{F}^{\wedge} 2$ only). The program OUTSRC has been added to aid in creating VALRAY, XD and SHELX format input files from an Xtal archive. Those are probably the most useful modifications because they allow Xtal to play nicely with Louis Farrugia's WinGX suite in a MS Windows environment. In addition the program MAPXCH has been added which aims to read in Wien2k electron density maps and ABINIT valence density maps (both subject to limitations), for contouring and plotting in Xtal.

STARTX has now been extensively rewritten. All elemental data tables previously embedded within the source are now externalized in a CIF format elemental database. That database also contains the multiwavelength atomic dispersion and absorption correction factors calculated and compiled in S.Sasaki (1989), KEK Report, 88-14, 1-136 and S.Sasaki (1990), KEK Report, 90-16, 1-143. Consequently STARTX automatically retrieves these factors for wavelengths in the range 0.1 to 2.8 Angstroms. The CIF elemental table is however rather large and reading data from the CIF is now a significant fraction of the total computation time of typical multiprogram calculations. With a 1 Ghz cpu This could take up to 10 seconds. In STARTX upd mode, reading of the atomtype.cif is eliminated where practical.

Xtal is becoming increasingly dependent on external libraries and software. In addition to tcl/tk, this version gratefully acknowledges the use of CIFtbx Version 2.6.3 (Hall, S. R. and Bernstein, H. J., J. Appl. Cryst. (1996). 29, C 598-603). Furthermore, with the introduction of the new program SURFIN, Xtal now incorporates the Togl OpenGL module for Tcl/Tk.

The adoption of Tcl/Tk based graphics in Xtal3.7 certainly aided with the portability of the graphically oriented programs. There were however some shortcomings with the tcl/tk library version dependencies which hopefully have been resolved now in a more acceptible manner. Now by statically linking against a stubs library, the actual runtime library used can be specified by environment variables, rather than a specific library linked against at compilation time. Previously this wasn't such an important issue, but new improved tcl/tk libraries are continually being produced and these will hopefully all be compatible with the current version of Xtal.

A new program EXPAND has been added to aid in conversions of structures between different symmetries, and possibly different cells. It permits the expansion of the cell contents up to three or more unit cells, and then the contraction back to some unique set once the cell setting or symmetry have been changed.

Program documentation in the form of this manual is now encoded using the DocBook SGML dtd and rendered into online html form using the DocBook dsssl stylesheets and OpenJade. This also provides a route to hardcopy printable versions of the manual via pdfjadetex. A HTML based document detailing how to program in RATMAC for Xtal is available separately, along with a HTML based manual for the now no longer supported XTAL programs.

The Xtal binary executable originally read only from the stdin filestream and wrote only to the stdout filestream. From version 3.7 arguments on the command line passed to the binary were assumed to be input filename[.dat|.inp] and output filename [.1st] filenames. Two command line options were then added; -n which supresses treatment of the first argument as an input filename, and -p which forces output listings to be printed to standard output filestream. In the event that only one input filename argument is provided and
in the absence of the $-\mathbf{p}$ optional argument, an output filename [.1st] is interpolated from the supplied input filename. This facilitates the use of xtal within a MS Windows environment (in particular WinGX $v \geq 1.64 .05$ ), where filenames with the extensions [.dat] can be configured to activate the xtal binary directly (via double mouse clicks). For use in this manner it is necessary to have the following environment variables set globally within the users working environment:

| variable | example | purpose |
| :---: | :---: | :---: |
| XTALHOME | C:\xtal372\bin\ | path to xtal library files |
| XTALTCLLIB | C:Itcllbinltcl84.dll | path to Tcl dynamic link library(>=8.2) (.so for unix) |
| XTALTKLIB | C:\tcllbin\tk84.dll | path to Tk dynamic link library (.so for unix) |
| POVEXE | C:IProgram files\POV-Raylbinlpvengine.exe | POV-Ray executable |

Xtal behaviour under UNIX and Microsoft Windows environments should be largely identical. Unfortunately VMS support appears unlikely in the forseeable future.

### 1.1. Support and communications

The Gnu Xtal System is distributed under the GNU General Public Licence as published by the Free Software Foundation, in the hope that it will be useful but WITHOUT ANY WARRANTY. See the GNU General Public License for more details.

Xtal now lives at SourceForge. Users are encouraged to report bugs etc using the resources that SourceForge provides. If you can isolate bugs and are bloody minded anough to fix them, please submit patches to the mailing list or the caretaker, or better yet, enlist as a developer and get write access to the CVS source tree. Active support is no longer provided by any of the past developers, coordinators, editors, nor yet by the interim caretaker, so get involved and support yourselves.

WWW server:
The latest Xtal sources and executables: Mailing lists:
http://xtal.sourceforge.net
http://sourceforge.net/projects/xtal/
http://sourceforge.net/projects/xtal/

### 1.2. Acknowledgement of Xtal programs

Xtal was developed by research workers supported by grants from a wide range of agencies. The names of the program authors are listed at the start of each program description and it is important that acknowledgement is given to the author(s) in any resulting publications and presentations.

## Please use the following acknowledgement formats.

General use of the System:
Hall, S.R., du Boulay, D.J. \& Olthof-Hazekamp, R. (2000) Eds. Xtal3.7 System . University of Western Australia.

Individual calculations:
<<author name(s)>> (1999) <<program name>> Xtal3.7 System. Eds. S.R. Hall, D.J. du Boulay \& R. OlthofHazekamp. University of Western Australia.

## Editor Contacts

| Crystallography Centre | Materials and Structures | Laboratorium voor Algemene |
| :--- | :--- | :--- |
|  | Laboratory | Chemie |
| University of W Australia | Tokyo Inst. of Technology | Universitet Utrecht |
| Nedlands 6907 | Nagatsuta, Midori Ku | 3508 TB Utrecht |
| Australia | Yokohama, Japan | The Netherlands |
| syd@crystal.uwa.edu.au | ddb@R3401.msl.titech.ac.jp | roh@chem.ruu.nl |

Twelfth Edition, February 2003

## Notes

1. Thanks to Lachlan Cranswick for the name change suggestion.
2. Thanks to Louis Farrugia for testing and feedback.

## Chapter 2. Primer

Author: Roeli Olthof-Hazekamp, Laboratorium voor Algemene Chemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

This section provides an introduction to the terminology and input language of the Xtal System. It covers topics such as file structures and general terminology. It also shows some example inputs to guide new users.

### 2.1. Xtal Files

Most Xtal calculations are initiated, and controlled, from a input line file usually known as the . dat file. The results of a calculation are output to files and a screen device (as in graphics applications). Xtal calculations use various files to store intermediate and archival data. This strong dependence on files means that Xtal is considered a file-driven archival system, rather than an interactive menu-driven system. This is not strictly true because of the interactive graphics programs such as PIG and PREVUE, but for most calculations the file-driven approach has been adopted as the "Xtal philosophy" for the most efficient use of both computing and human resources.

### 2.1.1. File types

Xtal employs two basic file types: line (character) and binary.
Line files are composed of ascii text which may be manipulated with a normal text editor. The two principal line files are the line inputfile (compid.dat) and print file (compid.lst). The former contains data that determines which and how calculations are performed, and the latter is the printed results of these calculations. Xtal uses other line files for certain calculations. These include a punch file, formatted sequential files, formatted directaccess files, various ancillary database files (e.g. cifmap, cifdic, symmap) and an error message file. Later there will be a more detailed description of the format of line files.

Binary files are used extensively as working files (ie. intermediate files for exchanging within, and between, calculations), and to archive certain types of data. Binary files are more efficient than line files for certain operations because of their compactness and because they do not require decoding or encoding when data is extracted from or transferred to computer memory. A binary file is often referred to in Xtal documentation as a 'bdf' (binary data file).

Xtal binary files are divided into two categories: archive and auxilliary. Archive bdf's are used as an archive record of accumulated crystal structure data. These files are updated as the analysis progresses. For example, lratom: and lrrefl: are stored in an archive file. The data structure for archive files is carefully defined for all programs (see the Archive Files description below and the Archive section at the end of this manual).

Auxilliary bdf's are used to transfer data from one calculation to another. They are created by a calculation for a specific data exchange purpose. Electron density maps are typical of data stored in an auxiliary file. The actual format of these files is similar to the archival files, but their contents are only known to the programs that write or read them. These are dicussed in detail later.

### 2.1.2. Filename syntax

The convention for filename construction for all Xtal files is normally <compid>.<ext> where compid is the compound identification code (maximum of six characters), and ext is the extension code (three characters). The compid code is defined by the user at the start of the input commands with the line "compid compid" (see System). [Note: If needed at your site, the filename construction can be changed via the system macro filename: in the supplied file xmacro.r.]

### 2.1.3. Archive Files

### 2.1.3.1. Binary

The concept of an archive bdf has been introduced above. Most Xtal programs employ two archive binary files; one for input and one for output. These have filename extensions . aa1 and .aa2. At the start of an Xtal run the file .aal is assumed to be the input archive file, and this file will be read by the first calculation requiring data from the archive file. If a calculation adds to, or changes archive data, this will initially be written to the file aa2 so that it contains the latest archive data. At the close of this calculation the nucleus will reverse the roles of the two archive files so that aaz becomes the input file and aal becomes the output file. This interchange process is repeated for every calculation that writes data to an archive file.

### 2.1.3.2. Master

Xtal provides a procedure for automatically saving the latest archive bdf. This is referred to as the master file option. When this is switched on the most recent archive binary file (aa1 or aa2) is saved as an ascii file with the filename extension aaa (for details of the format read the CIFIO description if the arc file which is identical). Unlike the binary files aa1 or aa2, the master file aaa may be read or edited using a normal text/screen editor, and is independent of machine or compiler types.
The master file option is set during installation via the definition of the the macro masterfile: This option may also be set at run time using the master line (described in 2. below). If this option is switched off, the user is responsible for ensuring that at the start of a calculation the latest archive binary file is labelled aa1. If the master file option is switched on, the file aaa is automatically converted to the binary file aa1 at the start of a calculation sequence and the latest binary file is automatically converted to the file aaa at the end of an Xtal run. Note that the aaa file is generated only when an Xtal run terminates with a finish line or an Xtal error. It will not be generated if a program terminates through a program execution error or an operating system fault. Note that if an aaa file does not exist at the start of a run, Xtal assumes that the file aa1 is the input archive binary file.

The need for master archive files will depend on local applications and on the local computing environment. If you are an expert user, or there is a shortage of disc space, or there are very large files, the extra time and space needed for master file operations may be unacceptable. Where Xtal is being applied to many analyses simultaneously this option should be useful to ensure that the latest archive file is retained after each run. It is recommended that master file be made the default condition (i.e. set masterfile: to yes: on installation) and users switch it off with a masterno line if it is not required.

### 2.1.4. Auxiliary files

Unlike the archive files, auxiliary files are only used for the storage of intermediate data. Programs which write auxiliary files assign filename extensions to files according to their contents. Files with the extensions xx * are scratch files and may be deleted after a calculation run.

### 2.1.5. Format of line files

Xtal line files may be free format or fixed format. Character data is case insensitive (i.e. upper- or lower-case alphabetical characters are treated identically except for atom site labels).

### 2.1.5.1. Concept of a field

A field is a string of contiguous characters delimited by a blank. Every input line must start (in column 1) with a line identification code. This requirement may be overridden with the setid system command (see the setid description in System). The identification code constitutes field 0 of the input line and must terminate
with a blank. In free format input mode subsequent fields are numbered from left to right, $1,2,3$, etc. If the system lines field and/or order are entered, the widths and/or the numbering of the input fields may be specified by the user (the field and order descriptions are in 2. below).
Note that the sequential numbering of fields should not be confused with the order that data is entered in a given program. For many calculations data may be entered in any order. This is clearly indicated in the User's Guide when no field numbers are attached. This is usually the case when numerical data follows control codes (e.g. see the reset line described in System).

### 2.1.5.2. Types of fields

There are three distinct types of input field; the numerical field, the alphanumerical field, and the void field. They are defined as follows:

Numerical field: a set of contiguous characters composed of the integers 0 to 9 and characters plus, minus and period. All numerical fields are entered and stored as real numbers, independent of whether a decimal point is entered. A number in 'scientific notation' is entered without the letter ' $E$ ' used by Fortran formatting routines. For example, the 0.000001 may be entered as 1.0-6. The numbers in the following fields are identical

```
3 3.0 30.-1 +3 +3. +.3+1 +30.-1 30-1.03+2
```

Alphanumerical field: a set of contiguous characters containing at least one alphabetic character (a to $z$ and A to z ). The character strings A123 and 123A are treated as alphanumerical fields. Internally the nucleus treats numerical and alphanumerical fields quite differently.

Void field: a field that contains only a blank. Internally this type of field is identified as a floating-point word with a value defined by the macro voidflg:. The default value for voidflg: is $-4.0+20--$ this value must not be used for any other purpose.

### 2.1.5.3. Field delimiter character: blank

A field is delimited by any contiguous sequence of blanks.

### 2.1.5.4. Field skip control: $\$ n$

The digraph $\$ n$ in an input line is interpreted as a signal to skip $n$ fields. That is, this digraph causes the internal field pointer to be incremented by $n$. The digraph is not stored in the input buffer. For example, the following line will cause the number 5 to be placed in field 1 and the number 9 to be placed in field 7 .

```
param 5 $5 9
```


### 2.1.5.5. Field position control: *n

The digraph $*_{n}$ in the input line is interpreted as a signal to set the internal field position pointer at $n$. Data immediately following this digraph will be placed in field $n$ of the input buffer. For example, *10 places the next string encountered into field 10. Field position strings are not stored in the input buffer. Once set, subsequent fields are stored in $\mathbf{n}+1, \mathbf{n}+2$, etc. unless another field pointer directive is entered. For example,

```
map 2.6 *6 C $5 1 . 31
```

will result in the number 2.6 being stored in field 1 , the character c being stored in field 6 , and the numbers 1. and 0.31 being stored in fields 12 and 13 , respectively. All input fields except $1,6,12$, and 13 will be set to void. Note that field position numbers do not have to be used in ascending order. The above data input could be entered as:.

```
map *6 C *1 2.6 *12 1 . 31
```


### 2.1.5.6. Input line delimiter character: ' ',

The character colon (:) is used to signal the end of input fields. Note that a colon in column 1 of a line implies that the line is to be ignored. The colon allows additional unprocessed information to be placed on the input image. For example, the image containing the following line is processed only through to the field containing . 035 .

```
atom C12 . 5 . 6 . . . 035 :new site at -x, -y, z
:pig :pig is disabled by the colon
```


### 2.2. System Terminology

### 2.2.1. compid: compound identification code

The compound identification code is a string of up to six alphanumeric characters entered as field 1 of the compid system command line. This code is usually referred to in program descriptions as the compound ID, or simply as the compid. The compid is inserted at the top of each printed page and used to construct the Xtal filenames. Note that if the compid is not defined its default value is xtal. Users must be consistent about the definition of compid in order that the correct Xtal files will be opened (in other words, a compid line must always be entered, or never entered).

### 2.2.2. rcode: reflection status code

Reflection data in the Xtal system are assigned rcodes which indicate the reliability or condition of measurement. The rcode is a integer between 1 and 5 .

1. measurement above the threshold of observability (e.g. $>3$ sigma)
2. measurement below the threshold of observability (e.g. $<3$ sigma)
3. measurement contains uncorrected systematic error
4. Friedel-related measurement is missing from a Friedel pair
5. measurement systematically absent for the space group in use

### 2.2.3. Atom labels

The rules for atom label construction are:

- An atom label may be up to 24 characters in length.
- An atom label may not contain imbedded blanks.
- The alphabetic characters in the atom label are case-sensitive. Upper and lower case characters are preserved.
- An atom label has up to eight sequential component codes numbered 0 to 7 . Components 0 and 1 are concatenated; all other components are separated by an underline.
- Component 0 is the atom type symbol which is entered on the CELcon line of STARTX. This symbol may be up to 8 chars in length. All characters are permitted, except digits ' 0 ' to ' 9 ' may only precede a ' + ' or a' - ' character to indicate an oxidation state. Normally, but not necessarily, the element symbol is used so
that STARTX can automatically assign scattering factors for the atom type. Typical atom type symbols are: C Cu S2- Cu\&Fe Water
- Component 1 is the atom sequence code. This may be any string of characters (excluding an underline) which must start with one or more digits. Some permitted sequence codes are: 1 3a1 23mola Examples of atom labels involving components 0 and 1 are: I C7 Cu2+4a C23mola 'C8\%a' (this latter label will be plotted as C8 $\alpha$-see below).

The atom label construction is flexible, visually decipherable and well suited to computer applications. The components can be easily identified and stripped in a single pass from left to right along the label string. Note that the underline separators are only used if higher order components exist. If intermediate components are not needed they may be omitted provided the underline separators are inserted. For example the label c233__ggg is acceptable and decodes as component 0 : 'c', 1 : ' 233 ', 2 : ', and 3 : ' $g g g^{\prime}$ '. There is no requirement that the same number of components be used in each label.

The plot routine PLOTX supports upper and lower case characters, Greek characters, and superscripts and subscripts. Each Greek character is signaled by a preceding percent \% character. For example the digraph '\%b' will be plotted as ' $\beta^{\prime}$; ' ${ }_{\circ D}$ ' will be plotted as ' $\Delta$ '. A superscripted character is preceded by a caret ${ }^{\wedge}$, and a subscripted character by a tilde ${ }^{\prime} \sim$ '. Italic characters can be initiated by the vertical bar | character.

### 2.2.4. Frel, Fobs, Fcal: structure factor data

All structure factor data obtained by experimental measurement are entered into the bdf through various data entry programs. This data may be raw intensities from a diffractometer file, or values of $F^{2}$ or $|F|$ obtained by some previous data treatment. These data should consist of at least a unique asymmetric set of reflections.
For example, if the quantities supplied to $A D D R E F$ are intensities, various systematic factors may be applied to reduce this to the relative measured structure factor F (relative), or, as it is usually referred to in Xtal programs, Frel. When $\mathrm{F}^{2}$ is supplied, its square root is defined to be Frel. The observed (or measured) structure factor F (observed), or Fobs, is defined to be on the correct scale (e.g. in electrons) and is obtained from the product of Frel and the appropriate scale factor. Structure factor values which are calculated by the programs from atomic coordinates are referred to as F (calculated), or Fcal. The structure factor difference Fdif is obtained by subtracting Fcal from Fobs.

### 2.2.5. $k$ : structure factor scale

The structure factor scales are used to place the values of Frel on the same scale as Fcal, as defined in the International Tables, Vol. I. That is, the scale factor is used to convert the value of Frel into Fobs.

The overall structure factor scale can be estimated with $G E N E V$ which uses the scattering factor and cell content information. The enot option can be entered to avoid placing E values on the binary file. In practice, these estimates have proved to be within $10 \%$ of the final scale factors for diffractometer data. In the case of film data, there may be several scale factors corresponding to data measured from different films. These scales are applied using scale group numbers.
These scale factors (whether overall, or for different groups of data) are usually refined by least squares calculations. During this refinement the quantity applied is the reciprocal of the scale factor, although all input is in terms of the actual Frel scale factor. Most programs which use the scale factors store and retrieve these quantities from the archive bdf. However, if needed, these values may be superseded by values from scale lines. All programs which calculate or refine scale factors will update the output bdf with the new values. The exception to this is the structure factor program $F C$ and RSCAN.
In addition to the scale adjustments calculated by the least squares, programs such as FC and RSCAN calculate the quantity $\mathrm{k}^{\prime}$, the rescale factor $\mathrm{k}^{\prime}=\sum_{\mathrm{h}} \mathrm{F}_{\mathrm{cal}} / \sum_{\mathrm{h}} \mathrm{kF}_{\text {rel }}$

If the scale k is correct, then k ' will be 1.0. It should be noted that the practice of adjusting scale factors when not all atom data is known may be misleading. For example, a difference map for locating hydrogen atoms will tend to exhibit artificially lowered peaks because the scale factor does not yet contain the hydrogen atom contribution.

### 2.2.6. Atomic displacement parameters

A variety of atomic displacement parameters have been used in the crystallographic literature. Xtal uses the isotropic and anisotropic parameters U and $\mathrm{U}_{\mathrm{ij}}$ exclusively. The isotropic displacement factor in the structure factor expression is
$\mathrm{t}=\exp -8^{*} \pi^{2} \mathrm{Us}^{2}$
The anisotropic displacement factor in the structure factor expression is
$\mathrm{t}=\exp -2^{*} \pi^{* 2}\left(\mathrm{U}_{11} \mathrm{~h}^{2} \mathrm{a}^{* 2}+\ldots \ldots+2 \mathrm{U}_{23} \mathrm{kl} \mathrm{b}^{*} \mathrm{c}^{*}\right)$

### 2.3. Example Inputs

This section contains some typical input data sequences for crystallographic calculations. These trace the basic steps from the data reduction of the raw diffraction intensities to the preparation of the publication material. The Xtal system divides these different steps of an analysis into separate calculation models. Users must learn which module does what and how these can be chained together in the best way to suit the study. The archive bdf's provide the main communication link between calculations with the auxilliary files supplying a specific data link between some calculations.

Usually several crystallographic calculations are performed together. The number of calculations in each run will vary according to the nature of the analysis and the expertise of the user. In fact, the length of the run is usually dictated by how often the user wishes to check how the calculations are proceeding. Between these runs the archive and auxilliary files retain the history and the accumulated knowledge of the calculation sequence.

Other example inputs are given with the program descriptions. More detailed examples are provided as the supplied test input files p6122.dat, saly.dat, diam.dat, ags4.dat and lac1.dat. Novice Xtal users are advised to print these files as an additional reference.

### 2.3.1. Step 1: Input primary data

The first step in any analysis is to enter the primary crystallographic information such as cell, symmetry and chemical formula. In Xtal this is usually done with the program STARTX which is responsible for creating and checking the initial archive file. [Note that all input command sequences in the .dat file must start with the compid declaration.]

```
compid exampl
title study of the compound C23 H28 O6 P212121 Z=4
STARTX
cell 17.076 16.604 7.425 90. 90. 90.
cellsd .004 .002 .007
sgname P 2ac 2ab: : H-M notation P212121
celcon C 92
celcon O 24
celcon H 112
```

Note that it is possible start an analysis with CIF input as well (using CIFIO) because this automatically invokes the STARTX routine in the process.

### 2.3.2. Step 2: Input reflection data

The next step, after creating the initial archive file, is to input the reflection data. This may be done in a number of different ways using DIFDAT, ADDREF, CIFIO or REFM90. In these examples we will look at the two most common approaches involving DIFDAT and ADDREF.

If the reflection data are raw intensities or counts from a diffractometer then there needs to a calculation that reads this data and scales it for conversion to structure factors. DIFDAT is usually used to process a diffractometer file.

Here is a control sequence for processing a standard Siemens ascii file labelled compid.sie. DIFDAT reads this file and stores the scaled intensities on the archive file. ADDREF reads the archive file and reduces the intensities into structure factors (note that ADDREF stores both $\mid$ Fmeas $\mid$ and $\mid$ Fmeas $\mid$ squared on the archive file). The other data such as diffractometer angles are not entered (ie. absorption corrections will not be applied). If they were on would place all on the bdfin line. [Note that the compid line is omitted from this sequence but if it were used as a separate run it would need to be present].

```
DIFDAT sie baln 3
genscl
ADDREF
reduce itof rlp4 12.2
bdfin hkl irel sigi
```

If one is entering reflection data that has already been scaled it may be entered as part of the .dat file as follows.

```
ADDREF
reduce itof rlp4 12.2
hklin hkl rcod irel sigi
hkl 0 0 2 1 21023 644
hkl 0 0 4 1 40 5.97
hkl 0 0 6 1 252 11.4
hkl 0 0 8 1 33.4 4.9
..........................reflection data omitted for brevity
hkl 19 11 0 2 . 214+00 .333+01
```

Other initial reflection processing calculations are provided by programs such as SORTRF and ABSORB. Absorption corrections to the intensity data, if required, should be applied before the ADDREF step. The SORTRF calculation is used to sort the reflection data into a specified order and to average multiply-observed data into an asymmetric set. Most Xtal calculations need to operate with an unique asymmetric set of reflections and atoms. For example:

SORTRF order hlk aver 1

Look carefully at the examples given in the program descriptions.

### 2.3.3. Step 3: Solving the structure

The next step is to determine the crystal structure. This can be done with a variety of ways. The most automatic approach is to use the new iterative solution program CRISP, which amalgamates many of the individual program steps described in the alternate approaches described below. The command needed is simply

Another direct methods approach which does not involve the automatic iterative program CRISP, uses the programs GENTAN or SIMPEL or PATSEE. Here is a typical sequence for these approaches

```
GENTAN
FOURR emap
PEKPIK
PIG
```

For some centrosymmetric structures it may be more effective to run

```
SIMPEL
FOURR emap
PEKPIK
PIG
```

Or in difficult cases where a fragment of the structure is known one should try the sequence

## GENEV

GENSIN
FOURR epat
PATSEE

Alternatively the user can apply the heavy atom method wth a combination of the programs GENEV, FOURR, PEKPIK and FC. There are many combinations of these calculations, plus routines such as MODEL and PIG, which can be used to visualise the proposed models.
In these seqquences the program GENEV calculates the E values needed for direct methods. GENSIN generates triplets and quartets and outputs them to the auxiliary file .inv. This file is read by subsequent phasing programs such as GENTAN(or SIMPEL or PATSEE). If rerun GENTAN for later phasing attempts the .inv file should be retained. GENTAN has a wide range of options for applying the multi-solution tangent phasing methods. The program SIMPEL can replace GENTAN in this sequence to determine phases using the symbolic addition approach.

The FOURR program inputs the phases estimated by GENTAN to produce an E map. This map is output to the file map. PEKPIK reads the map file and searches for the unique set of highest peaks in the asymmetric unit of the density map. These are output to the file pek which is in turn read by the programs MODEL and/or PIG. Both these programs search for interatomic connections between the peaks according a preset molecular geometry based on distance and angle criteria. PIG is an interactive graphics version of MODEL and has a number of a visualisation advantages. With MODEL special care must be taken with the specification of the parameters on the limits line as the default values may not be appropriate for the structure being studied. MODEL produces a table of bond lengths and angles, a printer plot of the connected peaks, and outputs peak sites as atom lines to the line file .pch. The atom lines may be used in subsequent calculations such as BONDLA or ADDATM. Changes to the atomic site information with PIG are automatically applied to the archive file.

### 2.3.3.1. Direct methods strategies.

In the event that solution programs such as CRISP, GENTAN, SIMPEL or PATSEE do provide a clear solution of the initial structure, it may be necessary to adjust the standard options used in these calculations. Here is some general advice on the optimal use of these routines. Note that in the above example input only a few command lines are needed. This is because the default controls are appropriate for most analyses. For some analyses additional control signals may be required. Here are some tips for the application of the direct methods programs.

- For the first attempt, use the default values for a structure solution sequence as shown in the above example. This has been shown to solve about $90 \%$ of small and medium sized structures automatically.
- For centrosymmetric structures SIMPEL may often be used in place of GENTAN and is about four times faster.

For structures not solved with the default options, try the following alternatives separately. Note that the judicious saving of the bdf's permits you to start calculations at the program in which the option needs to be changed. Do not always start with STARTX, or even GENEV!

- Increase the number of starting phases in GENTAN using the select line (particularly for low symmetry structures).
- Decrease Emin in GENSIN to 1.5-1.3 (particularly for triclinic).
- If there are sufficient triplets (i.e. >10 times the number of E's), increase the Emin to about 1.6 in GENTAN (or GENSIN).
- Increase the number of triplets and quartets by reducing Amin and Bmin to about 0.8 and 0.4 on the GENSIN lines trip and quar. Even lower values can be considered for large structures.
- If a fragment is found in the space group P1bar with a possible origin translation, redo STARTX as P1 and locate the origin using the fragment in FC, FOURR, etc. Then return to P1bar for the refinement.
- Exclude quartets from the GENTAN calculation using the invar line.
- For noncentrosymmetric structures, change the magic option to permute on the select line of GENTAN. Alternatively, use the random option instead of permute.
- Apply the block and/or w2 options on the refine line of GENTAN

When assessing a direct methods run for success or failure, do not rely wholly on the GENTAN or SIMPEL figure of merit estimates. For some structure types these will be unreliable. It is good practice to calculate the E maps for the top four (or even eight) phase sets and then look closely at the PEKPIK results. One or two dominant peaks usually signals an incorrect phase set (except if there one or two heavy atoms in the structure!). The best E maps contain a large number of medium height peaks and this may be used as a quite sensitive criterion for identifying the more correct phase sets.

There are many other combinations of options available in GENSIN and GENTAN. If the above alternatives fail you should look critically at the reflection data, both in terms of its precision and high angle limit, and at the possibility of incorrect space group symmetry. In some cases structures are solved automatically by recollecting the data with better precision and/or higher angle data. In cases where there are very high B-values it may be necessary to collect low-temperature data. It cannot be emphasised enough that these methods are very dependent on good E-values. GENEV works well with good data, but if the Wilson plot shows anomalies at high angles it is better to exclude this data from the structure solution (by setting Smax in GENEV). Always check the Wilson plots carefully if the default run fails.

### 2.3.4. Step 4: Refining atom parameters

Once a structure is determined the coordinate and displacement parameters need to be refined. A variety of programs are needed for a refinement sequence. Often the initial atomic coordinates are loaded onto the archive file by PEKPIK and PIG. In other instances all, or same, of the coordinates will need to be loaded with ADDATM.

In this simple example ADDATM is used to load atom data and CRILSQ or CRYLSQ to refine these parameters. The programs RSCAN, PIG and BONDLA are used to gauge the progress of the refinement and check the reflection data and current model.

```
ADDATM
scale 1.02033 1
atom C1 . 48236 -. 11502 . 93088 .0332 1.0 .00023 .00024 .00053
uij C1 .00244 .00391 .01162 -.00008 .00009-.00021
atom 01 .47364 -. 18767 . 83988 .0385 1.0 .00017 .00015 .00039
uij O1 .00378 .00323 .01594 -.00027 -.00053 .00071
.................................atom data omitted for brevity
atom H6 . 75500-.10800 .93600.0570 1.0 .00000 .00000 .0000
atom H7 .64700-.14500 1.20600.0680 1.0 .00000 .00000 .0000
atom H81.81360 -. 11540 1.23320 .0740 1.0 .00000 .00000 .0000
atom H82 . 79070 -. 20340 1.18740 .0740 1.0 .00000 .00000 .0000
atom H83.78040 -. 17080 1.37730.0740 1.0 .00000 .00000 .0000
CRYLSQ cy 2 ad fm fu 0.7 : CRILSQ could be used instead
noref H
RSCAN
PIG
BONDLA
```

This sequence emphasises the modularity of Xtal calculations. There are many other combinations involving many programs. For example, when atoms are still missing from the model (or one is searching for the H atom sites) the following combination is very useful.

```
CRYLSQ cy 2
noref H
FOURR fdif
PEKPIK
PIG input
peaks prad 1.
```

Here the program PIG is used to decide which peak sites are to become atom sites (and are labelled) and which should be rejected

### 2.3.5. Step 5: Checking molecular geometry

Periodically during an analysis the model and refined structure factors need be checked. The model can, of course, be monitored with PIG, but many other checking tools are provided in the Xtal system. These include BUNYIP, LSQPL, BONDLA, REGFE and RSCAN, to name a few.

Here is one sort of run which also inserts H atom sites from the non H atom geometry.

```
BONDLA cont dihe
atrad H 1. . }
FOURR fdif r2 0
PEKPIK punch
BONDAT
calcat tetchn 0.95 O5 C1 C2 H1 H11
calcat teterm 0.95 C1 O1 C11 H111 H112 H113
calcat tetchn 0.95 C1 C2 C3 H21 H22
calcat tetchn 0.95 O2 C21 C22 H211 H212
calcat trigon 0.95 C22 C23 C24 H23
calcat trigon 0.95 C23 C24 C25 H24
calcat trigon 0.95 C24 C25 C26 H25
calcat tetchn 0.95 C3 C4 C5 H41 H42
calcat tetchn 0.95 C4 C5 O5 H51 H52
14
```

```
calcat teterm 0.95 C6 C7 C8 H81 H82 H83
```

BONDAT calculates new coordinates for the H atoms based on the prescribed geometries of the refined nonhydrogen sites. Note that PIG could also have been used after PEKPIK for viewing and manipulating the atom sites, and for checking the geometry.

### 2.3.6. Step 6: Preparing for publication

When the structure is ready for publication various molecular plots, and tables need to be prepared. Here are some of the calculations that can be used for this purpose.

```
BONDLA
LSQPL
PLANE
DEFINE C22 C23 C24 C25 C26 C27
nondef O2 C21
PLANE
DEFINE C32 C33 C34 C35 C36 C37
nondef O3 C31
PIG
ORTEP mole acta
PREVUE
PLOTX postl pre
LISTFC nofl wid 120 lin 64
ATABLE isou
CIFIO cifo
```


### 2.3.7. General Advice

The examples shown above are a very small sample of the combinations possible with Xtal programs. A novice user should experiment with input sequences using known data so that there will be a proper understanding of the various functions. And always remember that the archive bdfs aal and aaz are interchanged with every update, so it is best to initially rely on the master file procedure which always reads and generates the latest aaa file. The aaa file is also readable with a text editor and this provides a new user with the opportunity to learn how the data is archived. However, only the most experienced users should ever attempt to change values in this file with a text editor, and then, only after keeping a copy of the unedited version!

Chapter 2. Primer

## Chapter 3. Program controls

This section of the manual contains information on how to prepare the input command file for calculations in the Xtal System. Detailed program descriptions are contained in the next section, referred to as the Reference Manual.

### 3.1. System Commands



[^0]b. Default master file support state is set on installation with the masterfile: macro.

| remark |  | for inline comments, columns 8 to 72 | blank |
| :--- | :--- | :--- | :--- |
| copybdf $_{a}$ | 1 | ext1 filename extension of source bdf |  |
|  | 2 | ext2 filename extension of destination bdf |  |

Notes:
a. The copybdf line cannot be used prior to the compid line and must be used either before the first program initiation line or after an end line.
$\left.\begin{array}{llll}\text { reset } & \begin{array}{l}\text { Option } \\ \text { list current parameters } \\ \text { reset parameters to installed } \\ \text { default values }\end{array} & \begin{array}{l}\text { Code } \\ \text { (null) }\end{array} & \text { all }\end{array}\right]$
use common (shared) color map a comm

## Notes:

a. These commands are not currently supported for the Win32 version.
setida $1 \quad$ string of up to 6 characters b

## Notes:

a. Once the setid has been entered, all succeeding lines, except the system commands, are treated as having the identification code specified on the setid line, until another setid is read. When setid is in force, field 1 of a line starts in column 1 of the input line (this is field 0 when setid is not in force).
b. A blank string resets to normal input.

| field ${ }^{\text {a }}$ | 1 | rightmost character b of field 1 for subsequent input lines |
| :--- | :--- | :--- |
|  | 2 | rightmost character of field 2 for subsequent input lines |
|  | $3-$ | etc |

## Notes:

a. If an identification code is entered on an input line which has been formatted by a preceding field line, an order line will also need to be specified so that this field can be ignored or properly treated. All fields expected as input must be specified on the field line. A blank field line resets free format input.
b. The leftmost character of each field is assumed to be one more than the rightmost column number of the previous field. The leftmost character of field 1 is column 1 .
order a 1 new field number for first input field
2 new field number for second input field
3- etc
Notes:
a. A blank order line resets the order to $1,2,3, \ldots$.
finish end of all calculations. The end-of-file will cause the same action.

### 3.2. ABSORB: Absorption corrections

```
astar a spherical absorption A* values
tbara spherical T values
diffa diffractometer description
orienta crystal orientation
orface b microscope orientation
faceptb face described by three points
faceb face described by }\chi,\phi\mathrm{ , and distance
faceomb face described by }\chi,\phi,\omega\mathrm{ and distance
facemlb face described by Miller indices anddistance
grid c Gaussian grid description
Notes:
a. Optional according to mode: diff and orient are mandatory for Gaussian and analytical corrections and are in fact order
dependent (the diff line MUST precede the orient line for correct operation)
b. Only one of the methods orface, facept, face or faceml may be used to specify the faces of the crystal.
c. Used only for the Gaussian integration method.
```


## Code

 absorption coefficient in mm-1 absorption methodtables
auto a
Gaussian integration
analytical method
spherical crystalb
cylinder user tables

| application of absorption | napp |  | do not apply |  |
| :---: | :---: | :---: | :---: | :---: |
|  | irel |  | apply to $\mathrm{Irel}^{\text {a }}$ |  |
|  | f2rl |  | apply to $\mathrm{F}_{2 \text { rel }}$ |  |
|  | frel |  | apply to $\mathrm{Frel}^{\text {r }}$ |  |
| store T on bdf | ntbar |  | no |  |
|  | tbar |  | yesb |  |
| print reflection data | print | n | print n hkl | 99999 |
| limit reflections processed | limit | n | process n hkl | 99999 |
| dataset specification | dset | n | dataset number | 1 |
| precision scale factor ${ }_{\text {c }}$ | pscal | q | scale distance and $\mu$ |  |
| crystal plot view on file abs | stereo |  | stereo view | projection |
| radius of crystal in mm | rad | q |  |  |

[^1]b. If the sphere option is used, do not use the tbar option.
c. This option is used to avoid rounding errors for small crystals.
astar a $\quad 1-19$ values of $\mathrm{A}^{*}$ corresponding to $0^{\circ}, 5^{\circ}, 10^{\circ}, \ldots, 90^{\circ}$
Notes:
a. More than one astar line may be used.
tbar a $\quad 1-19$ values of $T$ corresponding to $0^{\circ}, 5^{\circ}, 10^{\circ}, \ldots, 90^{\circ}$
Notes:
a. More than one tbar line may be used.

| $\operatorname{diff}_{\mathrm{a}}$ | 1 | sense of rotation of the $2 \theta$ circle $\frac{\mathbf{c}}{\mathbf{a}}$ | clockwise anti-clockwise |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | 2 | sense of rotation of the $\chi$ circle $\subseteq$ | clockwise |  |
|  |  | a | anti-clockwise |  |
|  | 3 | sense of rotation of the $\phi$ circle $\subseteq$ | clockwise |  |
|  |  | a | anti-clockwise |  |
|  | 4 | sense of rotation of the $\omega$ circle $\underline{\sim}$ | clockwise |  |
|  |  | a a | anti-clockwise |  |
|  | 5 | sense of rotation of the $\psi$ circle $\underline{\square}$ | clockwise |  |
|  |  | a | anti-clockwise |  |
|  | 6 | value of $\phi$ at $\chi=90$ degrees |  | 0 |
|  | 7 | minimum possible $\omega$ (-180< |  | -48 |
|  |  | $\omega<180)$ |  |  |
|  | 8 | maximum possible $\omega$ (-180< |  | 58 |
|  |  | $\omega<180)$ |  |  |

## Notes:

a. See the Diffractometer description in $A B S O R B$ for the method to be used in determining the sense of rotation for each diffractometer circle.
orient 1-3 hkl indices of first orienting reflection
4 angle $\chi$ of first orienting reflection a
5 angle $\phi$ of first orienting reflection
6-8 hkl indices of second orienting reflection
9 angle $\chi$ of second orienting reflection
10 angle $\phi$ of second orienting reflection

## Notes:

a. Angles in the bisecting mode. (For CAD see Ch. II of the CAD User's Manual.)
orface a $1-3 \quad x, y, z$ coordinates of first point on orienting face
4-6 $x, y, z$ coordinates of second point on orienting face
7-9 $x, y, z$ coordinates of third point on orienting face

## Notes:

a. If the orface-facept method is used for entering face data, two orface lines must be used. The first contains the coordinates of three points on a plane parallel to the first orienting reflection given on the orient line. The second orface line contains the coordinates of three points on a plane parallel to the second orienting reflection given on the orient line.
facept $\quad 1-3 \quad x, y, z$ coordinates of first point on bounding face
4-6 $x, y, z$ coordinates of second point on bounding face
7-9 $x, y, z$ coordinates of third point on bounding face
face $\quad 1 \quad \chi$ for bounding face (angles in the bisecting mode)
$2 \phi$ for bounding face
3 distance to origin from bounding face in mm
faceom $1 \quad \chi$ for bounding face (angles in the bisectingmode)
$2 \quad \phi$ for bounding face
$3 \quad \omega$ for bounding face
4 distance to origin from bounding face in mm
faceml $\quad 1-3 \quad \mathrm{~h}, \mathrm{k}, \mathrm{l}$ indices of bounding face
4 distance to origin from bounding face in mm
grid a $\quad 1-3 \quad$ number of grid points in $x, y, z \quad 8$ directions
4 method of exponentiation $\underline{0}$ library function
1 table look-up

## Notes:

a. The grid line is used only if the Gaussian method is selected. Only the intervals $6,8,10,12,14,16,24$, or 32 are possible.

### 3.3. ADDATM : Load atom parameters

```
scale set Frel scale factors
extinc set extinction factors
uov set overall isotropic temperature factor
shift displace coordinates by shift and/or reversal
invert invert x, y, z coordinates
xabs xabs parameter for CRYLSQ
graf enter orientation matrix for ORTEP
grida set Fourier grid divisions for atomg lines
stack sort sites in the atom list
rename rename atom labels in the atom list
delete delete sites from the atom list
editu change the U values for an atom or atoms
atom atom parameters, fractional coordinates
atomg atom parameters, grid coordinates
ub isotropic thermal displacement parameter Uand }\sigma\textrm{U
uijb anisotropic thermal displacement parameters }\mp@subsup{\textrm{U}}{\textrm{ij}}{
suijb }\quad\sigma\mathrm{ 's of anisotropicthermal displacement parameters }\mp@subsup{\textrm{U}}{\textrm{ij}}{
linkb calculation method (if used)
Notes:
a. If entered, must follow an atom or atomg line with the same atom label.
b. Must precede any atomg lines entered.
```

| update atom list specify dataset | upd <br> dset | n | add or alter atom list |
| :---: | :---: | :---: | :---: |
| temperature factor | mixed |  | mixed iso. and aniso. |
|  | iso |  | indiv. isotropic, all atoms |
|  | aniso |  | indiv. anisotropic, all atoms |
|  | overall |  | overall isotropic, all atoms |
| check, print parameters | print |  | yes, check constraints |
|  | noprint |  | no |
| lratom: H atom linkage | plink |  | purge existing from archive |


| invert |  | signal to invert $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates to change enantiomorph <br> polarity |
| :--- | :--- | :--- | :--- |
| scale | 1 | Frel scale factor |
|  | 2 | scale group a |

Notes:
a. Only those scale groups may be entered that have been recorded for reflections in a prior ADDREF run.

uov $1 \quad$ overall isotropic displacement parameter $U \quad 0.035$
shift 1-3 translational shift of fractionalcoordinates $x, y, z \quad 0.0$
4-6 multiplier of fractionalcoordinates $x, y, z \quad 1.0$
xabs 1 Flack absolute configuration parameter for CRYLSQ 0.5
graf $\quad 1-9$ orientation matrix for ORTEP (see PIG for definition)
grida $\quad 1-3 \quad$ grid division along crystal axes $a, b, c$
Notes:
a. This line is used to set divisions for atomg lines.

| stack | $1-$ | atom label or atom-type symbol |
| :--- | :--- | :--- |
| rename | 1 | old atom label for existing site 1 <br> new atom label for existing site 1 |
|  | $3-4$ | old/new atom labels for existing site 2 |
| delete | $1-$ | atom label or atom-type symbol |
| editu | 1 | atom label or atom-type symbol or the codeall <br> new Uiso value <br> or iso to convert from anisotropic to isotropic |

or ani to convert from isotropic to anisotropic

| atom | 1 | atom label |  |
| :--- | :--- | :--- | :--- |
|  | $2-4$ | fractional coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ |  |
|  | 5 | isotropic displacement parameter U | 0.035 |
|  | 6 | population parameter | 1 |
|  | $7-9$ | $\sigma$ 's of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ | 0 |
|  | 10 | $\sigma$ of isotropic displacement parameter U | 0 |
|  | 11 | $\sigma$ of population parameter | 0 |
| $\mathbf{u}$ | 1 | atom label |  |
|  | 2 | U | 0 |
|  | 3 | $\sigma \mathrm{U}$ |  |
| uij | 1 | atom label |  |
|  | $2-7$ | $\mathrm{U}_{11}, \mathrm{U}_{22}, \mathrm{U}_{33}, \mathrm{U}_{12}, \mathrm{U}_{13}, \mathrm{U}_{23}$ |  |
| suij | 1 | atom label |  |
|  | $2-7$ | $\sigma \mathrm{U}_{11}, \sigma \mathrm{U}_{22}, \sigma \mathrm{U}_{33}, \sigma \mathrm{U}_{12}, \sigma \mathrm{U}_{13}, \sigma \mathrm{U}_{23}$ | 0 |

atomg $_{a} \quad$ The atomg line is identical to the atom line except $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in grid coordinates.
Notes:
a. The atomg line must be preceded by a grid line.
link a 1 atom label

2 calculation type | Code | $N$ | $M$ | Angles |
| :--- | :--- | :--- | :--- | :--- |
| linear | 2 | 1 | $\alpha_{1}=0^{\circ}$ or $180^{\circ}$ |
| trigon | 3 | 1 |  |
| tetchn | 3 | 2 |  |
| teterm | 3 | 3 | $\alpha_{1}$ |
| genral | 3 | 1 | $\alpha_{1} \alpha_{2}$ |
| methyn | 4 | 1 |  |
| trterm | 3 | 2 |  |
| median | 4 | 1 |  |

3 bond distance in $\AA$
$4 \ldots 3+\mathrm{N}+\mathrm{AK}$ els of atoms used in the generation, followed by atom labels of generated atoms
.. angles $\alpha_{1} \alpha_{2}$

## Notes:

a. Atom labels must match identically those in the bdf. The number of fields required depends on the calculation. The first N fields will be used for the generators and the next M fields will be used for the generated atoms. The final angle fields will be used only for the specified generation type. The parent atom of atoms built in this method should be related to the archive sites only by the identity symmetry operation. Auxilliary geometry specifying sites may however be symmetry related to the archive sites. In this case the symmetry operation required should be indicated as a variation on the the integral number n555 (where 1555 refers to the identity symop with no translations). link lines are only required for riding model least squares refinement in CRILSQ and should be automatically added for new H atoms built using PIG or BONDAT

### 3.4. ADDPAT: Create powder pattern bdf

label data for the lrplab: record
backgr not used
phases phase names
wavlen instrumental parameters

| ADDPAT | Option input file extension output file extension | Code inp out | ext <br> ext | Default diffractometer file suitable for POWGEN or RIETVD | pow pat |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | input file type | typ |  |  | phi |
|  | Philips APD ASCII files | phi |  |  |  |
|  | Philips PC-APD files | apd |  |  |  |
|  | Raw data files | raw |  |  |  |
|  | WYRIET input files | wyr |  |  |  |
|  | Universal X-ray data | uxd |  |  |  |
|  | ? | $\tan$ |  |  |  |


| label | 1 | character data for the lrplab: record |  |
| :--- | :--- | :--- | :--- |
| backgr | 1 | not used |  |
| phases | 1 | name of first phase |  |
|  | 2 | name of second phase <br> up to 10 phases |  |
|  | $3 \ldots$ |  | 1.540598 |
| wavlen | 1 | Wavelength alpha1 | 0.0 |
|  | 2 | Wavelength alpha2 | 0.0 |
|  | 3 | alpha2/alpha1 intensity ratio | .915 |
|  | 4 | polarisation ratio | xray |
|  | 5 | radiation type (xray ,electron, neutron or synchr) | fixed |
|  | 6 | fixed divergence slit $(0 / 1=$ fix/var $)$ | no |

### 3.5. ADDREF: Load reflection data



ADDREF a Option

| data set number |
| :--- | :--- |
| interpolated form factors b |$\quad$| dset |
| :--- |
| noff |
| ffac |, | slist |
| :--- |, | list |
| :--- |
| data for all reflections |
| Bayesian treatment to $\mathrm{I}<3 \sigma \mathrm{I}$ |

## n

 do not put ff in refl record put form factorin refl list data for 10 reflns list nreflections all Bayesian estimate if $\mathrm{I}<3 \sigma \mathrm{I}$|  | put form factorin refl |
| :--- | :--- |
| n $\quad$ list data for 10 reflns |  |
| list nreflections |  |
| Bayesian estimate if $\mathrm{I}<3 \sigma \mathrm{I} \quad$ all |  |

\(\left.$$
\begin{array}{lll}\text { systematically absent hkl } & \begin{array}{l}\text { nobay } \\
\mathbf{r s a b s} \\
\mathbf{s a b s} \\
\text { oabs }\end{array} & \begin{array}{l}\text { do not apply } \\
\text { do not output to bdf }\end{array}
$$ <br>

include in output bdf\end{array}\right\}\)| only put absences in output |
| :--- |
| bdf |

## Notes:

a. Rejected reflections may be listed by entering the line reset psta 4
b. See the $A D D R E F$ section of the ADDREF program description.
c. If the nolp option is chosen, $1 / \mathrm{Lp}$ will be excluded from the output bdf unless it is copied from input by an explicit or implied bdfin instruction.

| reduce | 1 | desired data conversion | nocon | no data conversion |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | itof2 | intensity to $\mathrm{F}_{2}$ |
|  |  |  | itof | intensity to $\mathrm{F}_{\text {rel }}$ |
|  |  |  | f2tof | $\mathrm{F}_{2 \text { rel }}$ to $\mathrm{F}_{\text {rel }}$ |
|  |  |  | f2toi | $\mathrm{F}_{2 \text { rel }}$ to intensity |
|  |  |  | ftof2 | Frel to $\mathrm{F}_{2 \mathrm{rel}}$ |
|  |  |  | ftoi | Frel to intensity |
|  | 2 | 1/Lp calculation method a | rlp1 | powder method |
|  |  |  | rlp2 | Eulerian cradle geometry and |
|  |  |  |  | $2 \theta$ scan |
|  |  |  | rlp3 | diffractometer with perp. |
|  |  |  |  | monochromator |
|  |  |  | rlp4 | diffractometer with equatorial |
|  |  |  |  | monochromator |
|  |  |  | none | set $1 / \mathrm{Lp}$ to 1.0 for all reflections |
|  | 34 | $2 \theta$ angle of monochromator b |  | (in degrees) assuming graphite from $\lambda$ |
|  |  | monochromator perfection |  | 0.5 |
|  |  | factor |  |  |
|  | 5 | incident beam polarization |  | 0.5 |
|  |  | factor before the |  |  |
|  |  | monochromator |  |  |

Notes:
a. For data conversion types itof2, itof, f2toi, and ftoi, the $1 / \mathrm{Lp}$ calculation method is automatically set to rlp2; otherwise, it is set to none.
b. Fields 4 and 5 are only for $1 / L p$ calculation methods $r l p 3$ and rlp4.
transfab 1-9 transformation matrix $\mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{21}, \mathrm{a}_{22}, \mathrm{a}_{23}, \mathrm{a}_{31}, \mathrm{a}_{32}, a_{33}$
Notes:
a. The transformation is: $h^{\prime} k^{\prime} l^{\prime}=h k l^{*} \mathbf{a}$-matrix
b. As of 3.7.2 the transf command was modified to reject reflections that transform to fractional indices. This can be used in conjunction with the ADDREF oabs to retain (untransformed) only those reflections which would have been rejected by the transformation. They can then be viewed with GIP for instance.

| limits a | $1-3$ | maximum $\|\mathrm{h}\|,\|\mathrm{k}\|,\|1\|$ output | from field 4 |
| :--- | :--- | :--- | :--- |
|  | 4 | maximum $\sin \theta / \lambda$ | $1 / \lambda$ |
| 5 | minimum d-spacing allowed | 0 |  |
| 6 | maximum reflection type | 5 |  |
| 7 | maximum scale group allowed | 64 |  |
|  | minimum scale group allowed | 1 |  |
|  | 9 | yes generate whole sphere | no |

## Notes:

a. The default for each quantity is such that, effectively, no restriction is made. If the nmax option has been specified in the ADDREF line, the limits line quantities will be ignored.

| bdfin | Option | Code | Arg |  | Def |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | input archive bdf | file | ext | read bdf with extension ext |  |
|  | lrrefl: archive items a | hkl |  | Miller indices |  |
|  |  | frel |  | Frel |  |
|  |  | sigf |  | $\sigma$ Frel |  |
|  |  | fcal |  | calculated F |  |
|  |  | acal |  | calculated A |  |
|  |  | bcal |  | calculated B |  |
|  |  | irel |  | relative intensity |  |
|  |  | sigi |  | $\sigma$ Irel |  |
|  |  | f2rl |  | $\mathrm{F}_{2 \text { rel }}$ |  |
|  |  | sgf2 |  | $\sigma \mathrm{F}_{2 \text { rel }}$ |  |
|  |  | rcod |  | reflection code (rcode) |  |
|  |  | scgp |  | scale group |  |
|  |  | extf |  | extinction factor |  |
|  |  | eval |  | E value |  |
|  |  | absf |  | absorption correction factor |  |
|  |  | tbar |  | mean beam path length |  |
|  |  | pcyc |  | phase in cycles |  |
|  |  | pdeg |  | phase in degrees |  |
|  |  | rlp |  | 1/Lp or 1/L for neutrons |  |
|  |  | wgt1 |  | least squares weight 1 |  |
|  |  | wgt2 |  | least squares weight 2 |  |
|  |  | wgt3 |  | least squares weight 3 |  |
|  |  | ifri |  | intensity of Friedel mate |  |
|  |  | sfri |  | $\sigma$ I of Friedel mate |  |
|  |  | f2fr |  | F2rel of Friedel mate |  |
|  |  | sf2f |  | $\sigma \mathrm{F}_{2 \text { rel }}$ ofFriedel mate |  |
|  |  | ffri |  | $\mathrm{F}_{\text {rel }}$ of Friedel mate |  |
|  |  | sffr |  | $\sigma \mathrm{F}_{\text {rel }}$ of Friedel mate |  |
|  |  | rcdf |  | rcode of Friedel mate |  |
|  |  | scgf |  | scale group of Friedel mate |  |
|  |  | all |  | all items from logical |  |
|  |  |  |  | recordlrrefl: b |  |

Notes:
a. ID numbers may also be used to specify items to be input. These are listed in the Archive section of the Reference Manual. Also see ADDREF.
b. The option all will cause all items from logical record lrrefl: of this bdf to be read from the file, except $\sin \theta / \lambda$, epsilon, multiplicity, 1/Lp and form factors, which are calculated later in the program. This option may be used only on the bdfin line.

hklgena Option Code Arg Def
items written to output archive same options as bdfin line bdf
Notes:
a. Options must include hkl and either frel, $\mathbf{f} \mathbf{f r l}$ or irel.

```
remove
```

Option
Code
Arg same options as bdfin line
items on hklin line that should not be placed on the bdf

## $\mathbf{h k} \mathbf{l}_{\mathrm{a}}$ 1- data corresponding to each item, in order, on the $\mathbf{h k l i n l i n e}$

## Notes:

a. Exception: $\mathrm{h}, \mathrm{k}$, and l each take three fields on the hkl line, but are specified using the one mnemonic hkl on the hklin line. The use of continuation, $\mathbf{c}$, lines with $\mathbf{h k l}$ and $\mathbf{h k l i n}$ input lines is allowed but there must be a one-to-one correspondence between the data on the hklin-c pair and the hkl-c pairs.

### 3.6. ATABLE: Tabulate atomic parameters

```
ATABLE Option Code Arg Def
use brackets in the atom label e.g. yes
C(44A)
do not change bdf atom label nobr
```


### 3.7. BAYEST: Bayesian estimates of $|\mathbf{I}|$ and $|\mathbf{F}|$

| BAYEST | Option | Code | Arg |  |
| :--- | :--- | :--- | :--- | :--- |
|  | number of $\sin 2 \theta / \lambda$ bins <br> Bayesian correction to | nrange | n |  |
|  | int |  | intensity | Def |
|  | frel |  | Frel |  |
| list reflection data | npri |  | do not print hkl |  |
|  | print |  | print hkl |  |

### 3.8. BONDAT: Generate atom coordinates

```
site temporary atom sites needed for geometry calculations
calcat calculate atom from given atoms in specifiedconfiguration
\begin{tabular}{llllll} 
BONDAT & Option & Code & Arg & & nef \\
update bdf & \(\underline{\text { nu }}\) & & \begin{tabular}{l} 
no update of archive file \\
update archive file
\end{tabular} & \\
& set U for new atoms & uf & & & 0.035
\end{tabular}
site 1 site labela
            2-4 fractional coordinates x, y, z
Notes:
a. If label matches site on the bdf, these coordinates will be substituted for the calculation. Otherwise a new site will be added to the atom list. This site will not be added to the punch file.
```

calcat 1 calculation type

| Code | $N$ | $M$ | Angles |
| :--- | :--- | :--- | :--- |
| linear | 2 | 1 |  |
| trigon | 3 | 1 |  |
| tetchn | 3 | 2 |  |


| teterm | 3 | 3 | $\alpha_{1}$ |
| :--- | :--- | :--- | :--- |
| sqrpln | 3 | 2 |  |
| octhed | 3 | 4 |  |
| hexgnl | 3 | 3 |  |
| genral | 3 | 1 | $\alpha_{1} \alpha_{2}$ |
| methyn | 4 | 1 |  |
| trterm | 3 | 2 |  |
| median | 4 | 1 |  |


| 2 | bond distance in $\AA$ <br> labels of atoms used in the generation, <br> followed by atom labels of generated <br> atoms a |
| :--- | :--- |

## Notes:

a. Atom labels must match identically those in the bdf. The number of fields required depends on the calculation. The first N fields will be used for the generators and the next M fields will be used for the generated atoms. The final angle fields will be used only for the specified generation type. The coordinates of the generating atoms must be such that the atoms are connected, not related by a symmetry operation other than the identity.

### 3.9. BONDLA: Bond lengths and angles

| atrad | atomic radii by atom type |
| :--- | :--- |
| addpek | add peak site to atom list from pek file |
| bond | calculate a specific bond distance |
| angle | calculate a specific bond angle |
| dihed | calculate a specific dihedral angle |
| nviron | calculate distances to a specific atom site |
| site | enter temporary atom sites needed for geometry |


| BONDLA | Option <br> bond distances | Code <br> bond | Arg | list all bond distances | Def |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | nbon |  | no bond distances |  |
|  | bond angles | angl |  | list all bond angles |  |
|  |  | nang |  | no angles |  |
|  | contact distances | ncon |  | no contact distances |  |
|  |  | cont |  | list all contact distances |  |
|  | dihedral angles | ndih |  | no dihedral angles |  |
|  |  | dihe |  | list all dihedral angles |  |
|  | bond check | chek |  | for Acta Cryst CIF bond checking |  |
|  | sort bond \& contact distances | nsor |  | do not sort distances |  |
|  |  | sort |  | sort distances |  |
|  | optimally connect input sites | clus |  | recluster input sites |  |
|  |  | nclu |  | use input sites |  |
|  | use full symmetry to searches | symm |  | apply full symmetry |  |
|  |  | nsym |  | no symmetry |  |
|  | do not output geom data to bdf | nbdf |  |  | output |
|  |  |  |  |  | tobdf |
|  | use brackets in pch output file | brac |  |  | no |
|  |  |  |  |  | brackets |
|  | number of cells searched | cell | n | 1 for 1 unit cell | 3 |
|  |  |  |  | 2 for 27 cells |  |
|  |  |  |  | 3 for 125 cells |  |


| atrad | 1 | atom-type symbol to which the radii apply(max 8 chars) |  |
| :---: | :---: | :---: | :---: |
|  | 2 | maximum radius to be used in identifying contacts | 1.25 |
|  | 3 | maximum radius to be used in identifying bonds | 0.9 |
|  | 4 | minimum radius to be used in identifying bonds | 0.015 |
| addpek | 1 | atom-type symbol assigned to selected peak sites (max 8 chars) |  |
|  | 2 | number of peaks assigned to atom-type | 1 |
|  | 3 | maximum radius to be used in identifying contacts | 1.25 |
|  | 4 | maximum radius to be used in identifying bonds | 0.9 |
|  | 5 | minimum radius to be used in identifying bonds | 0.015 |
|  | 6 | thermal displacement parameter assigned to output site | 0.035 |
| bond | 1-2 | atom labels of sites 1 and 2 (max 24 chars) |  |
|  | 3-4 | numbers a of symops applied to sites 1 and 2 | 1 |
|  | 5-6 | codes of cell translations applied to sites 1 and 2 | 555 |
| Notes: |  |  |  |
| a. Symmetry matrix number as entered into STARTX. |  |  |  |
| angle | 1-3 | atom labels of sites 1, 2 and 3 (max 24 chars) |  |
|  | 4-6 | numbers a of symops applied to sites 1, 2 and 3 | 1 |
|  | 7-9 | codes of cell translations applied to sites 1, 2 and 3 | 555 |
| Notes: |  |  |  |
| a. Symmetry matrix number as entered into STARTX. |  |  |  |
| dihed | 1-4 | atom labels of sites 1, 2, 3 and 4 (max 24 chars) |  |
|  | 5-8 | numbers a of symops applied to sites 1,2,3 and 4 | - |
|  | 9-12 | codes of cell translations applied to sites 1, 2, 3 and 4 | 555 |
| Notes: |  |  |  |
| a. Symmetry matrix number as entered into STARTX. |  |  |  |
| nviron | 1 | atom label of central site (max 24 chars) |  |
|  | 2 | number a of symop applied to sites | 1 |
|  | 3 | code of cell translations applied to site | 555 |
|  | 4 | radius of sphere to be searched for other sites | 3 |

## Notes:

a. Symmetry matrix number as entered into STARTX.

| site | 1 | atom label of site $\mathrm{a}(\max 24$ chars $)$ |  |
| :--- | :--- | :--- | :--- |
|  | $2-4$ | fractional coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ |  |
| 5 | U | 0.035 |  |
|  | 6 | population | 1 |
|  | $7-9$ | $\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{z}$ | 0.0 |

Notes:
a. If label matches site on the bdf, these coordinates will be substituted for the calculation. Otherwise a new site will be added to the atom list. This site will not be added to the bdf.

### 3.10. BUNYIP: Search for Additional Symmetry

| radii | set radius for atom types |
| :--- | :--- |
| assume | assume atom types correct |
| search | limit search to symmetry type |

complx define moleculat cluster
remove define atom label or atom type not to beincluded in search atom labels to be forced to be on the symmetryelement


### 3.11. CBAZA: Add crystal based azimuthal PSI angle

diff a diffractometer description
orient crystal orientation
Notes:
a. diff and orient are mandatory.


4

5 sense of rotation of the $\psi$ circle $\underline{c}$ a
clockwise anti-clockwise clockwise anti-clockwise

0

Notes:
a. See the Diffractometer Description in ABSORB for the method to be used in determining the sense of rotation for each diffractometer circle.
orient $\quad 1-3 \quad \mathrm{hkl}$ indices of first orienting reflection
4 angle $\chi$ of first orienting reflection a
5 angle $\phi$ of first orienting reflection
6-8 hkl indices of second orienting reflection
9 angle $\chi$ of second orienting reflection
10 angle $\phi$ of second orienting reflection
Notes:
a. Angles in the bisecting mode. (For CAD see Ch. II of the CAD User's Manual.)

### 3.12. CHARGE: Atomic charges from difference density

| CHARGE | Option <br> weighting function | Code <br> density | Arg | promolecular density |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ Def

### 3.13. CIFIO: Input and output CIF data

block data_ block code definition

$\left.\begin{array}{llll} & \underline{\text { corr }} & \begin{array}{l}\text { correct measured ff for } \\ \text { extinction }\end{array} \\ & \text { ncorr } & \text { no correction of extinction } \\ \text { effects }\end{array}\right]$

## Notes:

a. Not recommended for general use.
block 1 data_ block code written bycifin or read by cifout

### 3.14. CIFENT: CIF entry of diffractometer data



### 3.15. CONTRS: Contour a map



| last layer to contour | llayer | n |  | max. |
| :---: | :---: | :---: | :---: | :---: |
| increment between layers | dlayer | n |  | from bdf incr. from $b d f$ |
| superimpose layers | super |  | yes |  |
| interpolation type | cubic |  | cubic interpolation |  |
|  | linear |  | linear interpolation |  |
| curve smoothing | smooth |  | smoothing on curves |  |
|  | nsmooth |  | no smoothing |  |
| resolution for smoothing | resol | n |  | 0.10 |
| mesh points as crosses | mesh |  | yes |  |
| plot border of map | border |  | plot border |  |
|  | nborder |  | do not plot border |  |
| plot atoms near plane | atoms | n | distance n from plane |  |
| plot atom names | nnames |  | do not plot names |  |
| off plane atoms | dist |  | plot italic distances |  |
| draw the atomic bonds | draw |  |  |  |
| rotate map 90 degrees | rotate |  | rotate clockwise |  |
| vector function plot a | $\underline{\text { mod }}$ |  | modulus of vector |  |
|  | vect |  | 3-component vector |  |
| contour filling | filled |  | switch on b c |  |

Notes:
a. Note that these function require input from a sla file
b. Contour filling is currently very, very rudimentary. The The zero level is a baseline and contours are filled downwards to -ive and then upwards to +ive. The upshot is that for re-entrant contour levels the contour will (a) be filled one color in the wrong direction and (b) be overwritten by the nearest local maxima/minima of the reentrant curve portion. You have been warned!
c. Contour filling will not be apparent unless PLOTX or PREVUE are invoked with the "color fill" option.

| Levels | Option <br> type of contour a | Code <br> arith <br> geom | Arg |
| :--- | :--- | :--- | :--- | | arithmetic intervals |
| :--- |
| direct |$\quad$| geometric intervals |
| :--- |
| explicit levels input |

## Notes:

a. These items are mandatory
b. Codes nc, start, and incr are not allowed for the direct option - follow the direct flag on the input line with the levels desired. The levels line can function in a cumulative manner for the direct option. The negate and zincl operations are not performed until all line input is complete.

| Iintyp | Option | Code | Arg |
| :--- | :--- | :--- | :--- |
|  | dashed line a | dashed | $\mathrm{n} \mathbf{m}$ |
|  | dotted lines | dotted | $\mathrm{n} \mathbf{m}$ |
|  | solid line | solid | $\mathrm{n} \mathbf{m}$ |

## Notes:

a. The n is the first line and m the last line to be assigned to this type. Both n and m must be input. The lines are assigned sequentially. Options can be input in any order and in any combination of line types.
dash a 1 number of elements in the dash-gap sequence
2 first dash length
3 first gap length
4 second dash length
5 second gap length

Notes:
a. A maximum of 10 elements is allowed. The lengths are relative to a y-dimension (down the page) of 10 units.

| color | 1 | temperature spectrum color scale hue, saturation $=1.0$, brightness=1.0 greyscale color scheme | temp hue grey |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | Lower color limit |  | 0.0 |
|  | 3 | Upper color limit |  | 1.0 |
|  | 4 | fixed color for Zero contour level or |  | auto |
|  | 1 | explicit RGB entries in following fields | RGB |  |
|  | 2 | one color per contour level in hexadecimal notation black $=000000$, red $=$ FF0000, green $=00 \mathrm{FF} 00$, blue $=0000 \mathrm{FF}$ |  |  |

### 3.16. $C R E D U C$ : Check cell choice

| CREDUC | Option | Code | Arg | Def |
| :--- | :--- | :--- | :--- | :--- |
|  | maximum obliquity (in degrees) | amax | d | 3.0 |
|  | maximum cell index | mult | n | 2 |

### 3.17. CRILSQ: Structure factor least-squares refinement 2

| maxhkl <br> twin <br> constr <br> noref | reflection limits to twinning operation linear contraints be shut off refinement | in ls refi ocal sp ramete ied par |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CRILSQ | Option number of refine cycles dispersion overall tdp extinction | Code | Arg |  | Def |
|  |  | cy | n |  |  |
|  |  | nd |  | do not apply dispersion |  |
|  |  | ov |  | apply and refine overall tdp |  |
|  |  | ex |  | apply and refine extinction parameter |  |
|  | Flack param | $a b$ |  | apply and refine Flack |  |
|  | occupancy factor | ro |  | absolute structure parameter apply and refine occupancy factor |  |
|  | reflection skip | sk | n | use every n-th reflection | 2 |
|  | weighting scheme | wt | n | $\mathrm{n}=1$ unit weights | 3 |
|  |  |  |  | $\mathrm{n}=2$ weight from bdf $\mathrm{n}=3$ weight $=1 /$ variance |  |


| contribute to refl. Is contribute to refl. Is | mr ml | q | only if $w^{*}\|d Y\|<q$ exclude rcode 2 reflections (included by default) |  |
| :---: | :---: | :---: | :---: | :---: |
| shift damping factor | sd | q |  | 1.0 |
| terminate refinement | tc |  | if convergence reached |  |
| list | li | n | n reflections after last cycle | 99999 |
|  | $1 r$ | q | poor reflections if $\mathrm{w}^{*}\|\mathrm{dY}\|>\mathrm{q}$ |  |
|  | $1 m$ |  | matrix and vector after last cycle |  |
|  | 1 c | q | correlation matrix for elements > q |  |
| punch | pc |  | parameter lines to . pch file |  |
| save | sm |  | correlation matrix to .cmx file |  |


| maxhkı | $1-3$ | $\max \|\mathrm{~h}\|,\|\mathrm{k}\|,\|1\| \mathrm{in}$ refinement process |
| :--- | :--- | :--- |
|  | 4 | $\min$ value of $\sin (\theta)$ applied |
|  | 5 | $\max$ value of $\sin (\theta)$ applied |

from bdf (see ADDREF)
from bdf (see ADDREF)
from bdf (see ADDREF)
twin 1-9 matrix of symmetry operation in reciprocal space coded as: m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33
10 number of twin fractions
11 volume ratio of twin fraction 1
12- volume ratio of twin fraction 2,3 ... a

## Notes:

a. A maxmum of 8 fractions are allowed, they should be in sequence and form a closed group (see CRILSQ)
constr
noref
contraint equation (see CRYLSQ) Embedded blanks are allowed.
invariant parameter string (see CRYLSQ)
No embedded blanks are allowed.
The general parameters SKF, UOV, EXT, ABS RID and TWI can be shut off as well as the atom parameters X,Y,Z,U,U11,U22,U33,U12,U13,U23,UIJ and POP.

### 3.18. CRISP: Well baked structural solution

invar
select
only
refine parameters controlling tangent refinement process
setfom input figure-of-merit parameters
control structure invariant relationships used control starting phase selection process request specific phase sets from an extended run

| CRISP | Option | Code | Arg |  | Def |
| :--- | :--- | :--- | :--- | :--- | :--- |
| data set number | dset | n |  | 1 |  |
| optimization level | optim | n | $0-3$ depth of study | 2 |  |
| output listing | list | n | $0-5$ depth of study | 0 |  |
| total phase sets | trial | n | random phase sets | 64 |  |
| best phase sets | best | n | look in depth at | 1 |  |
| minimum E value | emin | n | from .inv file |  |  |
| max generators | $\operatorname{rmax}$ | n | from .inv file |  |  |



| 5 | optimum NEGQ value for <br> CFOM/AMOS calculation <br> weight of RFOM value for <br> CFOM/AMOS calculation <br> weight of RFAC value for <br> 8 | CFOM/AMOS calculation <br> weight of PSIO value for <br> CFOM/AMOS calculation <br> weight of NEGQ value for <br> CFOM/AMOS calculation <br> automatic termination of <br> multi-solution process <br> continue even if FOMs < <br> optimal FOMs <br> RFOM lower rejection limit for <br> 014 and 024 |
| :--- | :--- | :---: | | 1 |
| :---: |
| 11 |

## onlya $_{\text {a }} \quad 1-35$ request specific phase set numbers to look at in detail

Notes:
a. Generally used after terminating a CRISP zZZZ list 3 run, having spotted some interesting phase sets that may be worth further in depth study.

### 3.19. CRYLSQ: Structure factor least-squares refinement

| disper | dispersion factor |
| :--- | :--- |
| scale | scale factor |
| extinc | extinction parameters |
| maxhkl | reflection limits |
| xabs | absolute-structure parameter |
| select | select subset of atoms from the bdf |
| dptype | change atomic displacement parameter type |
| group | group or identical molecule refinement |
| atomgr a | atoms per group |
| restr b | establish conditions for positional parameters |
| constr b | constrain one parameter to be a function of otherparameters |
| noref b | shut off refinement of specified parameters |
| block | matrix blocking line |

Notes:
a. Must be preceded by a group line
b. Order specific lines. restr lines precede constr which precede noref lines.

| CRYLSQ | Option number of refine cycles refinement coefficient | Code | Arg |  | Def |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | cy | n |  | 1 |
|  |  | $\underline{\text { fr }}$ |  | F |  |
|  |  | f2 |  | $\mathrm{F}_{2}$ |  |
|  |  | in |  | intensity |  |
|  |  | fh |  | F(heavy atom) |  |
|  | derivative matrices | bd |  | block-diagonal |  |
|  |  | fm |  | full-matrix |  |
|  |  | bl |  | specified in block lines |  |
|  | reflection weight | ws |  | 1/G2 |  |
|  |  | wu |  | unit weights |  |
|  |  | ww | n | bdf wt with id=190n | 0 |



```
            anisotropic (not implemented) an
            3 mosaic distribution
            Gaussian distribution
                gaus
                    Lorentzian distribution
                            lore
                    4 isotropic extinction
                    parameter(zach or typ1)
                    5 isotropic extinction (\rho)
                                    0
            parameter(typ2 or gen)
6 mean value of T in mm Xray 0.3
neutron
1.5
maxhkl
1-3 max |h|, |k|, |l applied in refinement process
999
    4 min value of }\operatorname{sin}0/\lambda\mathrm{ applied0
```

$5 \max$ value of $\sin \theta / \lambda$ applied ..... 10

```
xabs \(1 \quad\) Flack absolute structure parameter 0.5
select 1- atom label or atom label string a
Notes:
a. An atom label string is two atom labels separated by a slash ' \(/\) '. The first label identifies the first atom , and the second label the last atom in a sequence of atoms.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{dptype} & 1 & \multicolumn{4}{|l|}{atom type symbol} \\
\hline & 2 & thermal displacement type & & & \\
\hline & & overall U & ov & & \\
\hline & & isotropic U & is & & \\
\hline & & anisotropic \(\mathrm{U}_{\mathrm{ij}}\) & an & & \\
\hline & 3-4 & as in 1,2 , or use separate & & & \\
\hline & & dptype lines & & & \\
\hline \multirow[t]{21}{*}{group} & 1 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{group refinement number of molecule}} & 0 \\
\hline & & & & & \\
\hline & 2-4 & \multicolumn{3}{|l|}{\(x, y, z\) fractional coordinate of centre of gravity, if fixed} & \\
\hline & 5 & \multicolumn{2}{|l|}{Euler angle refinement signal} & not fixed & \\
\hline & & Euler angles invariant & - & & \\
\hline & & symmetry element is parallel or & & & \\
\hline & & perp. to a-axis & & & \\
\hline & & symmetry element is parallel or & & & \\
\hline & & perp. to b-axis & & & \\
\hline & & symmetry element is parallel or & & & \\
\hline & & perp. to c-axis & & & \\
\hline & 6 & signal for the refinement of & & & \\
\hline & & isotropic U & & & \\
\hline & & group isotropic U & \(\underline{+1}\) & & \\
\hline & & invariant U & 0 & & \\
\hline & & individual isotropic U & -1 & & \\
\hline & 7 & signal for population parameter & & no constraints & \\
\hline & & refinement & & & \\
\hline & & group population & +1 & & \\
\hline & & invariant population & 0 & & \\
\hline & & individual population & -1 & & \\
\hline & & & & & \\
\hline atomgr & 1 & atom label string a & & & \\
\hline
\end{tabular}
```


## Notes:

a. An atom label string is two atom labels separated by a slash ' $/$ '. The first label identifies the first atom, and the second label the last atom in a sequence of atoms.
restra 1 restraint class
bond length bond ( $\mathrm{n}=2$ atoms)
bond angle
angle ( $\mathrm{n}=3$ atoms)
dihedral angle dihed ( $\mathrm{n}=4$ atoms)
2 atom labels of the n restrained atoms b
$\mathrm{n}+2$ ideal values of bond length, angle or dihedral angle
$\mathrm{n}+3$ standard deviation of ideal value

## Notes:

a. restr is an order specific line and cannot be preceded by constr or noref lines.
b. These atom labels may each be followed by an optional field indicating a symmetry operation to be applied to the coordinates of the atom. This field has the form ( $\mathrm{n} \_\mathrm{mmm}$ ), where n is the symop number from STARTX, and mmm is the translation based on the number 555. The parentheses are mandatory.
constr a 1 contraints equation b (see CRYLSQ)
Notes:
a. constr is an order specific line and cannot be preceded by noref lines.
b. Embedded blanks are allowed. The order of the constraints is not arbitrary - reference atoms must occur higher in the atom list than subject atoms. Furthermore, for parameters belonging to the same atom, the reference parameters must occur earlier in the parameter list than the subject parameters. The parameters may be any of the following: SKF, UOV, EXT, DSP, X, Y, Z, U, U11, U22, U33, U12, U13, U23, POP, APP, and NEU.
noref 1 invariant parameter string a
Notes:
a. No embedded blanks are allowed. See the constr line for the list of parameters and for special atom names.
block a 1 matrix block (same format as noref)
Notes:
a. Any block lines must cover all selected parameters. When no parameter symbol is given, a new block is started.

### 3.20. DIFDAT: Process diffractometer data

transfa transform Miller indices of input reflections
attenu a attenuator factors
stands ab specification of standard reflection signals
sthkls ab alternative method of establishing standard reflections
fetch definition of the order of the quantities in data lines
data diffractometer data lines
genscl cd generation of intensity scale factors
setscl cd set intensity scale factors
discon $c$ definition of discontinuities in scale factors
Notes:
a. Must precede following option lines.
b. One or the other but not both may be used.
c. One of these lines must be present if the data is to be scaled. Otherwise, scale factors are calculated but not applied.
d. If a setscl line is input before a genscl line, the genscl line will be ignored.

DIFDAT Option Code Arg Def

| input data mode | dat |  | data lines from input |  |
| :---: | :---: | :---: | :---: | :---: |
|  | bdf |  |  |  |
|  | cad |  | CAD4 diffr. file cad |  |
|  | niv |  | Nicolet (Vax) a file nic |  |
|  | nid |  | Nicolet (DG) a file nic |  |
|  | sie |  | Siemens ascii file sie |  |
|  | uwa |  | P3 special binary file dct |  |
|  | tsu |  | Tsukuba diffr. file tsu |  |
|  | spe |  | special diffr. file dif |  |
|  | rd5 |  | Rigaku Denki. file rd5 |  |
|  | shx |  | SHELX F4 fixed format file |  |
|  | sh3 |  | SHELX F3 fixed format file |  |
|  |  |  | .hkl b |  |
|  | rap b |  | Rigaku Rapid .f2plus |  |
| filename <256 characters | brub |  | Bruker Smart file c raw change shx/rap input data |  |
|  |  | n | filename |  |
| Bruker raw file | cos |  | load direction cosines on to bdf |  |
| Tsukuba .tsu file data ${ }_{\text {d }}$ | smu | n | monitor count smoothing across $1<\mathrm{n}<21$ reff'ns | 1 |
| Nicolet scan mode | 2th |  | Nicolet $\theta-2 \theta$ scan |  |
|  | ome |  | Nicolet $\omega$ scan |  |
| add bdf refln data | noadd |  | do not add hkl from old bdf |  |
|  | add |  | add new hkl to old bdf e |  |
| print reflection data | noprint |  | print no reflections |  |
|  | print | n | print n | all |
| print raw data | raw |  | print n lines, defined above |  |
| scale intensities | nap |  | do not apply scale |  |
| fate of standards | include |  | include on output bdf exclude from output bdf |  |
|  | exclude |  |  |  |
| backg. time each side | bgtime | p | time in seconds | 10 |
| min. scan time f | mint | t | time in seconds | 10 |
| observ. threshold g | obst | n | rcode $=2$ if $\mathrm{I}<\mathrm{n} \sigma \mathrm{I}$ | 2 |
| set intensity if rcode 2 | nobth |  | store as calculated |  |
|  | obth | m | store as m $\sigma \mathrm{I}_{\mathrm{h}}$ |  |
| backg. imbalanced | baln | q | warn if(b1-b2) > q $\sigma$ I | 10 |
| damp stds variation | damp | $r$ | scaledamping factor | . 5 |
| instability option | inst | $\bigcirc \mathrm{mb}$ | option, slope, intercept ${ }_{i}$ |  |
| instability calculation | nsc |  | calc. before scaling | after |
| instability calculation | nrw |  | do not use raw counts |  |
| $\sigma \mathrm{I}$ options | est | f | use $\mathrm{f}^{*} \mathrm{I}$ as $\sigma \mathrm{I}$ |  |
|  | sig | s | incr. $\sigma \mathrm{I}$ with sI | . 02 |
| output diffract. angles | ang |  | put angles on the bdf | no |
| output Eulerian angles | eul |  | put angles on the bdf | no |
| deadtime correction | dtm | n | add $\mathrm{n} \%$ to deadtime |  |
|  |  |  | correction |  |

[^2]uvw\mathrm{ ] of
the needle direction
grid 1-3 number of grid points in the 3 dimensions

```

\subsection*{3.32. \(L S L S\) : Structure factor least-squares refinement}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
maxhkl \\
twinop \\
noref \\
ref \\
constr \\
limsft
\end{tabular} & \multicolumn{4}{|l|}{set maximum \(|h|,|k|,|l|\) and minimum/maximum valu twinning operation in reciprocal space keep one parameter (or a set of parameters) fixed turn on refinement of one (or a set of) parameter(s) linear constraint between parameters shift limitation of one parameter} & \\
\hline \multirow[t]{30}{*}{LSLS} & \multirow[t]{6}{*}{\begin{tabular}{l}
Option \\
number of cycles atomic-displacement type
\end{tabular}} & Code & Arg & & Def \\
\hline & & cy & n & & 1 \\
\hline & & mx & & mixed & \\
\hline & & an & & anisotropic & \\
\hline & & is & & isotropic & \\
\hline & & ov & & overall & \\
\hline & \multirow[t]{3}{*}{weighting scheme} & ws & & 1/esd 2 & \\
\hline & & wu & & unit weights & \\
\hline & & ww & & weights from bdf & \\
\hline & \multirow[t]{2}{*}{refinement type} & in & & intensities & \\
\hline & & f2 & & \(|\mathrm{F}|_{2}\) & \\
\hline & \multirow[t]{2}{*}{scale factors} & us & & unit scale & \\
\hline & & ms & & many scales & \\
\hline & \multirow[t]{5}{*}{crystal shape population parameters dispersion parameters} & rs & & refine & \\
\hline & & pp & & refine & \\
\hline & & nd & & no dispersion & \\
\hline & & ad & & apply & \\
\hline & & rd & & apply \& refine & \\
\hline & \multirow[t]{3}{*}{extinction parameters} & \(\underline{\mathrm{nx}}\) & & no extinction & \\
\hline & & ax & & apply & \\
\hline & & rx & & apply \& refine & \\
\hline & \multirow[t]{3}{*}{twinning parameter} & np & & no twins & \\
\hline & & ap & & apply & \\
\hline & & rp & & apply \& refine & \\
\hline & data set number & ds & n & & 1 \\
\hline & skip reflections & sk & \(n\) & no skip & \\
\hline & damping factor & fu & x & & 1.0 \\
\hline & correlation between measured & cd & x & & 0.0 \\
\hline & dist & & & & \\
\hline & save variance-covariance matrix & sm & & last cycle & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline list normal equations matrix \({ }_{\mathrm{b}}\) & \(1 m\) & n & & \\
\hline list variance-covariance matrix & lc & & last cycle & \\
\hline non-positive definite displ & tr & & reset & \\
\hline params & & & & \\
\hline & tp & & print warning & \\
\hline & ts & & stop & \\
\hline twinning parameter \(<0\) or \(>1\) & er & & reset & \\
\hline & ep & & print warning & \\
\hline & es & & stop & \\
\hline crystal shape parameter \(<0\) & sr & & reset distances & \\
\hline & sp & & print warning & \\
\hline & ss & & stop & \\
\hline scale not positive & kr & & reset & \\
\hline & kp & & print warning & \\
\hline & \(\underline{\mathrm{ks}}\) & & stop & \\
\hline list correlations & pc & x & list \(\mid\) corr \(\mid \geq \mathrm{x}\) & \\
\hline list poor reflections & 1 p & x & if weighted \(\mid\) dif \(\mid \geq=x\) & \\
\hline list reflections on last cycle & 11 & n & & all \\
\hline every cycle & le & n & & all \\
\hline list restraints on last cycle & tl & n & & all \\
\hline every cycle & t & n & & all \\
\hline refinement on restraints only & ro & & & \\
\hline do not use reflection in matrix & cs & x & \(\mathrm{I} / \mathrm{esd}(\mathrm{I})=\mathbf{x}\) & \\
\hline punch parameters & pl & & last cycle & \\
\hline reject reflection & rj & x & if weighted \(\mid\) dif \(\mid=\mathbf{x}\) & \\
\hline
\end{tabular}

Notes:
a. Variance-covariance matrix is saved according to REGFE specifications.
b. If n is greater than 0 , list on every cycle, else only on the last cycle. 1 to list only inverted matrix and shift vector, 2 to list direct and inverted matrices and both vectors.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{maxhkl} & 1-3 & max |h|, max |k|, max || \({ }^{\text {ased in refinement }}\) \\
\hline & 4-5 & \(\min \& \max\) of \(\sin \theta / \lambda\) used in refinement \\
\hline \multirow[t]{4}{*}{twinop} & 1-9 & matrix of symmetry operation in reciprocal spacecoded as \(\mathrm{m}_{11}, \mathrm{~m}_{12}, \mathrm{~m}_{13}, \mathrm{~m}_{21}, \mathrm{~m}_{22}, \mathrm{~m}_{23}, \mathrm{~m}_{31}, \mathrm{~m}_{32}, \mathrm{~m}_{33}\) \\
\hline & 10 & Twinop number \\
\hline & 11 & twin component 1 \\
\hline & 12 & twin component 2 (Friedel) \\
\hline noref a & & non-refined parameter(s) \\
\hline
\end{tabular}

Notes:
a. General parameters are: scale- skf, crystal shape- shp, twinning parameter- twi, extinction parameter- ext, dispersion parameterdsp, real part of dispersion- \(\mathbf{r e}\), imaginary part of dispersion-im, overall displacement parameter- uov. The syntax to address a general parameter is: param(number). Atomic parameters are: \(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{u 1 1}, \mathbf{u 2 2}, \mathbf{u 3 3}, \mathbf{u 1 2}, \mathbf{u 1 3}, \mathbf{u 2 3}, \mathbf{p o p}\). The syntax to address an atomic parameter is: param(atom name). Sets of parameter can be grouped using (param1/param2), (number1/number2), (atom1/atom2).
ref a \(\quad 1-\quad\) refined \(\operatorname{parameter}(\mathrm{s})\)

\section*{Notes:}
a. See noref line for the description of the parameters.
constr 1 constraint written as : subject parameter \(=\) constant \(\mu\) factor \(*\) reference parameter
\& \(\pm \ldots\).
Notes:
a. There can be more than one reference parameter. See noref line for the description of the parameters. Blanks are not accepted in the field.
\begin{tabular}{lll} 
limsft & 1 & shift-limited parameter a \\
& 2 & weight of pseudo-observation \(b\)
\end{tabular}

Notes:
a. See noref line for the description of the parameters.
b. If the weight is less than 1 , it is assumed to be the Levenberg-Marquardt parameter.

\subsection*{3.33. LSQPL: Least-squares planes \& lines}
\begin{tabular}{ll} 
plane a & initiates plane calculation \\
linea & initiates line calculation \\
define & atoms which define a line or a plane \\
nondef & atoms which do not define a line or a plane \\
site & site coordinates and estimated standard deviations \\
Notes: &
\end{tabular}
a. Either a plane or a line must be entered before the define line(s).

LSQPL Option Code Arg Def
plane 1-3 fractional coordinates \(x, y, z\) of centre of symmetry a
Notes:
a. Fields 1-3 are optional, but plane must be present to initiate a plane calculation.
line 1-3 fractional coordinates \(x, y, z\) of centre of symmetry a
Notes:
a. Fields 1-3 are optional, but line must be present to initiate a line calculation.
define a 1- atom labels extracted from the bdf, or site labels entered as lines

\section*{Notes:}
a. Defining atoms are used in the least-squares plane or line calculations.
nondef \(_{\text {a }}\) 1- atom labels extracted from the bdf, or site labels entered as lines
Notes:
a. Non-defining atoms are used only to calculate the atom-to-plane or -line distances.
site 1 site label
2-4 fractional coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\)
5-7 \(\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{z}\)

\subsection*{3.34. LSRES: Restraint editor}
\begin{tabular}{|c|c|c|c|c|c|}
\hline symeq restr delres & \multicolumn{2}{|l|}{symmetry-equivalent atom builder input one restraint delete one or more restraints} & \multirow[b]{2}{*}{Arg} & & \\
\hline LSRES & Option mode of bdf usage & Code upd & & update old restraints create new restraints & Def \\
\hline & restraint listing & list & n & & all \\
\hline
\end{tabular}
\begin{tabular}{lcll} 
symeq & 1 & \begin{tabular}{l} 
root atom name \\
symeq atom name \\
symmetry-equivalent position
\end{tabular} & \\
restr & 1 & \begin{tabular}{l} 
restraint type code \\
bond length \\
bond angle \\
dihedral angle
\end{tabular} & \begin{tabular}{l} 
dist \\
angl \\
dihe or \\
tors
\end{tabular} \\
bond
\end{tabular}

\subsection*{3.35. MAPLST: List map densities}
\begin{tabular}{lllll} 
MAPLST & Option & Code & Arg & Def \\
& input map filename extension & & ext & map
\end{tabular}

\subsection*{3.36. MAPXCH: Import theoretical electron density maps \({ }^{\text {NEW }}\)}
uov set an overall temperature factor
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{MAPXCH} & Option & Code & Arg & & \multirow[t]{5}{*}{Def} \\
\hline & \multirow[t]{3}{*}{load external 3D map} & abi2map & & from abinit _DEN file & \\
\hline & & w2k2map & & from Wien2k lapw5_3D & \\
\hline & & & & case.tmp file & \\
\hline & path to file & inpfile & name & & \\
\hline & Xtal map terminal treatment & noterm & & switch off duplicated & no \\
\hline & & & & layer/line/point & \\
\hline & Lattice symmetry checking & nolatch & & switch off STARTX checks & no \\
\hline
\end{tabular}
uov 1 force an effective overall temperature factor on imported . 035 data

\subsection*{3.37. MODEL: Build molecule from map}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODEL & Option & Code & Arg & & Def \\
\hline & extend input site list & sext & & extend symmetry sites a & \\
\hline & & nose & & no symmetry extension 1 & \\
\hline & use atom sites & atom & & include atom sites on pek bdf & \\
\hline & & noat & & exclude atom sites on pek bdf & \\
\hline & subcluster search & conn & & use connectivity priority & \\
\hline & & none & & no angle limits applied & \\
\hline & & mean & & use mean distances and angles & \\
\hline
\end{tabular}

\section*{Notes:}
a. If the number of molecules per cell is less than the number of symmetry equivalent positions, the input sites will automatically be expanded to include symmetrically equivalent sites (i.e. sext), otherwise nose is the default. The user may override these defaults with this option.
limits a 1 bond connections permitted for each atom (max 12) 4
2 min bond radius for peak site (in \(\AA\) ) 0.5
3 max bond radius for peak site (in \(\AA\) ) 1
4 min angle allowed in subcluster (in degrees) b 85

5 max angle allowed in subcluster (in degrees) b 145
6 total number of sites (atom and peak) to be entered all
7 threshold for contact distances to be listed 2.4
8 increment to atom radii on the bdf 0.1
9 maximum number of interpretations printed per cluster 3
10 number of projections to be plotted for each atom cluster
1 for planar clusters, 2 for globular clusters

\section*{Notes:}
a. WARNING: The ability of MODEL to correctly connect peak (not atom) sites is very dependent on the values in fields 1-5 being appropriate for the structure under study.
b. See also subcluster search mode on the model line.
\(\begin{array}{lll}\text { conect } & 1-\quad \text { numeric group numbers or atom labels a } & 1\end{array}\)

\section*{Notes:}
a. Numeric fields specify the group number of the atom sites that follow. They are used if several atom fragments or molecules are expected in an asymmetric unit.
Atom labels specify the atoms connected in the group. Connected sites are entered as sequence of atom labels.
(i) an atom label is delimited by a blank
(ii) a sequence is delimited by a semicolon (;) or new conect line
(iii) the central atom is the first label in the sequence
(iv) redundant connections need not be entered


The connections of the preceding fragment would be entered as:
```

conect C2 C7; C2 C3; C3 C4; C4 C5; C5 C6; C6 C1

```

\subsection*{3.38. MODHKL: Modify reflection data}
\begin{tabular}{ll} 
remove & globally remove an item from all packets \\
rcode & apply global changes to reflection codes \\
purge & remove reflection packets from output bdf \\
modify a & change items for a specific hkl \\
delete a & delete a packet for a specific hkl \\
modmul a & change items for a specific occurrence of an hkl \\
delmul a & delete a packet for a specific occurrence of an hkl \\
Notes: &
\end{tabular}
a. These must follow any remove, rcode or purge lines.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODHKL} & Option & Code Arg & & \multirow[t]{2}{*}{Def} \\
\hline & list modifi & fied reflections list & & \\
\hline \multirow[t]{6}{*}{rcode} & 1 & \multicolumn{3}{|l|}{output rcode} \\
\hline & 2 & multiplication factor 1 - condition 1 & \multicolumn{2}{|l|}{\[
1
\]} \\
\hline & 3 & item 1 logical record lrrefl: ID number - condition 1 & \multicolumn{2}{|l|}{not used} \\
\hline & 4 & multiplication factor 2 - condition 1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1}} \\
\hline & 5 & item 2 logical record lrref: ID number - condition 1 & & \\
\hline & 6-9 & equivalent to fields 2-5, but for condition 2 & & \\
\hline \multirow[t]{5}{*}{purge} & 1 & multiplication factor 1 - condition 1 & 1 & \\
\hline & 2 & item 1 logical record lrrefl: ID number condition 1 & \multicolumn{2}{|l|}{not used} \\
\hline & 3 & multiplication factor 2 - condition 1 & 1 & \\
\hline & 4 & item 2 logical record lrrefl: ID number condition 1 & \multirow[t]{2}{*}{not used} & \\
\hline & 5-8 & equivalent to fields 1-4, but for condition 2 & & \\
\hline remove & 1- & \multicolumn{2}{|l|}{logical record lrrefl: ID numbers for items to be removed} & \\
\hline \multirow[t]{4}{*}{modify} & 1-3 & \multicolumn{2}{|l|}{hkl indices of reflection to be modified} & \\
\hline & 4 & \multicolumn{2}{|l|}{logical record lrref: ID number of item to be modified} & \\
\hline & 5 & \multicolumn{2}{|l|}{new value of item identified in field 4} & \\
\hline & 6-7 & \multicolumn{2}{|l|}{as in 4-5, or use separate modify lines} & \\
\hline delete & 1-3 & hkl indices of reflection to be deleted & & \\
\hline \multirow[t]{5}{*}{modmul} & 1-3 & hkl indices of reflection to be modified & \multirow{5}{*}{all occurrences} & \\
\hline & 4 & occurrence number & & \\
\hline & 5 & logical record lrref: ID number of item to be modified & & \\
\hline & 6 & new value of item identified in field 5 & & \\
\hline & 7-8 & as in 5-6, or use separate modmul lines & & \\
\hline \multirow[t]{2}{*}{delmul} & 1-3 & hkl indices of reflection to be deleted & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{all occurrences}} \\
\hline & 4 & occurrence number & & \\
\hline
\end{tabular}

\subsection*{3.39. NEWCEL: Apply unit-cell change}

\section*{transf define transformation matrix}
\begin{tabular}{lllll} 
NEWCEL & Option & Code & Arg & \\
& \begin{tabular}{l} 
stop \\
non-integer transformed
\end{tabular} & & \begin{tabular}{l} 
stop and complain \\
remove non-integer
\end{tabular} & Def \\
& Miller indices & & & reflections
\end{tabular}
transf \(\quad 1-9\) transformation matrix \(\mathrm{T}_{11}, \mathrm{~T}_{12}, \mathrm{~T}_{13}, \mathrm{~T}_{21}, \mathrm{~T}_{22}, \mathrm{~T}_{23}, \mathrm{~T}_{31}, \mathrm{~T}_{32}, \mathrm{~T}_{33}\) a
Notes:
a. Transformation is \(\alpha^{\prime}=\mathrm{T} \alpha, \alpha\) is a column vector of the unit cell vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\).

\subsection*{3.40. \(N E W M A N\) : Newman projection of model}
```

atrad specify atom radius
select selects atoms from the bdf
bondin bond information
projax defines Newman projection axis
plotp plot data
ptitlea regular title of the plot
Notes:

```
a. Must be preceded by a plotp line.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{NEWMAN} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Option min. bond distance output plot file}} & Code & Arg & \multirow{5}{*}{no plot file yes with n plots/frame} & Def \\
\hline & & & bxmn & q & & 0.25 \\
\hline & & & nplt & & & \\
\hline & & & plot & n & & 1 \\
\hline & \multicolumn{2}{|l|}{plot width in inches} & wdth & q & & 11 \\
\hline \multirow[t]{3}{*}{atrad} & 1 & \multicolumn{5}{|l|}{atom type code} \\
\hline & 2 & \multicolumn{5}{|l|}{atomic radius in Angstroms} \\
\hline & \(3-\) & \multicolumn{5}{|l|}{as above for new atom types} \\
\hline select & \multicolumn{2}{|r|}{1- labels of a} & \multicolumn{2}{|l|}{lected from the bdf} & & \\
\hline bondin & 1 & label of ce & & & & \\
\hline & \(2-\) & labels of p & & & & \\
\hline
\end{tabular}

\section*{Notes:}
a. These labels may be followed by an optional symmetry operator \(n \_m m m\), where \(n\) is the STARTX symmetry number and mmm is the lattice translation based on 555.
\begin{tabular}{lll} 
projax & 1 & label of central atom 1 a \\
& 2 & label of central atom 2 a \\
& \(3-4\) & labels for next projections \\
& \(5-6\) & etc
\end{tabular}

\section*{Notes:}
a. These labels may be followed by an optional symmetry operator \(n \_m m m\), where \(n\) is the STARTX symmetry number and mmm is the lattice translation based on 555.
\begin{tabular}{lll} 
plotp & 1 & number of plots per page \((1\) or 4\() \mathrm{a}\) \\
& 2 & width of total plot a \\
& 3 & height of total plot \(t\)
\end{tabular}

\section*{Notes:}
a. See also NEWMAN line
b. No subtitle or title is plotted when the values of fields \(6 \& 7\) are zero. When a title is requested, the height of the total plot is increased by twice the height of the characters in the title.
c. The sequence numbers are in order of NEWMAN plots.
```

ptitle 1 title string (max 72 characters)a
compid

```

Notes:
a. The string should be centred around columns 43-44.

\subsection*{3.41. ORTEP: Molecular plot}
\begin{tabular}{ll} 
select a & select atoms from bdf \\
radius & radius of a sphere for specific atom site \\
sphere & radius of a sphere for atom type \\
height & height limits for colour classification of atoms \\
vsc b c & vector search code \\
symbol d & alphanumeric string to be drawn onthe plot \\
geninsd & generate an automatic instruction sequence \\
plotpd & plot parameters for the automatic sequence \\
ellipsd & ellipsoid parameters for the automatic sequence \\
bondd & bond parameters for the automatic sequence \\
symop & symmetry translation for symm orcsym option \\
molorg & origin to start mole orcmol option \\
svstaref & start of a saved sequence \\
svendef & end of a saved sequence \\
svexece & invoke a saved sequence \\
instbe & instruction codes \\
seqg & modify instruction array \\
inst & instructions used only in modifications
\end{tabular}

Notes:
a. If the select line is not used, all atoms in the bdf will be loaded.
b. Required control line when ORTEP is run in manual mode.
c. Entry of any vsc lines will replace the automatically generated vsc lines for the atom search. (The vsc lines used to specify the cell will be still be added automatically.)
d. This control line must not be used when ORTEP is run in manual mode.
e. This control line must not be used when ORTEP is run in the automatic mode
f. If ORTEP is run in the manual mode and the svstar line is used, it must be followed by at least one inst line and then the svend
line.
g. In the modification mode, the seq and inst lines must be used together; seq first followed by inst.

CAUTION: ORTEP is very sensitive to the order of the input optional lines.
\begin{tabular}{llll} 
ORTEP & \begin{tabular}{l} 
Option \\
plot style
\end{tabular} & \begin{tabular}{l} 
Code \\
acta
\end{tabular} & Arg
\end{tabular}\(\quad\)\begin{tabular}{l} 
plot full ellipsoids, bonds \&
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{input mode} & vrad & search radii based on input \\
\hline & auto & VSC e automatic \\
\hline & manu & manual \\
\hline \multirow[t]{2}{*}{plot perspective} & infi & no perspective, infinite view \\
\hline & pers & perspective view \\
\hline \multirow[t]{3}{*}{cut at cell edge} & full & extend molecule past cell \\
\hline & & edge \\
\hline & mcut & cut molecule cell edge \\
\hline \multirow[t]{4}{*}{hydrogen sites} & sphe & make hydrogens spheres f \\
\hline & sort & sort to bottom of atom list \\
\hline & excl & exclude hydrogen sites \\
\hline & same & same as non-hydrogen \\
\hline \multirow[t]{2}{*}{overlap correction} & over & correct overlap g \\
\hline & nove & no overlap correction \\
\hline \multirow[t]{2}{*}{generate CPK model} & nocp & no ball model \\
\hline & cpkm & space-filling ball model \\
\hline output PS300 file & ps300 & file for use on PS300 series \\
\hline no bdf orientation & npig & do not use PIG orientation \({ }_{\mathrm{h}}\) \\
\hline
\end{tabular}

\section*{Notes:}

Notes: The molorg line must be used if there is more than one molecule or unconnected fragment in the asymmetric unit. Note that this
a. option is critically dependent on the max. bond radius (see bond). The vsc lines may have to be used in some cases.
b. For inpu mode all atoms appear as they are input. In other modes (mole, etc.) all duplicate atoms are ignored.
c. For a cell containing a wide range of bond lengths, vsc lines will be needed to define the acceptable connections.
d. The symop line must be entered for this option.
e. The default is arad if no vsc lines are entered, otherwise the default is vrad.
f. Default radius is \(0.1 \AA\) but may be set by sphere line.
g. If over and manu are specified, an inst 511 must be included. If no overlap is desired in manu mode, nove must be specified.
h. The default is to apply the PIG orientation matrix if present on the bdf. It is recommended that the npig option is used if input angle rotations are entered on the plotp line.
```

select 1- atom label of each atom to be
extracted from the bdf
take all atoms from the bdf all
radii 1 atom type label
2 atomic radius in Angstroms
3- as above
radiusab 1 atom label
2 radius of displayed sphere to replace U for this atom (in Å)

```

Notes:
a. This radius is scaled by the 600 series instructions.
b. The radius line sets the radius for a particular atom; The sphere line sets the radius for all atoms of that type.
sphere 1 atom type symbol
2 radius of displayed sphere to replace \(U\) for this atom type(in
A) a

3-4 as in fields 1-2, etc
Notes:
a. Do not enter an ellips line.
height 1 lowest height limit for colour classification of atoms
2 2nd lowest
3 3rd lowest
8 greatest height limit for colour classification of atoms
```

vsc
1 atom number of the first atom of the origin ANR 1
2 atom number of the last atom of the origin ANR1
3 atom number of the first atom of the target ANR1
4 atom number of the last atom of the target ANR1
5 bond type (any number from -5 to +7$)_{2}$
6 minimum bond length, in $\AA_{3}$
7 maximum bond length, in $\AA$
8 radius of stick bond, in $\AA$ Normal Bond Plotting Format
9 perspective bond label height, in inches
10 perpendicular displacement, in inches
11 nonperspective label height, in inches
12 perpendicular displacement, in inches
13 number of decimal places for one, two and three decimal $-1,0,1$ places
14 increment for dotted or dashed 0.33 lines 2
15 dot length as fraction of the dot 0.15 increment Alternate Polyhedra Bond Plotting Format negative atom number of the first atom of polyhedra ANR
10 atom number of the last atom of polyhedra ANR
11 polyhedra dmin, in $\AA$
12 polyhedra dmax, in $\AA$

```

1 Caution: Note that the checking order of the vsc's requires that the origin ANR's include the largest range of atoms and the target ANR's the least. 2 Magnitudes 0, 1, 2, 3, 4, 5 form bonds with 0, 2, 3, 5, 9, 17 lines respectively. Negative integers are used for bonds terminating only at ellipsoids; positive integers are used for bonds terminating at ellipsoids or at the tangent cone with the apex at the viewpoint. The value +6 gives a single dashed line; +7 gives a single dotted line. 3 Options appearing in fields 5, 6, or 7 of the first vsc line may be overridden if options are present in fields 1, 2, or 3 of the bond line.
symbol text to be printed on plot (max. 72 characters)
genins 1- option control codes calculate bond lengths and cbla angles
list plotted atoms and bonds list
draw atom labels a symb
plot a stereoscopic pair ster
plot atoms as a skeleton model skel
do not place the title on the plot notl
plot axes axes \(\mathrm{n} \quad\)\begin{tabular}{l}
\(\mathrm{n}=1\) add axes labels to cell plot 1 \\
\\
\\
\\
\\
\\
\\
\(n=2\) unit length auxilliary axes \\
\\
\\
auxilliary axes
\end{tabular}

Notes:
a. Default alignment of symbols is at the centre of the atoms. This may be changed using the \(\mathbf{7 0 0}\) series inst lines.


Notes:
a. The positive rotation direction is taken as anti-clockwise looking down the axis toward the origin. Note the npig option on the exec line.
b. See 303 and 700 inst.
c. See 511 inst
ellips 1 ellipsoid type
point 1
spheroid a 2
envelope \(\quad \underline{3}\)
principal ellipsoid and envelope 4
principal ellipsoid, envelope, 5
and axes
ellipsoid with octant shading 6
2 ellipsoid probability scale \(\quad 1.54\)
\(\begin{array}{ll}\text { or radius of spheroid } b & 0.13\end{array}\)
3 x displacement of atom labels, auto centre
in inches
\(4 y\) displacement of atom labels, auto centre
in inches
5 height of atom labels, in inches auto
Notes:
a. Note that this setting will cause all atoms to be treated as spheroid with a radius set in field 2 . The sphere line enables each atom type to be plotted as spheres of specified radius.
b. The following table shows the probability that the ellipsoid encloses the atom versus the ellipsoid scale.
\begin{tabular}{lllllllllll} 
prob(\%) & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 99 \\
scale & 0.76 & 1.0 & 1.19 & 1.37 & 1.54 & 1.72 & 1.91 & 2.15 & 2.50 & 3.37
\end{tabular}

13 serial number of first VSC applied b
14 serial number of last VSC applied b
Notes:
a. See ORTEP for format of ADR's and ANR's.
b. These fields only apply to instructions 105 and 106. If field 13 is 0 (not void), the VSC's will not be used and the distance in field 10 is used.
inst 103
1 print thermal ellipsoids 103
inst
201-203
1 start plot 201
advance plot 202
end plot 203
2-3 shift plot origin in \(x\), \(y\) in inches
(202 only)
inst 301
1 define plot dimensions 301
2-3 plot limit \(x\), \(y\) in inches
4 view distance in inches
5 border in inches
inst 302
1 title rotation 302
2 title rotation angle in degrees
inst 303
a
1 retrace displacement 303
2 displacement parameter in inches
Notes:
a. See inst \(\mathbf{7 0 0}\) series lines for retrace parameters.
inst
401,
410, 411
1 add atoms to atom array 401
delete all atoms from the atom 410
array
delete atoms from atoms array 411
2-7 ADR (atom designator run) a

\section*{Notes:}
a. If only single atoms are added/deleted use only three fields for the appropriate atom designator code (ADC). Several single atoms per line may entered. ADR sequences are recognised by a negative atom number in ADC2.
inst
402-407,
412-417
1 add-delete atoms within:
sphere of enclosure 402412
box of enclosure 403413
triclinic box of enclosure 404414
```

            expand sphere enclosure 405 415
            reiterate convolute sphere
                406416
                    enclosure
            as 406 but sites related by
                4 0 7
                    celltranslation ignored
    2-7 origin ADR
8-9 target ANR
10-12 semi-dimensions of box in
fract. coords(403-404 only)
13 serial number of the first VSC
which applies1 (not403-404)
14 serial number of the last VSC
which applies1 (not403-404)
for 405, 406,415, 416
10 max distance in A
11-12 not used
13 serial number of the first VSC
which applies a
14 serial number of the last VSC
which applies a

```

\section*{Notes:}
```

a. See the explanation for the inst line 101-102, 105-106.

```
```

inst 501

```
inst 501
1 define the plot orientation 501
2-4 ADC for origin atom
5-10 ADR for vector V1
11-16 ADR for vector V2
17 orientation type
\(\mathrm{X}=\mathrm{V} 1, \mathrm{Y}=\mathrm{V} 1 \mathrm{xV} 2, \quad \mathrm{o} \quad \mathrm{Z}=\mathrm{V} 1 \mathrm{x}(\mathrm{V} 1 \mathrm{xV} 2)\)
\(\mathrm{X}=\mathrm{V} 1, \mathrm{Y}=(\mathrm{V} 1 \mathrm{xV} 2) \mathrm{xV} 1, \quad 1 \quad \mathrm{Z}=\mathrm{V} 1 \mathrm{xV} 2\)
inst
502, 503
1 rotate plot reference system
2 type of rotation rotate about X 1 rotate about Y 2
rotate about Z 3
rotate 120 degrees about -1
body-diagonal
rotate 240 degrees about -2
body-diagonal
3 rotation angle in degrees
+ ve direction is anti-clockwise, looking towards origin
4-5 same as fields \(2-3\), and so on
```


## inst 504

```
1 shift origin of projection axis 504
2-4 \(x, y, z\) shift in inches (scaled by the 600 series instructions)
inst 511
\(\begin{array}{lll}1 & \begin{array}{l}\text { apply overlap correction - } \\ \text { hidden line removal } \\ \text { overlap margin, in inches }\end{array} & 511 \\ 2 & \end{array}\)

\section*{Notes:}
a. This line must follow any inst 600 series lines.
```

inst
601-604,
611-613
1 explicit centre and scale 601
explicit centre, auto scale 602
auto centre, explicit scale 603
auto centre and scale 604
increment centre and scale 611
increment centre, auto scale 612
auto centre, increment scale 613
2 x centre or increment in inches
a
3 y centre or increment in inches
a
4 scale or scale increment a
5 ellipsoid scale b

```

\section*{Notes:}
a. Value or increment is determined by instruction number.
b. See ellips line for the table of probability versus scale.
inst
701-704,
711-714
1 instruction number (700's list
data; 710'sdo not)
plot atoms as shaded ellipsoids 701711
plot atoms as unshaded 702712
ellipsoids
plot atoms as ellipsoid with 703713
bounding ellipses
plot atoms as boundary ellipse 704714
only
2-5 not used
6 symbol height in inches
7 parallel offset for symbols in inches
8 perpendicular offset for symbols in inches
9 increase in radial dimension for retracing in inches a
10 rate of increase in radial
dimension with height a
11-12 ANR applied to boundary retracing atoms a

\section*{Notes:}
a. Fields 9-12 are used only if boundary retracing and plot constraints are needed as a result of an inst 303 line being entered.


Notes:
a. In fields \(1-5\) voids are not the same as 0 . Fields \(9-12\) are used only if boundary retracing is applied as a result of an inst 303 line.

\section*{inst}

801, 811
a
1 plot explicit stick bonds and list 801
distances
plot explicit stick bonds and do 811
not list distances
2-7 ADR for bond
8-13 ADR for next bond, and so on
Notes:
a. Up to 3 bonds can be specified per line. The bond type specified on the first vsc line applies to all 801 defined bonds. At least one vsc must be specified for the 801 to work.
```

inst
802, 803
812, 813
1 instruction number (800's list
bond data;810's do not)
plot generated stick bonds
plot generated line bonds 803813
802812
2-7 ADR for origin atom
8-13 ADR for target atoms
14 bond type a (any number -5 to
+5)
15 minimum bond distance in }
1 6 ~ m a x i m u m ~ b o n d ~ d i s t a n c e ~ i n ~ A ~
17 bond radius in \AA}\mp@subsup{\AA}{\mathrm{ a}}{
1 8 perspective label height in
inches a
19 perpendicular displacement in
inches a

```

\section*{Notes:}
```

a. See description of vsc line.

```

\section*{inst}
```

901-909
913-916

```

```

2 unit length aux axes
3
proportional length aux axes

```
14 fractional dimension of aux
        axes
15 maximum dimension of aux
axes

\subsection*{3.42. OUTSRC: Export archive for external software \({ }^{\text {NEW }}\)}


\subsection*{3.43. PARTN: Hirshfield partitioning}

SITE atom parameters, fractional coordinates
PARTN Option
weighting function

site 1 atom label
2-4 fractional coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) if fragment partitioning

\subsection*{3.44. PATSEE: Search for molecular fragment}

FRAG definition of molecular fragment
site atom sites in molecular fragment
zmatrix geometry description matrix
rotate rotational search parameters
transl translational search parameters
triple triple relationship parameters
shift shift coordinates of following atom sites
spin rotate coordinates of following atom sites about Cartesian axes
twist twist following atom sites about connected atom site
\begin{tabular}{lllll} 
PATSEE & \begin{tabular}{l} 
Option \\
do not list bond distances and \\
angles of fragments
\end{tabular} & \begin{tabular}{l} 
Code \\
ngeom
\end{tabular} & Arg
\end{tabular}\(\quad\) Def
FRAG 1 Use cartesian coordinates on cart site lines. or
1-3 cell lengths in \(\AA \mathrm{a}, \mathrm{b}, \mathrm{c}\) a
4-6 cell angles in degrees \(\alpha, \beta, \gamma\) a or
1- labels of atoms to be extracted from lratom: of the input bdf or
\begin{tabular}{lll}
1 & five membered ring & pent \\
& benzene planar conformation & benz \\
benzene boat conformation & boat \\
& benzene chair conformation & chair
\end{tabular}

\section*{Notes:}
a. These are applied to the fractional coordinates of the atom sites that follow and must be entered if the cell differs from that on the bdf.
site \(\quad 1\) atom label
2-4 coordinates a \(\mathrm{x}, \mathrm{y}, \mathrm{z}\)
5 relative site weight in search \((\max 1, \min 0) \quad 1\)
Notes:
a. Assumed fractional unless the preceding frag line contains the Cartesian code.
\begin{tabular}{lll} 
zmatrix & 1 & n1 sequence number \\
& 2 & atom label \\
& 3 & n2 sequence number \\
& 4 & distance to atom n1 \\
& 5 & n3 sequence number \\
& 6 & n3-n2-n1 angle \\
& 5 & n4 sequence number \\
& 6 & n1-n2-n3 n2-n3-n4 torsion angle
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline rotate & Option & Code & Arg & Def \\
\hline & number of rotations applied & ntry & n & auto \\
\hline & number of solutions saved & nsol & s & 5 \\
\hline & \multicolumn{2}{|l|}{intra-mol. vector angle resolution vres} & a & \(10^{\circ}\) \\
\hline & intra-mol. vector d min/max & vlim \(q\) & pq & 2. 6. A \\
\hline & intra-mol. vectors for Rfom (ratio) & vfom & f & 0.5 \\
\hline & intra-mol. vectors for pretest (ratio) & vtes & \(r\) & 0.1 \\
\hline & \multirow[t]{4}{*}{Rfom acceptance threshold number of refinement searches random rotation start value rotation start positions about \(a b\)} & fort & t & 0.4 \\
\hline & & nref & m & 1000 \\
\hline & & nran & \(r\) & 5431 \\
\hline & & seta & abc & \(0^{\circ} 0^{\circ} 0^{\circ}\) \\
\hline & \multicolumn{4}{|l|}{c} \\
\hline & rotation range about \(a b c\) & setr & abc & auto \\
\hline & list all intra-molecular vectors & vlis & & no \\
\hline & signal mirror in fragment & mirr & & no \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
transl & Option & Code & Arg & Def \\
& number of translations applied & ntry & n & auto \\
& number of solutions saved & nsol & \(\mathbf{s}\) & 5 \\
& inter-mol. vector d minimum & vmin & d & 3.4 A \\
& inter-mol. vector shift resolution & vres & q & 0.25 A \\
& Tfom acceptance threshold & fomt & \(\mathbf{t}\) & 0.3 \\
& t3sum acceptance threshold & tprt & \(\mathbf{f}\) & 0.3 \\
& translation origin as \(x / a y / b z / c\) & a & sets & \(\mathbf{x ~ y ~ z ~}\)
\end{tabular}

\section*{Notes:}
a. Six values may be entered; three for the rotation/translation fragment and optionally three for the translation-only fragment.
\begin{tabular}{llll} 
triple & Option & Code & Arg \\
minimum E value used & emin & \(\mathbf{e}\) & Def \\
minimum A of any triple & amin & \(\mathbf{a}\) & auto \\
max number of E's used & nume & n & auto \\
max number of triples used & numt & m & 100 \\
& & & 100
\end{tabular}
shift a \(\quad 1-9\) rotation matrix elements \(\mathrm{r}_{11}, \mathrm{r}_{21}, \mathrm{r}_{31}, \ldots, \mathrm{r}_{33}\)
10-12 translation vector \(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\)

Notes:
a. The shift transformation matrix is applied to all atom sites in the next input fragment.
\(\operatorname{spin}_{\mathrm{a}} \quad 1-3 \quad\) rotation angles (in degrees) about the Cartesian axes \(\mathrm{x}, \mathrm{y}, \mathrm{z}\)
Notes:
a. A positive value is an anticlockwise rotation as the axis comes towards you. The spin angles are applied to all atom sites in the next input fragment.
\begin{tabular}{lllll} 
twist & Option & Code & Arg & Def \\
& minimum torsion angle (deg.) & tmin & \(\mathbf{a}\) & 0 \\
& maximum torsion angle (deg.) & tmax & \(\mathbf{b}\) & 355 \\
& increment torsion angle (deg.) & tinc & \(\mathbf{c}\) & 5 \\
& torsion angle test method & test & \(\mathbf{i}\) & 1
\end{tabular}

\subsection*{3.45. PEKPIK: Search map for peaks}

\section*{plimit specify peak search parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{PEKPIK} & \multirow[t]{4}{*}{Option input map file output peaks as atom lines} & Code & Arg & & Def \\
\hline & & bdf & e & file extension e & map \\
\hline & & npun & & no output & \\
\hline & & punch & & atom lines to pch & \\
\hline & \multirow[t]{2}{*}{output peaks to bdf} & sfil & & write peaks to pek & \\
\hline & & nfil & & no output to pek & \\
\hline & \multirow[t]{2}{*}{use symmetry in peak search} & sym & & use all symops & \\
\hline & & nsym & & no symops & \\
\hline & \multirow[t]{2}{*}{search for peaks or holes} & nhol & & peaks only & \\
\hline & & hole & & holes only & \\
\hline
\end{tabular}
```

plimit 1 min point density used in peak search a
The following defaults apply, according to FOURR map
type.
$\mathrm{COEF}=1.0 \mathrm{PATT}=10.0 \mathrm{EPAT}=5.0 \quad \mathrm{VECT}=2.0$
$\mathrm{EMAP}=2.0 \mathrm{FOBS}=1.0 \quad \mathrm{FDIF}=0.25 \mathrm{FCAL}=1.0$
2 min separation of resolved peaks in $\AA$ 0.75
3 max peaks output 50
or $2 *$ (non-H atoms)

```

\section*{Notes:}
a. Automatically adjusted after searching first layer.

\subsection*{3.46. PIG: Display and manipulate model}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
peaks \\
radii \\
preset \\
complx \\
ortctl
\end{tabular} & input peak site para reset default atom reset default plot p define molecular ortep control line & & & & \\
\hline PIG & Option & Code & Arg & & Def \\
\hline & Displayed sites & clus & & optimally clustered & \\
\hline & & input & & coordinates as input a & \\
\hline & add symmetry sites b & sext & con & extend connected input list & \\
\hline & & sext & all & extend all site symmetry & \\
\hline & & nose & & elements do not add to input & \\
\hline & new built H atoms & nolink & & don't add link lines to & \\
\hline & cluster packing & pack & n & ADDATM \(\mathrm{n}=0\) no packing & \(n=1\) \\
\hline & & & & \(\mathrm{n}=1\) smallest combined COG. \(\mathrm{n}=2\) closest to COG of largest cluster & \\
\hline & & & & \(\mathrm{n}=3\) nearest contact to largest cluster & \\
\hline & create ORTEP diagram & ort & & from screen contents at PIG exit & \\
\hline & BUNYIP data & buny & & display symmetry from .bun & \\
\hline & CRISP data & msol & & show structural solutions .sol & \\
\hline & cartesian coordinates & labx & & full atom labels in .xyz file & \\
\hline & cartesian coordinates & rotx & & rotated to current view .xyz & \\
\hline & graphics display & dbuf & & file double buffering & \\
\hline
\end{tabular}

\section*{Notes:}
a. input atom sites mode is forced for more than 500 atoms (clustering is switched off)
b. The default is sext if \(Z\) (from the STARTX celmol line) is less than the number of symmetry positions. Otherwise nose is the default.
peaks Option
max number peaks used peak height min/max peak bond radius
peak proximity cutoff

Code
numb
plim pq 01000
prad
plap
\begin{tabular}{lll} 
Arg & & Def \\
\(\mathbf{n}\) & input \(\mathbf{n}\) peaks & all \\
\(\mathbf{p} \mathbf{q}\) & & 0 1000 \\
\(\mathbf{r}\) & & max atom \\
& & types \\
& in \(\AA\) & 0.5
\end{tabular}


\subsection*{3.47. PLOTX: Interface to graphics devices}
\begin{tabular}{|c|c|c|c|c|}
\hline params & & \multicolumn{3}{|l|}{plot parameters} \\
\hline color & & plot colours & & \\
\hline frames & & \multicolumn{3}{|l|}{indicates which frames are to be plotted} \\
\hline \multirow[t]{24}{*}{PLOTX} & \multirow[t]{13}{*}{1} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{ll} 
graphical output options a & \\
screen display using X11 & x11lib \\
output A3 HPGL plot & hpgl \\
output A4 HPGL plot & hpgla4 \\
output landscape PostScript file postl
\end{tabular}}} & \\
\hline & & & & \\
\hline & & & & create . hp file \({ }_{\mathrm{b}}\) \\
\hline & & & & create . hp file \({ }_{\mathrm{b}}\) \\
\hline & & & & create.ps file \\
\hline & & & & \\
\hline & & output portrait PostScript file & postp & create .ps file \\
\hline & & color landscape PostScript file & postlc & create .ps file \\
\hline & & color portrait PostScript file & postpc & create.ps file \\
\hline & & color landscape XFIG file & xfigl & create .fig file \\
\hline & & color portrait XFIG file & xfigp & create .fig file \\
\hline & & output plot as Mathematica file & matl & create .mat file \\
\hline & & screen display for os2 & os2pm & \\
\hline & \multirow[t]{8}{*}{2} & \multicolumn{3}{|l|}{input plot file extension} \\
\hline & & generated by ORTEP & \multicolumn{2}{|l|}{ort} \\
\hline & & generated by ABSORB & \multicolumn{2}{|l|}{abs} \\
\hline & & generated by NEWMAN & \multicolumn{2}{|l|}{nwm} \\
\hline & & generated by CONTRS & \multicolumn{2}{|l|}{con} \\
\hline & & generated by PREVUE & \multicolumn{2}{|l|}{pre} \\
\hline & & generated by GIP & \multicolumn{2}{|l|}{gip} \\
\hline & & generated by POWGEN & \multicolumn{2}{|l|}{ppp} \\
\hline & \multirow[t]{3}{*}{\(3-\)} & do not blank label backgrounds & \multicolumn{2}{|l|}{nblk} \\
\hline & & use for pre xtal3.6 plot (.pre & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{old}} \\
\hline & & etc) files & & \\
\hline
\end{tabular}
```

retrace outline of filled curves ret
set postscript paper size A3
set postscript paper size A4
set postscript paper size A5
set postscript paper size US let
letter
set postscript paper size US leg
legal
set postscript paper size US exe
executive
print to a specific path/filename file path }256\mathrm{ chars maximum
a. default filenames can be overridden with the file path option
b. If the ouput device is a pen plotter then a frames line may be needed.
c. Overrides the default extension. Should be used as the final option on the PLOTX command line as the filename may contain embedded white space as well as directory/file-system indicators.

```

\section*{Notes:}
\(\left.\begin{array}{clll}\text { params } & 1 & \text { x output plot dimension } & \\
2 & \text { y output plot dimension } 1\end{array}\right) \quad\)\begin{tabular}{l} 
defined at implementation \\
defined at implementation
\end{tabular}

\section*{Notes:}
a. The units of these parameters will depend on device and the method of installation. For example, if the plot dimensions are in inches, the plot resolution will be the smallest distance that can be resolved for this device in inches.
color a colour/line style option followed by colour/line style indices atom type colours; do not fill nofill n1...n10 atoms or bonds atom type colours; fill atoms or fill n1...n10 bonds atom type shades; fill atoms or shade n1...n10 bonds with black and shading instead of colour: 1, hollow; 2, solid; 3,pattern; 4, horizontal hatch; 5 , vertical hatch; 6 , horizontal and verticalhatch; 7, lower-left to upper-right hatch; 8 , upper-left to lower-right hatch;9, lower-left to upper-right and upper-left to lower-right hatch atom outline line styles; draw atlin n1...n10 atom lines in black and white lines with the following styles: 1 , solid;2, dashed; 3, dotted; 4, dashed-dotted; 5, double
bond colour bond m
character colour char m number colour contour colours
numb m
contur n1...n5
one-colour plot
nocol
```

Notes:
a. the default colour indices are as follows:
nofill/fill/shade 2 3 4 5 6 7 2 3 4 5

```

```

bond 1 char 2 numb 3
contur 2 3 4 5 6
framesa 1- frame sequence numbers to be displayed
Notes:

```
a. Frame numbers start at 1 and must be entered in increasing order. For example, the first contour map output by CONTRS will be frame 1 and so on. If the frames line is not entered all frames will be displayed. If a frames line is entered only the specified frames will be displayed.

\subsection*{3.48. POWGEN: Powder pattern graphics}
\begin{tabular}{|c|c|}
\hline & -----------PATTERN SPECIFIC ----------------- \\
\hline limits & set powder pattern limits and step size \\
\hline wavlen & set wavelength and polarization ratio \\
\hline zero & set zero point corrections \\
\hline backgr & specify parameters for background function \\
\hline peakf & define a learned (experimental) peak shape function \\
\hline peaksh & enter experimental peak shape values \\
\hline excltt & exclude zones of the powder pattern \\
\hline & -----------PHASE SPECIFIC ----------------- \\
\hline phase & specify id and scale factor of a new phase \\
\hline peak & select peak shape function for this phase \\
\hline hwidth & specify halfwidth parameters \\
\hline pasymm & specify asymmetry parameters \\
\hline orient & specify preferred orientation parameters \\
\hline select & select subset of atoms in bdf \\
\hline & -----------PAGE LAYOUT - \\
\hline *layout & Set page size orientation and margins \\
\hline & -----------BLOCK SPECIFIC ------ \\
\hline block & Set block position on multi graph page \\
\hline blkbrd & Set block border attributes \\
\hline graph & Set style of graph in this block \\
\hline *exclr & Graphical treatment of exclusion regions \\
\hline hklbar & Marker attributes for reflection positions \\
\hline axis & Set attributes for axes \\
\hline axslab & Label axes for graph \\
\hline *tickmk & Control tick mark quantities \\
\hline grid & Control background grid lines \\
\hline gtitle & Control attributes of title text \\
\hline titext & Set Title for this graph block \\
\hline *legend & Control attributes of the graph legend \\
\hline trace & Set attributes of traces to display \\
\hline tretxt & set trace labels for this graph block \\
\hline
\end{tabular}

POWGEN Option
graphical interface mode input RIETVD powder file input ADDPAT powder file auxilliary powder file

Code

\section*{ng}
pot
pat
ap \(\quad\) xxx
\begin{tabular}{ll} 
Action & Default \\
no graphical interface & yes \\
reads . pot file & -pot \\
reads \(\cdot\) pat file & .pot \\
reads auxilliary powder file & none
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline apply dispersion in calc peak span in halfwidths & nd & \multirow[t]{2}{*}{n} & \multirow[t]{2}{*}{No application dispersion reflection contribution width create .pch file(s)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { yes } \\
& 3 ; \mathrm{n}=12 \\
& \text { no }
\end{aligned}
\]} \\
\hline file adjusted params & pc & & & \\
\hline Points to skip in powder & sk & n & step size of n powder points & 1 \\
\hline relative interface dimension a & sc & n & Set window to \(\mathrm{n} \%\) of screen & 0.9 \\
\hline Set colormap parameters & cm & b s & \(0<\) brightness \(<1,0<\) saturation & 1.51. \\
\hline arrangement of multiple graphs & ho & & Horizontally optimised vertically optimised & \(l i\) \\
\hline & \(1 i\) & & literal placement & \\
\hline & as & & as specified & \\
\hline
\end{tabular}

\section*{Notes:}
a. See also the xtalrc file in the XTALHOME directory. It can be coppied to the \(\$ H O M E / . x t a l r c\) file and modified on a per user basis.

\subsection*{3.48.1. PATTERN SPECIFIC CONTROL LINES}
limits 1 minimum two theta of pattern data processed 2 maximum two theta of pattern data processed 3 two theta step size of pattern data processed
backgr 1-5 polynomial coefficients \(b(1)\) to \(b(5)\) to describe backgroundas the expression ybg \(=\mathrm{b} 1+\mathrm{b} 2 * 2 \mathrm{t}+\mathrm{b} 3 *(2 \mathrm{t})^{* *} 2\) + .....i.e. \(\mathrm{ybg}=\operatorname{sum}(\mathrm{j}) \mathrm{b}(\mathrm{j}) *(2 \text { theta })^{* *}(\mathrm{j}-1)\) (values included in pattern file will be ignored)
peakf \(1 \quad\) identification number of learned peak shape function to \(\quad 1\) follow
peaksh \(1 \quad\) ri (values for the learned peak shape function)
2 fsi
3 fai
4 dfsi
5 dasi
excltt 1 minimum two theta value to be excluded from refinement: zone 1
2 maximum two theta value to be excluded from refinement: zone 1
3-4 min/max two theta for exclusion zone 2
5- \(\quad \mathrm{min} / \mathrm{max}\) pairs for up to 10 exclusion zones

\subsection*{3.48.2. PHASE SPECIFIC CONTROL LINES (one set per phase)}
```

phase 1 compound ID of phase (to identify archive files) current compid
2 scale factor for this phase 1.0
peak 1 one of the following to define the peak shape
v for pseudo-Voigt ( }\textrm{x}=\mathrm{ = variable)
g for Gaussian (x=1)
l for Lorentzian (x=0)
n=number of learned peak shape function (defined with v
peakf)
2 peak span value (in halfwidths) for this shape function 12.
3 mixing parameter z in the pseudo-Voigt function: 1.0
f}=\textrm{z}*\mathrm{ gaussian part + (1-z)* lorentzian part
hwidth 1-3 halfwidth parameters u,v,w used in the expression
half width =0.5*sqrt(u+ v*tan(theta) + w* (tan(theta))**2)
pasymm
1-2 peak asymmetry correction parameters x and y
used in the expression peak asymm =x+y*2theta
orient 1 preferred orientation factor
2-4 preferred orientation vector (U,V,W)
select 1- atom label *or* atom type symbol *or*
atom sequence (labels separated by a '/')

```

\subsection*{3.48.3. PAGE DESCRIPTION CONTROL LINES (one set per graph)}
\begin{tabular}{ll} 
layout a & \begin{tabular}{l} 
Specify page size, orientation and margins and choose scale \\
units
\end{tabular}
\end{tabular}

Notes:
a. This command line option is currently not supported

\subsection*{3.48.4. GRAPH SPECIFIC CONTROL LINES (one set per graph)}
\begin{tabular}{lll} 
block a b & 1 & number \(1 \ldots 16\) \\
& 2 & nodisp? \\
& 3 & block x grid position (on 9x9)
\end{tabular}

\footnotetext{
Notes:
a. should be the first line of a block specific instructions
b. If the number is absent on the first block line, all control lines up till the next block line are applied to all blocks
}
blkbrd 1 block border colour
2 block border line width
```

    3 block border line style
    4 dash line style dash length
    5 dash line style break length
    graph 1 specify type of graph for this lin linear
block a
log logarithmic
sqrt square root
x x origin in block
3 y origin in block
w width of graph
5 height of graph
aspect ratio of graph
7 boxed
Notes:
a. only $\operatorname{lin}$ is supported
exclra 1 phaseid
2 line
3 artificial value to set $y$ in this exclusion region

```

Notes:
a. This command line option is currently not supported
hklbar a 1 display hkl reflection position markers
2-3 min,max 2theta of markers to display
4-5 min,max intensity of markers to display
Notes:
a. This command line option is currently not supported but is available from within the graphics interface
\begin{tabular}{lll} 
axis & 1 & \(\mathbf{x}\) or \(\mathbf{y}\) \\
& \(2-3\) & min, max values to plot for graph \\
& 4 & axstop/axisBOT \\
& 5 & axlabelsize \\
& 6 & axlabxpos \\
& 7 & axlabypos \\
& 8 & axlabangl \\
& 9 & ticlab top/bot/tab \\
& 10 & decimal places in text \\
& 11 & text centered on digit \\
& 12 & displacement of label by \(x\) \\
& 13 & displacement of label by y \\
& 14 & ticlabsize \\
& & \\
axslab & 1 & \(\mathbf{x}\) (abscissa) or \(\mathbf{y}\) (ordinate) \\
& 2 & label for ordinate or abscissa \\
& & \\
tickmk a & 1 & \(\mathbf{x}\) or \(\mathbf{y}\) \\
& 2 & size of tick \\
& 3 & length \\
& 4 & line width \\
& 5 & smallest spacing
\end{tabular}

\section*{Notes:}
a. This command line option is currently not supported
grid 1 display \(x\) axis grid lines yes/no yes
2 display y axis grid lines yes/no yes
3 X axis frac
```

            Y axis frac
            5 Num horizontal grid lines
            N NUM vertical grid lines
            7 colour
            8 line style
    gtitle 1 x origin of graph title
2 y origin of graph title
3 angle of graph title text
4 size of graph title text
5 colour of graph title text
titext 1 The graph title text
legend a 1 display yes/no yes
2 boxed
3 shadowed
x orig of legend box
5 y orig of legend box
6 width of legend box
7 height of legend box
aspect ratio of legend box
9 text size of legend

```

\section*{Notes:}
```

a. This command line option is currently not supported
trace 1 trace identifier a
2 trace color
$3 x$ displacment of trace on graph
$4 \quad y$ displacement of trace on graph
5 auxilliary trace scale factor, for plotting
6 divide trace intensity by sigma
7 line style
7 line dash length
8 line break length
9 marker style
10 apply artificial level for low angle null data (yes/no)
11 y value to set low angle null data
12 apply artificial level for high angle null data (yes/no)
13 y value to set high angle null data
$14 \quad \mathrm{Y}$ value to setfor intermediate null data

```

\section*{Notes:}
```

a. valid trace identifiers are tth obs sig bak cal del and for up to ten phases PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 PH0
trctxt $1 \quad$ trace identifier (see above)
2 new label for trace

```

\subsection*{3.49. PREABS: Interactive crystal shape manipulation}
\begin{tabular}{ll}
\(\operatorname{diff}_{a}\) & diffractometer description \\
orient \(_{a}\) & crystal orientation \\
orface \(b\) & microscope orientation
\end{tabular}
\begin{tabular}{ll} 
facept \(b\) & face described by three points \\
faceb & face described by \(\chi, \phi\), and distance \\
faceomb & face described by \(\chi, \phi, \omega\) and distance \\
faceml \(l_{b}\) & face described by Miller indices and distance
\end{tabular}

Notes:
a. diff and orient are mandatory.
b. Only one of the methods orface-facept, face or faceml may be used to specify the faces of the crystal.
\begin{tabular}{lllll} 
PREABS & \begin{tabular}{l} 
Option \\
double buffered graphics a \\
precision scale factor b
\end{tabular} & \begin{tabular}{l} 
Code \\
dbuf
\end{tabular} & pscal & \(\mathbf{q}\)
\end{tabular}\(\quad\) scale distance \(\quad\) Def

Notes:
a. On some screens and for large window sizes, coppying the back buffer to the visible window adds a significant time lag which detracts from general performance. On other displays, particularly linux PCs this option can help quite a bit.
b. This option is used to avoid rounding errors for small crystals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{15}{*}{\(\underline{\operatorname{diff}}{ }_{\text {a }}\)} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{sense of rotation of the \(2 \theta\) circle \(\subseteq\)} & \multirow[t]{2}{*}{clockwise anti-clockwise} & \\
\hline & & & & \\
\hline & \multirow[t]{2}{*}{2} & sense of rotation of the \(\chi\) circle & clockwise & \\
\hline & & & anti-clockwise & \\
\hline & \multirow[t]{2}{*}{3} & sense of rotation of the \(\phi\) circle & clockwise & \\
\hline & & & anti-clockwise & \\
\hline & \multirow[t]{2}{*}{4
5} & sense of rotation of the \(\omega\) circle & clockwise & \\
\hline & & & anti-clockwise & \\
\hline & \multirow[t]{2}{*}{5} & sense of rotation of the \(\psi\) circle & clockwise & \\
\hline & & & anti-clockwise & \\
\hline & 6 & value of \(\phi\) at \(\chi=90\) degrees & & 0 \\
\hline & \multirow[t]{2}{*}{7} & minimum possible \(\omega\) (-180< & & -48 \\
\hline & & \(\omega<180)\) & & \\
\hline & \multirow[t]{2}{*}{8} & maximum possible \(\omega\) (-180< & & 58 \\
\hline & & \(\omega<180)\) & & \\
\hline
\end{tabular}

\section*{Notes:}
a. See the Diffractometer Description in the \(A B S O R B\) for the method to be used in determining the sense of rotation for each diffractometer circle.
\begin{tabular}{lll} 
orient & \begin{tabular}{l}
\(1-3\)
\end{tabular} & \begin{tabular}{l} 
hkl indices of first orienting reflection \\
angle \(\chi\) of first orienting reflection a
\end{tabular} \\
& 5 & angle \(\phi\) of first orienting reflection \\
\(6-8\) & hkl indices of second orienting reflection \\
& 9 & angle \(\chi\) of second orienting reflection \\
10 & angle \(\phi\) of second orienting reflection
\end{tabular}

\section*{Notes:}
a. Angles in the bisecting mode. (For CAD see Ch. II of the CAD User's Manual.)
orface a \(1-3 \quad x, y, z\) coordinates of first point on orienting face
4-6 \(\quad x, y, z\) coordinates of second point on orienting face
7-9 \(x, y, z\) coordinates of third point on orienting face

\section*{Notes:}
a. If the orface-facept method is used for entering face data, two orface lines must be used. The first contains the coordinates of three points on a plane parallel to the first orienting reflection given on the orient line. The second orface line contains the coordinates of three points on a plane parallel to the second orienting reflection given on the orient line.
facept 1-3 \(x, y, z\) coordinates of first point on bounding face
4-6 \(x, y, z\) coordinates of second point on bounding face
7-9 \(x, y, z\) coordinates of third point on bounding face
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{face} & 1 & \(\chi\) for bounding face (angles in the bisecting mode) \\
\hline & 2 & \(\phi\) for bounding face \\
\hline & 3 & distance to origin from bounding face in mm \\
\hline \multirow[t]{4}{*}{faceom} & 1 & \(\chi\) for bounding face (angles in the bisectingmode) \\
\hline & 2 & \(\phi\) for bounding face \\
\hline & 3 & \(\omega\) for bounding face \\
\hline & 4 & distance to origin from bounding face in mm \\
\hline \multirow[t]{2}{*}{faceml} & 1-3 & \(\mathrm{h}, \mathrm{k}, 1\) indices of bounding face \\
\hline & 4 & distance to origin from bounding face in mm \\
\hline
\end{tabular}

\subsection*{3.50. PREPUB: Pre-publication tests on CIF structural data.}
```

PREPUB 1- no additional parameters

```

\subsection*{3.51. PREVUE: Modify text in plots}


\subsection*{3.52. REFCAL: Process reflection data}
setscl set intensity scale factors
discon definition of discontinuities in scale factors
\begin{tabular}{|c|c|c|c|c|c|}
\hline REFCAL & Option & Code & Arg & & Def \\
\hline & instability options \(0 \mid\) o \(\mid 3\) & inst & \(\bigcirc\) & calculate coefficients & 0 \\
\hline & user-fixed instability & inst & 4 mb & user-specified coefficients & \\
\hline & instability calculation & aftr & & after scaling references & \\
\hline & & befr & & before scaling reference & \\
\hline & scale factor use & appl & & apply scales & \\
\hline & & naps & & do not apply & \\
\hline & range in scale smoothing & sclm & n & & 5 \\
\hline & "observed" threshold & obst & n & rcode \(=2\) if \(\left|\mathrm{F}_{\mathrm{o}}\right|<\mathrm{n} \sigma \mathrm{F}_{\text {o }}\) & \(99^{\circ}\) \\
\hline & output data type & rawi & & raw intensity & \\
\hline & & neti & & nett intensity & \\
\hline & & fsqr & & |Fobs|2 & \\
\hline
\end{tabular}


\section*{setscl \(1 \quad\) scale factor to supersede value for the elapsed time in 2 \\ 2 elapsed time of the scale factor which is superseded by the value in 1 \\ discon 1 elapsed times of the scale factor sets which mark discontinuities}

\subsection*{3.53. REFM90: Convert SCFS-90 file to/from a BDF}


\subsection*{3.54. REGFE: Analyse errors}
atrad atomic radii by atom type
plane plane names and parameters
line line names and parameters
functn define distance and angle calculations
\begin{tabular}{llll} 
REGFE & \begin{tabular}{lll} 
Option \\
atom and plane output
\end{tabular} & Code & Arg
\end{tabular}\(\quad\) Def

\begin{tabular}{|c|c|c|c|}
\hline & 4 & coefficient B , or atom label & \\
\hline & 5 & coefficient C , or atom label & \\
\hline & 6 & coefficient \(\mathrm{X}(0)\) & \\
\hline & 7 & coefficient \(\mathrm{Y}(0)\) & \\
\hline & 8 & coefficient \(\mathrm{Z}(0)\) & \\
\hline functn & 1 & Option & Code \\
\hline & & distance between two atoms & dis \\
\hline & & angle defined by three atoms & ang \\
\hline & & dihedral angle defined by four atoms & dih \\
\hline & & angle between two planes & pap \\
\hline & & angle between plane and line & pal \\
\hline & & distance from plane to atom & pda \\
\hline & & distance from line to atom & lda \\
\hline & & angle between two lines & lal \\
\hline & & plane equation (three atoms) & pla \\
\hline & & line equation (two atoms) & lin \\
\hline & & unit cell volume & vol \\
\hline & \(2-\) & atom labels, plane ID's or line & \\
\hline & & ID's for the above function a & \\
\hline
\end{tabular}

\section*{Notes:}
a. The plane ID or line ID may be any one from the predefined plane list or line list, or can be a group of atom labels which are adequate to define a plane or line. Different types of functions require different numbers and types of components. The sequence of components is important. For example, function PDA (distance from plane to atom) should be followed by a plane ID and an atom label, but not an atom label and a plane ID. A plane can also be defined by entering three atom labels and a line can be defined by entering two atom labels.

\subsection*{3.55. REGWT: Analyse weights}
normal a normal weighting scheme
regina a Regina weighting scheme
maxhkl \(\quad\) set limits on \(\mathrm{h}, \mathrm{k}, \mathrm{l}\) and \(s\)
archiv addition and deletion of items in logical record lrrefl:
fgrid2 specification for \(\mathrm{F}_{\text {rel }}\) division of the analysis map
\(\boldsymbol{s g r i d}_{\mathrm{b}} \quad\) specification for \(s\) division of the analysis map
Notes:
a. Indicates only one control line with this symbol may be used.
b. The fgrid and sgrid lines are mandatory for weight analysis. They must be the last two control lines and the fgrid line must precede the sgrid line.
\begin{tabular}{|c|c|c|c|c|c|}
\hline REGWT & Option reflection listing & \begin{tabular}{l}
Code \\
nol
\end{tabular} & Arg & do not list all reflections & Def \\
\hline & & lst & n & list every nth reflection & 1 \\
\hline & reflection type & rel & & use rcode \(=1\) reflns only & \\
\hline & & inl & & use rcode \(=1,2\) reflections & \\
\hline & dataset selection & dse & n & use hkl dataset n & 1 \\
\hline & contribution factor & cnt & q & exclude hkl if \(\Delta \mathrm{F}>\mathrm{q}\) & \\
\hline & analysis based on & \(\underline{\text { frl }}\) & & relative \(|\mathrm{F}|\) & \\
\hline & & fr 2 & & relative \(\mathrm{F}_{2}\) & \\
\hline & & irl & & relative intensity & \\
\hline & type of run mode & reg & & Regina weighting scheme & \\
\hline & & nor & & normal weighting scheme & \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
& wta & \(\mathbf{m}\) & weight analysis a & 3 \\
scale factor for grid map & wfc & \(\mathbf{k}\) & & 1 \\
dispersion correction & nod & & \begin{tabular}{l} 
no dispersion correction \\
dispersion correction
\end{tabular} & \\
scale factor for R-map & dis & & &
\end{tabular}

\section*{Notes:}
a. \(m=1,2,3,4,5\) or 6 for analysis of the weighting schemes: unit weight, \(1 / \sigma_{2}\), LSWT, LSW1, LSW2 or LSW3.
normal a \(1 \quad\) weighting scheme number ( 0 to 9)
2 mnemonic name of coefficients (a to \(\mathbf{I}\) )
3 coefficient of the normal weighting function 0
4-5 same as 2 and 3
Notes:
a. Be careful. Some values of the coefficients cannot be zero during the weight estimation. Read the REGWT section in the Reference Manual first.
\begin{tabular}{|c|c|c|c|c|c|}
\hline regina & Option analysis map mode & \begin{tabular}{l}
Code \\
indi \\
grid
\end{tabular} & Arg & individual reflection mode grid point mode & Def \\
\hline & power of the weight a & pow & n & & 2 \\
\hline & freedom factor of weight & fac & m & & 1 \\
\hline & var.-covariance correction & avc & & apply & \\
\hline & & noave & & do no apply & \\
\hline & grid weight & ngw & & do not apply & \\
\hline & & apw & & apply & \\
\hline
\end{tabular}

\section*{Notes:}
a. The highest power term in the weight function must be \(>=0\) and \(<3\).
```

maxhkl 1-3 max |h|, |k|, |||used in the weighting process from bdf
4-5 min and max values of sin }0/

```
from bdf
from bdf
archiv 1- ID numbers a of bdf items to be added/deleted from logical record lrrefl:
Notes:
a. The only items which can be added or deleted are LSW1(n901), LSW2(n902) and LSW3(n903), where n is the data set number. archiv here is different from the one used in other programs. The previous weights located at LSWT, for instance, will be saved at location LSW1 if \(n 901\) is present in the archiv line. When -n901 is specified, the weight at LSW1 will be deleted from logical record lrrefl: in the bdf. In both cases the old weight at LSWT(n900) will be replaced by the newly calculated weight.
fgrid a \(\quad 1-\quad\) summation grid points along Frel axis
Notes:
a. More than one line of grid points for \(\mathrm{F}_{\text {rel }}\) is allowed. The maximum value for a grid point for \(\mathrm{F}_{\text {rel }}\) is 9999 and the value of the grid points must be in ascending order. If this line is used, at least one grid point must be given.
sgrid \(_{\mathrm{a}} \quad 1-\quad\) summation grid points along the \(\sin \theta / \lambda\) axis
Notes:
a. More than one line of grid points for s is allowed. The maximum value for a grid point for s is 2.00 and the value of the grid points must be in ascending order. If this line is used, at least one grid point must be given.

\subsection*{3.56. RFOURR: Reverse Fourier transform}
idnums

\begin{tabular}{llll} 
maxhkı & \(1-3\) & \begin{tabular}{l} 
max value \(|\mathrm{h}|,|\mathrm{k}|\) and \(||\mid\) to be phased \\
min value of \(\sin \theta / \lambda\) to be phased
\end{tabular} & \begin{tabular}{l} 
from bdf
\end{tabular} \\
& 4 & \begin{tabular}{l} 
max value of \(\sin \theta / \lambda\) to be phased
\end{tabular} & from bdf \\
idnums a & 1 & bdf idnum of input Frel coefficient
\end{tabular}

\section*{Notes:}
a. Note that the data set multiplier is not appended to the idnum's.

\subsection*{3.57. RIGBOD: Generate a Rigid Group}

RIGID
atomsy coordinates of symmetry related real atoms
delete delete real atoms in fitting procedure
insert insert real atoms from bdf
cellida cell constants of ideal atoms
atomor \(b\) orthogonal coordinates of ideal atoms
atomfr b fractional coordinates of ideal atoms
atname atom names for a second set of atoms

Notes:
a. Must be present to establish the conversion factor for the fractional coordinates given for the ideal atoms on atomfr lines.
b. Indicates one or the other is optional.
\begin{tabular}{lllllc} 
RIGBOD & Option & Code & Arg & & Def \\
atom lines output to pch & \(\frac{\mathrm{p} 1}{}\) & & \begin{tabular}{l} 
fractional coordinates \\
orthogonal coordinates
\end{tabular} & \\
& data set number & p 2 & & & 1
\end{tabular}

RIGID \(1 \quad\) isotropic thermal parameter U for all atoms of this group
2 population parameter for all atoms of this group
3 multiplicity for all atoms of this group
atomsy 1 atom label
2-4 fractional coordinates \(x, y, z\)
\begin{tabular}{|c|c|c|}
\hline delete & \[
\begin{aligned}
& 1 \\
& 2-
\end{aligned}
\] & \begin{tabular}{l}
atom label \\
as in 1 , or use separate lines
\end{tabular} \\
\hline \multirow[t]{2}{*}{insert} & 1 & atom label \\
\hline & \(2-\) & as in 1, or use separate lines \\
\hline \multirow[t]{2}{*}{cellid} & 1-3 & \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) cell lengths \\
\hline & 4-6 & \(\alpha, \beta, \gamma\) cell angles \\
\hline \multirow[t]{2}{*}{atomor} & 1 & atom label \\
\hline & 2-4 & orthogonal coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) \\
\hline \multirow[t]{2}{*}{atomfr} & 1 & atom label \\
\hline & 2-4 & fractional coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) \\
\hline \multirow[t]{2}{*}{atname} & 1 & atom label \\
\hline & \(2-\) & as in 1 or use separate atname lines \\
\hline
\end{tabular}

\subsection*{3.58. RMAP: Search for translated fragment}
\begin{tabular}{ll} 
scale & Frel scale factors \\
maxhkl & limits to hkl and \(\sin \theta / \lambda\) \\
select & select a subset of atoms in the bdf for Fcal \\
fixatm & set atoms to be fixed and translated \\
bounds & set parameters of unit cell to be searched
\end{tabular}


2 number of atoms to be used in translation search

\section*{Notes:}
a. Note that atoms must be loaded into the bdf so that the first selected number is the fixed sub-group and the second the translated subset.
bounds \(1 \quad\) first \(x\) fractional coordinate for search 0
2 last x fractional coordinate for search 1
\(3 \delta \mathrm{x}\) fractional coordinate for search \(\quad 0.3 /\) cell length
4-6 as above for \(y\)
7-9 as above for z

\subsection*{3.59. RSCAN: Analyse R-factors}
\begin{tabular}{|c|c|c|c|}
\hline maxhkl scale & \multicolumn{2}{|r|}{limits for \(\mathrm{h}, \mathrm{k}, \mathrm{l}\) and \(\sin \theta / \lambda\) scale groups and scale factors} & \\
\hline \multirow[t]{9}{*}{RSCAN} & 1 & maxl maximum for measured F range 1 & 19 \\
\hline & 2 & intl interval for measured F range 1 & 1 \\
\hline & 3 & \(\max 2\) maximum for measured F range 2 & 500 \\
\hline & 4 & int2 interval for measured F range 2 & 10 \\
\hline & 5 & maximum for \((\sin \theta / \lambda)_{2}\) range & 4 \\
\hline & 6 & interval size for \((\sin \theta / \lambda)_{2}\) range & 0.02 \\
\hline & 7 & maximum for measured I range & 1000000 \\
\hline & 8 & factor for computing measured I interval size & 2 \\
\hline & 9 & data set number & 1 \\
\hline \multirow[t]{3}{*}{maxhkl} & 1-3 & \(\max |\mathrm{h}|,|\mathrm{k}|,|1|\) to be used in summations & from bdf \\
\hline & 4 & \(\min \sin \theta / \lambda\) to be used in summations & 0 \\
\hline & 5 & \(\max \sin \theta / \lambda\) to be used in summations & from bdf \\
\hline \multirow[t]{2}{*}{scale} & 1 & Frel scale factor & \\
\hline & 2 & scale group & 1 \\
\hline
\end{tabular}

Multiple scale lines may be used.

\subsection*{3.60. SCATOM: Calculate pseudo-atom form factor. NEW}
\begin{tabular}{llll} 
SCATOM & Coden & Arg & \\
& iso & & isotropic U only \\
& ani & ove & anisotropic Uij only \\
& & overall isotropic, all atoms
\end{tabular}

\subsection*{3.61. SHAPE: Patterson deconvolution for structure solution}
smf calculates symmetry minimum function
imf calculates image seeking minimum function
Shape Option
Code
Arg
Def
smf - no additional parameters
imf \(\quad 1-3 \quad \mathrm{x}, \mathrm{y}, \mathrm{z}\) fractional co-ordinates of pivot position

\subsection*{3.62. SHELIN: Enter SHELX file}

\section*{Shelin a Option}
shelx control instructions
population treatment
shelx source file(s) basename b

Code
new external file
old in line within compid.dat
pop
file
Arg
force atom pop to 1.0
( 256 chars max) instructions compid.ins from reflections from compid.hkl

\section*{Notes:}
a. See also the program OUTSRC for exporting an Xtal archive back to Shelx input format.
b. Should be used as the last option on the SHELis line as embedded blanks are permissible, as well as the DOS disk identifier ":" and directory separators.

The following SHELX lines are translated into XTAL commands a
```

TITL, CELL, LATT, SYMM, SFAC, UNIT for STARTX
HKLF for DIFDAT/ADDREF
FVAR for ADDATM

```

Notes:
a. The recognised data are: the standard SHELX hkl lines (two formats) following HKLF, and the standard atom lines following FVAR.

The cell to Unit commands must always be input, and the FVAR command and atom lines, if entered, must be the last in the SHELIN sequence. All other SHELX lines will be ignored.

\subsection*{3.63. SIMPEL: Symbolic-addition phasing}


```

print application of accepted correl
symbols to all |E|'s
print figure-of-merit details fomtest
print phase sets output to bdf bdfout

```

Notes:
a. Entering no options implies that all print options are invoked.
symbad 1 probability factor used in
symbolic addition
use sum of weighted \(\alpha\) 's (see wa
Step 3.)
use sum of \(\alpha\) 's and invariant an
count
2 acceptance procedure if
multiple symbols generated
accept most probable indication mult
reject all but single symbol sing
indication
3 no. of generators added in 100
blocks to the symbolic process
4 acceptance threshold of weight 0.3
for wa option
setfom \(1 \quad\) number of top phase sets applied in FOM tests a 16
2 optimum value for QFOM
0.75

3 weight of QFOM in CFOM and AMOS 1
4 optimum value of RFOM 1
5 weight of RFOM in CFOM and AMOS 1
6 optimum value of RFAC FOM 0.25
7 weight of RFAC in CFOM and AMOS 1
8 optimum value of PSI0 FOM 0.75
9 weight of PSIO in CFOM and AMOS 1
10 optimum value of NEGQ FOM 60
11 weight of NEGQ in CFOM and AMOS 1

\section*{Notes:}
a. Phase sets are presorted based on the max correlation with the symbolic phases.
phase 1-3 hkl indices
4 input phase (in degrees) assign as new symbolic phase
5 Phase status option Code
assign as origin defining phase odr
assign as enantiomorph phase edr
assign as symbolic phase a sym
assign as numeric phase \({ }_{1}\) set
remove phase from phasing nul
process

\section*{Notes:}
a. The default is sym if field 4 is void; set is default if field 4 is numeric.
psets 1- phase set numbers to be output to output archive bdf a none
Notes:
a. These numbers are selected from a previous run using identical parameters.

\subsection*{3.64. SLANT: Slanted map}


Notes:
a. If a non-default choice for field 4 or 5 is made BOTH fields must be specified. For field 4 the equation is (lines/point)*(col/inch) /(lines/inch).
b. For field 5 the equation is (col/point)*(lines/inch) / (col/inch).
site 1 atom label
2-4 fractional coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\)

\subsection*{3.65. SORTRF: Sort/merge reflection data}
\begin{tabular}{ll} 
label & information added to logical record labl of the bdf \\
merge & items on input bdf to be averaged
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{29}{*}{SORTRF} & \multirow[t]{4}{*}{Option sorting order sorting type} & Code & Arg & & \multirow[t]{8}{*}{\[
\begin{aligned}
& \text { Def } \\
& \text { hkl }
\end{aligned}
\]} \\
\hline & & ord & hkl & slow/med/fast indices & \\
\hline & & sort & n & \(\underline{1}\)-high \(\longrightarrow 0 \longrightarrow+\) high index & \\
\hline & & & & \begin{tabular}{l}
2 as 1 with Friedels adjacent \\
3 as 1 with \(|\mathrm{h}|=|\mathrm{k}|=|1|\) groups
\end{tabular} & \\
\hline & \multirow[t]{4}{*}{equivalent hkl data} & nav & & do not average equivalent hkl & \\
\hline & & clus & & cluster equivalent hkl & \\
\hline & & aver & n & \(\underline{1}\) standard average & \\
\hline & & & & 2 Fisher test average & \\
\hline & \multirow[t]{4}{*}{rcode threshold prior rcode values culling for average 1} & rthr & \(r\) & rcode \(=2\) ifr \(\sigma \mathrm{Y}>\mathrm{Y}\) & \(r=0\) \\
\hline & & ignore & & do not use input rcodes & use \\
\hline & & ncull & & no culling & \\
\hline & & cull & t & cull Y if \(|\mathrm{Y}-\mathrm{Y}|>\mathrm{t} \sigma \mathrm{Y}\) & 3 \\
\hline & \multirow[t]{2}{*}{Friedel independence a} & pakfrl & & pack pairs in single packet b & \\
\hline & & sepfrl & & keep pairs as separate reflns c & \\
\hline & \multirow[t]{3}{*}{averaged coefficients \({ }_{\text {d }}\)} & irel & & average I and \(\sigma \mathrm{I}\) & \\
\hline & & f2rl & & average \(\left|\mathrm{F}_{2}\right|\) and \(\sigma\left|\mathrm{F}_{2}\right|\) & \\
\hline & & frel & & average \(|\mathrm{F}|\) and \(\sigma|\mathrm{F}|\) & \\
\hline & \multirow[t]{3}{*}{print output data} & print & -n & print n problem hkl's & 25 \\
\hline & & print & n & print n hkl & \\
\hline & & nopr & & do not print & \\
\hline & print observations & mob & n & print n100 & \\
\hline & \(\sigma\) 's for average 2 & success & n & 1 Poisson & \\
\hline & \multirow[t]{2}{*}{if hypothesis true} & & & 2 equivalents & \\
\hline & & & & 3 maximum & \\
\hline & \(\sigma\) 's for average 2 & unsucce & n & 1 Poisson & \\
\hline & \multirow[t]{3}{*}{if hypothesis is false} & & & 2 equivalents & \\
\hline & & & & 3 maximum & \\
\hline & & & & 4 reject reflection & \\
\hline & dataset number & dset & n & & 1 \\
\hline
\end{tabular}

\footnotetext{
Notes:
a. symmetrically equivalent.
b. Correct option if Friedel data is to be used in CRYLSQ for an xabs refinement.
c. Correct option if Friedel data is to be used in LSLS for a twinop refinement.
d. Only the specified coefficient type is merged. Other coefficients on the input bdf are not averaged, unless on a merge line. If the specified coefficient is not present on the bdf, the coefficients I, \(\mathrm{F}_{2}\) and F will be used in that order. I is the default.
}
label 1 character information added to the logical record lrlabl: of the bdf
merge 1- ident numbers of items input on the bdf to be averaged (max only selected irel, f2rel or 30)

\subsection*{3.66. STARTX: Create initial archive file}
\begin{tabular}{ll} 
label & descriptive information \\
cell & unit cell parameters \\
cellsd & standard deviations in unit cell parameters \\
sgname a & space group name in explicit-origin Hall notation \\
spaceg & space group name in Hermann-Maugin notation \\
latice a \(^{\text {symtry a }}\) & unit cell lattice type and centricity \\
symmetry equivalent positions \\
celmol & number of molecules in the cell \\
celcon & contents of unit cell atomic species information \\
formfx \(^{\text {b }}\) & scattering factor information, tabular \\
formgn \(^{\text {b }}\) & scattering factor information, expansion coefficients \\
scale & Frel scale factors for data sets \\
maxhkl c & maximum sin \(\theta / \lambda, h, k\), and lfor datasets \\
datdef c & definition of crystal data set (enantiomorph, etc.) \\
exper c & experimental conditions for data sets \\
crystal & crystal colour and dimensions \\
orient c & crystal orientation for data sets
\end{tabular}

Notes
a. Symmetry information must be entered by using either a sgname line or a latice line and/or one or more symtry lines.
b. CElCON lines must precede these lines. For a given atom type, both formfx and a formgn lines may not be used. However, a formfx line for atom type 1 and a formgn line for atom type 2 may be used. If neither is entered, stored expansion coefficients will be used by default for atoms specified on the Celcon lines (Cromer and Mann, 1968).
c. These lines, if entered, must follow the Celcon lines.
\begin{tabular}{|c|c|c|c|c|c|}
\hline STARTX & \begin{tabular}{l}
Option \\
bdf creation
\end{tabular} & \begin{tabular}{l}
Code \\
apr \\
upd
\end{tabular} & Arg & create an a priori output archive bdf output updated from input bdf & Def \\
\hline & stored form factors & sint & s & \(\sin \theta / \lambda\) interpolation int. & 0.02 \\
\hline & & smax & s & \(\sin \theta / \lambda\) maximum & 2.0 \\
\hline & radiation type & xray & & X-rays & \\
\hline & & neut & & neutrons & \\
\hline & & elec & & electrons & \\
\hline & & lax & & no symmetry checking at all & \\
\hline
\end{tabular}
label 1 character information added to the logical record lrlabl: of the bdf
cell \(\quad 1-3 \quad\) a, b, c cell dimensions (in \(\AA\) )
4-6 \(\alpha, \beta, \gamma\) cell angles (in degrees) 90
cellsd 1-3 \(\sigma \mathrm{a}, \sigma \mathrm{b}, \sigma \mathrm{c} \quad 0\)
4-6 \(\sigma \alpha, \sigma \beta, \sigma \gamma \quad 0\)
sgname \(\quad 1-\quad\) space group in Hall notation a
Notes:
a. A table of these notations, together with the corresponding space group as found in the International Tables, Vol. A., is located in the Symmetry appendix. (NOTE that separate elements of the notation must be separated by space or underscore characters e.g. p_2_2
not p 22 .)
spaceg 1- space group in Hermann-Maugin notation a
Notes:
a. Separate elements of the notation must be separated by space or underscore characters e.g. P 1212 not P1211. Note also that because colons (:) denote specific settings they cannot be used as XTAL comment delimiters on spaceg lines.
laticea 1

2

3
centricity code
centrosymmetric \(c\)
noncentrosymmetric n
2 Bravais lattice code primitive p end-centred a, b, c body-centred i rhombohedral r face-centred \(\mathbf{f}\) no symmetry checks b ncheck

Notes:
a. If this line is entered then the equivalent positions described by the centricity and Bravais lattice codes must not be input as symtry lines. This line must NOT be entered if an sgname line is used.
b. no symmetry checks will be applied to input symtry lines and the sgname code will not be automatically generated and stored.

This option is invoked if special symmetry is to be entered.
symtry a 1- equivalent positions entered as algebraic strings
Notes:
a. Symmetry equivalent positions are entered as listed in the International Tables, Vol I or A. If the latice line is entered then the equivalent positions described by the centricity and Bravais lattice codes must not be input as symtry lines. The definition of an equivalent position is the \(\mathrm{x}, \mathrm{y}\), and z operations for each coordinate separated by commas. Only one equivalent position may be defined on a symtry line. This line must NOT be entered if an sgname line is used. Xtal comments (preceded by a colon :) are not permitted.
celmol 1 number of molecules in the cell one molecule per asymmetric unit
celcon a 1 atom type symbol (max 8 characters)
2 number of atoms of this type in the unit cell
3 atomic weight based on field 1
4 atomic number based on field 1
5 number of electrons in atom type based on field 1
6 atomic bond radius (in \(\AA\) ) based on field 1
7 atomic contact radius (in \(\AA\) ) based on field 1
8 real dispersion factor \(\mathrm{f}^{\prime}{ }_{\mathrm{b}} \quad\) based on field 1
9 imaginary dispersion factor \(\mathrm{f}^{\prime \prime} \mathrm{b} \quad\) based on field 1
10 neutron scattering factor (CAUTION c) d

\section*{Notes:}
a. One celcon line must be entered for each atom type expected in the structure. If neither formgn nor formfx lines are used, scattering factors will be generated using information on celcon lines and tables from Cromer and Mann (1968).
b. The dispersion factors are automatically entered only for MoK and \(\mathrm{CuK} \alpha 1\) radiations. Actually, as of Xtal-3.7.2 dispersion factors in the wavelength range \(0.1 \AA\) to \(2.89 \AA\) can be automatically added based on the calculations of S. Sasaki (1989) KEK report, which you should acknowledge. The radiation wavelength is specified on the exper line.
c. If the neutron scattering factor is entered, ALL subsequent calculations will require that neutron data be processed. Do not enter unless this is the case.
d. If the command STARTX neut is invoked then the neutron scattering length is automatically added to the archive.
formfx a 1 atom type symbol (max 8 characters)
\(2 \sin \theta / \lambda\) for scattering factor
3 scattering factor value
4 comment about source of scattering factor (surround with
'=')
Notes:
a. Not more than 200 formfx lines are allowed per atom type. Lines must be in order of increasing \(\sin \theta / \lambda\). The first line must have a \(\sin \theta / \lambda\) value of zero.
formgn a 1 atom type symbol (max 8 characters)
2-10 Cromer-Mann coefficients a1, b1, a2, b2, a3, b3, a4, b4, c
Notes:
a. One formgn line is used per atom type.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{scale} & 1 & Frel scale & \\
\hline & 2 & scale group number & 1 \\
\hline & 3 & data set number & 1 \\
\hline & 4-6 & same as fields 1-3 for next scale; and so on & \\
\hline \multirow[t]{3}{*}{maxhkl} & 1-3 & \(\max |\mathrm{h}|,|\mathrm{k}|,|\mathrm{l}|\) to be stored on the bdf & \\
\hline & 4-5 & \(\min\) and \(\max \sin \theta / \lambda\) to be stored on the bdf & \\
\hline & 6 & data set number & 1 \\
\hline \multirow[t]{2}{*}{datdef} & 1 & data set number & \\
\hline & 2 & data set name (max 12 characters) & parent \\
\hline \multirow[t]{16}{*}{exper} & 1 & data set number & 1 \\
\hline & \multirow[t]{3}{*}{2} & \multirow[t]{3}{*}{weighted mean wavelength (in \(\AA\) )} & 0.71069 ( X rays) \\
\hline & & & 1.0 (neutrons) \\
\hline & & & 0.01 (electrons) \\
\hline & 3 & wavelength line 1 & \\
\hline & 4 & wavelength line 2 & \\
\hline & 5 & wavelength line 3 & \\
\hline & 6 & relative weight line 1 & \\
\hline & 7 & relative weight line 2 & \\
\hline & 8 & relative weight line 3 & \\
\hline & 9 & measured density of crystal ( \(\mathrm{mg} / \mathrm{mm}_{3}\) ) & \\
\hline & 10 & linear absorption coefficient & \\
\hline & 11 & temperature of measurement (in Celsius) & \\
\hline & 12 & sorting order for hkl as packed integer e.g. 213 is k-slow, & \\
\hline & 13 & pressure of measurement (in GPa) & \\
\hline & 14 & radiation type ( \(1=\) neutron \(2=\) electron \(3=\mathrm{MoKa} 4=\mathrm{CuKa}\) & \\
\hline \multirow[t]{5}{*}{crystal} & 1 & crystal colour (20 characters max) & \\
\hline & 2 & crystal shape ( 20 characters max) & \\
\hline & 3 & Maximum crystal dimension (mm) & \\
\hline & 4 & Median crystal dimension (mm) & \\
\hline & 5 & Minimum crystal dimension (mm) & \\
\hline \multirow[t]{2}{*}{orient} & 1 & data set number & 1 \\
\hline & 2-10 & orientation matrix: \(\mathrm{UB}_{11}, \mathrm{UB}_{21}, \mathrm{UB}_{31} \ldots, \mathrm{UB}_{33}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline physical record range & prec & r s & & 110000 \\
\hline logical record range & lrec q & pq & & \begin{tabular}{l}
\[
1 \text { en- }
\] \\
drecord:
\end{tabular} \\
\hline packets per logical record remove format template & \begin{tabular}{l}
npak w \\
xform
\end{tabular} & v w & format packets separately & 1100 \\
\hline
\end{tabular}

\subsection*{3.69. XTINCT: Extinction from equivalent reflections}
\begin{tabular}{ll} 
limits & restrictions on reflections to be \\
included in refinement
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{14}{*}{XTINCT} & \multirow[t]{4}{*}{Option apply correction to} & Code & Arg & & \multirow[t]{5}{*}{Def} \\
\hline & & frel & & |F| & \\
\hline & & \(\underline{\mathrm{f}} \mathrm{rl}\) & & \(\mathrm{F}_{2 \text { rel }}\) & \\
\hline & & irel & & Irel & \\
\hline & \multirow[t]{2}{*}{extinction coefficient \(\mathrm{r}^{*}\)} & \(\underline{\text { refx }}\) & & refine and apply & \\
\hline & & appx & r s & apply input \(\mathrm{r}^{*}\) and \(\sigma \mathrm{r}^{*}\) & \\
\hline & treat Friedels as equiv. & eqfr & & (non-centrosymmetric data) & no \\
\hline & refine separately for all equiv.s & sall & & output to punchfile & no \\
\hline & include hkl if T equal & incl & & & no \\
\hline & print reflections & prin & n & & 25 \\
\hline & apply extinction if \(\mathrm{r}^{*}<0\) & negx & & & no \\
\hline & data set used & dset & n & & 1 \\
\hline & polarization factor & polf & p & range (0-1) & 0.5 \\
\hline & mosaic distribution factor & case & n & & 2 \\
\hline
\end{tabular}
limits 1 limit range of selected option:
\begin{tabular}{ll}
\(|\mathrm{F}|\) & frel \\
\(\mathrm{F}_{2 \text { rel }}\) & f2rl \\
\(\mathrm{I}_{\text {rel }}\) & irel \\
\(\sin \theta / \lambda\) & stol
\end{tabular}

Chapter 3. Program controls

\section*{Chapter 4. Reference Manual}

This section contains the descriptions of programs in the Xtal System. These were prepared by the program authors who are listed at the head of each program. If you experience difficulties with a program, or require further information, you could, as a last resort, attempt to contact the author indicated for this purpose. However, since the source code is available and it is so well documented, that should be your first resource.

\subsection*{4.1. System Control Lines}

The line input file is used to control how and when calculations are performed. Three different types of input command lines are recognised in an Xtal input file. System command lines signal certain nucleus functions; program initiation lines initialize specific calculations; and program data lines are used to enter data for a calculation.

\subsection*{4.1.1. System command lines}

The system command lines are:
title specify the output print header
compid set the compound identification code
master set master file switch and specify filenames
remark insert comments into the printed output
copybdf copy a binary file
reset reset printer parameters
setid specify a default line identifier
field fix the format of input lines
order reorder fields of input line data
finish end of the input line file

\subsection*{4.1.1.1.title}

This line contains a character string to be inserted at the top of each printed page. Only one title line is active at a time, but any number may be entered during a sequence of calculations. STARTX stores the current title image in the archive file record lrlabl:

Field 1- character string, columns 8 to 72 . Default string is blank.

\subsection*{4.1.1.2. compid}

This line is used to set the compound identification code for the data under study. See the compid discussion below in 3 .

Field 1 an alphanumerical string of up to six characters.

\subsection*{4.1.1.3. master}

This line is used to control the use of the master archive file. The default master file condition is set on installation with the masterfile: macro. This line enables the user to specify master file support for the current run. A master line, if entered, must precede the first program initiation line. The following free format controls may be used:

\footnotetext{
- no switch master file support off; no master files are read or written
}
- yes switch master file support on; master files read \& written from aaa
- read \(v\) copy a master archive file with extension \(v\) to the binary file aa1
- write wcopy the latest binary file to a master archive file with extension \(w\)

\subsection*{4.1.1.4. remark}

This line contains a character string to be output to the print file. Unlike the title line, it is output only once and is output as soon as it is encountered in the input. An example follows at the end of this section.

Field 1- character string, columns 8 to 72 . Default string is blank.

\subsection*{4.1.1.5. copybdf}

This line is used to copy one binary data file (bdf) to another, The syntax of this command is: 'copybdf <extl> <ext \(2>^{\prime}\). The binary file with extension extl is copied to a binary file with extension ext2. The extension codes are user choice, and need not be any of the extensions described above. The purpose of this command is enable the user to save or retrieve a binary file during an Xtal run. Note, however, that a copybdf line can only be used after the compid line or an end line.

If the codes \(\mathbf{a}\) or \(\mathbf{b}\) are used as extension codes, they will be interpreted as the current input or output archive binary file, respectively. In other words, the extension aa1 or aa2 will be substituted where appropriate. Typical uses of this command follow:
```

copybdf b tem :save current output archive binary file to extension tem
copybdf ort or4 :save ORTEP output - used to save successive ORTEP's
copybdf tem a :replace current input archive file with extension tem

```

\subsection*{4.1.1.6. reset}

This line resets certain Xtal input/output functions. The prime use of this command is to redefine the printer characteristics for a given run. This is particularly useful in a networked computing environment. The syntax of the reset command consists of a parameter code followed by a numerical parameter.
```

cmax n max characters per line of printer
lmax n max lines per page of printer
cpin n characters per inch across the page
lpin n lines per inch down the page
psta n priority status of print lines (normally 3; max 5)

```

\subsection*{4.1.1.7. setid}

This line is used to preset the identification code of the lines which follow. This may be used to read nonXtal formatted lines. Once the setid has been entered, all succeeding lines, except the system commands, are treated as having the identification code specified on the setid line, until another setid is read. When setid is in force, the field 1 of a line starts in column 1 of the input line (this is field 0 when setid is not in force).

Field character string of up to 6 characters. A blank string resets to normal input.

\subsection*{4.1.1.8. field}

This line specifies the format of fields for input lines that follow. The input numbers specify the rightmost character of successive fields. The leftmost character of each field is assumed to be rightmost character number of the previous field, +1 . The leftmost character of field 1 is character 1 . If an identification code is entered on an input line which has been formatted by a preceding field line, an order line will need to be also specified so that this field can be ignored or properly treated. All fields expected as input must be specified on the field line. A blank field line is used to reset to free format input.

Field \(1 \quad\) number of the rightmost character for field 1 of following
2 number of the rightmost character for field 2 of following input lines 3- etc.

\subsection*{4.1.1.9. order}

This line specifies the order of fields for input lines that follow. This enables the input fields of either fixed or free format lines to be re-ordered to match the requirements of the inputting program. This facility is particularly useful for reading non-Xtal lines in which data must be reordered or ignored to meet Xtal program requirements. A blank order line resets the order to sequential.
\begin{tabular}{lll} 
Field & 1 & new field number for first input field \\
& 2 & new field number for second input field \\
& \(3-\) & etc.
\end{tabular}

\subsection*{4.1.1.10. finish}

This line signals the end of all calculations. It is optional since the end-of-file will cause the same action. The finish line is particularly useful to prevent processing beyond a certain line in the input line file.

\subsection*{4.1.2. Examples of System Commands}

The first example shows the simplest use of system command lines.
```

title This line appears at the top of each printed page
remark These lines appear only once in the printout
reset cmax 80 :reset printer line width
master yes read zzz :use the master file compid.zzz

```

The next example is more complicated. It shows how a set of input lines containing the atom information may be input as if they were atom lines (these data lines are used by many programs -- see ADDATM). The blank setid and order lines are necessary to restore line identification and field ordering to default values.
```

order 2 3 4 1 5 :change input order to x y z label tdp
setid atom :set the input line id to 'atom'
0.1645 0.2295 0.3721 Cu1 0.035
0.3978 0.3342 0.3788 Cu2 0.030
0.4564 0.5000 0.6123 01 0.021
setid :switch off the 'atom' line id
order :switch off the changed input order

```

\subsection*{4.1.3. Program initiation lines}

A 'program initiation' line is used to initiate an Xtal calculation. These lines contain the program identifer code which is used to identify each program in the Xtal documentation and in the nucleus routine AA00. For example, a line containing FC (as characters 1-2) initiates the structure factor calculation. The program initiation line may also contain input parameters. Any additional input data is entered on separate 'program data' lines. These are described below.

\subsection*{4.1.4. Program data lines}

A 'program data' line is used to enter data under the control of a specific program. Each data line starts with a code which uniquely identifies its function. This code is used by the program to identify the data. The order that data lines are entered may be arbitrary or it may be fixed. The entry rules for each data line are given in the Program controls section. If a program data line is mandatory its name is capitalised, whereas optional data lines are in lower case. Note also that the requirement to input some data lines may be dependent on the presence of others.
The majority of input lines, and parameters, used by Xtal programs are optional. The default for each program are set at their most commonly used values. In the Program controls section of this manual default values are indicated iether with a dotted underline or in red (e.g. sinv), or as italicised numbers or characters on the right hand side of the line (e.g. 1000). Unless the user needs to specify a different value, these parameters or lines need not be entered.

The last data line for a given calculation is followed by one of the following: an end line; another program initiation line; a finish line; or an end-of-file.

\subsection*{4.2. ABSORB: Absorption corrections}

Authors: George Davenport, Nick Spadaccini and James Stewart
Contact: Nick Spadaccini, Computer Science Department, University of Western Australia, Nedlands, WA 6907,Australia

ABSORB provides the following methods of correcting diffraction data for absorption effects: the Gaussian integration method devised by Busing and Levy (1957), the analytical method of de Meulenaer and Tompa (1977); corrections for spherical crystals; corrections for cylindrical crystals; and corrections derived from tables supplied by the user. Options include the choice of method, calculation of the mean path length Tbar, and the application of the absorption correction to data in the bdf.

\subsection*{4.2.1. Application}

There are four steps in the determination of absorption corrections:
1. Careful measurement of the dimensions of the crystal.
2. Preparation of a description of the orientation of the crystal relative to its mounting on the diffractometer.
3. Determination, by recalculation, of the diffractometer angles and beam vectors for each reflection.
4. Calculation of the absorption correction for each reflection.

\subsection*{4.2.1.1. Analytical Method}

In this method the convex polyhedral crystal is subdivided into tetrahedra. This method has the advantage that the absorption correction for a tetrahedron can be calculated analytically. The total absorption correction for the crystal is obtained by summation over all the tetrahedra which make up the polyhedron that is the crystal. The algorithm used is that given by Alcock (1974). For each tetrahedron the volume and transmittance are calculated.

\subsection*{4.2.1.2. Gaussian Method}

In this method the convex polyhedral crystal is subdivided by an arbitrary grid set up inside the polyhedron. The path lengths of rays from the source to each point and out along the diffraction direction are calculated. A Gaussian integration over all the path lengths for all the grid points gives the absorption correction for each reflection. The methodology is essentially that of Busing and Levy (1957).

\subsection*{4.2.1.3. Spherical Method}

Absorption corrections for spherical crystals of radius \(\mathbf{r}\) are selected by entering sphere \(\mathbf{r}\) on the ABSORB line. The values of A*, and T if requested, are derived from the algorithm of Tibballs \((1982,1990)\) which is reportedly accurate to better than \(1 \%\) for \(\mu \mathbf{r}<2.5\).

\subsection*{4.2.1.4. Cylindrical Method}

Absorption corrections for scattering in the equatorial planes of a cylindrical crystal of radius \(r\) are selected by entering cylinder \(r\) on the AbSORb line. Note that corrections for scattering from planes in the general orientation of a cylindrical specimen are not possible. The values of \(\mathrm{A}^{*}\), and T if requested, are again derived from the algorithm of Tibballs \((1982,1990)\) which is reportedly accurate to better than \(1 \%\) for \(\mu \mathbf{r}<2.5\).

\subsection*{4.2.1.5. Tables Method}

Values of A* and T may be supplied by the user by selecting the table option on the ABSORB line. One or more astar lines containing values of the absorption corrections \(\mathrm{A}^{*}\) at intervals of \(5^{\circ}\) must follow the ABSORB line. If the tbar option is requested on the AbSORB line, one or more tbar lines containing values of T at intervals of \(5^{\circ}\) must also be included. Four point interpolation routines are used in both cases.

\subsection*{4.2.2. Crystal Descriptions}

To specify the shape of a crystal, it is necessary to describe the faces of the crystal. The following three methods are available in the ABSORB program. Note that one and only one method may be used to describe the crystal.

\subsection*{4.2.2.1. facem1}

Faces are described by giving, for each face, the Miller indices and the perpendicular distance from the face to an arbitrary origin within the crystal. The origin must be the same for all faces of the crystal. The Miller indices are transformed into the crystal Cartesian system using the B matrix (Busing and Levy, 1967), and the resulting vector is normalized, producing the normal to the face.
\[
\begin{aligned}
& \mathbf{n}=\mathbf{B} \mathbf{h} /|\mathbf{B} \mathbf{h}| \\
& \mathrm{n}_{1} \mathrm{x}+\mathrm{n}_{2} \mathrm{y}+\mathrm{n}_{3} \mathrm{z}=\mathrm{d} \text { (equation of face) }
\end{aligned}
\]

\subsection*{4.2.2.2. facept}

Each face is defined by the coordinates of 3 points on the face in an arbitrary Cartesian system (it must be right-handed, orthogonal and normalized). The unit length in this system is 1.0 mm . The coordinate system origin must not be on an edge or face.

\subsection*{4.2.2.3. face}

Each crystal face is specified by the \(\chi\) and \(\phi\) angles required to place it in the diffracting position, plus the distance from the crystal face to an arbitrary origin inside the specimen. This kind of measurement can be readily done on diffractometers which have the viewing telescope mounted perpendicular to the \(\chi\) circle. The faces need have no relationship to the two orienting reflections.

\subsection*{4.2.3. Diffractometer Description}

The ABSORB program is designed to accept input data from any 4-circle diffractometer, and to calculate absorption corrections for that diffractometer. The motions of any diffractometer can be described by four parameters; the direction of rotation of the \(2 \theta, \chi, \phi\), and \(\omega\) circles. In the bisecting mode this reduces to 3circles \((\omega=\theta)\). For \(\psi\) scans (rotations about the scattering vector) the sense of rotation about the normal to the diffraction plane must be included. Described below is the method which must be followed.
1. Set all circles to zero.
2. Look downward from above the diffractometer and note the directions of rotation of the \(2 \theta\) and \(\omega\) circles as clockwise (C) or anti-clockwise (A).
3. Look along the direction of the primary beam, from the x-ray source toward the goniometer head. Note the direction of rotation of the \(\chi\) circle as clockwise or anti-clockwise.
4. Look downward from above the diffractometer and note the direction of rotation of the \(\phi\) circle as clockwise or anti-clockwise.
5. Look down the scattering vector note the direction of motion during the \(\psi\) rotation as clockwise or anticlockwise.

The following table lists the parameters for a number of diffractometer systems, both real and constructs used in papers. This information has been supplied by Jacek Grochowski.

System
Siemens (Syntex \(2 \theta \quad \chi \quad \phi \quad \omega\)
Nicolet)
CAD-4
Philips PW 1100
Busing and Levy (1967)

Chidambaram (1980)
International Tables, Vol. IV
Picker FACS-1
Picker with Finger refinement

A A A A
C A A A
\(\begin{array}{llll}\mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{C} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C}\end{array}\)

\section*{Senses of Rotation}
\(\psi_{a}\)

C
C

A

\section*{Notes:}
a. At the present time the ABSORB program does not handle any system where the sense of rotation is not uniquely definable. This occurs for the sense of rotation of \(\psi\) for the Syntex after Sparks.

The formulae of Busing and Levy can be modified using the equations which follow (BL = Busing and Levy, \(\mathrm{C}=\) clockwise, \(\mathrm{A}=\) anti-clockwise \()\). For any angle \(\tau(\theta, \chi, \phi, \omega, \psi)\) :
\(\tau(\mathrm{BL})=\tau(\mathrm{C})=-\tau(\mathrm{A})\)
By introducing the parameters \(\mathbf{S}(\theta), \mathbf{S}(\chi), \mathbf{S}(\phi), \mathbf{S}(\omega)\) and \(\mathbf{S}(\psi)\), the senses of rotation of the circles of a diffractometer are defined as:
\(S=+1\) for clockwise rotation \(S=-1\) for anticlockwise rotation
Three equations are produced which convert the angles used on a diffractometer, (DIFF), to equivalent angles in the Busing and Levy system.
\[
\tau(\mathrm{BL})=\mathrm{S}(\tau) * \tau(\mathrm{DIFF})
\]

The program will assume the bisecting mode unless the angle \(\psi\) is stored on the bdf (lrrefl:, IDN=1011). If, in the \(\psi\) scan mode, \(\omega\) does not fall within the diffractometer limits (specified in Fields \(7-8\) on the diff line) the equivalent solution is used
\(\chi=-\chi, \phi=\pi+\phi, \omega=\pi+\omega\)

\subsection*{4.2.3.1. Coordinate Systems}

A number of different coordinate systems are used in determining absorption corrections. These are summarized as follows: ( \(\mathbf{v}\) (system) represents a column vector in a given coordinate system.)
1. The reciprocal lattice system may be non-Cartesian but is not necessarily. In this system a vector \(\mathbf{v}\) (hkl) is represented as a linear combination of the right-handed reciprocal lattice vectors.
2. The crystal system is a right-handed Cartesian system obtained through the transformation of the hkl system \(\mathbf{v}(\) crystal \()=\mathbf{B} \mathbf{v}(\mathrm{hkl})\), where \(\mathbf{B}\) is the transformation matrix defined using the direct and reciprocal lattice parameters. The \(\mathbf{B}\) matrix is listed below.
```

a* b* cos}\mp@subsup{\gamma}{}{*}\mp@subsup{c}{}{*}\operatorname{cos}\mp@subsup{\beta}{}{*
0 b* sin}\mp@subsup{\gamma}{}{*}-\mp@subsup{c}{}{*}\operatorname{sin}\mp@subsup{\beta}{}{*}\operatorname{cos}
0 0 1/c

```

Calculation of the absorption corrections is done using the coordinates of the crystal system.
3. The \(\phi\) system is a right-handed Cartesian system which is rigidly attached to the \(\phi\) shaft of the diffractometer. The definition of the axes is completely arbitrary. For two examples see Busing and Levy (1967) and Coppens (1970). The ABSORB program uses the definition of Busing and Levy, i.e., with all circles set to zero, the x -axis is along the scattering vector, the y axis is in the direction of the primary beam, and the z -axis points upward. The \(\phi\) system is related to the crystal system by the rotation matrix \(\mathbf{U}\) as follows:
\(\mathbf{v}(\phi)=\mathbf{U} \mathbf{v}(\) crystal \()\)

\subsection*{4.2.4. Plot Of Crystal Shape}

Two views of the crystal shape are provided as options. These are a projection of the crystal shape along the three cell directions or a stereoscopic view of the crystal tilted \(15^{\circ} \mathrm{in} \mathrm{z}\) and \(-10^{\circ}\) in y . These options are
selected by entering proj or stereo on the AbsOrb line. All plot information is stored on the plot bdf abs and the program pLotx must be used to display the selected view on a graphical device.

\subsection*{4.2.5. File Assignments}
- Reads reflection data from the input archive bdf
- Writes absorption corrections to the output archive bdf
- Writes crystal shape commands to the plot bdf abs
- Optionally, writes нкц lines to the line file pch

\subsection*{4.2.6. Examples}
```

remark SEE ALCOCK (1974) AND FLACK AND VINCENT (1980)
ABSORB gauss
diff c c c c c 0
orient 1 0 0 -30.66 83.32 0 1 0 23.82 34.93
faceml 1 0 0 0.10
faceml 0 1 1 0.15
faceml 0 -2 1 0.05
faceml -3 0 1 0.03
faceml 1 1 -4 0.13
grid 8 8 8 0

```
```

ABSORB analyt : Alcock's Analytical Test
diff c c c c c 0
orient 1 0 0 -30.66 83.32 010 23.82 34.93
faceml 1 0 0 2.5
faceml -1 0 0 2.5
faceml 0 0 -1 10
faceml 0 1 0 3.75
faceml 0 -1 0 3.75
faceml 0 -1 1 0.883875
faceml 0 1 1 0.883875

```

\subsection*{4.2.7. References}
- Alcock N.W. 1970. The Analytical Method for Absorption Correction.Crystallographic Computing. F.R Ahmed, S.R. Hall, and C.P. Huber, eds., Munksgaard. Copenhagen: 271-278.
- Alcock, N.W. et al. 1972. An Improvement in the Algorithm for Absorption Correction by the Analytical Method. Acta Cyst. A28, 440-444.
- Alcock, N.W. 1974. Absorption and Extinction Corrections: Calculation Methods and Standard Tests. Acta Cryst. A30, 332-335.
- Busing, W.R. and Levy, H.A. 1957. High-Speed Computation of the Absorption Correction for Single Crystal Diffraction Measurements. Acta Cryst.10,180-182.
- Busing, W.R. and Levy, H.A. 1967. Angle Calculations for 3- and 4- Circle X-ray and Neutron Diffractometers. Acta Cryst. 22, 457-464.
- Cahen D. and Ibers, J.A. 1972. Absorption Corrections: Procedures for Checking Crystal Shape , Crystal Orientation, and Computer Absorption Programs.J.Appl. Cryst. 5, 298-299.
- Chidambaram, R. 1980. Absorption Corrections for Single-Crystal X-ray and Neutron Data. Computing in Crystallography. R. Diamond, S. Ramaseshan, and K. Venkatesan, eds., Indian Academy of Sciences. Bangalore, India: 2.01.
- Coppens, P. 1970. The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic Computing. F.R. Ahmed, S.R. Hall, and C.P. Huber, eds., Munksgaard. Copenhagen: 255.
- Coppens, P. \& Hamilton, W.C. 1970. Anisotropic Extinction Corrections in the Zachariasen Approximation. Acta Cryst. A26, 71-83.
- de Meulenaer, J. and Tompa, H. 1965. The Absorption Correction in Crystal Structure Analysis . Acta Cryst.19, 1014-1018.
- Flack, H.D. and Vincent, M.G. 1980. Absorption and Extinction Corrections: Standard Tests. Acta Cryst. A36, 682-686.
- Gabe, E.J. 1980. Diffractometer Control with Minicomputers. Computing in Crystallography. R. Diamond, S. Ramaseshan, and K. Venkatesan, eds., The Indian Academy of Sciences. Bangalore, India: 1.01.
- Grochowski, J. Personal communication.
- Tibballs, J.E. 1982 The Rapid Computation of Mean Path Lengths for Spheres and Cylinders. Acta Cryst. A38, 161-163.
- Tibballs, J.E. Personal communication.

\subsection*{4.3. ADDATM: Load atom parameters}

Authors: James Stewart, Nick Spadaccini and Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia ADDATM places atom and general parameters on the archive bdf. Atoms in special positions are detected and the symmetry constraints on variables are stored in the bdf.

\subsection*{4.3.1. Calculations Performed}

ADDATM provides for the ab initio addition of data to the logical record lratom: on the bdf, and can also edit existing data on the input bdf. ADDATM also detects atoms in special positions and generates the appropriate constraints for positional and thermal parameters.

The parameters loaded by ADDATM are of two types; general structural parameters and atom specific parameters.

\subsection*{4.3.1.1. General Parameters}

Three general structure parameters are loaded by ADDATM as a function of data set. F-relative scale factors for each scale group with a scale line; overall isotropic thermal parameters with uov; and extinction parameters with extinct.

\subsection*{4.3.1.2. Atom Specific Parameters}

Specific atom parameters are placed in the bdf record, lratom:. The following list of atom parameters are loaded using the control lines atom, link, u, uij and suij:
- atomic coordinates,
- H atom linkage calculation
- atomic thermal displacement parameters,
- population parameter,
- anomalous population parameter,
- and standard deviations for those parameters.

\subsection*{4.3.2. Atoms In Special Positions}

ADDATM identifies atoms in special positions and places them into lratom: with the correct atom multiplicity set. The constraint information required by refinement programs is stored in lrcons: of the bdf. Special positions are detected by transforming the input \(\mathrm{x}, \mathrm{y}\), and z over all the symmetry operations and testing if any position is within 0.0005 of the unit cell edge of the parent atomic coordinates.

\subsection*{4.3.2.1. Special position constraints}

Special position constraints are determined from the application of atom parameters to the \(4 \times 4\) symmetry matrices (i.e. rotation plus translation operations). This provides the constraints and interdependence of atomic coordinates and thermal parameters due to symmetry. The printed output of the atom parameters indicates that a given atom is in a special position by placing symbols instead of the decimal fractional coordinates entered in the data input stream. The notation is the same as that which is listed in the International Tables for Xray Crystallography, Vol. I. Thus in space group \(\mathrm{P}_{1} 22\) an atom entered as shown:
```

atom s1 . 1313 . 2626 . 25

```
will be printed as:
\begin{tabular}{lllcr}
\(:\) & x & y & z & mul \\
S1 & .1313 & 2 X & \(1 / 4\) & .50
\end{tabular}

If print priority is set to 4 with a 'reset psta 4' line each parameter constraint will be printed as it is transferred to lrcons: of the bdf.

\subsection*{4.3.2.2. Changing current atom list in archive file}

ADDATM also provides updating and editing facilities. The "update" mode is switched on by entering upd on the ADDATM line. This causes existing atom sites from the input archive bdf to be placed into the atom list. Input atom/linkatomg/u/uij/suij lines will either modify existing atom site data if atom labels match, or be added to the list iflabels do not match an existing site label. Note that all \(u\) lines must still be preceded by an atom line with the same atom label.

The stack, rename, delete and editu controls apply in both ab initio and update modes. These lines must be entered after any atom/atomg/u/uij/suij lines have been entered. stack lines are used to sort the sites
in the atom list. The first entry will determine the sites at the top of the list. Up to 100 antries are permitted on any number of stack lines. The rename line is used to change atom labels. Atom-type symbols may NOT be entered. delete lines are used to delete sites from the atom list. An atom label is used to delete a single atom and an atom-type symbol is used to remove all atoms of that type. editu lines are used to change the \(U\) values of atom sites or atom types. Individual isotropic values may be entered or atoms converted between isotropic and anisotropic.
The invert line to change the enantiomorph-polarity of the structure by inversion in a point. The algorithm is described in Appendix B of Benardinelli and Flack (1985). A suitable point of inversion is found (in some cases the origin cannot be used). In the case of the 22 space groups forming the 11 enantiomorphic pairs, the space group has to be changed into the opposite member of the pair. No user intervention is required in this procedure.

The link line adds geometrical atom site recalculation information to the archive. This is only required for riding atom model refinement using CRILSQ! Existing link information may be purged from the archive by running ADDATM upd plink. Link information is automatically generated by both PIG and CALCAT programs. In the case of PIG this link information may be omitted by invoking the control line PIG nolink whenever H atom are to be built from within PIG.

\subsection*{4.3.3. File Assignments}
- Reads current input archive bdf
- Writes atom parameters to output archive bdf

\subsection*{4.3.4. Example}
```

ADDATM
atom S . 202 . 798 . 91667 2.0 . 5
uij S .009162 .009162 .001205 .04581 0 0
atom 0.498 . 498 . 66667 2.0
atom C1 .488 .096 .038 2.5

```

The atoms \(\mathrm{s}, \mathrm{o}\) and \(\mathrm{C1}\) are loaded onto the bdf with mixed thermal parameters.

\subsection*{4.3.5. References}
- Cruickshank, D.W.J. 1956. The Determination of the Anisotropic Thermal Motion of Atoms in Crystals. Acta Cryst. 9, 747.
- Henry, Norman F. and Lonsdale, Kathleen. 1965. Eds. International Tables forX-ray Crystallography Vol. 1. Birmingham, England: Kynoch Press.
- Bernardinelli, G. and Flack, H.D. 1985. Acta Cryst. A41, 500-511.

\subsection*{4.4. ADDPAT: Create powder pattern bdf}

Authors: Gert Kruger, Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia ADDPAT generates a powder diffraction pattern binary file from a variety of instrumental data files.

\subsection*{4.4.1. Description}

Powder patterns can be read in from:
- Philips APD ASCII files
- PC-APD files
- Raw data files
- WYRIET input files
- UXD (Universal X-ray Data) input files

\subsection*{4.4.2. File assignments}
- Reads powder pattern data from powder files (default ext POW)
- Writes powder pattern binary data files (ext PAT)

\subsection*{4.4.3. Data Formats}

\subsection*{4.4.3.1. RAW DATA FILE as of 12-DEC-91 16:23}
```

PW1700 Automated Powder Diffractometer System 1
<newline>
Listed RD file name : [300,7]BARKH3.RD
Sample identification : kaapse hoop barb/sti
Measurement date/time : 11-DEC-91 11:12
Generator settings : 40 kV, 40 mA
Co alpha1,2 wavelengths : 1.78896, 1.79284 Ang
Step size, sample time : 0.020 deg, 15.00 s, 750.00 s/deg
Monochromator used : Yes
Divergence slit : Fixed (1/2 deg)
<newline>
Analysis program number : 7
File angle range : 10.000 - 80.000 deg
Range in D spacing : 1.39156 - 10.2630 Ang
Maximum intensity : 473895. cts, 31593.0 cps
<newline>
Angle Counts

| 10.0000 | 437. | 396. | 416. | 454. | 433. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10.1000 | 433. | 458. | 462. | 433. | 493. |
| 10.2000 | 449. | 458. | 433. | 445. | 480. |
| 10.3000 | 428. | 424. | 384. | 412. | 454. |
| 10.4000 | 400. | 441. | 437. | 433. | 388. |
| 10.5000 | 462. | 441. | 437. | 462. | 471. |

```
\begin{tabular}{llllll}
10.6000 & 441. & 412. & 412. & 437. & 462. \\
10.7000 & 437. & 408. & 424. & 441. & 420. \\
10.8000 & 445. & 502. & 433. & 416. & 428. \\
10.9000 & 454. & 396. & 428. & 420. & 433.
\end{tabular}

\subsection*{4.4.3.2. APD}
```

SampleIdent,qzstd8,/
Title1,J Gutzmer,/
Title2,PC-APD, Diffraction software,/
DiffrType,PW1710,/
DiffrNumber,1,/
Anode,Fe,/
LabdaAlpha1, 1.93604,/
LabdaAlpha2, 1.93998,/
RatioAlpha21, 0.50000,/
DivergenceSlit,Fixed,1/2,/
ReceivingSlit,0.2,/
MonochromatorUsed,YES ,/
GeneratorVoltage, 40,/
TubeCurrent, 40,/
FileDateTime, 3-mar-1994 18:04,/
DataAngleRange, 3.0000, 130.0000,/
ScanStepSize, 0.020,/
ScanType,STEP,/
ScanStepTime, 5.00,/
RawScan

| 681, | 640, | 708, | 692, | 630, | 625, | 620, | 615 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 615, | 595, | 581, | 576, | 595, | 595, | 581, | 581 |
| 586, | 586, | 552, | 529, | 524, | 552, | 534, | 538 |

```

\subsection*{4.4.3.3. RAW}
\begin{tabular}{lrrrrrrrrrrl}
12.46 & 2. & 1. & 12.48 & 1. & 1. & 12.50 & 1. & 1. & 12.52 & 1. & 1. \\
12.54 & 3. & 1. & 12.56 & 3. & 1. & 12.58 & 3. & 1. & 12.60 & 5. & 2. \\
12.62 & 5. & 2. & 12.64 & -2. & 2. & 12.66 & -1. & 2. & 12.68 & 3. & 2. \\
12.70 & 3. & 2. & 12.72 & 5. & 2. & 12.74 & 9. & 2. & 12.76 & 5. & 2. \\
12.78 & 10. & 3. & 12.80 & 12. & 3. & 12.82 & 8. & 3. & 12.84 & 9. & 3. \\
12.86 & 14. & 4. & 12.88 & 26. & 4. & 12.90 & 22. & 5. & 12.92 & 35. & 6.
\end{tabular}

\subsection*{4.4.3.4. WYR}
\begin{tabular}{rrrrrrrrrr}
20.120 & .020 & 60.100 & PS \(999 R F\) & \(24 A P 90\) & QUARTZ, & \(6-7-86\) & \(T=10\) & 20.120 \\
30 & 34 & 44 & 37 & 35 & 25 & 29 & 46 & 20.260 \\
42 & 34 & 40 & 35 & 21 & 39 & 43 & 30 & 20.420 \\
48 & 44 & 52 & 44 & 50 & 46 & 47 & 56 & 20.580 \\
64 & 62 & 86 & 79 & 103 & 124 & 197 & 257 & 20.740 \\
484 & 831 & 1558 & 2478 & 3169 & 3185 & 2534 & 1828 & 20.900 \\
1217 & 661 & 263 & 173 & 128 & 79 & 88 & 68 & 21.060
\end{tabular}

\subsection*{4.4.3.5. UXD}
; A: \AH-a26-9d.RAW(Diffrac Plus V1.01 file) converted by XCH V1.0
_FILEVERSION=2
_SAMPLE=' [Co (NH3) 6][Ce(dipic) 3] RAW'
_+SAMPLE=' Line 1Line \(2^{\prime}\)
_SITE='SRCAMMPChemistry Department, University of Western Australia'
_USER=' SRCAMMP'
_GONIOMETER_CODE=0
; D5000 Theta/2Theta; Standard
_SAMPLE_CHANGER_CODE=0
_ATTACHMENTS_CODE=0
_GONIOMETER_RADIUS \(=217.500000\)
_FIXED_DIVSLIT=2.000000
_FIXED_SAMPLESLIT=2.000000
_SOLLER_SLITS=' \({ }^{\prime}\)
_FIXED_DETSLIT \(=1.000000\)
_MONOCHROMATOR=0
; None
_SOLLER_SLITS_2=' \(\mathrm{Y}^{\prime}\)
_THIN_FILM=' \({ }^{\prime}\)
_BETA_FILTER=' \(\mathrm{N}^{\prime}\)
_FIXED_ANTISLIT=1.000000
_RUNTIME=2752.000000
_WL_UNIT=' A \(^{\prime}\)
_WL1 \(=1.540560\)
_WL2=1.544390
_WL3=1. 392220
_WLRATIO \(=0.500000\)
_ANODE=' \(\mathrm{Cu}{ }^{\prime}\)
; (Data for Range number 1)
_DRIVE=' COUPLED'
_STEPTIME \(=2.000000\)
_STEPSIZE=0.040000
_STEPMODE=' C'
_START \(=5.000000\)
_THETA \(=2.500000\)
_2THETA \(=5.000000\)
_PHI=0.000000
_DIVERGENCE=1.000000
_ANTISCATTER=1.000000
_DETECTOR=1
; S.C.
_HV=950.000000
_GAIN \(=2.000000\)
_LLD=0.500000
_ULD=2.000000
_DETECTORSLIT=' out'
_AUX1 \(=0.000000\)
_AUX2 \(=0.000000\)
_AUX3 \(=0.000000\)
_TIMESTARTED=2.703000
_TEMPERATURE \(=299.839996\)
_TEMP_RATE=0.000000
_TEMP_DELAY=0.000000
_KV=40
_MA \(=35\)
_RANGE_WL=1. 540560
_3DPLANE=1
_2THETACOUNTS
\(5.0000 \quad 121\)
\(5.0400 \quad 105\)
\(5.0800 \quad 124\)
\(5.1200 \quad 105\)
```

$5.1600 \quad 99$

```
59.800037
59.840035
59.880038
\(59.9200 \quad 34\)
59.960042
60.000037

\subsection*{4.4.4. Examples}
```

title Philips data
compid philip
master no
ADDPAT inp bpf out plt
end
finish

```
title MnO2 full house
compid mno2
master no
ADDPAT
finish
title Test using Edingtonite structure ETH
compid ed
master no
ADDPAT type raw

\subsection*{4.5. ADDREF: Load reflection data}

Authors: George Davenport and Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia ADDREF adds measured reflection data to the archive bdf and converts them into different structure factor coefficients. ADDREF can also create reflection data, expand or contract an existing reflection record, and merge reflection records. Options include the insertion of interpolated form factors into the reflection record, the removal of systematically absent reflections, and the calculation and application of the Lorentz-polarization factor for a range of geometries.

\subsection*{4.5.1. Overview}

Most crystallographic calculations require reflection information to be present in the bdf. The basic reflection data includes the Miller indices, \(\sin \theta / \lambda\), reflection multiplicity, the symmetry reinforcement factor (epsilon), phase restriction codes and \(|\mathrm{F}|\) relative. Other quantities such as \(\sigma|\mathrm{F}|\), reflection weights, the Lorentzpolarization factor, scale group number, and interpolated scattering factors may be added as the user requires.

Up to five sources of input may be used (input lines and/or up to four binary data files) or dummy reflection records may be generated from the cell dimensions within specified limits of \(\mathrm{h}, \mathrm{k}, 1\), and \(\sin \theta / \lambda\). Generated data is useful for calculating structure factors when only the atomic parameters are available. When more than one input source is used, it is vital that each source have the same set of reflections and refer to the same compound. This constitutes a lrref: merging feature. Also worth noting is that the input archive bdf must contain all cell, symmetry, and cell content information pertinent to the compound. In other words, the input archive bdf must contain the data generated by STARTX or any subsequent calculation.

The sources of reflection data, as well as the specific items, are specified using combinations of bdfin and hklin lines. One hklin line is allowed, and one bdfin line per input bdf is allowed. These lines can be in any order, but an important caveat applies. That is, if a data item is specified as coming from two different sources (e.g. if the Miller indices are given on an hklin line and also on a bdfin line), the item will be taken from the source specified first.

For convenience, a remove line has also been provided. For cases in which a large number of items are to be taken from an input bdf, it may be easier to specify those items which are not to be output than those items which are to be output. The remove line may thus be used in conjunction with a bdfin line (using the all option) to trim unneeded items from the reflection record (see Examples).
Items on bdfin,hklin,remove, and c (continuation) lines may be specified in two ways. A set of four-letter mnemonics are available for the most commonly used quantities. For more involved applications, items can be specified using their identification numbers as listed in the BDF section at the back of the manual.
The printed output contains a list of items from each source, along with the status of each item. The status refers to possible user errors, such as a duplicate request for an item or the absence of an item on the given source. A list of data for each reflection is given, for either a specified number of reflections or all reflections, depending on the user's choice. A list of items contained in the reflection record of the output bdf is given, along with the maxima and minima of the data for those items. In addition, the maximum magnitudes of the Miller indices and the maximum and minimum values of \(\sin \theta / \lambda\) for the output bdf are stored in lrdset: of the output bdf for use by other programs.
ADDREF tests each reflection to see if it is systematically absent under the space group symmetry given. Systematically absent reflections are either rejected from the file or marked with an rcode of 5 and these must not be included in the bdf as observed reflections. Inclusion of such reflections will cause the Fourier transform to show incorrect symmetry. To ensure that no
duplicate reflections are present on the bdf, the program SORTRF (with average specified) should be run after (or, in some cases, before) ADDREF.

\section*{Reflection status codes (rcode)}

The values of rcode which are recognised for most XTAL calculations are as follows:
1. "observed" reflection (ie. \(\mathrm{Y}>=\mathrm{n} \sigma \mathrm{Y}\) )
2. "less than" reflection (ie. \(\mathrm{Y}<\mathrm{n} \sigma \mathrm{Y}\) )
3. unreliable reflection not used in refinement or R factors
4. Friedel-related value is missing when data stored as Friedel pairs
5. systematically absent

Note that rcodes are assigned by SORTRF and retained by ADDREF.

\subsection*{4.5.2. Calculations Performed}

\section*{Generate hkl data}

Occasionally it is necessary to produce a file containing 'dummy' reflection data. Measured diffraction data may not be available for input but reflections are needed in order to calculate structure factors with programs such as \(F C\). Reflection data may be generated by entering the hklgen line. It should be emphasised that ADDREF only limits the data to the boundaries of the defined limits (see ADDREF line). ADDREF will remove systematically absent reflections (due to symmetry) but for crystal classes higher that orthorhombic it will generate redundant reflections. These are easily removed from the bdf by applying the sort/merge routine SORTRF immediately following ADDREF. Using SORTRF to average the generated data (option aver 1) will ensure that only a unique set of reflections remain. It is good policy always to run SORTRF after ADDREF, especially if the reflection generation feature is used.

The minimum contents of the lrref: record are the packed hkl word, \(\sin \theta / \lambda\), the packed phasecode/multiplicity/epsilon word and structure factor coefficient (this can be Frel, Frel squared or Irel). The input hklgen line must contain the codes hkl and either \(f r e l, f 2 r 1\) or irel. This line may also contain any of the other option codes if they are needed, but remember that all values, except those calculated by ADDREF (e.g. rlp or the interpolated form factors), will stored on the bdf as 0 . Note that it is possible to generate the Friedel equivalent reflections for noncentrosymmetric space groups by entering the frie code on the ADDREF line.

When running SORTRF after ADDREF make sure that, in addition to specifying the sort order code, the aver 1 and the merged coefficient (frel, f2rl or irel) are also entered. Note that if Friedel equivalent data is to be preserved the pakfrl or sepfri code must be entered on the SORTRF line.

\subsection*{4.5.2.1. Form Factor usage (Important!)}

The lrscat: are present in the Archive (stored by STARTX). These may be used to calculate interpolated form factor values which are stored in each reflection record.This option is invoked by the ffac option on the ADDREF line. This provides more precise structure factors with programs such as \(F C, C R Y L S Q\) etc. The disadvantage is that the size of the archive bdf is increased substantially and the extra precision is often unwarranted for routine structure analyses. This option should be used for precision analyses or when \(R\)-factors of less than 0.04 are anticipated.

\subsection*{4.5.2.2. Data Reduction}

ADDREF provides many options for reducing the data to be stored in the output archive bdf. It is a "two pass" program. During the first pass, statistical information on the reflection data is calculated and written to a scratch file. During the second pass, reflection data processing is completed and the results are written to the output archive bdf.

\section*{The following calculations may be performed:}
- transform Miller indices
- generate hkl data
- calculate \(\sin \theta / \lambda\)
- calculate the multiplicity and reinforcement factor, and phase restriction code
- determine if reflection is systematically absent for this space group
- apply Bayesian statistics to weak data
- interpolate the scattering factors and store reflection packets
- obtain \(\max / \min \mathrm{h}, \mathrm{k}, 1, \sin \theta / \lambda\), and other quantities
- calculate and apply \(1 / \mathrm{Lp}\) for all geometries and radiation
- convert input function of \(F\) to requested output function of \(F\)
- calculate the standard deviation in the chosen F function

\subsection*{4.5.2.3. Lorentz-polarization corrections}

Algorithms for the common 1/Lp factors are available. In the equations below \(\theta\) refers to the reflection diffraction angle, and \(\theta_{\mathrm{m}}\) to the diffractometer angle for the monochromator crystal.
\begin{tabular}{rlrl} 
Lorentz factor & \(=1 /(2 \sin 2 \theta)\) & & for single crystal \\
& \(=1 /(2 \sin 2 \theta \sin \theta)\) & & for powder
\end{tabular}

The formulae used for polarization are those described by Azaroff (1955), Hope (1971), and Vincent \& Flack (1980). The general expression for polarization of a twice-diffracted beam is
\(\mathrm{P}=\mathrm{K}_{\mathrm{i}}(1-\mathrm{B})\left(\cos ^{2} \rho \cos ^{2} 2 \theta+\sin ^{2} \rho\right)+\mathrm{B}\left(\sin ^{2} \rho \cos ^{2} 2 \theta+\cos ^{2} \rho\right) /\left[(1-\mathrm{B}) \mathrm{K}_{\mathrm{i}}+\mathrm{B}\right]\)
where \(\mathrm{K}_{\mathrm{i}}\), the polarization ratio is \(\mathrm{K}_{\mathrm{k}}=\cos ^{2} 2 \theta_{\mathrm{m}}\) for an ideal mozaic crystal and \(\mathrm{K}_{\mathrm{d}}=\left|\cos 2 \theta_{\mathrm{m}}\right|\) for an ideal crystal. \(B\) is the fraction of the intensity with the electric field parallel to the plane of the monochromator (Azaroff's notation is \(\mathrm{E}_{\pi}\) ). This direction is given by the cross product of the vector in the direction of the source beam and the normal to the monochromator crystal plane. In a standard X-ray diffractometer the source beam is unpolarized and \(\mathrm{B}=0.5 . \theta_{\mathrm{m}}\) is the monochromator angle and \(\rho\) is the angle between 2 planes of diffraction (i.e. planes, containing the incident and reflected rays of the monochromator and the sample).

The general expression for the integrated polarization of mosaic/perfect crystal is
\(P_{i}=(1-C) P_{k}+C P_{d}\).
where C is the monochromator perfection factor (the fraction of the monochromator crystal considered to be perfect) and \(P_{k}\) and \(P_{d}\) the kinematic and dynamical components of the polarization. RLP is the reciprocal of Lp.

X-ray powder, no monochromator
\(\mathbf{R L P 1}=2 \sin \theta \sin 2 \theta /\left(1+\cos ^{2} 2 \theta\right)\)
\(X\)-ray single crystal, no monochromator
\(\mathbf{R L P 2}=2 \sin 2 \theta /\left(1+\cos ^{2} 2 \theta\right)\)
\(X\)-ray single crystal, with monochromator and perfection factor, perpendicular setting
In the perpendicular monochromator setting, the rotation axis of the monochromator crystal is perpendicular to the normal to the equatorial plane of the diffractometer (ie. \(2 \theta\) axis), such that the plane of the incident beam and the beam reflected by the monochromator is perpendicular to the plane of the beam reflected by the monochromator and the beam reflected by the crystal under study. Rho, as defined by Azaroff, is \(90^{\circ}\). If the source beam incident on the monochromator is unpolarized then \(\mathrm{B}=0.5\). For a perfectly polarized beam \(\mathrm{B}=0\). for this setting. This is the CAD4 setting.
\(\mathrm{T} 1=(1-\mathrm{C})\left((1-\mathrm{B}) \cos ^{2} 2 \theta_{\mathrm{m}}+\mathrm{B} \cos ^{2} 2 \theta\right) /\left(\mathrm{B}+(1-\mathrm{B}) \cos ^{2} 2 \theta_{\mathrm{m}}\right)\)
\(\mathrm{T} 2=\mathrm{C}\left(\mathrm{B} \cos ^{2} 2 \theta+(1-\mathrm{B}) \cos 2 \theta_{\mathrm{m}}\right) /\left(\mathrm{B}+(1-\mathrm{B}) \cos 2 \theta_{\mathrm{m}}\right)\)
\(\mathbf{R L P 3}=\sin 2 \theta /(\mathrm{T} 1+\mathrm{T} 2)\)
\(X\)-ray single crystal, with monochromator and perfection factor, parallel setting
For the equatorial, or normal, monochromator setting, the rotation axis of the monochromator is parallel to the normal to the equatorial plane of the diffractometer (ie. \(2 \theta\) axis) such that the incident beam, the beam
reflected by the monochromator and the beam reflected by the crystal under study all lie in the same plane. If the source beam incident on the monochromator is unpolarized then \(B=0.5\). For a perfectly polarized beam \(\mathrm{B}=1\). for this setting. This is the Nicolet setting.
\(\mathrm{T} 1=(1-\mathrm{C})\left(\mathrm{B}+(1-\mathrm{B}) \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{\mathrm{m}}\right) /\left(\mathrm{B}+(1-\mathrm{B}) \cos ^{2} 2 \theta_{\mathrm{m}}\right)\)
\(\mathrm{T} 2=\mathrm{C}\left(\mathrm{B}+(1-\mathrm{B}) \cos ^{2} 2 \theta \cos 2 \theta_{\mathrm{m}}\right) /\left(\mathrm{B}+(1-\mathrm{B}) \cos 2 \theta_{\mathrm{m}}\right)\)
RLP4 \(=\sin 2 \theta /(\mathrm{T} 1+\mathrm{T} 2)\)
Neutron powder (no polarization)
\(\mathbf{R L P 1}=2 \sin \theta \sin 2 \theta\)
Neutron single crystal
\(\mathbf{R L P 2}=2 \sin 2 \theta\)

\subsection*{4.5.2.4. Calculation of \(\operatorname{Sigma}(F)\) from Intensity data}

The calculation of \(\sigma(\mathrm{F})\) is straightforward except where F is close to zero or negative. To avoid the asymptotic form of this conversion, the following expression is used in ADDREF.
\(\sigma \mathrm{F}=(\operatorname{RLP} \sigma \mathrm{I}) /\left(\mathrm{F}+\left\{\mathrm{F}^{2}+\operatorname{RLP} \sigma \mathrm{I}\right\}^{1 / 2}\right)\)

\subsection*{4.5.3. File Assignments}
1. Reads lrcell: and symmetry data from the input archive bdf
2. Writes updated file to the output archive bdf
3. Optionally, reads reflection data form specified (on bdfin) bdf

\subsection*{4.5.4. Examples}
```

title CREATION OF AB INITIO REFLECTION RECORD
ADDREF dset 1 ffac list
reduce itof rlp2
hklin skip hkl rcod irel sigi absf eval
remove irel sigi
hkl p6122 0 1 1 1 22004.8 4043.4 1.0 3.0
hkl p6122 0 1 4 1 387.4 205.5 1.0 1.0
hkl p6122 0 1 5 1 6735.0 1110.5 1.0 3.0

```

```

hkl p6122 2 2 7 1 358.1 98.2 1.0 0.3
hkl p6122 2 2 8 1 384.3 78.1 1.0 0.3
hkl p6122 2 3 3 1 2275.6 247.0 1.0 2.0

```

The ADDREF line specifies that interpolated form factors are to be inserted in lrrefl:, and that all reflections are to be listed. The reduce line indicates that relative intensities and their sigmas are to be converted to relative F's and \(\sigma(\mathrm{F})\) 's; the Lp factor is to be calculated by method 2 (spectrometer with Eulerian cradle geometry and \(2 \theta \mathrm{scan})\). The hklin line specifies the items which are found on hkl lines. Note that the user has labeled the hkı lines with the compound identification, so skip must be used to ignore this data. The remove line indicates that irel and sigi are to be excluded from the output bdf (they are used, however, in the conversion to frel and sigf, so they must be specified on the hklin and hkl lines.
```

title Contraction of the reflection record
ADDREF
bdfin all
remove absf tbar extf

```

To decrease the size of a large archive bdf, first check to see which items are in lrrefl: of the file. Then check (carefully) to see which items are no longer necessary to keep in the bdf. Use the remove line to get rid of these, as in the procedure above. The input archive bdf is read. The absorption correction, extinction correction, and mean radiation path length will be removed from lrrefl: of the bdf by the lines above.
```

title Merging of reflection data
ADDREF
bdfin file a all
bdfin file ddd absf eval

```

Suppose the input archive bdf contains reflection information about a compound and the bdf with extension DDD contains a bdf with different reflection information about the same compound. The preceding sequence of lines will merge certain items from both bdf's and output them to the output archive bdf.
```

title EXAMPLE USE OF CONTINUATION LINES
ADDREF dset 1
hklin hkl frel sigf fcal 1000 1001 1002
c 1003 rcod tbar
hkl 1 1 1 40 5 56 289 33 256 4 0.1

```

The preceding example illustrates the use of clines. Note that some items are specified using ID numbers and some are specified using four-letter mnemonics.
```

title Generate reflection data to sin(theta)/lambda=.5
ADDREF
limits *4 0.5
hklgen hkl frel
title Complete data preparation sequence
STARTX
cell 11.52 11.21 4.92 90 90.833 90 288.0
cellsd .012 .011 .005 0.0 . 0005 0.0
sgname -p 2yab :p21/a
celcon o 12
celcon c 28
celcon h 24
DIFDAT cad
attenu 5.
genscl 3
SORTRF order khl aver 1 cull 1.5 print 1500 pakfrl
ADDREF dset 1 list 7 ffac lpin friedel
reduce itof rlp2 xray
bdfin hkl irel sigi rcod ifri sfri rcdf
remove irel sigi ifri sfri

```

In this example a run of STARTX, DIFDAT, SORTRF, and ADDREF is combined to produce a bdf with F values in logical record lrref: for a unique asymmetric set of reflections including the Friedel related pairs.

\subsection*{4.5.5. References}
- Azaroff, L.V. 1955. Polarization Correction for Crystal-MonochromatizedX-radiation. Acta Cryst. 8, 701.
- Hope, H. 1977. Polarization Factor for Graphite X-ray Monochrometers.Acta Cryst. A27, 392.
- Iwasaki, Hitoshi and Ito, Tetsuzo. 1977. Values of Epsilon for Obtaining Normalized Structure Factors . Acta Cryst. A33, 227-229.
- Karle, I. 1969. General Procedure for Phase Determination.Crystallographic Computing. F.R. Ahmed, Sydney R. Hall, C.P. Huber, eds., Munksgaard. Copenhagen:19-25.
- Kasper, John S. and Lonsdale, Kathleen. 1959. Eds. International Tables for X-ray Crystallography Vol. II. Birmingham, England: Kynoch Press.
- Larson, A.C. 1969. The Inclusion of Secondary Extinction in Least-Squares Refinement of Crystal Structures. Crystallographic Computing.
- F.R. Ahmed, S.R.Hall, C.P.Huber, eds., Munksgaard. Copenhagen: 291-294. Rollett, J.S. 1965. Computing Techniques in Crystallography. Elmsford, NY: Pergamon Press.
- Stewart, J.M. and Karle, J. 1976. The Calculation of Epsilon Associated with Normalized Structure Factors, E. Acta Cryst. A32, 1005-1007.
- Stewart, J.M. and Karle, J. 1977. Two Papers on the Calculation of Epsilon for Obtaining Normalized Structure Factors. Acta Cryst. A33, 519.
- Vincent, M.G. and Flack, H.D. 1980. On the Polarization Factor for Crystal Monochromated X-radiation I Assessment of Errors. Acta Cryst. A36,610.

\subsection*{4.6. ATABLE: Tabulate atomic parameters}

Authors: Lutz Englehardt and Syd Hall
Contact: Syd Hall,Crystallography Centre,
University of Western Australia, Nedlands, WA 6907, Australia
ATABLE tabulates atomic coordinates and thermal parameters suitable for publication. Atoms are listed in the same order as stored on the bdf. The precision of each parameter type is automatically determined and the standard deviations, if available, are appended.

Up to five tables are automatically output to the print file and the pch file.
Table 1 Atomic coordinates and isotropic thermal parameter U , or \(\mathrm{U}_{\mathrm{eq}}\) for anisotropically refined atoms (flagged with *) for all atoms, where
\(\mathrm{U}_{\mathrm{eq}}=(1 / 3) \sum_{\mathrm{i}} \sum_{\mathrm{j}} \mathrm{U}_{\mathrm{ij}} \mathrm{a}^{*}{ }_{\mathrm{i}} \mathrm{a}^{*}{ }_{\mathrm{j}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\)
Table 2 Identical to Table 1 but for non-hydrogen atoms only.
Table 3 Identical to Table 1 but for hydrogen atoms only.
Table 4 Thermal displacement parameters \(\mathrm{U}_{\mathrm{ij}}\) and U for all atoms.
Table 5 Anisotropic thermal displacement parameters \(\mathrm{U}_{\mathrm{i} j}\).
Tables 2 and 3 will be listed only if there are hydrogen atoms. Tables 4 and 5 will be listed only if there are anisotropic thermal parameters. Table 5 will be listed only if there are isotropic thermal parameters.

\subsection*{4.6.1. File Assignments}
- Reads atom data from the input archive bdf
- Writes tabulated data to the line file pch

\subsection*{4.7. BAYEST: Bayesian estimates of \(|\mathrm{I}|\) and \(|\mathrm{F}|\)}

Author: Nick Spadaccini, Computer Science Department, University of Western Australia, Nedlands, WA 6907, Australia

BAYEST determines a posterior intensity and/or structure factor modulus and the associated standard deviations. The program is useful in the treatment of weak or negative intensities. The calculation is based on the work of French and Wilson (1978), and the user should refer to the original paper for details of the method.

\subsection*{4.7.1. Introduction}

Intensity measurements which are negative are generally either excluded from the data set or are reset to zero. Both these practices result in biased determinations of the structure. This bias may be overcome by including all reflections in a refinement based on \(\mathrm{F}^{2}\). However, for refinements based on \(\mathrm{F}(\mathrm{rel})\) it is essential to obtain the best possible estimates to the structure factor modulus and its standard deviation.

A more adequate treatment of negative or weak intensities is required. Setting the structure factor to zero ignores the information present in the observation of a negative intensity (i.e. it is weak). Assuming the intensity distribution of data follows the Wilson distribution, and that the true intensity is constrained to be non-negative, a posterior estimate of I or \(\mathrm{F}(\mathrm{rel})\) and their standard deviations can be made.

\subsection*{4.7.2. Intensity Measurements And Bayes Theorem}

When prior information is known, say from a physical model, about an experimental measurement one has a starting point from which to infer a better estimate of the observation from the data. A useful method of employing prior knowledge is in the Bayesian approach to inference where the probability distribution is regarded as a measure of information and represents our degree of belief rather than just relative frequencies. Our interest lies in determining the best estimate of the intensity, denoted J. The experimentally measured intensity I and its variance \(\sigma^{2}(\mathrm{I})\) are subject to counting and statistical error. What must be determined is the probability distribution of J given the observation I. The prior probability distribution of \(\mathrm{J}, \mathrm{p}(\mathrm{J})\), is assumed to be the appropriate Wilson distribution. The likelihood distribution for \(\mathrm{I}, \mathrm{p}(\mathrm{I} \mid \mathrm{J})\), is assumed to be normal with mean J and variance \(\sigma^{2}(\mathrm{I})\). Bayes theorem states that the posterior probability distribution of J given the observation I is:
\(\mathrm{p}(\mathrm{J} \mid \mathrm{I})=\mathrm{k} \mathrm{p}(\mathrm{J}) \mathrm{p}(\mathrm{I} \mid \mathrm{J})\) where \(\mathrm{p}(\mathrm{J})=\mathrm{W}(\mathrm{J}, \Sigma)\) and \(\mathrm{p}(\mathrm{I} \mid \mathrm{J})=\mathrm{N}\left(\mathrm{J}, \sigma^{2}(\mathrm{I})\right)\)
The posterior estimates for I and its esd are given by the following expectation values:
\(\mathrm{E}(\mathrm{J})=\int \mathrm{J} p(\mathrm{~J} \mid \mathrm{I}) \mathrm{d} \mathrm{J}\)
\(\mathrm{E}\left(\sigma^{2}(\mathrm{~J})\right)=\int(\mathrm{J}-\mathrm{E}(\mathrm{J}))^{2} \mathrm{p}(\mathrm{J} \mid \mathrm{I}) \mathrm{dJ}\)
The posterior estimates of \(\mathrm{F}(\mathrm{rel})\) and \(\sigma^{2}(\mathrm{~F})\) may be derived from \(\mathrm{E}(\mathrm{J})\) and \(\mathrm{E}\left(\sigma^{2}(\mathrm{~J})\right.\) ) or from the expectation values:
\(\mathrm{E}(\mathrm{F})=\int \mathrm{Fp}(\mathrm{J} \mid \mathrm{I}) \mathrm{dJ}\)
\(\mathrm{E}\left(\sigma^{2}(\mathrm{~F})\right)=\int(\mathrm{F}-\mathrm{E}(\mathrm{F}))^{2} \mathrm{p}(\mathrm{J} \mid \mathrm{I}) \mathrm{dJ}\)

\subsection*{4.7.3. The Wilson Parameter (S)}

The prior distribution of J assumed requires knowledge of the Wilson parameter, \(\Sigma\). Assuming the data collected contains a fair number of observations, \(\Sigma\) is determined from the mean value of \(\mathrm{F}^{2}\) in shells of \(\mathrm{s}^{2}\) (where \(\mathrm{s}=\sin \theta / \lambda\) ). The user may specify the number of shells the data is to be divided into through the nrange option in the bayest line. The default is 50 shells.

The program searches the bdf for items in a hierarchial manner. The priority item is \(\mathrm{F}^{2}\). If this is present, the distribution of mean \(\mathrm{F}^{2}\) versus \(\mathrm{s}^{2}\) is calculated and the appropriate values of \(\Sigma\) determined. If I and Lp corrections are found, \(\mathrm{F}^{2}\) is generated and the distribution determined. If any of these items are present their esds must also be present.

The user can apply the correction to F (rel) only, leaving the other items as they were input. Otherwise all items present are corrected. The value of \(\mathrm{F}(\mathrm{rel})\) may be corrected in one of the two following ways.
1. Requesting the int option and having \(\mathrm{F}(\mathrm{rel})\) present on the bdf. In this case the corrected \(\mathrm{F}(\mathrm{rel})\) is derived from the corrected I or \(\mathrm{F}^{2}\).
2. Explicitly requesting \(\mathrm{F}(\mathrm{rel})\) to be corrected only. In this case the corrected \(\mathrm{F}(\mathrm{rel})\) and \(\sigma(\mathrm{F})\) are derived from the expectation values \(\mathrm{E}(\mathrm{F})\) and \(\mathrm{E}\left(\sigma^{2}(\mathrm{~F})\right)\).
Note, however, that the two cases are not identical since \(\mathrm{E}(\mathrm{F})\) does not equal \((\mathrm{E}(\mathrm{J}))^{1 / 2}\).
The number of shells should be chosen so that there are sufficient reflections in each shell so that a reasonable determination of the distribution may be made (150-200 or reflections per shell).

\subsection*{4.7.4. Input Output}

BAYEST is a two pass operation. The first pass determines the data set distribution and the second pass applies the Bayesian corrections. Items which MUST be present on the bdf are the maximum and minimum values of \(\mathrm{s}, \mathrm{s}\) for each reflection, and either of intensity and Lp , or \(\mathrm{F}^{2}\). No expansion to the bdf is made. The items input are also output, though the user has the option to apply the correction as desired.

\subsection*{4.7.5. File Assignments}
- Reads reflection data from the input archive bdf
- Writes corrected reflection data to the output archive bdf

\subsection*{4.7.6. Example}

BAYEST nrange 35 frel

In this run the data is divided into 35 groups and the correction is applied to \(\mathrm{F}(\mathrm{rel})\) only leaving the other items uncorrected. The printing is suppressed. Note that \(\mathrm{F}(\mathrm{rel})\) and \(\sigma(\mathrm{F})\) must be present in the input bdf. BAYEST does not expand the bdf by generating \(\mathrm{F}(\mathrm{rel})\) from I or \(\mathrm{F}^{2}\). That is left to ADDREF.

\subsection*{4.7.7. References}
- French, S. and Wilson, K. 1978. Cryst. A34, 517-525.

\subsection*{4.8. BONDAT: Generate atom coordinates}

Authors: Ruth Doherty, Jim Stewart and Howard Flack
Contact: Howard Flack, Laboratoire de Cristallographie, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneve 4, Switzerland
BONDAT generates the coordinates of atoms whose positions can be inferred from the geometry of previously placed atoms.

\subsection*{4.8.1. Calculations Performed}

BONDAT generates inferred atomic coordinates from known atomic coordinates. All the known atomic coordinates of a structure are loaded into memory. Once loaded, a series of input lines denoted by calcat are supplied. There are nine types of calcat input lines described in detail below.
Each line generates a different configuration of inferred atomic coordinates from known coordinates. The generation is carried out based upon matches of the character strings which are the atom identities. One feature of the program is that, once generated, new atoms become part of the list of atoms in memory and can therefore be used in further generations. Caution should be exercised when using this feature to extend chains because of the danger of the magnification of errors in the placement of the "known" atoms.
All the atoms which are used for generation must have coordinates which are geometrically correct for the generation to be carried out. The generating atoms must be located so that they form a connected set. There are no tests made in the BONDAT program to assure that this restriction is met. The use of BONDLA following BONDAT will serve as a check on the correctness of the locations of the generating atom coordinates.

In archive update mode, BONDAT adds the CALCAT generation instructions as well as the new atom sites to the archive. This information can be used by the least squares routine CRILSQ to implement riding atom model refinement.

\subsection*{4.8.2. Calculation Types}

The geometric arrangements of the nine types of calculations permitted are:

\subsection*{4.8.2.1. linear}

Given atoms P1 and P2, atom P3 will be generated at a distance D from P2, with a bond angle P1-P2-P3 of \(0.0^{\circ}\). Note that P3 lies in the same direction from P2 as does P1. This calculation type is useful in the generation of hydrogen-bonded hydrogen atoms.

\subsection*{4.8.2.2. trigon}

Given atoms P1, P2, and P3 with bond angle \(\phi\), atom P 4 will be generated at a distance D from P 2 , with bond angles P1-P2-P4 and P3-P2-P4 of \((360-\phi) / 2^{\circ}\). If \(\phi=120^{\circ}\), the geometry about P2 will be trigonal planar.

\subsection*{4.8.2.3. tetchn}

Given atoms P1, P2, and P3, atoms P4 and P5 will be generated at a distance D from P2 with a bond angle P4-P2-P5 of \(109.5^{\circ}\). The plane P1-P2-P3 will be perpendicular to the plane P4-P2-P5. If the bond angle P1-P2-P3 is about \(109^{\circ}\), the resultant geometry about P2 will be tetrahedral. This type of calculation can be used to produce the hydrogen atoms of a methylene group (-CH2-) in a tetrahedral chain.

\subsection*{4.8.2.4. teterm}

Given three atoms P1, P2, and P3 with bond angle \(\phi\), three atoms will be generated, all at a distance D from P3. Initially, P6 will lie in the plane of P1-P2-P3 with a bond angle P2-P3-P6 of \(109.47^{\circ}\) and a dihedral angle P1-P2-P3-P6 of \(180^{\circ}\) (an anti-periplanar arrangement). From this initial arrangement it is possible to rotate P6 counter-clockwise by \(\alpha_{1}{ }^{\circ}\) about the P3-P2 bond.
```

P1
P2---P3
P6

```

P4 and P5 will form an angle of \(109.5^{\circ}\) about P3, and the plane P4-P3-P5 will be perpendicular to the plane P2-P3-P6. This calculation type may be used to generate the hydrogen atoms on a methyl group at the end of a tetrahedral chain (tetrahedral terminal).

\subsection*{4.8.2.5. trterm}

Given three atoms P1, P2 and P3 with bond angle \(\phi\), BONDAT will generate two atoms P4 and P5, attached to P3 at a distance D, and lying in the plane of P1, P2 and P3. The angle P4-P3-P2 will be \(\phi\) and P5-P3-P2 will be \((360-\phi) / 2^{\circ}\). Thus if \(\phi\) is \(120^{\circ}\), this calculation leads to a terminal \(\mathrm{sp}^{2}\) arrangement.

\subsection*{4.8.2.6. median}

Given four atoms P1, P2, P3 and P4 such that P1 is attached to P2, P3 and P4, atom P5 will be generated at a distance D from P1 to complete an approximately tetrahedral arrangement of four atoms about P1 with the three angles P5-P1-P2, P5-P1-P3 and P5-P1-P4 all equal. median is a better choice than methyn for cases where the angles subtended at P1 by P2, P3 and P4 are far from the tetrahedral angle.

\subsection*{4.8.2.7. sqrpln}

Given three atoms P1, P2, and P3 with bond angle \(\phi\), atoms P4 and P5 will be generated, each at a distance D from P2. All five atoms will lie in a plane and the bond angle P4-P2-P5 will be \(\phi\). The bond angles P1-P2-P4 and P3-P2-P5 will be (180- \(\phi\) ). If \(\phi\) is approximately \(90^{\circ}\), the resultant geometry about P2 is square planar.

\subsection*{4.8.2.8. octhed}

Given three atoms P1, P2, and P3, atoms P4, P5, P6, and P7 will be generated such that P4 and P5 bear the same relationship to the input atoms as in the sqrpin case. P6 and P7 will each be at a distance D from P2. The straight line P6-P2-P7 will be perpendicular to the plane of the other atoms. If the angle P1-P2-P3 is about \(90^{\circ}\), the resultant geometry about P 2 will be octahedral.

\subsection*{4.8.2.9. hexgnl}

Given three atoms P1, P2, and P3, atoms P4, P5, and P6 will be generated such that all six atoms lie in a plane and form a six membered ring. The distances P1-P6 and P3-P4 will be D, and the distance P2-P5 will be 2*D. If the angle P1-P2-P3 is \(\phi\), then the angles P2-P1-P6 and P2-P3-P4 be \(180-(\phi / 2)\). If the distances P1-P2 and \(\mathrm{P} 2-\mathrm{P} 3\) are approximately equal and the angle P1-P2-P3 is about \(120^{\circ}\), the geometry of the six atoms will be hexagonal.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{P1---P6} \\
\hline / & \(\backslash\) \\
\hline P2 & \\
\hline \} & / \\
\hline & \\
\hline
\end{tabular}

\subsection*{4.8.2.10. genral}

Given three atoms P1, P2, and P3, atom P4 will be generated at a distance D from P2. To understand the position of P 4 relative to the generating atoms, consider a new Cartesian coordinate system ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\) ) in which the \(x^{\prime} y^{\prime}\) plane coincides with the plane of the three generating atoms. The \(+z^{\prime}\) direction is defined by the cross product ( \(\mathrm{P} 1-\mathrm{P} 2\) ) \(\mathrm{x}\left(\mathrm{P} 3-\mathrm{P} 2\right.\) ). The \(+\mathrm{y}^{\prime}\) direction is defined by the vector \(\mathrm{P} 3-\mathrm{P} 2\), and +x ' lies in the direction which gives a right-handed system with \(y^{\prime}\) and \(z^{\prime}\). The projection of the vector P4-P2 onto the x'y' plane forms an angle \(\alpha 1\) with the vector \(\mathrm{P} 3-\mathrm{P} 2\). The cross product ( \(\mathrm{P} 3-\mathrm{P} 2\) )x(P4-P2) lies in the +z direction. The angle \(\alpha 2\) is the angle between the vector P4-P2 and the \(\mathrm{x}^{\prime} \mathrm{y}\) ' plane. If \(\alpha 2\) is between 0 and \(180^{\circ}, \mathrm{P} 4\) will lie above the \(\mathrm{x}^{\prime} \mathrm{y}\) ' plane (i.e., in the \(+z\) direction); if \(\alpha 2\) is between \(180^{\circ}\) and \(360^{\circ}\) (or \(0^{\circ}\) and \(-180^{\circ}\) ), P 4 will lie below the \(x^{\prime} y^{\prime}\) plane. As an example, consider a chain of three carbon with two hydrogen atoms attached to C 2 (viz., H 21 and H 22 ) are to be generated using genral calculations, two CALCAT lines are needed, one for each hydrogen. The plane defined by C2, H 21 and H 22 must bisect the \(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\) angle, so for both H 21 and H 22 the angle \(\alpha 1\) is \(125.25^{\circ}\) (i.e.,( \(360-109.5\) )/2). The bond angle \(\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22\) will be \(109.5^{\circ}\) (so that the arrangement around C 2 will be tetrahedral) and the plane defined by C1, C2 and C3 will bisect that angle. Therefore, \(\alpha 2\) will be +54.75 for one of the hydrogen atoms and -54.75 for the other. Although the generation of hydrogen atoms in a tetrahedral chain can be accomplished more easily with a tetchn calculation, the results will be the same if the two genralcalculations described here are used instead.

\subsection*{4.8.2.11. methyn}

Given four atoms P1, P2, P3, and P4 such that P1 is attached to P2, P3 and P4 with bond angles about P1 all about \(109^{\circ}\), atom P5 will be generated at a distance D from P1 to complete the tetrahedral arrangement of four atoms about P1. This calculation type can be used to generate methynyl hydrogen atoms.

\subsection*{4.8.3. General Information}

The cell parameters and atomic coordinates must be supplied from the bdf. Generated atoms are added to the end of the atom list in memory if they were not already present in the bdf and may be specified as input for any subsequent CALCAT request. If a generated atom was read in from the bdf, the coordinates read in from the bdf are superseded by the newly generated coordinates.

A summary is written after all the CALCAT lines have been handled. Listed in the summary, for each generated atom, are the atom name, the generated coordinates, the atom type pointer (referring to lrscat: in the bdf), the name of the atoms used in the generation and the bond distance.
Caution:it is important to remember that no check is made to determine whether the set of atoms used in the generation of any new atom(s) is a connected set. If the coordinates in the file for the set of atoms used in some
generation are not the coordinates of a connected set, but rather the symmetrically equivalent coordinates of points that are not connected, the coordinates of the generated atom may not be the desired ones.

\subsection*{4.8.4. File Assignments}
- Optionally reads input archive bdf
- Optionally writes output archive bdf
- Optionally writes atom lines to file pch
- In update mode, spawns reentrant ADDATM input file .ad1

\subsection*{4.8.5. Examples}
```

BONDAT
CALCAT trigon 1.0 c2 c3 c4 h3
CALCAT trigon 1.0 c3 c4 c5 h4
CALCAT trigon 1.0 c4 c5 c6 h5
CALCAT trigon 1.0 c5 c6 c1 h6

```

The coordinates of all of the hydrogen atoms attached to the ring in salicylic acid may be generated by BONDAT. The input shown above will cause BONDAT to read the coordinates of all of the atoms in the bdf and use them in the calculations. The hydrogen atoms will be located at a distance of 1.0 Angstrom from the carbon atoms to which they are attached and will have the same atom numbers as the carbon atoms to which they are attached (e.g. нз is attached to сз).
```

BONDAT
CALCAT linear 2.0 s1 c1 h1
CALCAT tetchn 1.0 s1 c3 c4 h31 h32
CALCAT octhed 2.0 c1 s1 c3 p1 p2 p3 p4
CALCAT trigon 1.0 c1 s1 ol c2
CALCAT hexgnl 1.0 c1 s2 c2 he1 he2 he3

```

\subsection*{4.9. BONDLA: Bond lengths and angles}

Authors: Wolfgang Dreissig, Ruth Doherty, Jim Stewart \& Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
BONDLA provides information about the geometric arrangement of the atoms in the unit cell. This includes bond distances and angles, contact distances, and dihedral angles. The search includes space group and adjacent cell symmetry. The atoms are grouped in connected sets and the groups are optimally clustered.

\subsection*{4.9.1. Atom Connectivity}

BONDLA classifies interatomic distances as bonds or contacts or neither. This is determined by the distance relative to the sum of the radii of the atoms involved. The radii that are required for each atom type are:
\begin{tabular}{ll} 
rcon & contact radius \\
rmin & minimum bond radius \\
rmax & maximum bond radius
\end{tabular}

Radii for each atom type are either read from the bdf, or supplied on atrad lines (these supersede the values read from the bdf). Default values are used for any atom types for which one or more of the radii have not been specified. The classification of interatomic distances, \(\mathbf{d}(A-B)\), is made as follows:
\begin{tabular}{lllll} 
& if & \(\mathbf{d}<\) & \(\operatorname{rmin}(A)+\operatorname{rmin}(B)\) & \\
or & if & \(\mathbf{d}>\) & \(\operatorname{rcon}(A)+\operatorname{rcon}(B)\) & not reported \\
& if & \(\mathbf{d}>=\) & \(\operatorname{rmin}(A)+\operatorname{rmin}(B)\) & \\
and & if & \(\mathbf{d}<=\) & \(\operatorname{rmax}(A)+\operatorname{rmax}(B)\) & considered a bond \\
& if & \(\mathbf{d}>\) & \(\operatorname{rmax}(A)+\operatorname{rmax}(B)\) & \\
and & if & \(\mathbf{d}<=\) & \(\operatorname{rcon}(A)+\operatorname{rcon}(B)\) & considered a contact
\end{tabular}

All input atom sites are grouped for optimal connectivity and the connected groups are clustered about the body centre of the cell, unless the user specifies that the input sites should be used by entering the 'no-cluster' option nocl on the bONDLA line. Note that the clustered sites are only used for the automatic generation of bond angles, distances, contact distances and dihedral angles (as specified by the bond, angle, cont and dihe options), not for the distances and angles requested by bond, angle, dihed and nviron lines. For these requests, the user has the option of specifying the symmetry operation and the cell translation to be applied to the input coordinates. Note that the nviron line produces the distances to all atom sites within a specified maximum of the entered atom site.

\subsection*{4.9.2. Printed Output}

Control parameters and atom radii are listed first. Check these to ensure that the distance and angle search has been correctly done. The coordinates of the input atom sites are then listed. These will be followed by a list of the coordinates of the 'clustered' atom sites, only if these are any differences with the input coordinates. These will be followed by any symmetry operations needed to form the connected sites or in the subsequent bond distance searches.

The distances generated from the options bond and cont, and the nviron line will be listed in the order of generation unless the sort option is entered. This option will cause these distances to be sorted in order of ascending magnitude.

The option dihe will cause the dihedral angle involving all possible connections to be produced. The number of dihedral angles can be large even for modest structures. It may be preferable to use dihed lines to request only the angles of interest. The dihedral angle table is not redundant. If an entry appears for the bonded atoms A-B, a second entry will not be given for the pair B-A. Dihedral angles about the pairs A-B will not be included in the table if the coordinates of atom B bonded to atom A are not the coordinates of atom B found for the connected set. This situation can arise only if the connected set of atoms lies on a plane or centre of symmetry. In these cases dihed lines may need to be used.

The space group symmetry and cell translation operations used to transform atom sites are listed under the heading sym trn. These sym numbers refer to the symmetry matrices shown and in the order of input into the
program STARTX (see the STARTX listing). The \(\operatorname{trn}\) code refers to cell translations where the code 555 refers to a displacement of \(0,0,0\) (e.g. the code 645 refers to a displacement of \(+1,-1,0\) ).

\subsection*{4.9.3. Line File Output}

Two types of data are output to the line file pch. The first is the coordinates and standard deviations of the connected atom sites. The second is the distance and angle data in a format suitable for publication purposes. Note that brackets will be inserted into the atom labels if the brac option is entered (e.g. the atom name c23 is listed as C(23)).

\subsection*{4.9.4. File Assignments}
- Reads lrcell:, symmetry and lratom: data from the input archive bdf
- Outputs atom lines, distance and angle data to the line file pch

\subsection*{4.9.5. Examples}

BONDLA
Bond distances and angles of connected sites are listed.
```

BONDLA cont dih
bond C1 C2 2 3 555 566
dihed C2 O4 C5 C7 1 1 3 6
nviron C1 *4 5.0

```

Lists of all distances and angles are generated. In addition, specified bond distances and a dihedral angle are calculated.

\subsection*{4.10. BUNYIP: Search for Additional Symmetry}

Authors: James Hester and Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
BUNYIP checks for consistent symmetry relationships within the model which are not described by the space group.

BUNYIP (Hester and Hall, 1996) scans the asymmetric set of atom coordinates and looks for the midpoints of any two sites that coincide with a centre (indicating the presence of an inversion), an axis (indicating a 2 -fold rotation or screw) or a plane (indicating a mirror or a glide). If a large proportion of the possble midpoint combinations coincide with these symmetry elements within a specified tolerance, the coordinates of the centre, the equation of the line or plane is output along with the pairs of atoms that satisfy this requirement. In the case of the line or plane, additional data on the translation of the connected sites is listed. This provides information about a possible screw or glide translation parallel to the rotation axis or mirror plane.

\section*{For inversion centre:}

The fractional coordinates \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) of the centre are output.

\section*{For rotation axis or screw:}

The equation of the axis vector is
\(\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}\)
(e.g., the axis along c has \(\mathrm{C}=1.0\) and \(\mathrm{A}=0.0, \mathrm{~B}=0.0\) )

\section*{For mirror plane or glide:}

The equation of the vector normal to the plane is
\(\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}\)
(e.g., the mirror perpendicular to b has \(\mathrm{B}=1.0\); if the mirror is at \(\mathrm{y}=1 / 4\), then \(\mathrm{D}=\mathrm{c} / 4 \mathrm{~A}\) )

The search is performed in Cartesian coordinates (orthogonal Angstroms) and no assumptions are made about the existing symmetry or cell, apart, that is, from aligning different molecules in the asynnetric unit into the optimally packed cluster. All coordinates are output in fractional units but the values of the deviations (all symmetries), translations (screws and glides) and the value of D (mirror plane equation) are in Angstroms.

Optimal clustering is an important aspect of the midpoint search, especially if molecular complexes of nonidentical molecules are involved. It may be necessary in some cases to use the complx line to ensure that complexed molecules are "linked" identically. This may be required because the search for symmetry does not involve the application of known space group transformations, apart from in the preliminary clustering.

\subsection*{4.10.1. File Assignments}
- Read input from input archive bdf
- Writes a file containing the related atom sites and the symmetry on .bun

\subsection*{4.10.2. Examples}

BUNYIP

\subsection*{4.10.3. References}
- Hester J.R. and Hall S.R. J.Appl. Cryst. (1996). 29, 474-478

\subsection*{4.11. CBAZA: Add crystal based azimuthal PSI angle}

\author{
Authors: Doug du Boulay
}

Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
CBAZA requires diffractometer and crystal orientation settings, in conjunction with the diffractometer based PSI angle to calculate and store the Flack and Schwarzenbach, Crystal based Azimuthal PSI angle. This quantity is a prerequisite for LSABS and LSLS anisotropic extinction refinement, but has previously been unavailable to those who do not use the DIFRAC and CIFENT reflection data entry method.

Warning: the correctness of this program has not been established!

\subsection*{4.11.1. Operation}

This program requires a specification of the diffractometer and crystal orientation following the methods of ABSORB. For each reflection on the archive the Azimuthal PSI angle (measured with respect to reference vectors ( \(\mathrm{k}-\mathrm{l}, \mathrm{l}-\mathrm{h}, \mathrm{h}-\mathrm{k}\) ) or ( \(\mathrm{h},-\mathrm{h}, 0\) ) if \(\mathrm{h}==\mathrm{k}==\mathrm{l}\) ) is calculated. The diffractometer specific psi angle from lrrefl: item 1011 is read, if it exists for non bisecting mode reflections, and the calculated crystal based angle is written back as item 1011

\subsection*{4.11.2. References}
- Schwarzenbach, D and Flack, H.D. 1989. J. Appl. Cryst. 22, 601-605.

\subsection*{4.12. CHARGE: Atomic charges from difference density}

Author: Nick Spadaccini, Computer Science Department, University of Western Australia, Nedlands, 6907 WA, Australia

CHARGE calculates a charge associated with an atom from the difference density. The difference density ( \(\Delta \rho_{\text {mol }}\) ) is partitioned according to the Hirshfeld method.

\subsection*{4.12.1. Hirshfeld Partitioning}

The Hirshfeld method apportions the electron density among the atoms by the appropriate weighting. The weights are related by the atomic contribution to the promolecular density,
\[
w_{A}(r)=\frac{\rho_{\mathrm{atam}}^{\mathrm{A}}(\mathbf{r})}{\rho_{\mathrm{rra}}(\mathrm{r})}
\]

The fragment of the deformation density apportioned to atom A is,
\[
\Delta \rho_{\text {frag }}^{A}(r)=w_{A}(r) \Delta \rho_{\text {mol }}(r)
\]

The net atomic charge \(Q_{A}\), is derived from the integration of the difference density fragment,
\[
Q_{A}=\int_{\text {inpui }} \Delta \rho_{\text {frigit }}^{A}(r) d v
\]

An alternative scheme is based on the atomic contributions to the total promolecular potential \(\mathrm{V}_{\mathrm{pro}}\) defined as the sum of the electronic and nuclear contributions.

\subsection*{4.12.2. Density And Potential Profiles}

The promolecular density or potential is the sum of the atomic densities or potentials. These latter values are derived from the Clementi and Roetti atomic wavefunctions. Associated with each atom type are the
parameters \(\mathrm{A}_{\mathrm{k}}, \mathrm{n}_{\mathrm{k}}\) and \(\mathrm{z}_{\mathrm{k}}\) for \(\mathrm{k}=1, \ldots, \mathrm{~m}\) such that the density is,
\[
\rho_{a t m}(r)=\sum_{k=1}^{m} A_{k} r^{r_{k}} e^{-a_{k} t}
\]
and the potential is
\[
V_{\mathrm{am}}(r)=4 \pi \sum_{k=1}^{m} A_{k}\left(\frac{\gamma\left(n_{k}+3, z_{k} r\right)}{r z_{k}} \frac{(n+1)!}{n_{k}+3}+\frac{\gamma\left(n_{k}+2, x_{k} r\right)}{2_{k}+2}\right)+\frac{z_{A}}{z_{k}}
\]
the last term is the nuclear contribution and \(\gamma(\mathrm{n}, \mathrm{x})\) is the Incomplete Gamma Function.
The density profiles (e/bohr\({ }^{3}\) ) and potential profiles (e/bohr) are stored at 44 discrete values of r (bohrs) for the points,
\(\mathrm{r}_{1}=0 . ; \mathrm{r}_{\mathrm{k}+1}=1.15\left(\mathrm{r}_{\mathrm{k}}+.01\right) ; 0 . \leq \mathrm{r} \leq 31.2\)
The divisions are chosen so that the density of points is greatest in the region of steepest gradient. The density or potential value at any general point is linearly interpolated from the profile.

\subsection*{4.12.3. Density, Distances And Errors}

The difference density ( \(\Delta \rho_{\text {mol }}\) ) must be input from the FOURR file map. CHARGE partitions this density into atomic contributions and integrates over the input region to obtain a charge. If the input map is the asymmetric unit the values obtained are total atomic charges for atoms at general positions or fractions governed by the site symmetry for atoms at special positions. The user must determine the fraction of an atom present in the input map and calculate the total charge accordingly.
The user may specify the effective range of atom contributions in two ways. The border option in the program initiation line determines the region beyond the input map for which atom contributions are included. The default value of \(6 \AA\) implies that any atom within this distance of the input map edges is included. Also the distance beyond which an atom contribution is zero may be set by the contactoption.
Estimates of \(\sigma(\mathrm{Q})\) are determined for spherical regions of various radii following the method of Davis and Maslen. The estimates are derived from the values of \(\sigma(\mathrm{F})\), the errors in the structure factor amplitudes used to derive the difference density. For each atom the program outputs a value of \(\sigma(\mathrm{Q})\) for a radius set within the program. The absolute radii are generated from relative radii, derived from the density profiles and stored in the database. These values are rescaled so that the total volume of the atoms in the cell equals the cell volume. The radii used are listed.

Since values of atomic radii are not unique the variation of \(\sigma(\mathrm{Q})\) with r is also output so that the user may determine \(\sigma(\mathrm{Q})\) at an alternative radius if desired. The scheme assumes a centrosymmetric structure so that phase errors are not included.

\subsection*{4.12.4. File Assignments}
- Reads lrcell: and symmetry data from the input archive bdf
- Reads difference density from a map file
- Reads profile data base from the file designated by the macro profile:

\subsection*{4.12.5. Examples}

\section*{CHARGE}

The weights here are determined from the promolecular density. The contributions of atoms up to \(6 \AA\) beyond the input map edges are included in the calculation. However, an atom will not contribute to the density if the point is greater than \(6 \AA\) away.

CHARGE poten bord 4 cont 4.5
Here the weights are determined from the promolecular potential. Atoms up to \(4 \AA\) from the input map edges are included in the calculation. The effective range of a atom is set to \(4.5 \AA\).

\subsection*{4.12.6. References}
- Clementi, E and Roetti, C. 1974. Atomic Data and Nuclear Data Tables14, 177-478.
- Davis, C.L. and Maslen, E.N. 1978. Acta Cryst. A34, 743-746.
- Hirshfeld, F. 1977. Israel Journal of Chemistry 16, 198-201.

\subsection*{4.13. CIFIO: Input and output CIF data}

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia. CIFIO reads and writes CIF data to and from the Xtal binary or ascii archive file representations.

\subsection*{4.13.1. Purpose}

The Crystallographic Information File (CIF) has been developed for electronic submissions to IUCr journals and databases. CIFIO converts an Xtal archive file into CIF format and vice versa. The data to be extracted from the bdf is specified by the user by entering data names into a request file cifreq. A template cifreq file is supplied with the system but this can be copied and modified according to individual needs. CIFIO will only recognise requests for data items which have been defined by the core CIF dictionary which is supplied as the file cifdic. However, users may construct their own dictionary cifdic.loc to handle local data (DO NOT edit the cifdic file).

The generated .cif file will contain information on all requested data items that are currently present on the archive \(b d f\). The unsatisfied requests will be flagged with a question mark '?'. The unavailability of a specific data item may be that data has not been archived on the bdf (as a result of a prior calculation) or that Xtal does not generate this information. The user may use a standard text editor to add or amend a .cif file, but caution must be exercised at all times in order not to corrupt the structure of the file. This may be checked by reading the .cif file with CIFIO with the dictionary checking facility on (ie. enter "cifio cifin dict")

CIFIO uses the mapping file cifmap which is supplied with the system. This file contains the data that enables each CIF data name to be mapped to the Xtal bdf items. The cifmap file should never be changed and a single copy is usually kept in a globally-accessible read-only area of your directory.

CIFIO has four modes: read and write a CIF, read and write and ascii image of the Xtal archive file.

\subsection*{4.13.2. CIF Input}

This is the default mode. It will cause the cif file to be read and converted into a sequence of line commands in the file .new. The file .new is automatically read and used to execute a sequence of Xtal calculations needed to create an archive bdf containing the data items in the CIF. If the dict option is set the input cif file will be checked against the dictionary files cifdic and cifdic.loc (optional).

\subsection*{4.13.3. CIF Output}

Entering cifout will cause CIFIO to output the data values listed in the file cifreq. (supplied for Acta Crystallographica C submissions) to the file .cif. The following controls apply when generating a CIF.
dset n
Specifies which data set is output to cif. The default is data set 1 .

\section*{qchr or nqch}

This signals how the character data output by CIFIO is encapsulated. If qchr is entered character strings are bounded by single quotes. For example the description of the extinction method could appear as 'zachariasen Gaussian'. If nqch is entered bounding quotes are not used but imbedded blanks are replaced with an underline. The above example would appear as zachariasen_Gaussian. nqch is the default.
sfac or nsfa
The outputing of requested structure factor data is treated specially by CIFIO. This is because a user may wish to use a standard CIFRed file for all CIFIO runs but only generate structure factor data in specific instances where they are required (note that in the future structure factor data may not be an automatic requirement for submission to IUCr journals). Entering sfac will cause the requested structure factor data as defined by the _refln_ data names to output to the CIF file. Entering nsfa, or as default, these data item requests will be ignored.

\section*{scal or nsca}

The measured structure factor data (Frel, \(\mathrm{F}^{2}\) rel and Irel) on the bdf is unscaled. These options signal CIFIO to scale, or not to scale, the measured data which is output to the CIF file. The default is scal.
corr or ncor
The measured structure factor data (Frel, \(\mathrm{F}^{2}\) rel and Irel) on the bdf is not corrected for extinction effects. These options signal CIFIO to correct, or not to correct, the measured data which is output to the CIF file. The default is corr.

\subsection*{4.13.4. arc File Output}

The cif file discussed above is designed for data communication external to the Xtal System. It contains only selected items that are required by the recipient journal, database or laboratory. CIFIO is able to read a standard CIF (which was not necessarily generated by CIFIO) and create input commands which enable this data to be stored on an Xtal bdf. However, the data on a CIF is users choice (for example, no structure factors) and this limits the universality of recreating a bdf. In other words, even an CIFIO generated cif file is not the exact text image of the data on the archive bdf and cannot be used therefore to produce an identical copy of the original bdf.

This is where CIFIO serves a second important archiving function. The arcout signal causes an arc archive file to be created. This is also a text file in STAR format. The arc file differs from the a cif file in that it contains every data item on the bdf and can be used to recreate and identical copy of that bdf.

The arc file has a number of important applications. First, it provides for a machine independent archive file which can be stored and reused with any machine and any future version of the Xtal System. Second, it can be
sent to any other site by electronic means and converted directly into an identical bdf. Third, its contents are completely self-defined and it is suitable as a communication file with other software. Fourth, because ARC is a text file, data can be examined, added to, deleted or modified with a standard text editor. The modified arc can be used to create a new modified bdf (it goes without saying that such editing must be done with extreme caution). No additional control options are used to output an arc file.

\subsection*{4.13.5. arc File Input}

Setting arcin on the CIfio line will cause the arc file to be read and converted to an output archive bdf. This file will be identical to the bdf that was used to creat arc.

\subsection*{4.13.6. File Assignments}
- Optionally reads the input archive bdf (cifout and arcout modes)
- Optionally writes an output archive bdf (cifin and arcin modes)
- Optionally reads a cif line file (cifin mode)
- Optionally reads an arc line file (arcin mode)
- Optionally writes a cif line file (cifout mode)
- Optionally writes an arc line file (arcout mode)
- Optionally reads the cifreq and line file (cifout mode)
- Optionally reads the cifmap and line file (cifout and cifin modes)

\subsection*{4.13.7. Examples}
```

CIFIO dict

```

Read the .cif file and validate the data items against the dictionaries cifdic and cifdic.loc.
```

CIFIO cifo sfac ncor

```

Create a cif file containing data items from the input archive bdf which are specified in the line file cifreq. Structure factor data should be included if requested in cifreq, and the measured structure facture data will be scaled but no extinction corrections applied.

\subsection*{4.14. CIFENT: CIF entry of diffractometer data}

\section*{Author: Howard Flack}

CIFENT is based largely on CIFIO, but with modifications to read DIFRAC diffractometer CIF files into the XTAL archive.

\subsection*{4.15. CONTRS: Contour a map}

Author: Mark Spackman, Department of Chemistry, University of New England, Armidale, NSW, Australia. CONTRS, used in conjunction with PLOTX, contours density maps output by either FOURR or SLANT. Contour plot instructions are written to the con file.

\subsection*{4.15.1. Introduction}

A regular grid consists of two sets of equi-spaced lines parallel to two axes. The axes need not be orthogonal, nor do the spacings have to be equal for the two sets of gridlines. The intersection points of these gridlines are the mesh-points, and a regular grid of data therefore consists of functional values at all the mesh points of a finite grid. The smallest parallelogram made by four mesh-points is referred to as a pixel, and the mesh-size in each axial direction is the length of the sides of a pixel parallel to each axis.
Output bdfs produced by FOURR and SLANT contain regular grids of electron density or similar type of data, which are more readily interpreted when suitably contoured. CONTRS allows for the contouring of any layer of such data, or even the contouring of successive layers from the input bdf.

CONTRS is specifically aimed towards production of smooth contours. The various steps in construction of the final plot can be summarized as input of the appropriate layer of data, search for intersections of the contour with all gridlines, chaining of points together to form curves, drawing of the curves with optional smoothing, addition of a title, optional drawing of a border, mesh points and atoms in the vicinity of the plane.

\subsection*{4.15.2. Layer Input}

Selection of layers is controlled by the contrs input line. The layer numbers correspond precisely with those output by FOURR or SLANT. The absence of any layer specification will cause all layers of the input bdf to be contoured. The resulting contour map will have the same orientation as the printed map unless rotation is requested. A single layer is stored in memory at any one time and the outermost loop in CONTRS is thus over the layers requested.

\subsection*{4.15.3. Specification Of Levels}

All contour levels are specified by the LEvELS input line. Three possibilities are allowed for: arithmetic (constant interval between levels), geometric (constant ratio between levels) and direct (input of levels explicitly).
For the arith and geom options, it is necessary to specify a starting level (start), a constant increment or ratio between levels (incr), and the number of levels to construct from these conditions. For arithmetic intervals, the levels would then be start, start+incr, start \(+2{ }^{*}\) incr,... \(\operatorname{start+}\) (nc-1)*incr, where nc levels were requested. For the geometric case the levels would be start, start*incr, start*incr**2, etc.
In the case of direct level input, the direct flag on the input line is simply followed by the values of the desired levels. If not all such levels can be accomodated on a single levels input line, then additional levels lines can be input until all levels are entered.
A deficiency of the geom option is that it cannot be used by itself to construct a list of levels which span zero and change sign (e.g. 1.0, 0.5, \(0.25,0.0,-0.25\) ). The negate flag on the LEvELS line will double the number of levels by including all those of opposite sign. In addition the zero level can be explicitly included via the zincl flag. negate and zincl function after all line input has been processed, and hence caution should be exercised when using these options with the arith or direct options.

A maximum of 30 levels is allowed by CONTRS, but it is usually found that when the number of levels exceeds 15 the maps tend to become cluttered.

\subsection*{4.15.4. Search For Points On The Contour}

Each gridline of the layer of data (across and down) is scanned to find all intersections of the contour with gridlines of the layer. These intersections are stored in the order found as coordinates relative to the grid axes.

The current contour value is subtracted from the function value at each mesh-point in turn. Should this result in a numerical zero, a small amount is added to the difference, which has a negligible effect on the resulting map, but insures that no intersections occur at mesh points. Adjacent mesh points exhibiting opposite signs for this difference clearly must bracket an intersection.

The precise location of the intersection may be determined by either linear or cubic interpolation. For the linear case, only two adjacent mesh points are needed, but the cubic requires four neighbouring points which are generally chosen so that the intersection lies between the two central points. For pixels on the edges of the grid this is not possible, and the closest four adjacent points are chosen.

The interpolation over the grid is not a time consuming step in contouring, and cubic interpolation, being only slightly slower and far more accurate, is the program default. Linear interpolation should rarely be necessary, unless as a convenient check that the cubic algorithm is finding all of the points.

\subsection*{4.15.5. Chaining Of The Points}

Two essential assumptions are made by CONTRS in chaining together successive points to form a curve. The first is that all intersection points lie on the edges of pixels, and never at the mesh-points. This is guaranteed by the minor perturbation of the difference function at the mesh-points described earlier. The second assumption is that only one intersection is found on any edge of a pixel. This is necessarily true with linear interpolation, but is not necessarily the case for cubic interpolation. However, it is extremely unlikely that this will ever happen if adequate mesh-sizes are employed (typically < 0.20 Angstroms), and has never been observed by the author in hundreds of maps.

With these assumptions it is a relatively straightforward matter to search for linkages from one point to another. CONTRS simplifies matters by constructing curves which begin on the edge of the map first. Such open curves must end on an edge also, and searching for them first avoids the creation of curves which are obviously incomplete.

The procedure for chaining is quite simple. The unchained list of points is repeatedly searched from bottom to top until a linkage is found, in which case it is swapped with the point at the bottom of the unchained list and the search is repeated with one fewer point. If no linkage is found, a curve is considered to be complete, and its end point flagged for subsequent curve drawing. Notice here that a contour will comprise several closed and open curves on a typical map.
For linkage purposes no use is made of the previous course of the curve. Rather the obvious requirement, that if a contour enters one edge of a pixel it must exit via one of the other three, is the only criterion used. This means that there are either one, two or three possible links from each point. If several links are found, it is not obvious which is the appropriate one, except that CONTRS avoids the case where curves would cross each other. In such cases CONTRS makes a decision based on which choice leads to the maximum separation between curves inside the pixel, since this avoids the presence of absurdly narrow goose-necked contours. It should be borne in mind, however, that this decision is quite arbitrary and based on aesthetics, where information about the function inside the pixel is missing.

Chaining is the most time consuming part of the contouring procedure and, since it is a sorting process, takes increasingly longer as the number of points per contour increases. Thus for grids with large numbers of mesh points along both axes, and for zero contours on a difference map, several thousand points may have to be searched repeatedly. However in most cases only several hundred points are obtained and the chaining procedure is very fast.

\subsection*{4.15.6. Drawing Of The Curves}

At completion of chaining, the list of unchained points has been transformed into a list of contiguous points on curves, with stored pointers to the end of each curve. The drawing of straight lines between contiguous points on the curves is a trivial exercise, and where a large number of curves are to be drawn or appearance is not important, this is a sensible option.

Drawing smooth curves is also straightforward. CONTRS employs an isotropic four point smoothing algorithm due to Midgley (1979), which makes the direction of the curve at any data point that of a circle through the point and the two adjacent points. This algorithm can be described as a cubic parametric representation in two dimensions of the curve between points \(\mathrm{r}_{\mathrm{i}}\) and \(\mathrm{r}_{\mathrm{i}+1}\),
\(r_{t}=r_{i}+A t+\mathrm{Bt}^{2}+\mathrm{Ct}^{3}\),
where t ranges from 0 to 1 and the constants \(\mathrm{A}, \mathrm{B}\) and C are determined by the adjacent points on the curve. Separate conditions apply to the terminal points of closed and open curves.

The number of discrete increments in \(t\) is governed by the resolution requested on the CONTRS input line. This resolution is closely related to the longest straight line segment used in constructing smooth curves, and is obviously relative to the internal dimensions of the contour map. CONTRS scales all maps to 10 units in the \(y\) (down the page) direction, and hence the default resolution of 0.10 is 1 of this dimension. Increasing this value, to 0.20 for example, will reduce the number of plot instructions written to the con file, will hardly be noticed on a high-resolution dot-matrix printer, but any high quality plotting device will display obvious straight line segments.

\subsection*{4.15.7. Types Of Lines Drawn}

CONTRS allows for the drawing of both solid lines and dashed lines with regular dash-gap sequences. The assignment of line type to contour level is performed by the lintyp input line, although a default of positive contours solid, zero dashed and negative levels dotted is generally applicable. A distinction is made internally between solid, dashed and dotted lines. Dash and gap lengths are given relative to a y-dimension of 10 units as above, and defaults for these are 0.2 for dash and gap lengths of dashed lines, and 0.08 for dash and gap lengths of dotted lines. Alterations to these characteristics are possible via the dash and dot input lines, which allow for up to 10 different elements in such a sequence, enabling the production of fancy chain-dotted lines if desired.

\subsection*{4.15.8. Border And Mesh Points}

The border of the contour map can be optionally deleted. The border produced by CONTRS is quite independent of that produced by PLOTX, and in fact the border should be suppressed in PLOTX to avoid any confusion. Mesh-point locations can be optionally plotted as small crosses on top of the final map.

\subsection*{4.15.9. Atoms In The Vicinity Of The Map}

Atoms within a specified neighbourhood of the map will be plotted as large crosses. Atom names of up to four characters can be optionally plotted beneath the crosses. The specification of the neighbourhood is done via the inclusion of the required distance after the atoms flag on the CONTRS control line. The distance is interpreted as being in Angstroms and parallel to the layer axis. Thus the total volume of space within which atoms are generated by CONTRS is the parallelepiped formed by the top and bottom layers plus and minus the specified distance respectively. If no distance is specified a default value of half the distance between layers is used. Off plane atoms are plotted in italics.

The dist includes the off plane atom distances as a second italic text string. A check is made for exact overlap of two atoms at equal and opposite distances which are printed as a single atom label with the distance string
"+/-xx.xxx". CONTRS flags the out-of-plane atom labels for printing in italics by preceding the label text string with the vertical bar "|".

\subsection*{4.15.10. Printed Output}

There are four sections of printed output produced by CONTRS. The first two sections echo control and contour levels input.

The third section lists contour levels found for each layer, and tabulates along with the contour level the line type, the total number of points found for the level, the number of points purged and the number of individual curves comprising the contour. The number of points purged should always be zero except in very special cases (e.g., a single isolated point at the centre of a peak or hollow), or perhaps where the chaining algorithm is failing. This column is an excellent diagnostic and the presence of any non-zero entries should be carefully investigated.

The fourth section summarizes atoms found within the specified vicinity of the contour map, layer by layer, giving the full name, the number of the symmetry operation which generated the particular atom, the distances in Angstroms (parallel to the border axes) from the top left corner of the map to the atom projected onto the plane, and the distance in Angstroms (parallel to the layer axis) of the atom from the layer.

\subsection*{4.15.11. Monochrome Graphics Output}

On conventional monochrome graphics devices (e.g., dot matrix printer or vector pen plotters)CONTRS will produce the map and additional output appropriately scaled to the device by PLOTX. Two lines of title are added below the contour map. The first line gives the compound ID, the lengths of the \(x\)-axis and \(y\)-axis (across and down the map) in Angstroms, the angle between axes at the lower left of the map and the layer number(s). The second line reproduces the title submitted via the title control line if one was included in the input stream.

\subsection*{4.15.12. Colour Graphics Output}

CONTRS is currently capable of producing colour graphics output, provided the appropriate device dependent software is incorporated in PLOTX. CONTRS supports six separate colours, and these are assigned to the six groups of output: negative contours, zero contours, positive contours, the border and mesh points, the crosses for atomic sites, the titles and atom names. This colour coding is completely transparent to the user and will not affect output on monochrome devices. Assignment of specific colours to each colour group is performed via PLOTX.

\subsection*{4.15.13. File Assignments}
- Reads lrcell:, lrsymm: and lratom: data from the input archive bdf ListItem>
- Optionally reads FOURR map points from a map file
- Optionally reads SLANT map points from a sla file
- Writes contour plot instructions to the con file

\subsection*{4.15.14. Examples}
```

CONTRS flay 16 llay 16 atoms 2.0
LEVELS arith nc 7 st -0.3 in 0.1

```

In this example, layer 16 of the Fourier map is to be contoured. The levels requested are \(-0.3,-0.2,-0.1,0.0\), \(0.1,0.2,0.3\), appropriate to a difference Fourier map. All atoms within 2.0 Angstroms of the map will be plotted.
```

CONTRS slant nn
LEVELS direct -0.3 -0.2 -0.1 negate zincl
LINTYP do 1 3 da 4 4 so 5 7
dash 4 0.2 0.2 0.1 0.1

```

In this example, SLANT input is specified. The levels line will produce identical levels to the previous example. The lintyp line specifies explicitly what the default assignment of the line types would be. The dash line alters the default dashed line to a chain-dotted line (long dash, short dash, long dash, etc.). Since, in general, SLANT writes only a single layer of data in the sla file, CONTRS will produce only a single map. Atom sites, but not names, will also be plotted.
```

CONTRS linear nsmooth
LEVELS arith nc 10 start 0.0 incr 1.0

```

In this case all layers are to be contoured sequentially, with linear interpolation and no smoothing. The levels requested are appropriate to a Fourier of the total electron density.

\subsection*{4.15.15. References}
- Midgley, J.E. 1979. Isotropic Four-Point Interpolation. Computer Graphics and Image Processing 11, 192196

\subsection*{4.16. CREDUC: Check cell choice}

Authors: Y Le Page \& H D Flack
Contact: H D Flack, Laboratoire de Cristallographie, University of Geneva, CH-121 1 Genéve 4, Switzerland.
CREDUC undertakes the calculation of cell reduction using the algorithm of Le Page (1982). The essential objective of cell reduction is the recognition of the metric (lattice) symmetry of the input unit cell. Once this metric symmetry has been identified, the basis vectors of the lattice may be chosen to lie along the main symmetry direction in the conventional way.

\subsection*{4.16.1. Cell Reduction}

The Le Page algorithm is based on the search and identification of twofold axes of the translation lattice. The search is carried out by systematically generating pairs of direct and reciprocal lattice rows. In the normal case, the maximum values of the indices of these direct and reciprocal lattice rows may be limited to a value of two by working from a primitive Burger reduced cell generated from the input cell. For each direct-reciprocal row pair, the vector product is used to calculate the angle between the rows and the scalar product is also evaluated. The two rows are parallel or nearly so when the angle between them is zero or close to zero, and parallel rows are a twofold axis of the whole translation lattice if their scalar product has a value of 1 or 2 . Direct-reciprocal row pairs satisfying these conditions (i.e. having an inter-row angle less than a specified value) are stored in a list containing possible twofold axes.

The point symmetries of the seven crystal systems have characteristic distributions of twofold axes in space. Hence comparison of the distribution in space of the twofold axes found in the systematic search with the well-known distribution of the twofold axes of the seven crystal systems allows the lattice symmetry to be identified. This process places the lattice in a conventional orientation and the choice of rows to be selected as edges of the conventional cell is guided by the coincidence of lattice rows with pre-determined symmetry axes. The search for the crystal system takes place in the order cubic, hexagonal, rhombohedral, tetragonal, orthorhombic, monoclinic and triclinic. Each time a solution is found, all the twofold axes with an inter-row angle greater than or equal to the largest one used in the match are deleted from the list of twofold axes and then another solution is sought.

The first input parameter allows the maximum acceptable angular deviation between the direct and reciprocal lattice rows defining a twofold axis to be set. The angular deviation of each direct-reciprocal row pair as calculated from its vector product is compared against the maximum-acceptable value and the pair is retained if the angle is less than the input value. True twofold axes have values of the angular deviation very close to zero. Hence large values of the angular deviation will find cells having pseudo-symmetric lattices. The second input parameter fixes both the maximum acceptable value of the scalar product of the direct and reciprocal row pairs and the maximum value of the indices in the direct-reciprocal row search. Scalar products of 1 and 2 identify twofold axes causing all lattice points to find a rotation-related partner. Values of the scalar product larger than two identify twofold axes which cause only subsets of the lattice nodes to be superimposed. Consequently supercells of higher lattice symmetry can be identified. This is an undocumented and very interesting option which existed in the original Le Page programme.

\subsection*{4.16.2. Twin-Law Evaluation}

The (pseudo)-merohedral twin laws are evaluated by the algorithm of Flack (1987). The basis of this method is a coset decomposition of the point symmetry of the declared crystal space group with respect to the lattice symmetry determined from the cell reduction process. The programme produces a list of twinning operations (described both in direct and reciprocal space) which make the lattices nodes of the twin-related lattices superimpose. The algorithm is arranged in such a way that for a centrosymmetric space group all of the twin laws are generated, whereas for a non-centrosymmetric space group each twin law listed (and saved in the ltrwin:) corresponds to two twin laws i.e. the one listed and one related to it through an inversion in the origin.

\subsection*{4.16.3. File Assignments}
- Reads data from the input archive bdf.
- Writes data to the output archive bdf.

\subsection*{4.16.4. Example}
\begin{tabular}{lcccc} 
STARTX & & & \\
cell & 5.657 & 5.657 & 6.828 & 90.90. \\
sgname & R 3 & & & \\
\begin{tabular}{l} 
celcon \\
CREDUC
\end{tabular} & C 8 & & &
\end{tabular}

The output will be as follows:
```

Maximum acceptable obliquity: 3.0 degrees
Maximum multiple cell index: 2
Input cell:

```


In the above example a structure in space group \(R 3\) is input on hexagonal axes. The input cell is first reduced using the Burger algorithm. Next a systematic search is taken over all pairs of direct and reciprocal rows up to a maximum index of two. Those pairs which both have an angular deviation of less than \(3^{\circ}\) and a scalar product of 1 or 2 are retained. These directions are (pseudo) twofold axes. The distribution of the twofold axes in space allows the metric (lattice) symmetry to be identified. The 9 (pseudo) twofold axes have the correct distribution for a lattice of cubic symmetry but as the angle between some of the direct and reciprocal rows is as large as \(0.788^{\circ}\), this is only a pseudo-cubic primitive cell. Having eliminated the 6 pseudo twofold axes with an angular deviation of \(0.788^{\circ}\), the programmeconsiders the remaining three pure twofold axes and finds that they have the correct spatial distribution for the trigonal system on rhombohedral axes. As a conventional choice a triply-primitive cell (in the obverse setting) on hexagonal axes is generated. In all cases of pseudo or metrically-exact cell, the matrices describing the relation between the input and reduced direct and reciprocal cells are output. Finally the twin laws are calculated and the twin-law transformation matrices are output both for direct and reciprocal space. In the example, the first twin law is the identity operation, the second being a twofold rotation about [2 10 ]. As the declared space group is non-centrosymmetric, these two twin operations imply two further inversion-related ones: i.e. inversion in the origin and reflection in (100).

\subsection*{4.16.5. References}
- M.J., Burger (1960). Z. Kristallogr. 113, 52-56.
- H.D. Flack (1987). Acta Cryst. A43,564-568.
- Y. Le Page (1982). J. Appl. Cryst. 15, 255-259.

\subsection*{4.17. CRILSQ: Structure factor least-squares refinement 2}

Author: Roeli Olthof-Hazekamp, Laboratorium voor Algemene Chemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

CRILSQ is a general purpose atomic parameter refinement program. The program can be used for any space group and any setting. It adjusts the scale, extinction, positional, thermal displacement and site occupancy factors by minimizing the difference between observed and calculated structure factors. Refinement is based on \(F^{2}\). Derivatives are only accumulated in full matrix mode. Provision is made for the control of parameters of atoms in special positions and refinement of the Flack absolute parameter XABS. The riding atom model and twin refinement are also supported.

\subsection*{4.17.1. Introduction}

A summary of the method of establishing least-squares equations which are used in CRILSQ can be read in the Program Description of CRYLSQ. A number of the features of CRYLSQ are not implemented. The differences between the two programs are indicated below. New features are the refinement of twin fractions and the calculation of the riding atom model. Most parameters must have been written to the bdf by preceding programs. Their default settings are shown below. 'Apply and refine' flags may be set in the CRILSQ line. Refinement may be shut off by NOREF lines.

\subsection*{4.17.2. Calculations Performed}

\subsection*{4.17.2.1. Least-squares Procedure}
\(\mathrm{Y}(\mathrm{o})\) and \(\mathrm{Y}(\mathrm{c})\) are 'observed' and 'calculated' values of \(\mathrm{F}^{2}\).

\subsection*{4.17.3. General Structure Parameters}

\subsection*{4.17.3.1. F relative Scale Factor}

A unit Frel scale factor, set by ADDATM, is applied and refined.

\subsection*{4.17.3.2. Overall Thermal Displacement Factor}

The overall isotropic displacement parameter may be set by ADDATM. It may be applied and refined by setting 'ov' in the CRILSQ line. In that case no individual atom displacement parameters are taken into account.

\subsection*{4.17.3.3. Dispersion Parameters}

The dispersion parameters are set by STARTX. They are applied, unless a 'nd' flag is present in the CRILSQ line.

\subsection*{4.17.3.4. Extinction Parameter}

The Zacchariasen formalism for extinction is implemented. Use ADDATM for input of the isotropic extinction parameter (g) and 'ex' as 'apply and refine' flag.

\subsection*{4.17.3.5. Absolute-Structure Parameter}

The Flack absolute configuration parameter, if used, must be set by ADDATM. Including 'ab' in the CRILSQ line flags the 'apply and refine' instruction.

\subsection*{4.17.4. Atom Specific Parameters}

\subsection*{4.17.4.1. Positional Parameters}

By default all positional parameters are refined.

\subsection*{4.17.4.2. Thermal Displacement Parameters}

The mode of the thermal displacement parameters is set by ADDATM. An 'editu' line in that program may convert the TDP mode.

\subsection*{4.17.4.3. Occupancy Factor (Population Parameter)}

The refinement flag is turned on by 'oc' in the CRILSQ line.

\subsection*{4.17.5. Blocking}

Refinement of all parameters in one block (full matrix refinement) is the only option in this program.

\subsection*{4.17.6. Invariant Parameters}

The NOREF line may be used for the general parameters SKF, UOV, EXT, ABS and TWI and for the atom specific parameters X, Y, Z, U, U11, U22, U33, U12, U13, U23, UIJ, POP.

\subsection*{4.17.7. Dependent Parameters}

The form of the CONSTR lines is the same as in CRYLSQ. The order of the different CONSTR lines is not important.

\subsection*{4.17.8. Riding Atom Model}

Hydrogen atom positions should be precalculated in other programs, such as PIG or BONDAT or manually inserted using ADDATM link lines. These programs add H atom link information on to the archive bdf which is read by CRILSQ and used to invoke the riding model. Only H atoms for which linkage has been generated will be treated using the riding model, all other atoms will be refined in the usual manner. The positional parameters of the generated atom is recalculated after each refinement cycle. The isotropic thermal displacement parameter is 1.2 times Uequivalent of the atom to which the new atom is attached.

\subsection*{4.17.9. Twin Refinement}

The twin laws for (pseudo-) merohedral twins will be read from the bdf if placed there by CREDUC, or may be entered by use of 'twin' lines. Up to 8 volume fractions may be refined. Their sum is constrained to 1.0. A 'noref twin' line will apply the volume ratio's, but not refine them. Twin laws should form a sequential, closed group in the sense that: twinop \(1=\mathrm{A} 1=\mathrm{I}\) twinop \(2=\mathrm{A} 2\) and \(\mathrm{A} 2 * \mathrm{~A} 2=\mathrm{I}\) twinop \(3=\mathrm{A} 3\) and \(\mathrm{A} 3 * \mathrm{~A} 3=\mathrm{A} 2\) twinop \(4=\mathrm{A} 4\) and \(\mathrm{A} 4 * \mathrm{~A} 4=\mathrm{A} 2(\mathrm{~T})\)

\subsection*{4.17.10. Final notes}

Not implemented (yet) are 'Rigid Groups And Identical Molecules', 'Restrained Parameters' and 'Fixed Atom Contribution'. The other features are identical to those in CRYLSQ.

\subsection*{4.18. CRISP: Well baked structural solution}
[Caveat: This program should not be confused with the program CRISP marketed by Calidris for image processing of electron micrographs]

Authors: Doug du Boulay \& Syd Hall, Crystallography Centre, University of Western Australia, Nedlands, WA 6907, Australia

CRISP combines tangent direct methods with iterative real to reciprocal space transformation methods to determine organic or organometallic molecular structure. This program is numerically very intensive and combines Fourier calculations with block diagonal least squares structural refinement as a basis for excluding or incorporating density peaks as real atomic sites in the model. It relies on accurate atomic resolution reflection data, and an extremely good guess at the actual cell contents.

\subsection*{4.18.1. Solution Method}

CRISP uses the GENSIN structural invariants and generators as a basis for phasing generator reflections using tangent direct methods. Random starting phases are assigned to all generator reflections and, in GENTAN terminology, phases are refined in BLOCK mode, for up to 30 cycles. By default CRISP refines 64 random phase sets, logging the best 12 phase sets (according to their refinement figs of merit) for possible further analysis. By default only the first (i.e. best) of those 12 is examined further for molecular geometry.

CRISP relies on the user to specify (in STARTX) a very good approximation of the expected unit cell contents using the celcon lines. This is quite crucial, especially so for heavy atoms. Hydrogen atoms are essentially ignored. Generally it is thought unlikely that no information about atomic contents is available. In addition BDF archive should contain Frel values and E values.

The phases and E values of the phased generators are used to calculate a fast Fourier transform emap at 4 point per angstrom resolution. The Emap is searched for the expected number of map peaks,which are ranked according to peak height. Typically a volume larger than the assymetric unit is generated, but symmetry releated peaks are identified and rejected.

The ranked peak list is used as a basis for assigning atom types. If heavy atoms are expected, then those atoms are broken up into different ranges according to their atomic number. In the first instance, only the largest Z value atoms are assigned to the top peaks. (One shortcoming of this algorithm is that the top emap peaks do not necessarily correspond to the heaviest atoms. A second shortcoming is that this algorithm does not take into account the fractional scattering power of the expected atoms, so for instance if there is one \(S\) atom and 200 C atoms the likelihood of successful structure determination is very low if only 1 S atom is assigned in the first instance)

With the top peaks assigned to the heaviest atoms, the scale factor and overall temperature factor are least squares refined ( 5 cycles), initialized with values determined from GENEV. If the new refined values are beyond certain limits, it is an indication that the atom type assignment maybe incorrect, or relatively incomplete and the scale and overall temperature factor revert to their GENEV values.

Subsequently the atom site \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) and individual isotropic temperature factors are refined using 5 cycles of diagonal least squares (using Frel-Fcal). Positional constraints are applied to sites on symmetry positions. The refined temperature factors are used as to critically examine the assigned atomic types. If the temperature factor is too high an atom type may be demoted to a lower atomic number atom or rejected altogether, whereas if it is too low it can be promoted to the next higher atomic number amongst the expected atom types. Atom type promotions are not invoked until later iterations when C atoms are being actively sought, that is unless the refined temperature factor for an individual site becomes \(<=0\).

Also in later interations additional peaks beyond the number expected based on the celcon lines are added, in batches and rerefined. Between the addition and rerefinments, the scale factor and overall temperature factor are refined also.

If no more peak sites are or can be added, the current structural solution is used as a basis for calculating new structure factor phases for use with Frel values for Fourier transformation to an Frel map. During early iterations, this may be only for reflections with \(\mathrm{E}>1.0\) whereas for later iterations all reflections with \(\mathrm{F}>2 \sigma\) are used. The frel map is known to exhibit significant series termination ripple, predominantly around the heavy atoms, but these spurious map peaks are relatively localised and are largely excluded from any downstream processing based on geometrical (bond-radii) constraints. The advantage of using an Fmap at this stage is that the peaks recovered from this new map have peak heights much more in keeping with the atomic numbers of the expected atomic types. In addition, the new peak list is more readily matched with the results of previous iterations. At this stage the next lower level of heavy atoms (if any) is assigned and the refinements of scales, coordinates and temperature factors is repeated. If the last atomic number range has already been invoked then a final iteration is made for solution comparison purposes.

After a number of interative cycles corresponding to the number of atom ranges + an extra comparison cycle, it is hoped that the peak assignment and refinement will have converged to the correct molecular solution. The resultant solution is saved to a .sol file. In default mode, if the solution converged (same solution in final and previous cycle) then CRISP will terminate and the molecular viewing program PIG is automatically invoked to view the solution. Idealy only one solution is required, and that solution is most likely to come from the phase set with the best figure of merit.

NOTE: To actually use a particular solution, you have to explicitly ensure that a bdf will be written out in PIG, and ensure that the solution you require is currently active as you exit the PIG program. This will write out the current atom sites to the .add file for automatic reentrant streaming into ADDATM.

\subsection*{4.18.2. Control options}

When a non-default number of best phase sets are requested for examination, subsequent solutions are appended to the .sol file. The automatic invokation of PIG at CRISP termination permits the the interactive NEXT, PREvious controls to be used to step forward and back through the requested solutions (up to 200). When PIG is used in this mode, by default IT WILL NOT write an output archive file containing the solved structure. This must be requested explicitly from within PIG.

The optim \(n\) control card on the CRISP line controls the level of optimization to which the required structural solutions should be studied. At the zeroth level of optimization \(n=0\) only the initial emap peaks are written to the .sol file. The number of peaks is still governed by the STARTX celcon lines.

At the first level of optimization \(\mathbf{n}=\mathbf{1}\), the STARTX celcon contents are imposed as a whole, on the emap peak list and refined. There is no attempt at an iterative solution.

At optimization level \(n=2\), the \(\operatorname{STARTX}\) celcon contents are iteratively imposed on successive peak lists, with successively lighter heavy atom ranges added at each iteration. There is no attempt to look beyond the input cell contents for extra unexpected sites.

The final optimization level, \(n=3\), is identical to \(n=2\), except that the residual peaks in the peaklist are trialed to test if for unexpected atom type numbers (but only for the C atom range). This additional testing is quite time consuming.

\subsection*{4.18.3. Caveats}

CRISP has been found to work reasonably well for centrosymmetric structures but less well for acentric structures. For some structures with strong pseudo symmetry, direct methods cannot be used effectively and other techniques such as patterson searches may prove more useful. CRISP automatically invokes GENSIN and GENEV if the structure invariant file .inv is missing. Sometimes it may be necessary to use more than the default number of invariants and in that case GENSIN should be run manually with a reduced Emin value or an explicitly larger number of triplets should be requested.

\subsection*{4.18.4. File Assignments}
- Reads reflection data from the input archive bdf
- Reads invariants from the invariant file .inv
- Writes structural solutions to direct access file .sol

\subsection*{4.19. CRYLSQ: Structure factor least-squares refinement}

Author: Roeli Olthof-Hazekamp, Laboratorium voor Algemene Chemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

CRYLSQ is a general purpose atomic parameter refinement program. The program can be used for any space group and any setting. It adjusts the scale, extinction, positional, thermal displacement, and site occupancy factors by minimizing the difference between observed and calculated structure factors. Refinement may be based on \(F, F^{2}\) or I. Provision is made for the control of parameters of atoms in special positions; and the refinement of rigid groups or identical molecules; refinement of the Flack absolute structure parameter \(X A B S\); and restraints involving bond distances, angles and dihedral angles. Derivatives are accumulated as full matrix, blocked matrix, or diagonal matrix at the user's discretion.

\subsection*{4.19.1. Calculations Performed}

The following equations give a summary of the method of establishing the least-squares equations which are used in the CRYLSQ program. The user is referred to a standard crystallographic text for the background to these calculations (Buerger, 1960). The methodology follows closely that which has been used by Busing and Levy (1959), among others. The main enhancements are concerned with the automation of the handling of special positions, matrix blocking, rigid groups, and identical molecules.

\section*{Least-squares Procedure}

In the least squares procedure the function Q is minimized:
\(\mathrm{Q}=\sum_{\mathrm{h}}\left[\mathrm{w}\left(\mathrm{Y}_{\mathrm{o}}-\mathrm{Y}_{\mathrm{c}}\right)^{2}\right]=\sum_{\mathrm{h}}\left[\mathrm{w} \Delta^{2}\right]\) (summed over all hkl) (1)
where \(Y_{o}\) is the 'observed' value of \(|F|\) or \(F^{2}\) or \(I ; Y_{c}\) is the calculated value of \(|F|\) or \(F^{2}\) or \(I\) and \(w\) is the least squares weight. The calculated structure factor F is:
\(\mathrm{F}_{\mathrm{c}}=\mathrm{A}_{\mathrm{c}}+\mathrm{i} \mathrm{B}_{\mathrm{c}}(2)\)
\(\mathrm{A}_{\mathrm{c}}=\sum_{\mathrm{n}}\left[\sum_{\mathrm{s}}\{f 1 \cos \phi-f 2 \sin \phi\}\right](2 \mathrm{a})\)
\(\mathrm{B}_{\mathrm{c}}=\sum_{\mathrm{n}}\left[\sum_{\mathrm{s}}\{f 1 \sin \phi+f 2 \cos \phi\}\right](2 \mathrm{~b})\)
where \(\sum \mathrm{n}\) is the sum over the atoms; \(\sum \mathrm{s}\) is the sum over the equivalent positions. The structure factor components are:
\(f 1=\left(\mathrm{f}+\mathrm{f}^{\prime}\right) \mathrm{K} \mathrm{M} \operatorname{Pexp}(\mathrm{U})\) and \(f 2=\mathrm{f}\) " K M \(\mathrm{P} \exp (\mathrm{U})\);
\(\cos \phi=\cos 2 \pi(\mathrm{hx}+\mathrm{ky}+\mathrm{lz})\) and \(\sin \phi=\sin 2 \pi(\mathrm{hx}+\mathrm{ky}+\mathrm{lz})\),
where K is the reciprocal scale factor; M is the multiplicity; P is the population parameter, \(\exp (\mathrm{U})\) is the thermal displacement term; \(f\) is the atomic scattering factor; \(\mathrm{f}^{\prime}\) is the real part of dispersion factor and \(\mathrm{f}^{\prime \prime}\) is the imaginary part of dispersion factor.

Minimization of Q gives for each parameter \(\mathrm{p}_{\mathrm{i}}: ~ \mathrm{Q} / \mathrm{dp}_{\mathrm{i}}=\sum_{\mathrm{r}}\left[\mathrm{w} \Delta \mathrm{dY} / \mathrm{dp}_{\mathrm{i}}\right]=0\) (3)
Since the structure factor is not a linear function of the parameters, the function must be expanded in a Taylor series: \(Y_{c}=Y_{c}(0)+\sum_{j}\left[\epsilon_{j} d Y_{c} / d p_{j}\right]+H\) (4) where \(\sum j\) is the sum over the parameters; \(Y_{c}(0)\) is the structure factor calculated from start parameters; \(\epsilon_{\mathrm{j}}\) is the difference between real and start value of parameter \(\mathrm{p}_{\mathrm{j}}\) and H is the higher order terms (neglected in CRYLSQ).
The normal equations are obtained by substituting equation (4) in equation (3): \(\sum_{\mathrm{r}}\left[\mathrm{w} \mathrm{Y}_{\mathrm{o}}-\mathrm{Y}_{\mathrm{c}}(0)-\sum_{\mathrm{j}} \epsilon_{\mathrm{j}} \mathrm{Y} / \mathrm{d} p_{\mathrm{j}}\right.\) \(\left.\} \mathrm{dY} / \mathrm{dp}_{\mathrm{i}}\right]=0(5)\) which can be written as \(\sum_{\mathrm{r}}\left[\mathrm{w} \sum_{\mathrm{j}}\left\{\mathrm{dY} / \mathrm{dp}_{\mathrm{i}} \epsilon_{\mathrm{j}} \mathrm{dY} / \mathrm{dp}_{\mathrm{j}}\right]=\sum_{\mathrm{r}}\left[\mathrm{w} \sum_{\mathrm{j}}\left\{\mathrm{dY} / \mathrm{c}_{\mathrm{c}} / \mathrm{dp}_{\mathrm{i}} \Delta\right\}\right](5 \mathrm{a}) \sum_{\mathrm{j}}\right.\) [ \(\left.\mathrm{A}_{\mathrm{ij}} \epsilon_{\mathrm{j}}\right]=\mathrm{B}_{\mathrm{i}} \Delta(5 \mathrm{~b})\) or in matrix notation \(\mathrm{A} \epsilon=\mathrm{B} \quad(5 \mathrm{c})\) where
\(\mathrm{A}_{\mathrm{ij}}=\sum_{\mathrm{r}}\left[\mathrm{wdY} / \mathrm{dp}_{\mathrm{i}} \mathrm{dY} / \mathrm{dp}_{\mathrm{j}}\right]\) and \(\mathrm{B}_{\mathrm{i}}=\sum_{\mathrm{r}}\left[\mathrm{wdY} / \mathrm{dp}_{\mathrm{i}} \Delta\right]\)
The formulae of the various derivatives are given in the section on derivatives. The shifts, \(\epsilon_{\mathrm{j}}\), are calculated from this equation. Because the normal equations are approximated functions, the calculations do not lead to the true values of the parameters. However, the shifts can be used to correct the starting values. The new parameters can be used as starting values in a subsequent refinement cycle.

\subsection*{4.19.2. General Structure Parameters}

\subsection*{4.19.2.1. F relative Scale Factor(s)}

F-relative scale factor(s) are refined as reciprocal scale factor(s) SKF. When groups of reflections have different scale factors, these can be refined separately or as a unit.

\subsection*{4.19.2.2. Pseudo-overall Thermal Displacement Parameter}

The overall displacement parameter is used to calculate a measure of the correlation between scale factor(s) and displacement parameters. The scale factors and displacement parameters of a structure are always correlated. If they are refined in separate blocks, incorrect shifts will result unless the correlation is taken into account. By refining the pseudo-UOV in the same block as the scale factor, a compensation is made for the correlation. Individual displacement parameters must also be adjusted based upon the shift in the pseudo-UOV. They are corrected with:

BCORR \(=\epsilon(\mathrm{UOV})-\epsilon^{\prime}(\mathrm{UOV})(6)\)
where \(\epsilon(\mathrm{UOV})\) is the shift obtained from an n by n matrix with SKF and pseudo-UOV, and \(\epsilon^{\prime}\) (UOV) is the shift obtained from a 1 by 1 matrix with the pseudo-UOV only. The \(\epsilon\) (pseudo-UOV) is not applied to the overall thermal displacement parameter, when there are no atoms with an overall value to be refined.

\subsection*{4.19.2.3. Dispersion Parameters}

Atomic scattering factor dispersion factors are applied in the calculation of the structure factors when this is requested in the CRYLSQ line by the ad specification. The values are present in logical record lrscat: of the bdf or are given in disper lines. When specified in both ways, the disper line values are used.

Refinement of all dispersion parameters is turned on by rd in the CRYLSQ line. Using noref lines, in combination with rd in the CRYLSQ line, turns off the refinement of the indicated parameters. In the blocked refinement modes, the dispersion factors are refined in the same block as the scale factor(s).

\subsection*{4.19.2.4. Extinction Parameters}

Isotropic extinction parameters may be applied or refined in CRYLSQ. The formalism of Zachariasen can be used, employing the expressions of Larson (1970). Zachariasen introduced two crystal types:

Type I extinction is dominated by the mosaic spread (sometimes referred to as secondary extinction). The extinction is parametrised by the refinable quantity \(\mathbf{g}\) which is related to the mosaic distribution function.

Type II extinction is dominated by the particle size (sometimes referred to as primary extinction). The correction is parametrised by the refinable quantity \(\rho\).

The correction \(\mathbf{y}\) applied to each reflection intensity is \(\mathrm{y}=(1+2 \mathrm{x})^{-1 / 2}\)
Details are given in Larson (1970). The above formula does not differentiate between Type I or II explicitly, although values of g or \(\rho\) may be inferred by the user, as explained below.

For more severe secondary extinction and for primary extinction the formalism of Becker and Coppens (1974a) may also be used. The Becker-Coppens expression for y involves a higher order expansion given by where \(\mathrm{i}=\mathrm{s}\) (secondary) or \(\mathrm{i}=\mathrm{p}\) (primary). The expressions for \(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\) and \(\mathrm{c}_{\mathrm{i}}\) for primary extinction and for secondary extinction using either Gaussian or Lorentzian distributions are given in Becker and Coppens (1974a). Type I or II may be refined in that formalism. A third type denoted General which represents a mixture of the two types is a further option in which both g and \(\rho\) are refined simultaneously. Their high correlation often leads to convergence problems.

For Type II and General, primary extinction is refined simultaneously since any secondary extinction affected by particle size will have some primary component and be dependent on it. For neutron diffraction the total extinction correction \(y\) is
\(y=y_{p}\left(x_{p}\right) \cdot y_{s}\left(y_{p}\left(x_{p}\right) \cdot x_{s}\right)\)
The expression in the x -ray case is functionally similar but includes polarisation terms due to the specimen and the monochromator crystal, as given by Becker and Coppens (1974b) in an appendix.

The primary (type II) extinction variables are:
```

xp is not applicable for ZACH
\mp@subsup{x}{p}{}=0 for TYP1
\mp@subsup{x}{p}{}}=\mp@subsup{\gamma}{\textrm{p}}{}\mp@subsup{\textrm{F}}{\textrm{c}}{2}\mp@subsup{\rho}{2}{}\quad for TYP2 and GEN

```

The secondary (type I) extinction varaiables are:
```

$\mathrm{x}_{\mathrm{s}}=\mathrm{r}^{*} \mathrm{~F}_{\mathrm{c} 2} \delta$
$\mathrm{X}_{\mathrm{s}}=\mathrm{y}_{\mathrm{p}}\left(\mathrm{X}_{\mathrm{p}}\right) \gamma{ }_{\mathrm{s}} \mathrm{F}_{\mathrm{c} 2} \psi$

```
for ZACH
where
\(\psi=\mathrm{g} / \sin 2 \theta\)
\(\psi=\rho\)
\(\psi=\rho /\left(1+(\rho \sin 2 \theta / \mathrm{g})_{2}\right)_{1 / 2}\)
\(\psi=\rho /(1+\rho \sin 2 \theta / \mathrm{g})\)
for TYP1
for TYP2
for GEN with a Gaussian distribution
for GEN with a Lorentzian distribution

These expressions indicate the strong dependence of the extinction correction on \(\mathrm{F}_{c}\). For given g or \(\rho\), different values of \(y\) can be obtained depending on the structure factor model. This is a consequence of the Zachariasen or Becker and Coppens formalism for the posteriori correction of intensities for extinction.
For the Zachariasen correction, \(r^{*}\) is equal to the final value of EXT printed by CRYLSQ multiplied by \(10^{4}\). That is, if EXT \(=.2\) then \(r^{*}=2000\). If one assumes that the extinction is Type I then \(r^{*}=g\). If one assumes a Type II extinction then \(r^{*}=\rho\).
The values of \(g\) and \(\rho\) obtained are dimensionless and relate to the physical properties of the crystal in the following manner,
\(\Delta_{1 / 2}=(\ln 2 / 2 \pi)_{1 / 2} / \mathrm{g}\) radians \(\quad\left(=.33214 / \mathrm{EXTx}_{10} 0_{4}\right)\) for the Gaussian distribution
\(\Delta_{1 / 2}=1 /(2 \pi \mathrm{~g})\) radians
\[
\mathrm{r}=\rho \lambda
\]
(=.15915/EXTx104) for the Lorentzian distribution, where the half width \(\Delta_{1 / 2}\) of the distribution indicates the mosaic spread
(= RHO \(\times 10_{4} \times \lambda\) ) where r is thesize of the mosaic blocks and \(\lambda\) the wavelength

\subsection*{4.19.2.5. Absolute-Structure Parameter}

The absolute-structure (twin) parameter xabs may be used to define the absolute configuration or polarity of untwinned crystals (Flack, 1983). The crystal is described as an inversion twin. 1-x and \(\mathbf{x}\) are the fractions of the structure and its inverse in the macroscopic sample. The structure factor equation is given by
\(|\mathrm{F}(\mathrm{h}, \mathrm{k}, \mathrm{l}, \mathbf{x a b s})|^{2}=(1-\mathbf{x})|\mathrm{F}(\mathrm{h}, \mathrm{k}, \mathrm{l})|^{2}+\mathbf{x}|\mathrm{F}(-\mathrm{h},-\mathrm{k},-\mathrm{l})|^{2}\)
xabs converges in 2 to 4 cycles, depending on the anomalous dispersion contribution, to values between 0 . and 1., within 3 e.s.d.'s. Friedel pair measurements must be present in the bdf for all or part of the reflections. Note that the pakfrl option needs to be used in SORTRF to pack pairs into a single packet.

\subsection*{4.19.3. Atom Specific Parameters}

\subsection*{4.19.3.1. Positional Parameters}

All positional parameters for selected atoms are refined unless a noref condition is present to direct that a parameter be held invariant.

\subsection*{4.19.3.2. Thermal Displacement Parameters}

The program can be used to refine the values of overall, isotropic, anisotropic or mixed thermal displacement parameters. In the mixed mode these parameters are set in accordance with the specification stored in the bdf. For one or more atom types the mode can be changed by the use of a dptype line. In the program, use is made of \(\mathbf{u}\) or \(\mathbf{u i j}\). On the printed output, U values (multiplied by 100) are displayed. After correction, the displacement parameters are tested to be sure of their physical significance. If an isotropic thermal displace-
ment parameter is negative or an anisotropic displacement tensor is not positive definite, a warning is printed. When a displacement parameter is found to be non-positive definite one of three options can be specified in the CRYLSQ line -- continue with calculated values ( tw ), reset displacement to positive definite and continue ( tr ), or stop ( tt ).

\subsection*{4.19.3.3. Treatment of Atoms With uov}

When one or more atoms has an overall thermal displacement parameter and the use of a full matrix is specified, derivatives are calculated with the formulae that is used for the uov, but summation is over only those atoms with uov. When other block types are used, the summation for UOV is over all atoms.

\subsection*{4.19.3.4. Population Parameter}

The term population parameter is used to describe the occupancy of an atom site. It is independent of atom multiplicity for the site. Population parameters are applied in the calculation only when they are present in logical record lratom: of the bdf. Their refinement flag is turned on by the pp code in the CRYLSQ line. noref lines can be used to turn off refinement of indicated population parameters.

\subsection*{4.19.4. Solution Of The Normal Equations}

The normal equations are solved by the method of Choleski. A is a positive definite, symmetric matrix. It is decomposed to an upper triangle \(\mathbf{U}\) and a lower triangle \(\mathbf{L}\). Matrix \(\mathbf{L}\) is the transpose of \(\mathbf{U}\), so only enough memory to hold half the matrix is required.
\(\mathbf{A} \epsilon=\mathbf{L} \mathbf{U} \epsilon=\mathbf{B}\) (7)
From the decomposed triangle \(\mathbf{U}\) the shifts can be calculated easily.

\subsection*{4.19.5. Estimated Standard Deviations}

The estimated standard deviations are derived by the following expression where n is the number of reflections and \(m\) is the number of variables:
\[
\begin{equation*}
\sigma_{\mathrm{i}}=\left\{\mathrm{A}_{\mathrm{ii}}^{-1} \sum_{\mathrm{r}}\left[\mathrm{w} \Delta^{2}\right] /(\mathrm{n}-\mathrm{m})\right\}^{1 / 2} \tag{8}
\end{equation*}
\]

For the calculation of standard deviations, the inverted matrix is required. It is obtained by inverting the triangular matrix. Because the inversion is a rather time consuming, the standard deviations are calculated only during the last cycle.

\subsection*{4.19.6. Blocking}

There are several options for blocking the matrix of normal equations, A.
1. All parameters may be refined in one block. This is referred to as full matrix and is specified by fm in the CRYLSQ line.
2. The matrix may be blocked so that there is one block for the parameters of each atom. This is referred to as block diagonal and is specified by bd in the CRYLSQ line.
3. The matrix may be blocked in such a way that each block contains the parameters for more than one atom. The option is specified by bl in the CRYLSQ line. When this specification is made details of the structure of the blocks must be given in block lines.
4. The matrix may be divided into blocks containing any arbitrary parameters. This option is indicated by bl in the CRYLSQ line. Details of the structure of the blocks must be given in block lines.

\subsection*{4.19.7. Invariant Parameters}

Parameters can be held invariant by two methods:

\subsection*{4.19.7.1. Method 1:}

By commands from logical record lrcons: of the bdf. These commands are generated by the program ADDATM and specify atoms in special position. See the documentation on ADDATM for details.

\subsection*{4.19.7.2. Method 2:}

By a noref line. The general form for the invariant parameter set is:
( \(\mathrm{P} 1 / \mathrm{P} 2\) ) ( \(\mathrm{R} 1 / \mathrm{R} 2\) ) or ( \(\mathrm{P} 1, \mathrm{P} 2\) ) ( \(\mathrm{R} 1, \mathrm{R} 2\) ) or any combination of these
P1/P2 parameter symbols P1 to P2 inclusive (see lists below)
\(\mathrm{P} 1, \mathrm{P} 2\) parameters P1 and P2 only
R1/R2 atom name's R1 to R2 inclusive
R1,R2 atom name's R1 and R2 only

If only an atom name or atom type is present, then all the parameters for that atom or atom type are held invariant. If only a parameter is specified, then that parameter is held invariant for all atoms. More than one invariant parameter set may be input on a noref line. In addition to the individual atom parameters the following general parameters may also be specified invariant:
```

skf scale factor(s)
uov overall thermal displacement parameter
ext extinction parameter(s)
dsp dispersion factors

```

The individual atom parameters are: (See the program ADDATM for definitions) \(\mathbf{x} \mathbf{y} \mathbf{z u u} \mathbf{u} 11 \mathbf{u} 22 \mathbf{u} 33 \mathrm{u} 12\) u13 u23 pop app neu

There exist atom types \(Y\) and \(U\). In these cases, parameter symbols and atom types must be present.
```

noref y(c3) : Y invariant for atom c3
noref (x,z) (c2,c5) : x and z invariant for atoms c2 and c5
noref (x/u11)(c1/c3) : x to u11 invariant from atom c1 to c3
noref u : u invariant for all atoms
noref c5 : all parameters invariant for atom c5
noref u(h) c : u for h atoms and all c parameters invariant

```

\subsection*{4.19.8. Dependent Parameters}

Parameters may be constrained to be relative to other parameters by: the space group symmetry requirements of an atom sited at a special position, the requirements of definition of the origin in polar space groups or use of the constr option as specified by the user. ADDATM will detect atom parameters constrained by space group symmetry or polar space group requirements and store the information in logical record lrcons: of the bdf.

The general form of a constraint equation on the constr line is:
\(\operatorname{par}(\mathrm{s})(\operatorname{atom}(\mathrm{s}))=\mathrm{Q}+\mathrm{fct}(1) * \operatorname{par}(1)(\operatorname{atom}(1))+\ldots+\mathrm{fct}(\mathrm{n}) * \operatorname{par}(\mathrm{n})(\operatorname{atom}(\mathrm{n}))\)
where
```

par(s) = subject (dependent) parameter
atom(s) = subject (dependent) atom name
Q
par(1,2,..,n)
atom(1,2,..,n)
fct(j)

```
```

= constant term

```
= constant term
= reference (independent) parameter(s)
= reference (independent) parameter(s)
= reference (independent) atom name(s)
= reference (independent) atom name(s)
= multiplication factor for corresponding parameter
= multiplication factor for corresponding parameter
par(j)
```

par(j)

```

Note that the subject parameter or atom must not precede the reference parameter or atom in the parameter or atom list. That is,
```

$y(\mathrm{Cu} 1)=0.0+2.0 * x(\mathrm{Cu} 1)$
$x(\mathrm{Cu})=0 \cdot 0+0 \cdot 5^{*} y(\mathrm{Cu})$
$x(\mathrm{Cu} 2)=0.5+1.0 * x(\mathrm{Cu} 1)$
$x(\mathrm{Cu} 1)=0.5+1.0 * x(\mathrm{Cu} 2)$

```
is correct
is not correct
is correct
is not correct

Two examples follow:
constr \(\mathrm{x}(\mathrm{c} 1)=0.5+1.0 * \mathrm{y}(\mathrm{O} 2)-0.5 * \mathrm{z}(\mathrm{C} 3)\)
constr pop(al1)=1.0-1.0*pop (Mg2)

Though the first example is unlikely it illustrates the general form of a constr line input. The use of the constr line restricts the value of the x parameter of the atom \(\mathrm{C1}\) to be equal to the y parameter of oz minus half of the z parameter of c 3 plus a constant term. The second example is common in mineral structures where stoichiometric disorder occurs at atom sites. The total population of the two atom types at the site must sum to a population of one.
If the input parameters do not satisfy the above equation prior to refinement, they are modified to do so, except when the constant value Q is given as the letter Q . The applied shifts always satisfy the constraint equation.

\subsection*{4.19.8.1. Mathematical Treatment of the Dependent Parameters}

In polar space groups the position of the origin in one or more directions is not fixed by symmetry elements. Coordinates in a polar direction can be considered as a special case of constraints. One polar coordinate depends on all others.(The factors are negative 1.) In the block diagonal approximation polarity does not have to be considered, because it will not lead to singularity of the matrices.
The contribution of the dependent parameters to the derivatives of the reference parameters is expressed in the chain rule where sum(i) is the sum over all parameters dependent on \(p(j)\), including the derivative of \(p(j)\) itself (Finger, 1969). \(\mathrm{dF} / \mathrm{dp}_{\mathrm{j}}=\sum_{\mathrm{i}}\left[\mathrm{fct}(\mathrm{i}) \mathrm{dF} / \mathrm{dp}_{\mathrm{i}}\right]\) (9)
The standard deviation of the dependent parameter is calculated according to the approximate formula: \(\sigma \mathrm{p}_{\mathrm{i}}=\) \(\left\{\sum_{\mathrm{j}}\left[\sum_{\mathrm{k}}[\mathrm{fct}(\mathrm{j}) \mathrm{fct}(\mathrm{k}) \operatorname{COV}(\mathrm{j}, \mathrm{k})]\right] \sum_{\mathrm{r}}\left[\mathrm{w} \Delta^{2}\right] /(\mathrm{n}-\mathrm{m})\right\}^{1 / 2}(10)\)
where \(\operatorname{COV}(\mathrm{j}, \mathrm{k})\) is the covariance of the jth and kth reference parameters.

\subsection*{4.19.9. Rigid Groups And Identical Molecules}

The total number of parameters in a structure can be reduced if some subset of the atoms can be considered as a rigid group. Idealized coordinates for rigid groups can be calculated and written to the bdf either by the program RIGBOD or by the program BONDAT. Another method of reducing the total number of parameters is when a structure contains two or more fragments consisting of "identical" points. These are referred to as identical molecules. Using the identical molecule, two or more groups of atoms in a crystal structure can be forced to maintain the same intermolecular structure during the refinement.

In both cases use is made of the Euler parameters: three coordinates of the centre of gravity and three angles that relate the principal axes of the group to the cell axes respectively, to the principal axes of the first identical molecule. For the Euler angles the Goldstein definition from classical mechanics is used. The calculation of the principal axes is accomplished by the diagonalization of the inertia tensor by the method of Jacobi.

For a non-degenerate inertia tensor three non-collinear atoms are needed in the rigid group. Groups positioned on a symmetry element lead to dependent or invariant Euler parameters. Information on fixed parameters must be given in the group line; dependency must be given in constr lines for the first atom(s) of the group(s).

Thermal displacement parameters and population parameters can be refined either for the individual atoms or for the groups (for group isotropic displacement parameters only). Dependencies of these parameters for different groups can be maintained by the use of constr lines. When there is only one displacement parameter or one population parameter for a group, one constr line will suffice (for the first atoms of the groups).

\subsection*{4.19.10. Restrained Parameters}

The use of stereochemical data as individual observational equations was first proposed by Waser (1963). In CRYLSQ these eqquations are referred to as restraints. The atom model is restricted to a realistic range of geometries. The weights are inversely related to the standard deviation of the distribution of possible values. The extra term to be minimized by the least squares process is
\(\sum_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}\left(\Phi_{\mathrm{n}}-\Phi_{\mathrm{n}} \mathrm{obs}\right)^{2}\)
where \(\Phi_{\mathrm{n}}\) is either the bond distance, bond angle, or dihedral angle; and
\(\mathrm{w}_{\mathrm{n}}=\sum_{\mathrm{r}}\left[\mathrm{w} \Delta^{2}\right] /(\mathrm{n}-\mathrm{m}) * 1 / \sigma^{2} \phi_{\mathrm{n}}\)

\subsection*{4.19.11. Weighting}

The process of refinement of a crystal structure utilizing a nonlinear least-squares procedure requires some attention to be given to the weight assigned to each experimental observation. In the XTAL system, the quantity stored in the binary data file is the square root of the reflection weight (this convention has arisen because it saves many thousands of multiplication operations during the building of the matrix and vector of the normal equations). The practice follows that established in ORXLS (Busing and Levy, 1959) and is common to many least squares programs.

The derivation of the values of the weights is a matter of considerable controversy in the crystallographic literature. For this reason, a number of methods of dealing with the problem of establishing values suitable to the user are provided. The weights to be applied may be specified in three different ways: a weight of 1.0 for all observations ( \(\mathbf{w u}\) ), a weight of \(1 / \sigma^{2} \mathrm{~F}(\mathbf{w s})\), or the weights supplied in the bdf ( \(\mathbf{w w}\) ).

\subsection*{4.19.12. Partial Shift Factor}

In all block modes a partial shift factor of 0.8 is automatically applied. The factor may be changed by using the code fu q in the CRYLSQ line. The factor which is used will depend on the correlation between atoms in different blocks. When correlations are high, a small shift factor should be applied to damp the shifts.

\subsection*{4.19.13. Reflection Classification}

Poorly measured data points can be treated in a number of ways. A broad category, referred to as less-thans (rcode=2) may be suppressed from the data set by the tl q option in the CRYLSQ line where the threshold of observability is defined in terms of multiples of \(\sigma\left(\mathrm{F}, \mathrm{F}^{2}\right.\), or I\()\).

In general, less-thans are not contributed to the least-squares matrix. This can be overridden by the ml option on the CRYLSQ line which forces all less-thans with a \(\mathrm{F}_{\mathrm{c}}\) greater than \(\mathrm{F}_{\mathrm{o}}\) to contribute to the matrix. Only those reflections considered to be more accurately measured (where the weight* \(\Delta(\mathrm{F})\) is less than some user defined quantity \(q\) ) can contribute to the matrix by the \(m \mathrm{q}\) q option in the CRYLSQ line. When this reclassification is specified, it is only applied during the current calculation. It will not be written to the bdf.

\subsection*{4.19.14. Scattering Factors}

Scattering factors are entered from the bdf. If interpolated scattering factors are present on the reflection data record lrrefl: (as inserted by \(A D D R E F\) ), these will be used. Otherwise, scattering factors are extracted from the form factor tables on lrscat:

WARNING:The scattering factors from the form factor tables are considered sufficiently reliable for routine analyses with R-factors above 0.03 . For more accurate analyses the interpolated form factors must be used.

\subsection*{4.19.15. Space Group Symmetry}

The CRYLSQ program is general with respect to symmetry. The symmetry operations stored in the bdf are used to generate all the symmetrically equivalent points for the asymmetric set of reflections and atoms supplied. It is important to note that there must be no systematically absent reflections coded as observed reflections (rcode=1 or 2) included in the data supplied.

\subsection*{4.19.16. Fixed Atom Contribution}

The number of unique atoms which is used for the calculations may be limited. The structure factor calculation and refinement procedure can be carried out with a selected set of atoms (use the select line). Fixed contributions to the structure factors for the remaining atoms must have been calculated in a former structure factor calculation with FC or CRYLSQ. By using ep in the CRYLSQ line the fixed contributions ar applied as partial contributions too the structure factor sums and they are stored in lrrefl: (IDN 1810 etc.). In subsequent runs, with the same selected atom set, the same fixed contributions may again be applied (ap in the CRYSLQ line). In this way it is possible to carry out blocks of refinements of various parts of the structure to achieve overall refinement of the complete structure.

\subsection*{4.19.17. Initial Refinement}

During the initial steps of refinement it is not always necessary to use all reflections. The number of reflections can be limited by:
1. Defining a \(\sin \theta / \lambda\) range in a maxhkı line.
2. Assignation of maximum \(\mathrm{h}, \mathrm{k}\) and l values in a maxhkline.
3. Skipping of reflections with the sk noption in the CRYLSQ line.

\subsection*{4.19.18. Derivatives}

The following formulae give the equations used in the calculation of the derivatives of \(\mathrm{F}(\mathrm{cal})\) required in the building of the least-squares matrices.

The structure factor equation (2) can be written as:
\(\mathrm{F}=\sum_{\mathrm{n}}\left[(\mathrm{A} / \mathrm{F})\left(\mathrm{A}^{\prime}-\mathrm{B}^{\prime \prime}\right)+(\mathrm{B} / \mathrm{F})\left(\mathrm{B}^{\prime}+\mathrm{A}^{\prime \prime}\right)\right]=\sum_{\mathrm{n}} \mathrm{F}_{\mathrm{n}} \mathrm{b}\)
where \(\mathrm{A}^{\prime}=\sum_{\mathrm{s}}[f 1 \cos \phi] \mathrm{B}^{\prime}=\sum_{\mathrm{s}}[f 1 \sin \phi]\)
and \(\mathrm{A}^{\prime \prime}=\sum_{\mathrm{s}}[f 2 \cos \phi] \mathrm{B}^{\prime \prime}=\sum_{\mathrm{s}}[f 2 \sin \phi]\)
The factors \(\mathrm{A} / \mathrm{F}\) and \(\mathrm{B} / \mathrm{F}\) are introduced to relate the phases of the partial derivatives with the phase of F . The formulae for the derivatives are:

\subsection*{4.19.18.1. Relative reciprocal scale factor (k) \\ \(\mathrm{dF} / \mathrm{dk}=\mathrm{F}\)}

\subsection*{4.19.18.2. Overall thermal displacement parameter (uov)}
\(\mathrm{dF} / \mathrm{dUOV}=-\mathrm{s}^{2} \sum_{\mathrm{n}} \mathrm{F}_{\mathrm{n}}\),
where \(n\) ' is the atoms with overall thermal displacement parameter. When uov is used for the correlation correction, the summation is over all atoms.

\subsection*{4.19.18.3. Dispersion factors ( \(f^{\prime}\) and \(\mathbf{f}^{\prime \prime}\) )}
\(\mathrm{dF} / \mathrm{df}^{\prime}=\sum_{\mathrm{n}^{\prime}}\left[f 1 /\left(\mathrm{f}+\mathrm{f}^{\prime}\right)\left((\mathrm{A} / \mathrm{F}) \mathrm{A}^{\prime}+(\mathrm{B} / \mathrm{F}) \mathrm{B}^{\prime}\right)\right]\)
\(\mathrm{dF} / \mathrm{df}^{\prime \prime}=\sum_{\mathrm{n}},\left[f 2 / \mathrm{f}^{\prime \prime}\left((-\mathrm{A} / \mathrm{F}) \mathrm{B}^{\prime \prime}+(\mathrm{B} / \mathrm{F}) \mathrm{A}^{\prime \prime}\right)\right]\)
where \(n\) ' is the atoms with specified \(f^{\prime}\) and \(f^{\prime \prime}\).

\subsection*{4.19.18.4. Extinction factors}
\(\mathrm{dF} / \mathrm{dg}=-.5 *\) DELT \(^{*} \mathrm{~F}^{3} *\left(1+2 * \mathrm{~g} * \operatorname{DELT}^{*}\left(\mathrm{~F}^{2}\right)\right)^{-5 / 4}\)
where the derivatives are reported by Becker \& Coppens (1974).

\subsection*{4.19.18.5. Atomic positional parameters ( \(\mathbf{x}, \mathrm{y}, \mathrm{z}\) )}
\(\mathrm{dF} / \mathrm{dx}=2 \pi \mathrm{~h}\left[(-\mathrm{A} / \mathrm{F})\left(\mathrm{B}^{\prime}+\mathrm{A}^{\prime \prime}\right)+(\mathrm{B} / \mathrm{F})\left(\mathrm{A}^{\prime}-\mathrm{B}^{\prime \prime}\right)\right]\)

\subsection*{4.19.18.6. Atomic thermal displacement parameters ( \(\mathbf{U}\) or \(\mathbf{U}_{\mathbf{i j}}\) in terms of \(\mathbf{B}\) and \(\beta_{\mathrm{ij}}\) )}
\(\mathrm{dF} / \mathrm{dB}_{\mathrm{n}}=-\mathrm{s}^{2} \mathrm{~F}_{\mathrm{n}}\)
\(\mathrm{dF} / \mathrm{d}\left(\beta_{\mathrm{ij}}\right)_{\mathrm{n}}=\mathrm{h}^{2}\left[(-\mathrm{A} / \mathrm{F})\left(\mathrm{A}^{\prime}-\mathrm{B}^{\prime \prime}\right)-(\mathrm{B} / \mathrm{F})\left(\mathrm{B}^{\prime}+\mathrm{A}^{\prime \prime}\right)\right]\)

\subsection*{4.19.18.7. Population parameter (POP)}
\(\mathrm{dF} / \mathrm{dP}_{\mathrm{n}}=1 / \mathrm{PF} \mathrm{F}_{\mathrm{n}}\)

\subsection*{4.19.19. File Assignments}
- Reads atom and reflection data the input archive bdf
- Writes refined atom and reflection data the output bdf
- Optionally writes correlation matrix to file cmx
- Optionally outputs atom lines to the line file РСн

\subsection*{4.19.20. Examples}

CRYLSQ

The input above causes all the defaults to be taken by CRYLSQ. All positional and thermal parameters of all atoms on the bdf will be refined in a single cycle of block diagonal refinement based on \(\mathrm{F}(\mathrm{rel})\). The thermal displacement parameter type used in the calculation for each atom will be read from logical record lratom: of the bdf.
```

CRYLSQ f2 cy 3 is bl
block N1 N2

```

The compound used in this example is \(4,4^{\prime}\)-dinitrodiphenyl.


The bdf for this example has been formed so that the first atom in lratom: is N 1 . It is followed by \(\mathrm{O} 1, \mathrm{O} 2\) and carbon atoms C 11 through C16. After these atoms comes N 2 and then the remaining atoms. The block line requests that the matrix be blocked in two pieces, each block containing the atoms of one of the rings. Such a blocking scheme can be useful at early stages of refinement or when there is insufficient storage to hold the entire matrix. The information on the CRYLSQ line specifies three cycles of refinement on \(\mathrm{F}^{2}\) with isotropic thermal displacement parameters for all atoms.
```

CRYLSQ is
group
atomgr N1/C16
group
atomgr N2/C26
constr u(N2)=0.0+1.0*u(N1)

```

Both parts of the molecule are refined as rigid groups. There is only one isotropic thermal displacement parameter for all 18 atoms.
```

ADDREF dset 1 extf
reduce f2tof rlp2 neut
hklin hkl f2rl sgf2
hkl 0 0 2 5.227 1.303
hkl 0 0 4 19.679 2.195

```
.reflection data omitted for brevity
```

CRYLSQ asn nu f2 ws rx cy 3 fm
scale 0.2295 1
extinc *4 .11726
noref C1/H10
CRYLSQ asn nu f2 ws l1 cy 2 fm rx

```

This example shows a run in which a set of neutron data with a Zachariasen's secondary extinction correction is refined. The \(A D D R E F\) run shows the setting up of the reflection extinction factors. Two runs of CRYLSQ are shown. In the first one all parameters are held constant except the overall scale and \(g\). In the second run all parameters are allowed to refine.

\subsection*{4.19.21. References}
- Becker, P.J. and Coppens, P. 1974. Extinction within the Limit of Validity of the Darwin Transfer Equations. I. Refinement of Extinction in Spherical Crystals of SrF2 and LiF. Acta Cryst. A30, 148.
- Buerger, M.J. 1960. Crystal Structure Analysis. New York: John Wiley.
- Busing, W.R. and Levy, H.A. 1959. ORXLS, A Crystallographic Least-squares Refinement Program for the IBM 704. ORNL Report ORNL-CF 59-4-37
- Finger, L.W. 1969. The Inclusion of Secondary Extinction in Least-Squares Refinement of Single-crystal X-ray Data. Yearbook 67. Carnegie Inst.Washington: 216.
- Flack, H.D. 1983. On Enantiomorph-Polarity Estimation. Acta Cryst.A39, 876.
- Larson , A.C. 1969. The Inclusion of Secondary Extinction in Least-Squares Refinement of Crystal Structures. Crystallographic Computing. F.R. Ahmed, S.R.Hall, C.P. Huber, eds., Munksgaard. Copenhagen: 291-294.
- Waser, J. 1963. Least-Squares Refinements with Subsidiary Conditions. Acta Cryst. 15, 1091.
- Zachariasen, W.H. 1967. A General Theory of X-Ray Diffraction in Crystals. Acta Cryst. 23, 558.

\subsection*{4.20. DIFDAT: Process diffractometer data}

Authors: Jim Stewart, Rina Merom, Jim Holden, Ruth Doherty, Syd Hall, Ted Maslen and James Hester
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
DIFDAT reads and scales diffractometer data (either raw counts, intensities or structure factors) according to standard reflections, and outputs either an archive bdf or HKL lines. The format of the input diffractometer data may be specified by input control lines.

\subsection*{4.20.1. Overview}

A DIFDAT calculation reads an existing Archive containing cell and symmetry information, and reads intensity data from a diffractometer generated file, or from line images. The diffraction data may be input as raw intensities, net intensities, \(\mathrm{F}^{2}\) or F data.

The nature of the input data is specified in the DIFDAT line (as cad, dat, etc.). DIFDAT processes this data, and converts it into the quantities needed in the scaling process. The processed data is output as an archive bdf suitable for input to SORTRF (for sorting and averaging) or ADDREF (for data reduction). Note that DIFDAT requires that there is an input archive bdf which has been previously created by STARTX, etc. Note also that it
is possible to process the diffractometer data in a non-conventional setting and subsequently transform data to a conventional set of axes (see Example 4). The following methods may be used to enter data.

\subsection*{4.20.2. Input diffractometer modes}
```

dat mode (data lines)

```

Enter the diffraction data from data lines in the input stream. The contents of data lines are specified with a fetch line. See later section on data lines and the third example.

\section*{bdf mode}

The diffractometer data is read from the archive bdf. It is possible to add this data to the archive bdf with CIFIO.
```

sie mode (file .sie)

```

Enter Siemens diffractometer data from a text file . sie. This file is either generated directly by the diffractometer software or is a binary file which has been converted to an ascii text file. The program siecon.f is available from the Xtal FTP site ( see Preface) for this purpose.
```

cad mode (file .cad)

```

Enter Enraf-Nonius CAD4 diffractometer data from a text file .cad.
```

niv or nid modes (file .nic)

```

Enter the older Nicolet/Syntex/Siemens diffractometer binary data formats from a file .nic. Specifying the Siemens/Nicolet/Syntex file is complicated because it has a binary format and is therefore dependent on the controlling processor. For a Nicolet controlled by a Data General computer, the code nid is entered on the difdat line. For a Siemens controlled by a VAX computer, the code niv is used. For a Nicolet connected to any other machine, changes will need to be made to the routine DD32. This option also outputs the intensity data as data lines on pch (for any subsequent modification of input data).
```

tsu mode (file .tsu)

```

Enter the standard data file collected at the Tsukuba Photon Factory on the file .tsu.
```

rd5 mode (file .rd5)

```

Enter AFC5 and AFC6 Rigaku diffractometer files on the file .rd5.

\subsection*{4.20.3. Derived intensity values}

When raw data is entered the nett intensity is calculated according to the following scheme:
\begin{tabular}{ll} 
Attenuator & \(=\) value selected from the attenuator table \\
Timescale & \(=(\) ScanTime \(/ 2) /\) BackgroundTime \\
Background & \(=\) TimeScale*(Background1 + Background 2\()\) \\
Relative Intensity & \(=\) ScanCounts*Attenuator - Background \\
\(\sigma_{2} \mathrm{I}\) & \\
& \(=\) Attenuator* (ScanCounts + TimeScale*Background) \\
& \(=\) TotalCounts
\end{tabular}

\subsection*{4.20.4. Treatment Of Standards}

If raw diffractometer data is read, the decoded quantities are first placed on the intermediate bdf. This file is then searched to separate the 'normal' measurements from the 'standard' measurements. Normal refers to a measurement made in the course of scanning all reflections, and standard to a group of reference reflections
for which measurement is made at regular intervals.
No more than 10 different reflections may be designated as standards. There may be as many measurements of the groups of standards as can be held in memory using four words per stored reflection per group measurement. The method of identifying normal and standard reflections will vary according to the diffractometer, and the method of processing data discussed above. If the reflection is coded as a standard, the \(\sigma \mathrm{I}\), the total counts, a signal, and the sequence number of the measurement are stored. This operation requires that the reflections designated as standards appear sequentially and in groups with the same number of standards at each encounter. The sequence numbers of the standards are stored for use in forming the scale factors which will be used to compensate all reflections for any drift in the standards over the data gathering process. In the case where no sequence numbers are available from the diffractometer, they will be generated from the count of the reflection input lines.

Two methods are available to specify which reflections are to be used as standards. The first is to specify the coded information in the input which may be used to identify a standard reflection. The second is to give an ordered list of \(\mathrm{h}, \mathrm{k}\), and l values for the reflections to be treated as standards.

\subsection*{4.20.4.1. Fate of the Standards}

This option is specified in the difdat line. The user may specify whether the standard reflections are to be used for scaling only or used for scaling and then placed in the output file as observed reflections for later merging with all the other normal observations.

\subsection*{4.20.5. Calculation Of Sigmas}

If the input data has been partially preprocessed so that \(\sigma \mathrm{I}, \sigma \mathrm{F}^{2}\), or \(\sigma \mathrm{F}\) is not known, the user may specify an average error to be applied to \(\mathrm{I}, \mathrm{F}^{2}\), or F to give an estimate of the \(\sigma \mathrm{I}\) for further calculation. During the course of the data translation and intensity calculations, the standards measurements are stored in memory. These standards are used for two purposes; first is the establishment of a set of scale factors based on the counts of all the standards, second is the preparation of an instability factor. This factor is based on the spread and trend of the measurement of the standard reflections and used in the estimation of sigmas.

\subsection*{4.20.5.1. Instability Factor Calculation}

The instability factor is calculated from variations in the intensities of the standard reflections. There are two quite distinct approaches to estimating the instability factor. This factor may be estimated either before or after the standard reflections are scaled. In the first approach, specified by the nsc option in the dIFDAT line, the instability factor (and therefore the estimated sigmas) contains all the unscaled variations in standards that occur during the course of measurement. This means that "slow changing" variations in standards, such as due to crystal degradation, will be included in the instability factor.

In the second approach, which is the default, the instability factor will only include those "fast changing" variations in standards which have not been removed by the overall rescaling process.

\subsection*{4.20.5.2. Application of Instability Factors}

The form of the instability factor is specified as the inst option on the DIFDAT line. This option determines how the instability factor is used to modify the \(\sigma \mathrm{I}\) based on counting statistics for the single observation of a reflection. No attempt will be made to calculate the values of slopes or intercepts if the standards have been measured less than seven times during the data gathering procedure.
For all the instability factor options, the average value of the total counts for each measured standard reflection is calculated as follows.
\[
\sum \text { (total counts of jth standard) }
\]
no. of observations of jth standard

From this average value and the individual measurements of each standard the external variance may be calculated for each standard. This gives an independent measure of the variance over and above the variance based on counting statistics.
```

NTO * \sum[(TC - ATC)2/TC]
external variance =
(NTO-1) * \sum[1/TC]

```
where TC is the total counts of the jth standard, ATC is the average total counts of the jth standard and NTO is the number of times the jth standard was observed.

\subsection*{4.20.5.3. Instability options (inst on the difdat line)}

\section*{Option Meaning}
\(0 \quad\) Only the counting statistics are used in calculating \(\sigma(\mathrm{I})\), the square root of the total counts taken for a given observation.Default if no inst option is specified.
1 Only the slope of a line through the origin is calculated.
The customary least squares fit of a set of data to a line of the form of \(y=m x+b\) is carried out. In this analysis the variable x is the square of theaverage total counts for each standard reflection and the variable \(y\) is thedifference between the external variance and the average total counts. The sumis over the different standard reflections.
\(\mathrm{m}=\sum \mathrm{xy} / \sum \mathrm{x} 2\)
\(2 \quad\) Both the slope and intercept of the line are determined.
The valuesof x and y are the same as in option 1 and the sums are over the N standards.
slope \(=\mathrm{N}^{*}\left[\sum \mathrm{x} \sum(\mathrm{y} / \mathrm{N})-\sum \mathrm{xy}\right] /\left[\left(\sum \mathrm{x}\right)_{2}-\sum \mathrm{x}_{2}\right]\)
intercept \(=\left[\sum y-\right.\) slope \(\left.* \sum x\right] / N\)

3 The slope, determined in option 2, is used and the interceptvalue is left as zero.
4 Same as option 3 except that the user supplies the values of the slope and intercept in the DIFDAT line behind optioninst \(m\) is the second field beyondinst.b is the third field beyond inst.

\subsection*{4.20.5.4. Application of the Instability Factors}

If any of the options for the application of the instability factors is chosen, the \(\sigma \mathrm{I}\) on the output bdf will be modified. The modification consists of scaling the \(\sigma \mathrm{I}\) calculated from the counting statistics according to the method shown below. For further information see Stout and Jensen (1968). The option will have been specified by the user in the first field beyond the inst option of the DIFDAT line and the values of \(m\) and \(b\) will be as defined above.
\[
\text { new } \sigma \mathrm{I}=\left[(\sigma \mathrm{I})^{2}+|\mathrm{b}|+|\mathrm{m}|^{*}(\text { total count })^{2}\right]^{1 / 2}
\]

\subsection*{4.20.6. Reflection Codes (Rcodes)}

During reflection processing estimated I values are compared with the estimated \(\sigma \mathrm{I}\), based on intensity counting statistics. When \(\mathrm{I}>\mathrm{n} * \sigma \mathrm{I}\) a reflection is considered to be "observed" and is assigned an rcode \(=1\). If \(\mathrm{I}<\mathrm{n} * \sigma \mathrm{I}\) a reflection is considered to be a "less than" and is assigned an rcode \(=2\). The value of n may be specified in the difdat line by the use of the obst \(n\) specification. The value of \(n=2\) is the default. If \(n=0\) is specified, all reflections will be given rcode=1 values.

If the option obth is specified, the \(\mathrm{n} \sigma \mathrm{I}\) value will be stored for the value of I. This option is a controversial one in that it imposes a feature reminiscent of the threshold of observability characteristic of photographic intensity measurements. The default, nobth, causes the calculated values of I to be stored in the output file. This means that negative as well as positive values are stored for reflections with weak intensities.

\subsection*{4.20.7. Data Lines}

DIFDAT was originally designed on the assumption that the diffractometer output will be similar to that produced by a Picker FACS (see the Examples). As such diffractometer lines are assumed to start with the line identifier data. If this is not the case it will be necessary to preset the input line identifiers by entering setid data and follow the last data line with a blank setid ( see System). The fetch line is used to specify the order and the type of data entered on the data line. Fields on the data lines must be separated by blanks. If they are not, it will be necessary to read these lines in fixed format mode using the field line (see CONTROLS section).
The alternative method of entering the diffractometer data involves the implementation of local routine (e.g. DD32) to read the data lines. The first two examples show the input used in this approach; the last two when data lines are entered.

\subsection*{4.20.8. Scale Factors}

The option nap on the difdat line, and the two input lines setscl and genscl, control the application of scale factors to the intensity data. The nap option suppresses the application of any scale factors to the intensities.

The setscl line specifies a scale factor which will will supercede that for a group of standards. The genscl line signals that the scales will be generated from the standard reflection groups and smoothed over a specified number of scale groups. If a genscl line is not entered, a scale factor must be entered for each standard group using setscl lines. If a GENSCL line is entered, the setscl lines will be used to override one or more of the generated scale factors.
genscl controls the smoothing of scale factors over a specified number of standard groups. Statistical fluctuations can occur due to natural counting errors or too few standards being observed. The default smoothing range is five groups forward and five groups backward.

It is possible that the scale discontinuities are not statistical. This occurs if there is a change in the radiation source or a degradation of crystal. In this case, discon lines may be used to point to the standard groups at which the scale discontinuities are real. The smoothing function will not span these groups. Note that the serial numbers of the last member of a group of standards are used in the setscl and discon input lines.

DIFDAT assumes that data starts with a group of standards and ends with a group of standards. This arrangement is not mandatory but warning messages are written if this condition is not met and a careful assessment of the scale factors should be made.

\subsection*{4.20.9. Output Data}

DIFDAT is a two pass program. The data is first processed for the estimation of scale and instability factors. It is then reread and the scaled intensities are written to the output archive bdf. The data written into logical record lrrefl: are the packed hkl (IDN=1), the net intensity (IDN=1300), \(\sigma \mathrm{I}\) (IDN=1301), and rcode (IDN=1308).
Printed output of reflection data is specified on the difdat line with the options (print and raw). In the first pass the raw intensity data is printed and in the second the scaled reflection data is printed. There is provision for a sample of reflection data to be printed during each pass. Each reflection line is screened for unequal backgrounds and this condition is noted in the optional printed output.

\subsection*{4.20.10. File Assignments}
- Reads lrcell: and symmetry data from the input archive bdf
- Writes reflection data to the output archive bdf
- Optionally reads diffractometer data from separate files, data lines or the bdf.

\subsection*{4.20.11. Examples}

Process a 61 byte-record CAD4 diffractometer file cad.
```

DIFDAT cad pri }50\mathrm{ excl inst 1 obst 3
attenu 19.14
genscl 2

```

Process a standard Siemens diffractometer text file sie.
```

DIFDAT sie pri }50\mathrm{ excl inst 1 obst 2

```
genscl 3

Process data on data lines
```

DIFDAT pri 50 eul inst 1 obst 2.0
stands 1 1 2 2
fetch rfn h k l tth omg phi chi irl sir sig
data 1 0 0 2 13.56 6.78 95.68 112.63 6574 135
.........................data lines omitted for brevity
data 1354 12 7 -9 87.42 43.71 15.93 74.14 761 48
genscl 3

```

Process data for non-conventional setting - full calculation sequence.
```

title IO11 in non-conventional setting Pnca of Pbon
STARTX
CELL 10.664 15.838 26.086
sgname -p 2a 2n :pnca
CELCON c 10
DIFDAT cad excl inst 1
atten 16.8
genscl 2
SORTRF hkl merge 1 cut
COPYBDF a tem :store merged refln data on tem

```
```

title IO11 in conventional setting Pbon
STARTX
CELL 15.838 26.086 10.664
cellsd .004 .006 .002
sgname -p 2n 2ab :pbcn
CELCON c 120
CELCON O 40
CELCON h 200
ADDREF
reduce itof rlp3
transf 0 1 0 0 0 1 1 0 0
bdfin file tem hkl irel sigi rcod

```

This is an important example because it shows a full Xtal run from STARTX to ADDREF involving the DIFDAT calculation. It also demonstrates how to process diffractometer data collected with non-conventional axial settings, and to subsequently transform it the conventional space group setting. The components of this run are: generate an archive bdf for the non-convertional space group; process the CAD4 data in this space group; sort and merge the intensity data in this space group; save the current archive bdf containing the merged data on file tem; create a new archive bdf with the conventional space group settings; reduce the reflection data by inputting the intensity data from the file tem (see the bdfin line) and transform the indices to match the conventional axes. The output archive file contains an unique set of Frel values for the space group Pben.

\subsection*{4.20.12. References}
- Stout, G. and Jensen, L. 1968. X-ray Structure Determination: a Practical Guide. New York: MacMillan Publishing Co.

\subsection*{4.21. DYNAMO: Molecular Dynamics structure factor calculation}

Authors: Doug du Boulay
Contact: D. du Boulay, Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori Ku .

DYNAMO calculates structure factors from molecular dynamics data such as that from the program MXDORTO (K. Kawamura). In MD simulations atomic nuclei positions are recorded at pico second intervals, typically for the order of nanosecond duration simulation experiments. These data sets can be used to calculate the average structure factors that one might expect to see in equivalent diffraction experiment averaged over the timescales involved and also over the spatial extent of an entire crystal. The "experimental" MD structure factors can then be compared with structure factors calculated in the standard crystallographic manner, incorporating temperature factors to model the time and spatially averaged electron density.

\subsection*{4.21.1. Process}

Structural crystallography is ordinarily focussed on the most minimal set of independent atom sites arranged in the assymmetric unit or, the arrangement of a symmetry extended subset of sites contained within one unit cell. Consequently crystallographic software like Xtal has generally been optimised to work with the most primitive set of unique atomic information. In contrast, molecular dynamics (MD)simulation studies dictate an approach wherein all atoms in the entire crystal are assumed to evolve fully independently, over time scales of the order of femto to pico seconds. Practical limitations involving storage space and evaluation times place
severe restrictions on this ideal so generally it is sufficient to adopt "very large" unit cells with no internal symmetry (i.e. Pl) but subject to periodic boundary conditions.
To compare MD simulation data with charge density experiments we need to convert the MD atomic site information into structure factors and thereby into charge densities. DYNAMO can assist with the first step and CRYLSQ in conjunction with FOURR enables the second.

The results of MD simulations are generally large data files consisting of the instantaneous positions of atomic nuclei for each step. At each instant an MD atom effective scattering contribution should thus be very well accounted for by the elemental form factors of Cromer and Mann (19??) determined for isotropic noninteracting and non-vibrating atoms. By summing the form factors of all the independent MD atoms across the entire MD cell, and by further averaging of the MD cells across repeated MD time steps very well averaged, effective scattering factors can be determined. This is a convenient way of converting very extensive MD data sets into a relatively simple representation in the form of time and spatially averaged structure factors, exactly the same kind of data measured experimentally in single crystal X-ray scattering experiments.

If the MD effective structure factors Fmd are treated as experimentally determined structure factors, then an effective scattering model can be refined to model the MD data using standard least squares programs, such as CRYLSQ. In the refinement however there is absolutely no need to refine the scale factor because the MD structure factor data have all been calculated on an absolute scale. There is also no extinction and no dispersion because the MD data do not incorporate such effects, by default. It should therefore, be sufficient to refine only the first and second moments of the density, i.e. the mean atomic positions and anisotropic temperature factors. Any residual features in the charge density after Fourier transforming the structure factor differences therefore reflect real deviations from the averaged, harmonic model and, not chemical or bonding redistributions. An anharmonic structure factor model may or may not account for such features, but in any case can not be undertaken within Xtal.

\subsection*{4.21.2. Calculation Performed}

For extensive MD data sets the calculations performed by DYNAM can be rather time consuming. As a small measure of optimization, all reflections on the bdf are loaded into memory simultaneously. Unfortnately this puts limits on the number of reflections for which MD structure factors can be evaluated. As each atom site in each requested frame is read, its contribution to the effective MD cell scattering power is accumulated for every reflection stored in memory. After each frame a running average is performed on the MD structure factors. Finally the MD structure factors are normalised by the determinant of the cell transformation matrix to put them on the same scale as the archive BDF sites. Subsequently, if atom sites exist on the archive, then normal Fcal structure factors are calculated, and relative scales compared (though not applied to archive). In principle, if your archive model sites and molecular dyanmics sites are consistent then te scale factor should be 1.0.

The Fmd values can be stored as iether Frel, or Fcal, in case it is desired to compare the Fmd values with some experimental structure factors already existant as Frel on the archive. In that case it may be necessary to apply dispersion and extinction corrections to the Fmd values to match the experimental Frel terms.

\subsection*{4.21.3. File Assignments}
- Reads atom and reflection data from the input archive bdf
- Reads MD data file
- Writes calculated structure factors to the output archive bdf

\subsection*{4.21.4. Example}
```

STARTX : spinel
cell 8.2228 8.2228 8.2228 90 90 90
cellsd 0.0001 0.0001 0.0001 0 0 0
spaceg F_d_-3_m:2
celmol 8
celcon Li 8
celcon Mn 16
celcon O 32
exper *2 0.60470

```
ADDATM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline UOV & & \multicolumn{2}{|r|}{. 03500} & \multicolumn{3}{|c|}{PARENT} & & \\
\hline ATOM & Li1 & . 12500 & . 12500 & . 12500 & \$1 1.000 & . 00000 & . 00000 & . 00000 \\
\hline U & Li1 & . 01295 & . 00095 & & & & & \\
\hline ATOM & Mn & . 50000 & . 50000 & . 50000 & \$1 1.000 & . 00000 & . 00000 & 00000 \\
\hline UIJ & Mn & . 00521 & . 00521 & . 00521 & -. 00083 & -. 00083 & \(3-.00\) & 083 \\
\hline SUIJ & Mn & . 00005 & . 00005 & . 00005 & . 00004 & . 00004 & & 004 \\
\hline ATOM & 0 & . 26526 & . 26526 & . 26526 & \$1 1.000 & . 00008 & . 00008 & . 00008 \\
\hline UIJ & 0 & . 01921 & . 01921 & . 01921 & -. 00461 & -. 00461 & \(1-.00\) & 461 \\
\hline SUIJ & 0 & . 00021 & . 00021 & . 00021 & . 00021 & . 00021 & & 021 \\
\hline
\end{tabular}
ADDREF ffac : use interpolated form factors in DYNAM/FC
limits *4 \(1.0 \quad\) : *9 yes
hklgen hkl frel sigf : generate reflection hkl values for DYNAM
end
SORTRF frel aver 1 : remove symmetry redundant reflections
end
: Be wary of rounding errors in accumulating averages over many
: frames. \(\langle\mathrm{F}(\mathrm{n}-1)\rangle(\mathrm{n}-1) / \mathrm{n}+\mathrm{F}(\mathrm{n}) / \mathrm{n}\) Doesn't scale well.
DYNAMO frel list file fort. \(81 \quad\) : save Fmd as Frel, list all refs , read file
frames \(1100 \quad:\) start from frame 1 read 100 frames
transf 400040004 : change cell from \(0 \times 8 \times 8\)-> \(32 \times 32 \times 32\)
typinf 02048 Mn 512 Mn 512 Li 512 : order matches fort. 81 order
end
: improve the fcal model by refining aniso Uij
CRYLSQ Cy 20 wu fr p1 tl 0. l1 : no dispersion/extinction needed
noref skf
FOURR fdif
grid 969696

In this example reflections in an asymetric unit of reciprocal space are generated for the \(8 \times 8 \times 8\) cell entered in STARTX. In DYNAM those hkl values are transformed to the \(32 \times 32 \times 32\) unit cell setting and MD structure factors are calculated before being transformed back to the original \(8 \times 8 \times 8\) cell. This is followed by a normal structure factor calculation within DYNAM, for magnitude comparison purposes.
```

:STARTX and ADDATM as for example 1
:followed by ...
EXPAND cell 3 : generate 5x5x5 cells worth of redundant sites
STARTX upd : throw away all symmetry
sgname P1
NEWCELL : transfrom archive cell from 8x8\times8 to 32\times32\times32
transf 4 0 0 0 4 0 0 0 4

```
```

STARTX upd : override wierd centred symmetry
sgname P1
EXPAND not : contract to 32x32x32 cell P1 independents
ADDATM upd : update atomic constraints
ADDREF ffac : use interpolated form factors in DYNAM/FC
limits *4 0.7 : *9 yes : too many reflections for DYNAM to handle
hklgen hkl frel sigf : generate empty hkl packets
end
SORTRF frel aver 1 : remove redundant reflection indices
DYNAMO frel list file fort.81 : save Fmd as Frel, list all refs , read file
frames 1 10 : start from frame 1 read 10 frames
transf 1 0 0 0 1 0 0 0 1 : No change from MD cell to archive bdf
typinf O 2048 Mn 512 Mn 512 Li 512 : order matches fort.81 order
FOURR fdif pset 1 : use MD phases via pset 1 flag
grid 192 192 192

```

Here structure factors are computed for the \(32 \times 32 \times 32\) P1 cell. There is no need for Friedel pairs as there isn't any dispersion. To correctly do the Fourier transformation, the MD phases are stored on the archive (in addition to the normal structure factor phases - which are nearly all zero owing to the imposed symmetry of the original \(8 x 8 x 8\) model). The MD phases are accessed in FOURR via the pset 1 flag. Alternatively, the MD structure factors (now Frel values) and the whole unit cell could then be transformed back to the 8 x 8 x 8 F _d_-3_m:2 cell for structure factor averaging and model comparisons.

\subsection*{4.21.5. References}
- Henry, Norman and Lonsdale, Kathleen, 1965. Eds. International Tables for X-Ray Crystallography Vol. I. Birmingham, England: Kynoch Press.

\subsection*{4.22. EXPAND: EXPAND archive atom sites \({ }^{\text {NEW }}\)}

\section*{Authors: Doug du Boulay}

Contact: D. du Boulay, Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori Ku .

The program EXPAND can be used to expand the list of independent atom sites on the archive bdf (as introduced using ADDATM) to a complete list of all dependent sites in the current symmetry defined unit cell, or even multiple unit cells. This is not a desirable end result of itself, but it is very useful for converting between different symmetries and/or unit cell transformations. When followed by the EXPAND not option, the redundant symmetry related sites are culled from the archive to restore normality.

\subsection*{4.22.1. Calculation Performed}

The asymmetric set of atomic sites is read from the input archive bdf. By default, those sites are expanded to include all sites in the unit cell. To avoid duplicate name errors in ADDATM upd mode the atom names are amended with cell translation and symmetry operator strings. This can increase the atom name string length beyond 8 chars, the standard limit in small molecule crystallography. Fortunately Xtal handles up to 24 character atom names, so it is not a problem, though not pleasing aesthetically.
In any case, by following any EXPAND cell \(n\) command with a matching EXPAND not, the extraneous atom name appendages are culled in favour of simpler, more compact site names.

EXPAND also transforms the anisotropic temperature factors, but it does not touch the constraint record \(l r\) cons:, so it is always necessary to run ADDATM upd to fix any broken atom site constraints after running EXPAND.

\subsection*{4.22.2. File Assignments}
- Reads atom data from the input archive bdf
- Writes atom data to the output archive bdf

\subsection*{4.22.3. Example}
```

EXPAND cell 1

```

\subsection*{4.23. FC: Calculated structure factors}

Authors: Syd Hall, Jim Stewart, Richard Alden \& Jim Holden
Contact: Syd Hall,Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
FC calculates structure factors when refinement of atomic parameters is not required.

\subsection*{4.23.1. Calculation Performed}

The asymmetric set of atomic sites is entered from the input archive bdf, and is used to generate symmetrically related sites for all atoms in the unit cell. The structure factor calculation is applied to these sites. The coordinates of all sites in a cell may be listed by entering the line "reset psta 4" prior to the FC line.

Overall isotropic, individual isotropic, individual anisotropic, or mixed individual thermal displacement parameters may be applied in FC. Dispersion factors and isotropic extinction corrections may also be applied provided prerequisite data is present on the input bdf.
If requested FC will calculate, and store on the bdf, the \(\operatorname{Sim}(1960)\) weight.
\(\mathrm{w}(\operatorname{Sim})=\mathrm{I}_{1}(f) / \mathrm{I}_{0}(f)\) where \(f=2 \mathrm{~F}_{0} \mathrm{~F}_{\mathrm{c}} / \sum \mathrm{f}^{2}\)

\subsection*{4.23.2. File Assignments}
- Reads atom and reflection data from the input archive bdf
- Writes calculated structure factors to the output archive bdf

\subsection*{4.23.3. Example}
```

FC disp list 7.5

```
scale 1.013

In this example, structure factors are calculated using all atoms in the bdf. Dispersion corrections will be applied. All reflections for which \(\mathrm{F}(\mathrm{rel})\) and \(\mathrm{F}(\mathrm{cal})\) differ by more than 7.5 will be listed. In addition, for this calculation, the F relative scale factor is to be set to 1.013 for scale group 1 . When the updated bdf is written it will include \(\mathrm{F}(\mathrm{cal})\), the estimated phase and the contributions to A and B from dispersion.

\subsection*{4.23.4. References}
- Henry, Norman and Lonsdale, Kathleen, 1965. Eds. International Tables for X-Ray Crystallography Vol. I. Birmingham, England: Kynoch Press.
- Sim, G.A. (1960) Acta Cryst. 13, 511.

\subsection*{4.24. FOURR: Fourier maps}

Authors: Jim Stewart, Jim Holden, Ruth Doherty \& Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
FOURR is a general purpose reciprocal-space to real-space crystallographic Fourier transform. It uses the Beevers-Lipson (BL) algorithm for the first sum and either the BL or Fast Fourier Transform (FFT) algorithm for the second and third sum directions. The summation is general with respect to space group setting and axial display. A wide range of resolutions may be specified. The default is 1/4 Angstrom between grid points.

The Fourier density values are stored in the map file for use by succeeding calculations such as PEKPIK and CONTRS. For Patterson maps the densities will be in electrons squared per cubic Angstrom provided that a reasonably good value of the \(\mathrm{F}(\mathrm{rel})\) scale is available. For E maps the E coefficients are automatically scaled by the ratio \(\mathrm{F}(000) / \mathrm{E}(000)\) so that the calculated density will closely approximate e/ \(\AA^{3}\). In the same way the vector map ( \(E^{2}-1\) ) is automatically scaled so that the sharpenened densities approximate \(\mathrm{e}^{2} / \AA^{3}\). It is these densities that are output to the map file.

Since the magnitude of these densities is generally unsuitable for printing as integer numbers, a special print scale factor PRINTSCL is applied to the densities before they are output on the line printer or visual display unit screen. A wide range of formats and options are available for displaying the printed output. The defaults are shown in the description of the print line. The PRINTSCL default is a function of the type of coefficient specified. Those involving F, for example, require, a PRINTSCL of 10.0 to produce sensible integers for printing on a 4 column per Fourier grid point basis.

Other coefficients require other PRINTSCL values. Defaults are provided for the major coefficient types \(F(\) rel \(), F^{2}(\) rel \(), F(\) cal \(), E\), and \(F(\) diff \()\).

\subsection*{4.24.1. Shaded And Packed Printed Output}

A Fourier may be output in a compact form with the shaded option of the print line. Layers are printed with one column and one line per grid point. By judicious choice of the PRINTSCL constant and SCLINT density interval a shaded mini-Fourier can be produced which shows the structure on an approximately \(1 / 4\) scale when compared to the default maps. The peaks are represented by higher density print characters. Zero is represented by period, and the negative regions by a different set of characters. The actual coordinates of the peaks may be determined by the use of PEKPIK which processes the Fourier transform as it is stored on the map file.

An alternative column output is possible where base- 36 arithmetic is used to give densities 0 through 9 and A through Z. This kind of printing is referred to as packed. No negatives are printed when this option is specified on the print line.

\subsection*{4.24.2. Limits Of The Transform}

Ideally the limits of the Fourier transform should only encompass one asymmetric unit as close to the origin as possible. The default limits for the parallelepiped produced by the FOURR program attempt to achieve this goal. For the higher symmetry space groups it will often be necessary to produce more than an asymmetric portion of the cell since the limits set are always an integral number of grid points along the axial directions. When there is redundancy, the PEKPIK program will screen out the symmetrically equivalent points which have been produced. An algorithm has been set up which uses the space group symmetry operators to seek an asymmetric portion of the unit cell. These limits are those which are set when the default limits are utilized. The layout or map lines allow the user control of the limits of the map if it is desired to control these limits for other reasons. It should be noted that for small regions the BL algorithm may be the best choice since only the map specified will be calculated. It is necessary when using the FFT algorithm always to calculate a full cell span whether or not only a small fraction of the cell is written to the map file or to the line display device.

\subsection*{4.24.3. Summation Order}

The summation order is usually determined by the axial lengths of the unit cell. When the long axis is summed first, the calculation will be fastest and the least computer memory will be required. Thus the default will be long axis layer to layer, next longest axis down each layer, and shortest axis across each page. Both the map and layout input lines allow the user a means to override these defaults by specifying the desired orientation of the map on the printed pages.

\subsection*{4.24.4. Coefficients Used In Summations}

FOURR performs Fourier transforms on a wide range of coefficients and phase types. The coefficients and phases must be functions of the quantities stored in the input bdf. The most common coefficient types are selected by setting a signal in the FOURR input line. These are:

\section*{Patterson map}

Uses scaled \(\mathrm{F}(\mathrm{rel})^{2}\) as coefficients and exhibits the Laue symmetry of the space group.

\section*{Patterson E map}

Uses \(\mathrm{F}(\mathrm{rel}) *\) E as coefficients and exhibits the Laue symmetry of the space group. This is the recommended map for use with PATSEE (The default layout will produce a map for the full cell - this may be overridden with map and overlay lines).

\section*{Vector map}

Uses \(\left(E^{2}-1\right)\) as coefficients and exhibits the Laue symmetry of the space group. E-values are calculated by GENEV

\section*{E map}

Uses E values as coefficients and phases from one of the phase sets generated by GENTAN or SIMPEL. The map has the symmetry of the space group.

Fobs map
Uses scaled \(\mathrm{F}(\mathrm{rel})\) values as coefficients and phases from programs such as \(F C\) or \(C R Y L S Q\). The map produced has the symmetry of the space group.
\(\Delta\) F map
Uses (K Frel - Fcal) as coefficients and phases the last structure factor calculation. K is the appropriate scale factor to convert Frel to absolute. The map has the symmetry of the space group.

Fcal map
Uses \(\mathrm{F}(\mathrm{cal})\) values as coefficients and phases from programs such as \(F C\) or \(C R Y L S Q\). The map produced has the symmetry of the space group.
wFob map
Uses scaled F (rel) values multiplied by the Sim weights as coefficients and phases from the program \(F C\). The map produced has the symmetry of the space group.
wdif map
Uses (K F(rel) - Fcal) values multiplied by the Sim weights as coefficients and phases from the program \(F C\). The map produced has the symmetry of the space group.
pdif map
Calculates the electrostatic potential from (K F(rel) - Fcal).
edif map
Calculates the electric field vector (3 components) from (K F(rel) - Fcal).
gdif map
Calculates the electrostatic field gradient (5 components) from (K F(rel) - Fcal).

In addition to the pre-set transforms described above, the FOURR program uses of a coeff line to specify coefficients from constants and from quantities held in the bdf. This allows almost any type of transform to be undertaken with relative ease. In addition, the program BFOURR can be used to store very complex Fourier coefficients on the bdf, which may be employed in FOURR through the use of a coeff input line. This is discussed below.

\subsection*{4.24.5. Explicit Definition Of Fourier Coefficients}

In FOURR the user may explicitly define Fourier coefficients and phases using the coeff line. This is done with the identification (ID) numbers of items in the lrrefl: packet of the input bdf (for details see the BDF section at the back of this manual), and explicit constants. A coefficient is specified as a series of integers. Positive integers represent the ID numbers, negative integers represent positive constant scales, and zeros signal that a particular component is to be excluded from the construction of the Fourier coefficient. The general form of coefficient expression is as follows:

Coefficient \(=(\) factor \(1 *\) factor \(2 *\) scale \(3-\) factor 4\() *\) factor \(5 *\) scale 6
where the components factor1, factor 2 , factor 4 and factor 5 may be specified in fields \(1,2,4\) and 5 of the coeff line as ID numbers or constants. The components scale3 and scale6 must be specified as either the ID number of the scale group, or as a constant scale value.

The coefficient phase is defined using fields 7 and 8 , or field 9 . Fields 7 and 8 specify the real and imaginary components of the structure factor in terms of their ID numbers. Field 9 specifies the ID number of the structure factor phase in cycles. If both are specified and are present in the bdf the phase defined by field 9 will be used. These fields are applied to the Fourier expression as follows:
```

$\cos \phi=$ factor $7 /\left((\text { factor } 7)^{2}+(\text { factor } 8)^{2}\right)$ or $\cos \phi=\cos (2 \pi$ factor 9$)$
$\sin \phi=$ factor8 $/\left((\text { factor } 7)^{2}+(\text { factor8 })^{2}\right)$ or $\sin \phi=\sin (2 \pi$ factor9)

```

To illustrate the application of these coefficients in more general cases the six standard transforms specified via the FOURR line are shown as they would be defined on a coeff line. In the table which follows, \(n\) represents the dataset number.
\begin{tabular}{llllllllll} 
& facl & fac2 & scl3 & fac4 & fac5 & scl6 & fac7 & fac8 & fac9 \\
& PATT & n304 & n304 & n309 & 0 & -1 & n309 & 0 & 0 \\
0 \\
EPAT a & n304 & n600 & n309 & 0 & -1 & -1 & 0 & 0 & 0 \\
VECTORa & n600 & n600 & -1 & -1 & -1 & -1 & 0 & 0 & 0 \\
EMAPa & n600 & n632 & -1 & 0 & -1 & -1 & 0 & 0 & n631 \\
FOBS & n701 & -1 & n309 & 0 & -1 & -1 & n801 & n802 & n700 \\
FDIF & n701 & -1 & n309 & n800 & -1 & -1 & n801 & n802 & n700 \\
FCAL & n800 & -1 & -1 & 0 & -1 & -1 & n801 & n882 & n700 \\
WFOB & n701 & -1 & n309 & 0 & n910 & -1 & n801 & n802 & n700 \\
WDIF & n701 & -1 & n309 & n800 & n910 & -1 & n801 & n802 & n700
\end{tabular}

\section*{Notes:}
a. The ID numbers for \(|E|\), phase and weight are not fixed values but vary according to the phase set selected by the user with FOURR line controls.

It will be necessary to read the BDF section at the back of this manual, and in particular the part concerning the lrref: ID numbers, to understand properly how to use the coeff line. It is important to stress that to permit maximum flexibility there is very little internal checking of parameters input on the coeff line.

\subsection*{4.24.6. Output}

Output of the Fourier densities may be as a printed map or as a map file. The bdf serves as input to programs such as SLANT, PEKPIK, CONTRS. The quantities stored in this file include the generated transform, the description of the map, cell dimensions, and space group symmetry operations. The printed output is identical to the map output to the file but on a different scale, as described above. If the number of points in the third sum direction is more than can be printed across a page, the printed output may be abbreviated to accommodate the number of print columns on the printer. If it is abbreviated, the method leaves out alternate points thereby reducing the resolution of the printed map. All points are written to the map file.

The printed output may be scaled so that a distance on the page will have an Angstrom equivalent. No attempt is made, however, to compensate for the effect of an interaxial angle in the printed layer. The program CONTRS will produce a file for plotting of undistorted contour maps.

\subsection*{4.24.7. Limits Of Resolution}

The output map of FOURR is divided into specific densities on a three dimensional grid. The grid interval, or rather the number of grid points along each cell dimension, defines the map resolution. Typically this resolution needs to be 3 or 4 points per Angstrom. In FOURR the default resolution is set at 0.25 Angstroms.

This may be changed using a grid line. In conjunction with this option, it should be noted that the maxhkl line provides a means to reject reflections that do not contribute to the sums for the resolution specified by the given grid. In the case of the FFT method, the resolution specified will force the rejection of reflections beyond the resolution limit set or cause the inclusion of zero for those beyond the limit. An attempt to calculate a FFT with grid intervals of less resolution than the maximum \(\mathrm{h}, \mathrm{k}, 1\) data allowed will result in an error termination.

\subsection*{4.24.8. The \(\mathbf{F}(0,0,0)\) Term}

The \(\mathrm{F}(0,0,0)\) term is an important part of the Fourier calculation. The default \(\mathrm{F}(0,0,0)\) term is applied for the following options:
\begin{tabular}{llllllllll} 
COEF & PATt & EPAT & VECT & EMAP & FOBS & FDIF & FCAL & WFOB & WDIF \\
0. & 0. & 0. & 0. & E000 & F000 & 0. & F000 & F000 & 0.
\end{tabular}

These values may be replaced using the fzero input line.

\subsection*{4.24.9. File Assignments}
- Reads Fourier coefficients from the input archive bdf
- Writes map points to file map.

\subsection*{4.24.10. Examples}
```

FOURR patt ffsum

```
map *5 . 5

This use of the Fourier program will result in a Patterson map being produced. The algorithm which is used for the second and third sums will be the FFT. The scale of the map will be four points per Angstrom. The summation will be made over the long axis first, so that there will be a number of pages corresponding to one layer every \(1 / 4\) Angstrom. If there is an interaxial angle in the plane of the "page" there will be a distortion due to the orthogonal print positions. The map input line forces the printing and limits the printing to \(1 / 2\) the cell in the first sum direction. The scale will default to one electron squared per Angstrom cubed for a Patterson map.
```

FOURR patt
print *3 10 -100
map c 0 0 0 . 25 1 . 25

```

In this case, a Patterson function is to be computed. However, more control over the orientation, scale, and extent of the transform is desired. The algorithm used will be BL. The print line supplies directives to print the map, to scale to one electron squared per Angstrom cubed - assuming the F(rel) scale factor is reasonably close to one. If GENEV has been run, an estimate of the \(\mathrm{F}(\mathrm{rel})\) scale factor will be known. Furthermore, the print line has a specification to suppress printing of all values between 10 and -100. This means that the map will have decimal points placed in this region of densities. On the map line the c designates that the c crystallographic axis is to go from page to page. The next 6 fields are the minimum and maximum fractional coordinates of the map which is to be generated 0 to .25 along a; 0 to 1 along b, and 0 to .25 along c.
```

FOURR fobs
print *2 100.

```
```

grid 12 12 12

```
layout down across layer \(\begin{array}{llllllllll}13 & 13 & 13 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\)

In this case, it is desired to control the actual grid of the Fourier map scaled to 100 electrons per Angstrom cubed. A grid line is used to force twelfths along all axial directions. The layout line specifies the number of points to be calculated, the starting point, and the step or increment along all of the axial directions. The BL method is specified so that 13 points can be printed in every direction and if maximum \(\mathrm{h}, \mathrm{k}\), or l should be greater than 12 the computation will still be done. Finally, the summation order is specified as c first - page to page, a second - down the pages, and \(b\) third - across the pages. This method of use can be very useful for checking that the map has the expected symmetry. This example, in fact, is a most useful check since twelfths or twenty-fourths will be divisible by the fractions of all symmetry operations. It is always a useful exercise to check to see that the points for a general position of the space group are all the same to within rounding. If it is determined that the space group symmetry is violated it is probably because systematically absent reflections have been entered in the bdf as if they were observed.
```

FOURR fobs ffsum
maxhkl 62 45 30
grid 126 96 64
layout layer down across 32 96 64 0 0 0 1 1 1

```

The compound used in this example is cytochrome c peroxidase. The crystal belongs to space group \(\mathrm{P} 2_{1} 2_{1} 2_{1}\) with cell dimensions of 107A, 77A, and 51A. For a cell this large the preferred algorithm is FFT. In order to obtain a map with the asymmetric portion of the cell, the limits may be set in either one of two ways:
\begin{tabular}{llllll} 
Xmin & Xmax & Ymin & Ymax & Zmin & Zmax \\
0.0 & 1.0 & 0.0 & 0.5 & 0.0 & 0.5 \\
0.0 & 0.25 & 0.0 & 1.0 & 0.0 & 1.0
\end{tabular}

In either case, only \(1 / 4\) of the total map is calculated. However, the second case is preferable for two reasons: It induces calculation of fewer points along the largest axis and it takes advantage of the fact that the FFT will necessarily produce all of the coefficients for the points from 0 to 1 along \(y\) and \(z\) whether they are requested or not. The layout line therefore specifies that only 32 points should be calculated in the x-direction. Since there are to be 126 grid points between 0 and 1 along \(x\), this will give the desired result.

\subsection*{4.24.11. References}
- Henry, Norman and Lonsdale, Kathleen. 1965. Eds. International Tables for X-ray Crystallography Vol. I., Birmingham, England: Kynoch Press.

\subsection*{4.25. GENEV: Normalized structure factors (E values)}

Authors: Syd Hall and V. Subramanian
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
GENEV calculates normalized structure factors (E values) from the measured structure factors, and calculates the scale and overall U. Unique aspects of GENEV include the estimation of \(|E|\) errors, the application of
simple Bayesian statistics to weak data, the compensation for missing weak data, a facility for user-specified index rescale groups, and the calculation of group structure factor phases for use in subsequent phasing processes.

\subsection*{4.25.1. Introduction}

Structure factor normalization converts measured \(|\mathrm{F}|\) values into "point atoms at rest" coefficients known as |E| values. The normalization process used in GENEV is based on a Wilson plot procedure (Wilson, 1942). This approach also provides a reasonable estimate of the overall thermal displacement parameter and overall structure factor scale.
A general introduction to normalization procedures based on the Wilson plot can be found in the crystallographic texts such as Stout and Jensen (1968), or Luger (1980). For more detailed information on structure factor normalization the user should refer to the three papers by Subramanian and Hall (1982) and Hall and Subramanian (1982a,b). These studies form the basis for GENEV and provide detailed definitions and descriptions of the scaling functions and expectation expressions discussed here.
Central to the normalization approach of GENEV is the calculation of two separate normalized structure factors \(|\mathrm{E} 1|\) and \(|\mathrm{E} 2|\). \(|\mathrm{E} 1|\) is calculated using the linear scale \(\mathrm{K} \exp \left(\mathrm{Bs}^{2}\right)\), the random-atom expectation value, and an overall rescale term. This combination of parameters has been shown to provide a consistently good estimate of \(|\mathrm{E}|\) (S \& H, 1982). Inflection point least-squares (H \& S, 1982a) is used to obtain an estimate of the overall B which is largely independent of the Debye scattering effects. The basic process for calculating |E1| is fixed and cannot be varied by the user.
|E2| is calculated using scaling options selected by the user. These include the choice of linear or profile scale; random atom, random fragment, oriented fragment or positioned fragment \(\left|F^{2}\right|\) expectation values; overall or index rescaling terms (see S \& H for detailed description of these options). The control lines may be used to determine what form the calculation of \(|\mathrm{E} 2|\) should take. If no control lines are entered, \(|\mathrm{E} 2|\) will be calculated identically to \(|\mathrm{E} 1|\) except that index rescaling is the default rather than overall rescaling. Note that if GENEV is run just for calculating the scale or the overall \(U\), the enot option should be used to prevent \(|E|\) 's from being output to the bdf. The default is eout.

Some of the options detailed below apply to both \(|\mathrm{E} 1|\) and \(|\mathrm{E} 2|\). The fill and baye control line for example provides for the adjustment of weak data. It should also be emphasized here that group structure factor phases calculated from fragment information entered via frag and atom lines may be applied in subsequent phasing processes to both \(|\mathrm{E} 1|\) and \(|\mathrm{E} 2|\). Details of this are given below.

\subsection*{4.25.2. Treatment Of Weak Data}

One of the factors determining the reliability of \(|\mathrm{E}|\) values is the precision of the measured structure factors. This is true not only for the large structure factors but also for the weak reflections that often make up the majority of the data. In particular the precision of the weak data affects the reliability of B and K estimated by the Wilson plot least-squares process. GENEV provides two methods of treating weak data; one applies Bayesian statistics to \(|\mathrm{F}|\) and \(\sigma|\mathrm{F}|\) values if \(|\mathrm{F}|\) is less than \(6 \sigma|\mathrm{~F}|\), and the other compensates the Wilson plot for weak data omitted from the input bdf.

\subsection*{4.25.2.1. Application of Limited Bayesian Statistics}

The expected Bayesian distribution of net intensities, and their associated standard deviations, have been reported by French and Wilson (1978). A limited Bayesian treatment of structure factor data is applied by entering baye on the GENEV line. This assumes that the mean intensity for all shells of reciprocal space is \(20 \sigma\) I. The procedure used in GENEV to do this requires the presence of both the net intensity and the Lorentzpolarization factor on the input bdf (S \& H, 1982).

\subsection*{4.25.2.2. Compensation for Missing Weak Data}

The Wilson plot process relies on a relatively uniform distribution of data with \(s^{3}(s=\sin \theta / \lambda)\). The omission of weak data from this calculation tends to give rise to erroneously low values of B and to inaccurate estimates of \(|E|\). In GENEV the fill option on the GENEV line forces each shell of reciprocal space to have the correct population. The values of \(|\mathrm{F}|\) used for the added reflections are based on half the minimum \(|\mathrm{F}|\) of each range.

\subsection*{4.25.2.3. Expected \(|\mathbf{E}|\) Distribution and Statistics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Expected mean of & \(f<|E|>\) & \multicolumn{2}{|c|}{\(\langle | E_{2} \mid>\)} & \multicolumn{2}{|l|}{\(<\left|\mathrm{E}_{2}-1\right|>\)} & \(\left.\langle | \mathrm{E}_{2}-\left.1\right|_{2}\right\rangle\) & \multicolumn{2}{|r|}{\(\left.\langle | \mathrm{E}_{2}-\left.1\right|_{3}\right\rangle\)} \\
\hline For random P-1 & . 798 & \multicolumn{2}{|c|}{1.000} & \multicolumn{2}{|l|}{. 968} & 2.000 & \multicolumn{2}{|c|}{8.000} \\
\hline For random P 1 & . 886 & \multicolumn{2}{|c|}{1.000} & \multicolumn{2}{|l|}{. 736} & 1.000 & \multicolumn{2}{|c|}{2.000} \\
\hline Percent of 0.0 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.50 & 3.00 \\
\hline \multicolumn{9}{|l|}{Total With} \\
\hline \multicolumn{9}{|l|}{|E|>} \\
\hline \multicolumn{9}{|l|}{random P} \\
\hline 1 & & & & & & & & \\
\hline For
random \(P\) & 36.8 & 23.7 & 14.1 & 7.7 & 3.9 & 1.8 & 0.19 & 0.01 \\
\hline 1 & & & & & & & & \\
\hline
\end{tabular}

\subsection*{4.25.3. Application Of Scaling Options}

GENEV provides for two basic scaling approaches: The linear scale \(\operatorname{Kexp}\left(8 \mathrm{p}^{2} \mathrm{Us}{ }^{2}\right)\) (this is the default) and the profile scale (prof). In addition there are two rescaling procedures; overall (default) and index (using indexk). The definitions and the properties of these scales is detailed by S \& H (1982).

\subsection*{4.25.3.1. Linear Scale (applied to E1; default for E2)}

The application of the linear scale first requires the evaluation of the overall scale, K , and the overall thermal parameter U from the Wilson plot. The particular form of the linear scale used to calculate \(|\mathrm{E} 1|\) is based on U and K values estimated using a inflection-point least-squares procedure (see below). Use of the linear scale is optional for \(|\mathrm{E} 2|\) and, if applied in the default mode, will be identical to that used for \(|\mathrm{E} 1|\). Entering the frag line will cause an independent linear scale to be evaluated for |E2|.

\subsection*{4.25.3.2. Profile Scale (prof option for E2)}

If a profis entered on the GENEV line the profile scale is used to evaluate |E2|. The profile scale is an interpolated curve based on 41 overlapped Wilson plot averages. Some degree of caution should be exercised in using this option because of the tendency of the radially-dependent structural contributions to \(|\mathrm{E} 2|\) to be reduced. It may, however, be useful for reducing the dominant features such as occur in "chicken-wire" structures.

\subsection*{4.25.3.3. Overall Rescaling (applied to E1; default for E2)}

The rescaling options in GENEV are used to insure that the overall mean \(\left|\mathrm{E}^{2}\right|\) is precisely one. The simplest and most effective way of achieving this is by summing the \(|E|\) values determined using linear or profile scales,
and then applying the inverse of the average \(\left|\mathrm{E}^{2}\right|\). This is referred to as overall rescaling. It is mandatory for |E1| and optional for |E2|.

\subsection*{4.25.3.4. Index Rescaling (indexk option for E2)}

With index rescaling, different groups of reflections defined by a particular combination of hkl indices are rescaled so that the mean value of \(\left|\mathrm{E}^{2}\right|\) is one. This option may be applied only to \(|\mathrm{E} 2|\). The conditions for each index group may be specified on the indexk line with the 15 parameters \(p_{1}, m_{1}, n_{1}, p_{2}, \ldots n_{3}\). A reflection belongs to a particular index group provided its indices jointly satisfy the following three equations:
\(\left[\mathrm{h}_{1}+\mathrm{kq}_{1}+1 \mathrm{r}_{1}\right] \bmod \left(\mathrm{m}_{1}\right)=\mathrm{n}_{1}\)
\(\left[\mathrm{h}_{2}+\mathrm{kq}_{2}+1 \mathrm{r}_{2}\right] \bmod \left(\mathrm{m}_{2}\right)=\mathrm{n}_{2}\)
\(\left[\mathrm{h} \mathrm{p}_{3}+\mathrm{kq}_{3}+1 \mathrm{r}_{3}\right] \bmod \left(\mathrm{m}_{3}\right)=\mathrm{n}_{3}\)
Each group may be specified by a separate indexk line or, in the case of the even-odd parity groups, with a single blank indexk line. Only the specified index groups will be scaled separately, the remainder will be scaled together. Judicious use of the index parameters will permit single reflections to be scaled in this way. Specific scale values may also be entered on the indexk line for this purpose. No attempt will be made to make the mean \(\left|E^{2}\right|=1\). in this case.

The index rescaling option must also be used carefully. As with the profile scale it can have the overall effect of reducing the structural content of the \(|\mathrm{E}|\) values. The study of \(S \& H\) (1982) showed that, in general, it provided less reliable \(|E| s\) than the overall rescaling option. Index rescaling can, however, be useful in the study of superstructure or hypersymmetry, since it ensures that groupings of reflections are given similar weight in the phasing process.

\subsection*{4.25.4. Choice Of Expectation Values}

A squared normalized structure factor is the ratio of its scaled intensity to its expectation value. The expectation value for an intensity (or rather \(\left|\mathrm{F}^{2}\right|\) ) depends on what is known about the structure. If only the atomic contents of the unit cell are known, then the best estimate of \(\left\langle\mathrm{F}^{2}\right\rangle\) is the random-atom approximation (see \(\mathrm{S} \& \mathrm{H}, 1982\), for definition). Using the random-atom \(\left\langle\mathrm{F}^{2}\right\rangle\) in the normalization process provides \(|\mathrm{E}|\) values that will reflect how well the \(|\mathrm{F}|\) values conform to those expected for a random structure. Significant departures of individual \(\left|\mathrm{E}^{2}\right|\) values from 1.0 (the overall mean) indicate whether a reflection is sensitive to the non-random aspects of the structure. The larger the departure from 1.0, the more important that reflection will be to a phasing process designed to investigate the non-random aspects of a structure. This is the basis for most structure invariant procedures.

If the coordinates of a structure are known (i.e. refined) then the value of \(\left\langle\mathrm{F}^{2}\right\rangle\) is simply calculated \(\left|\mathrm{F}^{2}\right|\), assuming atoms-at-rest. Application of this expectation value in the normalization procedure will result in all \(\left|\mathrm{E}^{2}\right|\) values being close to 1.0 (assuming of course, good data and a well-refined structure). Obviously \(|\mathrm{E}|\) values determined in this way are of very limited use in direct methods since all reflections have equal weight. Those that are most sensitive to the non-random aspects of the structure cannot be identified.

Contrasting the application of random-atom and refined-atom expectation values illustrates a very important aspect of the normalization process. Structure information used in the expectation value will reduce that particular contribution in the resulting \(|E|\) values. In other words, the departures of \(\left|E^{2}\right|\) values from unity reflect the differences due to structural information not used in evaluating the expectation value. In general, therefore, the higher-order expectation values, as provided with fragment information of type 2,3 , and 4 (see below), often have deleterious effects on the calculation of \(|\mathrm{E}|\) values. There will, however, be situations when selective attenuation of structural information from \(|E|\) values, via the application of high-order expectation values, is extremely useful. The reduction of the dominant effects of a heavy atom or planarity are two obvious examples. In general, however, it is strongly recommended (S \& H, 1982) that the random-atom expectation value
be used in the initial stages of a structure solution, even when additional structure information is known (note well the comments in the next section).

\subsection*{4.25.4.1. Application of Known Structure Information}

The general problem of applying known structural information to the structure invariant process is described by Main (1976). The definitions of the different categories of structural information as used by GENEV have been detailed by \(\mathrm{S} \& \mathrm{H}\) (1982). These are treated in GENEV as the following categories,
type 1 is for random atoms type 2 is for random fragments type 3 is for oriented fragments type 4 is for positioned fragments
```

(wilson on fragline)
(random on fragline)
(orient on fragline)
(positn on frag line)

```

While fragment information of type 2, 3, and 4 may not provide \(|E 2|\) values that are more reliable than \(|\mathrm{E} 1|\) values based on random-atom expectation values, it should always be included in the GENEV calculation when available. This is because the group structure factors which are calculated as part of the evaluation of the expectation value of F squared, \(\left\langle\mathrm{F}^{2}\right\rangle\), provide phase information that is extremely useful in subsequent stages of the phasing process. This phase information can be applied to \(|\mathrm{E} 1|\), as well as \(|\mathrm{E} 2|\), in later calculations.

\subsection*{4.25.5. Inflection-point least-squares}

For a random-atom structure, the Wilson plot is a straight line defined by the overall thermal displacement parameter of the constituent atoms, and the overall scale of the measure structure factors. For a real structure, a Wilson plot will often show significant systematic deviations from this line due principally to the shortrange interatomic distances in the structure. The scattering effects of translational symmetry on the radial distribution of intensities is known as Debye scattering. For the majority of light-to-medium atom structures, the gross effects of Debye scattering are very similar. For instance the nodes, antinodes and inflection-points of a Debye scattering curves calculated for interatomic distances ranging from 1.30 to 1.55 A in a 6-membered ring molecule are quite similar ( \(\mathrm{H} \& \mathrm{~S}, 1982 \mathrm{a}\) ). This means that for many structures inflection-points (the points where the Debye curve crosses the linear mean line) provide a means of finding a reliable linear fit to the Wilson plot, independent of the extent of the Debye scattering effects and the \(s^{2}\) truncation of the data.

GENEV uses the Wilson plot ratios for the 5 ranges clustered about the two cardinal inflection-points. The s squared default values for these inflection-points are set at 0.15 and \(0.26 \mathrm{~A}^{-2}\), but these may be changed for non-typical structures with the din1 and din2 input on the GENEV line. In addition to the clusters of 5 points fixing the two inflection-points, the five largest Wilson plot ratios are used to fix the low angle part of the leastsquares line. The user should always check that the assumptions embodied in the inflection-point least-squares process are valid for each structure. The Wilson plot points used for this purpose are shown in the printed graph as at signs (@). It is recommended that GENEV be rerun with specified values of U and K (using the fixu and fixk options) or different inflection-points (using din1 and din2 values), if the least-squares fit is unsatisfactory.

\subsection*{4.25.6. Estimation Of \(|E(h k l)|\) Errors}

GENEV provides an estimate of the \(|\mathrm{E}(\mathrm{hkl})|\) errors using a procedure described by \(\mathrm{H} \& \mathrm{~S}\) (1982b). The principal source of error in \(|\mathrm{E}|\) values arises from inaccuracies in the measured structure factors. It follows that the legitimacy of the errors estimated in GENEV will depend on the precision of the \(\sigma \mathrm{F}\) values entered on the bdf. The second most important contributor to the \(|\mathrm{E}(\mathrm{hkl})|\) errors arises from fitting the linear or profile scaling functions to the Wilson plot (see below). The effect of Debye scattering on the Wilson plot has already been discussed, and this is taken into account when estimating the errors. The errors estimated for \(|\mathrm{E} 1|\) and \(|\mathrm{E} 2|\)
are placed in the bdf for use in subsequent calculations. The error distribution for a typical structure is listed below.

\subsection*{4.25.6.1. Typical Error Statistics (for an R-factor of .04)}
\begin{tabular}{lllllllllll}
\begin{tabular}{ll} 
Error for \\
\(|E| s\rangle\)
\end{tabular} & 0.00 & 1.00 & 1.20 & 1.40 & 1.60 & 1.8 & 2.0 & 2.5 & 3.0 \\
\begin{tabular}{l}
\(|\mathrm{E}|\) from \\
linear K
\end{tabular} & .25 & .60 & .70 & .80 & .90 & 1.0 & 1.1 & 1.3 & 1.5 \\
\begin{tabular}{l}
\(|\mathrm{E}|\) from \\
profile K
\end{tabular} & .30 & .65 & .75 & .85 & .90 & 1.0 & 1.1 & 1.3 & 1.5 \\
\begin{tabular}{l} 
Error at \\
mean \(s_{2}=\)
\end{tabular} & .00 & .05 & .10 & .125 & .150 & .175 & .200 & .225 & .250 \\
\begin{tabular}{l}
\(|\mathrm{E}|\) from \\
linear K \\
\(|\mathrm{E}|\) from \\
profile K
\end{tabular} & .15 & .17 & .19 & .21 & .22 & .27 & .32 & .35 & .38 \\
\hline
\end{tabular}

\subsection*{4.25.7. BDF Output Of Genev Items}

The user may decide which GENEV items are output to lrrefl: of the bdf. If an archiv line is not entered, the following items are automatically output to the bdf.
\begin{tabular}{lll} 
Scales K & (item 100-) & in record lrexpl: \\
Overall U & (item 2) & in record lrdset: \\
Fragment count & (item 10) & in record lrdset: \\
\(\mid\) E1 \(\mid\) & (item 1600) & in record lrref: \\
\(\mid\) E2 \(\mid\) & (item 1601) & \(\ldots \ldots\) \\
\(\sigma \mid\) E1 \(\mid\) & (item 1602) & \(\ldots \ldots\) \\
\(\sigma \mid\) E2 \(\mid\) & (item 1603) & \(\ldots \ldots\) \\
Group structure factor 1 & (item 1606) & \(\ldots \ldots\) \\
Group structure factor 2 & (item 1607) & \(\ldots \ldots\) \\
\(\ldots \ldots .\). & \(\ldots\) & \(\ldots .\).
\end{tabular}

If any archiv lines are entered, the items 1600 to 1630 must be named explicitly to be output to the bdf. Particular care must be taken if fragment information is used in GENEV calculation. The number of group structure factors (items 1606 on) is equal to the number of fragments, except for type 3 fragments where there is one group structure factor for each point group. The user must also check if any extra type 1 fragments have been added by GENEV to balance the cell content. Subsequent calculations that use the group structure factor phases require that the correct number be present. It is important to note that if GENEV items 1600 to 1630 are present on the input bdf, they will not be transferred to the output bdf. These are purged from lrrefl: before new GENEV items are appended. Additional items, other than 1600-1630, may also be deleted from lrrefl: using the archiv lines. A maximum of 30 items may be added or deleted in this way.

\subsection*{4.25.8. Some Normalization Tips}

Tip 1 Check that \(\sin \theta / \lambda\) maximum on the genev line is as accurate as possible. The default value comes from
the bdf, otherwise it is set to 1.0 . If \(A D D R E F\) has been used with the two pass option, the accurate value will be stored.

Tip 2 Assess the precision of the data. If some weak data are missing from the input bdf, use the fill option to compensate for this. If the weak data have not been processed with Bayesian statistics (e.g.negative \(\left|\mathrm{F}^{2}\right|\) have been set to 0 ), then the baye option can be used to apply a limited Bayesian treatment to \(|\mathrm{F}|\) and \(\sigma \mathrm{F}\) values.

Tip 3 Check what scaling and expectation options should be applied in the calculation of \(|\mathrm{E} 2|\). These are fixed for |E1|.

Tip 4 If the values of either \(U\) or K need to be fixed, use the fixu and/or fixk options. These will apply only to |E2|.

Tip 5 The default rescaling mode for \(|\mathrm{E} 2|\) is index rescaling applied to the eight parity groups, provided that frag, prof, or fixu/k options are not used. If any of these lines are entered, the default rescaling mode for |E2| becomes 'overall'. Index rescaling may be specified explicitly with the indexk line(s) but care should be taken in selecting index groups appropriate to the problem.
Tip 6 Known structure information is entered using the frag,site, sitea, and siteg lines. Fragment information is entered for the asymmetric unit, as opposed to the celcon information which is entered for the whole cell. sitea lines containing coordinates in orthogonal Angstroms must be used for type 2 fragments. A grid line must precede the first siteg line entered. The frag line may be used to move the origin of atom coordinates that follow. This is sometimes useful for converting from type 3 to type 4 input.

Tip 7 The user may output the \(\left|F^{2}\right|\) expectation values used in the GENEV calculation as items 1604 and 1605 in lrrefl.: This can be efficient for very large structures when GENEV is repeated for different normalization parameters but the same fragment information. This is specified by putting bexp in the GENEV line and leaving out the frag and site lines.

Tip 8 Cell content information is extracted from the input bdf (if entered through the program STARTX). This may be replaced by entering celcon lines.

Tip 9 Always check that the items to be used in subsequent calculations (e.g. GENSIN, GENTAN, and FOURR) are to be output. In most cases the default items will be sufficient, but in special cases the archiv line(s) can be used to add the items required. It is good archival practice to regularly check the contents of lrrefl: and remove any items that are no longer needed.

\subsection*{4.25.9. File Assignments}
- Reads structure factors from the input archive bdf
- Writes normalized structure factors (E's) to the output archive bdf

\subsection*{4.25.10. Examples}
```

GENEV smax 0.52 :s max of all data is . 52

```
|E1| will be calculated with linear scale, random-atom expectation value, and overall rescale. \(|\mathrm{E} 2|\) will be the same except for index rescaling using hkl parity groups. No \(|\mathrm{E}|\) values will be listed and \(|\mathrm{E} 1|\) and \(\sigma|\mathrm{E} 1|\) will be output on the bdf.
```

site br1 .5 .5 0 *7 .5 :bromine in special position
site c1 . 73 . 57 . 333
site n3 -. 15 . 44 . 62
archiv 1600 1602 1606 1607 :add |E1|, s|E1|, gsf1, gsf2

```
|E2| will be calculated with a linear scale, overall rescale and an expectation value derived from the type 3 fragment of atoms \(\mathrm{Br} 1, \mathrm{C} 1\), and N 3 and the remaining atoms (i.e. balance of cell contents) as a type 1 fragment.
```

GENEV smax . 33 fixu .04 baye fill
indexk :use index rescale (parity hkl) for |E2|
archiv 1601 1603 -1800 :add |E2|, sigma|E2|, delete |Fc| from bdf

```
|E2| will be calculated with linear scale (with \(u=0.04\) ), random-atom expectation value, and index rescaling with parity groups. All input \(|\mathrm{F}| \mathrm{s}\) and \(\sigma|\mathrm{F}| \mathrm{s}\) are treated with limited Bayesian statistics and the Wilson plot is adjusted for missing data. Only \(|\mathrm{E} 2|\) and \(\sigma|\mathrm{E} 2|\) are added to the bdf; \(|\mathrm{Fc}|\) is removed.
```

GENEV dset 3 bexp prof
indexk 1 1 1 4 1 :set index scale group 1
indexk 1 1 1 3 *16.5 set index scale group 2 and set scale

```
|E2| will be calculated with a profile scale, random-atom expectation value, and index rescaling based on the groups \((\mathrm{h}+\mathrm{k}+\mathrm{l}) \bmod 4=1,(\mathrm{~h}+\mathrm{k}+\mathrm{l}) \bmod 4=3\), and the remainder. The scale of the second index groups will be fixed at 0.5 . In this example the two \(|E|\) estimates will be output without their error values.

\subsection*{4.25.11. References}
- French, S. and Wilson,K. 1978. On the Treatment of Negative Intensity Observations. Acta Cryst. A34, 517-525.
- Hall, S.R. and Subramanian V. 1982a. Normalized Structure Factors. II. Estimating a Reliable Value of B . Acta Cryst., A38,590-598.
- Hall, S.R. and Subramanian,V. 1982b. Normalized Structure Factors. III. Estimation of Errors . Acta Cryst. A38, 598-608.
- Luger, P. 1980. Modern X-ray Analysis on Single Crystals. New York: de Gruter.
- Main, P. 1976. Recent Developments in the MULTAN System - The Use of Molecular Structure.. Crystallographic Computing Techniques, F.R. Ahmed, K. Huml, B. Sedlacek, eds., Munksgaard. Copenhagen: 97-105.
- Stout, G.H. and Jensen,L.H. 1968. X-ray Structure Determination: A Practical Guide: New York: MacMillan.
- Subramanian, V. and Hall, S.R. 1982. Normalized Structure Factors. I. Choice of Scaling Function. Acta Cryst. A38, 577-590.
- Wilson, A.J.C. 1942. Determination of Absolute from Relative X-ray Intensity. Nature 150, 151-152.

\subsection*{4.26. GENSIN: Generate triplets and quartets}

\author{
Authors: V. Subramanian and Syd Hall
}

Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907 Australia
GENSIN generates triplet and quartet structure invariant relationships. Group structure factor information entered from the input bdf (from GENEV) can be used to enhance the conditional probabilities of invariant relationships and to improve the estimate of their expected phase value.

\subsection*{4.26.1. Introduction}

Most direct methods approaches use the triplet structure invariant relationship
\(\psi_{3}=\phi\left(\mathrm{h}_{1}\right)+\phi\left(\mathrm{h}_{2}\right)+\phi\left(\mathrm{h}_{3}\right)\)
where \(h_{1}+h_{2}+h_{3}=0(1)\)
The value of \(\psi_{3}\) is conditional on the probability expression
\(\mathrm{A}=2 \mathrm{a}\left|\mathrm{E}\left(\mathrm{h}_{1}\right) \mathrm{E}\left(\mathrm{h}_{2}\right) \mathrm{E}\left(\mathrm{h}_{3}\right)\right|\) where \(\mathrm{a}=\sum_{\mathrm{N}} \mathrm{f}^{3} /\left(\sum_{\mathrm{N}} \mathrm{f}^{2}\right)^{3 / 2}\)
N is the number of atoms in the unit cell. For uniform-atom structures a tends to \(1 / \mathrm{N}^{1 / 2}\). The probability distribution of \(\psi_{3}\), conditional on A , (Cochran, 1955) is
\(\mathrm{P}\left(\psi_{3} \mid \mathrm{A}\right)=\exp \left(\mathrm{A} \cos \psi_{3}\right) 2 \pi \mathrm{I}_{0}(\mathrm{~A})(3)\)
The importance of the magnitude of A (and therefore the E-values and N ) may be seen from the variation of \(\mathrm{P}\left(\psi_{3} \mid \mathrm{A}\right)\) for the typical values of A .
\begin{tabular}{llllll}
\(\psi_{3}\) & \(0^{\circ}\) & \(45^{\circ}\) & \(90^{\circ}\) & \(135^{\circ}\) & \(180^{\circ}\) \\
\(\mathrm{P}\left(\psi_{3} \mid 3.\right)\) & .65 & .27 & .03 & .004 & .002 \\
\(\mathrm{P}\left(\psi_{3} \mid 1.\right)\) & .34 & .25 & .13 & .06 & .05
\end{tabular}

Direct methods procedures depend critically on being able to predict the value of \(\psi_{3}\) and on being able to apply triplet relationships as a series of equations. For large values of \(\mathrm{A}, \psi_{3}\) has a high probability of being 0 . and this makes large-A triplets particularly important for these processes.

For the quartet structure invariant relationship
\(\psi_{4}=\phi\left(\mathrm{h}_{1}\right)+\phi\left(\mathrm{h}_{2}\right)+\phi\left(\mathrm{h}_{3}\right)+\phi\left(\mathrm{h}_{4}\right)\) where \(\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{4}=0(4)\)
the value of \(\psi_{4}\) depends principally on the probability factor
\(\mathrm{B}=2 \mathbf{b}\left|\mathrm{E}\left(\mathrm{h}_{1}\right) \mathrm{E}\left(\mathrm{h}_{2}\right) \mathrm{E}\left(\mathrm{h}_{3}\right) \mathrm{E}\left(\mathrm{h}_{4}\right)\right|\) where \(\mathbf{b}=\sum_{\mathrm{N}} \mathrm{f}^{4} /\left(\sum_{\mathrm{N}} \mathrm{f}^{2}\right)^{2}(5)\)
For uniform-atom structures \(\mathbf{b}\) tends to \(1 / \mathrm{N}\). The probability distribution of \(\psi_{4}\), ignoring the cross-vectors magnitudes \(\mathrm{E}\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right), \mathrm{E}\left(\mathrm{h}_{1}+\mathrm{h}_{3}\right)\), and \(\mathrm{E}\left(\mathrm{h}_{1}+\mathrm{h}_{4}\right)\) (referred to later as \(\left.\mathrm{E}_{12}, \mathrm{E}_{13}, \mathrm{E}_{14}\right)\), may be written as follows (Hauptman, 1976)
\(\mathrm{P}\left(\psi_{4} \mid \mathbf{B}\right)=\exp \left(\mathrm{B} \cos \psi_{4}\right) / 2 \pi \mathrm{I}_{0}(\mathrm{~B})(6)\)
This function is similar to \(\mathrm{P}\left(\psi_{3} \mid \mathrm{A}\right)\), except that the value of B will tend to be much smaller for large structures. The probability distribution of \(\psi_{4}\) is dependent on more than the principal vectors that go to make up B and is more correctly
\(\mathrm{P}\left(\psi_{4} \mid \mathrm{B}, \mathrm{E}_{12}, \mathrm{E}_{13}, \mathrm{E}_{14}\right)=\exp \left(-\mathrm{B} \cos \psi_{4}\right) / 2 \pi \mathrm{I}_{0}(\mathrm{Z})(7)\)
where Z is a function of the seven vectors \(\mathrm{E}\left(\mathrm{h}_{1}\right)\) to \(\mathrm{E}_{14}\). An important property of the probability expression (7) is that if the cross-vectors are large, then expression (6) holds, but if the cross-vectors are small then expression (7) approximates as
\(\mathrm{P}\left(\psi_{4} \mid \mathrm{B}, \mathrm{E}_{12}, \mathrm{E}_{13}, \mathrm{E}_{14}\right)=\exp \left(-\mathrm{B} \cos \psi_{4}\right) / 2 \pi \mathrm{I}_{0}(2 \mathrm{~B})(8)\)

The importance of this result may be illustrated for a fixed value of \(B\) (for example, 3.) and for small and large cross-vectors (XV)
\begin{tabular}{llllll}
\(\psi_{4}\) & \(0^{\circ}\) & \(45^{\circ}\) & \(90^{\circ}\) & \(135^{\circ}\) & \(180^{\circ}\) \\
\(\mathrm{P}\left(\psi_{4} \mid 3 .\right.\), & .65 & .27 & .03 & .004 & .002 \\
large XV \()\) & & & & & \\
\(\mathrm{P}\left(\psi_{4} \mid 3 .\right.\), & .0001 & .0003 & .002 & .005 & .007 \\
small XV \()\) & & & & &
\end{tabular}

Because of the dependence of \(\psi_{4}\) on the magnitude of the cross-vectors, quartets are usually grouped into two classes according to the sum of cross-vector magnitudes.

XVsum \(=\left|E_{12}\right|+\left|E_{13}\right|+\left|E_{14}\right|\)
If XVsum is greater than a certain threshold (e.g. XSHI), a quartet is referred to as a positive quartet (because \(\cos \psi_{4}\) should be positive). If it is less than a lower threshold (e.g. XSLO), a quartet is known as a negative quartet (because \(\cos \psi_{4}\) should be negative). GENSIN estimates the value of XVSUM and various procedures can be adopted by the user to control the generation of quartets using this sum.

\subsection*{4.26.2. Application Of Group Structure Factors}

The normalization program, \(G E N E V\), converts known structural information into one or more group structure factors \(G(h)\) for each reflection. These group structure factors are used in GENEV to calculate an expectation value for \(\mathrm{F}^{2}(\mathrm{~h})\) where M depends on the number of molecular fragments and the nature of the fragment information (see GENEV for details).
\(\left\langle\mathrm{F}^{2}(\mathrm{~h})\right\rangle=\sum_{\mathrm{M}} \mathrm{G}^{2}(\mathrm{~h})(10)\)
GENEV outputs the group structure factor values as the magnitude \(\mathrm{G}(\mathrm{h})\) and the phase \(\mathrm{g}(\mathrm{h})\). Knowledge of the structure influences the values expected for \(\psi\). If the atomic parameters are known to a certain precision, then \(\mathrm{G}(\mathrm{h})\) and \(\mathrm{g}(\mathrm{h})\) values (which in this instance are the same as \(\mathrm{F}(\mathrm{h})\) and \(\phi(\mathrm{h})\) ) may be used to predict \(\psi\) to the same precision. The group structure factor is in fact an important component in the conditional probability expressions for \(\psi_{3}\) and \(\psi_{4}\).

\subsection*{4.26.2.1. Triplets}

Main (1976) modifies the value of A to the form:
\(A^{\prime}=2 a^{\prime}\left|E\left(h_{1}\right) E\left(h_{2}\right) E\left(h_{3}\right)\right|(11)\)
where
\(\mathrm{a}^{\prime}=\sum_{\mathrm{M}} \mathrm{G}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right) /\left[\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{1}\right)\right\rangle\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{2}\right)\right\rangle\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{3}\right)\right\rangle\right]^{1 / 2}\)
The correspondence between \(\mathbf{a}^{\prime}\) and \(\mathbf{a}\) in expression (3) is quite apparent when the only knowledge of a structure is its atomic content. Then each \(\left\langle\mathrm{F}^{2}(\mathrm{~h})\right\rangle=\sum \mathrm{f}^{2}(\mathrm{~s})\); each \(\mathrm{G}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right)=\sum \mathrm{f}^{3}(\mathrm{~s})\) and \(\mathbf{a}=\mathbf{a}\). With increasing structural information the value of \(\mathbf{a}\) ' may differ substantially from \(\mathbf{a}\). The most important term in expression (12) is the joint group structure factor \(G\left(h_{1}, h_{2}, h_{3}\right)\) which is calculated directly for each invariant from the known structural information (see Main, 1976). This calculation is, however, a time-consuming task even for small structures. A more efficient approach involving a minimal loss in precision is the use of the individual group structure factors of the form (Hall, 1978):
\(\mathrm{a}^{\prime}=\sum_{\mathrm{M}}\left[\mathrm{G}\left(\mathrm{h}_{1}\right) \mathrm{G}\left(\mathrm{h}_{2}\right) \mathrm{G}\left(\mathrm{h}_{3}\right)\right] /\left[\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{1}\right)\right\rangle\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{2}\right)\right\rangle\left\langle\mathrm{F}^{2}\left(\mathrm{~h}_{3}\right)\right\rangle\right]^{1 / 2}\)

\subsection*{4.26.2.2. Quartets}

This approximation applied to quartet relationships gives
\(\mathrm{B}^{\prime}=2 \mathbf{b}^{\prime}\left|\mathrm{E}\left(\mathrm{h}_{1}\right) \mathrm{E}\left(\mathrm{h}_{2}\right) \mathrm{E}\left(\mathrm{h}_{3}\right) \mathrm{E}\left(\mathrm{h}_{4}\right)\right|\) (14)
where \(\mathbf{b}^{\prime}=\)
\[
\sum_{M}\left[G\left(h_{1}\right) G\left(h_{2}\right) G\left(h_{3}\right) G\left(h_{4}\right)\right]
\]
\[
\begin{aligned}
& ------------------------\mathrm{F}_{2}\left(\mathrm{~h}_{1}\right)>\left\langle\mathrm{F}_{2}\left(\mathrm{~h}_{2}\right)\right\rangle\left\langle\mathrm{F}_{2}\left(\mathrm{~h}_{3}\right)\right\rangle\left\langle\mathrm{F}_{2}\left(\mathrm{~h}_{4}\right)\right\rangle \\
& ]_{1 / 2}
\end{aligned}
\]

In this way fragment information is used to predict the distribution of \(\psi_{3}\) and \(\psi_{4}\) according to \(\mathrm{P}\left(\psi_{3} \mid \mathrm{A}^{\boldsymbol{\top}}\right)\) and \(\mathbf{P}\left(\psi_{3} \mid \mathrm{B}^{\prime}, \mathrm{XV}\right.\) sum \()\). Most importantly, however, the probability terms \(\mathrm{A}^{\prime}\) and \(\mathrm{B}^{\prime}\) from (13) and (14) are complex \(\mathrm{A}^{\prime}=\left|\mathrm{A}^{\prime}\right| \exp \left(\mathrm{i} \Psi_{3}\right)\) and \(\mathrm{B}^{\prime}=\left|\mathrm{B}^{\prime}\right| \exp \left(\mathrm{i} \Psi_{4}\right)(\)
with the phase values \(\Psi_{3}\) and \(\Psi_{4}\), which are estimates of \(\psi_{3}\) and \(\psi_{4}\), respectively. The reliability of \(\Psi_{3}\) and \(\Psi_{4}\) as phase estimates depends on the precision of the structural information, and the magnitude of \(\mathrm{A}^{\prime}\) and \(\mathrm{B}^{\prime}\), respectively. For random-atom structures (i.e., fragment information type-1 in GENEV) \(\mathrm{A}^{\prime}=\mathrm{A}\) and \(\mathrm{B}^{\prime}=\mathrm{B}\), and \(\Psi_{3}=\Psi_{4}=0\). If random-fragment (type-2) information is used in GENEV, the \(\Psi_{3}\) and \(\Psi_{4}\) values are also assumed to be zero (this is a limitation of using approximation (15) instead of (14)). For type-3 and type-4 fragments information the values of \(\Psi_{3}\) and \(\Psi_{4}\) may be non-zero. In the following description and input line formats \(\Psi_{3}\) and \(\Psi_{4}\) values are referred to as the fragment \(\psi\) estimates "QPSI".

\subsection*{4.26.3. Origin And Enantiomorph Definition}

In addition to generating structure invariants, GENSIN provides the conditions for the origin and enantiomorph definition of the cell. Fixing the origin and enantiomorph is a necessary first step in the GENTAN phase extension process. It is performed automatically; the user may, however, override this procedure using phases selected according to the definitions output by GENSIN. The conditions for specifying the origin in terms of structure factor seminvariant phases is detailed by Hauptman and Karle (1956) and Karle and Hauptman (1956). Application procedures for applying these conditions are described by Stewart and Hall (1971), Luger (1980), and Hall (1983).

It should be noted that for GENSIN and GENTAN the seminvariant vector conditions are always in terms of the input indices. It is therefore unnecessary to transform centred indices to primitive indices for the purposes of origin specification. Details of the seminvariants vectors for centred space groups are described by Hall (1982).

The origin of a cell is fixed by specifying the structure factor phases of \(p\) linearly-independent reflections. The value of \(p\) ranges from 0 to 3 , and is determined by the space group symmetry.
Any reciprocal lattice vector \(\mathbf{h}\) is a linear combination of p origin defining vectors \(\mathrm{h}(1) \ldots \mathrm{h}(\mathrm{p})\)
\(h=\sum_{\mathrm{p}} \mathrm{n}_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}\)
where \(n_{j}\) is any integer value. This relationship may be expressed as the vector transformation
\(\mathbf{h}=\mathbf{n} \mathbf{H}\) (19)
where \(\mathbf{n}\) is the set of integers \(\mathrm{n}(1), \ldots \mathrm{n}(\mathrm{p})\) and \(\mathbf{H}\) is the set or origin defining reflections \(\mathrm{h}(1), \ldots \mathrm{h}(\mathrm{p})\). The linear relationship of a reflection \(\mathbf{h}\) to the set of origin defining reflections \(\mathbf{H}\) is given by
\(\mathbf{n}=\mathbf{h} \mathbf{H}^{-1}\) (20)
A reflection vector \(\mathbf{h}\) may also be transformed into the seminvariant indices \(\mathbf{u}\) by the operations
\(\mathbf{u}=\mathbf{h}^{\mathbf{\prime}}(\bmod \mathbf{m})=(\mathrm{u}, \mathrm{v}, \mathrm{w})(21)\)
and \(\mathbf{h}^{\prime}=\mathbf{V} \mathbf{h}\) (22)
where \(\mathbf{V}\) is the seminvariant vector matrix and \(\mathbf{m}\) the seminvariant moduli (Hauptman and Karle, 1956). A necessary requirement of any set of origin defining reflections is that the matrix of seminvariant indices \(\mathbf{U}\)
\(\mathbf{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \mathrm{u}_{\mathrm{p}}\right)(23)\)
has the magnitude
\(|\mathbf{U}|=+1\) or -1 . (24)
The linear relationship of any structure factor phase \(\phi(\mathrm{h})\) may be expressed in terms of the \(\mathbf{u}\) from (21) as:
\(\mathbf{n}^{\prime}=\mathbf{u} \mathbf{U}^{-1}\). (25)
If \(\mathbf{Q}\) is defined as the set of origin defining phases
\(\mathbf{Q}=\left(\phi\left(\mathrm{h}_{1}\right), \phi\left(\mathrm{h}_{2}\right), \ldots \phi\left(\mathrm{h}_{\mathrm{p}}\right)\right)(26)\)
The seminvariant phase due to linear relationship of \(\mathbf{h}\) to \(\mathbf{H}\) may be derived from the linear combination of these phases (Hauptman and Karle, 1956)
\(\mathrm{q}(\mathbf{h})=\mathbf{n} \mathbf{\prime} \mathbf{Q}\). (27)
If seminvariant phase \(\mathbf{q}(\mathbf{h})\) is equal, modulus \(\pi\), to the phase of vector \(\mathbf{h}\), then the value of \(\phi(\mathbf{h})\) is independent of the enantiomorphous structure. If \(\mathbf{q}(\mathbf{h})\) is significantly different (modulus \(\pi\) ) to \(\phi(\mathbf{h})\), then the enantiomorph may be specified by fixing \(\phi(\mathbf{h})\) at one of its two possible values.
For space groups where \(\phi(\mathbf{h})\) is restricted to one of two values (e.g. for \(\mathrm{P} 2_{1}{ }_{1}{ }_{1}{ }_{2}{ }_{1} \phi(\mathrm{uu} 0)=\& \# 177 ; \pi / 2\) and \(\phi(\mathrm{gu} 0)=0, \pi)\), the calculation of \(\mathrm{q}(\mathbf{h})\) from integer set \(\mathbf{n}\) ' and its application to the phase set \(\mathbf{Q}\) provides a straightforward approach to identifying the formal requirements of enantiomorphic discrimination (Hall, 1983).

If all restricted phases have values of \(\phi(\mathbf{h})=\mathrm{q}(\mathbf{h})\), then a reflection with a non-restricted phase value must be used to specify the enantiomorph. For these space groups, \(\mathrm{q}(\mathbf{h})\) indicates the range of values \(\phi(\mathrm{h})\) should have to separate satisfactorily the enantiomorphs. Typically a \(\phi(\mathbf{h})\) value would be permuted in a multisolution process, to a series of values for \(\mathrm{q}(\mathbf{h})+\pi / 4\) to \(\mathrm{q}(\mathbf{h})+3 \pi / 4\) in increments of \(\pi / 4\). Differences between \(\phi(\mathbf{h})\) and \(\mathrm{q}(\mathbf{h})\) of less than \(\pi / 6\) will not provide strong enantiomorphic discrimination and are likely to lead to instability in the phasing process. For examples of enantiomorphic discrimination see Hall (1983).

\subsection*{4.26.4. Notes On GENSIN Parameters}

\subsection*{4.26.4.1. Number of Invariants}

In the default mode GENSIN generates both triplet and quartet structure invariant relationships. Invariant types may be specified by the user with the trip and quar control lines. The number of structure invariants generated is determined by a range of parameters, including the number of generators, the magnitude of the E values, and the magnitude of the A and B thresholds. In default mode, the maximum number of invariants for either type is set at 2000 .

\subsection*{4.26.4.2. Number of Generators}

The reflections used in the generation process are selected from the largest En, where n designates the E-type (1 or 2 ) output by GENEV. The default value of n is 1 . The number of generators is controlled by the user via the gener line, or set automatically according to the algorithm

MAXGEN \(=\max \left(10000,150+\right.\) NNHA \(^{*}(4+\mathrm{ICNT}+1 / \mathrm{NEQP})\) ),
where \(\mathrm{ICNT}=1\) if centrosymmetric and \(\mathrm{ICNT}=0\) if noncentrosymmetric, NNHA is the number of nonhydrogen atoms in the molecule, and NEQP is the number of general equivalent positions.

\subsection*{4.26.4.3. Psi(0) Triplets}

Triplet invariants are always generated for up to 100 of the smallest E-values independent of the TRIP parameters. These are used subsequently in the \(\psi\) (zero) figure-of-merit tests in GENTAN, and are referred to as \(\psi(0)\) triplets (Cochran and Douglas, 1957).

\subsection*{4.26.4.4. Estimation of Psi From bdf Phases}

GENSIN provides, via the psical line, the facility to calculate \(\psi\) from phases and structure factor values stored on the bdf. The \(\phi\) and \(|\mathrm{F}|\) values on the bdf may be from a previous GENTAN run, an \(F C\) calculation on a partial structure, or the back transform of modified density for protein structures. The bdf lrref: ID numbers for \(\phi\) and F are assumed to be n 750 and n 751 unless otherwise specified on the psical line.

\subsection*{4.26.4.5. Application of Fragment QPSI}

The inclusion of fragment QPSI values (see the GENSIN line and description above) in the invariant generation process will modify the calculated A and G values, and therefore change the number and nature of invariants generated. This is quite independent of the E used (i.e., E1 or E2). It is recommended that E1, based on random-atom expectation values, are always used, except in special circumstances (see Subramanian and Hall, 1982; Hall and Subramanian, 1982a,b). This is because the QPSI values contain the group structure phase information of the fragment, and E1 has been shown to provide more reliable structure invariant relationships. As a rule-of-thumb E2 should be treated as a second option that the user can invoke in cases of severe nonrandomness (e.g., hypersymmetry, super-structures or very dominant heavy atoms).

\subsection*{4.26.4.6. Adjusting \(|\mathbf{E}|\) Values}

The change control line is available for modifying the magnitude of specific E or \(\sigma(\mathrm{E})\) values. change can be used to enhance or to suppress a particular E in the generation process by increasing or decreasing its E value. It is also useful for running "replica" tests against other software and different machines. Please note that change lines must be entered in the order of reflection data on the input bdf, and be the last control lines entered.

\subsection*{4.26.4.7. Types of Quartet Invariants}

The nature of quartet invariants generated by GENSIN is determined largely by the cross-vector magnitudes. The types and magnitudes of cross-vectors permitted during the generation process are controlled via the parameters IXVF, XVMN, XVMX, XSLO, and XSHI on the quar line. The XSLO and XSHI parameters apply only to quartets with cross-vectors inside the data sphere. The cross-vector limits XVMN and XVMX are applied to individual cross-vector E values. If an individual cross-vector E lies outside the range XVMN to XVMX the quartet is rejected. In the default mode, the sum of the cross-vector magnitudes XVsum (eqn (9)) is calculated for all cross-vectors inside the data sphere with XVsum < XSLO and XVsum > XSHI.

Quartets generated by GENSIN are used in several different ways in the subsequent calculations. Typically quartets are divided into three categories: those with cross-vector sums above an upper threshold XSHI (known as positive quartets), those below a lower threshold XSLO (known as negative quartets), and those in between. The last category is often not used in the phasing process because of the unpredictability of the \(\psi_{4}\) values. The user can specify these upper and lower thresholds, XSHI and XSLO, with the quar line for both the GENSIN and GENTAN calculations.

It is usual to use only quartets with cross-vectors inside the data sphere. The XVsum is then able to be calculated and a prediction made about the value of \(\psi_{4}\). There are, however, some drawbacks to this approach. When XVsum is greater than XSHI it is probable that the quartet generated will in fact be equivalent to a combination of three triplet invariants also generated by the GENSIN process. The phase relationships provided by positive
quartets tend therefore to reinforce, rather than add to, those provided by the triplets. The phase "pathways" provided by quartets will, of course, be different to those of triplets but the generators they connect will, in effect, be the same.

Quartets with XSLO < XVsum < XSHI are usually not redundant to triplets but are less useful for the reasons already discussed.

Negative quartets with XVSUM less than XSLO provide completely different phase information to triplets but are very few in number. For this reason they are used in GENTAN for a figure-of-merit parameter.

In contrast, quartet invariants with one or more cross-vectors outside the data sphere, provide relationships that cannot be represented by a combination of triplets. These quartets provide new phase pathways and, as such, could prove crucial in particularly difficult solutions. The disadvantage of these "extra-terrestrial" quartets is the lack of cross-vector information and, therefore, the inability to predict the value of \(\psi_{4}\). However, it may be assumed that \(\psi_{4}\) for these quartets has a distribution based on B (just as \(\psi_{3}\) is a function of A ) and an overall reliability comparable to that of triplets (ignoring the relative magnitudes of A and B). See Examples 3 and 4.

\subsection*{4.26.5. File Assignments}
- Reads E values from the input archive bdf
- Writes structure invariant relationships to the file inv

\subsection*{4.26.6. Examples}

GENSIN

Generate triplet and quartet invariants to a maximum of 2000 using type-1 E values. Only quartets with crossvectors inside the data sphere will be output. QPSI values will be applied if fragment information is on the input bdf. Print invariant totals for all generators.
```

GENSIN nqpi
quar no
print *2 1 50 100

```
gener *2 300 :use top 300 E values
trip yes 1.53000 :set max A and max triplets
```

:do not use QPSI information
:do not generate quartets
:print SI for gens 1-50 to N of 100

```

Generate maximum of 3000 triplets with A values greater than 1.5 from 300 generators. Available QPSI values are not applied. Structure invariants for the top 50 generators are printed provided all generator numbers are <= 100 .
```

GENSIN smax .45 :exclude all s values >.45
quar yes 0.75 *8 1. 5. :for Q4 B>.75 and XVsum>5 or <1.
change 1 7 3 3.2 :make E = 3.2
change 2 3 -4 2.75 :make E = 2.75

```

Generate triplets and quartets for generators selected from Es with s<.45. Quartets will be accepted if B>. 75 and has a cross-vector sum (all cross-vectors inside the data sphere) 5. or 1 . The E value of reflections 1, 7, 3 and \(2,3,-4\) will be modified on input.
```

GENSIN

```
quar *5 outxv :generate quartets with outside cross-vectors

Generate triplets and quartets. The quartets must have at least one of their three cross-vectors outside the data sphere.
```

GENSIN
quar *5 outxv -5. 0. :all cross-vectors outside sphere

```

Generate triplets and quartets. The quartets must have all three cross-vectors outside the data sphere.

\subsection*{4.26.7. References}
- Cochran, W. and Douglas, D. 1957. The Use of a High-speed Digital Computer for the Direct Determination of Crystal Structures . Proc. Roy. Soc. A243, 281.
- Hall, S.R. 1981. A Procedure for Random-access to Reflection Data. J. Appl. Cryst. 14, 214-215.
- Hall, S.R. 1982. Seminvariant Vectors for Centred Space Groups . Acta Cryst. A38, 874-875.
- Hall, S.R. 1983. A Procedure for Identifying Enantiomorph-Defining PhasesActa Cryst. A39, 22-26.
- Hall, S.R. and Subramanian, V. 1982a. Normalized Structure Factors. II. Estimating a Reliable Value of B . Acta. Cryst. A38, 590-598.
- Hall S.R. and Subramanian, V. 1982b. Normalized Structure Factors. III. Estimation of Errors . Acta Cryst. A38, 598-608.
- Hauptman, H. 1976. Some Recent Advances in the Probabilistic Theory of the Structure Invariants. Crystallographic Computing Techniques. F.R. Ahmed, K. Huml, B. Sedlacek, eds., Munksgaard. Copenhagen: 129-130.
- Hauptman, H. and Karle, J. 1956. Structure Invariants and Seminvariants for Noncentrosymmetric Space Groups. Acta. Cryst. 9, 45-55.
- Karle, J. and Hauptman, H. 1956. Theory of Phase Determination for the Four Types of Noncentrosymmetric Space Groups 1P222, 2P222, 3P12, 3P22. Acta. Cryst. 9, 635-654.
- Luger, P. 1980. Modern X-ray Analysis on Single Crystals. de Gruter: New York.
- Main, P. 1976. Recent Developments in the MULTAN System - The Use of Molecular Structure. Crystallographic Computing Techniques F. R. Ahmed, K. Huml, B. Sedlacek, eds., Munksgaard. Copenhagen: 97-105.
- Stewart, R.F. and Hall, S.R. 1971. X-ray Diffraction . Determination of Organic Structures by Physical Methods. F.C. Nachod and J.J. Zuckerman, eds., Academic Press: New York, 74-132.
- Subramanian, V. and Hall, S.R. 1982. Normalized Structure Factors. I. Choice of Scaling Function. Acta. Cryst. A38, 577-590.

\subsection*{4.27. GENTAN: Tangent phasing}

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands WA 6907, Australia
GENTAN uses triplet and/or quartet structure invariant relationships in a general tangent formula to propagate and refine structure factor phases. The phases required to define the cell origin and enantiomorph are specified automatically, or may be selected (wholly or partly) by the user.

\subsection*{4.27.1. Tangent Formula}

The tangent formula approach of Karle and Hauptman (1956) is the most widely used procedure for the extension and refinement of structure factor phases. Users who are relatively unfamiliar with this field are well advised to read summaries of these methods by Karle and Karle (1966) and Stewart and Hall (1971). Practical guidelines and background information on the application of the tangent formula is detailed in the proceedings of the 1975 IUCr Computing School (Ahmed, 1976).

The tangent formula is a straightforward computational approach to summing phases estimated with the triplet invariant relationship
\(\psi_{3}=\phi\left(\mathrm{h}_{1}\right)+\phi\left(\mathrm{h}_{2}\right)+\phi\left(\mathrm{h}_{3}\right)\), where \(\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}=0(1)\)
The conditions for which \(\psi_{3}\) has a value close to zero have been discussed in the GENSIN introduction. If there are \(\mathbf{m}\) triplet relationships then the cyclic nature of the contributing phases requires that the mean value of \(\phi\left(\mathrm{h}_{1}\right)\) has the trigonometric form
\(\tan \phi\left(\mathrm{h}_{1}\right)=\sum_{\mathrm{m}} \mathrm{A}_{\mathrm{i}} \sin \left\{-\phi\left(\mathrm{h}_{2}\right)-\phi\left(\mathrm{h}_{3}\right)\right\}{ }_{\mathrm{i}} / \sum_{\mathrm{m}} \mathrm{A}_{\mathrm{i}} \cos \left\{-\phi\left(\mathrm{h}_{2}\right)-\phi\left(\mathrm{h}_{3}\right)\right\}_{\mathrm{i}}\)
Because contributing phases can vary in reliability, a weighted tangent formula is required to average the phases as follows,
\(\tan \phi\left(\mathrm{h}_{1}\right)=\sum_{\mathrm{m}} \mathrm{A}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \sin \left\{-\phi\left(\mathrm{h}_{2}\right)-\phi\left(\mathrm{h}_{3}\right)\right\}_{\mathrm{i}} / \sum_{\mathrm{m}} \mathrm{A}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \cos \left\{-\phi\left(\mathrm{h}_{2}\right)-\phi\left(\mathrm{h}_{3}\right)\right\}_{\mathrm{i}}\)
The quantity \(\mathrm{w}_{\mathrm{i}}\) is a measure of the joint reliability of the two phases contributing to the i'th triplet invariant. This approach can be applied to any order of structure invariant. A general expression for structure invariants of order \(\mathbf{n}\) is
\(\psi_{\mathrm{n}}=\sum_{\mathrm{n}} \phi_{\mathrm{i}}\)
provided that \(\sum_{\mathrm{n}} \mathrm{h}_{\mathrm{i}}=0\)
It follows from equation (3) that the general tangent formula suitable for application to these invariants has the form shown in equation (5) (Hall, 1978). X is \(\mathrm{A}, \mathrm{B}, \ldots\) according to the order of the invariant.
\(\tan \phi\left(\mathrm{h}_{1}\right)=\sum_{\mathrm{m}} \mathrm{w}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \sin \left\{\psi_{\mathrm{n}}-\sum_{\mathrm{n}-1} \phi_{\mathrm{j}}\right\}_{\mathrm{i}} / \sum_{\mathrm{m}} \mathrm{w}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \cos \left\{\psi_{\mathrm{n}}-\sum_{\mathrm{n}-1} \phi_{\mathrm{j}}\right\}_{\mathrm{i}}\)
The general tangent formula also permits the use of non-zero \(\psi\) values. This is particularly important if oriented or positioned fragment information is used to estimate \(\psi\) from the group structure factors (see the GENEV and GENSIN documentation and the section on partial structure information below). In strongly non-random structures \(\psi\) can depart significantly from zero even for invariants with large \(\mathbf{X}\) values.

It has also been discussed in GENSIN that \(\Psi\) may be expected to be closer to \(\pi\) than 0 for negative quartets (see the GENSIN documentation for definition). The negative quartets are used by GENTAN for FOM purposes only, unless the active option is entered on the invar line (then negative quartets are used actively and not for the FOM).

\subsection*{4.27.2. Starting the tangent process}

The tangent phasing process is usually initiated with a few "known" phases. From these phases additional values are determined through the application of the tangent formula to connecting invariant relationships. In turn, new phases are used to expand the phasing process further.

The tangent refinement of a phase set stops when the estimated phases converge to a constant \(\alpha^{2}\) value. Convergence occurs when the refined phases are self-consistent with the structure invariant relationships and the refinement constraints applied (e.g., weighting scheme). Due to the pyramidal nature of the phasing process (i.e., a few phases determine many), the final phase set is also strongly dependent on the starting phases. To a large extent the success or failure of the multisolution method is determined by the actual values of the starting phases. This is why a great deal of the computational effort goes into the selection of starting reflections.

Where do the "known" starting phases come from? Some may be specified directly in order to fix the origin in the cell. These are known as origin defining reflections (ODR). ODR phases alone are usually insufficient to reliably start the phasing process. The larger the number of starting phases, the less dependence there is on the reliability of a few invariant relationships and the higher the likelihood of obtaining a correct solution.

Where do the additional "known" phases come from? Because phase values are usually not known before a solution, one way is to assign trial phase values to a limited number of reflections and permute these in a series of separate tangent refinements. Permuted starting phases form the basis for the multisolution approach to the tangent phasing process.

\subsection*{4.27.2.1. Selecting Origin Defining Reflections (ODR)}

The first step in the GENTAN calculation is to specify sufficient phases to define uniquely the cell origin. The formal conditions required to do this have been detailed in the GENSIN documentation. The specification of phases to fix the cell origin is to be done automatically unless the user intervenes via the phi or assign control lines. All ODR phases entered are checked for validity by the program. If they are incorrect or insufficient, additional or new phases will be automatically selected to satisfy the origin fixing requirements.

\subsection*{4.27.2.2. permute and magic: Selecting starting phases}

The selection of starting phases which are involved in reliable structure invariant relationships is critical to the success of these methods. In GENTAN, the generator reflections are sorted by a convergence-type process (Woolfson, 1976) that maximizes the connections through structure invariant relationships between ODR phases and additional starting phases. This is called the MAXCON(nection) procedure. If the structure is noncentrosymmetric this procedure is also used to specify one or more EDR (enantiomorph defining reflection) phases to fix the enantiomorphic form of the structure. This is done automatically by the MAXCON procedure unless the EDR phase is selected manually by the user. Additional phases are specified in the MAXCON procedure as requested (see field 2 , select line). The MAXCON procedure sorts generator reflections in order of descending connectivity and this sort order is used in all subsequent operations. The sorted order of generators is referred to as the phase path. The origin, enantiomorph, and any other MAXCON-selected phases are at the beginning of this path.

In addition to the starting phases selected for maximum connectivity, phases are specified to optimize the rate of "phase extension" to the remaining generators. This is referred to as the MAXEXT(ension) procedure. Extra phases are often needed in the starting set to accelerate phase propagation along the sorted phase path, rather than maximizing the connections between the initial starting set. It is important to emphasise that the MAXCON approach insures that there are strong links between the initial starting set and other strong generators, while the MAXEXT procedure provides additional phases which enhance the rate at which new phases are generated in one pass down the phase path. The criteria used in the MAXEXT procedure to measure the rate of "phases extension" is specified in field 6 of the select control line.

Both the MAXCON and MAXEXT procedures use all available triplet and quartet invariant relationships unless instructed otherwise (see field 5 , select line). This option is useful if the automatically selected starting phases fail to provide a solution. Note that field 1 of the invar line has precedence over this option.

The permutation of phases assigned to starting reflections is performed in several ways. In the permute mode (see field 1 , select line), each starting phase (other than the ODRs) is assigned a value according to whether it is restricted or unrestricted. Restricted phases can have two values (separated by \(\pi\) ) and unrestricted phases
are usually assigned four different values (separated by \(\pi / 2\) ). In this mode therefore, the total number of phase sets tested is increased by a factor of two, or four, for each restricted, or unrestricted, phase specified. The number of phase sets increases very rapidly with the number of unrestricted starting phases.

An alternative approach to phase permutation is available using the magic integer procedure of White and Woolfson (1975). The magic option (field 1, select line) permutes the unrestricted starting phases so that the number of phase sets increases at a much lower rate. If a large number of unrestricted phases is needed to start an analysis, the magic integer permutation approach can provide a considerable reduction in computing time. The magic permutation procedure does increase the initial rms error of phases but for large analyses this is is usually a worthwhile tradeoff for benefits of more unrestricted starting phases.

\subsection*{4.27.2.3. random: Specifying random starting phases}

The inherent fragility of a phasing process started with a limited set of known phases and extended sequentially to all other phases has already been discussed. The success of this procedure hinges on the reliability of a few individual structure invariants. This is particularly critical in the early stages of the extension process when new phase estimates are often determined from one or two relationships. An incorrect phase estimate at this stage will frequently cause the phasing procedure to fail.

The random phase approach of Yao Jia-xing (1981) is an alternative to using a limited set of permuted phases. In the random mode (field 1, select line) random phases are assigned to all generators except the origin defining reflections. The use of random starting phases lessens the dependence on a small number of critical relationships by insuring that all invariants are immediately involved in the phase refinement process. Weights of each refined phase are used to filter the phase extension process. When the weight \(w(h)\) of phase estimate \(\phi(\mathrm{h})\) exceeds its starting value (default is 0.25 - see field 9 , select line), this phase replaces the random starting value. This mode is particularly useful for large structures in low symmetry where there are few relationships among generators, and for strongly non-random structures where invariant relationships with large probability factors may still be suspect. Strong enantiomorph definition is also possible through the application of random starting phases.

In the random start mode, tangent refinements are performed on different random starting sets until either a correct solution is identified, or the phase set maximum is reached. The user may specify a random number generator "seed" (field 10, select line) and in this way insure that repeat runs employ different random starting phases. Alternatively, the default seed will insure that the same random phases will be generated, if this procedure is desired in a re-run.

\subsection*{4.27.3. Tangent phase extension and refinement}

The extension and refinement of phases is simultaneous in the tangent process. When a structure invariant relationship contains only one unknown phase then this phase is estimated from the relationship. This is referred to as a phase extension. If all phases in an invariant are known, then each member phase is determined by a combination of the others. When a phase occurs in more than one such invariant, the estimate of its value is averaged or refined. Repeated averaging of phases in this way is referred to as phase refinement. As discussed earlier, the generator reflections and related invariants are sorted into an optimal phase path during the selection of starting phases. Reflections and invariants are subsequently processed in this sequence and one pass down this list is known as a single refinement iteration. The maximum number of refinement iterations may be specified by the user via the refine control line (field 3). The default value is 30 .

The reliability of each phase estimate \(\phi(\mathrm{h})\) is gauged by the calculated value of \(\alpha(\mathrm{h})\) (see equation (9) below). Phases are accepted for phase extension if the value of \(\alpha^{2}(\mathrm{~h})\) is above a threshold (see field 5, refine line). This threshold is reduced with each iteration (see field 7) thus insuring that the most reliable phases are used in the early iterations.

Only the top sorted generators (those used in the MAXEXT selection process (see field 4, select line)) are phased in the early iterations. When the average value of \(\alpha^{2}(\mathrm{~h})\) changes less than a specified percentage (see field 7 , refine line) additional generators ( 50 , or \(25 \%\) of total, whichever is greater) are added to the phasing process. The weight of each phase, is also used to control phase extension and refinement. A weight threshold is set for the duration of the refinement (see field 4 , refine line) and is used to reject less reliable phases.

There are two different methods for propagating phases in GENTAN; cascade and block. These two modes differ only in the point in the tangent iteration where the phase is estimated. The difference in procedure can, however, have a profound effect on phase convergence and stability.

\subsection*{4.27.3.1. cascade: Phase estimation DURING an iteration}

In the cascade mode phases are evaluated in sequential order along the phase path, and accepted or rejected immediately on estimation. Each phase estimate is made separately and tested for acceptability, based upon \(\alpha^{2}(\mathrm{~h})\) and w , before proceeding to the next phases estimate. An accepted phase is then available for phasing reflections further down the phase path. In this way phase information cascades down the phase path and provides the most rapid phase extension possible per iteration.

The two main characteristics of this process are that it is very dependent on the order of the phase path, and that phase values change during an iteration. This is important because three or four phases are dependent on a common triplet or quartet. If the \(\psi\) of this invariant changes substantially during the course of a single iteration the phase estimates tend to be dominated by phases near the end of the phase path. As these phases are usually of lower reliability, some instability in the refinement process can result. This may show itself as phase oscillations from iteration to iteration. This will be a problem if the value of \(\psi\) is strongly non-zero; as may be the case in heavy-atom or strongly planar structures.

\subsection*{4.27.3.2. block: Phase estimation AFTER a tangent iteration}

The block procedure differs from the cascade method in that known phase values remain fixed during a tangent iteration. New phase estimates are only calculated at the completion of an iteration. This insures that phase estimates are made from fixed phase values, and the \(\psi\) values of invariants remain constant for the entire iteration. Phases are therefore determined as a block defined by the current length of the phase path. This procedure will not propagate phases as rapidly as the cascade mode but it is less susceptible to phase instability when values of \(\psi\) depart significantly from zero. It is the recommended procedure for strongly non-random structures.

\subsection*{4.27.4. Weighting}

The tangent formula weight is defined by the joint probabilities of the phases contributing to the RHS of equation (5). If the individual weight of a phase is defined as
\(\mathrm{w}(\mathrm{h})=1 / \sigma^{2} \phi(\mathrm{~h})(6)\)
and the joint tangent weight as
\(\mathrm{w}=\prod_{\mathrm{n}} \mathrm{w}_{\mathrm{j}}(\mathrm{h}) / \sum_{\mathrm{n}} \mathrm{w}_{\mathrm{j}}(\mathrm{h})(7)\)
The variance of an unrestricted phase ( \(0-2 \pi\) ) is given by the following expression (Karle and Karle, 1966) where \(I_{\mathrm{o}}\) and \(\mathrm{I}_{\mathrm{k}}\) are modified Bessel functions dependent on \(\alpha(\mathrm{h})\),
\(\sigma^{2} \phi(\mathrm{~h})=\pi^{2} / 3+4 / \mathrm{I}_{\mathrm{o}} \sum_{\text {inf }}\left[(-1)^{\mathrm{k}} \mathrm{I}_{\mathrm{k}} / \mathrm{k}^{2}\right]\) (8)
\(\alpha(\mathrm{h})\) is a measure of agreement between contributing estimates of \(\phi(\mathrm{h})\) within the tangent formula and is defined in the following equation where T and B are the tangent formula numerator (top) and denominator (bottom), respectively:
\(\alpha(\mathrm{h})=\left(\mathrm{T}^{2}+\mathrm{B}^{2}\right)^{1 / 2}(9)\)

It follows that the variance of \(\phi\left(\mathrm{h}_{1}\right)\) may be calculated from equations (8) and (9). Computationally, however, this is prohibitive so in practice it is necessary to approximate \(w(h)\). GENTAN provides for three different weighting schemes: probabilistic, Hull-Irwin statistical, and modified statistical.

\subsection*{4.27.4.1. w1: Probabilistic weights}

For unrestricted phases the weight \(\mathrm{w}(\mathrm{h})\) based on equation (8) is approximately linear with respect to \(\alpha(\mathrm{h})\) (see p92-94, Stewart and Hall, 1971). It is possible, therefore, to approximate \(\mathbf{w}(\mathrm{h})\) as \(\mathrm{K} \alpha(\mathrm{h})\) where K is set a fixed fraction. This approach has the disadvantage, however, of not providing weights normalized about 1.0. This normalization is important for the correct evaluation of \(\alpha(\mathrm{h})\) from equation (9). In addition, for very large structures, all \(\alpha(\mathrm{h})\) values will be small and weights based only on \(\alpha(\mathrm{h})\) alone must also be small. The converse is true for small structures. For this reason, GENTAN uses a modified probabilistic weight which is essentially structure-independent and has values restrained to the range of 0 to 1 .

\subsection*{4.27.4.1.1. Acentric structures}
\(\mathbf{w} \mathbf{1}(\mathrm{h})=\min \left\{1 ., \alpha(\mathrm{h}) / \alpha^{\prime}\right\}(10)\)
where \(\alpha^{\prime}=\min (5 ., \mathrm{X})\) and X is mean A (triplet) or B (quartet).

\subsection*{4.27.4.1.2. Centric structures}

The value of \(w(h)\) calculated from equation (8) is not valid for restricted phases because it assumes a continuous phase distribution. For restricted phases the probability that \(\cos \phi(\mathrm{h})\) is positive is given by the following expression:
\(\mathrm{P}^{+}\{\cos \phi(\mathrm{h})\}=1 / 2+1 / 2 \tanh \alpha(\mathrm{~h}) / 2\)
It follows that weight of an individual phase has the form
\(\mathrm{w}(\mathrm{h})=\tanh \alpha(\mathrm{h}) / 2 \quad\) (12)
Although \(\mathrm{w}(\mathrm{h})\) calculated from equation (12) will lie in the range 0.0 to 1.0 , it has the same deficiencies of unrestricted weights based solely on \(\alpha(\mathrm{h})\). For this reason GENTAN uses the relative weight expression for restricted phases.
w1 \((\mathrm{h})=\tanh \alpha(\mathrm{h}) / \alpha^{\prime}(13)\)
where \(\alpha^{\prime}=\min (2 ., \mathrm{X})\) and \(\mathrm{X}=\) mean of A (triplets) or B (quartets)

\subsection*{4.27.4.2. w2: Hull-Irwin Statistical Weights}

The probabilistic weight \(\mathbf{w} \mathbf{1}\) is not suitable for application to some structural types. It tends to increase rapidly to 1.0 even for a small number of invariant relationships. As a consequence, it can be insensitive to significant variations in phase agreement. In addition, the w1 weighting scheme has no provision for over-correlated phase sets which are characterized by unexpectedly high \(\alpha(\mathrm{h})\) values.

To overcome these deficiencies, Hull and Irwin (1978) have suggested a weighting scheme based on the ratio of \(\alpha(\mathrm{h})\) and the expectation value \(\langle\alpha(\mathrm{h})>\). It has the general functional form
\(\mathrm{w} 2(\mathrm{~h})=f\left\{[\alpha(\mathrm{~h}) /\langle\alpha(\mathrm{h})\rangle]^{2}\right\}(14)\)
\(\langle\alpha(\mathrm{h})\rangle=\sum_{\mathrm{m}} \mathrm{X}_{\mathrm{j}} \mathrm{P}_{\mathrm{j}}(15)\)
where \(\mathrm{P}_{\mathrm{j}}=\mathrm{I}_{1}\left(\mathrm{X}_{\mathrm{j}}\right) / \mathrm{I}_{0}\left(\mathrm{X}_{\mathrm{j}}\right)\) for nonrestricted \(\psi ;\) (16)
\(\mathrm{P}_{\mathrm{j}}=\tanh \left(\mathrm{X}_{\mathrm{j}}\right)\) for restricted \(\psi(17)\)
The precise functional form of \(f\}\) is given by Hull and Irwin.

The w2 weighting scheme has several important properties. First, it depends on the individual expectation value \(\langle\alpha(\mathrm{h})\rangle\) calculated from the actual number of invariants involved in the current estimate of \(\phi(\mathrm{h})\). Secondly, the value of weight \(\mathbf{w} \mathbf{2}\) decreases if the phase agreement exceeds that expected for that stage of the refinement. In this way, it reduces the contribution of over-correlated phase estimates and enhances values that are close to that expected. Thirdly, w2 takes into account the importance of phase correlation effects to weighting for different structure analyses (see the plot of \(\mathbf{w} \mathbf{2}\) above). At the same time the overall magnitude of \(\mathbf{w} 2\) is essentially independent of structure size, and the scaling procedures used in w1 are not needed.
There is, however, a fundamental limitation to \(\mathbf{w} \mathbf{2}\) which is due to its implicit dependence on a reliable estimate of the \(\alpha\) expectation value. For strongly non-random structures the estimates for \(\langle\alpha(\mathrm{h})\rangle\), based on equations (16) and (17), may be inaccurate and this can lead to incorrect weights. In these cases the w1 weights, which are based solely on phase agreement (i.e., \(\alpha(\mathrm{h})\) ), will tend to be more reliable.

\subsection*{4.27.4.3. w3: Modified H-I Statistical Weights}

This weighting scheme is identical to \(w 2\) except that it is a function of \(x\) rather than \(x^{2}\). That is,
w3 \((\mathrm{h})=f\{\alpha(\mathrm{~h}) /<\alpha(\mathrm{h})>\}\)
\(\mathrm{w}^{3}\) is not as sensitive as \(\mathbf{w} 2\) to variations in the ratio of \(\alpha(\mathrm{h})\) and \(\langle\alpha(\mathrm{h})\rangle\). In some structures this is advantageous, particularly when invariant relationships are sparse and there is a tendency for phase oscillations. The weights due to w3 are more heavily damped than w2 but not as insensitive as w1 to variations in phase agreement. w3 may, for this reason, be considered a compromise between w1 and w2.

\subsection*{4.27.5. Identifying the correct phase set}

It is very desirable in multisolution tangent methods to have some method of detecting "correct" phase sets prior to computing a Fourier transform (i.e., E-map). An a priori assessment of phase sets is made in GENTAN using two 'measure of success' parameters CFOM and AMOS. These parameters are based principally on the four figures-of-merit, RFOM, RFAC, PSIO, and NEGQ.

\subsection*{4.27.5.1. Relative Figure-of-Merit (RFOM)}

This parameter is the inverse of the ABSFOM parameter of the MULTAN program (Main et al., 1980) and has the form
\(\operatorname{RFOM}=\left[\sum_{\mathrm{h}}\left\langle\alpha(\mathrm{h})>-\sum_{\mathrm{h}} \alpha_{\mathrm{r}}\right] /\left[\sum_{\mathrm{h}} \alpha(\mathrm{h})-\sum_{\mathrm{h}} \alpha_{\mathrm{r}}\right]\right.\)
where all \(\alpha\) 's are the mean values for the calculated \(\alpha\), the expected \(\alpha\) (see equation (15)) and the random \(\alpha\) (i.e., if all phases were randomly distributed). For a correct phase set the value of \(\alpha(\mathrm{h})\) should approach that of \(\langle\alpha(\mathrm{h})\rangle\) and RFOM should tend to 1.0 . Incorrect phase sets will deviate significantly from 1.0 , random phases towards 2.0, and overcorrelated phases towards 0.0 . In general, however, phase sets with small RFOMs are more likely to be correct than those with larger RFOMs. The actual range of RFOMs for a given GENTAN run will vary according to the validity of the estimate of \(\langle\alpha(\mathrm{h})\rangle\). For this reason RFOM tends to be less reliable for strongly non-random structures.

\subsection*{4.27.5.2. R-factor Figure-of-Merit (RFAC)}

The RFAC parameter is similar to the residual FOM calculated in MULTAN (Main et al., 1980) except for a scale that takes into account the relative dominance of heavy atoms in the structure.
RFAC \(=\sum_{\mathrm{h}}|\alpha(\mathrm{h})-\langle\alpha(\mathrm{h})\rangle| / \sum_{\mathrm{h}}\langle\alpha(\mathrm{h})\rangle\)
RFAC is a minimum when there is close correspondence between the refined \(\alpha(\mathrm{h})\) and the expected \(\langle\alpha(\mathrm{h})>\). In this respect it is very similar to the R-factor of Karle and Karle (1966). RFAC is, like RFOM, dependent on the reliable estimate of \(\langle\alpha(\mathrm{h})\rangle\).

\subsection*{4.27.5.3. Psi(zero) Figure-of-Merit (PSI0)}

The \(\psi(0)\) triplet invariants of Cochran and Douglas (1957) provide a sensitive figure-of-merit which is largely independent of the triplet and quartet invariants used in the tangent refinement. A \(\psi(0)\) triplet relates two generator reflections (with \(|\mathrm{E}|>\mathrm{EMIN}\) ) to a third which is selected to have an \(|\mathrm{E}|\)-value as close as possible to zero (see the GENSIN documentation). The phases estimated from a series of \(\psi(0)\) triplets are expected to be random when the contributing phases from the other two large- \(|\mathrm{E}|\) reflections are correct. When this is the case the resulting values of \(\alpha^{2}\) are significantly lower than if the distribution of contributing phases was biased or incorrect. These invariants are used to form the figure-of-merit
\(\operatorname{PSI} 0=\sum_{\mathrm{k}} \alpha(\mathrm{k}) / \sum_{\mathrm{k}}\langle\alpha(\mathrm{k})\rangle\) for \(\psi(0)\) triplets (21)
PSI0 should be smallest for the correct phase sets. PSIO is, along with NEGQ, one of the most sensitive and independent methods of measuring the relative likelihood of success.

\subsection*{4.27.5.4. Negative Quartet Figure-of-Merit (NEGQ)}

Quartet structure invariant relationships are classified according to the magnitude of their crossvector \(|\mathrm{E}|\) values. When the crossvector sum is very low there is a high probability that the invariant phase \(\psi\) will tend to have a value of \(\pi\) rather than 0 . These invariants are referred to as negative quartets. In GENTAN negative quartets are usually not used applied to the tangent refinement process but are retained as a test of the phase sets (unless the active code is entered in the invar line). The negative quartets are considered independent because, unlike the positive quartets, they cannot be represented by a series of triplet invariants. The negative quartets provide, therefore, a separate estimate of the phases. A direct comparison of these phases provides the basis for the figure-of-merit,
NEGQ \(=\sum|\phi(\mathrm{h})-\Phi(\mathrm{h})| / \mathrm{n}\) for n negative quartets (22)
where \(\phi(\mathrm{h})\) is the tangent refined phase, \(\Phi(\mathrm{h})\) is the phase estimated from negative quartets alone. Correct phase sets should have low values of NEGQ ranging from \(0^{\circ}\) for centrosymmetric structures, to 20-60 for noncentrosymmetric structures. Note that if fragment QPSI values are used, the value of \(\phi\) is automatically set to \(0^{\circ}\) and the NEGQ test will remain valid. This FOM is a very powerful discriminator of phase sets provided that sufficient negative quartets are available.

\subsection*{4.27.5.5. Combined Figure-of-Merit (CFOM)}

The combined FOM is a scaled sum of the four FOM parameters RFOM, RFAC, PSI0 and NEGQ.
\(\mathrm{CFOM}=\sum\left[\mathrm{WFOM}_{\mathrm{i}}\left(\mathrm{FOMMAX}_{\mathrm{i}}-\mathrm{FOM}_{\mathrm{i}}\right) /\left(\mathrm{FOMMAX}_{\mathrm{i}}-\mathrm{FOMMIN}_{\mathrm{i}}\right)\right] \mathrm{i}=1,4\) (23)
The FOM weights \(\mathrm{WFOM}_{\mathrm{i}}\) may be specified on the setfom control line. These values are subsequently scaled so that the maximum value of CFOM is 1.0. It is important to stress that CFOM is a relative parameter and serves mainly to highlight which is the best combination of FOMs for a given run. It does not indicate whether these FOMs will provide a solution.

\subsection*{4.27.5.6. Absolute Measure-of-Success Parameter (AMOS)}

The AMOS parameter is a structure-independent gauge of the correctness of a phase set. It uses pre-defined estimates of the optimal values for the FOM parameters RFOM, RFAC, PSI0 and NEGQ. OPTFOM values may be user defined (see setfom line). Rejection values for the four FOM parameters are derived from the OPTFOM values as REJFOM=2*OPTFOM. The default values are as follows,
\begin{tabular}{lllll} 
& RFOM & RFAC & PSIO & NEGQ \\
OPTFOM & 1.0 & 0.25 & .75 & 60. \\
REJFOM & 2.0 & 0.5 & 1.5 & 120.
\end{tabular}

The absolute measure-of-success parameter is calculated from all active FOMs as
\(\mathrm{AMOS}=\sum\left[\mathrm{WFOM}_{\mathrm{i}}\left(\right.\right.\) REJFOM \(\left.\left._{\mathrm{i}}-\mathrm{FOM}_{\mathrm{i}}\right) / \mathrm{OPTFOM}_{\mathrm{i}}\right] \mathrm{i}=1,4\) (24)
where the WFOM values are scaled so that AMOS ranges from 0 to 100 . In addition to being used to sort phase sets in order of correctness, the AMOS values provide a realistic gauge of the correctness of phase sets. As a rule of thumb, AMOS values can be interpreted in the following way:

AMOS
100-81\% high probability of being correct set
80-61\% good chance of being correct set
\(60-41 \%\) possibility of being correct set
40-21\% low probability of being correct set
20-0\% unlikely to be correct set

These classifications are only approximations. The predictability of optimal FOM values can be perturbed by a variety of structure dependent factors and by the FOM weighting. Nevertheless, the AMOS value provides the user with a concise overview of the phase sets.

\subsection*{4.27.6. Rejection Of Phase Sets}

Phase sets must satisfy certain criteria before being considered for possible output to the bdf. Each phase set is tested at three stages in the tangent process and is rejected if the FOM values and other parameters are outside acceptable limits. In this way time is not spent on phase sets that have little or no chance of being correct - a very desirable feature for a multisolution procedure.

The first rejection test is made following the sixth tangent iteration and involves only the top block of sorted phase estimates. This is referred to as the PRETEST of FOMs and the rejection criteria 011, 012, and 014 are applied. The user may disable the PRETEST of FOMs with the setfom line (field 1). The second rejection test is made after the last tangent iteration and a phase set is rejected according to the criteria \(021,022,023\), 024 , and 025 . The final rejection test occurs during the sorting of phase sets and the calculation of the AMOS value. Phase sets are rejected if criteria 036 and 037 are not satisfied.

\section*{PRETEST Rejection Criteria}

011 reject if \(\mathrm{RFOM}>2 * \operatorname{REJFOM}(1)\)
012 reject if RFAC \(>\) REJFOM(2) and RFOM \(>\operatorname{REJFOM}(1)\)
014 reject if \(\mathrm{RFOM}<0.25\)

\section*{Last Iteration Rejection Criteria}

021 reject if RFOM \(>\operatorname{REJFOM}(1)\)
022 reject if RFAC \(>\operatorname{REJFOM}(2)\)
023 reject if PSIO \(>\) REJFOM(3)
024 reject if \(\mathrm{RFOM}<0.25\)
025 reject if convergence limit not reached after maximum refinementiterations (see refine line)

\section*{Final Rejection Criteria}
```

036a reject if |av.\phi-<av. }\phi>| exceeds 45*
037 reject if AMOS < 5%

```

Notes:
a. The value of av. \(\phi\) is \(90^{\circ}\) for centrosymmetric structures and \(150-180^{\circ}\) for noncentrosymmetric structures. This test rejects "all-plus
catastrophe" phase sets.

\subsection*{4.27.7. Automatic Termination}

Tests for phase correctness are made at the same time as the second rejection test. These are made on the basis of the optimum FOM values, OPTFOM. If all tests are satisfied, the tangent phasing process is terminated and the program enters the sort mode. In this way GENTAN insures that computing time is not wasted on generating further phase sets when a correct set of phases has already been calculated. This is particularly important when the random start option is invoked. Tangent cycling is terminated
\begin{tabular}{l} 
if RFOM \\
and \\
RFAC \\
and \\
PSIO
\end{tabular}\(<\)\begin{tabular}{c} 
OPTFOM(1) \\
OPTFOM(2)
\end{tabular}

If inadvertant termination occurs, the user can adjust the OPTFOM values used in the above criteria, or switch off this test entirely (field 10 , setfom line).

\subsection*{4.27.8. Application Of Partial Structure Data}

\subsection*{4.27.8.1. Psi Calculated from Fragment Information}

If structure information of types 3 and 4 (oriented and positioned) is entered into the GENEV calculation, and the qpsi option is invoked in GENSIN, then the phase estimate of the invariant may be used in the extension and refinement process. This can provide a significant improvement to the phasing process, particularly for planar and heavy-atom structures, and provides a valuable second line of attack for less tractable problems. The rule of thumb is: "if oriented or positional structural information is available, use it!"

\subsection*{4.27.8.2. Applying Structure Factor Phases as Starting Phases}

An alternative approach to partial structure information is to use calculated structure factor phases as input starting phases (Karle, 1976). This approach has the advantage over the group structure factor method of not requiring the repeat of GENEV and GENSIN calculations. In practice this method is limited because it fails to take into account the expected change to the \(\psi\) values which is available from knowledge of the structure. Because of this, strongly non-random structural features tend to dominate the phases. Nevertheless, careful application of the parameters on the partsf line can provide an important alternative to applying known structural information.

\subsection*{4.27.9. File Assignments}
- Reads |E| values from input archive bdf
- Writes estimated phases to the output archive bdf
- Reads structure invariants from file inv

\subsection*{4.27.10. Examples}

GENTAN

This run automatically selects starting phases. Phases are extended and refined in the block mode using weight scheme 2. The top four phase sets are written to the output bdf. All FOM rejection and cycle termination tests will be applied.
```

GENTAN pout 10 :output the top 10 phase sets
invar trip
:use triplet invariants only
select magic
assign odr 7 23 5 per 1 17
refine block w3
setfom nopr

```
```

GENTAN pset 128
select random
archiv -1601 -1603

```
invar *7 allxv :include all quartets
refine cascade w2 30 :max iterations to 30
phi 52 -3 0 . odr :define ODR
phi 1570 . odr :define ODR
phi 32 0. odr :define ODR
```

    :permit 128 phase sets
    :select all phases with random values
: delete items 1601 and 1603 from bdf

```

\subsection*{4.27.11. References}
- Ahmed, F.R. and Hall, S.R. 1976. Computer Application of the Symbolic Addition and Tangent Procedure. Crystallographic Computing Techniques, Eds. F.R. Ahmed, K. Huml, B. Sedlacek Munksgaard: Copenhagen, 71-84.
- Cochran, W. and Douglas, A.S. 1955. The Use of a High Speed Digital Computer for the Direct Determination of Crystal Structures I. Proc. Roy. Soc., A277, 486-500.
- Hall, S.R. 1978. Paper 15.1-2, Collected Abstracts. 1lth IUCr Congress, Warsaw.
- Hull, S.E. and Irwin, M.J. 1978. On the Application of Phase Relationships to Complex Structures. XIV. The Additional Use of Statistical Information in Tangent-Formula Refinement. Acta Cryst., A34, 863-870.
- Karle, J. 1976. Structures and Use of the Tangent Formula and Translation Functions. Crystallographic Computing Techniques. Eds. F.R. Ahmed, K. Huml, B. Sedlacek. Munksgaard: Copenhagen, 155-164.
- Karle, J. and Hauptman, H. 1956.Theory of Phase Determination for the Four Types of Non-Centrosymmetric Space Groups 1P222, 2P222, 3P12, 3P22. Acta Cryst., 9, 635.
- Karle, J. and Karle, I.L. 1966. The Symbolic Addition Procedure for Phase Determination for Centrosymmetric and Noncentrosymmetric Crystals. Acta Cryst., 21, 849.
- Main, P., Fiske, S.J., Hull, S.E., Lessinger, L., Germain, G., Declercq, J.P. and Woolfson, M.M. 1980. MULTAN-80 Program Writeup, Dept. of Physics, University of York, York, England.
- Stewart, R.F. and Hall, S.R. 1971. X-ray Diffraction: Determination of Organic Structures by Physical Methods. Eds. F.C. Nachod and J.J. Zuckerman. Academic Press: New York, 74-132.
- White, P.S. and Woolfson, M.M. 1975. The Application of Phase Relationships to Complex Structures VII. Magic Integers, Acta Cryst., A31, 53-56.
- Woolfson, M.M. 1976. Doing Without Symbols - MULTAN. Crystallographic Computing Techniques. Eds. F.R. Ahmed, K. Huml, B. Sedlacek.Munksgaard: Copenhagen, 85-96.
- Yao Jai-xing. 1981. On the Application of Phase Relationships to Complex Structures XVIII. RANTAN Random MULTAN, Acta Cryst., A37, 642-644.

\subsection*{4.28. GIP: Reciprocal space PIG}

Author: Doug du Boulay, Crystallography Centre, University of Western Australia, Nedlands WA 6907, Australia

GIP represents all reflection data on the bdf in terms of the scattering sphere. The scattering vector of each unique measured reflexion is represented as points in reciprocal space and the color and size of those points can be used to represent many reflection properties stored on the XTAL lrrefl: archive record. This representation and the desired quantities can be rotated viewed and adjusted interactively. Duplicated reflexions are ignored.

\subsection*{4.28.1. Overview}

GIP is essentially a data viewing or educational tool. It reads an archive bdf and optionally renders a series of screen dumps to a .gip file for label manipulation or plotting with PREVUE/PLOTX. It was originally conceived as means of identifying systematic trends in measured data, via plotting of derived quantites such as (Irel-<Iequiv>) \(/ \sigma\) i.e. systematic deviations amongst groups of equivalents in selective regions of reciprocal space. Reflection color and size can be used to show two properties simultaneously.

\subsection*{4.28.2. General functionality}

GIP has limited command line controls, but numerous interactive controls in the graphical interface. Double buffering of the graphics display window can be invoked with the GIP dbuf control line, though the coppying of back buffer to display typically causes significant slowing of the rendering, particularly for large windows.

The scattering sphere may be rotated by left mouse button click-drag events and magnified or reduced by up/down middle mouse button events, (typically emulated on two button mice by pressing left and right simultaneously)

An animation button allows the sphere to be set spinning by rotation button drags, with angular velocity dictated by the length of the drag from mose click until mouse release.

\subsection*{4.28.3. General control button function}

\subsection*{4.28.3.1. Anim On/Off}

Switches free rotating animation on or off. If animation is on, a left-mouse-click-drag event invokes the animation. A single left-mouse-click-release with no mouse movement stops the animation.

\subsection*{4.28.3.2. CENTRE}

Translations of the sphere centre away from the rotation centre are currently disabled, so the centre control essentially has no effect at all.

Figure 4-1. Screen shot of GIP


\subsection*{4.28.3.3. AXES}

Reciprocal lattice axes are currently drawn through the centre of the diffraction sphere. Occasionaly this can obscure reflections in axial planes. Selecting the axes control moves the axes to a more extraneous position.

\subsection*{4.28.3.4. PERSPECTIVE}

Switching on perspective can highlight symmetry axes of reciprocal space. Perspective works in two ways, to reduce the size of reflection markers due to viewing distance, and to cause apparent convergence of lattice points with viewing distance.

\subsection*{4.28.3.5. DEPTH SORT}

Two modes of reciprocal space viewing are possible. The default method ignores viewing distance of the reciprocal lattice vectors and simply plots all reflections in planes from Hmin up to Hmax. The second method attempts to draw the sphere from furthest reflection, to closest by partitioning reciprocal space into thin slices according to depth and plotting all points which fall within the range of each slice. This method is significantly slower and occasionaly misses some reflections, while drawing others more than once. Not recommended for general use unless you want to print the current view, in which case depth sorting is an advantage.

\subsection*{4.28.3.6. PEAK MAX}

This command activates a slider control in the message window enabling the global reflection scale factor to be adjusted from 0.0 to 0.5 , which scales the size of all reflection markers up or down by the same amount. Use the right mouse button to adjust the value of the slider. Reselect peak max to cancel this mode.

\subsection*{4.28.3.7. PEAK SCAL}

The peak scal command activates a slider control in the message window scaling the relative difference in size of strong and weak reflections. A value of 1.0 gives the largest differences and anything less than 0.5 is indistinguishable from "no difference at all". Use the right mouse button to adjust the value of the slider. Reselect peak scal to cancel this mode.

\subsection*{4.28.3.8. DIFFERENCE}

Depending on the contents of the archive lrrefl: reflection record and the stage of data processing at which GIP is invoked, up to four options maybe available when selecting difference mode, - namely:
- (Irel-<Iequiv>)/ \(\sigma\)
- (Frel-<Fequiv>)/ \(\sigma\)
- (Frel-Fcal)
- (Frel-Fcal)/ \(\sigma\)

If there is only one option available owing to bdf contents, it will be invoked immediately without going through the intermediate menu selection.

\subsection*{4.28.3.9. INFO}

In info mode, the right mouse button can be used by click-drag events to view archive information associated with a given reflection in reciprocal space. Reselect info to cancel this mode. Note that INFO has not been configured to operate correctly when perspective is on.

\subsection*{4.28.3.10. HIDE}

The hide control can be used to hide or redisplay all reflections belonging to a given colour class. Select HIDE and then select the color range (from the top-right color range boxes) to be hidden or redisplayed. Hiding all RCODE 1 reflections for instance can highlight systematically absent rcode 2 reflections, which may be useful in identifying space group symmetry.

\subsection*{4.28.3.11. RADIUS}

This command activates a slider control in the message window enabling the minimum and maximum \(\sin \theta / \lambda\) values to be adjusted to highlight a particular shell of reciprocal space. Reselect the radius button to cancel this mode.

\subsection*{4.28.3.12. INT RANGE}

This command activates a slider control in the message window enabling adjustment of the minimum and maximum intensity range to be displayed. Reselect the int range control to cancel this mode.

\subsection*{4.28.3.13. EWALD}

This command is analogous to info mode in that it begins by permitting the user to identify a reflection using right-mouse-click-drag events. Having identified a suitable reflection, the Ewald multiple scattering sphere for that reflection at the diffractometer measurement angle is illustrated by reselecting the ewaid control. The veracity of this representation relies on the presence of the crystal based azimuthal \(\psi\) angle to abstract away from crystal orientation and diffractometer specifics. Reflections lying on or near the surface of this sphere can be identified by invoking inFO mode using right-click-drag events to identify reflections. Alternatively,
middle-mouse-click-drag events can be used to rotate the Ewald sphere about the scattering vector for the selected reflection. Ewald mode can be cancelled by reselecting the ewaid control

\subsection*{4.28.3.14. PLANES}

Selecting the planes control button offers up a selection of six different modes for identifying specific reciprocal latice planes for display.
- okl request specific kl plane for given h
- ho1 request specific hl plane for given k
- hk0 request specific hk plane for given 1
- GENRL specify a general plane through hkl and normal to the hkl scattering vector.
- CENTR specify a general plane through the origin and normal to the hkl scattering vector.
- 3PSel identify three reflections by right-mouse select. Reselect planes and the specified plane will be singled out for display.
PLANES mode can be switched off by reselecting the pLanes control button.

\subsection*{4.28.3.15. REFL PROP}

Selecting this control button reveals a selection of controls in the message panel, for choosing between the different lrrefl: bdf items which are supported for display as colour or size prperties. Choose one of the options or cancel the change by reselecting the refi prop control.

\subsection*{4.28.3.16. EDIT RANGE}

This control displays a multiway slider bar in the message window for enabling relatively coarse grained adjustments to the colour ranges. Colour range changes do not take effect immediately, but only after the EDIT range control has been reselected to exit edit mode.

\subsection*{4.28.3.17. DELETE}

This control has no functionality.

\subsection*{4.28.3.18. PRINT}

The print control adds a dump of the current screen view to the .gip file. Multiple prints can be invoked per GIP session and they accumulate as multiple frames for display, editing and printing using PLOTX and PREVUE.

\subsection*{4.28.3.19. EXIT}

The function of this control is rather obvious. Given the non-critical nature of this program, there is no safety net for accidental exit.

\subsection*{4.28.4. Known shortcomings}
- Problems identifying reflections in perspective mode
- The Ewald sphere is missing a tolerance parameter to specify distance from the sphere surface

\subsection*{4.28.5. References}
- Schwarzenbach, D. \& Flack, H. D. (1989). J. Appl. Cryst. 22, 601-605.
- Busing, W.R. and Levy, H.A. (1967). Angle Calculations for 3- and 4- Circle X-ray and Neutron Diffractometers. Acta Cryst. 22, 457-464.
- Tanaka, K. \& Saito, Y. (1975). Acta Cryst. A31, 841-845.

\subsection*{4.29. LATCON: Refine lattice parameters}

Authors: Dieter Schwarzenbach and Geoff King
Contact: Geoff King, Fysica-Chemische Geologie, K.U. Leuven, B-3001 Heverlee, Belgium
LATCON is a rewrite of Dieter Schwarzenbach's program of the same name in the XRAY76 system. It determines the 'best' lattice parameters and their standard deviations from the \(2 \theta\) diffraction angles of a set of indexed reflections, taking into account any constraints imposed by the crystal system and allowing for systematic errors in the zero values.

Given a set of indexed reflections with their diffraction angles \(2 \theta\), the program uses the least-squares method to determine the best values of the reciprocal and direct metric tensors and lattice parameters with their estimated standard deviations (esd's) together with the variance-covariance and correlation matrices. The \(2 \theta\) values may have been obtained by powder or single-crystal measurements. Different schemes are available for allowing for systematic errors.

In principle there are two methods of refining lattice constants by minimizing
\(\mathrm{R}=\sum \mathrm{w}\left(2 \theta_{\text {obs }}-2 \theta_{\text {calc }}\right)^{2}\)
The first is to express \(2 \theta\) as a non-linear function of the lattice constants. This leads to a non-linear leastsquares procedure which requires starting values and several cycles of refinement. The second, used here, takes advantage of the fact that \(\sin ^{2} \theta\) is a linear function of the reciprocal metric tensor giving a linear leastsquares problem which can be solved directly without the need for starting values and without iteration. The much more complicated task consists then in computing the esd's of the best lattice constants from those of the reciprocal metric tensor elements.

The following concepts are useful:
\begin{tabular}{lll} 
Metric tensor (M) & Reciprocal metric tensor \(\left(\mathbf{M}^{*}\right)\) & Vector \(\left(\mathbf{v}^{*}\right)\) \\
a a.*b a.*c & \(a^{*} a^{*} . * b^{*} a^{*} . c^{*}\) & \(h\) \\
a.b \(b_{2}\) b.c & \(a^{*} . b^{*} b_{2} b^{*} . c^{*}\) & k \\
a.c b.c c2 & \(a^{*} . c^{*} b^{*} . c^{*} c_{2}\) & l
\end{tabular}

All symbols containing a "*" refer to reciprocal space. The matrix \(\mathbf{M}^{*}\) is the inverse of the matrix \(\mathbf{M}\). The vector \(\mathbf{v}^{* \dagger}\) is the row vector (hkl), i.e. \(\mathbf{v}^{*}\) transposed. Therefore,
\(\sin ^{2} \theta=\left(\lambda^{2} / 4\right)\left(\mathrm{v}^{* \dagger} \mathrm{M}^{*} \mathrm{v}^{*}\right)\)
The variance-covariance matrix \(\mathbf{C O V}\) (see e.g. ref. 1) is calculated from the inverse \(\mathbf{N}^{-1}\) of the normal-equation matrix \(\mathbf{N}\).
\(\operatorname{COV}=\mathrm{eN}^{-1}, \mathrm{e}=\mathrm{R} /(\mathrm{n}-\mathrm{k})\)
With R defined above, \(\mathrm{n}=\) number of observations, \(\mathrm{k}=\) number of parameters refined, \(\mathrm{n}-\mathrm{k}\) is the number of degrees of freedom and \(e\) the variance of an observation with unit weight, so \(\sqrt{ }\) e, the error of fit, is the corresponding \(\sigma\). If the weights are the reciprocals of real variances, the expectation value for the error of fit is unity and R should be distributed as \(\chi^{2}\). The diagonal terms of COV are the variances whose square roots are the standard deviations (esd's), \(\sigma\). The ij th term of the correlation matrix COR is given by
\(\mathrm{COR}_{\mathrm{ij}}=\mathrm{COV}_{\mathrm{ij}} /\left(\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}\right)\)
The law of propagation of errors expresses the variance-covariance matrix COVBof derived quantities \(b_{1}=\) function \(1\left(a_{1}, a_{2}, \ldots\right), b_{2}=\) function \(2\left(a_{1}, a_{2} \ldots\right)\), etc in terms of COVA of \(a_{1}, a_{2}, \ldots\). Denoting the derivative of \(b_{k}\) with respect to \(a_{1}\) by \(\partial b_{k} / \partial a_{1}\) and the matrix of derivatives as \(\mathbf{D}\), we obtain
\(\operatorname{COVB}_{\mathrm{ij}}=\sum_{\mathrm{k}, 1} \partial \mathrm{~b}_{\mathrm{i}} \partial \mathrm{a}_{\mathrm{k}} \partial \mathrm{b}_{\mathrm{j}} / \partial \mathrm{a}_{1} \operatorname{COVA}_{\mathrm{k}}\)
COVB \(=\) D COVA D \({ }^{\dagger}\)
The program proceeds by the following steps:
1. The esd's (i.e. \(\sigma\) 's) of the \(2 \theta\) values are used to compute the \(\sigma\) 's of \(\sin ^{2} \theta\)
i.e. \(\mathrm{Q}=1 / \mathrm{d}^{2}=4 \sin ^{2} \theta / \lambda^{2}\)
where d is the interplanar spacing. According to the error propagation law,
\(\sigma(\mathrm{Q})=\left(2 / \lambda^{2}\right) \sin 2 \theta \sigma(2 \theta)\) The weight is \(1 / \sigma^{2}\).
2. With these weights the linear least squares problem is set up, the symmetry constraints are introduced and the tensor \(\mathbf{M}^{*}\) is determined together with \(\mathbf{C O V}\) and \(\mathbf{C O R}\). These matrices are complete and include the elements which are determined by the crystal symmetry and which must not be refined. Thus the variances, covariances and correlations of invariant terms are zero. For a dependent term \(s=k x t\) we obtain
variance \((\mathrm{s})=\mathrm{k}^{2}\) variance \((\mathrm{t}) ; \sigma(\mathrm{s})=\mathrm{k} \sigma(\mathrm{t})\)
covariance \((\mathrm{s}, \mathrm{t})=\mathrm{k}\) variance \((\mathrm{t}) ;\) correlation \((\mathrm{s}, \mathrm{t})=1\)
3. The reciprocal lattice constants \(\mathrm{a}^{*}, \mathrm{~b}^{*}, \mathrm{c}^{*}, \cos \alpha^{*}, \cos \beta^{*}\) and \(\cos \gamma^{*}\) are determined together with their \(\mathbf{C O V}\) and COR matrices, using the error propagation law. The \(\sigma\) 's of these quantities are again the square roots of the diagonal terms of COR; the \(\sigma\) of the angles in degrees are derived from those of their cosines.
4. The matrix of the reciprocal metric tensor \(\mathbf{M}^{*}\) is inverted to give \(\mathbf{M}\), again with the appropriate \(\mathbf{C O V}\) and COR matrices. This requires the evaluation of all 36 derivatives of the matrix elements with respect to the reciprocal matrix elements e.g.
\(\partial \mathrm{a} * \mathrm{~b} / \partial \mathrm{a}^{* 2}, \partial \mathrm{~b}^{2} / \partial \mathrm{c}{ }^{* 2}\) etc.
5. The direct lattice constants are obtained as in step 3. If all reflections have been measured with the same wavelength, the COR matrix and therefore the \(\sigma\) 's may be corrected for the uncertainty of the wavelength,
\(\sigma\) (lambda;), which is especially interesting in neutron diffraction.- This must not, of course, involve the least-squares weighting. Since the relative error in Q due to an error in the wavelength is
\(\sigma(\mathrm{Q}) / \mathrm{Q}=2 \sigma(\lambda) / \lambda\)
The variances of \(\mathbf{M}^{*}\) after refinement are increased by \(\sigma^{2}(\mathrm{Q}) \mathrm{x}\) tensor element. The covariances are derived so as to leave the correlation coefficients unchanged.

\subsection*{4.29.1. Systematic Errors}

Two mutually exclusive schemes for taking account of systematic errors may be used in the refinement. Both involve refinement of an additional parameter \(D_{k}\).
1. This scheme is included when the mnemonic \(r q\) is used in the latcon line. It has been shown (2) that errors in the measured d-values \((\Delta \mathrm{d})\) caused by absorption and spherical eccentricity of the specimen are approximately proporional to
\(\Delta \mathrm{d}=\mathrm{kd} \cos ^{2} \theta=-2 \mathrm{D}_{\mathrm{k}} \mathrm{d} \cos ^{2} \theta\)
where \(\mathrm{d}=1 / \sin \theta\). Thus \(\Delta \mathrm{Q}\) is equal to the derivative of Q with respect to d times \(\Delta \mathrm{d}\).
\(\Delta \mathrm{Q}=\mathrm{D}_{\mathrm{k}}\left(4 / \lambda^{2}\right) \sin ^{2} 2 \theta\)
\(D_{k}\) is refined as an additional parameter. The computed Q and \(2 \theta\) values listed in the output are no longer the TRUE values but they include the correction term. This correction can be used if the position of the primary beam is well-known, i.e. if \(2 \theta\) has been determined from corresponding reflections at plus and minus \(2 \theta\) or with respect to an internal standard. Note that many high orders must be included in the refinement since the error approximation is valid for high scattering angles and corresponds to an extrapolation of \(d\) to \(\cos ^{2} \theta\) zero. Furthermore, the relative error \(\Delta Q / Q\) in \(Q\) is proportional to \(\cos ^{2} \theta\) which has non-negligable values at quite high angles. Limiting measurements to low orders leads to very high correlations between \(\mathrm{D}_{\mathrm{k}}\) and the metric tensor elements so that the correction may be meaningless.
2. Sometimes the position of the primary beam may not be accurately known, as in the case when the diffractometer does not allow measurements at negative \(2 \theta\) values.. Here we must set
\(2 \theta_{\text {true }}=2 \theta_{\text {obs }}-2 \mathrm{D}_{\mathrm{k}}\)
where \(2 \mathrm{D}_{\mathrm{k}}\) may be called the true zero value of \(2 \theta\). The refinement of \(\mathrm{D}_{\mathrm{k}}\) results in a non-linear leastsquares procedure for this parameter and several cycles may be necessary to achieve convergence. Experience shows, however, that convergence is quite fast. The maximum number of cycles must be input after the mnemonic \(\boldsymbol{r z}\) but a shift of less than \(0.002^{\circ}\) halts the refinement. An initial value of \(2 \theta\) zero may also be given (and will be held constant unless \(\mathbf{r z}\) refinement is invoked). Linearisation of the expression for Q leads to
\(\Delta \mathrm{Q}=\mathrm{D}_{\mathrm{k}}\left(4 / \lambda^{2}\right) \sin 2 \theta\)
\(\mathrm{Q}_{\text {true }}=\mathrm{V}^{*} \mathrm{M}^{*} \mathrm{~V}^{*}+\mathrm{D}_{\mathrm{k}}\left(4 / \lambda^{2}\right) \sin 2 \theta\)
and \(D_{k}\) is refined as an additional parameter. The true \(Q\) and \(2 \theta\) values are listed in the output. Inclusion of many high-order reflections is desirable but the correlation of \(\mathrm{D}_{\mathrm{k}}\) with the metric tensor is less severe than in scheme 1 since \(\Delta \mathrm{Q} / \mathrm{Q}\) is proportional to \(\cot \theta\), which decreases faster than \(\cos ^{2} \theta\) and has large values at low orders.

LATCON should give exactly the same results as a non-linear least-squares procedure. The errors in the variances and covariances derived from the error propagation law, which is due to the series expansion involved, are very small for \(\sigma\) 's of a few percent or less.

LATCON can also use the angle data and the crystal system stored on the archive bdf. The option line skip enables reflections to be omitted. Options also exist for outputting the refined cell dimensions.

\subsection*{4.29.2. File Assignments}
- Writes cell and cellsd lines to the line file pch

\subsection*{4.29.3. References}
- D. Schwarzenbach et al. 1989. Statistical Descriptors in Crystallography (Report of the IUCr subcommittee). Acta Cryst., A45, 63-75.
- L.V. Azaroff and M.J. Buerger. 1958. The Powder Method in X-ray Crystallography (pp. 239-244). McGraw Hill, New York.

\subsection*{4.30. LISTFC: List formated reflection data}

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
LISTFC lists reflection data from the bdf in packed or unpacked format.

\subsection*{4.30.1. Description}

LISTFC formats reflection data from the bdf in packed (only the fastest-varing Miller index is listed ind 1) or unpacked (all indices are listed ind 3) formats. LISTFC does not sort the reflection data so that the listed order is determined by the order of the data on the bdf.The sort order must be entered (ord hkl) if the program has not been run. SORTRF must be run again if a different list order is required.
In packed mode (the default ind 1) the first item listed is the fastest-varying hkl index. Reflections are listed in blocks with medium-varying and slow-varying indices constant. Each block is separated by a header line describing these indices.

The unpacked mode (ind 3) is particularly useful for listing data which is not sorted or or contains Friedel indices. It may also be used list the reflection data for input to other applications. The repetition of reflection columns on a "page" is controlled with the wid and lin options. If only one reflection is needed per line the wid should be set to a value just greater than the columns needed for data in one line. If no headers are needed then 1 in should be set to a value greater than the total number of reflections. The reflection data may also be output to the punch line file using the pun option.

\subsection*{4.30.2. Control Lines}

\subsection*{4.30.2.1. output}

The output line is used to specify which items are to be listed, and in what order. Commonly listed items may be specified using the alphabetic codes hkl, frel, fcal, sigf and phi. Alternatively, items may be specified using the directory ID numbers listed in the BDF section at the back of this manual. Use of the ID numbers enables the user to list any item present in lrref: of the bdf. The only restriction to specifying items is that hkl must be first. The number of items specified may not exceed ten (10). Note that the reflection code (i.e., RCODE) may be output as a flag via a control parameter on the LISTFC line (field 4). If the RCODE flag is requested, then this is considered by the program as an additional item. The flag symbols may be changed by use of field 8 of the LISTFC line. When the output line is not entered the default items are: hkl frel fcal sigf.

\subsection*{4.30.2.2. format}

The format line is used to specify the dimension and the nature (real or integer) of the numbers listed. The order of the input formats is assumed to be identical to the items on the output line. Note that only one format code is input for the Miller indices whether it is packed mode or not.

Two types of formats are permitted: the integer format of the general form 'Inn' and the floating-point format of the format 'Fnn.m'. As with normal usage, the 'nn' integer specifies the maximum number of digits permissible for the output number, and ' \(m\) ' is the number of digits to the right of the decimal point. 'nn' also specifies the number of characters reserved for an item and therefore the relative spacing of the numbers.

When the format line is not entered, the default formats to match the default output line are: I5 I5 I5 I3.

\subsection*{4.30.2.3. pscale}

The pscale line is used to scale items before printing. The scales entered on this line are in the identical order to the output line. These scales are particularly useful when 'I' formats are used to make the listing as compact as possible. For example, an item such as frel with the value 'xy.z' can be scaled up by 10.0 and listed as the integer'xyz', thus saving one digit for each occurence on the line. These scales may also be used to convert an item stored on the bdf into a value suitable for publication. For instance, the structure factor phase is stored on the bdf as cycles ( 1 cycle = two pi). The user may wish to list the phase in millicycles by specifying a scale of 1000 ., or in degrees by specifying a scale 360 .

If the pscale line is not entered, the default scales are set to comply with default output line at: 1. 10. 10 . 10.

\subsection*{4.30.2.4. scale}

The scale line specifies the structure factor scale(s) which are applied to the frel and sigf items. This line need only be entered if the scale(s) stored on the bdf are incorrect.

\subsection*{4.30.2.5. maxhkl}

The maxhkı line enables the user to list only that data on the bdf that has been used in the refinement process. If maxhkl is not entered all reflections will be output.

\subsection*{4.30.3. File Assignments}
- Read reflection data from the input archive bdf

\subsection*{4.30.4. Examples}

LISTFC

Standard default options will provide a packed listing of hkl frel fcal sigf(without rcode flags). The width of printed reflection is 18 characters, so that 6 reflections will be listed on each line of 120 characters. The RCODE for each reflection will be translated into a print character rcode=1 a blank; rcode=2 a '<' character; rcode=3 an 'e'.
```

LISTFC ind 3 wid 40 lin 5000 pun

```
output hkl frel sigf 16001631 :list \(|E|\) and est. phase
format i5 f6.1 f5.1 f5.1 i5 :36 chr wide; 1 refl/line
pscale 1. 1. 1. 1. 360 . convert phase to degrees
maxhkl *5 \(0.4 \quad: l i s t ~ o n l y ~ s ~>0.4\)
```

LISTFC ind 1

```
output hkl frel 1314 sigf 1315 :list \(|F|\) Friedel pairs
format i5 f6.1 f6.1 f5.1 f5.1

\subsection*{4.31. LSABS: Absorption corrections}

Authors: Eric Blanc \& Dieter Schwarzenbach
Contact: Eric Blanc, Institut de Cristallographie, University of Lausanne, 1015 Lausanne, Switzerland
LSABS calculates transmission factors T, absorption-weighted mean-path lengths \(T\), and derivatives, \(\partial T / \partial d_{m}\)

\subsection*{4.31.1. Overview}

The calculation may be carried out either with an analytical method similar to the one of de Meulenaer \& Tompa (1965) or by Gaussian grid integration (Busing \& Levy, 1957). A major innovation in this program is the calculation of the derivatives of transmission with respect to crystal shape \(\partial \mathrm{T} / \partial \mathrm{d}_{\mathrm{m}}\), where \(\mathrm{d}_{\mathrm{m}}\) defines the distance of the \(\mathrm{m}^{\text {th }}\) crystal face from an origin inside the crystal. These derivatives may be used during leastsquares refinement to obtain improved estimates of the crystal shape and consequently an improved absorption correction. The program uses crystal-based azimuthal angles (Schwarzenbach \& Flack, 1989, 1992) to define the diffraction geometry and is thus independent of the particular instrument (diffractometer, camera, etc.) used to collect the intensity data.

\subsection*{4.31.2. Methods of Absorption Correction}

LSABS offers two methods of integration, the analytical method and Gaussian integration. The analytical method is more efficient than the Gaussian method in calculating the derivatives. For this reason, execution times for the two methods are comparable in the case of a coarse Gaussian grid, and in favour of the analytical method in the case of a fine Gaussian grid.

\subsection*{4.31.3. Analytical method}

The analytical method proposed by de Meulenaer \& Tompa (1965) describes the crystal shape by the set of its vertices, whereas LSABS defines it by the set of its edges. This technique facilitates an unambiguous identification of the vertices and minimizes rounding errors.

\subsection*{4.31.4. Gaussian grid integration}

The implementation of the numerical integration of Gauss-Legendre offers a choice of grids with \(6,8,10,12\), \(14,16,24\), or 32 intervals for each dimension. For needle- and plate- shaped crystals the orientation of the grid may be selected to lie along one of the principal directions. For a needle, the z-axis of the grid is chosen along the needle axis identified by its zone indices \([u v w]\). For a plate, the \(z\)-axis of the grid is chosen along the plate normal identified by the face indices \((h k l)\). The calculation of the derivatives \(\partial \mathrm{T} / \partial \mathrm{d}_{\mathrm{m}}\) requires evaluation of surface integrals. Consequently a surface grid must be specified in addition to the 3 -dimensional grid for the volume integral.

\subsection*{4.31.5. The Linear Absorption Coefficient \(\mu\)}

The linear absorption coefficient \(\mu\) is calculated by LSABS using the chemical formula stored on the bdf and the X-ray cross sections stored in the program. For the moment, the available X-ray cross sections are those for \(\mathrm{CuK} \alpha, \mathrm{MoK} \alpha\) or \(\mathrm{AgK} \alpha\) radiation taken from Table 2.1B of International Tables for X-ray Crystallography Vol IV (Ibers \& Hamilton, 1974) for the elements from hydrogen to plutonium. For other wavelengths and elements the value of \(\mu\) may be entered on the LSABS line.

\subsection*{4.31.6. Input and Output Data Specification}

The M plane faces of a polyhedral crystal are defined by their Miller indices ( \(h_{\mathrm{m}} k_{\mathrm{m}} l_{\mathrm{m}}\) ) relative to the lattice base \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), and by the perpendicular distances \(d_{\mathrm{m}}\) from a given point inside the crystal to each face ( \(\mathrm{m}=1\), ..M). For the natural faces of a crystal, \(\left(h_{\mathrm{m}} k_{\mathrm{m}} l_{\mathrm{m}}\right)\) are integers. \(d_{\mathrm{m}}\) should have been carefully measured and an estimated standard deviation of \(d_{\mathrm{m}}\) should be available. The I Bragg reflections are identified by their Miller indices \(h_{\mathrm{i}} k_{\mathrm{i}} l_{\mathrm{i}}\) and an instrument-independent crystal-based azimuthal angle \(\psi_{\mathrm{i}}\) as defined by Schwarzenbach \& Flack \((1989,1992)\). The above data must be available on the bdf for LSABS to function correctly.

By default the nett intensities of the reflections (Schwarzenbach \& Flack, 1991) are not modified by Lsabs : the calculated quantities \(\mathrm{A}=1 / \mathrm{T},\langle\mathrm{T}\rangle\) (i.e. Tbar) and \(\partial \mathrm{T} / \partial \mathrm{d}_{\mathrm{m}}\) are simply stored on the bdf.
The recommended method of placing raw diffractometer information including crystal face indices and distance data on the bdf is first to transform a diffractometer-specific file into a CIF using DIFRAC (Flack, Blanc \& Schwarzenbach, 1992). This file may then be read with CIFENT (same input lines as CIFIO) to create a bdf. This process compactly loads all of the necessary raw experimental data onto a bdf in a diffractometerindependent way.

\subsection*{4.31.7. File Assignments}
- Reads data from the input archive bdf.
- Writes data to the output archive bdf.

\subsection*{4.31.8. Examples}
```

title Create an absorption-corrected |F| bdf
CIFENT cifin
STARTX upd
sgname -C 2YC
REFCAL neti
LSABS gauss
shape needle 1 2 0
grid 10 10 24
sgrid 16
REFCAL frel
SORTRF aver 1 frel

```

The above example shows the use of STARTX, REFCAL, LSABS, and SORTRF to create a bdf with \(\left|F_{\mathrm{o}}\right|\) data from diffractometer data produced in CIF format by the DIFRAC program. STARTX calculates the direct and reciprocal cell metrics, loads the scattering factor tables, atomic radii, and checks the symmetry information - the sgname line is necessary in STARTX as this information is not stored with the raw diffractometer data. REFCAL calculates the reflection information. LSABS performs a Gaussian grid integration and applies the absorption correction to the net intensities in the bdf. As the crystal is needle-shaped, the Gaussian grid is oriented with the needle direction [120] parallel to the grid z axis. A finer grid is defined along the needle axis than in the other directions. A second pass through REFCAL is needed to convert the net intensities to \(\left|F_{\mathrm{o}}\right|\) corrected for absorption. Finally the absorption-corrected data are sorted and averaged leaving a bdf ready for structure solution and conventional \(\left|F_{\mathrm{o}}\right|\) refinement.
```

title Create a net intensity bdf
CIFENT cifin
STARTX upd
sgname -C 2YC
REFCAL neti inst 1 incl
LSABS
SORTRF

```

A bdf with net intensity data is created. LSABS performs an analytical absorption correction and stores the resulting values in the bdf. The bdf is suitable for the refinement of the crystal shape and decay parameters.

\subsection*{4.31.9. References}
- Blanc, E., Schwarzenbach, D. \& Flack, H.D. (1991). J. Appl. Cryst. 24, 1035-1041
- Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
- de Meulenaner, J. \& Tompa, H. 1965. Acta Cryst. 19, 1014-1018.
- Flack, H.D., Blanc, E. \& Schwarzenbach, D. (1992) J. Appl. Cryst. 25, 455-459.
- Ibers, J.A. \& Hamilton, W.C. (1974) Eds. International Tables for X-rays Crystallography Vol. IV, Birmingham, England: Kynock Press
- Schwarzenbach, D. \& Flack, H. D. (1989). J. Appl. Cryst. 22, 601-605.
- Schwarzenbach, D. \& Flack, H. D. (1991). Acta Cryst. A47, 134-137.
- Schwarzenbach, D. \& Flack, H. D. (1992). J. Appl. Cryst. 25, 69.

\subsection*{4.32. \(L S L S\) : Structure factor least-squares refinement}

Authors: Eric Blanc \& Dieter Schwarzenbach
Contact: Eric Blanc, Institut de Cristallographie, University of Lausanne, 1015 Lausanne, Switzerland
LSLS is a least-squares refinement program that follows the recommendations of the IUCr Subcommittee on Statistical Descriptors (Schwarzenbach et al., 1989). All structural parameters may be refined, with scale, Becker \& Coppens extinction, dispersion, crystal shape parameters and the volume ratio of the twins. The refinement is a full matrix refinement based on net intensities or \(|F|^{2}\). Restraints on distances, bond angles, dihedral angles and rigid links are included. Various weighting schemes are provided, and variances of adjusted parameters are computed according to any scheme.

\subsection*{4.32.1. Calculations Performed}

The least-squares procedure conveniently furnishes estimators for crystallographic parameters which minimize (1)
\[
\begin{equation*}
\Delta=\sum_{k} w_{k}\left(Y_{k}^{\mathrm{obs}}-Y_{k}^{\mathrm{cakc}}\right)^{2}, \tag{1}
\end{equation*}
\]
where \(Y^{\text {obs }}\) is an observation, such as a measured intensity, a restraint or a face distance of the crystal. \(Y^{\text {calc }}\) is the corresponding value computed by the model and is a function of the variables \(\left\{v_{i}\right\}\). The weights \(w_{k}\) are in general any non-negative real numbers independent of the observations. They form a diagonal weighting matrix \(\mathbf{W}\).

Apart from when \(Y^{\text {calc }}\) is linear in the variables \(\left\{v_{i}\right\}\), minimisation of (1) with respect to \(v_{i}\) leads to a system of equations which is in general not solvable. The solution is then approximated by iterations of the linearized problem around the \(\mathrm{n}^{\text {th }}\) refinement step. The vector of shifts from the \(\mathrm{n}^{\text {th }}\) to the \(\mathrm{n}+1^{\text {th }}\) step is given by the linear system (2), where \(\mathbf{A}\) is the design matrix with \(\mathrm{A}_{\mathrm{ki}}=\partial \mathrm{Y}_{\mathrm{k}}^{\text {calc }} / \partial \mathrm{v}_{\mathrm{i}}\) and \(\mathbf{N}\) the normal equations matrix \(\mathbf{N}=\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A}\).
\[
\begin{align*}
& \left.\sum_{k} w_{k}\left[Y_{k}^{\text {obs }}-\left.Y_{k}^{\text {calc }}\right|_{n}\right] \frac{\partial r_{k}^{\text {calc }}}{\partial v_{i}}\right|_{\mathrm{n}}=\left.\left.\sum_{k} w_{k} \frac{\partial Y_{k}^{\text {calc }}}{\partial v_{i}}\right|_{\mathrm{n}} \frac{\partial Y_{k}^{\text {calc }}}{\partial v_{j}}\right|_{\mathrm{n}}\left[\left.v_{j}\right|_{\mathrm{n}+1}-\left.v_{j}\right|_{\mathrm{n}}\right] \\
& \text { or } \quad \mathrm{A}^{\mathrm{T} W} \delta \mathrm{\delta o}=\mathrm{A}^{\mathrm{T}} \mathrm{WA} \delta v \tag{2}
\end{align*}
\]
\(\delta \mathrm{v}=\mathrm{N}^{-1}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{W} \delta \mathrm{o}\right)\)
is then an unbiased estimator of \(\left(\mathbf{v}_{\text {solution }}-\mathbf{v}_{\mathrm{n}}\right)\) whatever weights are chosen. It may be shown that an unbiased estimate of the variance-covariance matrix \(\mathbf{V}_{\mathrm{v}}\) of the parameters \(\mathbf{v}\) is obtained through
\[
\begin{equation*}
V_{v}=N^{-1}\left(A^{T} W V_{o} W A\right) N^{-1} \tag{3}
\end{equation*}
\]
by using an unbiased estimate of the variance-covariance matrix of the observations \(\mathbf{V}_{0}\). Weights \(\mathbf{W}=\mathbf{V}_{0}^{-1}\) i.e. \(w_{k}=1 / \sigma^{2}\) where \(\sigma^{2}\) is the variance (not an estimate) of the \(\mathrm{k}^{\text {th }}\) observation lead to a minimum-variance estimate of \(\mathbf{v}\) and \(\mathbf{V}_{v}\), and a simplified form of (3), \(\mathbf{V}_{v}=\mathbf{N}^{-1}\), where no extra calculation is necessary to obtain \(\mathbf{V}_{\mathrm{v}}\) from \(\mathbf{N}^{-1}\). Following the recommendation of the IUCr Statistical Descriptors Subcommittee (Schwarzenbach et al., 1988), the estimated variance-covariance matrix of the parameters is not scaled by the global goodness-of-fit parameter \(S\),
\[
\begin{equation*}
S=\sqrt{\frac{\Delta}{E(\Delta)}} \quad \text { with } E(\Delta)=\operatorname{trace}\left(V_{0} W\right) \cdot \operatorname{trace} N^{-1}\left(A^{T} W V_{0} W A\right) \tag{4}
\end{equation*}
\]
\(\mathbf{V}_{\mathrm{v}}\) is computed on the last cycle. Several types of crystallographic observations can be compared with the model: intensities \(I^{\text {obs }}\), crystal shape parameters \(d^{\text {obs }}\) and restraints \(R^{\text {obs }}\). Intensities are calculated by the formula
\[
\begin{equation*}
p_{k}^{\mathrm{bss}} \approx I_{k}^{\text {calc }}=K_{k} L_{k} P_{k} T_{k}(\{d\}) y((e\}) \sum_{i} x_{i}\left(A_{i}^{2}+B_{i}^{2}\right) \tag{5}
\end{equation*}
\]
where \(K_{k}\) is a scale factor, \(L_{k}\) is the Lorentz factor of the \(\mathrm{k}^{\text {th }}\) reflection, and \(P_{k}\) its polarization factor. \(T_{k}\) is the transmission factor depending on the crystal shape parameters \(\{d\}, y\) is the Becker \& Coppens extinction \(\{e\}\) and \(x_{i}\) is the volume ratio of the \(\mathrm{i}^{\text {th }}\) twin. The real and imaginary structure factor components are given by
\[
\begin{align*}
& A_{i}=\sum_{\text {atoms }} m p \sum_{s} t\left(\left(f+f^{\prime}\right) \cos \varphi_{i}-f^{\prime \prime} \sin \varphi_{i}\right)  \tag{6ia}\\
& B_{i}=\sum_{\text {atoms }} m p \sum_{\mathrm{s}} t\left(\left(f+f^{\prime}\right) \sin \varphi_{i}+f^{\prime \prime} \cos \varphi_{i}\right) . \tag{6b}
\end{align*}
\]
where the sum over s means over the symmetry-equivalent positions, \(m\) is the multiplicity factor and \(p\) the population parameter, \(t\) is the displacement factor, \(f\) is the atom form factor, \(f\) ' the real part of anomalous dispersion and \(f^{\prime \prime}\) the imaginary part of anomalous dispersion. The angle \(\varphi_{i}\) is given by \(\varphi_{i}=2 \pi\left(h_{i} x+k_{i} y+l_{i} z\right)\) where \(h_{i}, k_{i}\) and \(l_{i}\) are the indices of the reflection \((h k l)\) for the \(\mathrm{i}^{\text {th }}\) twin.

\subsection*{4.32.2. General Parameters}

The general parameters detailed in this section can be refined. Apart from the overall displacement factor and the scale factor(s) which are always refined unless an appropriate noref line is inserted, refinement of these parameters must be turned on in the LSLS line, and not via ref lines. Some of these parameters are tested to see if they are physically meaningful. If one parameter takes a non-physical value, the program prints a warning and either (a) stops, or (b) resets the parameter to the closest physical value, or (c) continues, depending on the user's choice.

\subsection*{4.32.3. Scale Factor(s)}

The refined scale factor ( \(\mathbf{s k f}\) ) is not the structure scale factor commonly used in Xtal. It places the square of the structure factor on the same scale as the primary observation, such that this latter value remains untouched by any data-reduction procedure during the refinement. When sets of reflections have different scales, they can be refined separately or as a single variable. In the latter case, constraints are automatically inserted so that \(\boldsymbol{s k f}(\mathrm{n})=\) constant \(* \boldsymbol{s k f}(1)\).

\subsection*{4.32.4. Crystal Shape Parameters}

The distances (shp) from an arbitrary origin inside the crystal to faces can be adjusted to optimize crystal shape and transmission factors. The measured values for these parameters are used as restraints,
\[
d_{k}^{\text {cbs }}-d_{k}^{c i c} \text { an } d_{k+1}
\]
where \(d_{k}^{\text {obs }}\) is the measured value for the \(\mathrm{k}^{\text {th }}\) distance, \(d_{k}^{\text {calc }}\) is the calculated distance, which is identical to the parameter \(d_{k}\).
WARNING: To fix the origin of the crystal, the distances to 3 non-coplanar faces must be kept invariant. The program does not choose these faces automatically. They should be as mutually perpendicular as possible, and sufficiently large to have well-characterized Miller indices. However, when the invariant faces have been chosen, weights on these observations are automatically set to zero.

To take into account systematic errors due to magnification effect, refined distances can be constrained, or a correlation value between observations can be used. In the latter case, the variance-covariance matrix \(\mathbf{V}_{\mathrm{o}}\) is no longer diagonal, but the weighting matrix remains diagonal even in the case of \(1 /\) esd \(^{2}\) weights.

\subsection*{4.32.5. Extinction}

Becker \& Coppens extinction parameters can be applied or refined, either isotropically or anisotropically. Following Zachariasen (1967), one can distinguish two types of secondary extinction. Type I refers to crystals in which the extinction is dominated by the mosaic distribution (described by \(g\) ), whereas effective particle size (related to the parameter \(\rho\) ) is the critical parameter describing extinction in type II crystals. For anisotropic extinction, \(g\) and \(\rho\) become tensorial quantities as defined according Thornley and Nelmes (1974).

Several extinction refinement options are available: \(g\) and \(\rho\) can be refined separately choosing type I or type II respectively. In this case, primary extinction is neglected. \(g\) and \(\rho\) can also be refined simultaneously (but only \(g\) can be tensorial) allowing primary extinction to be taken into account. Either a Lorentzian or a Gaussian distribution of the mosaic spread \(g\) can be selected.

A short summary of used expressions is given below. Full details can be found in Becker \& Coppens (1974a, 1974b, 1975) and Zachariasen (1967).
\[
\begin{aligned}
& \psi=\frac{g}{\sin 20} \text { for cype I. } \psi=\rho \text { for rype II, and for generat exinction : } \\
& \psi=\frac{g \rho}{1+\rho \sin 2 \theta} \text { (Lneme) } \psi=\frac{\xi \rho}{\sqrt{1+\rho^{2} \sin ^{2} 2 \theta}} \text { (Gauss) } \\
& \gamma_{\mathrm{p}}-\frac{3}{2} \frac{\lambda^{4}}{\gamma^{2}} a^{2} \text { and } \gamma_{\mathrm{s}}=\frac{\lambda^{4}}{\gamma^{2}} a^{2} \bar{T} \\
& \text { then } x_{\mathrm{p}}=\gamma_{\mathrm{p}} F_{\mathrm{c}}^{2} \rho^{2} \text { and } x_{\mathrm{s}}=\gamma_{\mathrm{S}} F_{\mathrm{c}}^{2} \psi^{2} \text { and fusally: } \\
& y=y_{p}\left(x_{p}\right) y_{s}\left(y_{p}\left(x_{p}\right) x_{s}\right) \text { with } y_{j}\left(x_{i}\right)=\sqrt{1+c_{i} x_{i}+\frac{a_{i} x_{i}{ }^{2}}{1+b_{i} x_{i}}} \mathrm{i}=\mathrm{p}, \mathrm{~s}
\end{aligned}
\]

The parameters \(g\) and \(\rho\) are related respectively to the half-width of the mosaic spread distribution \(\Delta_{1 / 2}\) expressed in radians and to the size of the mosaic blocks r expressed in cm by
\[
\begin{aligned}
& \Delta_{1 / 2}=\frac{\sqrt{\ln 2 / 2 \pi}}{g} \text { (Gaussian) } \Delta_{1 / 2}=\frac{1}{2 \pi g} \text { (Lorentzian) } \\
& r=\rho \lambda .
\end{aligned}
\]

The values of \(g\) and \(\rho\) given in the program listing are multiplied by \(10^{4}\).

\subsection*{4.32.6. Twinning parameter(s)}
(Pseudo-) merohedral twin laws may be determined automatically and entered onto the bdf by CREDUC for use by LSLS. Twin laws may also be entered directly in LSLS by use of twinop lines. By default one twin law viz. the identity operation is assumed. For centrosymmetric space groups all twin laws are generated by CREDUC or must be entered by way of twinop lines. For non-centrosymmetric space groups, each twin law generated by CREDUC or entered by way of a twinop line corresponds to a pair of twin laws: viz. the one indicated and the one related to it through a center of inversion. The two laws of the inversion-related pair in non-centrosymmetric space groups have serial numbers \(i\) and \(i+n\) where \(n\) is the number twin matrices on the bdf or twinop lines given in LSLS.

Twinning ( twi ) is treated by refining the volume fractions \(x_{\mathrm{i}}\) of each twin component and automatically constraining their sum to be 1.0 .

For non-centrosymmetric structures, attention has to be paid to two points. Primo, anomalous dispersion should be applied. Secundo, the bdf should be prepared with each reflection and its Friedel opposite in separate packets: sepfrl on the SORTRF line.

The Becker and Coppens extinction theory used in LSLS does not take twinning into account, implying that the coupling constant between the incident and diffracted beams is forced to be symmetric under the lattice-point group symmetry.

The following example illustrates the way to handle twins in the non-centrosymmetric space group P23. CRE\(D U C\) generated 2 (pairs of) twin laws:
\begin{tabular}{|c|c|c|c|c|}
\hline \(\begin{array}{lll}1 & 0 & 0\end{array}\) & & \(\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)\) & & \(\left(\begin{array}{lll}-1 & 0 & 0\end{array}\right)\) \\
\hline \(\begin{array}{lll}0 & 1 & 0\end{array}\) & for (1) Identity & \(\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\) & and (3) Centre & \(\left(\begin{array}{llll}0 & -1 & 0\end{array}\right)\) \\
\hline 0 0 1) & & ( 001 ) & & ( \(00-1\) ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\left(\begin{array}{lll}0 & -1 & 0\end{array}\right.\) & \(\left(\begin{array}{lll}0 & -1 & 0\end{array}\right)\) & & \(\begin{array}{lll}0 & 1 & 0\end{array}\) \\
\hline \(\left(\begin{array}{lll}-1 & 0 & 0\end{array}\right)\) & for (2) 2-fold axis ( \(\left.\begin{array}{llll}-1 & 0 & 0\end{array}\right)\) & and (4) Mirror & \(100)\) \\
\hline \(\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\) & ( \(00-1\) ) & & \(\left(\begin{array}{lll}0 & 1\end{array}\right)\) \\
\hline
\end{tabular}

In order to refine only the enantiomorph-polarity parameter in this case starting with a value of 0.5 , the following lines are necessary:
```

twinop *10 1 0.5 0.5
noref twi(2) twi(4)

```

\subsection*{4.32.7. Dispersion and Neutron-Scattering-Factor Parameters}

Assuming that refinement of dispersion parameters has been turned on by rd on the lsLs line, dispersion parameters can be addressed individually by re or im for the real or the imaginary parts, or as a set with dsp.

Neutron scattering factor refinement is achieved by turning on dispersion refinement and keeping imaginary parts invariant.

\subsection*{4.32.8. Overall Displacement Parameter}

The overall displacement parameter is automatically refined if at least one atom's displacement parameter type is set to overall. It can be held invariant by using noref uov.

\subsection*{4.32.9. Atomic Parameters}

\subsection*{4.32.9.1. Positional Parameters}

Atomic positional parameters are always refined unless the atom is in a special position or they are explicitly constrained. noref <atom> fixes all atomic parameters of the named atom.

\subsection*{4.32.9.2. Displacement Parameters}

The program can be used to refine overall, isotropic or anisotropic displacement parameters. In mixed mode, the displacement-parameter type of an atom is set in accordance to the value on the bdf. However it can be modified by the use of ref and noref lines. After refinement, the mode used is written on the output bdf. If the displacement factor is non-positive definite, the program will either stop ( \(\mathbf{t s}\) ), or reset it to a positive value ( tr ), or continue with non-physical values ( tp ).

\subsection*{4.32.10. Invariant Parameters}

ADDATM generates symmetry constraints for atoms on special positions which are written on logical record lrcons:. See the documentation of ADDATM for details.

A noref line can fix any parameter. The general form of the arguments is:
( \(\mathrm{p} 1 / \mathrm{p} 2\) )(a1/a2) fixes from atomic parameter p 1 to atomic parameter p 2 of all atoms in list between a1 and a 2 inclusive. ( \(\mathrm{p} 1 / \mathrm{p} 2\) ) can be replaced by p 1 if only one parameter is to be fixed, and a1 can replace (a1/a2) if there is only one target atom.

Atomic parameters are : \(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathrm{u}, \mathrm{u} 11, \mathrm{u} 22, \mathrm{u} 33, \mathrm{u} 12, \mathrm{u} 13, \mathrm{u} 23\), pop
\(\mathrm{a} 1 / \mathrm{a} 2\) fixes all atomic parameters from atom a1 to atom a2. a1/a1 is abbreviated a1.
When an atom name is identical to an atom type name, then a1 and a2 will hold for atom types instead of individual atoms.
\(\mathrm{g} 1(\mathrm{n} 1 / \mathrm{n} 2)\) fixes general parameters g 1 , which can be uov, skf, twi, shp, ext, dsp, re or im, from n 1 to n 2 . If only one parameter is kept invariant, n 1 can be used for \(\mathrm{n} 1 / \mathrm{n} 2\).

For dispersion refinement, dsp fixes real and imaginary parts and it is equivalent to (re/im).
The syntax of the ref line is identical to that of noref. When mixed displacement mode has been selected on the LSLS line, ref/noref lines can be used to change atomic displacement types. ref U converts the displacement type to isotropic, while ref \(\mathrm{U} 11 / \mathrm{U} 23\) set the displacement type to anisotropic.
```

ref U(N) (U11/U23)(N2)
ref U(N1) U(N3/N6)

```

These examples show how to set to isotropic the displacement parameter type for all 6 nitrogen atoms, except for atom N 2 . There is a difference in the resulting displacement parameters values between these two examples. In the first example, all nitrogens are first changed to isotropic, and then the displacement factor of atom N 2 is reset to an anisotropic tensor. In the second example, the displacement parameter of atom N 2 is not changed at all.

WARNING If atom types Y and U appear in the atom type list, atomic parameters y and\& u must be lowercase.

\subsection*{4.32.11. Constrained Parameters}

As for invariant parameters, symmetry constraints are read from the input bdf logical record lrcons:. Linear constraints between parameters can also by introduced by constr lines :
\(\mathrm{p}=\mathrm{Q}+\mathrm{f}(1)^{*} \mathrm{r}(1)+\ldots+\mathrm{f}(\mathrm{n}) * \mathrm{r}(\mathrm{n})\) where :
\(\mathrm{p}=\) object (dependent) parameter (same format as
ref/noref lines)
\(\mathrm{Q}=\) constant term
\(\mathrm{f}(\mathrm{i})=\) ith multiplicative term
\(r(i)=\) ith reference (independent) parameter (same
format as ref/noref lines).
The specification of the parameters is the same as in ref/noref lines, but object and reference parameters must be uniquely determined. It should be noted that the constant terms \(Q\) and \(f(i)\) are mandatory, and blanks are not allowed.

WARNING Origin fixing is carried out by shift-limiting restraints, following the algorithm of Flack \& Schwarzenbach (1988). Additional constraints should not be used in LSLS in polar space-groups.

The normal-equations matrix is constructed for independent variables only to minimize storage size and inversion time. The constraints modify the derivative vector, which leads to an unconstrained least-squares problem. The dependent parameters \(p^{\circ}\) contribute to the derivatives vector of the reference parameters \(p^{\mathrm{r}}\), which become:
\[
\begin{equation*}
\frac{d Y}{d p^{\mathrm{r}}}=\frac{\partial Y}{\partial p^{r}}+\sum_{i}\left[\frac{d p_{i}^{\mathrm{o}}}{d p^{r}} \frac{\partial Y}{\partial p_{i}^{\mathrm{o}}}\right]=\frac{\partial Y}{\partial p^{\mathrm{r}}}+\sum_{i} f_{i} \frac{\partial Y}{\partial p_{i}^{\mathrm{o}}} \tag{8}
\end{equation*}
\]

The dependent parameter estimated standard deviation is then given by (9) :
\[
\begin{equation*}
\sigma^{2}\left(p^{0}\right)=\sum_{i} f_{i}^{2} \sigma^{2}\left(p_{i}^{\mathrm{r}}\right)+2 \sum_{i<j} f_{i} f_{j} \operatorname{cov}\left(p_{i}^{\mathrm{r}} p_{j}^{\mathrm{r}}\right), \tag{9}
\end{equation*}
\]

\subsection*{4.32.12. Restraints}

Restraints \(\Phi\) are additional stereochemical pseudo-observations used to restrict interatomic geometry. For a discussion of the relations between rigid bodies and restraints, see Didisheim \& Schwarzenbach (1987). Distance, bond-angle, dihedral-angle and rigid-bond restraints are provided. If \(\mathbf{M}\) and \(\mathbf{M}^{-1}\) are respectively the direct and reciprocal metric tensors, \(\mathbf{x}_{\mathrm{i}}\) is the position of atom i expressed in the crystal coordinates, \(\beta \mathrm{i}\) the displacement tensor of atom \(i\) expressed in the same basis, \(\mathbf{n}_{1}=\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{\wedge}\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right), \mathbf{n}_{2}=\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)^{\wedge}\left(\mathbf{x}_{4}-\mathbf{x}_{3}\right)\) and \(V\) the volume of the cell, then restraints are given by (10) :
\[
\begin{array}{ll}
\text { distance } & \Phi=\sqrt{\left(x_{2}-x_{1}\right)^{\mathrm{T}} \mathrm{M}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)} \\
\text { bond angle } & \Phi=\operatorname{Arccos} \frac{\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)^{\mathrm{T}} \mathrm{M}\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)}{\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{\mathrm{T}} \mathrm{M}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)} \sqrt{\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)^{\mathrm{T} M\left(x_{3}-x_{2}\right)}}}
\end{array}
\]
\[
\begin{aligned}
& \text { dihedral angle } \phi \\
&=\operatorname{Arccos} \frac{n_{1}^{T} M^{-1} n_{2}}{\sqrt{n_{1}^{T} M^{-1} n_{1}} \sqrt{n_{2}^{T} M^{-1} n_{2}}} \quad \text { if } \cos \phi \leq|\sin \phi| \\
& \phi=\operatorname{Arcsin} V \frac{\sqrt{\left(x_{3}-x_{2}\right)^{T} M\left(x_{3}-x_{2}\right)} n_{1}^{T}\left(x_{4}-x_{3}\right)}{\sqrt{n_{1}^{T} M^{-1} n_{1}} \sqrt{n_{2}^{T} M^{-1} n_{2}}}
\end{aligned}
\]
\[
\begin{equation*}
\text { if }|\cos \phi|>|\sin \phi| \tag{10c}
\end{equation*}
\]
\[
\begin{equation*}
\text { rigid link } \quad \Phi=\frac{\left(x_{2}-x_{1}\right)^{T} M\left(\beta_{2}-\beta_{1}\right) M\left(x_{2}-x_{1}\right)}{\left(x_{2}-x_{1}\right)^{T} M\left(x_{2}-x_{1}\right)} \tag{10d}
\end{equation*}
\]

When the normal-equations matrix is ill-defined, it is possible to force it into a positive-definite form, which is easily invertible. The usual way to do this is to use shift-limiting restraints which increase the diagonal element \(N_{i i}\) of the variable \(v_{i}\) leading to the degeneracy. Two possibilities are available in LSLS: (a) when the weight \(w\) of the restraint is greater than 1 , the restraint equation adds the quantity \(w\left(v_{\mathrm{i}}^{\text {obs }}-\mathrm{v}_{\mathrm{i}}^{\text {calc }}\right)^{2}\) to the minimized function (1), so the diagonal element becomes \(N_{i i}+w\). This type of shift-limiting restraint may then be viewed as a pseudo-observation whose value is taken to be the variable's value in cycle n , and the restraint imposes that \(v_{i}\) in cycle \(\mathrm{n}+1\) should be "close to" its former value. (b) If \(w\) is smaller than 1 , it is interpreted as a LevenbergMarquardt parameter (see Press, Flannery, Teukolsky \& Vettering (1986)). There is no pseudo-observational justification to this method where the diagonal element is multiplied by a \(w\) independent of the \(N_{i i}\). It should be pointed out that tests to determine the optimal Levenberg-Marquardt parameter are not carried out by LSLS.

\subsection*{4.32.13. Weights}

LSLS provides 3 different weighting schemes: the usual minimal variance \(w=1 /\) esd \(^{2}\), unit weights \(w=1\),
or weights read from the bdf (idn 1900 is taken as the square root of the weight on \(Y\) ); this latter possibility allows the user to define his/her own weighting scheme. In any case, the goodness of fit and the parameter variance-covariance matrix are computed according to (3) and (4).
Weights on \(|F|\) are computed from weights on the refined quantity \(Y\) (either \(|F|^{2}\) or \(I\) ) by (11) where LPT is set to 1.0 if \(Y=|F|^{2}\). These \(|F|\) weights are used in the calculation of the weighted R -factor.
\[
\begin{equation*}
w_{\mathrm{FI}}=\frac{L P T K}{\sqrt{Y^{2}+1 /(2 w)} \cdot Y} \text { if } I>0 \text { and } w_{\mathrm{If} \mid}=\sqrt{2 w} L P T K \text { if } Y \leq 0 \tag{11}
\end{equation*}
\]

\subsection*{4.32.14. Reflection Classification}

A reflection can be omitted from the refinement under several conditions: if it is flagged as suffering form extinction (rcode 3), if its weight is 0 , if its weighted difference \(w^{1 / 2}\left|Y^{\text {obs }}-\mathrm{Y}^{\text {calc }}\right|\) is greater than some user defined value, or if \(\mathrm{Y}^{2}\) esd \(_{\mathrm{Y}}\) is less than a user defined threshold. These unused reflections do not contribute to the matrices, Durbin-Watson statistic, and goodness-of-fit. Less-than reflections are those for which Y/esd \({ }_{\mathrm{Y}}\) less than the cutoff value, and those with rcode \(=2\). In the latter case, the reflections are discarded only if \(\mathrm{Y}^{\text {obs }}\) is greater than or equal to \(Y^{\text {calc }}\). The status code is never updated by LSLS.

The meaning of the printed status codes is the following: \(\boldsymbol{F}\) is for reflections without their Friedel mate, \(\mathbf{A}\) is for systematically absent reflections. Reflections flagged with these codes are always used in the refinement. \(\mathbf{E}\) is for a reflection suffering from extinction, \(\mathbf{I}\) for less-than reflections, i.e. which \(\mathrm{Y}_{\mathrm{K}} / \mathrm{ed}_{\mathrm{Y}}\) smaller than the threshold, \(\mathbf{w}\) for reflections with a weight of zero, and \(\mathbf{r}\) for a rejected reflection for which \(\mathbf{w}^{1 / 2}\left|Y^{\text {obs }}-Y^{\text {call }}\right|\) is greater than the cutoff. Reflections marked with these codes are always excluded from the refinement. u is for unobserved reflections; it corresponds to rcode \(=2\). The asterisk * marks reflections which do not contribute to the matrix.

\subsection*{4.32.15. R-Factors}

The unweighted and weighted R -factors are printed by the program. The unweighted R -factor is defined as:

\section*{M.I.A.}
and the weighted R-factor by:

\section*{M.I.A.}

For the 4 R -factors printed by the program:
(1) marked "Of contributing reflections" is calculated with \(R, Y=|F|\) and \(M=\) NREF.
(2) marked "Of weighted contributing reflections" is calculated with \(w R, Y=|F|\) and \(M=\) NREF.
(3) marked "Of Observations" is calculated with \(R\); for refinement on \(|F|^{2}, Y=|F|^{2}\); for refinement on \(I, Y=I\); and \(\mathrm{M}=\) NOBS.
(4) marked "Of Weighted Observations" is calculated with wR; for refinement on \(|F|^{2}, Y=|F|^{2}\); for refinement on \(\mathrm{I}, \mathrm{Y}=\mathrm{I}\); and \(\mathrm{M}=\mathrm{NOBS}\).

\subsection*{4.32.16. File Assignments}
- Reads parameter- and observation- information from the input archive bdf
- Writes refined parameters on output archive bdf
- Optionally writes variance-covariance matrix to file cmx
- Optionally writes parameters to file pch

\subsection*{4.32.17. Examples}
```

title Gd3Ru4Al12
compid gra
CIFENT cifin
STARTX upd
sgname -P 6C 2C
REFCAL neti inst 1 excl
LSABS
ADDATM
extinc typ1 is gaus 0.005
llllllllllll
atom Gd 0.1928 0.3856 0.25 0.007
atom Ru1 0.5 0 0 0 0.007
lllllllllll
atom Al4 0 0 0.25 0.008
atom Ru2 0 0 0 0.007
atom Al2 0.5637 0.1274 0.25 0.008 0.95
lllllllllll
LSLS cy 5 ad ax pp tr rs sm
noref shp(1) shp(3) shp(5)
noref pop
ref pop(Ru3) pop(Al2)
constr x(Ru3)=0.0+1.0*x(Al2)
constr u(Ru3)=0.0+1.0*u(Al2)
constr pop(Ru3)=1.0-1.0*pop(Al2)
REGFE sr 1 nan tab
finish

```

To refine the crystal shape, the absorption program LSABS is run just after the conversion from raw data to net intensities. No averaging is done, and the refinement is made on all intensities. 3 faces are kept invariant. Ru3 and Al2 are constrained to the same position, and the same displacement parameter. The stereochemical disorder of these atoms is taken into account constraining the total population of the site to be equal to 1 . The variance-covariance matrix is saved to be used in the calculation of distances by REGFE.
```

compid coanp
CIFENT cifin
STARTX upd
latice n p
symtry x,y,z
symtry -x,y,1/2+z
symtry -x,1/2+y,-z

```
```

symtry x,1/2+y,1/2-z
NEWCEL
transf 0 0 1 1 0 0 0 1 0
CREDUC
REFCAL excl fsqr ffac
SORTRF ord lkh aver 1 sepfrl f2rl
ADDATM
Atomic parameters omitted here for brevity
LSLS cy 1 f2 cs 3.0
noref C N O H
LSLS cy 5 f2 cs 3.0 rp ep
FOURR
MAPLST
finish

```

In this example, the space group is changed by \(N E W C E L\), then twins are searched (CREDUC), the data are converted to \(|F|^{2}\) and averaged in separate packet for Friedel pairs. The scale factor is refined alone for one cycle, and then all structural parameters are refined, including enantiomorph (absolute structure) parameter. When the initial value of the scale factor is far from the real one, it can be useful to refine the scale factor alone in a first refinement step.

\subsection*{4.32.18. References}
- Becker, P.J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Becker, P.J. \& Coppens, P. (1974). Acta Cryst. A30, 148-153.
- Becker, P.J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
- Bernardinelli, G. \& Flack, H.D. (1985). Acta Cryst. A41, 500-511.
- Didisheim, J.-J. \& Schwarzenbach, D. (1987). Acta Cryst. A43, 226-232.
- Flack, H.D. (1983). Acta Cryst. A39, 876-881.
- Flack, H.D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
- Press, W.H., Flannery, B.P., Teukolsky, S.A. \& Vetterling, W.T. (1986). Numerical Recipes. Cambridge University Press. Cambridge.
- Thornley, F.R. \& Nelmes, R.J. (1974). Acta Cryst. A30, 748-757.
- Schwarzenbach, D. et al. (1989). Acta Cryst. A45, 63-75.
- Zachariasen, W.H. (1967). Acta Cryst. 23, 558-564.

\subsection*{4.33. LSQPL: Least-squares planes \& lines}

Authors: George Davenport and Howard Flack
Contact: Howard Flack, Laboratoire de Cristallographie, University of Geneva,CH-1211 Geneve 4, Switzerland.

LSQPL calculates the least-squares plane or line through a set of specified atoms and the angles between sets of least-squares planes and lines.

\subsection*{4.33.1. Calculations Performed}

LSQPL calculates the equations of least-squares lines and planes. The method of calculation is that of Schomaker, Waser, Marsh and Bergman (1959) with the exception of the method used for obtaining the roots of the cubic equation in Lagrangian multipliers. Schomaker et al. used an iterative technique, whereas LSQPL solves for the roots directly by the general solution equations. LSQPL also calculates the values and their estimated standard deviations of the distances of atoms from the least-squares planes or lines, and of the angles between planes and lines. The least-squares plane or line equation is output both in fractional and orthogonal Angstrom coordinates parallel to \(a^{*}, b^{\prime}, c\) (Rollett, 1965). Cell and symmetry data are taken from the bdf. The bdf also provides atom coordinates which may be supplemented or updated with values read from the line input on site lines. The atoms used in the calculations may be supplemented by those related by a centre of symmetry at a position indicated on the plane or line lines. LSQPL also permits the selection of defining atoms to be used in the least-squares plane calculations (define line) and non-defining atoms to be used only to calculate the atom-to-plane or -line distances (nondef line).

\subsection*{4.33.2. Choice of Method}

The 2.6 version of this program used the algorithm of Ito (1981). The algorithm of Ito works well for the calculation of least-squares planes. However (see Flack, 1990), when applied to the calculation of best-lines through a set of atoms, it either finds the best-plane or has poor convergence properties. The much older algorithm of Schomaker et al. (1959), used in the X- RAY 76 version of LSQPL by Roger Chastain and Wilson de Camp, has the considerable advantage of applying to both least-squares lines and planes. Of the original Davenport LSQPL XTAL program the input/output sections have been retained and the calculation section rewritten by Flack. For the calculation of the variance-covariance matrix of the plane normal/line direction, it should be pointed out that the formula \({ }^{\mathrm{n}} \mathbf{M}=\mathbf{C}^{-1}\) given by Hamilton \((1961,1964)\) [equation 15 of Hamilton (1961) and equation 22, section 5-8 of Hamilton (1964)] are incorrect. Hamilton's derivation is based on taking expectation values of \(\left(m_{i}-\mu_{\mathrm{i}}\right)\left(\mathrm{m}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\) assuming that the three \(\mathrm{m}_{\mathrm{i}}\) are independent random variables. In fact \(\mathbf{m}\) should be constrained to be a unit vector, leading to only two independent random variables, as clearly indicated in the work of Waser, Marsh and Cordes (1973). The variance- covariance matrix of \(\mathbf{m}\) should thus be evaluated by elimination of one of the \(m_{i}\) contributing to \(\mathbf{C}\) before inversion followed by augmentation (by propagation of errors), after inversion, for the eliminated variable. A difficulty in the calculation of estimated standard deviations of interplanar or interlinear angles is a \(\sin 2 \theta\) appearing in the denominator of the expression for converting variance \((\cos \theta)\) into variance \((\theta)\) [Equation 16 of Waser, Marsh \& Cordes (1973) and equation 26 of Ito (1981)]. For values of \(\theta\) close to 0 , this leads to very large e.s.d.s or division by zero. In LSQPL the problem is resolved by using a finite difference rather than a differential formula:
\(\sigma(\theta)=|\arccos [\cos \theta \pm \sigma(\cos \theta)]-\theta|\)

\subsection*{4.33.3. File Assignments}

Reads existing atom and symmetry data from the input archive bdf.

\subsection*{4.33.4. Example}
```

LSQPL
PLANE
DEFINE N11 C12 C13 C14 C15 C16
nondef Ni
LINE
DEFINE Ni N1 C1 S1

```

\subsection*{4.33.5. References}
- Flack, H.D. (1990). Acta Cryst. In preparation.
- Hamilton, W.C. (1961). Acta Cryst. 14, 185-189.
- Hamilton, W.C. (1964). Statistics in Physical Science.The Ronald Press Company: New York.
- Ito, T. (1981). Acta Cryst. A37, 621-624.
- Rollett, J.S. (1965). Computing Methods in Crystallography. Pergamon Press: New York.
- Schomaker, V., Waser, J., Marsh, R.E. \& Bergman, G. (1959). Acta Cryst. 12, 600-604.
- Waser, J., Marsh, R.E. \& Cordes, A.W. (1973). Acta Cryst. B29, 2703-2708.

\subsection*{4.34. LSRES: Restraint editor}

Author: Eric Blanc
Contact: Eric Blanc, Institut de Cristallographie, University of Lausanne, 1015 Lausanne, Switzerland
LSRES creates or updates the restraints logical records (lrbond:, lrangl., lrdihe:, lrrigi:) on the archive bdf. It also computes the values of these restraints.

\subsection*{4.34.1. Calculations Performed}

LSRES provides for the creation or modification of the logical records lrbond: (distance restraints), lrangl: (bond angle restraints), lrdihe: (dihedral angle restraints) and lrrigi: (rigid bond restraints). The atoms must be on the input bdf, and for each rigid bond restraint, at least one atomic displacement factor must be anisotropic, and neither may be overall. All restraints that are output on the archive bdf are computed and tested to make sure two atoms do not occupy the same position.

LSRES accepts restraints between symmetry-equivalent atoms as defined by symeq line. Introduction of atoms outside the unit cell is achieved by translations greater than 1 .
In update mode, when an atom name is used it is taken to apply to all symmetry-equivalent atoms based on the named atom, whereas a symmetry-equivalent atom name applies only to the atom generated by the particular symmetry operation. This means that if the user gives atom names instead of symmetry-equivalent names, LSRES will select the first matching restraint (restr line) or all matching restraints (delres line). Besides, for the delres line only, the "wild field" all is for any atom in any symmetry-equivalent position. For example:
delres dist C1: delete distance restraints containing atom C1
delres dist C1 all: delete distance restraints
containing atom C 1 as first field
delres dist all C1: delete distance restraints containing atom C 1 as second field

This can be useful to delete bond angle and dihedral angle restraints.

\subsection*{4.34.2. File Assignments}
- Read atoms and restraints from the input archive bdf.
- Write restraints to the output archive bdf.

\subsection*{4.34.3. Examples}
\begin{tabular}{llllll} 
LSRES & apr & & & & \\
restr & dist & C31 & C71 & 1.458 & 0.0001 \\
restr & bond & C31 & C71 & 0 & 0.0001 \\
restr & dist & C32 & C72 & 1.458 & 0.0001 \\
restr & bond & C32 & C72 & 0 & 0.0001
\end{tabular}

Introduction of 4 restraints, 2 bond distances, and 2 rigid links.
```

LSRES upd
symeq C32 C325 -z -x -y
symeq C72 C725 -z -x -y
delres dist
delres bond C71
restr bond C32 C325 0 0.0001
restr bond C72 C725 0 0.0001

```

Creates symmetry-equivalent atoms to \(\mathrm{C} 32 \& \mathrm{C} 72\), delete all distances restraints, delete all rigid bond restraints on atom C71 and all its symmetry-equivalent atoms, and insert restraints between C32 and a symmetryequivalent atom, and C72 and a symmetry-equivalent atom.

\subsection*{4.35. MAPLST: List map densities}

Author: James Hester, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia MAPLST outputs the electron density values of a "map" file as ACSII text. This output is intended specifically for use with the Mathematica( \(R\) ) package but is useful for any program requiring the map data as text.

\subsection*{4.35.1. Purpose}

MAPLST outputs a FOURR (or SLANT, etc.) map bdf as 80 column text ascii data. The output line file (asc) consists of:
1. header decriptor line
2. line containing the 3 integers which are the number of sections (i.e. layers) in the map, the number of rows in a section and the number of density points in a row.
3. density value for each point as floating point numbers. These are listed continuously and are separated only by blanks.

\subsection*{4.35.2. File Assignments}

Reads the map densities from the specified bdf (default is map) Writes the map densities to the line file asc.

\subsection*{4.35.3. Example}

MAPLST sla

Output the map densities from the SLANT map file to asc.

\subsection*{4.36. MAPXCH: Import theoretical electron density maps NEW}

Authors: Doug du Boulay, Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-Ku, Yokohama Japan.

MAPXCH currently imports a abinitio (DFT) 3D electron density map from the open source ABINIT project or from Wien2k lapw5-3D into an Xtal archive file.

\subsection*{4.36.1. Purpose}

To compare theoretical and experimental charge densities it is useful to know that all densities are on the same scale, with the same contour intervals and the same map orientations, so that topographic features can be reliably compared. To this end MAPXCH was written to import the electron density maps of the completely unrelated and unaffiliated external density functional theory programs Wien2k and ABINIT into Xtal, to exploit the relatively reliable contouring machinary that already exists herein (amongst other things).

\subsection*{4.36.2. Using Wien2k data}

At last checking, the Wien2k DFT code included one program, lapw5, intended for determining the electron density on a planar grid of values for contouring in external software. Florent Boucher kindly made available (to existing Wien2k users) a modified version of lapw5, heretofore named lapw53D, with which it was possible to compute the electron density on a 3D grid of values, in much the same manner as an existng planar lapw5 calculation.

The program lapw53D requires a default filename mapping file - lapw53D.def with the contents:
```

5 ,'case.in53D', 'old', 'formatted',0
6 ,'case.output5', 'unknown','formatted',0
8 ,'case.struct', 'old', 'formatted',0
9,'case.clmval', 'old', 'formatted',0
10,'case.3dmap', 'unknown','unformatted',0
11,'case.clmvaldn', 'unknown','formatted',0
12,'case.sigma', 'unknown','formatted',0
20,'case.rho_onedim','unknown','formatted',0
21,'case.rho', 'unknown','formatted',0

```

For use with Xtal we need a lapw53D control file case.in53D with the contents:
\begin{tabular}{rrrr}
0 & 0 & 0 & 10000000 \\
10000000 & 0 & 0 & 10000000 \\
0 & 10000000 & 0 & 10000000 \\
0 & 0 & 10000000 & 10000000
\end{tabular}

323
979749
DIFFADD
ANG VAL NODEBUG
NONORTHO
Note especially the grid points 979749 which will vary on a study by study basis, but if they are too large, the whole map cannot be squeezed into the F77 fixed length Xtal memory. For Xtal it is necessary that the
unduplicated grid dimensions be divisible by 2,3 and/or 5 and for trigonal symmetrys divisibility by 3 is essential.

So, having run your Wien2k DFT SCF calculations to convergence, run lapw53D to calculate the 3D grid data points which are stored in the raw binary case. 3dmap file.

Then, run Xtal with the command MAPXCH w2k2map inpfile case to read both the case.struct file to obtain unit cell, symmetry and atom information and, also the case. 3dmap to transform the 3D gridded Wien 2 k density map into the Xtal map file as a full cell map. After the Xtal archive is created STARTX and ADDATM are run in update mode to check the symmetry and atom site information, then the archive is coppied to the .map file.

\subsection*{4.36.3. Using ABINIT data}

To obtain a valence density output from the program ABINIT it is sufficient to add the command
```

prtden 1

```
to your ABINIT control file. Then at succesful completion of the job all cell, symmetry and atom site information is written, along with the resultant valence density, to the file case_den. In contrast to Xtal, ABINIT plays hard and fast with the symmetry and cell in order to minimize cell volumes and optimize computation times. As a result some deductive logic is required to transform the 3D map data and cell to a more standard crystallographic setting. This can be lossy and the MAPXCH code is experimental.

One problem with the ABINIT case_den file is that the entire electron density map is written as a single Fortran90 record of double precision data. Reading it within Xtal stresses the memory limitations, severely limiting the size of map that can be accomodated.

As with the Wien2k data input method, after creating the Xtal archive it is passed to STARTX and ADDATM to check the symmetry and atom sites, before being coppied to a . map file for contouring within xtal.

\subsection*{4.36.4. File Assignments}
- Optionally read ABINIT case_DEN file
- Optionally read Wien 2 k case.struct and case. 3 dmap files
- Initializes an xtal archive bdf and creates an xtal map file.

\subsection*{4.36.5. Examples}
```

MAPXCH w2k2map inpfile P63 : read Wien2k P63.tmp map file
UOV 0.22

```

Read a Wien2k 3D map file, presumably a difference electron density map, straight into an xtal .map file
```

MAPXCH abi2map noterm abifile sin_o_DEN : read ABINIT map
UOV 0.22 : spawns STARTX and ADDATM
ADDATM upd: : reoveride builtin value
UOV 0.00
ADDREF ffac : generate dummy reflection data
reduce nocon
limits *9 yes : whole sphere
hklgen hkl frel sigf

```
```

SORTRF aver 1 frel : remove redundant reflections
RFOURR : pr 100: reverse fourier transform valence density
MODHKL : purge unphased reflections
purge -4.+19 \$1 1 1801
FC frt noex nod list : Determine Frel as Sqrt((Acore+Aval)^2+(Bcore+Bval)^2)
CRYLSQ ov cy 10 wu : optimize overall temp
noref skf
noref Si
noref N
FOURR : Calculate a difference map
grid 60 60 24

```

This example reads an ABINIT valence electron density map into an xtal input . aan archive file for updating using STARTX and ADDATM before copying to the standard .map file. Dummy reflections are determined (assuming \(\lambda=0.5 \AA\) ) and a reverse Fourier transform calculates the phase as well as A and B. The Fc frt option calculates an effective Frel by adding a pseudo core to the valence electrons \({ }^{1}\). Then total density, promolecular structure factors are computed in CRYLSQ and a difference Fourier map is evaluated.
```

MAPXCH abi2map noterm abifile sin_o_DEN : read ABINIT map
UOV 0.00
ADDATM upd
UOV 0.000
STARTX upd : Add valence density form factors
celcon Si
celcon N
setid formfx
Si 0. 4.
Si 0.00836484041 3.99153447
: ... truncated for brevity. Valence form factors from SCATOM
N 1.98792839 4.64325094
setid
exper 1 0.9: change the wavelength
end
ADDREF ffac : generate dummy reflection data
reduce nocon
limits *4 1.0 *9 yes : whole sphere
hklgen hkl frel sigf
SORTRF aver 1 frel : remove redundant reflections
RFOURR th 0.000001 : pr 100 : reverse fourier transform valence density
idnums \$1 304 801 802 700 :
MODHKL : purge unphased reflections
purge -4.+19 \$1 1 1801
FC noex nod list : calculate Fc for pure valence electrons
FOURR : Calculate a valence density difference map
grid 60 60 24

```

Calculate a true ABINIT difference valence density map.

\subsection*{4.37. MODEL: Build molecule from map}

\begin{abstract}
Authors: Ruth Doherty and Sydney Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
MODEL searches peak or atom sites for a connected molecular model. The model interpretation is on the basis of bond lengths and angles, or if information concerning the connectivity sequence of a fragment or molecule is supplied, MODEL attempts to match a canonical description of the input fragment to the connected peak and atom sites. Connected sites are plotted on the printer and a comprehensive list of distances and angles is produced.
\end{abstract}

\subsection*{4.37.1. Clusters And Subclusters}

The first step in the interpretation of a molecular model is to determine which sites are connected. Sites are considered connected if their bond radii overlap. The bond radii of atom sites is extracted from the archive bdf. The bond radius for peak sites is input on the limits line. The search for these connections includes all possible symmetry transformations of the sites. Sites connected in this way are placed in the same group and labelled as a cluster.

Maximum and minimum bond angles represent a different type of constraint on the site coordination. Within a cluster of sites there may be large number of different ways that the angle constraints can be satisfied. Sites that satisfy a particular interpretation of angle constraints are grouped in a subcluster. One of three different approaches must be selected (on the mODEx line) for identifying sites that belong to the same subcluster. They are:

\subsection*{4.37.1.1. No subcluster search (none)}

In this mode no angle limits are applied to the connected sites. All sites within the specified site radii will be included in the model.

\subsection*{4.37.1.2. Connected subcluster search (conn)}

In this mode sites are accepted into a subcluster by testing the angles in the order of decreasing peak height and bond connectivity (the number of bonds to each site). This referred to as the maximum connectivity approach.

\subsection*{4.37.1.3. Weighted mean subcluster search (mean)}

A more geometric approach to angle constraints is based on weighting sites according to bond lengths and angles they form. Peak sites are assigned weights based on proximity of a connecting bond length to mean accepted value (bondmax-bondmin) \(/ 2\) and bond angles to the mean (angmax-angmin) \(/ 2\). This can be an important approach for very regular (e.g. 'chickenwire') or highly-coordinated structures. It is not suitable, however, for structures with a range of coordination geometries (e.g. heavy atoms or 5-\& 6-membered rings.).

\subsection*{4.37.2. Search Parameters}

The ability of MODEL to identify the correct set of connected sites is strongly dependent on the bond length and angle constraints discussed above. When only peak sites are input the default values (see the limits line) will permit a range of geometries. In such cases the limits will be adequate for a molecular search provided the peak sites are well-defined and there are not too many spurious peaks in the map. If possible the user should specify limits to suit the stereochemistry of the structure. Be careful - if you are too restrictive, some legitimate peaks may be rejected; if you are too permissive, spurious peaks will complicate the interpretation of the subcluster.

In addition to the bond length and angle modes for site selection, the user may specify a known fragment as a template (see the conect line). This approach places stringent stereochemical constraints on the selection of connected sites and should be used whenever possible. It should be emphasised, however, that the fitting of the input model to the peak sites is strongly dependent on the sites that are connected in rings. Special care must be taken that the input ring sites are correct - otherwise the fitting process will probably fail. The reliability of the non-ring atoms is less critical.

\subsection*{4.37.3. Selecting The Best Model}

Interpretation of the connected peaks depends on the 'quality' of the Fourier map, the appropriateness of the bond length and angle constraints and the availibility of reliable stereochemical information. The 'best' model is selected from two figures-of-merit values.

The first FOM is based on the sum of the subcluster connections, weighted according to peak height. This is a reasonable measure provided the bond length and angle constraints are appropriate for the structure. The expected value for the FOM is very dependent on the number of peak sites entered compared to the number of non-Hydrogen sites in the structure.

A second FOM relies on the stereochemical information input on conect lines. If this is used a FOM value is calculated based on the fit of the input model to subcluster peaks. This is a more sensitive FOM than the first and has an optimal value around 2.0. It should be emphasised that, just as the fitting process is strongly influenced by sites connected in rings, this FOM is especially sensitive to matching atoms connected in rings.

\subsection*{4.37.4. Output Information}

MODEL outputs a range of numerical and graphical information about the modelling process. Here is a summary of the different sections.
1. The control parameters are listed as a record of the constraints used in the search process. It must be emphasised again that the MODEL calculation is as effective as the constraints are appropriate to the structure being processed.
2. If conect lines are input, the atomic coordination of each site is listed. Check to make certain that the specified model is as you intended - this is a common source of error.
3. Each interpretation of a cluster of peak sites satisfying the FOM limits is listed. This listing includes the calculated FOM values, the number of subclusters and the peak connectivity table. The table lists the atom and peak sites in decreasing order of peak height, with information on subcluster allocation, connected peaks and sites that have been assigned from the input model. This table must be referred to when connecting up the projected peak positions output in 4 . below. Note that the atom labels stored on the bdf are truncated to 4 characters in MODEL to aid their presentation on the printer plot of the molecule as described in 4.
4. A graphical representation of the peak clusters projected down one or more axes is provided. The number of projection axes can be specified by the user (see the limits line). The default is for one projection perpendicular to the best least-squares plane through sites connected in rings (or if no atoms are in rings, all sites are used), and one projection down an axis in the least-squares plane. The second projection is not output if the cluster is approximately planar. The projected peak sites are shown to scale (default is \(2.5 \mathrm{~A} / \mathrm{cm}\) ) and as the peak sequence number preceded by a special site marker. For peaks connected in rings the site marker is an asterisk (*); for peaks satisfying the subcluster constraints, as a plus (+); and for peaks in the cluster but not within the subcluster, as a period (.). In addition to the graphing of peak clusters, projections are also output for all peak sites. This gives a composite picture of the peak positions independent of clustering and subclustering selections.
5. At the conclusion of the graph outputs, the peak sites are listed with the allocated cluster number and, if model sites were input, the assigned atom sites.
6. A table of contact distances less than a specified limit (see field 7 of the limits line) calculated using the coordinates from list 5 . The default limit is 2.4 A .
7. A table of bond distances for the connected sites (based on the atom radii and the peak radius from the limits line) calculated using the coordinates from list 5 and the symmetry equivalent positions.
8. A table of bond angles for the peaks listed in list 5 for all asymmtric units.
9. A table of bond lengths for twinned peaks related only by symmetry operations.

\subsection*{4.37.5. File Assignments}
- Reads symmetry, atoms and peak sites from bdf pek
- Writes connected atom sites to line file pch

\subsection*{4.37.6. Examples}

MODEL

This example shows the fully defaulted run. All default search conditions apply. No molecular connections (as defined by conect lines) are used in the FOM assessment.
```

MODEL conn
limits 4 0.6 0.9 100 140
conect c1 o1 o2 c6; c7 c2 c6 03; c5 c4 c6; c3 c4 c2

```

The compound described in this input is salicylic acid. If PEKPIK has been run to select and sort the top peaks from a Fourier map onto file pek, MODEL will then sort the peaks into clusters of peaks that are bonded to one another. Then an analysis of the peaks in terms of some structure will be attempted. Only those peaks which are bonded at a distance of between 1.2 and 1.8 Angstroms and which form angles of between \(100^{\circ}\) and \(140^{\circ}\) with the other peaks will be considered in the interpretation. An attempt is made to assign the atom names, given in the conect line, to the cluster, or clusters, of peaks which have met the bonding criteria. Up to three interpretations will be attempted (by default). For each interpretation, a plot will be made of the peaks in the cluster projected on the least squares plane of the cluster. After the interpretation has been completed, a list of all the inter-peak distances up to 2.0 Angstroms will be produced.

\subsection*{4.38. MODHKL: Modify reflection data}

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
MODHKL edits specific reflections in the bdf, global changes to reflection codes, global deletion of reflection items or the removal of reflection packets from the \(b d f\).

\subsection*{4.38.1. Description}

During the course of a structure analysis, it may be necessary to make small changes to the reflection data. This program facilitates easy modification of reflection data stored in a bdf. Complicated changes such as the inclusion of new information for every reflection, changes in cell parameters, or expansion of the number of items stored for every reflection will require the use of programs such as \(A D D R E F\).

MODHKL may be used to make four different types of changes to the reflection data. In all cases the items accessed in a bdf reflection packet are identified by their ID numbers listed in the BDF section at the back of the manual. The user may modify any existing data in lrrefl: on the bdf. It is possible to reduce the size of packets by eliminating items. However, expansion of the packets is not possible.

\subsection*{4.38.2. Global HKL Options}

\subsection*{4.38.2.1. rcode}

The rcode line enables the global change of reflection codes according to two entered conditions. Each condition on the rcode line is composed of four input fields in the order: factor1, item1, factor2, item2. The factors 1 and 2 are floating-point multipliers, and items 1 and 2 are the bdf directory numbers for the specified items. Values are applied for each condition using the following expression to give a TRUE or a FALSE result:
factor \(1 *\) item \(1>\) factor \(2 *\) item 2
If both conditions are specified, then the new rcode will replace the old rcode only if BOTH conditions are TRUE. If only condition 1 is specified, then condition 2 will be ignored and the rcode will be changed when condition 1 is TRUE. When the new rcode is already equal to the old rcode, the reflection is NOT listed as changed even if the conditions are true. The rcode line may be used only if an rcode already exists on the bdf. Only one rcode line may be entered.

\subsection*{4.38.2.2. remove}

The remove line enables the global removal of quantities from the reflection packets of a bdf. The fields of the remove line(s) must contain valid reflection packet directory numbers for the items to be removed from all packets. These numbers must not be used again in the run. For example, if purge lines follow, the same directory numbers cannot appear in these lines.

\subsection*{4.38.2.3. purge}

The purge line is used to remove reflection packets from the bdf according to the specified conditions 1 and 2. The general form of these conditions is identical to the rcode line. If both conditions are entered, then both must be true before a reflection is purged. If only one condition is entered, then a reflection is purged if this condition is true. The purge line acts to remove reflections while the remove line removes items for every reflection whether some purge condition is set or not. It is not possible to set a purge condition based upon an item which is specified to be removed. Only one purge line may be entered.

\subsection*{4.38.2.4. Specific modify and delete Options}

The modify and delete lines are used to modify and to delete specific reflections. modmul and delmul are equivalent commands suitable for editing macromolecule data where there are multiple occurrences of the same reflection. These have been sorted on hkl but not averaged.

The input lines modify, modmul, delete, and delmul must be entered in the same sort order as the reflections on the input bdf. If this condition is not met an error will occur at the end of processing.

The difference between modify and modmul (and between delete and delmul) is that there exists one additional field containing the occurrence number. The occurrence number is the count of which measurement for a given hkl is to be treated; one for the first, two for the second, etc. With use of these lines it is possible to remove reflection packets from the bdf or to modify individual data stored on the bdf. If the occurrence number is omitted, all occurrence will be processed.

Note that neither the hkl nor the multiplicity-epsilon items may be changed by use of MODHKL. They are "packed" floating point words and are outside the scope of this program.

\subsection*{4.38.3. File Assignments}
- Reads reflection data from the input archive bdf
- Writes modified reflection data to the output archive bdf

\subsection*{4.38.4. Examples}
```

MODHKL
rcode 2 3. 1305 1. 1304

```
purge 1. \(20.44 \quad: d e l e t e ~ h k l i f ~ s>.44\)
: delete hkl if \(\mathrm{S}>.44\)
:make rcode=2 if 3 sigmaF \(>\mathrm{F}\)
MODHKL
modify 0451301143.2130095632 . :modify sI and I
modify \(351130412.613058 .3 \quad: m o d i f y F\) and \(s F\)
modify 35113082 :modify rcode of same hkl
MODHKL
remove 2314231523042305
delmul 1112

In this example the items for the \(\mathrm{F}(\mathrm{rel})\) and \(\sigma \mathrm{F}(\mathrm{rel})\) and their Friedel mates will be remove from all packets. In addition, the second occurance of the \((1,1,1)\) reflection will be dropped from the bdf.

\subsection*{4.39. NEWCEL: Apply unit-cell change}

Contact Author: H D Flack, Laboratoire de Cristallographie, University of Geneva, CH-1211 Geneve 4, Switzerland

NEWCEL transforms all data in a bdffor a change of unit cell.

\subsection*{4.39.1. Description}

NEWCEL undertakes the transformation of data in a bdf due to a change in the base vectors of the unit cell. The transformation is specified as \(\alpha^{\prime}=\mathbf{T} \alpha\) where \(\alpha\) is a column vector of the unit cell vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) and the transformation matrix \(\mathbf{T}\) is given on the transf line by rows. The following quantities in the bdf are transformed:
- the cell dimensions and cell volume;
- the symmetry operators and lattice type (centring);
- the number of atoms of each type per cell;
- the Miller indices \(h, k, l\) of the crystal faces and of the reference reflections;
- the minimum and maximum Miller indices \(h, k, l\) of the measured reflections;
- the fractional coordinates and anisotropic displacement parameters of the atoms;
- the Miller indices \(h, k, l\);
- the crystal-based azimuthal angles, the multiplicity and the symmetry reinforcement parameter \(\epsilon\) of the intensity reflections;
- the Miller indices \(h, k, l\) of the reflection used to refine the cell dimensions.

The programme uses the automatic streaming technique to run STARTX and ADDATM to ensure that the information in the bdf is made consistent. Also if \(h, k, l, \theta\) data are available on the bdf, LATCON is automatically run to refine the transformed cell dimensions.

\subsection*{4.39.2. File Assignments}
- Reads data from the input archive bdf.
- Writes data to the output archive bdf.

\subsection*{4.40. \(N E W M A N\) : Newman projection of model}

Author: Roeli Olthof-Hazekamp, Laboratorium voor Algemene Chemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

NEWMAN calculates stereochemical Newman projections about any bond axis. Projections are output as a diagram on the line printer and/or a plotter. Structure data can be supplied by input lines or the bdf. The program is a RATMAC version of the NEWMAN program, originally written in ALGOL60 by \(H\). Schenk, later in FORTRANIV by N.P. Brandenburg.

\subsection*{4.40.1. Introduction}

Newman projections are stereospecific, graphic representations of the torsion angles around a particular bond. These projections are much easier to interpret than angle data. Cell and atom information is read from the bdf. Orthogonal atom coordinates are calculated. A bonding matrix is evaluated, containing all bonds with distances within predefined limits. For each particular bond a Newman projection is constructed: all connected bonds are projected on a plane perpendicular to the central bond. Distances and angles are output, as well as a survey of fractional and projection coordinates and a list of dihedral angles. The projection is printed and
optionally plotted. A select line may be given to select only those atoms, which are used for the Newman projections.
Bonds between atoms are determined from the atomic radii values on the archive bdf. These radii may be changed by entering an atrad line. A minimum of two bonds must be present to be considered for a Newman calculation and/or plot. The user may also give the bonds in advance. The bondin line then contains the name of the central atom, followed by the names of the peripheral atoms.

All bonds are investigated to determine whether they can be assigned as central bonds for a Newman projection. The criterion is that at least one peripheral atoms is bonded to either of the two central atoms. projax lines may be supplied to define the two central atoms. A projection perpendicular to two arbitrary, not necessarily bonded, atoms can be requested in this way.

\subsection*{4.40.2. Plot Information}

Atom positions, related to the original atom positions by internal symmetry, may be used in the Newman plots. They must be defined in bondin lines. Note that once one bondin line is used, the other bonds are not derived; all bonds must be defined with bondin lines. If projax lines are used, the same definitions for the internal symmetry must be given.

A Newman diagram is always printed. A command file for the program PLOTX can be written to nwn. Each plot can contain 1 or 4 diagrams. Plot dimensions as well as heights of characters and numbers can be specified either globally in the NEWMAN line or in plotp lines. A title is plotted at the top of the plot, defaulting to the compound identifier, but the user may specify his own title in a ptitle line.

\subsection*{4.40.3. File Assignments}
- Optionally reads atom data from the input archive bdf
- Optionally writes plot commands to the file nwm

\subsection*{4.40.4. Examples}

\section*{NEWMAN}
projax C1 C2

A Newman projection along the C1-C2 bond is printed. Data are from the bdf.
```

NEWMAN plot 4
bondin C1 C2 C6 C10 C11
bondin C2 C1 C3 H1 H2
bondin C3 C2 C4
bondin C4 C3 C5
plotp *7 . 30
ptitle just a test

```

Four diagrams in one plot are written to the command file. Only the specified bonds are placed in the bonding matrix. The heights of the characters in the title is 0.30 .

\subsection*{4.40.5. References}
- Brandenburg, N.P. 1974. J. Appl. Cryst. 7, 410.
- Schenk, H., Brandenburg, N.P., van Sante, B., Kragten, E.Y. and Loopstra, B.O. 1985.

\subsection*{4.41. ORTEP: Molecular plot}

Authors: George Davenport, Syd Hall and Wolfgang Dreissig
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
ORTEP produces, when used in conjunction with PLOTX, crystal structure illustrations suitable for publication. This is an improved fversion of the ORTEP2 program (Johnson, 1970) with a wide range of automatic options.

\subsection*{4.41.1. Modes Of Operation}

ORTEP provides for a wide range of calculations involving atomic coordinates and thermal parameters. Its basic function is to generate information about how a crystal structure may be viewed in terms of its constituent atoms and their thermal motion. Atoms with anisotropic displacement parameters may be viewed as displacement ellipsoids. The task of defining how the crystal structure is to be viewed and how the atoms are connected together has been simplified considerably over the original version of ORTEP (Johnson, 1970).

In this version of ORTEP three basic processes are available for setting up the sequence of instructions needed to generate the desired view of atoms, molecules or cell. The first is an automatic mode in which a few input options are used to connect all of the needed atoms and to define the viewing information. The second is the manual mode where all aspects of the plotted atoms are specified in detail by the user. The third is a combination of the automatic and manual modes where the user selectively modifies generated instructions.

\subsection*{4.41.2. Automatic Mode}

In automatic mode, the user inputs a small number of parameters on the optional control lines.Based on these parameters, ORTEP selects a sequence of instructions from a fixed subset of those instructions available in the manual mode. This procedure can be used in most cases to achieve the desired results. For more complex or non-standard plots, the sequence can be modified by the user with any of the instructions available in the automatic mode, thus making the automatic mode as powerful as the manual mode. Note that ORTEP now has access to the atomic radii values on the archive bdf and if the option arad is set (it is the default if no VSC line are entered) then these values are used to determine if bonds are to be drawn between atom sites. If the option vrad is set or VSC lines are entered then bonding distances are determined by the max and min distances on these lines.

Automatically generated plots are specified on the ORTEP line as follows:
acta- Impose Acta C style on ellipsoid plot
Plot molecule with shaded ellipsoids (type 6) and filled bonds (type +5 ) with atom labels afixed (as per "genins symb").

\section*{inpu- Plot the input atoms}

Plot the atom coordinates as entered from bdf without symmetry transformations (unless independently specified by inst lines).
mole- Plot connected molecule (default)

Plot the atom coordinates that have been transformed to form the closest connected cluster. Note that the connectivity is applied with the 407 instruction using either atomic radii (if option arad is in force) or specified vsc distances (if option vrad is set).

\section*{cell- Plot sites with a unit cell}

Plot the atom coordinates in which a least one part of the connected molecule is inside the boundaries define by one unit cell. The cell outline is drawn. If the full option is specified complete molecules will be plotted (default). If the mcut is entered molecules will be cut at the cell boundary.
coor n - Plot sites connected to atom n
Plot the atom coordinates where the atom is connected the atom with the input sequence number ' \(n\) '.

\section*{symm- Plot input sites with symmetry applied}

Plot the input atom coordinates generated by the application of the symmetry equivalent positions specified by the symop line(s).
csym- Plot symm sites plus a cell outline
Plot the same coordinates as in the symm option plus a cell outline. Used in association with the symop line(s).

\section*{cmol- Plot mole sites plus a cell outline}

Plot the same coordinates as in the mole option plus a cell outline. Note the possible use of molorg line(s).

\subsection*{4.41.3. Semi-automatic Mode}

The automatic use of ORTEP involves the modification of automatically generated instructions. When modifying the instruction sequence, it is necessary to make a preliminary run in order to obtain the sequential numbering of the instructions. Then, replacements, insertions, and deletions may be made as follows:

Insertions before automatic instruction ' \(n\) ':
```

seq precede n : insert the following instructions
inst ... : instruction to be inserted
inst ... : instruction to be inserted

```

All instructions between the seq line and the next non-inst line will be inserted before the nth instruction in the unmodified instruction list.

Replace automatic instruction ' \(m\) ':
```

seq replace m
inst ... : instruction to be used instead
inst ... : instruction to be used instead

```

The mth instruction in the unmodified instruction list will be replaced by all instructions between the seq line and the next non-inst line.

\section*{Deletions:}
```

seq replace n

```

The nth instruction in the unmodified instruction list will be replaced by nothing, i.e., it will be deleted.

\subsection*{4.41.4. Manual Mode}

For users with special requirements, the manual mode offers more flexibility. Each instruction is input by the user.

A description of each manual instruction is provided in the User Guide. It is not possible to provide a detailed description of each instructions in this writeup and if this necessary the user is referred to the original ORTEP writeup (Johnson, 1970). It will suffice here to summarize the function of each instruction category. They are:

\section*{Instructionsunction}

101-102 print distances, angles, and thermal eigenvectors
103 print thermal eigenvectors and direction cosines
105-106 same as 101-102 but with convoluting sphere of enclosure
201-202 define start plot, advance plot, end plot
301-303 specify plot dimensions, title rotation, retrace
401-407 define atoms to loaded into the working list for later plotting
411-417 define atoms to deleted from the working list
501-503 define plot orientation: axes, rotations, projection axis translation
511 implement overlap (hidden line) correction
601-604 define plot position and scaling: set origin, set scale
611-614 define plot incremental position and scaling
701-715 specify thermal ellipsoid parameters, draw atom symbols.
801-813 bond plotting parameters
901-916 plot labels and titles

\section*{Saved sequences}

In some situations, for example plotting a stereoscopic pair, it is necessary to repeat a long series of instructions. By using the saved sequence feature, the long series of instructions needs to be input once only. To store the saved sequence use the following lines:
```

svstar seq1 : start of saved sequence called seq1
inst ..... : the instructions which make up the
inst ..... : saved sequence seq1
svend : end of the saved sequence seq1

```

To invoke the saved sequence use a control line with the name of the saved sequence use the following line:
```

svexec seq1

```

The saved sequence feature is available only for the manual mode.

\subsection*{4.41.5. Terminology And Definitions}

\section*{ANC - Atom Number Code}

An atom number code is the sequence number of an atom in the list of reference atoms.
ANR - Atom Number Run
An atom number run is a series of atoms contained in the list of reference atoms. The ANR is specified by designating the atom number codes of the first and last atoms in the run (i.e. ANC1-ANC2).

An atom designator code specifies an atom position. It has three components; the atom number, the translation number, and the symmetry equivalent position number. The translation number is a three digit number, where each digit corresponds to a lattice translation along each cell direction with respect to the origin as 555 .

\section*{ADR - Atom Designator Run}

An atom designator run is specified by two atom designator codes. Let ADC1 have components A1, T1, S1 and ADC2 have components A2, T2, S2. The ADR then consists of all atom positions which have A1<=atom number<=A2, \(\mathrm{T} 1<=\) translation number<=T2, and \(\mathrm{S} 1<=\) symmetry number \(<=\mathrm{S} 2\).

\section*{VSC - Vector Search Codes}

Vector search codes consist mainly of two atom number runs (origin ANR and target ANR) and a distance range. VSC's place constraints on the search for interatomic vectors. In contrast to previous versions of ORTEP all VSC's are input before any instructions are read in this version. The instructions which use VSC's are 101, \(102,402,405-407,412,415,416,801-803\), and 811-813.

\section*{Height-colouring}

It is possible to use the height of each atom above or below the plane of the drawing to determine its colour. This height may be found in the atom listing produced by "genins list" as the z Cartesian coordinate in inches. The limits for the height classification are introduced on a "height" line. An atom will be assigned to a colour of 1 plus the index of the largest height limit smaller than the z coordinate of the atom. Thus if the height limits are arranged in ascending order, and an atom has a z coordinate larger than limit M but smaller than limit \(\mathrm{M}+1\), the atom will be assigned colour \(\mathrm{M}+1\). If N limits are given (max 8 ), limits 0 and \(\mathrm{N}+1\) always have values of -Infinity and + Infinity respectively.

\subsection*{4.41.6. File Assignments}
- Reads lrcell: and symmetry data from the archive file
- Writes a plot command file on ort
- Writes a PS300 plot file to or3

\subsection*{4.41.7. Examples}
```

ORTEP mole acta

```

This is an Acta C style ellipsoid plot of a single molecule. Overlap will be applied. Hydrogens will be treated as spheres of fixed radius. There will be no perspective.
```

ORTEP cell pers

```

As above, except that the contents of the unit cell will be generated with a perspective view.
```

COMPID ICEANE
genins cbla list
plotp 11 11 24 1 ab *7 70 20
ellips 6 1.00

```
ORTEP molecule sphere over :define type of plot
```

    :calculate bond lengths
    :plot dimensions and axes
    :type of ellipsoid to be plotted
    ```

Drawing of the molecule iceane (Hamon, et al., 1977). One iceane molecule is to be plotted. Bond lengths and angles are to be calculated up to a distance of 2.0 Angstroms. A full listing of atom and bond search output is to be printed. Plot dimensions are 11 by 11 inches with a 1 inch margin. The view distance is 24 inches. The A and B axes are to be taken as the X and Y axes, respectively, of the plot plane. The plot is to be rotated \(70^{\circ}\) about the X axis and \(20^{\circ}\) about the Y axis. The ellipsoids are to be type 6 (with octant shading) with probability scale 1.00 (i.e. probability that the ellipsoid encloses the atom is 20 percent).
```

title AKERMANNITE - 1.85
ORTEP manu inpu
radius or .01
vsc 1 1 1 1 1 . 10 1.00 .005
vsc 1 1 2 6 1 . 10 2.00 .03
vsc 3 3 1 6 3 . 10 1.85 .03
symbol
svstar ak
inst 511 0
inst 702
inst 801 1 555 1 1 565 1 1 555 1 1 1 556 1 1 1 555 1 1 1 655 1
inst 801 1 666 1 1 665 1 1 666 1 1 656 1 1 666 1 1 566 1
inst 801 1 655 1 1 656 1 1 655 1 1 1 665 1 1 1 6556 1 1 1 556 1
inst 801 1 565 1 1 665 1 1 565 1 1 566 1 1 556 1 1 566 1
inst 802
inst 902 *8 0 0 .25 3 -5 . 5 1
svend
inst 201
inst 301 12 12 30 . 5
inst 401 1 555 1 -1 666 1
inst 401 1 555 3-1 556 3
inst 401 2 555 1 -2 565 1
inst 401 2 565 2 -2 665 2
inst 401 2 655 2
inst 401 2 546 3-2 556 3
inst 401 2 456 4 -2 556 4
inst 401 2 566 4
inst 401 3 554 1 -3 655 1
inst 401 3 564 2 -3 665 2
inst 401 3 546 3-3 557 3
inst 401 3 556 4 -3 567 4
inst 402 1 555 1 1 666 1 4 6 2.0
inst 402 1 555 3 1 556 3 4 6 2.0
inst 402 3 554 1 3 655 1 4 6 1.85
inst 402 3 564 2 3 665 2 4 6 1.85
inst 402 3 546 3 3 557 3 4 6 1.85
inst 402 3 556 4 3 567 4 4 6 1.85
inst 501 7 555 1 1 555 1 1 565 1 1 555 1 1 655 1 1
inst 502 1 -75 2 5
inst 601 6 6 . 85 1.54 inst 503 2 2.7
svexec ak
inst 202 15
inst 503 2 -2.7
svexec ak
inst 203

```

This is an example of an essentially manual run. The vsc lines set the bonds to be drawn in the 800 series instruction. Notice that the .005 in the first vsc line is a value which causes a narrow line to be plotted for the lines connecting the atoms given in the 801 instructions. In this case, this line outlines the unit cell. In the symbol line, the name is placed to the right to cause it to be centred on the plot. svstar marks the start of the instructions that are to be saved for use. This placement of the 511 through 902 instructions is distinctly different from that order used for Johnson's version of ORTEP. The svend line marks the end of the saved
instructions. The next inst lines are executed as encountered. The svexec line causes the saved (name ak) instructions to be carried out. The reason they are done twice is to produce the stereo pair. If there was no stereo plot, the 511-902 would not need to be saved and could have been placed in order.

\subsection*{4.41.8. References}
- Johnson, C.K., Guerdon, J.F., Richard, P., Whitlow, S., and Hall, S.R. 1972. ORTEP. The X-RAY system of Crystallographic Programs. TR-192, 283p.
- Johnson, C.K. 1970. ORTEP: A FORTRAN Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations., Report ORNL-3794, 135 pages.
- Johnson, C.K. 1971. Supplementary Instructions for the Oak Ridge Thermal Ellipsoid Plot Program ORTEP-II., Oak Ridge National Laboratory., ORNL-3794 supp., 10 pages.

\subsection*{4.42. OUTSRC: Export archive for external software NEW}

Authors: Doug du Boulay, Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-Ku, Yokohama Japan.

OUTSRC provides an interface from Xtal to other external crystallographic software programs such as \(X D\), SHELX and VALRAY. An instruction file and associated reflection file is created, if lrrefl: exists on the archive bdf.

\subsection*{4.42.1. Purpose}

Often it is quite useful to trial different structural solution programs when Xtal methods aren't successful. At other times, it could be useful to streamline the route to electronic multipole or anharmonic atomic displacement refinement programs, if the data warrant it. OUTSRC was intended to facilitate such migrations to some extent.

It hasn't been tested so thoroughly, and at least for VALRAY input it is rather incomplete.

\subsection*{4.42.2. File Assignments}
- Reads xtal archive file
- Writes hkl data to a hkı file
- Optionally writes a SHELX .ins file
- Optionally writes a XD .mas file
- Optionally writes a VALRAY .dat file

\subsection*{4.42.3. Examples}
```

OUTSRC shelx ../mystruct

```
: create ../mystruct.ins and ../mystruct.hkl
: comments and options after the filename will be treated as part of the filename.

\subsection*{4.43. PARTN: Hirshfield partitioning}

Author: Nick Spadaccini, Computer Science Department, University of Western Australia, Nedlands 6907, Australia

PARTN partitions an input density into either the contribution of a particular atom (fragment) or of an atom and its symmetry equivalents (entire). The Hirshfeld method of partitioning is employed.

\subsection*{4.43.1. Hirshfeld Partitioning}

The Hirshfeld (1977) method apportions the electron density among the atoms by the appropriate weighting. The weights are related by the atomic contribution to the promolecular density

The fragment of the density apportioned to atom A is
\[
\rho_{\mathrm{frag}}^{A}(r)=\mathrm{w}_{\mathrm{A}}(r) \quad \rho_{\mathrm{mol}}(r)
\]

An alternative scheme is based on the atomic contributions to the total promolecular potential \(\mathrm{V}_{\text {pro }}\) defined as the sum of the electronic and nuclear contributions.

\subsection*{4.43.2. Density And Potential Profiles}

The promolecular density or potential is the sum of the atomic densities or potentials. These latter values are derived from the Clementi and Roetti (1974) atomic wavefunctions. Associated with each atom type are the parameters \(\mathrm{A}_{\mathrm{k}}, \mathrm{n}_{\mathrm{k}}\) and \(\mathrm{z}_{\mathrm{k}}\) for \(\mathrm{k}=1, \ldots, \mathrm{~m}\) such that the density is
\[
\rho_{a \operatorname{la}}(r)=\sum_{k=1}^{m} A_{k^{r^{2}}} e^{n_{k} x^{t}}
\]
and the potential is
\[
V_{a m}(r)=4 \pi \sum_{k=1}^{m} A_{k}\left(\frac{\gamma\left(n_{k}+3, z_{k} r\right)}{r z_{k}} \frac{(n+1)!}{n_{k}+3}+\frac{\gamma\left(n_{k}+2, x_{k} r\right)}{2_{k}+2}\right)+\frac{Z_{A}}{z_{k}}
\]
the last term is the nuclear contribution and \(\gamma(\mathrm{n}, \mathrm{x})\) is the Incomplete Gamma Function.
The density profiles (e/bohr\({ }^{3}\) ) and potential profiles (e/bohr) are stored at 44 discrete values of r (bohrs) for the points,
\(\mathrm{r}_{1}=0 . ; \mathrm{r}_{\mathrm{k}+1}=1.15\left(\mathrm{r}_{\mathrm{k}}+.01\right) ; 0 . \leq \mathrm{r} \leq 31.2\)
The divisions are chosen so that the density of points is greatest in the region of steepest gradient. The density or potential value at any general point is linearly interpolated from the profile.

\subsection*{4.43.3. Program Requirements}

The structural data is read from the input archive bdf. The density must be input on file map. PARTN partitions this density into the atomic contributions. The density ascribed to the fragment atom or the entire atom specified on the site line is output to file par.

\subsection*{4.43.4. Contribution Distances}

The user may specify the effective range of atom contributions in two ways. The border option in the program initiation line determines the region beyond the input map for which atom contributions are included. The default value of \(6 \AA\) implies that any atom within this distance of the input map edges is included. The distance beyond which an atom contribution is zero may also be set by the contact option.

\subsection*{4.43.5. File Assignments}
- Reads atom data from the input archive bdf
- Reads density map from the file map
- Reads profdb data base from a file defined by the macro profile:
- Writes partitioned density map to the filepar

\subsection*{4.43.6. Examples}

PARTN
SITE 012 . \(1234-.1234 .7890\)

This example employs all the default settings. The weights are determined from the promolecular density. The contributions of atoms up to \(6 \AA\) beyond the input map edges are included in the calculation. However, an atom will not contribute to the density if the point is greater than \(6 \AA\) away. The partitioned density will include the contribution of the 012 atom at (.1234,-. 1234,.7890) only.
```

PARTN poten bord 4 cont 4.5 entire
SITE Culab

```

Here the weights are determined from the promolecular potential. Atoms up to \(4 \AA\) from the input map edges are included in the calculation. The effective range of an atom is set to \(4.5 \AA\). The partition density will include the contributions of all the Cu1ab atoms in the input range.

\subsection*{4.43.7. References}
- Clementi, E. \& Roetti, C. 1974. Atomic Data and Nuclear Data Tables. 14, 177-478.
- Hirshfeld, F. 1977. Israel Journal of Chemistry. 16,198-201.

\subsection*{4.44. PATSEE: Search for molecular fragment}

Authors: Ernst Egert and Syd Hall
Contact: Ernst Egert, Institut für Organische Chemie, Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt am Main, FRG.

PATSEE searches for a fragment of known geometry in the unit cell using an integrated Patterson and direct methods procedure. This program, which is valid and efficient for all space groups, is based on the standalone program written by Ernst Egert for the SHELX system. The rotation search is applicable to a fragment of any size and allows one torsional degree of freedom. The translation search may locate up to two independent search models of any size (including single atoms), taking into account known atoms at fixed positions, if any. The principles of this method are detailed by Egert \& Sheldrick (1985), Acta Cryst. A41, 262-268.

\subsection*{4.44.1. Introduction}

The choice of strategy for the solution of a crystal structure at atomic resolution is usually determined by the presence or absence of heavy atoms. Thus it is common practice to solve light-atom structures with direct methods and those containing heavy atoms with Patterson techniques. If thisstrategy fails, it may be advisable to resort to the corresponding alternative method; direct methods may well reveal the positions of heavy atoms, and the Patterson function can be interpreted even for purely light-atom structures, such as those of organic molecules, provided that part of the molecular geometry is known. This so-called Patterson search has been shown by various authors to be a powerful tool for solving difficult crystal structures; its great strength is that it employs chemical information directly, and so can compensate for mediocre precision and resolution of the X-ray data. PATSEE combines the merits of both Patterson and direct methods - in a manner that is generally applicable, efficient, automatic and easy to use - and thus to exploit all the a priori available information in order to solve large problem structures.

\subsection*{4.44.2. Preparation of the Search}

Generally, a Patterson search in vector space consists of the following stages: (1) definition of a search model; (2) calculation and storage of the Patterson function; (3) rotation search, and (4) translation search. It is a serial technique, with the last two stages crucially dependent on the accuracy of the preceding ones. Thus the first step is by no means trivial; this is especially true for a procedure such as this where the fragments are taken as rigid and no model refinement is attempted (with the exception of one torsional degree of freedom between rigid groups). Usually a small well-defined search model is more appropriate than a larger one containing several incorrect atoms. The model is defined by atomic coordinates in a given coordinate system; these will normally be either fractional (taken from a related crystal structure) or Cartesian (e.g. from a force-field calculation).

The triplet structure invariant relationships which are required for the translation search (if applied) are calculated prior to the PATSEE run using GENSIN (which gets its E-values from GENEV). The lac1.dat example given below shows a typical input sequence for the GENEV, GENSIN, FOURRFOURR, PATSEE calculations. Note that lac1 is one of the Xtal test decks so that reference to the lac1 listing will be useful in guiding initial PATSEE applications.

The Patterson map is generated by the program FOURR. For almost all purposes, we recommend using E.F as the coefficient (epat full); these lead to a sharper map than \(\mathrm{F}^{2}\) (patt full) but generate fewer ripples than \(\mathrm{E}^{2}-1\) (vect full).
The region around the origin of the Patterson function is dominated by intra-molecular vectors, which depend on the orientation but not on the position of the fragment. Thus the full six-dimensional search can be split into two three-dimensional searches, a rotation and a translation search (depending on the space group, the latter may be of even lower dimensionality).

The atom fragment information used in the searches is entered in the following way. Atom site coordinates may be entered as fractional or Cartesian according to the option on the preceding FRAG line. Each group of atom sites must be preceded by a FRAG line, or in the case of sites loaded from the bdf, the FRAG line(s) contain the labels of the atom sites to be used in the search. The position of each fragment of the atom sites in the input stream determines how they are used in PATSEE. A fragment that precedes the rotate line will be fixed (i.e. the vectors between these atoms will be neither rotated nor translated but they will be used in the figure of merit calculations). Fragment(s) that follow the rotate line but precede the transl line will be rotated and translated. Fragments that follow the transl line will be translated only. The shift, spin and twist lines are used modified the atom sites in a fragment. If a shift or a spin line will transform or rotate, respectively, the atom sites of the next fragment. The twist line serves a different function -- it enables two parts of a fragment to be rotated about a connecting bond (and searches are applied for each twist settings). The twist line must be positioned in the input stream between the two atom sites which will be twisted with respect to each other.

\subsection*{4.44.3. rotate - Rotation Search}

The first step in the rotation search is to set up the intra-molecular vector set to be used for the search, i.e. to express the model geometry (which should always be checked thoroughly - see the geom option on the PATSEE line) in the form of discrete vectors with associated weights. Of the \(\mathrm{N}(\mathrm{N}-1) / 2\) intramolecular vectors, the short (e.g. \(d<p \AA\), see \(\mathbf{v l i m}\) ) and long (e.g. \(d>q \AA\), see \(\mathbf{v l i m}\) ) values are immediately eliminated. Since the inner sphere around the Patterson origin shows some vector density everywhere, the short vectors provide little angular discrimination and are normally not very useful for determining the orientation of the fragment. However, they may be important for molecules (e.g. those consisting of fused aromatic rings) that are characterized by a few short vectors with high weights. An upper limit for the vector length is also advisable because very long vectors, though quite characteristic of the search model, suffer most from uncertainties in the geometry and could easily miss the corresponding maximum in the Patterson map. Close vectors (see vres) are replaced by a weighted average vector with the combined weight. In order to save computing time, low-weight vectors may be omitted from the figure of merit assessment (see vfom).

Any orientation of a rigid fragment relative to a fixed coordinate system can be described by three angles corresponding to successive rotations about properly chosen axes. (There are various definitions of the Eulerian angles. For computational reasons, we prefer successive rotations about the \(a, b\) and \(c\) axes, in that order.) The asymmetric unit of angular space depends on both the Laue group and the model symmetry. Instead of scanning the respective range of angles by specifying rotation increments, we have chosen to generate random orientations (see nran). The optimum number of orientations (see ntry) to be tried depends on the size and the shape of the search fragment, the Laue group and the Patterson grid intervals. PATSEE usually generates \(10000-600000\) angle triplets, which corresponds to mean rotation increments of about \(7^{\circ}\); this is normally sufficient for the coarse location of the maxima.

For each orientation, the correlation between the rotated intramolecular vector set and the Patterson function is measured by a product function (note that this is a different approach to non-Xtal versions of PATSEE). The weight of each vector \(\mathbf{w}_{\mathbf{i}}\) is thus multiplied with the nearest Patterson grid value \(\mathbf{p}_{\mathbf{i}}\). The rotation figure of merit (Rfom) is ? \(\mathbf{w}_{\mathbf{i}} \mathbf{p}_{\mathbf{i}}\) for a specified sample (see fraction \(\mathbf{f}\) of \(\mathbf{v f o m}\) ) of the largest weighted vectors. Note that these vectors are sorted into a test list in the order of descending \(w_{i} d_{i}\) values, where \(d_{i}\) is the vector length.This is important because a pretest requires that the top \(t\) (see vtes) of the vector list has a Rfom which is positive or the orientation is immediately rejected. The sorting is necessary to avoid the dominance of this test by short heavily weighted vectors. If the final normalized Rfom is \(<\mathbf{p}\) (see fomt) the orientation is also rejected.
Before an orientation is placed in the short list of best solutions, it must pass two tests. The 'overlap test' ensure that no close interatomic contacts arise form the application of the lattice translations present and the 'equivalence test' compares the orientation in question with those already stored. Two orientations are regarded as similar when all pairs of equivalent atoms are close to each other; in that case only the better one is kept.
In order to improve the performance of the subsequent translation search, the best solutions are 'refined' by a restricted and finer rotation search. The maximum within each promising region of angular space is found by testing up to n (see nref ) additional random points, which corresponds to a mean rotation increment of less than \(2^{\circ}\).
Users may also specify the starting orientation of a fragment (see seta) and the range or the random rotations (see setr). This is normally only used, however, if a rotation search is repeated over a target set of orientations.
If the search model has one torsional degree of freedom the rotation searches are repeated for each distinct geometry using the twist option. This specified by a range of possible torsion angles and an appropriate increment. Invocation of twist causes a merged list of best solutions is set up. At the end of the rotation search, a small number of promising orientations are passed over to the translation search. It is our experience that the correct one is usually present among the best two or three for reasonably sized fragments.

\subsection*{4.44.4. transl - Translation Search}

In procedures to position a fragment of known geometry in the unit cell, the translation search has usually proved to be less reliable than the rotation search. This is because the 'cross' (i.e. inter-molecular) vectors used to locate a fragment with respect to the origin suffer from errors in both the model geometry and orientation amplified by the symmetry elements; in addition, model vectors with very high weight are less likely than in the rotation search.

The phases calculated from the coordinates of an oriented model are a continuous function of the shift vector \(\Delta \mathbf{r}\). When the fragment is moved through the unit cell keeping its orientation fixed:
\(\mathbf{F}_{\mathrm{h}}=\mathbf{F}_{\mathrm{h}} . \exp 2 \pi \mathbf{h} \Delta \mathbf{r}\)
since all atomic displacements \(\Delta \mathbf{r}\) are the same. So the scattering contributions from the atoms of the search model have to be summed only once for each orientation and reflection to yield a structure factor \(\mathbf{F}_{\mathrm{h}^{\circ}}\) for the starting position; subsequently, the structure factor \(\mathbf{F}_{\mathrm{h}^{\circ}}\) for any position is readily obtained by multiplication with a simple phase factor. For the true structure, the individual phases of the strongest reflections are linked by various statistical phase relations; amongst these, the three-phase structure invariants have proved to be especially useful. The search fragment is usually incomplete and may also be not very accurate. Nevertheless, if its scattering power is significant, the triple-phase relations should hold at least approximately for the correct solution, in the sense that the distribution of the phase sums is far from being random.
These considerations led us to the development of a novel strategy for a Patterson translation search, which exploits in an integrated fashion the information contained in the sharpened Patterson function, the threephase structure invariants and allowed intermolecular distances. In short, we have chosen the optimization of a weighted sum of cosine invariants as our refinement procedure, with the Patterson correlation and R indices as additional figures of merit, and the minimum intermolecular distance as a possible rejection criterion. This method is computationally efficient, especially for larger structures, because the refinement is based on phase relations derived from a relatively small number of large E magnitudes (say, >1.8). Only when an 248
acceptable solution has been found by this 'direct search' is it necessary to calculate the time-consuming Patterson correlation.

Since, in order to save computing time, relatively few phase relations are employed for the refinement, they have to be selected carefully. Normally only the \(40-60\) most probable and translation-sensitive three-phase structure invariants are used for a translation search. It is advisible to apply a \(2 \theta\) limit to the E values before searching for phase relations, since high-order reflections may be influenced considerably by errors in the model. However, if the cut-off is too severe, the accuracy of the phase-refinement procedure suffers. It seems that a nominal resolution of about \(1 \AA\) is the best compromise ( \(\operatorname{smax} 0.5\) in GENEV).
Then random positions are generated for the rotated search fragment(s); it is our experience that about one translation try per cubic Ångstrom is sufficient in order to have a good chance of locating one search model correctly (see ntry). Since the number of tries rises as a high power of the number of independent fragments, it is unreasonable to search for more than two fragments simultaneously. However, any number of fixed fragments (obtained from a previous search or a heavy-atom Patterson interpretation, for example) may be added and, in fact, are quite valuable provided their size or scattering power is large enough.

Taking the limited range of the subsequent refinement into account, only those random positions that are fairly close to physically reasonable solutions are worth refining; thus all positions that give rise to short intermolecular distances (say \(\mathrm{d}<\mathrm{p} \AA\) ) are immediately rejected (see vmin). The refinement procedure consists of two cycles during which the translation parameters are refined by optimizing \(t 3 s u m\), which measures the triple-phase consistency.
\(t 3\) sum \(=\sum \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \cos \left(\phi_{1}+\phi_{2}+\phi_{3}\right)\)
\(t 3\) sum is expected to be large and positive for the correct solution. At the end of the second cycle, only positions with \(t 3\) sum \(>\mathbf{f}\) (see tprt) are regarded as possible solutions.

For solutions that have survived these tests, the Tfom value is calculated identically as for Rfom but now for the inter-molecular vectors. A small number of best solutions (according to both t3sum and Tfom) are stored provided that they pass various tests for possible equivalence (allowed origin shift or lattice translation). Although the true position of the search fragment is usually recognizable at this stage, R indices \(R e l\) and \(R e 2\) based on E magnitudes have proved very useful in distinguishing further between correct and false solutions.

\subsection*{4.44.5. Combined Solutions}

Finally, the solutions are sorted according to a combined figure of merit:
Cfom \(=\left(\right.\) Rfom. Tfom . t3sum \(\left.{ }^{1 / 2}\right) /(10 \cdot R e 1 . R e 2)\)
For all solutions printed, a Patterson sum function is calculated as a measure of fit/misfit for each individual atom, taking all vectors (intra- and inter-molecular) into account, this enables identification of possible wrong atoms and thus model correction.

\subsection*{4.44.6. Summary}

The procedure described differs from other Patterson translation functions in that the oriented model is placed with respect to all symmetry elements of the space group simultaneously. Tests with known structures have indicated that this routine is able to locate very large fragments (of more than 300 atoms), in which case the distance tests sometimes preclude the majority of trial positions, as well as single atoms even when the latter are not very heavy (e.g. phosphorus or sulphur in large organic structures). Above all, the variety of different criteria employed to judge solutions should make this combination of Patterson and direct methods a powerful structure-solving strategy, if chemical information is available. One would expect that a position that is in agreement simultaneously with packing criteria (dmin), the Patterson function (Tfom), triple-phase relations ( \(t 3\) sum) and E values ( \(R e\) ) is probably correct, and our experience shows that this is indeed the case.

\subsection*{4.44.7. File Assignments}
- Reads symmetry \& atom data from the input archive bdf
- Writes new atom sites to the output archive bdf
- Reads Patterson map from map file
- Reads E's and triplets from inv file
- Writes new atom sites to file pch

\subsection*{4.44.8. Example}
```

compid lac1
GENEV smax 0.5 list 1.8 :calculate the E values
GENSIN :calculate the structure invariants
gener 1.8quar noprint 100 1 100
FOURR epat full :calculate the E.F Patterson map
PATSEE
geom
rotate vfom .8
frag 9.946 29.966 11.189 90 90 90
setid site
C1 0.43394 0.51778 0.51693 :Diastereoisomer coordinates
C2 0.46733 0.54875 0.62187 :Acta Cryst,C39,95 (1983).
C3 0.48235 0.52338 0.73773
C4 0.57311 0.48221 0.72824
C5 0.54921 0.45318 0.61956
C6 0.65325 0.41691 0.60175
C7 0.63235 0.38980 0.51082
C8 0.50339 0.39796 0.44173
C9 0.49348 0.44807 0.39978
C10 0.53945 0.48047 0.50109
C11 0.56162 0.45583 0.27891
C12 0.51547 0.42331 0.18395
C13 0.54556 0.37553 0.22118
C14 0.46982 0.36608 0.34010
C15 0.48559 0.31558 0.35594
C16 0.47342 0.29772 0.22711
C17 0.48286 0.33807 0.14279
C18 0.69738 0.36838 0.23249
C19 0.67749 0.50191 0.47513
C20 0.55074 0.326640.02137
O1 0.54488 0.55020 0.82750
N1 0.41764 0.42882 0.62876
N2 0.39747 0.39645 0.53877
setid
transl
finish

```

This is the lac1 test deck. It is the standard test for PATSEE. Use the lac1.dat listing as a guide for other applications of PATSEE.

\title{
4.45. PEKPIK: Search map for peaks
}

\author{
Authors: Syd Hall and Ruth Doherty \\ Contact:Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
}

PEKPIK searches a Fourier map for a unique asymmetric set of the maxima of the density which is printed and/or written to a file.

\subsection*{4.45.1. Algorithm}

The peak search algorithm involves a layer by layer search of the map. In the discussion which follows, reference is made to the form of the Fourier map as it would be output by the program FOURR. The first summation direction produces layers, referred to as pages. The second summation direction produces lines down the page, while the third summation direction produces the lines across the page (see FOURR). The \((\mathrm{x}, \mathrm{y})\) referred to here are not necessarily the crystallographic \(\mathrm{x}, \mathrm{y}\). As each layer is searched, the value of the function at every grid point is compared to each adjacent grid point within the layer. When the value of the function at a particular grid point, e.g. (x,y), is found to be larger than at any of the grid points surrounding it, an interpolation may be done to determine the exact coordinates of the maximum within the layer and the maximum value of the function within the layer. If ( \(\mathrm{x}, \mathrm{y}\) ) lies at a corner of the layer (i.e. the first or last grid point on the first or last line of the layer) no interpolation is done and the maximum is taken to be on the grid point. If ( \(\mathrm{x}, \mathrm{y}\) ) is a point on the first or last line, but not at a corner, a one-dimensional interpolation is done in the third sum direction (across the page). If ( \(\mathrm{x}, \mathrm{y}\) ) is the first or last point on any line but the first or last line, a one-dimensional interpolation is done in the second sum direction (down the page). For any other point, a two-dimensional interpolation is done.

After a layer has been completely searched, the peaks from that layer are saved temporarily in the layer-tolayer storage table. As the next layer is being searched, each new peak is compared to those from the previous layer. If two peaks are within the resolution and if the peak is larger in the current layer, both the old and the new coordinates are saved. When a peak has been found in three successive layers, with the density going through a maximum in the second layer, an interpolation is done in the first sum direction (page to page) to find the most exact coordinates and density for the peak. No interpolation can be done in the first sum direction for peaks which occur within half a grid point of the first or last layer or which are not above the cutoff in three successive layers.

Before a peak is saved in the permanent list, a check is made to determine whether or not it is symmetrically related to any of the peaks which have already been saved. This insures that the final list will contain a unique set of peaks. If the map is a Patterson map, the Laue symmetry, rather than the space group symmetry, is used.

If a new peak is found to be symmetrically related to a peak which has already been saved, only one of the two will be saved. The more reliable of the two peaks will be saved. The reliability of a peak depends on its position in the map. The most reliable peaks are those at interior points of the map. Their high reliability is a result of the three-dimensional interpolation. Less reliable are peaks on a face of the map (two-dimensional interpolation), followed by peaks on an edge (one-dimensional interpolation). The least reliable peaks are those at corners of the map. For these, no interpolation can be done.

After the map has been searched completely, the coordinates of any atoms that may be present in the bdf are compared with the coordinates of all the peaks which have been saved. A list of the atoms which do not coincide with any peaks is produced. Finally, the highest peaks are listed in order of decreasing density. Each peak is labeled with either the name of the atom which occupies the same position or, if it coincides with no atom, a sequence number. The peaks are listed and, optionally, output in atom line images on the file pek and the punch file. The number of highest peaks listed may be specified by the user. If a peak has been identified with an atom name, that name will appear in the first field of the atom line. Otherwise, the the atom name will be c followed by the sequence number assigned to the peak.

The program may also be used to search for holes. When this option is chosen the map is read in with every point being changed from plus to minus. This means that the peaks listed at the end of the run are actually holes in the entering map. It is necessary to do two separate runs to find both peaks and holes in a map.

The three fields on the plimit line are as follows:
1. Minimum point density used in peak search:Reasonable default values are assumed according to the map type. This cutoff is checked after the first layer. If more than one third of all grid points in the first layer have density values exceeding the cutoff, the cutoff is incremented by one quarter of the average density in that layer. The adjusted value is printed.
2. Resolution (in Angstroms): This value sets the separation of the maxima in the map which will establish two discrete peaks. This parameter should be set to no less than \(\lambda /\left(2 \sin \theta_{\max }\right)\). For example, if all the reflections within the copper sphere of reflection were measured, the resolution might be set to 0.75 Angstroms.
3. Total number of unique peaks to be saved, sorted, and listed: The coordinates and value of the function at the maximum will be stored on file pek in order of decreasing peak density. If the number of peaks specified is too large for the available memory, the number of peaks will be adjusted to accomodate as many peaks as possible for the memory available. The default value for this parameter is twice the number of non-hydrogen atoms in the asymmetric unit.

\subsection*{4.45.2. File Assignments}
- Reads symmetry and atom data from input archive bdf
- Reads map density from specified bdf (default is map)
- Writes sorted peak sites to bdf pek
- Optionally, writes peak sites to line file pch

\subsection*{4.45.3. Examples}

PEKPIK
plimit *3 20

This is a typical run to analyze the first attempt at extracting an image of the molecule from an electron density map. The number of top peaks to be listed has been set somewhat higher than the number of non-hydrogen atoms in salicylic acid in order to allow for spurious peaks. The cutoff to be used in the search for peaks will be the value set in FOURR for the upper limit of print suppression.
```

PEKPIK bdf sla

```

Peaks here will be extracted from a Fourier map output from SLANT.

\title{
4.46. PIG: Display and manipulate model
}

\author{
Authors: Ursula Bartsch, Syd Hall and Doug du Boulay \\ Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
}

PIG is a Portable Interactive Graphics routine for displaying, selecting and manipulating atom and peak sites.

\subsection*{4.46.1. Description}

PIG extracts atom data from the input archive bdf and/or the peaks data from the pek bdf or the sites from a bunyir .bun file. At the conclusion of a PIG session the results of the site manipulations are stored in the lratom: record of the output archive bdf and these may be used directly for subsequent calculations. A list of atom lines is also output to the file add. Note that atom labels are truncated to eight characters in PIG. PIG may be used to display both the molecule and cell. Sites may be rotated, deleted, added, relabelled and retyped. Bond distances, angles and torsion angles may be displayed. The orientation of the the displayed sites is stored on the output archive bdf for use by programs such as ORTEP. The saved orientation matrix is in lrgraf: of the output bdf and will be used by ORTEP as the default plot orientation, unless npig is entered (on the ORTEP line).

The molecular view can be rotated by LEFT-mouse-click-drag-release events. The magnification can be altered by MIDDLE-mouse-click-drag-release events (based on up/down translations) (NOTE that the MIDDLE mouse button is emulated by simultaneous LEFT and RIGHT mouse buttons on two button mice). The molecule can be translated by RIGHT-mouse-click-drag-release events.

PIG can be used as a WYSIWYG (what you see is what you get) interface to POVRAY for raytraced 3D images or ORTEP for traditional 2D thermal ellipsoid plots. Provided that a bdf is written at exit (containing the molecular view orientation), every site visible on screen at the time of exit will be displayed in the subsequent ORTEP/PREVUE. In addition, if labels are switched on, then the ORTEP will be labelled, and if the current view is a unit cell, then ORTEP plots the unit cell outline. Up to 15 ORTEP control lines may be specified in PIG, (prefaced with ORTCTL) and these are substituted for or added to the resultant ORTEP control file commands.

PIG can be used to generate a molecular information file for conversion of XTAL molecular data for use in other programs that do not yet read Crystallographic Information Files (CIFs). Two formats are provided. The Protein Data Bank (.pdb) format, containing space group, cell parameters, symmetry independent sites in cartesian cordinates, anisotropic temperature factors and bond connections. The second format is the Minnesota Supercomputer Centre XMOL .xyz file which contains the cartesian coordinates and atom types of all atoms on screen at PIG exit time (analogous to ORTEP exit mode). The .xyz file maybe useful as a means of generating symmetry related atom sites for use in other software packages such as RASMOL. If the . \(\mathbf{x y z}\) file is relabelled as a .spf file it can also be used by PLATON (Ton Spek 1980).

More recently any H atoms built in PIG, iether automatically or manually (with the exception of free sites or peak assignments) add constraint linkage information to the archive file. This permits the recalculation of H atoms when invoking the CRILSQ riding model refinement. However, the H atom linkage and labelling is dependent on parent atom coordination. Any attempts to relabel parent atoms or H atoms after building will render the output linkage incorrect. In the event that a riding model refinement is subsequently attempted, it will be necessary for users to iether edit the .add file manually and include it as part of an ADDATM run, or rerun ADDATM in update mode and overwrite existing linkage lines on the archive with their own versions as described in ADDATM.

\subsection*{4.46.2. Interactive Controls}

The display is controlled at two levels. (1) Input control lines are used to define the starting parameters for the atom and peak sites to be used, the atom radii, the display colours, the type of display (molecule or cell) and

Figure 4-2. Screen shot of PIG

so on. These values are applied prior to displaying the sites. (2) Control is via the interactive cursor and the menu buttons. The user is guided by the instructions provided in the message panel.

\subsection*{4.46.2.1. Rotation Control}

Rotation control is provided by 6 buttons in the lower RH corner. The box immediately to the left of this enables the user to switch from course \(\left(90^{\circ}\right)\) to fine (adjustable via up down arrows) rotations. These controls are in addition to using the left mouse button.

\subsection*{4.46.2.2. Zoom Control}

Zoom and translation control is provided by 6 buttons in the upper RH corner, or alternatively by middle and right mouse button click-drag events.

\subsection*{4.46.2.3. LABL onoff}

A toggle switch to display or not display the site labels.

\subsection*{4.46.2.4. BOND onoff}

Selectively hide or display interatomic bond lines. In this mode bonds may be hidden or displayed by clicking on selected labels. The actual change to the display status of the line bond is not effected until the pig icon is clicked (top right hand corner). Note that site markers are NOT hidden with this command, only the connecting bonds (see also the HIDE atoms panel).

\subsection*{4.46.2.5. TYPE atoms}

Clicking the cursor on this panel places PIG in type-atoms mode. In this mode the user must first select which atom type by clicking on one of the atom type boxes displayed in the upper right hand area of the display. Then click on each of the sites (to be specific, on each site label) that is to be changed to the selected atom type. The atom type of selected sites will not be changed until the pig icon is clicked. Note that the site labels are not changed on the display, only the colours of the bonds. However, PIG will automatically attach the new atom type code to the atom label when it is output to the pch file and the archive bdf. To change the displayed site label, see the \(\mathbf{L A B L}\) atom command described below.

\subsection*{4.46.2.6. LABL atom}

Clicking the cursor on this panel activates the label-atom mode. The user must click on the atom label to be changed and then enter the new label on the keyboard. Duplicate labels will be rejected when exiting from this mode. When labeling is complete click on the pig's nose to exit.

\subsection*{4.46.2.7. HIDE atoms}

Clicking the cursor on this panel places PIG in the hide atoms mode. In this mode the user may select any number of sites (by clicking on the appropriate site labels) which are to be removed from the display. The actual removal of site markers, labels and attached bond lines does not take place until the pig icon is clicked.

\subsection*{4.46.2.8. DRAW atoms}

Clicking the cursor on this panel will cause all hidden atom sites to be returned to the display. It reverses the HIDE atoms effect.

\subsection*{4.46.2.9. show DISTANCE}

Clicking the cursor on this panel places PIG in the show distance mode. A distance will be displayed for two selected sites (by clicking on the appropriate site labels). These sites need not be bonded (this may be used on a 'cell' display as well as a 'molecule' display). This mode is exited by clicking on the PIG icon.

\subsection*{4.46.2.10. show ANGLE}

Clicking the cursor on this panel places PIG in the show angle mode. An angle and two connecting distances will be displayed for three selected sites (by clicking on the appropriate site labels). The second selected site is assumed to be the central atom. These sites need not be bonded (this may be used on a 'cell' display as well as a 'molecule' display).This mode is exited by clicking on the PIG icon.

\subsection*{4.46.2.11. show BOND DISTANCES}

Clicking the cursor on this panel places PIG in the show bond distances mode. All bond distances connected to a site will be displayed by clicking on the site label.This mode is exited by clicking on the PIG icon.

\subsection*{4.46.2.12. show TORSION ANGLE}

Clicking the cursor on this panel places PIG in the show torsion angle mode. The torsion angle and distances will be displayed for the four selected sites (by clicking on the appropriate site labels). These sites need not be bonded (this may be used on a 'cell' display as well as a 'molecule' display).This mode is exited by clicking on the PIG icon.

\subsection*{4.46.2.13. show INFO}

Using this mode the user can examine the fractional coordinates of all sites currently displayed, as well as determining the ORTEP/BONDLA symmetry and translation operations required to generate dependent sites, and the peak heights of peaks displayed from PEKPIK data.

\subsection*{4.46.2.14. save ROTATION matrix}

Clicking the cursor on this panel causes the currently displayed orientation to be saved in a rotation matrix. On exiting PIG this matrix is stored in the output archive bdf and may be used by ORTEP to produce a plot with the same orientation. Note that doing a LS PLANE calculation will override the save operation.

\subsection*{4.46.2.15. ANIM OnOff}

This control activates (by default) or deactivates the animated spin mode. With animation mode activated, using the left mouse button to rotate the molecule via a click-drag-release, imparts an angular momentum to the molecule, proportional to the length and direction of the effective drag displacement vector. To stop a freely spinning molecule simply click and release the mouse button without moving it. Reselect the ANIM control to cancel this mode.

\subsection*{4.46.2.16. CENTRE}

The CENTRE control permits re-centring of the molecule, iether about the collective centre of the current molecule, or, about a specific atom site by selecting its label.

\subsection*{4.46.2.17. RG STEREO}

Red, green stereo mode. Technically this is an anaglyph. Two images of the current molecule are draw, one of which is rotated by 3 degrees about the molecular centre. By wearing spectacles with one red and one green lens, a 3 dimensional affect may be apparent. Note that if the lens colors are reversed, a freely rotating molecule will appear to rotate backwards, which could be cause for confusion.

\subsection*{4.46.2.18. PEAKS}

This control button is only present if (1) the PEAKS command line was invoked from the control file (2) a .pek file exists, or (3) PIG was invoked with the msol multi-solution command. It is a two state button, which switches on or off the display of peaks from a PEKPIK .pek file. However, when peaks are switched ON, a scrollbar facility allows the user to adjust the lower peak eight threshold at which peaks will be displayed. This is useful if there are many insignificant electron density peaks obscuring the larger peaks in which you are interested. The peaks button must be reselected to confirm that the current threshold is what the user requires.

\subsection*{4.46.2.19. LS PLANE}

Clicking the cursor on this panel places PIG in the least squares plane mode. The user must then select at least three sites (by clicking on the appropriate site labels) to define the least squares plane and then click on the pig icon. This will cause the plane to be calculated, and the atoms sites to be displayed with the plane perpendicular to the z axis. PIG remains in the least squares plane mode and the perpendicular distance of any site from this plane may be displayed by clicking on the site label. This mode is exited by clicking on the pig icon again. Note that the orientation of the plane is automatically stored in the rotation matrix, for subsequent storing on the output archive bdf.

\subsection*{4.46.2.20. FRAGMENT}

The FRAGMENT mode has been enhanced over previous versions of PIG. There are now four FRAGMENT choices - select, deselect site connectand site reject. The additional modes were designed primarily as tools for contolling display contents for generating ORTEPS and the .xyz file for export to other programs such as RASMOL.

The select and deselect modes enable all sites within a LEFT mouse button click-drag-release event to be iether exclusively retained or exclusively deleted from the currently displayed molecule. The selected region is highlighted by a rectangular border.
site connectand site reject modes permit the current molecule to be iether extended by adding all bonded sites to a specific atom by selecting its atom label, or by deleting the selected label from the current fragment.

It is important to note that deselecting an atom site or group of atoms using the FRAGMENT modes is quite different from HIDEing an atom in HIDE mode. Using the HIDE button, hidden atoms are irretrievably lost at the next NEW MOLE or EXIT, with potentially disastrous loss of cell contents on the archive file. Whereas, by using the fragment delete modes, the atom sites sites are merely hidden from display. This is why the fragment mode is preferred as a means of specifying ORTEP plots.
To return to the full molecular display click on the new MOLECULE panel.

\subsection*{4.46.2.21. BUILD}

Click on this panel when new sites need to be added to the atom display list. If new H atoms are built, on exit they are assigned Uiso values corresponding to 1.5 or 1.25 times the Uiso value of their bonded C/N/O parent (if present), dependent on whether it is a methyl group or otherwise, respectively. Because of this it is more generally useful to have refined the vibrational motion of the heavier atoms before building H atoms.
Five additional panels will be displayed in the message area. Clicking on one of these panels places PIG into a particular 'build atom site' mode. For each mode follow closely the instructions displayed in the message area. The modes are:
- Linear Requests a new site which is linearly aligned with two other sites in the structure. First select an atom type for the new site. Then click on the two sites aligned with the new site; the furtherest site first and then the site to which the new site will be bonded. The new site will automatically be assigned a site label composed of the label of the bonded site with the character 'a' appended.
- Trigonal Requests a new site which is trigonally aligned with three other sites in the structure. First select an atom type for the new site. Then click on the three sites which form an apex to which the new site will be attached; the apex site is clicked second in the sequence. The new site will automatically be assigned a site label composed of the label of the bonded site with the character 'a' appended.
- Tetrahedral Requests one, two or three new sites which are tetrahedrally bonded with neighbouring sites in the structure. First select the atom type for the new site(s). If one or two sites are sought, click on the three sites which form an apex to which the new site(s) will be attached; the apex site is clicked second in the sequence. If three tetrahedrally related sites are sought (e.g. methyl hydrogens) click on the two sites which form the fourth member of the tetrahedral bonding; the furtherest site first and then the site to which the new sites will be bonded The display will be then aligned so that the bond of the two clicked sites will point directly at the viewer and be surrounded by a circle. The position of the three new sites around this bond is selected by clicking the position of the first at a point on this circle. All new site(s) will automatically be assigned a site label composed of the label of the bonded site with the characters 'a', 'b' or 'c' appended.
- Free site Requests a new site which is not geometrically related, but is bonded, to another site in the structure. First select an atom type for the new site. Click on the site to which the new site will be bonded. Then click on the screen to determine the orientation (relative x and y coordinate; z will be set at the value of the bonded site). Note that the display usually needs to be carefully oriented before this mode is used. The new
site will automatically be assigned a site label composed of the label of the bonded site with the character 'a' appended.
- Auto \(\mathbf{H}\) atom In this mode PIG searches every independent C atom in its atom array and examines its connectivity, based on current radii values. If the C atom is underbonded its bondlengths and angles are assessed for linear, trigonal and tetrahedral H atom bonding. Where there are no ambiguities, these H atoms are automatically built and labelled according to their parent C atoms label. No H atoms are built on parent O atom or N atoms because the number (for N ) and orientation (for O ) of such H atoms are in general not well defined. In general, bond angles below 116 degrees are treated as tetrahedral, and C-C bond lengths below 1.46 Angstroms are considered double bonds.

\subsection*{4.46.2.22. RADII}

Use the RADII button to set the atomic radii for bonds to be calculated in future. Formerly the radii button was subsumed with the new mole command, but it is now accessible from the main menu to assist with fragment extension. In RADII mode selecting an atom type box will display the current radius, and reselecting that atom type enables a new value to entered via the keyboard (closed with a return carriage).

\subsection*{4.46.2.23. HIDE TYPE}

This control is used to temporarily hide specific atom types from view, such as hydrogen atoms in cluttered diagrams. When invoked, selecting an atom-type panel immediately switches the display state of all sites of that type on or off. Select PIG to cancel this mode. Atom types hidden in this manner are not lost and may be redrawn later by repeating the same procedure.

\subsection*{4.46.2.24. new MOLECULE}

Clicking this panel causes the currently displayed sites (not the hidden sites) to be included in the calculation of a new connected molecule and its display. Hidden atoms (from Hide Atom) will be removed from the site list and will not be available for output to the archive bdf. Conditions for the connected molecule search are set by the PRESET line and by the three panel buttons that appear in the message area. These buttons control the following:
- SYM-EXT on/off - a toggle switch to include/exclude atom sites related by symmetry which are within the bonding distance. This switch should be on if a molecule contains a symmetry element but may need to switched off when peaks are active.
- Clusterng - A three position switch to enable/disable the reclustering of sites, or revert to the input site list (losing all changes) when the molecule is redrawn. The cluster mechanism attempts to optimally connect all input sites to the first atom site in the input list. For very large molecules clustering is time consuming. If a molecule contains more than 500 atoms, clustering is automatically switched off.
- Cluster Packing- A four position switch governing the treatment of multiple disconnected clusters. The first mode (Pack Off) switches off any extra packing treatment. The three additional packing modes provide variations on the optimal packing of secondary clusters about the primary aggregate molecule. Pack close attempts to arrange clusters in order to minimize distance between the centres of gravity of all clusters. Pack centre attempts to minimize the distances between the largest cluster center of gravity and other clusters Pack contact attempts to find the shortest contact between clusters - to accentuate hydrogen bonding for example.

Clicking the New Molecule panel a second time will start the display process using the current display parameters.

\subsection*{4.46.2.25. new CELL}

Clicking the cursor on this panel causes the currently displayed sites (not the hidden sites) to be included in the calculation of a new cell display. The mcut option allows for all molecules to be cut at the cell boundary of the first unit cell, but otherwise all sites within \(+/-1\) cell along all three axes are calculated and added to the display view. Hidden atoms (using HIDE ATOM) will be removed from the site list and will not be available for output to the archive bdf, or the add file. Note that the current display limit is 10000 atoms. If nine unit cells result in more sites than the current limit, then PIG will terminate with an error message.

\subsection*{4.46.2.26. POV IMG}

This mode provides the user with limited control over the creation of compid.pov files containing a three dimensional description of the current display for rendering using the freely available Persistence of Vision Ray Tracer(TM) (Pov-Ray). XTAL is in no way associated with POV-Ray(TM) and makes no warranties as to that programs reliability, usefulness, or suitability for any purpose whatsoever. Consequently no support is offered or will be given towards installation of such external software. That being said, POV-Ray is a very powerful visualization tool and its use is recommended. In addition (under unix), if the environment variable POVEXE is set to the location of the POV-Ray(TM) executable, POV-Ray(TM) will be automatically invoked as a background process and the current scene rendered, on screen and also to the file compid.ppm.

In POV IMG mode the user can adjust several options by selecting the apropriate controls in the PIG message window. When satisfied, the user should reselect POV IMG to create the .pov file and render it - or choose PIG to cancel the mode. In addition, if labels are switched on in PIG then the output image will be labelled, and if the unit cell is being drawn, then it too will be rendered in the POV-Ray(TM) image.
- CPK model This control sets the desired molecular representation to either close packed overlapping spheres (CPK), Ball and stick model, Rods or thermal ellipsoids.
- 400x300 This is the smallest of five preset image dimensions. Rendering time increases significantly with image dimension.
- No Octants This is intended for ellpsoid plots where the principle axes may not be obvious.
- Prob \(\mathbf{5 0 \%}\) This sets the default probability level for rendering thermal ellipsoid plots.

Users should note that the ASCII text compid.pov file generated by XTAL includes important header information from the xtalpov file located in the directory specified by the XTALHOME environment variable. However, if a user has an alternate xtalpov file in the current working directory, it will be used by default. In this way image renderings can be customised by the user, setting different backgrounds, adjusting perspective, scaling and atom colors. Also the xtal.pov files generated by XTAL are sufficiently well commented that they can be edited by users to delete selective atoms, their labels or bonds, and redisplayed by manually running POV-Ray(TM) from the command line.

\subsection*{4.46.2.27. BDF on/off}

Clicking on this panel toggles the output mode of the archive bdf between on and off. The default mode is on. If the mode is on, the displayed atom sites (including the retained peak sites and labels), and the orientation matrix of the displayed sites, will be stored on the archive file by the program ADDATM. Independently of the bdf mode, a file .add is output containing all displayed atom sites and the display orientation.

\subsection*{4.46.2.28. EXIT}

Clicking on this panel will commence the exiting process from PIG. First the display will be redrawn in the currently stored orientation. If the user wishes to sort the output atom list based on atomic number and labels, there are three possible label SORT modes. The user can choose one mode and continue, or ignore and continue by reselecting the exit button. At this point the user has the option to proceed with an ortep/prevue process based on the current screen display, (assuming that a new bdf will be written) or to complete the exiting process by clicking on the exit button again. An accidental exit> can be canceled by selecting the pig icon.

\subsection*{4.46.2.29. NEXT/PREV}

When PIG is automatically invoked after CRISP, as a structural solution viewer, (run as PIG msol from the command line) two additional control buttons are invoked between the message panel and the atom-type buttons. These buttons permit the stepping forwards and backwards through structural solutions loaded from the .sol file produced by CRISP.

\subsection*{4.46.3. Sort modes}

The three atomlist sort modes all sort sites according to atomic number, but they differ in their label sorting algorithms. The method to choose for sorting labels is largely dictated by the structure and the site labelling scheme adopted. It is inevitable that the atom sites written to the .add file will require additional manual ordering for publication purposes, but the three modes provided sould provide a helpful starting point. The different schemes are best illustrated by way of example.
sort left sorts with the leftmost label character most significant
\begin{tabular}{lrrrr} 
atom F2 & .28990 & .19669 & 1.00840 & .035 \\
atom F3 & .28330 & .25008 & .79120 & .035 \\
atom F32 & .35080 & .42862 & .47520 & .035 \\
atom F33 & .48430 & .37205 & .31320 & .035 \\
atom F35 & 1.12030 & .28096 & .45740 & .035 \\
atom F36 & 1.01950 & .33188 & .62620 & .035 \\
atom F5 & 1.02790 & .17466 & .67020 & .035 \\
atom F6 & 1.08261 & .12219 & .87690 & .035
\end{tabular}
sort right sorts with the rightmost label character most significant
\begin{tabular}{lrrrr} 
atom F2 & .28990 & .19669 & 1.00840 & .035 \\
atom F32 & .35080 & .42862 & .47520 & .035 \\
atom F3 & .28330 & .25008 & .79120 & .035 \\
atom F33 & .48430 & .37205 & .31320 & .035 \\
atom F5 & 1.02790 & .17466 & .67020 & .035 \\
atom F35 & 1.12030 & .28096 & .45740 & .035 \\
atom F6 & 1.08261 & .12219 & .87690 & .035 \\
atom F36 & 1.01950 & .33188 & .62620 .035
\end{tabular}
sort numeric sorts labels into numeric order
\begin{tabular}{lrrrrr} 
atom F2 & .28990 & .19669 & 1.00840 & .035 & 1.00 \\
atom F3 & .28330 & .25008 & .79120 & .035 & 1.00 \\
atom F5 & 1.02790 & .17466 & .67020 & .035 & 1.00 \\
atom F6 & 1.08261 & .12219 & .87690 & .035 & 1.00 \\
atom F32 & .35080 & .42862 & .47520 & .035 & 1.00 \\
atom F33 & .48430 & .37205 & .31320 & .035 & 1.00 \\
atom F35 & 1.12030 & .28096 & .45740 & .035 & 1.00 \\
atom F36 & 1.01950 & .33188 & .62620 & .035 & 1.00
\end{tabular}

\subsection*{4.46.4. File Assignments}
- Reads atom data from the input archive bdf
- Optionally reads the BUNYIP file bun if the buny
- option entered. Optionally reads peak data from bdf pek
- Optionally reads the CRISP file sol if the msol option is entered
- Writes final connected atom sites to line file add and thereby to the output archive bdf
- Writes final cartesian coordinates to the line file pdb
- Writes display cartesian coordinates to the line file \(x y z\)
- Writes POV-Ray description file pov

\subsection*{4.46.5. Examples}

PIG

Enter atom data from archive bdf
```

PIG

```
peaks prad 1.
radii Zr 1.7 Cl 1.2

Enter atom and peak sites from file pek. Set the peak site radius to 1.0 Angstrom, and the atom type radii for Zn and Cl atoms to 1.7 and 1.2 Angstroms, respectively.
```

PIG ort : invoke PIG with a view to ORTEP generation
radii Zr 1.7 Cl 1.2 : set bonding radii
ortctl exec ialab nhla : override automatic ORTEP line option
ortctl vsc 1 1 2 2 5 1.5 1.6 : Add an extra vsc instruction
ortctl genins axes 2 : override automatic genins line
ortctl elipse 6 3.37 : override elipse line
finish

```

Use PIG as a dedicated ORTEP plot specifier with additional explicit ORTEP controls to fine tune the output. Subsequently run PREVUE to edit label positions and potentially invoke PLOTX from PREVUE to generate Postscript output.

\subsection*{4.47. PLOTX: Interface to graphics devices}

Authors: Syd Hall, Roeli Olthof-Hazekamp, Howard Flack, James Hester \& Ursula Bartsch
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
PLOTX converts graphical information generated by the programs such as CONTRS and ORTEP into plot commands for specific devices.

\subsection*{4.47.1. Function}

PLOTX generates data appropriate for the different graphical protocols (e.g. X11, HPGL, PostScript) for use with local plotting devices. A number of new options for setting the postscript papersize have been added.

\subsection*{4.47.2. Scaling And Centring}

The positive x -axis of a plot is taken as horizontal from left to right, and the positive y -axis is taken as vertical from bottom to top. Default frame dimensions and resolutions for the different devices are defined for each device at implementation time. They may be changed with the params line. High resolution values (i.e. small values entered in field 7) may result in smoother plots but will run slowly. To magnify or contract a plot, or to translate a plot within the given frame, the user may define the scale factor and/or plot centre manually.

\subsection*{4.47.3. Colour Graphics}

The plot command bdf generated by some programs contains subject indices that are used to produce colour plots. This facility allows different subjects, such as atoms, bonds, numbers, characters and contours, to be plotted in different colours. Default colours are set within PLOTX but the user can specify his own colours using the color line. For atoms up to 16 different colours are allowed. Options available on the color line are:
- fill causes closed areas such as those bounding atoms or bonds to be filled with a specified colour or pattern. The boundary line colour index may be different to the fill colour. This is the default for vdu only.
- nofill draws atoms without colour filling.
- bond signals that the integer specifying the colour index of the bonds follows.
- char signals that the integer specifying the colour index of character strings follows (e.g. atom names and title).
- numb signals that the integer specifying the colour index of numbers follows (e.g. bond distances).
- contur signals that the integers specifying the colour indices of contours follow.
- n 1 is the colour of the negative contour levels
- n 2 is the zero contour level colour
- \(n 3\) is the colour of the positive contour levels
- n 4 is the atom site marker colour
- n 5 is the character string colour.
- nocol causes 1 colour to be plotted. This overrides the default colours for vdu.

\subsection*{4.47.4. Postscript output}

The format of postscript output has been modified significantly to make it more amenable to manual editing. It has also been modified to conform to the ADOBE postscript Document Structuring Conventions for multipage documents. This permits the page selection methods of postscript previewers to be used to step through multi-page plots, such as multi-layered contour diagrams. To support these modifications a postscript prolog file xtalps is supplied with xtal and is included in every postscript output plot. For including single page XTAL postscript images in other image/manipulation packages it may be necessary to edit the first line of the .ps file to indicate that it is to be treated as an encapsulated image. The generated .ps file contains instructions for doing this.

\subsection*{4.47.5. XFIG3.2 output}

XFIG is free software for interactively editing vector graphics under X11. XFIG3.2 can be obtained from http://www-epb.lbl.gov/xfig/. Xtal is not associated with the XFIG project in any way, we merely recommend their software as a useful additional graphical editting tool for post processing Xtal plot files.

\subsection*{4.47.6. File Assignments}
- Reads plot commands from a specified file (default is ort)
- Writes a plotter output to locally defined devices or files

\subsection*{4.47.7. Examples}

PLOTX

This produces an ORTEP plot on the graphics screen in X11 protocol.

PLOTX postl nwm

A NEWMAN plot from file nwm is converted to a landscape PostScript file.

\subsection*{4.48. POWGEN: Powder pattern graphics}

Authors: Doug du Boulay
Contact: Doug du Boulay, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia Warning: This is alpha software!
POWGEN optionally reads a binary pattern archive created with ADDPAT and calculates the expected pattern. These patterns can be viewed and specific factors controlling the calculation manually adjusted to improve fit. The plot range and various graphics rendering attributes can be adjusted and the plots dumped to a plot file for editing or printing. Multiple plots can be generated on one page and multiple pages can be printed.

Figure 4-3. Screen shot of POWGEN


\subsection*{4.48.1. Overview}

POWGEN is a graphical interface program for displaying and manipulating powder diffraction pattern plots. It was designed to permit the user to dump an image of the manipulated page to a .ppp file for previewing with PREVUE or plotting with PLOTX. Multiple pages can be dumped and multiple powder plots can be displayed on one page. The graphical interface was designed exclusively using Tcl/Tk graphics functions, but if desired, the on screen graphics mode can be turned off and a complete description of ONE single page can be specified from the POWGEN control lines. That allows for efficient plotting once a plot format has been designed. In interactive mode the user can manipulate many of the attributes of either, the current graph block, or the layout of the whole page.

POWGEN requires as input, either of a .pat file produced by ADDPAT, or a .POT file produced by RIETVD. A check is made for the .POT file first, defaulting to the .PAT file if it exists. If the .PAT file is obtained, it is envisaged that a powder profile could be calculated and manipulated to a certain extent on screen. That requires atom site and hkl data on the input bdf so ADDATM and ADDREF are prerequisites in this mode. Many of the RIETVD commands also apply to POWGEN.
Page layouts can be either rigorously enforced to users specifications, or optimised to fit the page in a number of ways. The page layout is specified via the ARANGE option, where relative graph block positions are specified on a \(9 x 9\) grid, with \((5,5)\) defining the location of a one graph block page. Typically EXAMPP will initiate with one graph invoked but with others being added or deleted as the user requires.

\subsection*{4.48.2 File Assignments}
- Reads atom site and hkl data from the input archive file(s).
- Reads measured powder pattern intensities from file pat.
- Reads calculated powder pattern intensities from file рот.
- Writes powder pattern plot data to file PPP.
- Writes card images to punch file PCH (not implemented yet).

\subsection*{4.48.3. Examples}
```

POWGEN pat ho cm 0.5 1.0
:
phase ed 0.00065 : set the scale factor for this phase
peak voight 10. 0.5 : span(in halfwidths) mixing func
hwidth 0.008 0.01 0.0 :
pasymm 0.0 0.0 : assume symmetric peak
:
block \$2 5 5 : This block is centered in layout (5 5)
: this block has no numeric label
: So apply these settings to all subsequent blocks
axis x 10 72
axis y -1000 10000
trace obs 1 0.0 0.10 1.0 no \$2 1
trace cal 2 0.0 0.05 1.0 no \$2 1
trace del 3 0.0 0.0 1.0 no \$2 1
:
block 2 5 6 : This graph block is below previous block
titext This is graph number 2
axis x 10 30: plot range 2 theta = 10 to 30 degrees
axis y -1000 6000 : Intensity range
axslab x two theta angle
axslab y Intensity (counts per sec)
trace obs 1 0.0 0.1 1.0 no \$2 1 : plot observed
trace cal 2 0.0 0.0 1.0 no \$2 1 : plot calculated
trace del 3 0.0 0.2 1.0 no \$2 1 : plot difference (delta)
:
: If print is requested a .ppp plot file is written
PREVUE ppp
PLOTX xfigl ppp : produce .fig file for line editing/printing in XFIG
finish

```

\subsection*{4.49. PREABS: Interactive crystal shape manipulation}

Authors: Doug du Boulay
Contact: Doug du Boulay, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia PREABS is a screen-based interactive X11 display routine for checking and viewing the crystal shape description required for ABSORB. The diffractometer axes may also be rotated.

Figure 4-4. Screen shot of PREABS


\subsection*{4.49.1. Overview}

PREABS is a work in progress. It is intended to permit graphical editing of crystal size and shape in order to accurately model real crystals of ill defined shape. Unfortunately the editing aspect of this program has not been completed. It does however, permit visualization of crystal models constructed via the usual ABSORB face description methods. The crystal model is displayed, embedded within the ABSORB, internal, equivalent diffractometer specification, corresponding to the Busing and Levy (1967) system. The overall view of the crystal and diffractometer can be rotated with left-mouse-click-drag events, and by switching the right-mousebutton mode, the crystal can be rotated about specific diffractometer circle axes. The position of the telescope is adjustable and an image of the crystal through the telescope can be obtained.

\subsection*{4.49.2. General control functionality}

\subsection*{4.49.2.1. ZERO AXES}

This control reset all diffractometer angles to zero

\subsection*{4.49.2.2. CELL AXES}

Switches on/or off both the reciprocal and real space axes on the model

\subsection*{4.49.2.3. DIFF AXES}

Switches the diffractometer coordinate systems on or off. This is a four mode switch, since both the XTAL coordinate system and the actual diffractometer coordinate system may be different. Setting 0 switches both
axes systems off. Setting 1 switches the XTAL coords on, setting 2 switchesthe real coords on, while the final setting displays both sets of axes. Drawing the real diffractometer axes requires the presence of the original UB matrix used to measure the reflection data on the xtal archive.

\subsection*{4.49.2.4. ANIM On/Off}

Activating the anim option switches on animation. In this mode, and left-mouse-click-drag-release events are converted to angular momentum, and the diffractometer as a whole is set spinning. To stop a spinning image, simply left-click-release with no mouse motion. Reselecting anim, switches this mode off.

\subsection*{4.49.2.5. ZOOM MODE}

Currently has no functionality

\subsection*{4.49.2.6. FILLED}

Switches filling of the front display surfaces of the diffractometer circles on or off. This can result in significantly slower rendering.

\subsection*{4.49.2.7. BACK HIDE}

This control switches on or off the display of diffractometer faces which face away from the viewing direction.

\subsection*{4.49.2.8. PERSPECTIVE}

Currently has no functionality

\subsection*{4.49.2.9. FACE NORM}

This control switches on or off the crystal face normals and their associated approximate miller indices.

\subsection*{4.49.2.10. TELESCOPE}

Activating the telescope mode, temporarily changes the functionality of the right mouse button, such that by right-mouse-click-drag-release events, the position of the telescope can be dragged to an orientation corresponding to that on the actual measurement diffractometer. The telescope can then be locked to move synchronously with the omega axis, if that is where it is mounted, or else it can be locked rigidly with respect to the incident beam collimator. These settings are diffractometer specific, but the user must choose between the two collimator or \(\omega\) Circle options available in the message display panel before exiting from telescope adjustment mode.

\subsection*{4.49.2.11. VIEW MODE}

Three viewing modes are available. The default view is an overall view of the whole diffractometer. The second view has an additional reduced image of the crystal in the lower left corner, as seen through the telescope. The third view is a larger view of the crystal through the telescope. Note that the telescope view has greatly reduced functionality over the default diffractometer view.

\subsection*{4.49.2.12. DIFF TYPE}

Currently has no functionality

\subsection*{4.49.2.13. PRIM VECTOR}

Currently has no functionality.

\subsection*{4.49.2.14. SCAT VECTOR}
scat vector is a three state button for displaying scattering vectors of reflections lying on or near the Ewald sphere surface. In the first mode, only those reflections lying in the equatorial plane of the diffractometer are displayed, whereas in the second mode all reflections on the surface of the Ewald sphere are represented by scattering vectors. In the third mode scattering vectors are switched off.

\subsection*{4.49.2.15. DIFF VECTOR}

DIFF VECTOR is a three state button for displaying the diffracted beams scattered by crystal in its current orientation i.e. those reflections lying on or near the Ewald sphere surface. In the first mode, only those diffraction vectors of reflections lying in the equatorial plane of the diffractometer are displayed, whereas in the second mode all reflections on the surface of the Ewald sphere are represented. In the third mode diffraction vectors are switched off.

\subsection*{4.49.2.16. EWALD}

EWALD is a three state button for displaying the currently active reflections lying near the surface of the EWALD sphere as reciprocal space points, rather than vectors. The first mode displays just those near active reflections in the equatorial plane, the second displays all reflections near the Ewald surface, and the third mode disables the reciprocal lattice point display. It is important to note that the tolerance for points being displayed on this surface is essentially \(+/-1 / 2 \mathrm{~h}, \mathrm{k}\) or l , which is in fact very much higher than you could expect in a real experiment, so that many more reflections appear active than is actually the likely, given their distance from the sphere surface.

\subsection*{4.49.2.17. HKL LABEL}

This is another three state control for switching on/off the labelling of reciprocal lattice points lying near the Ewald sphere surface.

\subsection*{4.49.2.18. LAMBDA}

Currently has no functionality.

\subsection*{4.49.2.19. PSI SCAN}

Currently has no functionality.

\subsection*{4.49.2.20. HKL DRIVE}

Currently has no functionality.

\subsection*{4.49.2.21. COLLECT}

Currently has no functionality.

\subsection*{4.49.2.22. NEW FACE}

Currently has no functionality.

\subsection*{4.49.2.23. EDIT FACE}

Currently has no functionality.

\subsection*{4.49.2.24. DELETE FACE}

Currently has no functionality.

\subsection*{4.49.2.25. PRINT}

Currently has no functionality.

\subsection*{4.49.2.26. EXIT}

Terminates the current PREABS process immediately.

\subsection*{4.49.2.27. RMB ?}

This controls the default functionality of the Right-Mouse-Button. By default this is set to \(\omega\) but successive selections change it to \(\chi, \phi\) and back to \(\omega\). In any particular mode, rotations about the corresponding diffractometer axis are calculated by representing that particular axis circle as a sphere centred on the crystal and projecting forward out of the screen, but constrained to rotate about its axis. Any right-mouse-motion is mapped to rotations of this sphere about the axis in question.

\subsection*{4.49.3. Known shortcomings}
- Crystal image doesn't necessarily reflect the true orientation on the measurement diffractometer - which could be confusing.
- Non closed crystal shapes can cause disturbing image views.
- Much of the intended functionality has not been written yet.

\subsection*{4.49.4. File Assignments}
- Reads hkl data from the input archive file(s).

\subsection*{4.49.5. References}
- Busing, W.R. and Levy, H.A. 1967. Angle Calculations for 3- and 4- Circle X-ray and Neutron Diffractometers. Acta Cryst. 22, 457-464.
- Tanaka, K. \& Saito, Y. (1975). Acta Cryst. A31, 841-845.

\subsection*{4.50. PREPUB: Pre-publication tests on CIF structural data.}

Authors: Doug du Boulay \& Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
PREPUB performs a subset of the IUCr data validation series of CIF tests on all data blocks of a supplied CIF containing structural data.

\subsection*{4.50.1. Description}

A series of checks are made on a CIF containing one or more data blocks. The following tests are applied:
1. Test that the data organisation of the CIF conforms to the STAR syntax. Mismatched tags and values are identified, as well as unclosed text blocks, and whether items are missing from a looped list.
2. Check that the data items in the CIF are defined in the standard CoreCIF dictionary.
3. SYMMG01 DVtest: Check the _symmetry_space_group_number value matches that expected for the _symmetry_space_group_name_H-M entry.
4. SYMMG02 DVtest: Check that the _symmetry_equiv_pos_as_xyz values are consistent with the _symmetry_space_group_name_H-M entry.
5. CELLZ01 DVtest: Check that the combination of the _cell_formula_units_Z number and the _chemical_formula_sum entry matches the atomic content derived from the atomic site information in the _atom_site list.
6. CHEMW03 DVtest: Check that the _chemical_formula_weight value matches that calculated from the atomic site information in the _atom_site list.
7. REFLT03 DVtest: Check that the calculated number of reflections in the diffraction sphere out to the _diffrn_reflns_theta_max value is consistent with the number reported in the CIF by _reflns_number_total. Checks are made on the _diffrn_reflns_limit_ max and min values, and the presence of Friedel pairs.
8. STRVAL02 DVtest: Check that the _refine_ls_abs_structure_Flack value is in a sensible range.

\subsection*{4.50.2. Examples}

A typical input sequence is as follows, assuming a CIF filename is banana.cif
```

compid banana
prepub

```
```

PREPUB banana 16-Mar99 Page 1 Xtal3.6 FEB97:UNXDEC
********************
*** Begin PREPUB ***
*********************
INPUT FILE: banana.cif
>>>>> Check input data names against dictionary.
ciftbx warning: banana.cif data_global line: 38
Data name _iucr_compatibility_tag not in dictionary!
ciftbx warning: banana.cif data_global line: 38
No category defined for _iucr_compatibility_tag
ciftbx warning: banana.cif data_banana line: 342
Numb type violated _exptl_crystal_density_meas
>>>>> End of CIF dictionary checking.
>>>>>>>>>>>>>>>>>> Data block: global
>>>>>>>>>>>>>>>>>>> Data block: banana
SYMMG_01: Check the space group number
From the CIF: _symmetry_space_group_number ?
From the CIF: _symmetry_space_group_name_H-M P n a 21
International Tables space group number for P n a 21 is 33
SYMMG_01: OK
SYMMG_02: Check the space group is recognised
From the CIF: _symmetry_equiv_pos_as_xyz

$$
\begin{array}{lll}
x, y, \quad z & \\
-x, \quad-y, \quad z+1 / 2 & \\
x+1 / 2, & -y+1 / 2, & z \\
-x+1 / 2, & y+1 / 2, & z+1 / 2
\end{array}
$$

The xyz symops generate the Hall space group symbol p_2c_-2n
The xyz symops consistent with the H-M space group P_n_a_21
From the CIF: _symmetry_space_group_name_H-M p_n_a_21
SYMMG_02: OK
CELLZ_01: Check formula with the supplied model
From the CIF: _cell_formula_units_Z 4
From the CIF: _chemical_formula_sum Mo4 O11
TEST: Compare cell contents of formula and atom_site data

| atom | $Z *$ formula | cif sites diff |  |
| :--- | :---: | :---: | :---: |
| Mo | 16.00 | 16.00 | 0.00 |
| 0 | 44.00 | 44.00 | 0.00 |

CELLZ_01: OK
CHEMW_03: Check formula weight with the model

```
\begin{tabular}{lllc} 
atom & mass & num & sum \\
O & 16.00 & 11.00 & 175.99 \\
Mo & 95.94 & 4.00 & 383.76
\end{tabular}

```

From the CIF: _cell_formula_units_Z 4

```
From the CIF: _cell_formula_units_Z 4
From the CIF: _chemical_formula_weight 559.76
From the CIF: _chemical_formula_weight 559.76
    TEST: Calculate formula weight from _atom_site_*
    TEST: Calculate formula weight from _atom_site_*
        Calculated formula weight 559.75
        Calculated formula weight 559.75
CHEMW_03: OK
CHEMW_03: OK
REFLT_03: Check the reflection counts
REFLT_03: Check the reflection counts
    TEST2: Reflns within _diffrn_reflns_theta_max
        Count of symmetry unique reflns 1373
        Completeness (_total/calc) 165.11%
```

```
    TEST3: Check Friedels for noncentro structure
    Estimate of Friedel pairs measured 894
    Fraction of Friedel pairs measured 0.651
    Are heavy atom types Z>Si present yes
REFLT_03: OK
STRVAL_02: Check absolute structure measures
From the CIF: _refine_ls_abs_structure_Flack 0.390
From the CIF: _refine_ls_abs_structure_Flack_su 0.070
ALERT: Flack test results are ambiguous.
Time h m s CPU secs Total CPU secs Memory words
    12:29:53 9.26126 9.40571 201001
```


### 4.51. PREVUE: Modify text in plots

Authors: Victor Streltsov, Doug du Boulay \& Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
PREVUE is a screen-based interactive display routine for manipulating text on plots. It outputs a plot file pre. The pre file can be read by PLOTX to produce hardcopy plots.

### 4.51.1. Description

PREVUE enables the user to manipulate test strings in a plot. The plot itself cannot be altered, but may be enlarged or reduced in size during the text manipulation (the output plot size is unaffected by this resizing).
A character string may be moved by clicking on it (which causes it to disappear from the screen) and then clicking on the screen where the string is to be positioned (where it becomes visible). The string is repositioned with the bottom left corner at the mouse release position.

Eight control buttons are displayed at the top of the plot screen.

- The red Junk button is the rubbish bin for unwanted text. A string moved into this box will be deleted from the output plot.
- The two green circular ZOOM buttons are for enlarging and reducing the plot. These are for display convenience only and do not affect the output plot data.
- The two green triangular INCR and DECR buttons are used to increase and decrease the font size of all character strings by $10 \%$.
- The square green group button, allows selective labels to be moved collectively, or preferentially resized. Selecting group enables a new graphics mode whereby labels can be selectively grouped. Selecting a nonselected label, adds it to the group and reselecting it deletes it from the group. Grouped labels change color and remain grouped until the Group button is reselected. Right mouse button clicking anywhere in the display window, which is not occupied by a text label, combined with a drag and release, EXCLUSIVE OR's the labels contained within the rectanglular region indicated. Left mouse button clicking anywhere in the display window, which is not occupied by a text label, combined with a drag and release, moves ther position of all grouped text labels collectively. Pressing a mouse button over the Junk button permanently deletes all currently grouped labels. There is no undo. Selecting INCR/DECR buttons, resizes only the grouped labels. The grour mode is de-activated by reselecting Grour
- The green INPт button is used to insert a new character string. After clicking on the position for the input string this is entered on the keyboard, terminated by a carriage return.

Figure 4-5. Screen shot of PREVUE


- The red exit button steps to the next plot file frame if more than one exists. If there are no more frames present on the input file PREVUE provides the option to automatically invoke PLOTX to generate hardcopy postscript or HPGL output. If iether of these output formats is desired, a menu of format controls for each format is invoked. Note that only A3, A4 and landscape mode are available options for HPGL. When choices are made choose the red ok control to terminate PREVUE and continue.

The output file pre will contain all changes to the text data. Note that PREVUE will not read a pre file unless it is renamed.

### 4.51.2. File assignments

- Reads the input plot file (default is ort)
- Writes output plot file pre


### 4.52. REFCAL: Process reflection data

Author: H.D. Flack, Laboratoire de Cristallographie, University of Geneva 4, CH-1211 Geneve 4, Switzerland REFCAL treats reflection raw intensity and background, net intensity $\mid F_{o}{ }^{2}$ or $\left|F_{o}\right|$ data

### 4.52.1. Overview

REFCAL processes intensity data coming from single crystal diffractometer measurements. The programme uses data already placed on the input bdf in the form (a) raw counts and associated experimental details, (b) net intensities and associated experimental details, (c) $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ or (d) $\left|\mathrm{F}_{\mathrm{o}}\right|$ values. The reference reflections can be analysed both for long-term drift and to determine the short term stability of the measurements. The input data are transformed in a downhill cascade manner: raw intensitics --> net intensities $>\left|\mathrm{F}_{\mathrm{o}}\right|^{2}>\left|\mathrm{F}_{\mathrm{o}}\right|$ and output according to option. The Lorentz-polarization factor, $\sin \theta / \lambda$, rcode, reflection multiplicity, symmetry reinforcement factor $\epsilon$ and phase restriction code may be calculated, interpolated scattering factors may be inserted into the bdf and systematically-absent reflections may be marked or removed.

### 4.52.2. Data Input, Requirements and Transformations

The recommended method of placing raw diffractometer data on the bdf is first to transform a diffractometerspecific file into a CIF or SCFS90 (Standard Crystallographic File Structure 90, Brown, 1991) format using Difrac (Flack, Blanc Schwarzenbach, 1991). The cif file may be read by CIFIO or the sfi file by REFM90 to create an Xtal bdf. This process compactly loads all of the necessary raw experimental data onto a bdf in a diffractometer-independent way which preserves all essential information concerning the data-gathering process. In a preliminary scan through the bdf, REFCAL determines whether the data in the input bdf are complete and in which of the forms (raw counts, net intensities, $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ or $\left.\left|\mathrm{F}_{\mathrm{o}}\right|\right)$ they are present.
When REFCAL is run the input bdf must also contain all cell, symmetry and cell content information pertinent to the compound. This implies that the input bdf must contain the data generated by STARTX.
When using the input of raw net intensity data, the inut bdf should contain the following information concerning the experimental method of intensity measurement: type of radiation used, mean wavelength of radiation, temperature of intensity measurements, minimum and maximum $\sin \theta / \lambda$ of intensity measurement, total number of reflections measured, minimum and maximum values of $h, k$ and $l u$ used in data collection, Miller indices of reference reflections, crystal shape information as either (a) Miller indices of faces and their distances and
e.s.d.s from centre, or (b) the radius of a spherical crystal or (c) the radius and length of a cylindrical crystal, detector deadtime and e.s.d., wavelength of $\beta$ filter absorption edge, for each attenuator filter: its reciprocal transmission factor with e.s.d and index; incident beam polarization characteristics viz polarization ratio, and e.s.d., dihedral angle between diffraction planes of the sample and monochromator, incident beam half-width, wavelength and intensity weights of spectral line components.

For raw intensities, the data for each reflection should contain the following information. $h, k, l$, peak count, high- and low-angle background counts, Flack, Blanc \& Schwarzenbach coefficients, crystal-based azimuthal angle, elapsed time of measurement, attenuator filter index, scale factor index, reference reflection index, background scanning mode, total scan width, scan type, total horizontal and vertical detector aperture.

For net intensities, the data for each reflection should contain the following information $h, k, l$, net intensity and its e.s.d., crystal-based azimuthal angle, elapsed time of measurement, attenuator filter index, scale factor index, reference reflection index, background scanning mode, total scan width, scan type, total horizontial and vertical detector aperture. The net intensity is that derived from the raw peak counts by subtraction only of the background but without any other correction factor being applied to it.

For $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ input, the data for each reflection should contain $h, k, l,\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}$ and its e.s.d. $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ may be obtained from the net intensity by applying all systematic corrections. For $\left|\mathrm{F}_{\mathrm{o}}\right|$ input, the data for cach reflection should contain $h, k, l,\left|\mathrm{~F}_{\mathrm{o}}\right|$ and its e.s.d.

### 4.52.3. Treatment of Reference Reflections

REFCAL can undertake an analysis of reference reflections. These are specified reflections whose intensities are remeasured at regular intervals These measurements are used for two purposes: (a) The establishment of a set of scale factors based on the counts of the reference reflections to compensate all reflections for any drift over the data gathering process, (b) The calculation of instability constants which are based on the spread and perhaps the trend of the measurement of the reference reflections.

During the course of the data treatment, the sets of interspersed reference reflection measurements (in the form of reference index, net intensity, its e.s.d., elapsed time of measurement and set index) are stored in memory. Each set contains at most one measurement of each reference reflection although all references need not be present in each set. Reference reflections separated by non-reference reflections in the sequence of measurements belong to different sets of reference reflections.

No more than 30 different reflections may be designated as reference reflections. Under option the user may specify whether the reference reflections, once they have been used in the scaling and stability calculation, should be removed from the bdf or kept as observed reflections for later use (such as merging) with the other intensity measurements.

### 4.52.4. Calculation and application of scale factors

The scales will be generated from the reference reflection sets and smoothed over a specified number of scale factors. The default smoothing range is five scale factors forward and five scale factorsbackward. This smoothing is necessary due to the statistical counting fluctuations in the measured intensities. No smoothing will occur if the smoothing range is set to 0 . The appl/naps options on the REFCAL line control the application of the scale factors to all intensity data in the form of $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$, or $\left|\mathrm{F}_{\mathrm{o}}\right|$. Raw counts and net intensities are NOT modified.

Two input lines, setscl and discon are available to control the calculation of scale factors. sctscl specifies scale factors. Scale factors which have been calculated automatically will have their calculated value overwritten by the setscl value.
discon provides a way of indicating the position of an abrupt discontinuity in the scale factor values. Abrupt scale discontinuities may occur if there is a change in the radiation source or a degradation in the crystal. A scale factor, indicated by its time on the discon line, will be understood to be the last member of a set of
scale factors over which smoothing takes place. The scale factor following the one indicated on the discon line will be taken as the first of a another set used for smoothing. The smoothing function will not span the two sets. It may be necessary to make a preliminary run of REFCAL to find the discontinuities.

### 4.52.5. Calculation and application of instability constants

From the average value of the net intensity and the individual measurements, the external variance may be calculated for each reference reflection. This gives a measure of the variance over and above the variance based on counting statistics alone. The model used for the total variance of a reflection intensity is given by:
$(\text { Total e.s.d. })^{2}=(\text { Counting e.s.d. })^{2}+|b|+|m|$.(Net intensity $)^{2}$.
In REFCAL different estimates (as specified below) of the instabilitycoefficients $b$ and $m$ are obtained by least-squares analysis, using all reference reflections, of the individual difference between the external and the counting-statistics variances against the square of the individual average net intensities. $b$ and $m$ may be estimated either before or after the reference reflections are scaled. In the first approach, specified by the befr option in the Refcal line, the values of $b$ and m obtained are subject to all the variations in reference reflections that occur during the course of measurement such as crystal degradation. In the second approach, specified by the default aftr option on the refcal linc, $b$ and $m$ will be subject only to those fast changing variations in the reference intensities which have not been removed by the overall rescaling process.

The calculation of the instability coefffcicnts $b$ and $m$ is controlled by the inst option on the RefCAL line with the value of $\circ$ as follows:

- o Meaning of 。
- 0 Fix $b=m=0.0$. i.e. only counting statistics are used in calculating the e.s.d of an intensity.
- 1 Fix $b=0.0$ and let $m$ be the only variable. i.e. a straight line through the origin is fitted.
- 2 Let both $b$ and $m$ be variable. i.e. a general straight line is fitted.
- 3 Both slope $m$ and intercept $b$ are fitted but the intercept $b$ is reset to zero.
- 4 The user supplies both $m$ and $b$.

No attempt will be made to calculation the values of instability constants if the reference reflections have been measured less than seven times during the data gathering procedure. Raw counts and net intensities are NOT modified by the instability calculation.

### 4.52.6. Reflection Status Codes (rcodes)

Xtal uses a system of reflection status codes described earlier in the Primer Section. Each reflection is tested against its e.s.d. Those reflections which show a $\left|\mathrm{F}_{\mathrm{o}}\right|$ more than $n$. $\left[\right.$ e.s.d. $\left.\left(\left|\mathrm{F}_{\mathrm{o}}\right|\right)\right]$ are coded as $r$ code $=1$ (observed) and those with less than this value are coded with $r$ code $=2$ (less-thans). The value of $n$ may bc specified in the refcal line by use of the obst nspecification. Zero is allowed and means that all reflections will be given an rcode $=1$. Each reflection is tested to see if under the specified space group it would be systematically absent. If absent, the reflection is either rejected or included in the bdf marked with an rcode of 5.

### 4.52.7. Derivation of Intensities and "Observed" Structure Factors

The reflection data are transformed in a downhill cascade manner; raw intensities --> net intensities --> $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ --> $\left|\mathrm{F}_{\mathrm{o}}\right|$ starting at the form of the input data. The form of the reflection data output is indicated by the rawi, neti, fsqr or frel options on the refCAL line.

The net intensity is calculated from the raw intensity data according to the scheme for reducing raw peak and background counts described in Flack, Blanc \& Schwarzenbach (1991) with the coefficients $c n_{p} ; c n_{b}, c n_{h}$ and $c n_{l}$ available on the bdf. The net intensity is that derived from the raw peak counts by subtraction only of the background but without any other correction factor being applied to it.
$\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ is obtained from the net intensity by applying all systematic corrections. $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ is obtained from $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ by treating negative $\left|\mathrm{F}_{\mathrm{o}}\right|^{2}$ values as zero. The calculation of the e.s.d. $\left(\left|\mathrm{F}_{\mathrm{o}}\right|\right)$ is carried out using the following expression:
$\sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|\right)=\left[\left|\mathrm{F}_{\mathrm{o}}\right|^{2}+\sigma\left(\mid \mathrm{F}_{\mathrm{o}} \mathrm{o}^{2}\right)\right]^{1 / 2}-\left|\mathrm{F}_{\mathrm{o}}\right|$

### 4.52.8. Lorentz-Polarization Factors

The Lorentz-polarization factor for each reflection is calculated from the values of the polarization ratio $K$ and the dihedral angle $\rho$, the angle between the diffraction planes of the monochromator and the sample (diffaction plane is the plane containing the incident and diffracted ray directions). Let $\theta$ the Bragg angle of the sample. For single crystal equatorial-plane diffractometer measurements, the Lorentz factor $=L=1 /(2 \sin 2 \theta)$. The expression for polarization of a twice-diffracted X-ray beam is given by:
$P=\left[\cos ^{2} \rho+K \sin ^{2} \rho+\left(\sin ^{2} \rho+K \cos ^{2} \rho\right) \cos ^{2} 2 \theta\right] /(1+K)$.
For diffraction by neutrons, there is no polarization. See Azaroff (1955) and Hope (1977).

### 4.52.9. Atomic Scattering Factor Interpolation

The scattering factor tables present on the input bdf (as stored by STARTX) may be used to calculate interpolated atomic scattering factor values for each reflection. A four-point interpolation procedure is used (Rollett, 1965). The interpolated values are stored with each reflection. This option is invoked by the ffac signal on the refchi line. The advantage of interpolated atomic scattering factors is that they provide for more precise structure factor calculations with programmes such as $F C$ and $C R Y L S Q$. The disadvantage is that the size of the bdf is increased substantially and the extra precision is usually unwarranted for routine structure analyses.
**WARNING ${ }^{* *}$ Users must use this option if $R$-factors of less than 0.04 are anticipated.

### 4.52.10. Symmetry Reinforcement Factor $\epsilon$

The symmetry reinforcement factor $\epsilon$ is the integer multiplicity of a reflection intensity due to the symmetrygenerated coincidence of identical diffraction vectors (i.e. direction and phase). The value of $\epsilon$ is required for the calculation of $E$ values, normalized structure factors. In REFCAL this factor is calculated for each reflection and stored in the binary data file for use by other programmes in the system. The method is described by Stewart and Karle (1976), Iwasaki and Ito (1977); and Stewart and Karle (1977).

### 4.52.11. Examples

```
title Create a bdf from an SCFS 90 archive file
REFM90
        scfs
STARTX
REFCAL frel
ADDATM upd
```

The above example shows the use of REFM90, STARTX, REFCAL and ADDATM to create a bdf with $\left|\mathrm{F}_{\mathrm{o}}\right|$ data from an archived data set in SCFS 90 format. REFM90 is neccssary to read the SCFS file; STARTX to calculate the direct and reciprocal cell metrics, load the scattering factor tables, atomic radii, and to check the symmetry
information; REFCAL to calculate the reflection information as detailed above and ADDATM to generate the symmetry constraints.

```
title Form a bdf from an SCFS 90 diffractometer file
REFM90 scfs
STARTX upd
sgname -C 2YC
REFCAL
```

The above example shows the use of REFM90, STARTX, and REFCAL to load a bdf with net intensity data from diffractometer data produced in SCFS 90 format by the DIFRAC programme. The sgname line is necessary in STARTX as this information is not stored with the raw diffractometer data. Even if symmetry information were present in the SCFS file, it is still necessary to run STARTX in update mode to calculate and store the cell metrics, find the atomic radii, etc. and to check the symmetry information.

### 4.52.12. References

- Azaroff, L.V. (1955). Acta Cryst. 8, 701.
- Brown, I.D. (1990). Acta Cryst. In preparation.
- Flack, H.D., Blanc, E \& Schwarzenbach, D. (1991) J. Appl. Cryst. 24, In preparation.
- Hope, H. (1977). Acta Cryst. A27, 392.
- Iwasaki, H. \& Ito, T. (1977). Acta Cryst. A33, 227-229.
- Rollett, J.S. (1965).Computing Techniques In Crystallography. Elmsford, NY: Pergamon Press.
- Schwarzenbach, D \& Flack, H.D. (1989). J. Appl. Cryst. 22, 601-605.
- Stewart, J.M. \& Karle, J. (1976). Acta Cryst. A32, 1005-1007.
- Stewart, J.M. \& Karle, J. (1977). Acta Cryst. A33, 519.


### 4.53. REFM90: Convert SCFS-90 file to/from a BDF

Author: Howard Flack, Laboratoire de Cristallographie, University of Geneva, CH-1211 Geneve 4, Switzerland

REFM90 converts an XTAL archive bdf to an SCFS format file (SCFS-90, Brown, 1983, 1985, 1988, 1990) and a SCFS-90 file to an XTAL archive bdf.

### 4.53.1. Introduction

The Standard Crystallographic File Structure (Brown, 1983, 1985, 1988, 1990) is the current (July 1990) standard approved by the IUCr Data and Computing Commissions as the standard format for exchanging crystallographic data. REFM90 is a program for two-way conversion between an archive bdf and the SCFS-90 format.

A file of crystallographic data in a standard format has many potential uses. It should be a very convenient means of submitting short format papers for publication in Acta Cryst. C, for archiving crystallographic information, for transferring a series of measurements made on a single-crystal diffractometer, for transfer of data between computers in a multi-host environment, for running programmes external to an integrated system
such as XTAL, for communicating crystallographic data between laboratories by way of e-mail, floppy disks or magnetic tapes or for the preparation of material for deposit in electronic or hard-copy form. In REFM90 data are exchanged between the two file formats without any checking of their integrity and without any change of their potential information content.

Much of the code of REFM90 is taken or inspired from the programs REF87 and REFORM. REFM90 adheres strictly to the SCFS-90 standard. Superseded SCFS sections can neither be read nor produced by REFM90. Also, in those parts of the SCFS-90 standard where there is an indicated recommendation or preference for one format of the data over another, ONLY the recommended or preferred form can be interpreted by REFM90. REF() does not treat or use the SCFS-90 sections designed for macromolecular crystallography.

### 4.53.2. Description

### 4.53.2.1. 1. XTAL to SCFS Mode

The information of one single data set specified by its Data Set Number is output in SCFS-90 format. The data set to be output is selected on the refm9o line. The SCFS-90 sections output are as follows:ititle; Celd dimensions (CID's: Cell, errs, vol, phys); SGname (CID: latt); symmetry (CID: syop); form factor (CID: tabl); formula (CID: forl); conditions (CID's: int, abs, stat); crystal (CID: sCal); atoms (CID: atco, atce, UALL, UIJ, UIJe); either hkl PACk or hki with CID: FOBS, FSQR, INT or CALC according to the choice made on the refmgo line.

### 4.53.2.2. 2. SCFS to XTAL Mode

In reading an SCFS-90 file a completely new archive bdf is created. The same sections and CID's that can be produced in mode (1) can be interpreted in mode (2). This mode just dumps the data from the SCFS file into the archive bdf. It is essential to run STARTX immediately after REFM90 in SCFS to XTAL mode in order to check the integrity of the data and to assure that the archive bdf is completely formed.

### 4.53.3. File Assignments

| Reads | SCFS-to-XTAL <br> $\mathbf{s f i}$ <br> archive bdf | XTAL-to-SCFS <br> archive bdf |
| :--- | :--- | :--- |
| Writes | scf |  |

### 4.53.4. Examples

## REFM90

REFM90 SCFS
:Convert SCFS90 file to XTAL bdf

## References

- Brown, I.D.(1983). Acta Cryst. A39, 216-224.
- Brown, I.D.(1985). Acta Cryst. A41, 399.
- Brown, I.D.(1988). Acta Cryst. A44, 232.
- Brown, I.D.(1990). Acta Cryst. A46, In press.


### 4.54. REGFE: Analyse errors

Authors: H. Wang, R.J. Barton and B.E. Robertson
Contact: Bev Robertson, Department of Chemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

REGFE calculates crystallographic functions and their estimated standard deviations (Busing et al., 1964). In the calculation of standard deviations, both the variances and the covariances of the parameters (Hamilton, 1964; Sands, 1982) are taken into account. REGFE may be used to create tables of bond lengths, bond angles and dihedral angles for publication and output them to the 'punch' file.

### 4.54.1. Introduction

REGFE calculates the values of derived quantities which are functions of the atomic coordinates and the crystal unit cell parameters and their associated standard deviations. These quantities are bond lengths, bond angles, dihedral angles, distances of atoms from planes and lines, and angles between planes and lines. The calculations of bond lengths, angles and dihedral angles of molecules or clusters can be performed, based on atom connectivity.
In least-squares structure refinement, the parameters of the crystal structure are not fully independent of each other; i.e., they are correlated. For any function of these parameters the covariances of the parameters should be included in the calculation of their standard deviation.

There are two variance-covariance (v-c) matrices which are involved in the calculation of the standard deviation; the matrix, C , of the cell parameters and the matrix, V , of the atom parameters. We assume that the cell parameters are fully independent of the atom parameters and the covariance terms involving a cell parameter and an atom parameter are set to zero.

The variance-covariance matrix of the atom parameters is derived from the inverse matrix of the normal matrix in least-squares refinement. If the weights for the observations ( $\mathrm{F}, \mathrm{F}^{2}$ or I ) are correct, V is the inverse of the normal matrix. However, it is assumed that any deviations of the goodness-of-fit, S , from its expected value represent a scaling error in the variances of the observations, and thus can be corrected by multiplying V by $S^{2}$; i.e.
$\mathrm{V}=\mathbf{A}^{-1} \mathrm{~S}^{2}$
where $\mathbf{A}$ is the normal matrix of the least-squares refinement, given by
$\mathrm{A}_{\mathrm{ij}}=\sum_{\mathrm{r}}\left[\mathrm{wdF}_{\text {cal }} / \mathrm{dp}_{\mathrm{i}} \mathrm{dF}_{\text {cal }} / \mathrm{dp}_{\mathrm{j}}\right]$
and S , the goodness-of-fit is given by
$\mathrm{S}^{2}=\sum_{\mathrm{r}}\left[\mathrm{w} \Delta^{2}\right] /(\mathrm{n}-\mathrm{m})$
The symbols and notation in these equations have been defined in the CRYLSQ section.
The diagonal terms of the v-c matrix are the variances of the parameters and the off-diagonal terms are the covariances of the parameters. The correlation matrix, N , of the atom parameters is a normalized variancecovariance matrix. The elements of the correlation matrix are defined as:
$\mathrm{N}_{\mathrm{ij}}=\mathrm{V}_{\mathrm{ij}} /\left[\mathrm{V}_{\mathrm{ii}} \mathrm{V}_{\mathrm{ij}}\right](\mathrm{i}, \mathrm{j}=1,2,3, \ldots, \mathrm{~m})$
The correlation matrix of the atom parameters can be created and saved in the bdf cmx by entering the ms option code in CRYLSQ. Thus at least one cycle of least-squares refinement by CRYLSQ is required before running

REGFE. If the correlation matrix from least-squares structural refinement is a blocked matrix, the parameters in different blocks are considered to be uncorrelated and the covariances of parameters in two different blocks will be set to zero. If the correlation matrix is not provided, only the variances of the parameters will be used and all the covariances of the parameters will be set to zero.

### 4.54.2. Standard Deviation Calculation

For a given crystallographic function of the atom parameters $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \ldots$, and cell parameters $\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \ldots$
$\mathrm{F}=\mathrm{f}(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \ldots, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \ldots, \mathrm{c} 6)$
the variance (which is the square of the standard deviation, sigma) of the function can be obtained by
$\sigma^{2}=\sigma^{2} \mathrm{c}+\sigma^{2} \mathrm{a}$
The first term in the right hand side of the equation is the contribution to the variance of the function from the variances of the unit cell parameters:
$\sigma^{2} \mathrm{c}=\sum_{\mathrm{ij}}\left[\mathrm{C}_{\mathrm{ij}} \mathrm{dF} / \mathrm{dc}_{\mathrm{i}} \mathrm{dF} / \mathrm{dc}_{\mathrm{j}}\right]$
and the second term is the contribution to the variance of the function from the variances of the atom parameters:
$\sigma^{2} \mathrm{a}=\sum_{\mathrm{ij}}\left[\mathrm{V}_{\mathrm{ij}} \mathrm{dF} / \mathrm{da}_{\mathrm{i}} \mathrm{dF} / \mathrm{da}_{\mathrm{j}}\right]$

### 4.54.3. Atom Connectivity

The atom connectivity is established according to the atomic radii data. The symmetry operations of the space group may be applied for the establishment of the atom connection table. The number $(1,27,125)$ of unit cells can also be specified for atom searching. The values of the atomic radii must be provided from the input bdf or atrad lines. The values of the atomic radii in the bdf can be modified by entering atrad lines. The min allowed radius is 0.015 A .

### 4.54.4. plane, line and atom Lines

In the function and error calculation, a plane can be represented by either a plane ID, which is predefined in a plane line, or by three atom IDs which define the plane. A line can be represented by either a line ID, which is predefined in a line line, or by two atom IDs which define the line. The equation of a plane can be created by entering the coefficients of the plane equation in either an orthogonal coordinate system or a fractional coordinate system, or by three atom IDs. Similarly, the equation of a line can be defined by entering the coefficients of a line equation in either an orthogonal coordinate system or a fractional coordinate system, or by two atom IDs. The forms of the equations of a plane and a line in factional coordinate system are given by:
$A x+B y+C z=D$
and
$\left(x-x_{0}\right) / A=\left(y-y_{0}\right) / B=\left(z-z_{0}\right) / C$
respectively. However, when the coefficients of the equations are input on lines, only the variance of the coefficients will be used in the standard deviation calculations.

### 4.54.5. File Assignments

- Optionally reads structure data from input archive bdf
- Optionally reads correlation matrix from bdf cmx
- Optionally outputs tables to line file pch


### 4.54.6. Examples

```
REGFE covar dihe
atrad zn 2.00 1.70 1.0
atrad cl 2.00 1.60 0.5
```

In this example, the atomic radii of Zn and Cl are modified and the bond lengths, bond angles, and dihedral angles of the molecule will be calculated based on the atom connectivity. The correlation matrix will be input from cmx and used in the standard deviation calculations.

```
reset psta 4
REGFE covar nlen nang lvc
plane pln1 0 12.345 -8.456 3.004 5.842
plane pln2 0 12.462 3.145 8.593 -4.053
plane pln3 2 c01 c02 c03
plane pln4 2 c04 c05 c06
plane plna 1 0.6258 0.2449 0.7405 5.005
functn vol
functn dis c01 c02
functn pap pln3 c04 c05 c06
functn dih cl01 zn01 o01 n01
functn ang c01 c02 c03
functn pda pln3 c04
functn pap c01 c02 c03 pln4
```

In this example, the calculation of the bond lengths, angles and dihedral angles is suppressed. The covariance of the atom parameter will be used in the standard deviation calculation and the variance-covariance matrix will be listed in the output.

### 4.54.7. References

- Busing, W.R., Martin, K.O. and Levy, H.A. 1964. ORFFE--Oak Ridge National Laboratory, Report ORNL-TM-306.
- Hamilton, W.C. 1964. Statistics in Physical Science, The Ronald Press Company: New York.
- Sands, D.E. 1982. Vectors and Tensors in Crystallography, Addison-Wesley: New York.


### 4.55. REGWT: Analyse weights

Authors: B.E. Robertson \& H. Wang
Contact: Bev Robertson, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
REGWT (Wang et al. 1985) analyzes an existing weighting scheme by calculating the average value of $w \Delta^{2} X$ within ranges of $|F|, F^{2}$ or $I$, and $\sin \theta / \lambda(=s)$. REGWT also estimates a modification to the variance of $\Delta$ so that $w \Delta^{2} X$ does not show trends with respect to $s$ or $\mid F($ rel $) \mid$ (Stewart et al. 1976) and applies either the estimated modification to the variance or weights (Prince, 1983).

### 4.55.1. Introduction

In weighted least-squares refinement the quantity minimized is $\sum \mathrm{w}(\mathrm{X}) \Delta^{2} \mathrm{X}$ where X is one of the quantities $|\mathrm{F}|, \mathrm{F}^{2}$ or I , and $\Delta \mathrm{X}$ is $\mid \mathrm{X}($ rel $)-\mathrm{X}(\mathrm{cal}) \mid$. The weight, $\mathrm{w}(\mathrm{X})$, reflects the accuracy of the measurement of the intensity of a reflection. A properly estimated weight will lead to an accurate crystal structure. The correct value of the weight is the reciprocal of the variance, $\sigma^{2} \mathrm{X}$. Usually the contribution of counting statistics to $\sigma \mathrm{X}$ is easily calculated, but the contribution from various other sources of error is not.

REGWT provides information to assist in the modification of weights to account for other sources of error. It is equivalent to WTANAL and WTLSQ in XRAY76. REGWT contains an additional feature which allows the calculation of coefficients for the weight modification expression in order to modify the weights. The program does not differentiate between random and systematic error. The procedure is described in detail elsewhere, (Wang and Robertson, 1985). In this program description, w refers to the weight rather than the square root of the weight as it does in some other program descriptions in this manual.

REGWT is used to examine existing weights based on the distribution of $w(X) \Delta^{2} X$. The data is divided into blocks bounded by both intervals of $\mathrm{X}(\mathrm{rel})$ and $s$. By choosing either $\mathrm{X}(\mathrm{rel})$ or $s$ the analysis becomes one-dimensional with respect to $\mathrm{X}(\mathrm{obs})$ or $s$. For each grid point, the number of data, the average value of $\left\{w(X) \Delta^{2} X\right\}^{1 / 2}$ and weighted $R$ index are given.

### 4.55.2. Normal Weighting Schemes

The weighting schemes used here are based on the program WTLSSQ of the XRAY76 system. Nine weight functions and an opportunity for manipulation of the location of the weights in the bdf are specified on the normal line. The weight functions are specified by a weighting scheme number ( $0-9$ ) and the coefficients (A to I) corresponding to those functions. The default values of these coefficients are all zero. The full weighting schemes are described in detail below.

Scheme 0:Retrieve the old least-squares weight from one of the least-squares weight locations n901, n902, n903 and place it in the least-squares weight location n900, which is used in least-squares refinement in the logical record lrrefl: when the bdf weights are specified.

A = $1:$ from LSW1(n901) to LSWT(n900)
B $=2$ : from LSW2(n902) to LSWT(n900)
C $=3$ : from LSW3(n903) to LSWT(n900)

Scheme 1: $\mathrm{W}=1 /\left(\mathrm{A}+\mathrm{B} \sigma^{2} \mathrm{X}+\mathrm{C} /(\right.$ oldweight $)+\mathrm{D}^{*} \mathrm{X}($ rel $\left.)+\mathrm{E}^{*} \mathrm{X}(\mathrm{rel})^{2}+\mathrm{G}^{*} \mathrm{X}(\mathrm{rel})^{\mathrm{H}}+\mathrm{I}^{*} \sin \theta\right)$
Scheme 2: $\mathrm{W}=1 /\left(\mathrm{A}+\mathrm{B}^{*} \mathrm{X}(\mathrm{rel})+\mathrm{C}^{*} \mathrm{X}(\mathrm{rel})^{2} /\right.$ oldweight $\left.+\mathrm{D}^{*} \mathrm{X}(\mathrm{rel})^{6}+\mathrm{E} * \sin \theta\right)$
Scheme 3: $\mathrm{W}=\mathrm{X} * \mathrm{Y}$ if $\mathrm{A} * \mathrm{X}(\mathrm{rel})$ is greater than $|\mathrm{X}(\mathrm{cal})|$ then weight is 0.000000001 . Let $\mathrm{B}=\sin \theta$ limit, then if $\sin \theta$ is greater than $\mathrm{B}, \mathrm{X}=1$, else $\mathrm{X}=\sin \theta / \mathrm{B} B$ should not be zero. Let $\mathrm{C}=\mathrm{X}(\mathrm{rel})$ limit, then if $\mathrm{X}(\mathrm{rel})$ is less than $\mathrm{C}, \mathrm{Y}=1$, else $\mathrm{Y}=\mathrm{C} / \mathrm{X}($ rel $)$.

Scheme 4: If $\mathrm{X}(\mathrm{rel})$ is less than or equal to A , then $\mathrm{W}=(\mathrm{X}(\mathrm{rel}) / \mathrm{A})^{2}$, else $\mathrm{W}=(\mathrm{A} / \mathrm{X}(\mathrm{rel}))^{2}$. Reflections with $\mathrm{X}(\mathrm{rel})=\mathrm{A}$ are given maximum weight.
Scheme 5: If $\mathrm{X}(\mathrm{rel})$ is less than or equal to A , then $\mathrm{W}=1$, else $\mathrm{W}=(\mathrm{A} / \mathrm{X}(\mathrm{rel}))^{2}$. Small reflections are given constant weight. In Hughes' original treatment, $A=4 X(\mathrm{~min})$.
Scheme 6: $\mathrm{W}=1 /\left(1+((\mathrm{X}(\mathrm{rel})-\mathrm{B}) / \mathrm{A})^{2}\right)$ Reflections with $\mathrm{X}($ rel $)=\mathrm{B}$ are given maximum weight, but if A is very large, the weights are constant.
Scheme 7: $\mathrm{W}=1 /\left(\mathrm{A}+\mathrm{X}(\mathrm{rel})+\mathrm{B} * \mathrm{X}(\mathrm{rel})^{2}+\mathrm{C} * \mathrm{X}(\mathrm{rel})^{3}\right)$ Cruickshank suggests that $\mathrm{A}=2 \mathrm{X}(\mathrm{min}), \mathrm{B}=2 /$ $X(\max )$, and $C=0$ are useful. A larger value of $C$, say $C=5 / X(\max )^{2}$, may help down-weight large $\mathrm{X}($ rel $)$ subject to extinction. These values may prove useful in schemes 1 and 2.
Scheme 8: W = A $/ \max (\sigma \mathrm{X}(\mathrm{rel}),(\mathrm{B} * \mathrm{X}(\mathrm{rel})+\mathrm{C}),(\mathrm{D} * \mathrm{G}+\mathrm{E}))$ where G is X(rel)(max). For a complete description of this (Univ. of Washington) scheme, see the general section for the program DATRDN of the XRAY76 system.
Scheme 9: W = A This weighting scheme produces constant weights

### 4.55.3. Estimation Of Weighting Modifications

If the variances of the structure factor amplitudes are correctly estimated, their average value should correspond to $\Delta^{2} \mathrm{X}$. (The variance will be assumed to represent error in both the experiment and the model; i.e. in $|\mathrm{X}(\mathrm{rel})|$ and $|\mathrm{X}(\mathrm{cal})|$.) The process of least squares allows some adjustment of the model to errors in the experiment, so that
$\left\langle\Delta^{2} \mathrm{X} / \sigma^{2} \mathrm{X}\right\rangle=(\mathrm{N}-\mathrm{M}) / \mathrm{N}$
rather than unity. N is the number of reflections used for least-squares refinement and M is the number of least-squares variables. <A> is the average value of A. The quantity ( $\mathrm{N}-\mathrm{M}$ )/N will be referred to in what follows as the "freedom factor". The calculated variance, $\sigma^{2} \mathrm{X}(\mathrm{cal})$, is the variance obtained from a knowledge of the experimental conditions and is usually based entirely on counting statistics. A quantity $\sigma^{2} \mathrm{X}(\mathrm{mod})$, the modified variance, may be added to $\sigma^{2} \mathrm{X}(\mathrm{cal})$ to give an improved value of $\sigma^{2} \mathrm{X}$ or $1 / \mathrm{w}(\mathrm{X})$. The correction, $\sigma^{2} \mathrm{X}(\mathrm{mod})$, commonly called the "ignorance factor", may be entered by the user as some function such as
$\mathrm{E} *|\mathrm{~F}(\mathrm{rel})|^{2}+\mathrm{I}^{*} \sin \theta$
(see Scheme 1, normal weighting schemes) or it may be estimated automatically. An approximate expression for $\sigma^{2} \mathrm{X}(\bmod )$ is
$\sigma^{2} \mathrm{X}(\mathrm{mod})=\left\{\left(\Delta^{2} \mathrm{X}+\mathrm{VC}\right)-\sigma^{2} \mathrm{X}(\mathrm{cal})\right\} /$ (freedom factor) (1)
where VC is a correction term including variance (VAR) and covariance (COV) terms.

$\mathrm{VC}=$| $\Delta_{2} \mathrm{X} * \operatorname{VAR}($ | $\operatorname{COV}\left(\Delta_{2} \mathrm{X}, \sigma_{2} \mathrm{X}\right)$ |
| :--- | :--- |
| $\left.\sigma_{2} \mathrm{X}\right)$ |  |
| -------------------------- |  |
| - |  |
| $\left.<\sigma_{2} \mathrm{X}\right\rangle_{2}$ | $\left\langle\sigma_{2} \mathrm{X}\right\rangle$ |

This term results from replacing $\left\langle\Delta^{2} \mathrm{X} / \sigma^{2} \mathrm{X}\right\rangle$ by $\left\langle\Delta^{2} \mathrm{X}\right\rangle \mid\left\langle\sigma^{2} \mathrm{X}\right\rangle$, and the user may choose to not use it. Also, the "freedom factor" may be replaced by unity. The independent variables are normalized by dividing by $\mid\left.\mathrm{X}($ rel $)\right|_{\text {max }}$ and $s_{\text {max }}$. The new independent variables are:
$\mathrm{V}(\mathrm{X})=|\mathrm{X}(\mathrm{rel})| /|\mathrm{X}(\mathrm{rel})|_{\text {max }}$ and $\mathrm{V}(\mathrm{S})=s / s_{\text {max }}$
The correction, $\sigma^{2} \mathrm{X}(\mathrm{mod})$, is estimated by least-squares fitting of the following expression to equation (1)
$\left\langle\sigma^{2} \mathrm{X}(\bmod )\right\rangle=\sum_{\mathrm{p}}\left(\sum_{\mathrm{q}}\left\{[\mathrm{A}(\mathrm{p}-\mathrm{q}, \mathrm{q})]\left[\mathrm{V}(\mathrm{X})^{\mathrm{p}-\mathrm{q}}\right]\left[\mathrm{V}(\mathrm{S})^{\mathrm{q}}\right]\right\}\right)$
If $\mathrm{p}=0$, a constant term is determined.
If $\mathrm{p}=1$, the coefficients in the expression of the form
$\mathrm{A}(0,0)+\mathrm{A}(1,0) * \mathrm{~V}(\mathrm{~F})+\mathrm{A}(0,1) * \mathrm{~V}(\mathrm{~S})$
are determined; etc. The coefficients $\mathrm{A}(\mathrm{p}, \mathrm{q})$ can then be used to calculate $\sigma^{2} \mathrm{X}(\mathrm{mod})$ for an individual reflection. The weight for a reflection is then calculated as:
$1 / \mathrm{w}(\mathrm{X})=\sigma^{2} \mathrm{X}=\sigma^{2} \mathrm{X}(\mathrm{cal})+\sigma^{2} \mathrm{X}(\mathrm{mod})(3)$
The structure is refined by normal least squares using the modified weights and new values of $\Delta^{2} \mathrm{X}$ are created. If the individual reflection option is chosen, the variance and covariance correction is not used or calculated. The process is iterated until the coefficients do not change. The change in the standard deviations of leastsquares variables on the first iteration will probably be between 0 and $40 \%$ of their initial value with nonmodified weights. The improvement on the second iteration will typically be $10 \%$ of the improvement of the previous one. A third iteration would seldom seem justified. The quantity $\sigma^{2} \mathrm{X}$ is required for calculating the variance and covariance correction (VC), but is not well known until after first iteration. Therefore $\sigma^{2} \mathrm{X}$ (cal) must be used instead of $\sigma^{2} \mathrm{X}$ in the first iteration, if the VC correction is applied.

In the REGWT calculation, the value of $\sigma^{2} \mathrm{X}(\mathrm{cal})$ in (3) above is obtained from IDN 1900 in logical record lrrefl: on the bdf. If IDN 1900 is empty, the value of $\sigma^{2} \mathrm{X}(\mathrm{cal})$ is then obtained from IDN 130 n ( $\mathrm{n}=1,3$ or 5 for $\mathrm{I}, \mathrm{F}^{2}$ or F , respectively). After the modified weight $\mathrm{w}(\mathrm{X})$ is calculated, its value will be stored in IDN 1900, replacing the old value of $\sigma^{2} \mathrm{X}(\mathrm{cal})$.

The square root of the number of reflections in a grid point is used to weight the grid points when fitting equation (2) to equation (1). Not surprisingly, grid points with high $\mathrm{V}(\mathrm{X})$ and high $\mathrm{V}(\mathrm{S})$ may be empty and others may have few reflections. The option also exits to not average but treat every reflection as a separate grid point. Since averaging to form grid points involves first order differences, the influence of reflections whose contribution to the average in equation (1) deviate far from the mean will be enhanced if individual reflections are used to find the $\mathrm{A}(\mathrm{p}, \mathrm{q})$. If the individual reflection option is chosen, the variance and covariance correction is not used or calculated.

### 4.55.4. File Assignments

- Reads reflection data from the input archive bdf
- Optionally writes reflection data to the output archive bdf


### 4.55.5. Examples

```
REGWT lst wta
maxhkl 12 12 12 0.0 0.824
fgrid 2.3 4.3 7.6 12.4
fgrid 13.4 17.5 20.5 25.5 30.5 35.5
fgrid 45.0 55.5 65. 80. 100. 99999.
sgrid . }1.15 . 2 . 25 . 3 . 35 . 4 . 45 . 5 . 55 . 6 . 65
sgrid . 7 . 75 . 80 . 85
```

In this example, the weight-analysis process is called to analyze the weights which have been assigned for each reflection. The analysis maps are specified as $16 \times 16$ by the fgrid and sgrid lines. The program does not update the archive bdf. The reflection data will be printed.

```
REGWT nolist wfc 10.0 rel cnt 99.0
regina pow 2 ind fac 1. avc
archiv 1902 -1903
fgrid 3.0 4.0 5.0 6.0 7.0 8.0
fgrid 9.50 12.0 17.0 21.0 27.0 30.0 50.0
fgrid 70.0 999.0
sgrid 0.150 0.200 0.250 0.300 0.350 0.400 0.450
sgrid 0.500 0.515 0.530 0.550 1.000
```

The weight modification function with 2 as the highest power is specified. The estimation of the weights is based on the individual reflection mode. The variance and covariance correction is applied and the least-squares freedom factor is 1 . The weight in location 1903 will be deleted from the binary data file and the old weight will be stored in the weight location 1902. Only the observed reflections are used excluding the reflections for which the value of $?(\mathrm{~F})$ is greater then 99.0 . The output analysis map $(15 \times 12)$ will be scaled by the factor 10 .

```
REGWT nor
normal 0 b 2
archiv -1903
```

A normal weighting scheme is indicated in the REGWT line. The scheme number is specified as 0 , which transfers the weight saved at location 1902 to location 1900 where it will be used for weighted least-squares refinement. The old weights at location 1903, if they exist, will be erased from the bdf.

## References

- Wang, Hong and Robertson, B.E. 1985. Structure and Statistics in Crystallography.Ed. A.J.C. Wilson. Adenine Press: New York.
- Stewart, J.M., Machin, P.A., Dickinson, C.W., Ammon, H.L., Heck, H. and Flack, H.D. 1976. The XRAY76 SYSTEM. Tech. Report. TR446, Computer Science Center, University of Maryland.
- Prince, E. 1982. Mathematical Techniques in Crystallography and Materials Science. Springer-Verlag: New York.
- Johnston, R.L. 1982. Numerical Methods -- A software approach. John Wiley: New York.


### 4.56. RFOURR: Reverse Fourier transform

Authors: Doug Collins, Jim Stewart \& Jim Holden
Contact: Jim Stewart, Department of Chemistry, University of Maryland, College Park, MD 20742, USA
RFOURR transforms a complete unit cell of sampled points in direct space (e.g. an electron density map) to a unique asymmetric set of structure factors in reciprocal space. The resolution of the map in direct space determines the extent of the reflections for which the structure factor components $A, B$ and the phase will be computed. The input map may be prepared by use of FOURR or by any of the electron density programs of the XTAL system.

### 4.56.1. Purpose

RFOURR is a reverse Fourier transform program which produces structure factor magnitudes and phases from an input electron density map. The electron density map may be prepared in a number of ways. The fastest, and least useful, is by means of the XTAL program FOURR. In this case the electron density is simply transformed back into the A and B which produced the original map. On the other hand FOURR will often be the source of the electron density map which will be filtered by some means to improve the quality of the map.

### 4.56.2. Grid Restrictions

RFOURR uses a set of (fast) Winograd Fourier transform subroutines (Silverman, 1977) to carry out the transformation. The subroutines are restricted to certain grid parameters. These are given in Table 1. When the input map is generated these restrictions must be observed.In addition the input map must contain the density of the whole unit cell. For example, if the cell direction is divided into 30 grids then points 0 through to point 29 only must be present in the input map.

Table 1: Grid sizes allowed for in RFOURR

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | 14 | 15 | 16 | 18 | 20 | 21 | 24 | 28 |
| 30 | 35 | 36 | 40 | 42 | 45 | 48 | 56 | 60 |
| 63 | 70 | 72 | 80 | 84 | 90 | 105 | 112 | 120 |
| 126 | 140 | 144 | 168 | 180 | 210 | 240 | 252 | 280 |
| 315 | 336 | 360 | 420 | 504 | 560 | 630 | 720 | 840 |
| 1008 | 1260 | 1680 | 2520 | 5040 |  |  |  |  |

### 4.56.3. Sort Order Of Map And Data

The last restriction is that the summation order of the map must be consistent with the sort order of the reflections on the bdf. The algorithm in RFOURR depends upon the sort order of the reflections and the summation order of the input density map. Table 2 gives the relationship between the two parameters in terms of the instructions used for SORTRF and FOURR.

Table 2: Reflection Order Related to Map Directions

Reflection
order
slow/med/fasta

| hkl | across | down | layer |
| :--- | :--- | :--- | :--- |
| hlk | across | layer | down |
| khl | down | across | layer |
| klh | layer | across | down |
| lhk | down | layer | across |
| lkh | layer | down | across |

If the sort order is not established by the SORTRF program it may be specified on the RFOURR line. In addition to the sort order another related parameter is required. They are a set of signals which indicate whether the miller indices on the bdf are negative. This information is stored on the bdf by SORTRF or may be explicitly stated on the RFOURR line. The sort 3 option must be used in SORTRF. Note that the slow changing index must have no negative indices. That is for triclinic the hemisphere of data is always,,,+++-+++-+--+ when a lhk or 1 kh sort has been specified. For monoclinic only +++ and -++ would be present. For orthorhombic only
+++ would be present on the file.
The most efficient order for a Fourier transform is over the short axis first (across), medium length axis next (down) and finally the long axis (layer). This produces the fewest groups of reflections and results in the most efficient Fourier transformations.

### 4.56.4. Symmetry Considerations And Algorithm

RFOURR depends upon the input map being of the entire unit cell (no more, no less) with all symmetry equivalent points having identical electron density. The XTAL system stores only the unique asymmetric set of reflections in the bdf. The following algorithm in employed. As each line of the input map is loaded it is transformed, $\rho\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \longrightarrow \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, h_{3}\right)$. The second sum coefficients $G$ are stored until one layer, all $\mathrm{x}_{2}$ for a given $x_{1}$, has been treated. The layer is tranformed for all $h_{3}$ values to produce $P\left(x_{1}, h_{2}, h_{3}\right)$ coefficients of the third sum direction. This is the massive array required by the FFT algorithm. The third direction summation is driven by the input bdf, resulting in only the phases of the unique asymmetric set of reflections within the resolution of the input map being calculated. In this summation the $\mathrm{F}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right)$ is produced and stored on the output bdf as $\mathrm{A}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right), \mathrm{B}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right)$ and $\alpha\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right)$.

### 4.56.5. Control Of Input \& Output Items

The RFOURR calculation produces four structure factor coefficients: the calculated magnitude (CAL); the phase ( PHI ) and the complex components ( $\mathrm{A} \& \mathrm{~B}$ ). These coefficients are inserted into the lrrefl: packets of the output bdf. In the simplest case these coefficients CAL, A, B and PHI will the standard structure factor items represented by the ID numbers n800, n801, n802 and n700, respectively. In other cases, the ID numbers will be determined by the type of density map, and the nature of the filtering that it has undergone. For the non-standard case the user may define the ID numbers of the output items with the idnums line.

The ID number of the input coefficient (OBS) may also defined on this line. The default is Frel with dispersion removed (n701), or if this is not present, Frel (n304). Note that the input coefficient is only important if the results are to be printed (see the pr option on the RFOURR line) and the calculated R -factor (see below) is to be meaningful.

## Map Resolution And Precision

An R factor $\sum\left||\mathrm{OBS}|-\left|\mathrm{CAL} \| / \sum\right| \mathrm{OBS}\right|$ is calculated during the transformation. This R factor is useful if the input density has been filtered. For an input map prepared by $F O U R R$ the result is of academic interest since it should be zero (OBS->density->OBS results in no differences in OBS). If, however, there is a reduction in resolution by restricting the fineness of the grid during FOURR then the resulting OBS produced by the back transform will be distorted and a higher R value will result.

When RFOURR is applied the resolution of the input density map will determine the extent of the reflections for which phases are determined. In order that every reflection be phased it is necessary that the input map have a resolution of at least $2 \mathrm{~h}_{\max }, 2 \mathrm{k}_{\max }$ and $2{l_{\text {max }}}$ grid points respectively in the $\mathrm{x}, \mathrm{y}$ and z directions. Anything less will result in the high order reflections being left unphased. Output idems for these reflections are set to voidflg:

To avoid the indeterminacy associated with phasing structure factors where both A and B are very small, the user may define a threshold via the th option on the RFOURR line. The default value is 0.005 . Items for reflections below the threshold, are set to voidflg:.Similarly, if a reflection is outside the limits defined by the maxhkl line, or the values from lrdset: of the input bdf, the output items will be set to voidflg:

### 4.56.6. File Assignments

- Writes output items to the output archive bdf
- Reads density map from the bdf map


### 4.56.7. Examples

RFOURR lhk

This is a standard run. The inclusion of 1 hk is only required if $S O R T R F$ has not been used to sort the reflection data on the bdf. If SORTRF has not been applied the 1 hk indicates the sort order $1 \mathrm{slow} ; \mathrm{k}$ fast is how the data is supplied (the program will fail if the reflection data is not sorted -- you are strongly advised to use SORTRF). The output coefficients are Fcal, Acal, Bcal and $\phi$. No reflection data is printed.

```
RFOURR ds 2 th . }5\mathrm{ print 100
idnums 900 950 951 952 953
```

This is a special run using reflections from dataset 2 . The input comparison coefficient has the idnum 2900; the output coefficients CAL, A, B and PHI are stored as 2950, 2951, 2952 and 2953. The first 100 reflections are printed and only reflections with $A$ and $B>0.5$ will be phased. The sort order of the reflection data is extracted from lrdset: and checked against the map orientation.

### 4.56.8. References

- Silverman, H.K. 1977. Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA). IEEE Trans. Acoust., Speech, Signal Processing, 25, 152-165


### 4.57. RIGBOD: Generate a Rigid Group

Author: Roeli Olthof-Hazekamp, Laboratorium voor Algemene Chemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

RIGBOD converts coordinates of an idealized group of atoms into fractional coordinates properly located in a given unit cell. The idealized fractional coordinates are rotated and translated within the unit cell to coincide with a poorly resolved, unrefined, or even partial structure, derived from the electron density.

### 4.57.1. Calculations Performed

An idealized set of coordinates must be supplied for the rigid group to be placed in logical record lratom: of the bdf. Typically the rigid group will be molecular fragments with no permitted internal rotations, e.g. phenyl rings. There is no check made on the group presented so the user may give any set of coordinates desired.

Coordinates of atoms may be presented for calculation either as fractional coordinates or orthogonal Angstrom coordinates. The latter are useful when the rigid group is calculated by hand from a model. The former may be altered by hand from the coordinates obtained from a Fourier map or from use of another program such as BONDAT. Whichever source is used for the ideal group, it is necessary to specify how some atoms of the ideal group are related to atoms of the "rough" or "natural" structure as far as it is known.

The atoms used in the calculation will fall into two subgroups; real and ideal. The real atoms are atoms of the partially or fully solved structure while the ideal atoms are atoms of the idealized group. The coordinates of the atoms of both subgroups must be in the same region of the unit cell and must be converging toward a connected set. The term "connected set" is defined in the BONDLA program. Provisions have been made for modifying coordinates of atoms in a partially or fully solved structure to assure that this condition is met. The program BONDLA will search a set of atoms for a connected asymmetric set. If the idealized group lies in a special position in the unit cell so that some of the atoms will be related by a symmetry operation, provision has been made to specify that this condition exists for the appropriate atoms.
An approximate fit of the ideal group to the real group is obtained by using the following formulae.

### 4.57.1.1. Orthogonal coordinates (matrix notation):

## $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$

where $\mathbf{A}$ is the matrix to transform fractional coordinates to orthogonal coordinates (lrcell:, packet 4; relative to orthogonal axes $\mathrm{a}^{*}, \mathrm{~b}^{\prime}$, and c$) ; \mathbf{x}^{\prime}$ are the orthogonal coordinates; and $\mathbf{x}$ are the fractional coordinates.

### 4.57.1.2. Matrices for group-based unitary systems EI(ideal) and ER(real):

- The first 3 atoms will be used; they must not be co-linear.
- $\mathbf{u}$ is vector from atom 1 to atom 2
- $\mathbf{v}$ is vector from atom 1 to atom 3
- $\mathbf{w}$ is perpendicular to $\mathbf{u}$ and $\mathbf{v}(\mathbf{u} \times \mathbf{v})$
- $\mathbf{E 1}=\mathbf{u}$ (normalized)
- $\mathbf{E} 2=\mathbf{w} \times \mathbf{u}$ (normalized)
- $\mathbf{E 3}=\mathbf{w}$ (normalized)

Both systems are normalized.

### 4.57.1.3. Rotation matrix (ideal to real system)

## $\mathbf{R}=\mathbf{E R} \mathbf{R}^{\dagger} \mathbf{E I}$

where $\mathbf{R}$ is the rotation matrix and $\mathbf{E R}^{\dagger}$ is the transpose of $\mathbf{E R}$.

### 4.57.1.4. The idealized coordinates

$\mathbf{x}^{\prime}($ idealized $)=\mathbf{R} \mathbf{x}^{\prime}($ ideal $)+\mathbf{x}^{\prime}{ }^{\prime}$ (atom 1)
The idealized coordinates are shifted so that the sum of the $\mathrm{x}, \mathrm{y}$, and z derivatives between idealized and real atoms is zero.

### 4.57.1.5. The idealized fractional coordinates

$\mathbf{x}$ (idealized) $=\mathbf{A}^{-1} \mathbf{x}^{\prime}$ (idealized)
where $\mathbf{A}^{-1}=$ matrix to transform orthogonal coordinates to fractional coordinates (record lrcell:, packet 5)
The atoms of the real subgroup are loaded from the archive bdf. When groups of atoms are in special positions, pseudo-atoms may be added to the real subgroup by means of atomsy input lines. These atoms are used to get the proper orientation of the rigid group.

The atoms of the ideal subgroup must be loaded from input lines. Ideal atoms loaded as atomor lines have orthogonal Angstrom coordinates referred to an arbitrary origin. Ideal atoms may also be supplied as fractional coordinates on atomfr input lines. A cellid line must precede the atomfr lines and contain the unit cell parameters which define the atomfr coordinates. The origin is again arbitrary.

The correspondence between atoms in the two subgroups is established through the labels of atom sites from the bdf, atomsy, atomor, and/or atomfr input lines. Any atoms in the ideal subgroup not identified with ones in the real subgroup are assumed to be undetermined. These atoms will be appended to the real subgroup at the end of the fitting process if atname lines have been supplied to establish atom labels in the real subgroup.

If a structure possesses many copies of the idealized group, it may be replicated as many times as required in various locations in the unit cell by use of atname input lines. These lines allow the renaming of atoms in the idealized subgroup so they will match others in the real subgroup. The number of atoms specified in atname lines must, in each instance, be the same as the number of members in the ideal subgroup.

The rigid line permits the establishment of an isotropic thermal displacement parameter, population parameter, and multiplicity factor for the members of the generated group(s). This program has been adapted from the RIGBOD program of XRAY76 which was written by N.W. Alcock and adapted by Schwaba (1976).

### 4.57.2. File Assignments

- Reads atom data from the input archive bdf
- Outputs atom lines to the line file pch


### 4.57.3. Example

```
RIGBOD p1
RIGID
atomor C1 1.212 0.70 0.0
atomor C2 0.0 1.40 0.0
atomor C3 -1.212 0.70 0.0
atomor C4 -1.212 -0.70 0.0
atomor C5 0.0 -1.40 0.0
atomor C6 1.212 -0.70 0.0
RIGID
atname C11 C12 C13 C14 C15 C16
```

Two phenyl groups are generated, the first one fitting atoms $\mathrm{C1}$ to C 6 , the second one fitting atoms C 11 to C 16 . Real atoms are read from the bdf and lines with fractional coordinates are written to the punch file.

### 4.57.4. References

- Alcock, N.W. and Schwaba. 1976. RIGBOD The X-ray System of Crystallographic Programs. TR-446, 180AUniversity of Maryland, Computer Science Center.


### 4.58. RMAP: Search for translated fragment

Authors: William Furey and Jim Stewart
Contact: Jim Stewart, Department of Chemistry, University Maryland, College Park, MD 20742 USA
RMAP calculates $R$ factors or correlation coefficients as a function of the translated position of a molecular fragment in the unit cell. In addition to the translated fragment there may also be a fixed fragment. Control is provided for selecting reflections by resolution magnitude of Fobs, or numbers. The step size and range the unit cell to be used in the search also may be specified.

### 4.58.1. Introduction

RMAP is used to calculate maps analogous to electron density maps where each point in the map is a function of $1 / \mathrm{R}$, where R is the conventional R factor ( $\sum \Delta \mathrm{F} / \sum \mathrm{Fobs}$ ). The use of $1 / \mathrm{R}$ forces the coordinate of best agreement to be on a maximum. In addition to $1 / \mathrm{R}$ maps it is possible to calculate correlation maps (referred to as $C$ maps), or a linear function of $1 / \mathrm{R}$ and the correlation. The correlation C function is
$\mathrm{C}=\sum\left(\mathrm{F}_{\mathrm{obs}} \mathrm{F}_{\mathrm{cal}}\right) /\left\{\sum\left(\mathrm{F}_{\mathrm{obs}}\right)^{2} \sum\left(\mathrm{~F}_{\mathrm{cal}}\right)^{2}\right\}^{1 / 2}$ at each grid point.
The advantage of C is the fact that it is independent of the Frel scale factor. It is not as "sharp" a function as $1 / R$, however. It also requires more storage for the additional sums. The maps will show a maximum at the optimum translational position of a fragment in the unit cell. A grid, just like the grid in a regular Fourier transform, is set up in a specified region of the unit cell and structure factors are calculated for a selected subset of reflections at each of the grid points. The values of the calculated structure factors are used to calculate R or C or a linear combination of R and C , at each grid point. A linear combination which gives numbers on a convenient scale has been defined as:
$D=\{10(1-W) C+1\}\{(W / R)+1\}$
The values of D are written to a MAP file in the same format as that produced by FOURR. MAP may be used with PEKPIK to search for the maxima. The highest maximum is reported in the RMAP output. The factor W is a factorial weight. If $\mathrm{W}=1$, only R contributes to D , while if $\mathrm{W}=0$, only the correlation coefficient contributes to D. When $\mathrm{W}=1$ is used, $1 / 3$ the amount of storage is required.

It is not usually necessary, or desirable, to include all reflections in the search procedure. Much time can be saved if only the strong reflections, at an appropriate level of resolution, are used in the promotion of D values. It may be necessary to include a small number of weak reflections to control the scale factor. Perhaps a better method for this is to use GENEV with all data to establish a physically realistic Frel scale factor before using RMAP. It is useful to start with low resolution data and a coarse grid. The program is set to use 0.3 Angstrom steps over the whole unit cell with all reflections included in the calculation as default parameters.

Initially when no positional information is available the number of atoms in the fixed fragment will be zero and the calculation will be made only on the translated fragment. After a fragment has been positioned, the first fragment may be declared as fixed and any additional fragment atoms can be designated as translated. This feature allows molecules to "grow" and allows use of the program where there is more than one molecule in the asymmetric portion of the unit cell.

### 4.58.2. Algorithm

In the initial pass over the bdf data the contributions of all the atoms to the structure factor components A and B, as a function of the symmetry operations, are saved as separate quantities. The selected reflections are written to a scratch file. On the second pass the structure factors are calculated as a function of all the grid points. This is accomplished by using the sums of A and B at each symmetry point and the trigonometric identities:

```
cos(x+y)=\operatorname{cos}x\operatorname{cos}y-\operatorname{sin}x\operatorname{sin}y
sin}(x+y)=\operatorname{cos}x\operatorname{sin}y+\operatorname{sin}x\operatorname{cos}
```

From these identities each step $y$ can be applied to each geometrical A and B part of the structure factor ( $\cos x$, $\sin x$ ) and the complete structure factor at the step formed by summing only over the number of symmetry operations and not over the number of atoms in the fragment.

### 4.58.3. Data Required

The input bdf must have $\mathrm{F}_{\text {rel }}$ or $\mathrm{F}_{\text {rel }}^{2}$, and a set of atomic coordinates with an overall or with individual isotropic thermal displacement parameters. The atoms must be loaded (with ADDATM) as one or two subsets. The first subset, which may be null, contains the atoms of a fragment which is to remain fixed during the search. The second subset (which must not be null) consists of the atoms to be translated during the search. Atom sites are listed by enteringreset psta 4

### 4.58.4. File Assignments

- Reads reflections and atom fragments from the input archive bdf
- Writes a pseudo electron density map to the bdf map


### 4.58.5. Example

```
RMAP iso map weight 0.1
bounds 0 . 125 . 0078 0 . 125 . 0078 0 . 125 . 0078
PEKPIK
plimit *3 12 80
```

A compound with cell dimensions $a=20.515, b=21.31, c=17.128$ is searched over $1 / 512$ of the unit cell near the origin, in steps of $1 / 128$ of each cell edge. The resulting RMAP is then searched for maxima. The D function calculated is weighted by 0.1 in terms of $1 / \mathrm{R}$ and by 0.9 in terms of C .

### 4.59. RSCAN: Analyse R-factors

Authors: George Davenport and Syd Hall
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
RSCAN analyzes structure factor residuals and ratios in terms of Miller indices, measured structure factors, measured intensities (if present on the $b d f$ ), and $(\sin \theta / \lambda)^{2} . R S C A N$ calculates multiplicative corrections to scale factors, the thermal displacement parameter shift, and the overall $R$-factor. It is an adaptation of the XRAY program RLIST (Hall, 1972).

### 4.59.1. Program Calculations

Data are accumulated separately for reflections with rcode $=1$ and rcode $=2$, for each of the six quantities $\mathrm{h}, \mathrm{k}, \mathrm{l}$, measured F, $\mathrm{s}^{2}$, and measured I. Parameters on the RSCAN line are used to determine the range and the interval size for each quantity.

### 4.59.1.1. h, k, l

Each interval is a single integer value. The range is from -N to +N , as specified on the maxhkl line.

### 4.59.1.2. F(rel)

The range is divided into two sub-ranges. The first goes from 0 to maxl with intervals of uniform size intl. The second goes from maxl to max 2 with intervals of size int 2 . The defaults for maxl, max2, intl and int 2 are $19.0,500.0,1.0$, and 10.0 , respectively.

### 4.59.1.3. $\sin \theta I \lambda(s)$

The range extends from a value of 0 to the maximum value with intervals of uniform size.

### 4.59.1.4. I(rel)

The range extends from 1 to a maximum. The interval boundaries are determined by the factor on the RSCAN line. The boundaries are 1.0 , factor, factor $^{2}, \ldots$, up to the specified maximum. Note that R-factors for I(rel) will be calculated only if the $\mathrm{I}(\mathrm{rel})$ is present in the bdf. Note also that factor must be greater than 1.0.

### 4.59.1.5. Calculated Quantities

For rcode $=1$ and for rcode $=2$, for each of the six quantities, for each interval, the following quantities are determined. All reflections with rcode>2 are ignored.

- Number of reflections within that interval
- Mean value of $\mathrm{F}($ rel ) for reflections within that interval
- Mean value of F (cal) for reflections within that interval
- Mean value of $\mathrm{F}(\mathrm{cal}) / \mathrm{F}(\mathrm{rel})$ for reflections within that interval
- Mean value of $|\mathrm{F}(\mathrm{rel})-\mathrm{F}(\mathrm{cal})|$ for reflections within that interval


### 4.59.2. File Assignments

Reads reflection data from the input archive bdf

### 4.59.3. References

- Hall, S.R. 1972. RLIST. The X-RAY System of Crystallographic Programs for any Computer TR-192, 223.
- Wilson, A.J.C. 1942. Determination of Absolute from Relative X-ray Intensity Data. Nature 150, 151.


### 4.60. SCATOM: Calculate pseudo-atom form factor. NEW

Authors: Doug du Boulay
Contact: Doug du Boulay, Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori Ku, Yokohama, Japan.

SCATOM takes X-ray scattering structure factors from a single element crystal structure and deconvolutes them into the elemental form factor on a grid of stol values.

### 4.60.1. Overview

SCATOM was written to try and obtain form factors accounting for the valence density of neutral, noninteracting atoms. Those form factors could allow the calculation of general theoretical valence density structure factors and thereby difference valence density maps, which highlight the changes to the calculated valence density arising from chemical interactions. Such maps aught to be comparable to experimentally determined difference (total) density maps.

As yet, it hasn't proven so useful.

### 4.60.2. Purpose

Abinitio density functional calculations of valence electron density using plane wave solutions and pseudopotential approximations are frequently seen in the literature. These valence densities are not experimental observables in elastic X-ray scattering experiments because the X-rays are scattered by the total electron density. It is therefore quite useful, for comparative purposes, if the valence densities can be transformed to difference valence densities for direct comparison with experimental charge density results.

The difference valence density can be calculated iether by subtracting the standard crystallographic promolecular density ${ }^{2}$ from the theoretically calculated total density directly in real space, or alternatively by Fourier transforming the reciprocal space structure factor differences. Being a crystallographic data analysis program Xtal is well suited to the the latter option.

There are two different approaches to calculating the difference density. One is to add the neglected core electron density contribution back to the theoretical valence density and then subtract the promolecular density from the total theoretical density, in the manner of a standard crystallographic difference density analysis. The second approach, which this program could assist towards, is to use the theoretical valence density of a lattice of superposed but noninteracting equivalent neutral pseudo-atoms, i.e. a valence density analogue of the promolecule, and subtract that from the compound whose valence density was actually being calculated, iether in real space or Fourier transfromed from reciprocal space.

In the former approach there is some degree of uncertainty as to exactly what form the core density should take. Generally it will resemble that of an inert gas, depending strongly on the pseudo-potentials actually used. However, the radial density distribution could differ markedly from that approximation, and it is probably not easily characterised.

The alternate approach is to use exactly the same machinary used to calculate the abinitio valence density being studied, to calculate individually, the spherically symmetric neutral pseudo-atom valence densities to be subtracted from those in those actually calculated abinitially. If the valence density of a single isolated atom is reverse Fourier transformed in to structure factors, then this program SCATOM can calculate the $\sin \theta / \lambda$ form factor curve of a single pseudo-atom required to reconstruct the promolecular-valence density of the extended lattice.

### 4.60.3. Implementation

### 4.60.4. Examples

Calculate the pseudo-atom form factor of Si

```
compid si : using a silicon lattice
MAPXCH abi2map noterm abifile si_o_DEN : read ABINIT map
UOV 0.22
: The file si_o_DEN contains the spherically
: symmetric non-interacting neutral atom
: valence density calculated based on a
: Troullier-Martins pseudo-potential
ADDATM upd
UOV 0.0000: force to zero for SCATOM
ADDREF : Generate dummy reflection data
reduce nocon
:limits *9 yes : for whole sphere - assuming MAPXCH wavelength?
hklgen hkl frel sigf
SORTRF aver 1 frel : Remove redundant reflections
RFOURR th 0.000001: Reverse fourier transform valence density
idnums $1 304 801 802 700
MODHKL : Purge unphased reflections
purge -4.+19 $1 1 1801
SCATOM ove : Calculate Si-pseudo-atom form factor.
finish
```


### 4.61. SHAPE: Patterson deconvolution for structure solution

Author: Michael A. Estermann

Contact: Michael A. Estermann, Laboratorium fur Kristallographie, Eidgenossische Technische Hochschule, ETH-Zentrum. CH-8092 Zurich, Switzerland.

SHAPE deconvolutes a Patterson map by utilising Patterson superposition methods in a voxel-wise manner and writes the deconvoluted map to the "map" file.

### 4.61.1. Overview

In general, Patterson methods favour a small number of "outstanding" scatterers which dominate the vector map. Typically this is one or more heavy atoms in the presence of light atoms. In fact, the heavy-atom technique for structure solution is rather robust with incomplete and resolution-limited diffraction data such as from macromolecular single-crystals or polycrystalline samples, where limits in attainable resolution (min dspacing) or the number of intensities suffering from reflection overlap can seriously degrade the quality of the diffraction data.

In fact, the position of one or more heavy atoms can often be solved by hand from the Patterson map. But the identification and analysis of the interatomic vectors by hand becomes increasingly difficult with Patterson maps of lesser quality and structures of higher complexity. Interpreting the cross-word puzzle of interatomic vectors can become cumbersome and may not discriminate sufficiently between atomic positions. In contrast, SHAPE utilises all the possible atomic positions for a given map, and not just the identifiable Patterson peaks. The program SHAPE offers an automatic and objective way to quantify the likelihood of a single atom sitting on a particular position by means of the symmetry minimum function.

### 4.61.2. Improving the interpretability of the patterson map

Limits of attainable resolution (min d-spacing) will affect both the resolution of atomic peaks in the crystal unit cell as well as peaks in the Patterson cell. The width of Patterson peaks will also increase with increasing thermal motion. Consequently, peak position are less reliable or may be lost altogether. The interpretability of the Patterson map can be improved by either sharpening (Patterson, 1935), origin removal (Karle and Hauptmann, 1964) or maximum entropy image reconstruction techniques (David, 1990).

In the XTAL system, it is strongly recommended to use the "epat" option when calculating the Patterson map with the program FOURR. The "epat" option offers a good compromise between (a) sharpening the Patterson and (b) keeping the Fourier series truncation effect under control.

### 4.61.3. Patterson superposition methods

In the early 1950's, systematic Patterson vector-search techniques for structure solution were developed which were based on the superposition of shifted Patterson maps. The symmetry minimum function (SMF) is a natural extension of these methods (Kraut, 1961; Simpson, 1965). The SMF includes the space group symmetry and uses the entire Patterson map rather than just the identifiable peaks. The SMF can actually be justified on rigid Bayesian and statistical grounds (Bricogne, 1992). The program SHAPE is a computer implementation of the ideas of Kraut (1961) and Simpson (1965) in direct space.

For the applications of SHAPE to structure solution from powder diffraction data, see, for instance, Estermann (1995) and Hofman et al. (1995).

### 4.61.4. The symmetry minimum function, automatically evaluating harker vectors

The symmetry minimum function is defined as

```
    p
SMF(r) = min (1/m(i)) P(r - C(i)*r)
    i=1
```

where a trial atomic position $r$ in the crystal cell is ranked by comparing the heights of all unique Harker vectors $\mathrm{H}(\mathrm{r})=\mathrm{r}-\mathrm{C}(\mathrm{i})^{*} \mathrm{r},(\mathrm{i}=1, \ldots, \mathrm{p})$ in the Patterson cell (the origin vector is not included). The symmetry operator of the space group is given by $\mathrm{C}(\mathrm{i})$ where $\mathrm{C}(\mathrm{i}) * \mathrm{r}=\mathrm{R}(\mathrm{i}) * \mathrm{r}+\mathrm{T}(\mathrm{i})$ is the operator applied to a position $r, R(i)$ is the rotational and $T(i)$ the translational part of the symmetry operator. The multiplicity of the Harker vectors is given by $m(i)$. For every grid point in the input map, the co-ordinate $r$ is calculated and the value $\operatorname{SMF}(\mathrm{r})$ derived. The minimum function in the equation for the SMF ensures a continuously low value for any position $r$ unless all Harker vectors $H(r)$ are above background.

The enantiomorph structure and the structure shifted by a permissible origin shift have exactly the same vector set (homometric structures). Consequently, all the vector sets of these strictures are correct solutions of the Patterson map and are present in the SMF. Therefore the maxima in the SMF are single-site solutions, since the different maxima may not relate to the same origin. Therefore the maxima cannot be used directly as input for a structure refinement.

In the next step, a single image will be selected from the Patterson map with the help of the image seeking minimum function.

### 4.61.5. The image seeking minimum function, automatically evaluating cross-vectors

To retrieve a single image of the structure from the Patterson map, it is necessary to search the Patterson map for vectors between atoms which are not related by symmetry, the so-called cross-vectors. A maxima from the SMF map at position $r^{\prime}$ is selected as an origin fixing atom. This fixed pivot position $r^{\prime}$, and its
symmetry related copies $C(i) * r^{\prime}$, are then tested against all other possible atomic positions $r$ in the crystal cell by analysing the height of all cross vectors $\mathrm{r}-\mathrm{C}(\mathrm{i}) * \mathrm{r}^{\prime}(\mathrm{i}=1, \ldots$, number of symops) with the minimum function:

```
IMF (r) = min m
```

It is named the image seeking minimum function (IMF) because it locates a single image out of all the ambiguous origin-shifted images. One of the two enantiomorphic structures may be eliminated by using a second pivotal position.

### 4.61.6. Hints

The size of the input Patterson map defines the size of the output map. Even, if only a partial map is used, e.g. an asymmetric unit (ASU), the backmapping of vectors outside the ASU is correctly done. However, the ASU of the Patterson map is not necessarily the same as the one of the image seeking minimum function. It is therefore strongly recommended to use the "full" option in the program FOURR in order to work with a complete unit cell.
If the symmetry of the output map does not agree with the symmetry of the space group then it is probably due to an unsuitable grid division. Preferably use multiples of $2,3,4,6$ as grid divisions in the program FOURR.

### 4.61.7. File Assignments

- Reads a Patterson map from file map
- Writes the map calculated with symmetry minimum function to the file smf
- Writes the map calculated with the image seeking minimum function to the file imf


### 4.61.8. Example

Deconvolution with the symmetry minimum function, Harker vectors

```
: calculate an |E*F| Patterson map, full cell, add I(000) term
FOURR epat full
grid 48 48 152
layout layer down across
fzero 5332.
end
: deconvolute voxel-wise with the symmetry minimum function
: inspecting Harker sections only
: single-sites
SHAPE
smf
end
: copy the deconvoluted map "smf" onto standard input "map" for PEKPIK
COPYBDF smf map
: search for maxima in the SMF map
: for a large number of maxima, adjust the parameters in PEKPIK
PEKPIK punch
plimit *2 0.1 20 0.4
end
```

Deconvolution with the image seeking minimum function, cross vectors

```
: calculate an |E*F| Patterson map, full cell, add I(000) term
FOURR epat full
grid 48 48 152
layout layer down across
fzero 5332.
end
: select a strong peak from the previous SHAPE run (smf option)
: inspecting all possible cross-vectors for a given atom position
: selects a single image from the Patterson map
SHAPE
imf . 7500 . 0104 . 7434 : pivot selected from PEKPIK output
end
: copy the deconvoluted map "imf" onto standard input "map" for PEKPIK
COPYBDF imf map
: search for maxima in the IMF map
: PEKPIK maxima can be used as input for
PEKPIK punch
plimit *2 0.1 20 0.4
end
```


### 4.61.9. References

- Bricogne, G. (1992). Molecular Replacement. Proceedings of the CCP4 Study Weekend, compiled by E. J. Dodson, S. Gover, and W. Wolf, pp. 62-75. Daresbury Laboratory Publications.
- David, W. I. F. (1990). Nature (London), 346, 731-734.
- Estermann, M. A. (1995). Nucl. Instr. and Meth. in Phys. Res. A 354, 126-133.
- Hofmann, M., Schweda, E., Strähle, J., Laval, J.P., Frit, B. and Estermann, M. A.(1995). J. Solid State Chem. 114, 73-78.
- J. Kraut. (1961) Acta Crystallogr. 14, 1146-1152.
- Karle, J. and Hauptmann, H. (1964). Acta Cryst. 17, 392-396.
- Patterson, A. L. (1934). Phys. Rev. 46, 372-376.
- Patterson, A. L. (1935). Z. Kristallogr. 90, 517-542.
- Simpson, P. G., Dobrott, R. D. \& Lipscomb, W. (1965) Acta Crystallogr. 18, 169-179.
- Wrinch, D. M. (1939). Philos. Mag. 27, 98-122.


### 4.62. SHELIN: Enter SHELX file

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia SHELIN reads a standard Shelx (Sheldrick, 1986) input file and extracts those commands and data required to perform the standard data initialization calculations STARTX, ADDREF and ADDATM. Any other XTAL calculations using the archive bdf generated by these routines may directly follow the SHELIN input. As well as the archive bdf, SHELIN generates a line file for subsequent applications.

### 4.62.1. Recent Modifications

SHELIN originally worked by including the shelx.ins instruction file inline within the Xtal .dat input stream. To aid and facilitate data exchange, this behaviour is now activated only by use of the old command line option. The new default behaviour is to read external .ins and .hkl files, although thereafter the behaviour is largely as documented below. Any SHELX dummy $Q$ atom sites are now written as peaks to a compid.pek file. These can then be viewed within the Xtal molecular graphics program PIG.

### 4.62.2. Shelx Commands And Data

All Shelx commands and data may be input into SHELIN but only the following commands are used to generate XTAL input data. Shelx commands and data not listed below will be ignored.

```
TITL (optional; the TITL header may be omitted)
CELL
LATT (optional if lattice is primitive noncentrosymmetric)
SYMM (any number; SYMM X,Y,z is not entered)
SFAC (any number; but no Cromer-Mann coefficients allowed)
UNIT (any number)
```

The lines cell to unit must be entered first, and in this order. They are used to initialize the STARTX calculation.

```
HKLF -3 code
h k l F \sigmaF (reflection data in either format)
```

The HKLF line is used to initialize the $A D D R E F$ calculation. If code is blank the format of the reflection data is assumed to be' $3 \mathrm{I} 4,2 \mathrm{~F} 8.2^{\prime}$ '. If code is nonblank the format is assumed to be '3I3,F7.2,F6.2'. The reflection data input sequence is terminated by a reflection with $\mathrm{h}=\mathrm{k}=\mathrm{l}=0$ or $\mathrm{h}=\mathrm{k}=\mathrm{l}=99$.

FVAR K atom-name sfacN x y z .... (std. atom line(s))

The fVAR line is used to initialize the ADDATM calculation. The parameter K is the Frel scale factor. Both formats of the standard atom lines may be entered in any order (either with an isotropic U (one line) or with anisotropic U's(two lines)). If anisotropic U's are entered, it is assumed that U11 and U22 are on the first line followed by an ' $=$ '. An end line must follow the last atom line, and this end must be the last line in the Shelx sequence.

END

The use of the END line in a Shelx sequence has a special meaning for SHELIN. It is assumed to close the SHELIN sequence. Be careful to remove any superfluous END lines from the SHELIN file.

### 4.62.3. Function

SHELIN is a relatively special program within the XTAL System in that it both creates the input data for STARTX (and optionally ADDREF and/or ADDATM), and then directly initiates the execution of these routines.

The first stage of SHELIN is to read the SHELX commands and data from the standard line file and converts these into the equivalent XTAL control and data lines. These are output to the formatted file shx.Only the selected SHELX commands and data lines described above are interpreted.

The second stage of SHELIN is to redirect the line input stream from the file shx. This means that after the end line terminating the SHELIN lines, the nucleus starts to input the generated XTAL lines from shx and these are used to control the XTAL calculations STARTX, ADDREF and ADDATM.

The second last line in the shx file is the command 'reset inp [ioinp:](ioinp:)'. This command causes the line input stream to be returned to normal line input, so that additional XTAL commands may be executed. It should also be noted that the lines in shx may also be used in subsequent XTAL applications without having to use the SHELIN sequence.

### 4.62.4. File Assignments

- A SHELIN run sequence writes and reads archive bdf's
- Reads a SHELX ins input file
- Optionally reads a SHELX hkl reflection file
- Writes XTAL input lines to the line file shx
- Optionally writes dummy sites to the Xtal binary pek file


### 4.62.5. Example

```
SHELIN
TITL IK 9/4 PHOTOREAKTIVES BUTENOLID RG PBCN 8/88
CELL 1.54179 15.180 7.413 22.607 90 90 90
SYMM .5-X,.5 -Y, .5+Z
SYMM -X, Y, .5-Z
SYMM .5+X, .5-Y, -Z
SFAC C H O
UNIT 128 128 16
BOND 1
FMAP 2 L.S. 4
HKLF -3
2 0 0 24.99 -7.66 1
4 0 0 20.51 -6.52 1
6 0 0 23.06 3.47 1
8 0 0 19.46 2.48 1
10 0 0 15.21 1.70 1
6 8 0 -1.95 -0.50 1
8 8 0 2.28 0.45 1
99 99 99 0.00 0.00 0
FVAR 0.81554
01 3 0.13876 0.08798 0.50278 11.00000 0.04336 0.06483 =
0.04712-0.00264 0.00342 -0.00309
02 3 0.13828 0.14520 0.60009 11.00000 0.05341 0.09107 =
0.05675 -0.01351 0.01645 -0.00162
C1 1 0.18085 0.12821 0.55575 11.00000 0.05144 0.04701 =
0.05208 -0.00446 0.00460 -0.00039
H16A 2 0.44180 0.18390 0.52360 11.00000 0.05000
```

```
H16B 2 0.45100 0.33370 0.57250 11.00000 0.05000
END PIG
```

The output line file shx for the above example follows:

```
STARTX CELL 15.18000 7.41300 22.60700 90.00000 90.00000 90.0000
LATICE C P
SYMTRY X,Y,Z
SYMTRY 1/2-X,1/2-Y,1/2+Z
SYMTRY -X,Y,1/2-Z
SYMTRY 1/2+X,1/2-Y,-Z
CELCON C 128
CELCON H 128
CELCON O 16
DATDEF PARENT
EXPER 1 1.54179
ADDREF
HKLIN HKL FREL SIGF RCOD
HKL 2 0 0 24.990 7.660 2
HKL 4 0 0 20.510 6.520 2
HKL 6 0 0 23.060 3.470 1
HKL 8 0 0 19.460 2.480 1
HKL 10 0 0 15.210 1.700 1
.....
HKL 6 8 0 1.950 .500 2
HKL 8 8 0 2.280 . 450 1
ADDATM SCALE 1 . 81554
ATOM O1 . 13876 .08798 .50278 3.42357 1.00000
UIJ O1 .04336 .06483 .04712 -.00309 .00342 -.00264
ATOM O2 . 13828 .14520 . 60009 4.21708 1.00000
UIJ O2 .05341 .09107 .05675 -.00162 .01645 -.01351
ATOM C1 . 18085 . 12821 .55575 4.06154 1.00000
UIJ C1 .05144 .04701 .05208 -.00039 .00460 -.00446
....
ATOM H16A .44180 . 18390 .52360 3.94784 1.00000
ATOM H16B . 45100 . 33370 .57250 3.94784 1.00000
RESET INP 5
FINISH
```


### 4.63. SIMPEL: Symbolic-addition phasing

Authors: Henk Schenk and Syd Hall
Contact:Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
SIMPEL applies the symbolic addition procedure to triplet and/or quartet structure invariant relationships to determine structure factor phases from normalized structure factors. The program is space group independent, and the origin and enantiomorph is specified automatically, or may be selected by the user. SIMPEL contains a wide range of phase selection and extension options. Different procedures for accepting, propagating, and evaluating symbol phases are provided and a variety of figure-of-merit tests are available to identify the correct symbol phases. Up to 16 phase sets may be output for subsequent E-map calculations.

### 4.63.1. The Algorithm

Symbols have been used with structure invariant relationships to determine structure factor phases from the beginning of direct methods. Symbolic addition procedures (SAP) compete with and complement the other main direct-methods approach, the multi-solution procedure. SAP defines and extends phases as symbols which are evaluated at the conclusion of the process. No permutation of phase sets is involved, as in the multisolution procedure, so that the process is fast.

There is considerable background literature on the symbolic addition procedure. In particular we refer to Karle \& Karle (1966), Karle (1974) and Schenk (1980). References specific to the SIMPEL approach to symbolic addition can be found in Overbeek \& Schenk (1978), Schenk (1983) and Schenk \& Kiers (1984).

### 4.63.2. Step 1. Convergence Procedure: selecting the starting set

The first step in the symbolic addition procedure is the specification of the origin/enantiomorph defining phases, and the selection of symbolic phases. These phases, referred to as the starting set, must be those which will most reliably propagate to all other large E-values via the triplet and quartet structure invariants. This is the pivotal step in the phasing process and considerable care is taken to ensure that the best possible starting set is selected. The starting phases are selected from the largest $|E|$-values ( $25 \%$ of total, or user option on the SIMPEL line) using a convergence type procedure as described by Germain and Woolfson (1970). Convergence rejection is based on either:
(1) $\alpha^{2}$ for centrosymmetric and noncentrosymmetric
or (2) $\alpha \tanh (\alpha / 2)$ for centrosymmetric or $\alpha \mathbf{I}_{1}(\alpha) /{ }_{0}(\alpha)$ for noncentrosymmetric
See the GENSIN writeup for the full $\alpha$ definition. The result of this procedure is a set of reflections which form an optimal choice for a starting set. Within this set origin (and enantiomorph, if required) defining reflections are assigned phases first, and then several symbols are assigned amongst the remaining reflections of the set (maximum is 8). The assigned phases are applied to |E|-values above the convergence limit using triplet and/or quartet invariants (user option on start line). Generated phases which have consistent values (no conflicts) are accepted and set at a weight of 1.0 for the rest of the phasing procedure.

### 4.63.3. Step 2. Divergence Procedure: test phase propagation

A divergence or accessibility procedure is used to test if the starting set of phases selected in Step 1 will propagate satisfactorily within the divergence set of generators (default is $50 \%$ of total). The procedure checks if the phases of all $|\mathrm{E}|$-values can be accessed via sufficiently reliable invariant phase relationships. No test for (symbolic) phase consistency is made in this procedure. New phases are accepted as accessible if the sum of the $\alpha \mathrm{s}$ of each invariant exceeds a threshold value (ALTHR starts as 10th largest $\alpha$ of input invariants, or user option on the start line). The threshold value $\operatorname{ALT}(\mathrm{m})$ is varied according to the number of invariants, m , used to derive a phase. For example, if for one invariant $\operatorname{ALT}(1)=\operatorname{ALTHR}$, for two invariants $\operatorname{ALT}(2)=$ $1.3 * \operatorname{ALT}(1)$, for three invariants $\operatorname{ALT}(3)=1.3 * \operatorname{ALT}(2)$ and so on. For each next cycle the threshold value is reduced by a factor of 0.9 . This ensures that the most probable phases are accessed first.

If more than 10 of the $|\mathrm{E}|$-values in the divergence set remain unphased, additional symbol phases are assigned to unaccessed reflections. This enables any unconnected groups of related reflections to enter easily into the phasing process.

### 4.63.4. Step 3. Symbolic Addition Process

Once the starting set of phases has been fixed by the convergence and divergence processes, they are used to phase all remaining $|\mathrm{E}|$-values. The starting set is composed of numeric phases assigned to specify the cell origin (and enantiomorph), and symbol phases to ensure complete phase extension. The starting set also contains reliable numeric and symbolic phases which were derived in the earlier processes. All these phases,
assigned and derived, are now considered to be active phase propagators and have been assigned a weight of 1.0 .

The symbolic addition process uses these phases and the structure invariant relationships to derive the phases of the other $|E|$-values. Before accepting a newly derived phase into the list of known phases (and thus successively using this reflection to derive additional phases) it must be carefully checked for reliability. If an incorrect phase is accepted, it can lead to a failure of the whole phasing process.

Two different mechanisms are used in SIMPEL to test if a new phase is suitable as an active phase propagator. These are the "probability threshold" test and the "multisymbol acceptance" test. In each case there are two separate procedures for performing these tests - each has different properties that may suit the solution of particular structural types.

### 4.63.4.1. I. Probability Threshold Test

A new phase is derived by substituting known phases into one, or more, structure invariant relationships. Each of these relationships has an a value which is a measure of the probability that the phase relationships have a value of zero (base module $2 \pi$ ). If $\alpha$ is high, there is a high probability this is true; if it is not, the relationship must be used with caution, or in conjunction with other relationships. The sum of these $\alpha$ 's is therefore an important test in gauging the probable reliability of a new phase. In SIMPEL the sum of $\alpha$ 's may be applied in two different ways. They are:

- (i) Weighted Alpha method (wa): Each phase in the active phase list is assigned a weight according to its expected reliability. These weights range from WMIN to 1.0 and are calculated for centrosymmetric phases as
$\mathrm{W}=\tanh \alpha_{\mathrm{c}} /$ ALTHR
and for non-centrosymmetric phases as
$\mathrm{W}=\min \left(1 ., \alpha_{\mathrm{c}} /\right.$ ALTHR $)$ where
alpha; ${ }_{c}=\left[\left\{\sum \mathrm{W}_{\mathrm{k}} \alpha_{\mathrm{k}} \sin \phi_{\mathrm{k}}\right\}^{2}+\left\{\sum \mathrm{W}_{\mathrm{k}} \alpha_{\mathrm{k}} \cos \phi_{\mathrm{k}}\right\}^{2}\right]^{1 / 2}$ (summed over m).
ALTHR is the threshold $\alpha$ value specified by the user, or set automatically as the 10th largest $\alpha$ of input invariants. This is the same ALT used in divergence process. $\mathrm{W}_{\mathrm{k}}$ is the combined weight of the component phases in the invariant derived from
$\mathrm{W}_{\mathrm{k}}=\prod \mathrm{W}_{\mathrm{j}} / \sum \mathrm{W}_{\mathrm{j}} \mathrm{j}=1$ to 2 (triplets), or 3 (quartets).
A phase is accepted if its calculated weight $\mathrm{W}_{\mathrm{k}}$ is above the minimum weight WMIN. WMIN is an input option or is set automatically to 0.3 . In this method phase acceptance is a relatively smooth and continuous process. Each new phase given an associated reliability index; an index which is used to determine the reliability of subsequent phases (i.e. the history of prior determinations has a bearing on future phase estimates). The calculation of $\mathrm{W}_{\mathrm{k}}$ is slower than the alternative but this tends to be offset by the more rapid propagation of phases.
- (ii) Alpha Ninv method (an): Another test for phase acceptance is available in SIMPEL based on the same procedure described above in Step 2. The weights of all active phases are assumed to be 1.0. The calculated $\alpha$ of a new phase (see $\alpha_{c}$ definition above) is tested against $\operatorname{ALT}(\mathrm{m})$, where m is the number of invariants used to calculate $\mathrm{a}_{\mathrm{c}}$ and the new phase. The values of $\operatorname{ALT}(\mathrm{m})$ are preset as described in Step 2 above. This procedure is relatively simple and fast and is based on a relatively demanding criterion for acceptance. It is discontinuous (i.e. it accepts or rejects - nothing in between) and therefore requires more phasing cycles than (i). It also does not use the relative reliability of the active phases. This may be particularly important for non-restricted phases.


### 4.63.4.2. II. Multisymbol Acceptance Test

In the symbolic addition process a second phase acceptance test is applied when more than one structure invariant is used to derive a new phase (i.e. $\mathrm{m}>1$ ). This test has two separate modes of operation.

- (i) Accept multiple symbol indications (mult): If two or more symbol combinations are generated for new phase (e.g. say, -A and +AD ), the phase is still accepted provided the strongest indication (i.e. largest $\alpha_{\mathrm{c}}$ ) satisfies acceptance test I. This mode assumes that certain symbol combinations are equivalent (i.e. will reduce to the same numeric phase) and promotes a new phase to the active propagation role provided it satisfies the probability acceptance criteria. This is the default mode.
- (ii) Reject multiple symbol indications (sing): In this mode a new phase is rejected if more than one symbol combination is derived. This is a more demanding requirement than in (i) and means that fewer phases are promoted to the active list to assume the role of phase propagators. In this mode the symbolic addition process requires more cycles and the statistics available to the subsequent figure-of-merit tests are fewer in number.

It should be noted that in previous versions of SIMPEL the only available options are I(ii) and II(ii). These are the most conservative options in accepting new phases, and have been used successfully in the past. The strong point of the alternative acceptance criteria $\mathrm{I}(\mathrm{i})$ and $\mathrm{II}(\mathrm{i})$ is discussed above and in view of this these are currently set as the default modes. Users are advised that if the defaults fail to provide a solution the more conservative combination of I(ii) and II(ii) should be applied.

### 4.63.5. Step 4. Correlation of Symbol Phases

In Step 3. the starting phase set is expanded into a larger list of known phases containing numeric and symbolic values. In this step a final symbolic addition cycle is applied so that all phase estimates can be tabulated as symbol correlation statistics (Schenk, 1971). Only phase estimates that involve more than one symbol combination will contribute to these statistics. For example if a given phase is estimated form ten different invariants to be:

| phase | $m$ | $\sum \alpha$ |
| :--- | :--- | :--- |
| - | 5 | 20 |
| + A | 3 | 15 |
| $-A D$ | 2 | 10 |

where $m$ is the number of invariants, this would lead to the correlation statistics

| phase $=0(+)$ | frequency | Product of $\sum \alpha$ |
| :--- | :--- | :--- |
| -A | 1 | 300 |
| +AD | 1 | 200 |
| -D | 1 | 150 |

This process assumes that different symbol indications for the same reflection are in fact equal and may therefore be correlated. The statistics above are consistent with symbols A and B having the value of $180^{\circ}$.

The symbol correlation table is then used to test the plausibility of numeric values for each symbol. Symbols assigned to restricted phases are assigned their two possible values (e.g. p/2 and $3 \mathrm{p} / 2$ ) and symbols assigned to unrestricted phases are tested for the numeric values in the range 0 to 2 p in intervals of $\mathrm{p} / 4$. The correlation statistics are used to calculate a correlation factor QFAC (Schenk, 1971) that has a maximum value of 100 if the numeric phases agree exactly (and -100 if they disagree exactly!). In space groups with translational symmetry (non-symmorphic) cofactors greater than 50 are good, and $>70$ are excellent. However, in the other
space groups the QFAC is less indicative.
The last part of this step orders the phase sets in descending magnitude of cofactor. Only the top phase sets (16, or specified by user) will enter into the more exhaustive figure-of-merit tests in the next step.

### 4.63.6. Step 5. Figure-of-Merit Tests: Identifying the correct phase set

The previous step selected, and ordered, the numeric phase combinations that have the best chance of being correct. In this step each of these combinations is applied in a separate symbolic addition cycle to provide the agreement statistics needed to calculate various figures-of-merit. A figure-of-merit is intended to discriminate between a 'good' phase set and a 'bad' phase set (i.e. one that may provide a correct solution from one that will not). Not all FOM's of the original SIMPEL versions are implemented at this time, but will be considered for future development. On the other hand, several FOM's have been added that are not present in the other SIMPEL versions.

### 4.63.6.1. Correlation factor Figure-of-Merit (QFOM)

This figure-of-merit is a reformulation of QFAC calculated in Step 4. It is
$\mathrm{QFOM}=1.5-\mathrm{QFAC} / 100$.
In accordance with all other FOM values, the best QFOM is the lowest. It has an active range from 0.5 to 2.5 , and any value below 1.1 is considered good, and above 1.5 is considered unlikely. QFOM is, of course, correlated to the symbol extension process and cannot be considered an independent phase set discriminator in the same sense as the FOM tests PSIO and NEGQ. Caution must therefore be exercised in interpreting small differences in QFOM values.

### 4.63.6.2. Relative Figure-of-Merit (RFOM)

This parameter is the inverse of the CFOM parameter of the MULTAN program (Main et al., 1980) and has the form
RFOM $=\left(\sum\langle\alpha\rangle-\sum \alpha_{\mathrm{r}}\right) /\left(\sum \alpha_{\mathrm{c}}-\sum \alpha_{\mathrm{r}}\right)$ (summed over all h)
where $\langle\alpha\rangle$ is the expected $\alpha$ of a phase, and $\alpha_{\mathrm{r}}$ is the $\alpha$ if all phases were randomly distributed. For a correct phase set the value of $\alpha_{c}$ should approach that of $\langle\alpha\rangle$ and RFOM should tend to 1.0 . Incorrect phase sets will deviate significantly from 1.0 , random phases towards 2.0 , and overcorrelated phases towards 0.0 . In general, however, phase sets with small RFOM's are more likely to be correct than those with large RFOM's. The range of RFOM's will vary according to the validity of the estimate of $\langle\alpha\rangle$. For this reason RFOM tends to be less reliable for strongly non-random structures.

### 4.63.6.3. R-factor Figure-of-Merit (RFAC)

The RFAC parameter is similar to the residual FOM calculated in MULTAN (Main et al., 1980) except for a scale that takes into account the relative dominance of heavy atoms in the structure.
RFAC $=\sum\left\{\left|\alpha_{c}-\langle\alpha\rangle\right|\right\} / \sum\langle\alpha\rangle$ (summed over all h)
RFAC is a minimum when there is close correspondence between $\alpha_{c}$ and $\langle\alpha\rangle$. In this respect it is very similar to the R-factor of Karle and Karle (1966). RFAC is, like RFOM, dependent on the reliability of $\langle\alpha\rangle$.

### 4.63.6.4. PSI0 Figure-of-Merit (PSI0)

PSI0 triplet invariants (Cochran and Douglas,1955) provide a figure-of-merit which is largely independent of the triplet and quartet invariants used in the tangent refinement. A PSI0 triplet relates two strong reflections (with $|\mathrm{E}|>\mathrm{EMIN}$ ) to a third which has an $|\mathrm{E}|-$ value as close as possible to zero (see the GENSIN writeup). The phases estimated from a series of PSIO triplets are expected to be random when the contributing phases from the other two large- $|\mathrm{E}|$ reflections are correct. When this is the case the resulting values of $\alpha_{\mathrm{c}}$ are significantly lower than if the distribution of contributing phases was biased or incorrect. These invariants are used to form the figure-of-merit
PSIO $=\sum \alpha_{\mathrm{c}} / \sum\langle\alpha\rangle$ (summed over psi0 triplets ).
PSI0 should be smallest for the correct phase set. PSI0 is, along with NEGQ, one of the most independent methods of measuring the relative likelihood of success.

### 4.63.6.5. Negative Quartet Figure-of-Merit (NEGQ)

Quartet structure invariant relationships are classified according to the magnitude of their crossvector $|\mathrm{E}|$ values. When the crossvector $|E|$ 's are small there is a high probability that the phase invariant has a value close to p rather than 0 (Hauptman, 1974; Schenk, 1974). These invariants are referred to as negative quartets. In SIMPEL negative quartets are not used in the phasing process but are retained as a test of the phase sets. The negative quartets are considered independent because, unlike the positive quartets, they cannot be represented by a series of triplet invariants. They provide, therefore, a separate estimate of the phases. A direct comparison of these phases provides the basis for the figure-of-merit (Schenk, 1974).

NEGQ $=\sum\left[\alpha_{c}\left|\phi_{k}-\Phi_{k}\right|\right] / \sum \alpha_{c}$ (summed over all k neg. quartets)
where $\phi_{k}$ is the phase estimated from triplets and positive quartets, and $\Phi_{\mathrm{k}}$ is the phase estimated from negative quartets alone. Correct phase sets should have low values of NEGQ ranging from 0 for centrosymmetric structures, to $20-60^{\circ}$ for non-centrosymmetric structures. Note that if fragment QPSI values are used the value of $\psi$ is automatically set to 0 and the NEGQ test will remain valid. This FOM is a very powerful discriminator of phase sets provided that sufficient negative quartets are available.

### 4.63.6.6. Combined Figure-of-Merit (CFOM)

The combined FOM is a scaled sum of the FOM parameters QFOM, RFOM, RFAC, PSI0 and NEGQ.
CFOM $=\sum\left[\right.$ WFOM $_{\mathrm{i}}\left(\right.$ FOMMAX $_{\mathrm{i}}-$ FOM $\left._{\mathrm{i}}\right) /\left(\right.$ FOMMAX $_{\mathrm{i}}$-FOMMIN $\left.\left._{\mathrm{i}}\right)\right](\mathrm{i}=1$ to 5$)$
The weights WFOM may be specified on the SETFOM control line. These values are subsequently scaled so that the maximum value of CFOM is 1.0 . It is important to emphasise that CFOM is a relative parameter and serves only to highlight which is the best combination of FOM's for a given run. It does not indicate if a given FOM will provide a solution.

### 4.63.6.7. Absolute Measure-of-Success Parameter (AMOS)

The AMOS parameter is a structure-independent gauge of the correctness of a phase set. It uses pre-defined estimates of the optimal values for the FOM parameters QFOM, RFOM, RFAC, PSI0 and NEGQ. OPTFOM values may be user defined (see setfom line). Rejection values for the four FOM parameters are derived from the OPTFOM values as REJFOM $=3 *$ OPTFOM. The default values are as follows:

|  | QFOM | RFOM | RFAC | PSIO | NEGQ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| OPTFOM | 0.75 | 1.0 | 0.25 | .75 | $60^{\circ}$ |
| REJFOM | 2.25 | 3.0 | 0.75 | 2.25 | $180^{\circ}$ |

The absolute measure-of-success parameter is calculated from all active FOMs as
AMOS $=\sum\left[\right.$ WFOM $_{\mathrm{i}}\left(\right.$ REJF $_{\mathrm{i}}-$ FOM $_{\mathrm{i}} /$ OPTFOM $\left._{\mathrm{i}}\right](\mathrm{i}=1$ to 5$)$
where the WFOM values are scaled so that AMOS ranges from 0 to 100 . In addition to being used to sort phase sets in order of correctness, the AMOS values provide a realistic gauge of the correctness of phase sets. As a rule of thumb, they can be interpreted in the following way:

## AMOS

100-81 high probability of being correct set
80-61 good chance of being correct set
60-41 possibility of being correct set
40-21 low probability of being correct set
20-0 very unlikely to be correct set

These classifications are only approximations. The predictability of optimal FOM values can be perturbed by a variety of structure dependent factors and by the FOM weighting.

### 4.63.6.8. Rejection of Phase Sets

Phase sets must satisfy certain criteria before being considered for possible output to the binary file for subsequent E-map calculations.

FOM Rejection Criteria
Reject if QFAC > REJFOM(1)
Reject if RFOM > REJFOM(2)
Reject if RFAC > REJFOM(3)
Reject if PSI0 $>$ REJFOM(4)
Reject if NegQ > REJFOM(5)
Reject if $|\mathrm{av} . \phi-<\mathrm{av} . \phi>|>45^{\circ}$

Message

REJECT1
REJECT2
REJECT3
REJECT4
REJECT5
REJECT10

The value of $\langle\mathrm{av} . \phi\rangle$ is $90^{\circ}$ for centrosymmetric structures and $150-180^{\circ}$ for non-centrosymmetric structures. This test avoids the "all-plus catastrophe" phase set.

### 4.63.7. File Assignments

- Reads $|E|$ values from the input archive bdf
- Writes the estimated phases to the output archive bdf
- Reads structure invariant relationships from bdf inv


### 4.63.8. Examples

SIMPEL

This is the standard run in which all defaults will be applied to the converge, diverge, symbolic addition and FOM testing processes. All $|\mathrm{E}|$-values used in the GENSIN program, and all invariants entered on inv, will be applied in the phasing process. Phase extension will be based on weighted $\alpha$ s.

```
SIMPEL 60 200 *6 8
invar all 1. 0.7
start trip
symbad an single
print bdfout
```

    :set con/divergence limits
    :use all invariants with new a/b limits
    :use only triplets in converge process
    :accept single symbols based on altm
    :print phase sets output to bdf

```
SIMPEL
```

symbad wa single :use weighted alphas ; reject multisymbols
phase 57110 nul :suppress from process
phase 127 :assign as symbolic phase

### 4.63.9. References

- Cochran, W. and Douglas, A.S. 1955. Proc. Roy. Soc. A277, 486-500.
- Germain G., Main, P. and Woolfson, M.M. 1970. Acta Cryst. B26, 274-285.
- Hauptman, H.A. 1974. Acta Cryst. A30, 472-476.
- Karle, J. and Karle, I.L. 1966. Acta Cryst. 21, 849.
- Karle, J. 1974. International Tables, Vol. IV, section 6, 337.
- Main, P. 1980. Multan-80 York England: University of York. Overbeek, A.R. \& Schenk, H. 1978. Computing in Crystallography, University Press, Delft, p108-112.
- Schenk, H. 1971. Acta Cryst. B27, 2037-2039.
- Schenk, H. 1974. Acta Cryst. A30, 477-481.
- Schenk, H. 1980. Computing in Crystallography, eds. R. Diamond, S. Rameseshan and K. Venkatesan, Indian Academy of Sciences, Bangalore, p701-722.


### 4.64. SLANT: Slanted map

Authors: Nick Spadaccini \& Richard Alden
Contact: Nick Spadaccini, Computer Science Department, University of Western Australia, Nedlands 6907, Australia

SLANT produces, using interpolative methods, a Fourier map in any general plane from the Fourier map values generated by another program (usually FOURR). Three non-collinear grid points define a set of coordinate axes $a(c a l c), b(c a l c)$ and $c(c a l c)$ relative to which the required map point values are interpolated in three dimensions.

### 4.64.1. Input And Output Requirements

The Fourier map entered from the map bdf must contain enough points so that every point in the output plane is represented. The simplest way to ensure this is to input at least the map of the asymmetric unit of the cell. Any map type may be used (e.g. Patterson, E map, difference map). The computed map may be printed or output to the bdf sla, with the same structure as map, for use with programs such as CONTRS. The optional output is printed in base-10 integer format (normal) with the map density scale, upper and lower print suppression limits and map format under user control. The output options are invoked on the SLANT line.

Note that all input map points are stored in the QX array. Depending on the size of the unit cell, and on the resolution desired, this program requires a very large memory allocation.

### 4.64.2. General Plane Specifications

There are two coordinate systems involved in the program. The first is the crystallographic coordinate system defined by the crystal symmetry. The other may be thought of as the calculated coordinate system and is determined relative to the general slant plane. The calculated coordinate system is orthogonal with two vectors in the general plane and the third normal to the plane. All information concerning the definition of the general plane is in terms of crystallographic coordinates and the layout of the computed map is specified in terms of calculated grid coordinates. Since the calculated coordinate vectors have no absolute length, the grid interval can be explicitly specified in angstroms per division. If not specified the program takes the average of the input map resolution as the output grid interval.

### 4.64.3. The Slant Plane Coordinate System

Three non-collinear points which define the required plane are specified on the defpln line in either grid or fractional crystallographic coordinates. The two in plane vectors defined by these three points are used to generate an orthogonal coordinate system which characteristically defines its origin to be the first supplied point, the vector between the first and second points is defined to be a(calc), the normal to the plane is b(calc) and the vector product of these is c(calc). The grid interval widths in angstroms for each direction in the calculated coordinate system may be defined on the mapres line.

### 4.64.4. Map Orientation

The layout line specifies the desired orientation of the maps relative to the calculated coordinate system. The three vectors $a(c a l c), b(c a l c)$ and $c$ (calc) must be specified as either the page to page, down page or across page directions. The layout line allows entry of the number of grid points, the origin, and the stepping interval for each of the three directions in the map. With the absence of a layout line the program will produce an output of the plane containing the three points supplied on the defpln line. The number of grid points in the a(calc) and $c$ (calc) directions is determined so that all three points just fit within the map.

### 4.64.5. Interpolation Routines

Linear interpolation from the input Fourier map to produce the slant plane map leads to the shortest calculation times. Each map point on the required plane is expressed in terms of the original crystallographic grid coordinates. The program is written to select 8 of the supplied map points closest to this point and to interpolate linearly. Assume that the required map point is at $(\mathrm{x}+\mathrm{pX}, \mathrm{y}+\mathrm{qY}, \mathrm{z}+\mathrm{rZ})$ in crystallographic grid coordinates, where $X, Y$ and $Z$ are the grid intervals. The grid point less than $x+p X$ is designated as 1 and that greater than $\mathrm{x}+\mathrm{pX}$ is designated as 2 . The same definition holds for $\mathrm{y}+\mathrm{qY}$ and $\mathrm{z}+\mathrm{rZ}$. The trivariate interpolation formula with the origin at 111 is as follows:
$\mathrm{v}(\mathrm{x}, 1)=1-\mathrm{p}$
$\mathrm{v}(\mathrm{x}, 2)=\mathrm{p}$
and similarly for
$\mathrm{v}(\mathrm{y}, \mathrm{j})$ and $\mathrm{v}(\mathrm{z}, \mathrm{k})$ where $\mathrm{j}, \mathrm{k}=1,2$
$F(x+p X, y+q Y, z+r Z)=\sum_{i} \sum_{j} \sum_{k} F_{i j k} v(x, i) v(y, j) v(z, k)$
A slower, but more accurate, method of interpolation uses the cubic algorithm. It may be found useful or necessary when the input Fourier grid is at low resolution. The interpolation algorithm to be used is specified on the SLANT line. The cubic method is estimated to be more accurate by a factor of ten than the linear method.

It is, however, a factor of five slower. The use of either method is much faster than the calculation of an exact general plane Fourier transform. It should be noted that a cubic interpolation using a coarser grid resolution is comparable to a linear interpolation at roughly twice the resolution and thus requires much less memory to store the input map. The cubic algorithm uses the nearest 64 points and uses the following formula. The same notation is used again, but with the origin at 222 :

$$
\begin{aligned}
& \mathrm{v}(\mathrm{x}, 1)=-\mathrm{p}^{3} / 6+\mathrm{p}^{2} / 2-\mathrm{p} / 3 \\
& \mathrm{v}(\mathrm{x}, 2)=\mathrm{p}^{3} / 2-\mathrm{p}^{2}-\mathrm{p} / 2+1 \\
& \mathrm{v}(\mathrm{x}, 3)=-\mathrm{p}^{3} / 2+\mathrm{p}^{2} / 2+\mathrm{p}(\mathrm{x}, 4)=\mathrm{p}^{3} / 6-\mathrm{p} / 6
\end{aligned}
$$

and similarly for $\mathrm{v}(\mathrm{y}, \mathrm{j})$ and $\mathrm{v}(\mathrm{z}, \mathrm{k}) \mathrm{j}, \mathrm{k}=1,2,3,4$
$F(x+p X, y+q Y, z+r Z)=\sum_{i} \sum_{j} \sum_{k} F_{i j k} v(x, i) v(y, j) v(z, k)$

### 4.64.6. Transformed Positional Parameters

By the use of site or siteg lines the user may obtain positional parameters relative to the slant plane in terms of calculated grid coordinates.

### 4.64.7. File Assignments

- Reads Fourier map from the bdf map
- Optionally writes the slant map to the bdf sla


### 4.64.8. Examples

```
SLANT file nprint cubic
defpln frac 0 0 0 . 56 . 24 . 31 . 74 . 86 . 21
mapres . 15 . 15 . 15
layout across layer down 21 1 21-10 0 -10 1 1 1
```

In this example the map is mot printed but is output to bdf SLA. Cubic interpolation is used. The lines defpln, mapres and layout refer to the general plane coordinate axes a-calc, b-calc, c-calc. These axes are defined by the points, in fractional coordinates, given on the defpln line. The layer direction is b-calc, with c-calc down the page. Only one layer is to be calculated with $21 \times 21$ points passing through the origin, starting at -10 in both directions. Given the resolution of $0.15 \AA /$ div., the output map is $3 . x 3 . \AA$ with origin at the centre and defined as $(0,0,0)$

```
SLANT nfile print linear
defpln grid 10 20 30 17.5 1.5 13.3 18.5 54.6 12.3
```

The output map is printed only. Linear interpolation is used. The slant plane is defined by the points on defpln. These refer to the original grid coordinates used in FOURR. The average resolution used in FOURR will be applied. The ouput plane will be large enough to contain the three points that define the plane.

### 4.65. SORTRF: Sort/merge reflection data

Authors: Syd Hall, Nick Spadaccini and Jim Stewart<br>Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia.<br>SORTRF sorts and, optionally, averages the reflection data on an archive bdf.

### 4.65.1. Method

SORTRF applies two important processes to reflection data on the bdf. Reflections may be sorted by their Miller indices so that they are in an order that is optimal for subsequent calculations. According to the sort algorithm selected reflections which are symmetrically equivalent may be placed together or treated independently. This is detailed in the next section. The second function of SORTRF is to average reflection data which are symmetrically equivalent. That is, multiple observations of reflections and their Friedel mates are reduced to a single packet with an averaged value stored for the reflection. The averaged values for the Friedel related reflection ${ }^{1}$ may be treated and stored independently if requested.

1 Note that SORTRF should be applied before ADDREF if the intensity data, rather than the Frel data, is to be averaged. Note also that systematically absent data are not removed by SORTRF - this is done in ADDREF.

### 4.65.2. Sorting Reflection Data

The sort order of reflections is the measure that each Miller index changes from reflection to reflection. The input option order smf on the SORTRF line determines the sort order. The parameter smf is the combination of characters $\mathrm{h}, \mathrm{k}$, and 1 . $\mathbf{s}$ designates the slowest varying index; $\boldsymbol{f}$ designates the fastest varying index. Thus the entry of order khl specifies that k will be slowest varying and 1 fastest varying.

Three sort algorithms are available for the treatment of equivalent reflections. These are referred to as sort types.

### 4.65.2.1. Sort type 1: Sort only mode

In this mode data is sorted so that each index, within the constraints of the specified sort order, will start with its most negative index and finish with its most positive index. No account will be taken of symmetry equivalent reflections and no transformation of the input indeices will take place. This is strictly a sort only mode. This is the default provided aver or clus options are not set.

### 4.65.2.2. Sort type 2: adjacent Friedel mode

This sort type is identical to 1 except that the Miller indices of equivalent reflections are transformed to have matching (and most positive) values. If the pakfrl or sepfrı flags are entered then the Friedel equivalent reflections will be treated independently and will be immediately adjacent in the sort list. If the flags pakfrı or sepfrı are not entered the Friedel related data will be treated identically to symmetrically equivalent data. This is the default mode if the aver or clus options are set.

### 4.65.2.3. Sort type 3: group magnitudes mode

This sort type is identical to 1 except that the Miller indices of equivalent reflections are transformed to have matching (and most positive) values. In addition all reflections with the the same index magnitudes are adjacent in the sort list (note that reflections with matching index magnitudes are not necessarily symmetrically equivalent). The treatment of Friedel data is identical to a type 2 sort. This mode is intended for speeding up a Fourier calculation which uses the Beevers-Lipson algorithm. It is not suitable for listing purposes and it is not recommended except for very large data sets on a relatively slow computer.

### 4.65.3. Averaging Reflection Data

In addition to sorting data, SORTRF may be used to average or cluster multiple observations and symmetrically equivalent reflection data. The SORTRF options for this are noav, aver and clus. noav is the default and specifies that no averaging of equivalent data will take place. clus causes equivalent reflections with there original untransformed indices to be adjacent in the sorted list and that no averaging take place.
aver will cause the specified coefficients (Frel, $\mathrm{F}^{2}$ rel or Irel) of equivalent reflections to averaged. If not specified the averaged coefficient is assumed first to be Irel; if these data are not present Frel will be averaged. Note that only the specified coefficients are averaged; other coefficients are not averaged.The two averaging processes available in SORTRF are described below.

### 4.65.3.1. aver 1: standard average with culling

This algorithm provides for a standard average to be calculated, with the provision for culling data which exceeds a certain deviation from the initial mean. In the following treatment, the intensity I may be replaced by $\left|\mathrm{F}^{2}\right|$ or $|\mathrm{F}|$ according to what is specified on the sortre line. The initial mean intensity is calculated as:
$\mathrm{I}=\sum\left[I_{j}\right] / \mathrm{N}$ where N is the number of equivalents.
The $\sigma \mathrm{I}$ is calculated from the individual $\mathrm{I}_{\mathrm{j}}$ e.s.d.'s (estimated usually from counting statistics), plus the deviations of the contributing intensities from the initial mean. That is,
$\sigma \mathrm{I}=\max \left(\left(\sum \mathrm{I}_{\mathrm{j}}\right)^{1 / 2} / \mathrm{N},\left[\mathrm{N} \sum \mathrm{I}_{\mathrm{j}}^{2}-\left(\sum \mathrm{I} \mathrm{I}_{\mathrm{j}}\right)^{2} /(\mathrm{N}(\mathrm{N}-1))\right]^{1 / 2}, 0.0001\right)$
If the cull $t$ option is specified any individual intensity that deviated from the initial mean by greater than $t \sigma I$ is culled before the final mean I is calculated.

### 4.65.3.2. aver 2 : Fisher Test

The second averaging process consists of finding the arithmetic average of reflection intensity is:
$\mathrm{I}=\sum \mathrm{I}_{\mathrm{j}} / \mathrm{N}$ where N is the number of equivalents.
Two measures are made of the variance of the average intensity $I$. One is based on Poisson statistics, and the other is based on the scatter of equivalents,
$\left(\sigma^{2} I_{P}=\sum \sigma^{2} I_{j} / N^{2}\right.$
$\left(\sigma^{2} \mathrm{I}\right)_{\mathrm{E}}=\sum\left(\mathrm{I}_{\mathrm{j}}-\mathrm{I}\right)^{2} /\{\mathrm{N}(\mathrm{N}-1)\}$
Since both measures have different degrees of freedom, N and $\mathrm{N}-1$ respectively, a test can be made for the hypothesis that they are equal to the 1 significance level of the Fisher distribution. This is referred to as the Fisher test (Hamilton, 1964). Reflections whose measures of variance prove equal (the hypothesis is successful) may have the adjusted $\sigma \mathrm{I}$ for the average intensity optionally set to one of the following values by the success option:
i. $\sigma \mathrm{I}=\left(\sigma^{2} \mathrm{I}\right)_{\mathrm{P}}^{1 / 2}$
ii. $\sigma \mathrm{I}=\left(\sigma^{2} \mathrm{I}\right)_{\mathrm{E}}^{1 / 2}$
iii. $\sigma \mathrm{I}=\max (\mathrm{i}, \mathrm{ii})$

Reflections whose measures of variance prove unequal (the hypothesis is unsuccessful) may have the adjusted $\sigma \mathrm{I}$ for the average intensity optionally set to the above, or rejected (rcode $=2, \sigma \mathrm{I}=$ voidflg:) by the unsuccess option on the SORTRF line.

Note that this option will assign an rcode of 2 to a reflection if, and only if, the tests fail to satisfy the hypothesis relating to its variances and if this is explicitly requested by the user in the unsuccess option. All reflections which satisfy the hypothesis will have an rcode of 1 .

### 4.65.4. Agreement Factors

Two agreement factors are provided to measure the quality of the averaged data:
$\mathrm{R}_{1}=\sum\left|\mathrm{I}_{\mathrm{j}}-\mathrm{I}\right| / \sum \mathrm{I}_{\mathrm{j}}$ and $\mathrm{R}_{2}=\sum \sigma \mathrm{I}_{\mathrm{j}} / \sum \mathrm{I}_{\mathrm{j}}$.

### 4.65.5. Treatment Of Friedel Pairs

Attention must be drawn to the necessity of calculating a $\mid$ Frel $\mid$ corrected for the effects of dispersion prior to use in an electron density calculation with FOURR. The dispersion corrections to |Frel| for reflection and antireflection are not equal. With Friedel data packed into the same packet of the bdf, as is necessary for absolute structure refinement, a dispersion-free |Frel| can be correctly calculated from the |Frel|'s for the reflection and anti-reflection with CRYLSQ. However, this is only possible if the |Frel|'s of Friedel pairs are not averaged! The average |Frel| is made up of (weighted) contributions from $m$ reflections and $n$ anti-reflections. The weights and the values of $m$ and $n$ vary from one reflection to another, and a proper calculation of the dispersion correction to |Frel| needs to know all of these values. It means that electron density calculations made with packed pairs, and from averaged pairs will almost certainly differ. The electron density calculated from the packed data is correct.

Friedel related reflections will be treated as symmetrically equivalent data unless either the pakfrl or sepfrl options are entered. If these options are specified Friedel pairs are are treated as independent data and are not averaged. If pakfrı is entered the Friedel data is placed in the samelrrefl: packet on the bdf.
The packed Friedel data is needed if absolute structure parameters are to be refined by CRYLSQ.
If the sepfrl option is used the Friedel pair data is stored in separate but adjacent lrrefl: packets.
Note that invocation of either option will automatically cause the data to be averaged. If no aver option is stated then mode 1 is assumed.

### 4.65.6. File Assignments

- Reads reflection data from the input archive bdf
- Writes sorted and/or averaged data to the output archive bdf


### 4.65.7. Examples

```
SORTRF order lkh
```

Data will be sortedwith h changing most rapidly, and k next most rapidly.

SORTRF aver 1 cull 2.5 print 512

During averaging measurements $>2.5 \sigma \mathrm{I}$ from the initial mean are culled and a new average computed. The first 512 reflections will be printed.

```
SORTRF aver 2 succe 3 unsuc 4 print -9999
```

This example uses the Fisher average. Those reflections satisfying the hypothesis will have $\sigma$ I based on the maximum variance. Those reflections failing to satisfy the hypothesis will be rejected. The first 9999 reflections which fail to satisfy the hypothesis are printed.

### 4.65.8. References

- Hamilton, W.C. 1964. Statistics in Physical Science. Ronald Press: New York


### 4.66. STARTX: Create initial archive file

Authors: Jim Stewart, Jim Holden, Ruth Doherty, George Davenport, Syd Hall and Howard Flack
Contact: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
STARTX creates or updates an Archive (bdf) with all of the cell, symmetry, crystal and structure information that is known prior to the solution of the structure, exclusive of reflection data. Reflection data is added by subsequent calculations.

STARTX starts, or updates (in upd mode) the Archive by storing the initial information about the file history, any text descriptive of the nature of the structure, unit cell parameters, the unit cell symmetry, the types and number of atoms contained in the unit cell, and various experimental data. The bdf is in essence a repository for known information about the structure under study, and will be available to all subsequent calculations. Other calculations will read this file and add, supersede or delete information as requested.

### 4.66.1. Unit Cell Data

Cell information is supplied by the cell and cellsd input lines. This information is stored in the lrcell: (the macro name that identifies the logical record containing cell data) record of the bdf, along with the calculated reciprocal cell dimensions and transformation matrices used to transform to orthogonal coordinates (see the Archive at the back of the manual for details).

### 4.66.2. Symmetry Data

STARTX provides several approaches to entering symmetry information. The most concise way is to use the explicit-origin space group notation (Hall, 1981) with the sgname line. This notation is listed in the supplied symmap file. Space group symmetry can also be defined by entering a latice and/or symtry or spaceg lines. For example the space group A2/a (15:c1 z-unique) may be entered as follows:

```
sgname -a_2a
or
spaceg a_1_1_2/a
or
latice c a
symtry x,y,z
symtry 1/2-x,-y,z
```

or

| symtry | $x$, | $y, z$ |
| :--- | ---: | ---: |
| symtry | $-x$, | $-y,-z$ |
| symtry | $1 / 2-x, \quad-y, z$ |  |
| symtry | $1 / 2+x, \quad y,-z$ |  |
| symtry | $-x, \quad 1 / 2-y, z$ |  |
| symtry | $x, 1 / 2+y,-z$ |  |
| symtry | $1 / 2+x, 1 / 2+y,-z$ |  |
| symtry | $1 / 2-x, \quad 1 / 2-y, z$ |  |

The number of molecules per cell is entered with the celmol line. The default value is one molecule per asymmetric cell unit. If this is not correct for your structure, use a celmol line - as this greatly assists routines such as PEKPIK, MODEL and PIG.

The contents of the crystal unit cell is with celcon input lines and using internal data (such as the dispersion values) stored for each atom type. A celcon line must be entered for each atom species expected in the structure. The number of atoms of this type expected in the unit cell should also be entered. If the scattering factor name entered is the 'standard' element name, then other atom data such as the atomic weight, the atomic number, the number of electrons, the usual atomic bond radius, the usual Van der Waals radius, and anomalous dispersion scattering terms will be supplied by STARTX automatically. NOTE that if the neutron scattering length is entered all subsequent calculations will assume that neutron data is being processed.

STARTX reads tables stored in the file atomt ype.cif for the automatic generation of atomic scattering factors. The use of these tables is dependent upon the value of the atomic number and the number of electrons derived from the scattering factor name or specified explicitly in the celcon input lines. For example, a $\mathrm{Cu}^{+}$atom could be defined as either $\mathrm{Cu}+$ (or $\mathrm{CU}+$ or $\mathrm{cu}+$ or $\mathrm{Cu} 1+-$ - the scattering factor symbol is not case sensitive whereas the atom label which incorporates this symbol is), or CU with fields 3 and 4 set at 29 and 28, respectively.

STARTX also reads atomt ype.cif for data to enable scattering factors to be automatically generated for Xrays, electrons and neutrons. Automatic generation is overridden by data entered on formgn, formfx and celcon lines. Scattering factors may be generated for s values out to 6.0 using the method of Fox et al. (1989) A.C. A45, 786. The Stewart, Davidson \& Simpson H curve is now generated from the Int Tab Vol 4 coefficients in Table 2.2B, as do all scattering factors. Neutron scattering lengths come from Int Tab Vol 4 Table 2.6. Scattering factors may be printed by entering the line reset psta 4

In a departure from rationality STARTX will permit dummy atom types entered with an atomic number of 0 and a voidflg: or 0 molar weight to be treated as valid types. Use this feature to shoot yourself in the foot in some later calculation like CRYLSQ or FC.

The nature of the radiation may be specified on the STARTX line. Here are the input options:

| Radiation type | xrays <br> neutrons <br> electrons | generate xray scattering factors <br> generate neutron scattering lengths |
| :--- | :--- | :--- |
| Scatt factor limits | smax $\mathbf{s}$ <br> sinc $\mathbf{t}$ | generate electron scattering factors |
|  | max s value of generated sf $<2.0>$ |  |
| incr s used for generated sf<0.02> |  |  |

A scattering factor symbol (also referred to as the atom type symbol) consists of a string of up to eight characters. If the user enters the usual international chemical symbols on the celcon line, these will be used to generate appropriate scattering factor data without the need to enter the atomic number or number of electrons (see last section also).

### 4.66.3. File Assignments

- Optionally reads data from the input archive bdf
- Writes the new or updated file to the output archive bdf


### 4.66.4. Examples

```
STARTX :the P6122 test in simplest form
CELL 8.53 8.53 20.37 90 90 120 sgname P 61
2 (0 0 -1)
CELCON s 6
CELCON O 6
CELCON c 12
title BODY-CENTRED ACENTRIC CUBIC TEST CASE, I 4BAR 3D
STARTX CELL 11 11 11 90 90 90
sgname I -4bd 2ab 3
CELCON s 48
CELCON O 36
CELCON c 16
exper 1 1.5418 *9 1.234
maxhkl 12 8 4 .001 . 9
```

```
STARTX
label p6122 test 21 june 1982
CELL 8.53 8.53 20.37 90 90 120
cellsd . 01 .01 .01 . 01 . 01 . 01
latice n p :alternative is sgname p 61 2 (0 0 -1)
symtry x,y,z
symtry -x,-y,1/2+z
symtry y,x,1/3-z
symtry -y,-x,5/6-z
symtry -y,x-y,1/3+z
symtry y,y-x,5/6+z
symtry -x,y-x,2/3-z
symtry x,x-y,1/6-z
symtry y-x,-x,2/3+z
symtry x-y,x,1/6+z
symtry x-y,-y,-z
symtry y-x,y,1/2-z
CELCON s 6 *8 . 350 . 869
CELCON O 6
CELCON c 12
```


### 4.66.5. References

- Hall, S.R. 1981. Acta Cryst. A37, 517-525.
- Mott, N.F. and Massey, H.S.W. (1965) The Theory of Atomic Collisions. pp86-112 Oxford Clarendon Press
- Xray Form Factors: International Tables Volume C Table 2.2B
- Neutron Form Factors: International Tables Vol C Tables 2.6 pp 270-271
- Electron Form Factors: International Tables Vol C Tables 2.4.6 A neutral International Tables Vol C Tables 2.4.6 B ionized
- Modified Mott s<0.1: Peng, L.-M. and Cowley, J.M. (1988) Acta Cryst, A44, 1-5
- Modified Mott s>2.0: Fox, A.G., O’Keefe, M.A. and Tabbernor, M.A. (1989) Acta Cryst, A45, 786-793.


### 4.67. SURFIN: Render 3D electron density isosurfaces NEW

Authors: Doug du Boulay Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-Ku, Yokohama Japan.

SURFIN is an OpenGL based subprogram intended for viewing 3D electron density isosurfaces. It builds on the togl library as a tcl/tk based interface to the OpenGL library and incorporates a public domain version of the "marching cubes" algorithm to identify isosurfaces from gridded data.

### 4.67.1. Purpose

SURFIN was cobbled togeather with chewing gum, as an example program to prove that 3D rendering of isosurfaces within the Xtal tcl/tk library infrastructure was possible. As such it was a success. Unfortunately its functionality leaves a great deal to be desired...

### 4.67.2. Functionality

SURFIN renders the electron density contents of the xtal .map. The graphical interface is a little misleading, in that a great deal of the implied functionality has actually not been implemented.

Currently contour lighting can be adjusted. The desired contour levels and colours can be customized via a tcl script file contained in the working directory. By default some relative values are adopted to span the range of the minimum and maximum difference electron densities.

Currently there is no functionality for viewing and manipulating atomic sites and bonds, lighting is basically not implemented and surface normals are not calculated correctly. Apart from that its perect.

### 4.67.3. File Assignments

- Reads electron density from the .map file.
- Optionally reads ./tclsurfin.rc from the local directory.

Figure 4-6. Screen shot of SURFIN


### 4.67.4. Examples

```
# file: ./tclsurfin.rc Sourced from surfin.tcl
# manually set some initial default values
#
#set contourSettings(Dvalues) [list -.5 -.2 .2 .5 ];# contour levels
set contourSettings(Dvalues) [list -4. -2. 2. 4. ];# contour levels
#set contourSettings(Dvalues) [list -40. -15. 15. 40.];# contour levels
set contourSettings(DrelVal) [list -0.8 -. 3 . 3 . 8 ];# fraction of range
set contourSettings(FixedVals) 1 ;# 0/1 aply relVal or Dvalues
#
# Specify a colour gradient scheme for +ive and -ive contours
# The 4th coordinate is Opacity/transparency
set contourSettings(DmaxNeg) [list 1. 1. 1. 1.0 ] ; # Maximum negative colour
set contourSettings(DminNeg) [list 1. 0. 0. 0.0 ] ; # Minimum negative colour
set contourSettings(DmaxPos) [list 1. 1. 1. 1.0 ] ; # Maximum positive colour
set contourSettings(DminPos) [list 0. 0. 1. 0.0 ] ; # Minimum positive colour
#
```


### 4.68. VUBDF: Dump archive file

Author: Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia VUBDF prints the contents of any bdf (archive or auxilliary) in terms of physical records, logical records and packets. No knowledge of the structure of the bdf or the logical records is assumed. VUBDF identifies each word in the bdf as containing character, integer, packed, real or void information and lists it accordingly.

### 4.68.1. Output Controls

VUBDF can be used to list a part or all of the contents of a binary data file. If no parameters are entered, VUBDF lists up to 100 packets of all logical records on the archive bdf.

VUBDF was originally written as a "developer's tool" and its use may require some knowledge of the structure of the bdf, as described in the BDF chapter at the back of this manual. It is, however, easy to apply and will be useful to any anyone requiring detailed information about the data stored on the bdf. See also the arcout option of the program CIFIO.

Here is a description of the optional control parameters. They may be entered in any order.

### 4.68.1.1. file extension

This parameter is used to specify the filename extension code of the bdf to be listed. The default input file is the archive bdf. The codes a and brefer to the input and output archive bdfs, respectively.

### 4.68.1.2. prec rmin rmax

These parameters specify the range of physical records, rmin to rmax, to be listed. The default values of rminand rmax are 1 and 10000 , respectively, provided the 1 rec parameter (see below) is not specified. Specification of the 1 rec parameter overrides the prec parameters. If rmax is omitted it is assumed equal to rmin.
${ }_{1 r e c} 1$ min 1 max These parameters specify the range of logical records, 1 min to 1 max , to be listed. The default values of 1 min and 1 max are 1 and endrecord:, respectively. Specification of this parameter overrides the prec parameters. If 1 max is omitted it is assumed to be equal to 1 min. See the Archive section of the manual.

### 4.68.1.3. npak pmin pmax

These parameters specify the range of packets, pmin to pmax, listed from each logical record. The default values of pmin and pmax are 1 and 100 , respectively. If pmax is omitted then it is assumed to be equal to pmin.

### 4.68.1.4. xform

This code switches off the format checking routine that assumes the format of each packet in a logical record is the same. This is important when examining some auxilliary bdfs (e.g. plot command files such as ort and con).

### 4.68.2. Output Formats

The start of each physical record or logical record is identified with a header line that lists the three 'lead words' containing the logical record length, logical record type and packet size. The words within this logical record are numbered sequentially according to their position in the physical record.
Each word in the bdf is then listed as either a character string, integer number, packed-integer, real number or voidflg:. These words are listed in their packets. The start of each packet is identified by a '>' immediately following the word numbers. The formats of the different words types are as follows:

### 4.68.2.1. Character strings

A word is listed as a string of characters (length mxchwd:) if, and only if, every byte in a word is one of the following characters A-z 0-9 : * / + - ., ( ) < > [ ]. Bytes representing other characters (including $\mathrm{a}-\mathrm{z}$ ) will cause the word to be treated as one of the other types. Note that the character 'blank' will be listed as a tilde $\sim$ (the tilde is not present on the bdf). It is occasionally possible that the bits of a real number can satisfy the character test and be listed as characters.

### 4.68.2.2. Integer number

A word is listed as an integer when the real number has a remainder, modulo 1.0 , of exactly zero. It listed in the format I 5 .

### 4.68.2.3. Real number

A word is listed as a floating-point number provided it has a value between -large: and -small: or between +small: and +large:. The real number is listed in the format F9.5 if it is less than 1.0, otherwise in F9.3.

### 4.68.2.4. Void number

A word is recognised as a 'void number' (i.e. value unknown) if it contains a real number equal to voidfg:. The void number is listed as the 'at' character e.

### 4.68.2.5. Packed integer

A word is listed as a packed integer if it is not identified as any of the above word types. This word is output as a hexadecimal integer (i.e. radix 16) of 8 digits length. No attempt is made to unpack these integers since the size of the bit slices is unknown. Note that some packed integer words may be interpreted as real numbers.

### 4.68.3. File Assignments

Reads a specified file (default is the input archive bdf)

### 4.68.4. Examples

VUBDF

List contents of the input archive bdf.

VUBDF file b lrec 8

List contents of the logical record 8 of the output archive bdf.

VUBDF file ort prec 2325 xform

List the contents of physical records 23 to 25 from the bdf ort.

### 4.69. XTINCT: Extinction from equivalent reflections

Authors: Nick Spadaccini and Douglas du Boulay
Contact:Syd Hall, Crystallography Centre, University of Western Australia, Nedlands 6907, Australia
This program calculates the isotropic Zachariasen extinction coefficient $r^{*}$ by correlating the intensity differences of symmetry equivalent reflections with the diffraction path lengths through a nonspherical crystal. The method is optimal for complete spheres of intensity data, collected from crystals of higher symmetry.

### 4.69.1. Introduction

The greater accuracy required for high precision density studies has led to the development of XTINCT. These studies require a particularly careful treatment of the correction factors for absorption and extinction, both of which depend on the size and shape of the crystal. Extinction coefficients determined from structure factor least squares processes (such as CRYLSQ) are approximate because of correlation with other intensity dependent errors.

XTINCT determines the isotropic extinction correction factor from the measured intensity variations of symmetrically equivalent reflections. This application relies on a non-spherical crystal in which the path lengths of symmetrically equivalent reflections are different. The precision of the method depends on several factors: the measured precision of the intensity data, the crystal shape (non-spherical but well-defined faces so that accurate path lengths can be calculated), the space group symmetry (the higher the better) and the extent of the data measured (a full sphere is highly desirable).
The correction for secondary (Type I) extinction is based on the theory of Zachariasen (1967) and the application procedure of Larson (1970). The corrected measured structure factor is $\mathrm{F}_{\mathrm{m}}{ }^{\text {(cor) }}$.
$\mathrm{F}_{\mathrm{m}}{ }^{\text {(cor) }}=\mathrm{F}_{\mathrm{m}} / \mathrm{y}^{1 / 2}$
where
$\mathrm{y}=\left(1+2 \mathrm{r}^{*}\left|\mathrm{~F}_{\mathrm{k}}\right|^{2} \mathrm{Qg}(\theta)\right)^{-1 / 2}$
and
$\mathrm{Q}=\left(\mathrm{e}^{4} /\left(\mathrm{m}^{2} \mathrm{c}^{4} \mathrm{~V}^{2}\right)\right)\left(\lambda^{3} / \sin 2 \theta\right)\left(\left(\mathrm{p}+(1-\mathrm{p}) \cos ^{4} 2 \theta\right) /\left(\mathrm{p}+(1-\mathrm{p}) \cos ^{2} 2 \theta\right)\right) \mathrm{T}$
The function $\mathrm{g}(\theta)$ adapts the formalism to several special cases of extinction. This is necessary to ensure that the parameter $\mathrm{r}^{*}$ is independent of scattering angle.
case 1 - Type II, primary extinction $g(\theta)=\sin 2 \theta$
case 2 - Type I , secondary extinction $\mathrm{g}(\theta)=1$
Parameter p specifies the fraction of total intensity incident on the crystal specimen, that is polarised perpendicularly to the diffraction plane of that specimen. In the instance of neutron diffraction Q reduces simply to
$\mathrm{k}^{2}\left(\lambda^{3} /\left(\mathrm{V}^{2} \sin 2 \theta\right)\right) \mathrm{T}$,
where the neutron scattering length $\mathrm{k}=10^{-14} \mathrm{~m}$.
The secondary extinction coefficient $\mathrm{r}^{*}$ is determined by minimising the statistical variation of the intensities for symmetry equivalent reflections. The minimum variance is found when the first derivative of the variance quadratic is zero. The derivative is taken with respect to the extinction parameter $r^{*}$, which in the isotopic case is a scalar variable. In practice the quadratic is approximated by a Taylor expansion about $r^{*}$ truncated at the second order. The zero point of the first-order differential equation is found analytically using an iterative method which terminates when the shift in $r^{*}$ at each iteration becomes less than 0.0001 of $\sigma\left(\mathrm{r}^{*}\right)$. The weighting of each set of equivalents is given by $1 / \sigma^{2}$ so that the stronger reflection intensities dominate the refinement. In accordance with the theory, the stronger reflections more accurately reflect the effect of extinction.

### 4.69.2. Application

XTINCT works best when applied to a full sphere of measured intensities. This provides as many equivalent reflections as possible. The strong dependence of the refinement on path length variations between equivalents restricts its application to non-spherical crystals. The procedure is applied after absorption corrections and applied to clustered F squared data.Here are the calculation steps needed for the application of XTINCT. This is when extinction is applied to $|F|^{2}$ data. See example 4 for a typical input file which parallels these steps.

1. A full sphere of intensity data should be collected from a single non-spherical crystal and processed with the STARTX and DIFDAT steps.
2. The intensity data is then processed using SORTRF aver 2 to calculate the merge R -factor $\mathrm{R}_{\mathrm{in}}$. The output of this run is NOT saved.
3. The intensity data from (1) is then corrected for absorption using the program ABSORB. The tbar option must be set so that the mean path lengths of the individual reflections are stored on the bdf. An analytical absorption calculation is recommended for the most precise path lengths.
4. The output bdf from Absorb is processed with SORTRF aver 2 to again calculate the merge R -factor $\mathrm{R}_{\text {int }}$. The output of this run is NOT saved. This is to check the effect of the absorption corrections on the equivalent data.
5. The output bdf from ABSORB is processed with SORTRF clus to cluster equivalent reflections into sequential groups. sepfrl is required to group Friedels separately, if a non-centrosymmetric structure. This output is saved.
6. The clustered intensities from SORTRF are converted to structure factors squared with ADDREF nobay and reduce itof2.
7. Then use GENEV enot to determine the scale factor between observed and calculated structure factors. This is essential to place the extinction coefficient $\mathrm{r}^{*}$ calculated in the next step on an absolute scale.
8. Apply the XTINCT program (a description of the input options is below).
9. Apply ADDREF nobay and reduce f2toi to convert the F squared to I.
10. Apply SORTRF aver 2 for the fourth time to yield the final $R$-factor $\mathrm{R}_{\mathrm{int}}$. This provides the final measure of the effect of correcting for extinction and absorption.
11. Finally apply ADDREF nobay and reduce itof to reduce the intensities to F.

### 4.69.3. хтinct Options

In the default mode XTINCT calculates, refines and applies the extinction coefficient $r^{*}$ to the $\mathrm{F}^{2}$ data. This data is output to the bdf along with the value of $\mathrm{r}^{*}$ (on the absolute scale supplied from the prior GENEV run). 25 reflections will be printed.

Options on the хтinct line and on the limits line provide for various controls on this calculation. The coefficient $r^{*}$ may be determined within specific regions of the data using the limits control line (though the resulting $r^{*}$ is then applied to all data). The value of $r^{*}$ may also be determined separately for each set of equivalents by entering the sall option (the resulting values are output to the есн file). A value of $r^{*}$ may be input and applied using the appx option. Because sets of equivalent reflections with identical tbars can result in singularities, or negative $r^{*}$, these sets are automatically skipped in the refinement. They may, however, be included using the incl option. Similarly, large anomalous dispersion difference between Friedel related reflections (for non-centrosymmetric spacegroups) can effect the refinement of $\mathrm{r}^{*}$ and these will normally be treated separately, but will be treated as symmetrically equivalent reflections if the option eqfr is entered. The polarisation factor $p$, if unavailable on the bdf and not included as an option on the title line, takes the default value of unpolarised radiation (0.5).

### 4.69.4. File Assignments

- Reads reflection data from the input archive bdf.
- Outputs corrected (or uncorrected) data on the output archive bdf.
- Optionally outputs a pch file.


### 4.69.5. Examples

XTINCT

This is the standard run which refines and applies the extinction coefficient dat to the $\mathrm{F}^{2}$ data. 25 reflections will be printed and the scaled $\mathrm{r}^{*}$ value will be stored on the output bdf.

```
XTINCT print eqfr
limits f2rl 1000 100000
```

The extinction $r^{*}$ will be refined on all sets of equivalents for which the average $\mathrm{F}^{2}$ lies between 1000 and 100000. All reflections will be printed, and the Friedel related intensities will be treated as equivalent reflections.

The unscaled extinction correction $r^{*}$ of 153 and a sigma $r^{*}$ of 22 will be applied to the data. The first 40 reflections on the bdf will be printed.

```
SORTRF aver 2
end : important - do not use a copybdf without preceding end
copybdf b a : <<<<<<<<<<<<< do not save output bdf
ABSORB analyt scal 7604.19 irel tbar print 20
diff a a c a
orient 2 0 0 29.91 27.79 0 2 0 331.86 99.84
faceml -1 1 0 .00318
faceml 1 -1 0 .00318
faceml 1 1 0 .00364
faceml -1 -1 0 .00364
faceml 0 0 1 .00635
faceml 0 0 -1 .00635
faceml -5 -8 -2 .00440
faceml 5 0 -1 .00440
SORTRF aver 2
end : important - do not use a copybdf without preceding end
copybdf b a : <<<<<<<<<<<<<<<<<< do not save output bdf
SORTRF clus
ADDREF nobay lpin
reduce itof2 rlp4
bdfin all
remove f2rl sgf2
GENEV enot
XTINCT irel
SORTRF aver 2 print -9999
ADDREF nobay ffac
reduce itof
bdfin all
```


### 4.69.6. References

- Becker, P.J. Coppens, P. (1974) Acta Cryst A30, 129-147.
- Olthof-Hazekamp, R. (1991) Xtal3.4 Manual, CRYLSQ.
- Larson, A.C. (1970) p292 Crystallographic Computing: Munksgaard.
- Maslen, E.N. Spadaccini, N. (1992) Acta Cryst. A49, 661-667.
- Spadaccini, N. (1989) Proceedings of CRYSTAL XVI, Lorne SCA Meeting.
- Zachariasen, W. H. (1967) Acta Cryst 23, 558-564.


## Notes

1. Don't do this. It assumes the missing core electron density is something resembling an inert gas atom which is a very bad approximation.
2. The promolecule is the electron density of neutral, spherical atoms, vibrating but otherwise non interacting, i.e. the standard crystallographic model used for calculating structure factors.

Chapter 4. Reference Manual

## Appendix A. Archive file map

Data in an Xtal archive file is separated into blocks referred to as logical records. The names of these records lrhist:, lrrefl:, lratom:, etc. indicate the nature of the data stored therein. The length of a logical record varies depending to the type of data it holds, the nature of crystal structure being processed, and the current state of the crystallographic analysis. A logical record is subdivided into a sequence of packets, each representing a logical subset of the data. Data for a reflection measurement, or an atom site, are typical record packets. There are two types of records: fixed format (F) and directory (D) in which the first packet contains the ID numbers of data values that follow.

The system names for logical records are $\mathbf{I r}\langle$ name $>$ :. However, in the text archive files (.aaa or .arc) the logical records are identified by the data names starting with <name>_.

| logical | number | Type | Contents |
| :--- | :--- | :--- | :--- |
| record |  |  |  |
| lrhist: | 1 | F | compound ID and calculation history |
| lrlabl: | 2 | F | title and labels inserted by the user |
| lrcell: | 4 | F | cell and cell transformation data |
| lrsymm: | 5 | F | space group symmetry data |
| lrsgnm: | 6 | F | space group symbols and names |
| ltrwin: | 7 | F | twin laws |
| lrscat: | 8 | D | scattering factor, atom type information |
| lreequ: | 9 | F | residue sequence information |
| lrddef: | 10 | F | datasen name strings |
| lrexpl: | 11 | D | experimental parameters per dataset |
| lrdset: | 12 | D | general parameters per dataset |
| lrdict: | 13 | D | macromolecular residue information |
| lrgaf: | 14 | D | molecule orientation information |
| lratom: | 16 | D | atom site parameters |
| lrcons: | 17 | D | atom constraints information |
| lrslav: | 18 | F | macromolecular atom link information |
| lrmole: | 19 | D | molecular formula and cell content data |
| lrrefl: | 20 | D | reflection data |
| lrthet: | 21 | F | precise angle data for cell dimensions |
| lrsfls: | 30 | D | sfls refinement results |
| lrrfac: | 31 | F | sfls R-factor refinement history |
| lrdens: | 35 | D | electron density data |
| lrbond: | 40 | D | bond distances |
| lrcont: | 41 | D | contact distances |
| lrangl: | 42 | D | bond angles |
| lrdihe: | 43 | D | dihedral angles |
| lrrigi: | 44 | D | rigid link constraints |
| lendrecord 55535 | F | terminal archive record |  |

Only the contents of archive files are described here. Information about the contents of auxiliary binary data files must be obtained from the source file of the generating program.

Each logical record is listed as:
A header line containing:

- the default logical record type number,
- the logical record name,
- the logical record format (F for fixed format; D for directory access ) and
- a synopsis of the information stored.

A second line with the packet size information.
For fixed format records, the column headed SEQ gives the packet indices for items listed. For directory records, the column headed IDN gives the identification (ID) numbers of the items that may appear in the logical record. Remember that these are the numbers which are stored in the first packet of a directory record.

## A.1. 1 hist (F) File History

Packet Size - $50 *$ I words divided into segments of I words each. I is the number of words needed to contain 24 characters.

## Description

Segment 1 Contains the compound identification (ID) code
Segment Contains the update history of the file: the name of theprogram writing the file; the date on which 2-50 the file was written as $\mathrm{dd} / \mathrm{mm} / \mathrm{yy}$; and the time at which the file was written as hh:mm:ss. After 48 updates, segment 3 is lost and the latest one is added to the end of the record, as in a LILO stack. Segment 2, showing the originating program name (and the date and time, if present), is always retained.

## A.2. $2 \operatorname{labl}$ ( $\mathbf{F}$ ) Label Information

Packet Size - Number of words needed to hold 80 characters

## SEQ Description

Packet 1 Contains date and time of creation of the bdf.
Packet 2 Contains title in force at time of creation.
Packet 3- This, and subsequent packets, contain information entered on STARTX lines.

## A.3. $4 \operatorname{cell}(\mathbf{F})$ Cell Constants

Packet Size - 9 words

## SEQ <br> Description

Packet 1
+1 a cell dimension in Angstroms
+2 b cell dimension in Angstroms
+3 c cell dimension in Angstroms
$+4 \quad \cos \alpha$
$+5 \cos \beta$
$+6 \quad \cos \gamma$
$+7 \quad \alpha$ in cycles $(2 \pi=1.0000)$
$+8 \beta \quad \beta$ in cycles $(2 \pi=1.0000)$
$+9 \quad \gamma$ in cycles $(2 \pi=1.0000)$
Packet 2
$+1 \ldots+9$ Estimated standard deviations of the quantities of packet 1
Packet 3
$+1 \ldots+9$ Reciprocal cell constants, in same order as packet 1

```
Packet 4
            Transformation matrix from fractional coordinates toorthogonal Angstrom coordinates as given
            by Rollett (Oxford Computing School,1965), p23. Crystal axes x, y, z; orthogonal axes X, Y, Z
            are defined with Zalong c, with Y in the b-c plane.
+1 t11 = a sin}\beta\operatorname{sin}\mp@subsup{\gamma}{}{*
+2 t21=-a sin}\beta\operatorname{cos}\mp@subsup{\gamma}{}{*
+3 t31 = a cos \beta
+4 t12 = 0
+5 t22 = b sin}
+6 t32 = b cos \alpha
+7 t13 = 0 t11 t12 t13 x X
+8 t23=0 t21 t22 t23 y = Y
+9 t33=ct31 t32 t33 z Z
Packet 5
+1..+9 Transformation matrix from Miller indices to orthogonal pseudoMiller indices
Packet 6 Miscellaneous information.
+1 cell volume
+2 e.s.d. of cell volume
+3 last MIR cycle number, initialized to zero
+4 last least squares cycle number, initialized to zero
+5 goodness of fit parameter (chi squared), initialized to 100
Packet 7 Metric tensor
+1 a
+2 ab cos\gamma
+3 accos}
+4 a b cos\gamma
+5 b
+6 b c cos \alpha
+7 accos \beta
+8 b c cos \alpha
+9 c2
Packet 8 Inverse metric tensor.
+1...+9 In above order for reciprocal cell parameters
Packet 9-10
```

Protein data base othogonal to fractional 'scale'transformation as
s11 s12 s13 u1
s21 s22 s23 u2
s 31 s 32 s 33 u 3 , with the last 6 words as 0.0 .
Packet
11-12
Protein data base transformation from fractionalcoordinates to orthogonal (see packets 9-10).

## A.4. 5 symm (F) Symmetry Information

Packet Size - 12 words

## SEQ Description

Packet 1 Contains miscellaneous information.
+1 code to indicate lattice type as:
lattice type P I R F A B C
noncentro cell 1234567
centro cell 891011121314
+2 centrosymmetric / noncentrosymmetric indicator 0 / 1
+3 total number of symmetry equivalent positions
+4 number of distinct rotation matrices and translation vectors exclusive of lattice translations and center ( N )
+5 number of rotation matrices of identical pattern of zeros
+6 cell multiplicity factor to place A and B parts of the structure factor on the scale of International Tables (Vol. 1).
+7 number of matrices, M , stored for finding neighbour lattice interactions in CEDAR
+8 number of molecules in the cell (see also lrmole:)
$+9 \quad$ crystal and Bravais systems
(tri=1; mon=2; ort=3; tet $=4 ; \operatorname{trg}=5$; rho $=6$; hex $=7$; cub=8)
+10 cell unique axis number ( $1=\mathrm{a}, 2=\mathrm{b}, 3=\mathrm{c}, 4=$ none $)$
Packet 2 Rotation matrix and translation vector for 1 st equivalent position.
$+1 \ldots+12$ r11, r21, r31, r12, r22, r32, r13, r23, r33, t1, t2, t3
Packet 3 to for the remaining N equivalent positions. The maximum value of N is 24 . Matrices involving an $N+1 \quad$ inversion centre or non-primitive translations are excluded.
Packet $N+2$ additional equivalent positions used by CEDAR.
to $M+1$

## A.5. 6 sgnm (F) Space Group Names

Packet Size - Words to hold 40 characters

Packet 1 Hall space group symbol
Packet 2 Hermann-Mauguin space group symbol
Packet 3 Space group number from International Tables (seeSymmetry)

## A.6. 7 twin (F) Twin Laws

Packet Size - 13 words

## SEQ Description

$+1 \ldots+9$ Rotation matrix to relate Miller indices of a reflection tothose of its twin-related reflection.
$\mathrm{r}_{11}, \mathrm{r}_{12}, \mathrm{r}_{13}, \mathrm{r}_{21}, \mathrm{r}_{22}, \mathrm{r}_{23}, \mathrm{r}_{31}, \mathrm{r}_{32}, \mathrm{r}_{33}$
$h^{\prime}=\left(r_{11} r_{12} r_{12}\right) h$
$k^{\prime}=\left(\mathrm{r}_{21} \mathrm{r}_{21} \mathrm{r}_{23}\right) \mathrm{k}$
$l^{\prime}=\left(\begin{array}{lll}\mathrm{r}_{31} & \left.\mathrm{r}_{32} \mathrm{r}_{32}\right)\end{array}\right)$
Note that if the space group is non-centrosymmetric, each packet corresponds to two twin laws, i.e. the givenmatrix multiplied by +1 and by -1 .
+10 twin volume ratio
+11 esd of twin volume ratio
+12 volume ratio of the inverse (if non-centrosymmetric)
+13 esd of volume ratio (if non-centrosymmetric)

## A.7. 8 scat (D) Atom-type Parameters

Packet Size - Variable (one packet per atom type)

## IDN Description

        atomic scattering factor 2 at \(\mathrm{s}=0.00\)
        atomic scattering factor at \(\mathrm{s}=0.01\)
        atomic scattering factor at \(\mathrm{s}=0.02\)
    299 atomic scattering factor 3 at $\mathrm{s}=1.99$
1 This ID number will be repeated for each word required tocontain the character string.
$\mathbf{2}$ Scattering factors at s-intervals of 0.01 need NOT bepresent. The fineness of the table is
optional.
3 Additional scattering factors for a given atom type arestored in 300-499, 500-699, 700-899, ...

## A.8. 9 sequ (F) Protein Atom Sequence Information

Packet Size - words needed to hold 8 characters

## SEQ Description

+18 character containing residue type ( 4 char) and sequence position (4char). Contains a packet for each residue in the sequence.

## A.9. $10 \operatorname{ddef}(\mathrm{~F})$ Dataset Names

Packet Size - words needed to hold 12 characters

## SEQ Description

+1 Contains string of 12 characters used to describe the dataset. Theorder of the packets corresponds to dataset number. That is, the first packetcontains the description of dataset 1 , etc. Datasets may be defined asisomorphs, graphs of partial structures, or residues.

## A.10. 11 expl (D) Experimental Parameters

Packet Size - Variable (one packet per data set)

## IDN Description

    data set key (1 designates dataset 1, etc.)
    wavelength (weighted mean) in Angstroms
    wavelength line 1 in Angstroms
    wavelength line2 in Angstroms
    wavelength line3 in Angstroms
    relative weight wavelength line1
    relative weight wavelength line2
    relative weight wavelength line3
    linear absorption coefficient in \(1 / \mathrm{mm}\)
    sort mode applied by SORTRF
    sorting order of hkl as slow/med/fast ( 312 is l slow, \(k\) fast)
    \(a, b, c\) cell dimensions in Angstroms
    \(\cos \alpha, \cos \beta, \cos \gamma\)
    \(\alpha, \beta, \gamma\) in cycles \((2 \pi=1.0000)\)
    cell volume
    e.s.d. of \(a, b, c\) in 13-15
    e.s.d. of \(\alpha, \beta, \gamma\) in 19-21
    e.s.d. of cell volume in 22
    sense of rotation of chi circle; +1 for clockwise, -1 anticlockwise
    sense of rotation of phi circle 1
    sense of rotation of theta or two theta circle
    sense of rotation of omega circle
    reflection scanning method used during data collection
    \(1=\) theta two theta \(2=\) Wyckoff \(3=\) omega
    hkl permitted sign pattern as packed word ( \(0=-; 1=+\) )
    diffractometer type ( 1 char) E=Enraf Nonius, G=GE-XRD,
    H=Hilger Watts, P=Picker, S=Siemens (Nicolet/Syntex)
    \(\mathrm{T}=\) Stoe, \(\mathrm{W}=\) Philips, \(\mathrm{O}=\) other.
    orientation matrix UB \((11,12,13, \ldots, 33)\)
    monochromator two theta angle (in degrees)
    monochromator perfection factor (0 to 1.)
    polarization ratio for incident beam on crystal \(\mathrm{P}_{\text {perp }} / \mathrm{P}_{\text {total }}\)
    e.s.d. of polarization ratio
    refinement weight of polarization ratio
    dihedral angle between monochromator and diffraction planes
    incident beam half width and intensity
    polarization factor of source beam ( 0.0 to 1.0 )
    temperature of cell and intensity measurement in Kelvin
    pressure of cell and intensity measurement in GPa
    experimentally measured crystal density
    e.s.d. of 85
    calculated crystal density
    e.s.d. of 87
    wavelength of radiation used in cell refinement
    number of hkl used in cell refinement
    \(\min\) theta for cell determination
    max theta for cell determination
    radiation used in cell and intensity measurement as an element symbol or source ( 20 chars)
    type of radiation used in cell and intensity measurement (1=neutrons, $2=$ electrons, $3=\mathrm{X}$-ray Mo $\mathrm{K} \alpha, 4=\mathrm{X}$-ray $\mathrm{Cu} \mathrm{K} \alpha, 5=\mathrm{X}$-ray $\mathrm{Ag} \mathrm{K} \alpha, 6=\mathrm{X}$-ray synchrotron )

100 number of scale groups
$101 . .100+\mathrm{n}$ F relative scale factor for scale group $\mathrm{n}(\max =64)$
$201 . .200+\mathrm{n}$ scale group numbers associated with the scale factors

300 Number of crystal faces
301-303 h, k, 1 of crystal face 1
304 distance of crystal face 1 from centre in mm.
305 angle phi of crystal face 1
306 angle chi of crystal face 1
307 angle kappa of crystal face 1
308 e.s.d. of distance (IDN 304)
309 weight of distance (IDN 304) in refinement
311-319
as for 301-309 for crystal face 2 , up to 20 faces
501-502 min and max h for measured intensities before averaging
503-504 min and max k for measured intensities before averaging
505-506 min and max 1 for measured intensities before averaging
507-508 min and max $\theta$ for measured intensities in degrees
511 intensity measurement method (40 chars)
512 radiation monochomator description (40 chars)
513 absorption method applied (40 chars)
514 intensity averaging process (40 chars)
515 intensity reduction process (40 chars)

521 total number of reflections measured
522 number of reflections after averaging of equivalents
523
524
525
526

531-535
criteria used for rcodes 1 to 5 (40 chars each)
536-540 number of reflections assigned rcodes 1 to 5
541 radius of crystal sphere/cylinder in mm
542
e.s.d. of radius
refinement weight of crystal radius
length of crystal cylinder in mm
e.s.d. of crystal length
refinement weight of crystal length
counter dead time in microseconds
e.s.d. dead time
refinement weight of dead time
wavelength of beta-filter absorption edge
crystal size max in mm
crystal size mean in mm
crystal size min in mm
560 crystal colour (20 characters)
561 crystal shape ( 20 characters)

601 number of standard reflections

602 number of reflections measured between standards
603 standards decay ratio
604 time (in minutes) between standards
610-612 h, k, l of standard reflection 1
613-615 h, k, 1 of standard reflection 2, up to 30 standards
701 number of attenuator filters
702 attenuator filter index for filter 1
703 reciprocal transmission factor (> 1.0) for filter 1
704 e.s.d. in rec. transmission factor for filter 1
705 refinement weight of rec. transmission for filter 1
706-709 like 702-705 for filter 2
1 See program ABSORBfor the definition of angles.

## A.11. 12 dset (D) General Data per Dataset

Packet Size - Variable (one packet per data set)

## IDN Description

61-69 hkl transformation matrix used to convert measured hkl to theindices of the unique data set (t11, t21, ....., t33)
71-72 $\quad \mathrm{min}$ and max of h for unique data set
73-74 $\quad \min$ and max of $k$ for unique data set
75-76 $\quad \mathrm{min}$ and max of 1 for unique data set
77-78 $\quad \min$ and max of $\theta$ for unique data set in degrees
$79 \quad$ high resolution $d(2 / \sin \theta(\max ))$
80 low resolution d ( $2 / \sin \theta(\min )$ )
81 number of reflections used in refinement
82-86 numbers of reflections with rcodes 1 to 5 used in refinement
87 threshold factor applied to sigma(Y) to classify rcode2 reflections

N (Laue symmetry) (in PAKFRL mode =total number of reflection packets)
closure errors for shells (bins)
300-349
N (Crystal class) - N (Laue symmetry) (in PAKFRL mode =total number of reflection packets rcode 4 reflections - item 89)
_reflns_Friedel_coverage $=$ item 90/item 89
extinction type ( $0=$ Zach.; $1=$ iso Becker-Coppens $1 ; 2=$ iso B-C 2; 3=isoB-C $1+2 ; 4=$ aniso B-C 1 ; $5=$ aniso B-C $2 ; 6=$ aniso B-C $1+2$ )
distribution ( $0=$ Gaussian; 1=Lorentzian)
isotropic extinction type 1 parameter $g$ (see also lrsfls: 34)
isotropic extinction type 2 parameter $\rho$ (see also lrsfls: 35)
anisotropic extinction type 1 parameters
anisotropic extinction type 2 parameters
mean Tbar (in mm)
anomalous closure errors for shells

## A.12. $13 \operatorname{dict}(\mathbf{D})$ Macromolecular Residue Information

Packet Size - Variable

## IDN Description

1
residue name (4 characters)
2 atom name (4 characters, first part is scattering factor name)
3 relative back chain bond
4 relative furthest forward chain bond
5
group KEY (1=start group; $0=$ same group as back chain group;
$-1=$ no group; -9=dummy atom)
$\begin{array}{ll}6 & \text { rotational angle energy value } \\ 7 & \text { number of rotational barriers }\end{array}$
7
angle of minimum energy
backward bond length
backward bond angle
backward dihedral angle
energy associated with rotation about bond
energy associated with bond angle distortion
energy associated with dihedral distortion
energy associated with second dihedral distortion
value of second dihedral angle
Lennard-Jones coefficient A
Lennard-Jones coefficient B
Lennard-Jones coefficient C
20 special position KEY ( $-3=$ water oxygen; $-2=-$ charged atom; $+2=+$ charged atom; $+1=$ other polar group; $0=$ non-polar atom)

## A.13. $14 \operatorname{graf}(\mathrm{D})$ Molecular Graphing Information

Packet Size - Variable

## IDN Description

21-29 Orientation matrix of cell axes to viewing axes. Generated by PIGand used by ORTEP

## A.14. 16 atom (D) Atom Parameters

Packet Size - Variable

## IDN Description

1-3 $\mathrm{x}, \mathrm{y}, \mathrm{z}$ parameters in fractions of unit cell
4 individual isotropic thermal parameter U

112 sigma of anomolous population parameter
113 sigma of neutron scattering
210 atom number in dictionary dict
212 pointer to atom number in atom of the back chain
213 pointer to atom number in atom of the furthest forward chain
214 mobility indicator
KEY for group/non-group/slave
6-char code for geometric constraint (same as CALCAT)
Bond distance to parent atom site
302 Alpha 1

Encoded symop/translation (if not 1 555)

## A.15. 17 cons (D) Refinement Constraints

Packet Size - Variable

## IDN Description

atom label ${ }_{1}$ of subject atom in cons
parameter number of subject atom; 1 to 9 for x to U 23
multiplication factor of subject parameter
constant, Q , in constraint equation
constraint classification key 2
site multiplicity of subject atom
atom label ${ }_{1}$ of the reference atom 1
parameter number of reference atom $1 ; 1$ to 9 for x to U 23 ,
0 for invariant
multiplication factor for reference parameter of atom 1
atom label of reference atom 2
parameter number of reference atom 2
multiplication factor for reference parameter of atom 2
atom label, parameter, and multiplicity factor for atom n
1 The general form of the constraint equation is: $p(s) * f(s)=q+p(r 1) * f(r 1)+p(r 2) * f(r 2)+\ldots+$ $p(r n) * f(r n)$ The ID numbers 1, 11, 21, etc. may appear in more than one word ifmore than one real word is required to store 24 chars.
2 Constraint classification KEY $=1$ CONSTRAINED Constraint classification KEY=3 INVARIANT Constraint classification KEY $=4$ Polar Axis Direction For a constraint of KEY $=$ 4, the axis is stored in $\operatorname{ID} 2$ as $1=a, 2=b$, or $3=c$. The rest of the packet is null.

## A.16. 18 slav (F) Protein Atom Link Information

Packet Size - 2 words
Description

This record contains the number of the master atom and slave atom as used in the refinement of macromolecular structures. It contains cross linkage information which supplements the sequence information in sequ. For example, information about disulfide linkage, metal cluster linkage, or closed rings such as phenyls, etc., will be found here.

## A.17. 19 mole (D) Molecular Information

Packet Size - Variable (one packet per data set)

## IDN Description

1
data set number ( 1 for data set 1 , etc.)
11
12
13
14
15
21
22
molecular formula as char string (72 chars)
calculated molecular or formula mass in Daltons
molecular or formula Z (see also lrsymm:)
measured molecular or formula mass in Daltons
e.s.d. in formula mass
calculated density (see also lrexpl:87)
F(000)
E(000)

## A.18. 20 refl (D) Reflection Information

Packet Size - Variable

## IDN Description

1-999 crystal-specific information
1000-dataset 1 information
1999
2000-dataset 2 information
2999

## n 000 - dataset n information

n999

```
IDN Crystal Specific
1 Miller indices packed word, with bit pattern
    29-21 20-12 11-3 2-0
    |h| |k || sign code
    hkl +++ ++- +-+ +-- -++ -+- --+ ---
    sign code 0 1 2 3 4 5 6 7
2 sin(theta)/lambda
3 reflection symmetry data, with bit pattern
    15-12 11-5 4-0
    restricted phase epsilon symm. hkl multiplicity
    code reinforce. factor
    restr. phase code is 0=no restriction; }1=0/180;2=30/210;3=45/225;4=60/240
    5=90/270; }6=120/300;7=135/315;8=150/330.
```

501 interpolated scattering factor for atom type 1
interpolated scattering factor for atom type2

510 interpolated scattering factor of atom type 10
interpolated scattering factors for many other atom types orspecial scattering factor calculations
The 700 numbers are used to store estimated phase sets for the "native" structure or "parent" substance.
$700 \quad$ Figure of merit; weight of the 'best' Fourier coefficient
alternate phase set 20

## Overview for dataset n

n000-n199 measurement parameters
n200-n299 reduction parameters
n300-n499 reduced structure factor data
n500-n599 Hendrickson coefficient data
n600-n699 normalized structure factor data
n700-n799 structure factor phase data
n800-n899 refined structure factor data
n900-n999 refinement parameters

## IDN Dataset 1

1000 total gross counts
total background counts
ratio of scan to background time
net counts
sigma(net counts)
phi diffractometer angle in degrees
chi or kappa
omega
2-theta
2-theta scan range
omega scan range
psi azimuthal scan angle in degrees
reciprocal scan speed (actual scan speed in degrees/min is 20.1166 divided by this value)
number of contiguous points used in determining the intensity of thereflection by a modified Wykoff step scan
1014 the time in seconds from the beginning of intensity data collectionto the end of the current measurement
$1017 \quad$ SPD scan speed in degrees/min
1018 RFT type of reflection; $0=$ regular observation; $1=$ standardreference; 2=Phi spin for absorption; $3=$ special standard reference
1020 SCT scan time min

Cp

## 1049

## 1050

1051 Ch
1051 SCNTP Scan type (Omega-SCNTP*theta) i.e. SCNTP $=0$ means an omegascan and SCNTP=2 means an omega-2theta scan
1052 detector horizontal aperture in degrees
1053 detector vertical aperture in degrees
1100 numbers of steps in a step scan
1101-1199 step counts (actual number given in 1100)
1200 absorption weighted mean path length Tbar (mm)
1201 absorption correction factor to I(rel)
1202 extinction correction factor to I(rel)
1203 thermal diffuse scattering correction factor to I(rel)
1204 1/Lp factor
$1205 \mathrm{I}($ rel ) scale factor to scale counts to I(rel)
1210 wavelength in Angstroms for this reflection
$1210+n$ derivative of the transmission factor A with respect to the distancefrom face $n$
1300 relative intensity I (rel)
1301 sigma I(rel)
1302 relative F squared $\mathrm{F}_{2}$ (rel)
1303 sigma $\mathrm{F}_{2}$ (rel)
1304 relative $|\mathrm{F}| \mathrm{F}$ (rel)

## 1305

1308
sigma F (rel)
rcode reflection status key ( $1=\mathrm{obs} ; 2=$ less-than; $3=$ extinction, $4=$ Friedel mate is missing from Friedel pair; 5=systematically absent)
1309 scale group number
1310-1319 identical to 1300-1309 but for Friedel related reflection
1320 RFO
1321 RST
1322 RPS
1501-1504 A, B, C, D Hendrickson coeff. Phase prob distr. (isomorphous)
1505-1508 A, B, C, D Hendrickson coeff. Phase prob distr. (anomalous)
$1510 \quad$ calculated $|\mathrm{F}|$ from density modification methods
1511 calculated phase (in cycles) from density modification methods
1600 normalized structure factor, E1
1601 normalized structure factor, E2
1602 standard deviation of E1
1603 standard deviation of E2
1604 expectation value for $\mathrm{F}_{2}$; assuming random atoms
1605 expectation value for $\mathrm{F}_{2}$; from fragment information
1606-1630 group structure factors in sequence designated by cons
structure factor phase estimate 1 (in cycles) weight of structure factor phase estimate 1 structure factor phase estimate 2 (in cycles)
weight of structure factor phase estimate 32
calculated structure factor phase (in cycles) from 1801 to 1802
scaled corrected relative $|\mathrm{F}| 1701$
scaled relative sigma $|\mathrm{F}| 1305$
least squares refinement status (1=incl.; 2=excl.)
calculated $|\mathrm{F}|$ no dispersion or extinction terms applied
calculated A i.e. $1800 \times$ cosine of 1700 ;
calculated B i.e. 1800 x sine of 1700 ;
calculated real dispersion component $\mathrm{A}(\mathrm{d})$
calculated imag dispersion component $\mathrm{B}(\mathrm{d})$
1801 with dispersion terms included (no extinction terms)
1802 with dispersion terms included (no extinction terms)
translation function coefficient
calculated $|\mathrm{F}|$ with dispersion and extinction applied and scaled square root of least squares weight last used square root of least squares weight1
square root of least squares weight2
square root of least squares weight3
Sim weight for partial structure
relative $|\mathrm{F}|$ corrected for dispersion and extinction (i.e. dispersionand extinction effects removed)

## A.19. 21 thet $(\mathbf{F})$ Precise Angle Data for Cell Dimensions

Packet Size - 6 words

| SEQ | Description |
| :--- | :--- |
| +1 | data set number |
| +2 | h |
| +3 | k |
| +4 | 1 |
| +5 | $2 \theta$ in degrees |
| +6 | wavelength index $(0=$ mean wavelength, $1=\alpha 1,2=\alpha 2)$ |

## A.20. 30 sfls (D) Structure Factor Least Squares Data

Packet Size - Variable

| IDN | Description |
| :--- | :--- |
| 1 | data set number |
| 11 | refinement process description (40 chars) |
| 12 | SFLS weighting scheme description (40 chars) |
| 13 | SFLS extinction process description (40 chars) |
| 14 | SFLS matrix description (40 chars) |
| 15 | SFLS treatment of hydrogen atoms (40 chars) |

> SFLS treatment of absolute structure (40 chars) SFLS extinction equation ( 40 chars) R-value based on $F$ diff for all data R-value based on F diff for rcode 1 data only wR-value based on weighted Y diff for all data wR-value based on weighted Y diff for rcode1 data SFLS goodness of fit parameter for all data SFLS goodness of fit parameter for rcode1 data max SFLS shift/error mean SFLS shift/error Roger's abs. configuration measure NU Flack's abs. configuration measure x refined extinction parameter $g$ or $\rho$ sigma $g$ or $\rho$ sigma for Roger's abs. configuration measure NU sigma for Flack's abs. configuration measure x structure factor coefficient refined (F=1; $\mathrm{F} 2=2 ; \mathrm{I}=3$ ) number of SFLS parameters refined number of SFLS reflections contributed to the matrix number of SFLS restraints applied number of SFLS constraints applied

## A.21. 31 rfac (F) Refinement History

Packet Size - Words needed for 40 characters, plus five words.

## SEQ Description

+1 Current count of SFLS cycles
$+2 \quad \mathrm{R}$ factor ?? $\mathrm{F} / ?|\mathrm{~F}|$ for rcode 1 reflections
$+3 \quad \mathrm{R}$ factor ? w ? $\mathrm{F} / ? \mathrm{w}|\mathrm{F}|$ for rcode 1 reflections
$+4 \quad \mathrm{R}$ factor $? \mathrm{w} ? \mathrm{~F}_{2} / ? \mathrm{w}|\mathrm{F}|_{2}$ for rcode 1 reflections
+5 Goodness of fit ? w? $\mathrm{F}_{2} /$ (Nref-Nvar) for rcode 1 reflections
+6 Title used during least squares run (40 characters)

## A.22. $35 \operatorname{dens}(\mathrm{D})$ Electron Density Data

Packet Size - Variable

## IDN Description

11 min density in final difference map
12
max density in final difference map

## A.23. 40 bond(D) Bond Distances

Packet Size - Variable

## IDN Description

11 atom 1 label
12-14 atom 1 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
15 atom 1 symop number (as in STARTX)
16 atom 1 packed cell translations for origin at 555
21 atom 2 label
22-24 atom 2 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
25 atom 2 symop number
26 atom 2 packed cell translations for origin at 555
91 distance in Angstroms (calculated)
92 e.s.d. of distance (calculated)
93 distance in Angstroms (observed)
94 e.s.d. of distance (observed)
95 weight of restraint
101-112 atom 1 symmetry elements $r_{11} r_{21} r_{31} r_{12} r_{22} r_{23} r_{31} r_{32} r_{33} t_{1} t_{2} t_{3}$
201-212 atom 2 symmetry elements

## A.24. 41 cont (D) Contact Distances

Packet Size - Variable

IDN Description
11 atom 1 label
12-14 atom 1 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
15 atom 1 symop number
16
atom 1 packed cell translations for origin at 555
atom 2 label
atom 2 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
atom 2 symop number
atom 2 packed cell translations for origin at 555
distance in Angstroms
92 e.s.d. of distance
101-112 atom 1 symmetry elements $r_{11} r_{21} r_{31} r_{12} r_{22} r_{23} r_{31} r_{32} r_{33} t_{1} t_{2} t_{3}$
201-212 atom 2 symmetry elements

## A.25. 42 angl (D) Bond Angles

Packet Size - Variable

## IDN Description

11 atom 1 label
12-14 atom 1 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
15 atom 1 symop number
16 atom 1 packed cell translations for origin at 555
21 atom 2 label (at the apex)
22-24 atom 2 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
25 atom 2 symop number
26 atom 2 packed cell translations for origin at 555
31 atom 3 label
32-34 atom 3 fractional coords $x, y, z$

35 atom 3 symop number
36 atom 3 packed cell translations for origin at 555
91 angle in degrees (calculated)
92 e.s.d. of angle (calculated)
93 angle in degrees (observed)
94 e.s.d. of angle (observed)
95 weight of restraint
101-112 atom 1 symmetry elements $r_{11} r_{21} r_{31} r_{12} r_{22} r_{23} r_{31} r_{32} r_{33} t_{1} t_{2} t_{3}$
201-212 atom 2 symmetry elements
301-312 atom 3 symmetry elements

## A.26. 43 dihe (D) Dihedral Angles

Packet Size - Variable

## IDN Description

11 atom 1 label
12-14 atom 1 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
15 atom 1 symop number
16 atom 1 packed cell translations for origin at 555
21 atom 2 label
22-24 atom 2 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
25 atom 2 symop number
26
31
atom 2 packed cell translations for origin at 555
atom 3 label
32-34 atom 3 fractional coords $x, y, z$
35 atom 3 symop number
36 atom 3 packed cell translations for origin at 555
41 atom 4 label
42-44 atom 4 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
45 atom 4 symop number
46 atom 4 packed cell translations for origin at 555
91 angle in degrees (calculated)
92 e.s.d. of angle (calculated)
93 angle in degrees (observed)
94 e.s.d. of angle (observed)
95 weight of restraint
101-112 atom 1 symmetry elements $r_{11} r_{21} r_{31} r_{12} r_{22} r_{23} r_{31} r_{32} r_{33} t_{1} t_{2} t_{3}$
201-212 atom 2 symmetry elements
301-312 atom 3 symmetry elements
401-412 atom 4 symmetry elements

## A.27. 44 rigi(D) Rigid Link Restraint Information

Packet Size - Variable

IDN Description
11 atom 1 label
12-14 atom 1 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$

15 atom 1 symop number
16 atom 1 packed cell translations for origin at 555
21
22-24
atom 2 label
atom 2 fractional coords $\mathrm{x}, \mathrm{y}, \mathrm{z}$
atom 2 symop number
atom 2 packed cell translations for origin at 555
91 calculated rigid link
92 esd of calculated rigid link
93 observed rigid link (O)
94 variance of observed rigid link
95 rigid link weight
101-112 atom 1 symmetry elements $r_{11} r_{21} r_{31} r_{12} r_{22} r_{23} r_{31} r_{32} r_{33} t_{1} t_{2} t_{3}$
201-212
A.28. 65535 endrecord: (F) EOF Record

Packet Size - 0

Appendix A. Archive

## Appendix B. Symmap file

```
#
# table of ralf w. grosse-kunstleve, eth, zuerich.
#
# version june 1995
# updated september 29 1995
# updated july 9 1997
# last updated july 24 1998
data_notation
```

loop_
_monoclinic_extension \# cf. _symmetry_space_group_id
_monoclinic_axis \# cf. it vol. a 1983 sec . 2.16.
_monoclinic_setting \# cf. it vol. a 1983 tab. 2.16.1.
_monoclinic_cellchoice \# cf. it vol. a 1983 sec . 2.16.(i) \& fig. 2.6.4.

| b | b | abc | 1 |
| :---: | :---: | :---: | :---: |
| b1 | b | abc | 1 |
| b2 | b | abc | 2 |
| b3 | b | abc | 3 |
| -b | b | c-ba | 1 |
| -b1 | b | c-ba | 1 |
| -b2 | b | c-ba | 2 |
| -b3 | b | c-ba | 3 |
| c | c | abc | 1 |
| c1 | c | abc | 1 |
| c2 | c | abc | 2 |
| c3 | c | abc | 3 |
| -c | c | ba-c | 1 |
| -c1 | c | ba-c | 1 |
| -c2 | c | ba-c | 2 |
| -c3 | c | ba-c | 3 |
| a | a | abc | 1 |
| a1 | a | abc | 1 |
| a2 | a | abc | 2 |
| a3 | a | abc | 3 |
| -a | a | -acb | 1 |
| -a1 | a | -acb | 1 |
| -a2 | a | -acb | 2 |
| -a3 | a | -acb | 3 |

loop_
_symmetry_space_group_id
_symmetry_space_group_name_sch
_symmetry_space_group_name_h-m \# recognised iucr cif data names
_symmetry_space_group_name_hall \# recognised iucr cif data names

| 1 | $\mathrm{c} 1^{\wedge} 1$ | $p_{-} 1$ | $p_{-} 1$ | \#deprecated Hall symbols |
| :--- | :--- | :--- | :--- | :--- |
| 2 | $\mathrm{ci}^{\wedge} 1$ | $p_{-}-1$ | $-p_{-1}$ |  |
| 3:b | $\mathrm{c} 2^{\wedge} 1$ | $p_{-} 1 \_2 \_1$ | $p_{-} 2 y$ |  |
| $3: b$ | $c 2^{\wedge} 1$ | $p_{-} 2$ | $p_{-} 2 y$ |  |


| 3:c | c2^1 | p_1_1_2 | p_2 |  |
| :---: | :---: | :---: | :---: | :---: |
| 3: ${ }^{\text {a }}$ | c2^1 | p_2_1_1 | p_2x |  |
| 4:b | c2^2 | p_1_21_1 | p_2yb |  |
| 4:b | c2^2 | p_1_21_1 | p_2y1 |  |
| 4:b | c2^2 | p_21 | p_2yb |  |
| 4:c | c2^2 | p_1_1_21 | p_2c |  |
| 4:c | c2^2 | p_1_1_21 | p_21 |  |
| 4:a | c2^2 | p_21_1_1 | p_2xa |  |
| 4:a | c2^2 | p_21_1_1 | p_2x1 |  |
| 5:b1 | c2^3 | c_1_2_1 | c_2y |  |
| 5:b1 | c2^3 | c_2 | c_2y |  |
| 5:b2 | c2^3 | a_1_2_1 | a_2y |  |
| 5:b3 | c2^3 | i_1_2_1 | i_2y |  |
| 5:c1 | c2^3 | a_1_1_2 | a_2 |  |
| 5:c2 | c2^3 | b_1_1_2 | b_2 |  |
| 5:c3 | c2^3 | i_1_1_2 | i_2 |  |
| 5:a1 | c2^3 | b_2_1_1 | b_2x |  |
| 5:a2 | c2^3 | c_2_1_1 | c_2x |  |
| 5:a3 | c2^3 | i_2_1_1 | i_2x |  |
| 6:b | $\mathrm{cs}^{\wedge} 1$ | p_1_m_1 | p_-2y |  |
| 6:b | $\mathrm{cs}^{\wedge} 1$ | p_m | p_-2y |  |
| 6:c | $\mathrm{cs}^{\wedge} 1$ | p_1_1_m | $\mathrm{p}_{-}-2$ |  |
| 6:a | $\mathrm{cs}^{\wedge} 1$ | p_m_1_1 | $\mathrm{p}-2 \mathrm{x}$ |  |
| 7:b1 | $\mathrm{cs}^{\wedge} 2$ | p_1_c_1 | $p_{-}-2 \mathrm{yc}$ |  |
| 7:b1 | $\mathrm{cs}^{\wedge} 2$ | p_c | $\mathrm{p}_{-}-2 \mathrm{yc}$ |  |
| 7:b2 | $\mathrm{cs}^{\wedge} 2$ | p_1_n_1 | p_-2yac |  |
| 7:b2 | $\mathrm{cs}^{\wedge} 2$ | p_n | p_-2yac |  |
| 7:b3 | $\mathrm{cs}^{\wedge} 2$ | p_1_a_1 | p_-2ya |  |
| 7:b3 | $\mathrm{cs}^{\wedge} 2$ | p_a | p_-2ya |  |
| 7:c1 | $\mathrm{cs}^{\wedge} 2$ | p_1_1_a | $\mathrm{p}_{-}-2 \mathrm{a}$ |  |
| 7:c2 | $\mathrm{cs}^{\wedge} 2$ | p_1_1_n | $\mathrm{p}_{-}-2 \mathrm{ab}$ |  |
| 7:c3 | $\mathrm{cs}^{\wedge} 2$ | p_1_1_b | p_-2b |  |
| 7:a1 | $\mathrm{cs}^{\wedge} 2$ | p_b_1_1 | $\mathrm{p}_{-}-2 \mathrm{xb}$ |  |
| 7:a2 | $\mathrm{Cs}^{\wedge} 2$ | p_n_1_1 | $\mathrm{p}-2 \mathrm{xbc}$ |  |
| 7:a3 | $\mathrm{Cs}^{\wedge} 2$ | p_c_1_1 | $\mathrm{p}_{-}-2 \mathrm{xc}$ |  |
| 8:b1 | $\mathrm{cs}^{\wedge} 3$ | c_1_m_1 | c_-2y |  |
| 8:b1 | $\mathrm{cs}^{\wedge} 3$ | c_m | c_-2y |  |
| 8:b2 | $\mathrm{cs}^{\wedge} 3$ | a_1_m_1 | a_-2y |  |
| 8:b3 | $\mathrm{cs}^{\wedge} 3$ | i_1_m_1 | i_-2y |  |
| 8:b3 | $\mathrm{cs}^{\wedge} 3$ | i_m | i_-2y |  |
| 8:c1 | $\mathrm{cs}^{\wedge} 3$ | a_1_1_m | $\mathrm{a}_{-}-2$ |  |
| 8:c2 | $\mathrm{cs}^{\wedge} 3$ | b_1_1_m | $\mathrm{b}_{-}-2$ |  |
| 8:c3 | $\mathrm{cs}^{\wedge} 3$ | i_1_1_m | i_-2 |  |
| 8:a1 | $\mathrm{cs}^{\wedge} 3$ | b_m_1_1 | $\mathrm{b}_{-}-2 \mathrm{x}$ |  |
| 8:a2 | $\mathrm{cs}^{\wedge} 3$ | c_m_1_1 | c_- 2 x |  |
| 8:a3 | $\mathrm{cs}^{\wedge} 3$ | i_m_1_1 | i_-2x |  |
| 9:b1 | $\mathrm{cs}^{\wedge} 4$ | c_1_c_1 | c_-2yc |  |
| 9:b1 | $\mathrm{cs}^{\wedge} 4$ | c_c | c_-2yc |  |
| 9:b2 | $\mathrm{cs}^{\wedge} 4$ | a_1_n_1 | a_-2yab | \# a_-2yac |
| 9:b3 | $\mathrm{cs}^{\wedge} 4$ | i_1_a_1 | i_-2ya |  |
| 9:-b1 | $\mathrm{cs}^{\wedge} 4$ | a_1_a_1 | a_-2ya |  |
| 9:-b2 | $\mathrm{cs}^{\wedge} 4$ | c_1_n_1 | c_-2yac | \# c_-2ybc |
| 9:-b3 | $\mathrm{cs}^{\wedge} 4$ | i_1_c_1 | i_-2yc |  |
| 9:c1 | $\mathrm{cs}^{\wedge} 4$ | a_1_1_a | a_-2a |  |
| 9:c2 | $\mathrm{cs}^{\wedge} 4$ | b_1_1_n | $\mathrm{b}_{-}-2 \mathrm{ab}$ | \# b_-2bc |
| 9:c3 | $\mathrm{cs}^{\wedge} 4$ | i_1_1_b | i_-2b |  |


| 9:-c1 | cs^4 | b_1_1_b | b_-2b |  |
| :---: | :---: | :---: | :---: | :---: |
| 9:-c2 | $\mathrm{cs}^{\wedge} 4$ | a_1_1_n | a_-2ab | \# a_-2ac |
| 9:-c3 | $\mathrm{cs}^{\wedge} 4$ | i_1_1_a | i_-2a |  |
| 9:a1 | $\mathrm{cs}^{\wedge} 4$ | b_b_1_1 | $\mathrm{b}_{-}-2 \mathrm{xb}$ |  |
| 9:a2 | $\mathrm{cs}^{\wedge} 4$ | c_n_1_1 | c_-2xac | \# c_- 2 xbc |
| 9:33 | $\mathrm{cs}^{\wedge} 4$ | i_c_1_1 | i_-2xc |  |
| 9:-a1 | $\mathrm{cs}^{\wedge} 4$ | c_c_1_1 | c_-2xc |  |
| 9:-a2 | $\mathrm{cs}^{\wedge} 4$ | b_n_1_1 | $\mathrm{b}_{-}-2 \mathrm{xab}$ | \# b_-2xbc |
| 9:-a3 | $\mathrm{cs}^{\wedge} 4$ | i_b_1_1 | i_-2xb |  |
| 10:b | $\mathrm{c} 2 \mathrm{~h}^{\wedge} 1$ | p_1_2/m_1 | -p_2y |  |
| 10:b | c2h^1 | p _2/m | -p_2y |  |
| 10:c | c2h^1 | p_1_1_2/m | -p_2 |  |
| 10:a | c2h^1 | p_2/m_1_1 | -p_2x |  |
| 11:b | c2h^2 | p_1_21/m_1 | -p_2yb |  |
| 11:b | c2h^2 | p_1_21/m_1 | -p_2y1 |  |
| 11:b | c2h^2 | p_21/m | -p_2yb |  |
| 11:c | c2h^2 | p_1_1_21/m | -p_2c |  |
| 11:c | c2h^2 | p_1_1_21/m | -p_21 |  |
| 11:a | c2h^2 | p_21/m_1_1 | -p_2xa |  |
| 11:a | c2h^2 | p_21/m_1_1 | -p_2x1 |  |
| 12:b1 | c2h^3 | c_1_2/m_1 | -c_2y |  |
| 12:b1 | c2h^3 | c_2/m | -c_2y |  |
| 12:b2 | c2h^3 | a_1_2/m_1 | -a_2y |  |
| 12:b3 | c2h^3 | i_1_2/m_1 | -i_2y |  |
| 12:b3 | c2h^3 | i_2/m | -i_2y |  |
| 12:c1 | c2h^3 | a_1_1_2/m | -a_2 |  |
| 12:c2 | c2h^3 | b_1_1_2/m | -b_2 |  |
| 12:c3 | c2h^3 | i_1_1_2/m | -i_2 |  |
| 12:a1 | c2h^3 | b_2/m_1_1 | -b_2x |  |
| 12:a2 | c2h^3 | c_2/m_1_1 | -c_2x |  |
| 12:a3 | c2h^3 | i_2/m_1_1 | -i_2x |  |
| 13:b1 | c2h^4 | p_1_2/c_1 | -p_2yc |  |
| 13:b1 | c2h^4 | p _2/c | -p_2yc |  |
| 13:b2 | c2h^4 | p_1_2/n_1 | -p_2yac |  |
| 13:b2 | $\mathrm{c} 2 \mathrm{~h} \wedge 4$ | p_2/n | -p_2yac |  |
| 13:b3 | c2h^4 | p_1_2/a_1 | -p_2ya |  |
| 13:b3 | c2h^4 | p_2/a | -p_2ya |  |
| 13:c1 | c2h^4 | p_1_1_2/a | -p_2a |  |
| 13:c2 | c2h^4 | p_1_1_2/n | -p_2ab |  |
| 13:c3 | $\mathrm{c} 2 \mathrm{~h} \wedge 4$ | p_1_1_2/b | -p_2b |  |
| 13:a1 | c2h^4 | p_2/b_1_1 | -p_2xb |  |
| 13:32 | c2h^4 | p_2/n_1_1 | -p_2xbc |  |
| 13:a3 | c2h^4 | p_2/c_1_1 | -p_2xc |  |
| 14:b1 | c2h^5 | p_1_21/c_1 | -p_2ybc |  |
| 14:b1 | c2h^5 | p_21/c | -p_2ybc |  |
| 14:b2 | c2h^5 | p_1_21/n_1 | -p_2yn |  |
| 14:b2 | c2h^5 | p_21/n | -p_2yn |  |
| 14:b3 | c2h^5 | p_1_21/a_1 | -p_2yab |  |
| 14:b3 | c2h^5 | p_21/a | -p_2yab |  |
| 14:c1 | c2h^5 | p_1_1_21/a | -p_2ac |  |
| 14:c2 | c2h^5 | p_1_1_21/n | -p_2n |  |
| 14:c3 | c2h^5 | p_1_1_21/b | -p_2bc |  |
| 14:a1 | c2h^5 | p_21/b_1_1 | -p_2xab |  |
| 14:a2 | c2h^5 | p_21/n_1_1 | -p_2xn |  |
| 14:a3 | c2h^5 | p_21/c_1_1 | -p_2xac |  |
| 15:b1 | c2h^6 | c_1_2/c_1 | -c_2yc |  |


| 15:b1 | $\mathrm{c} 2 \mathrm{~h} \wedge 6$ | c_2/c | -c_2yc |  |
| :---: | :---: | :---: | :---: | :---: |
| 15:b2 | c2h^6 | a_1_2/n_1 | -a_2yab | \# -a_2yac |
| 15:b3 | c2h^6 | i_1_2/a_1 | -i_2ya |  |
| 15:b3 | c2h^6 | i_2/a | -i_2ya |  |
| 15:-b1 | c2h^6 | a_1_2/a_1 | -a_2ya |  |
| 15:-b2 | c2h^6 | c_1_2/n_1 | -c_2yac | \# -c_2ybc |
| 15:-b2 | c2h^6 | c_2/n | -c_2yac | \# -c_2ybc |
| 15:-b3 | c2h^6 | i_1_2/c_1 | -i_2yc |  |
| 15:-b3 | c2h^6 | i_2/c | -i_2yc |  |
| 15:c1 | c2h^6 | a_1_1_2/a | -a_2a |  |
| 15:c2 | c2h^6 | b_1_1_2/n | -b_2ab | \# -b_2bc |
| 15:c3 | c2h^6 | i_1_1_2/b | -i_2b |  |
| 15:-c1 | c2h^6 | b_1_1_2/b | -b_2b |  |
| 15:-c2 | c2h^6 | a_1_1_2/n | -a_2ab | \# -a_2ac |
| 15:-c3 | c2h^6 | i_1_1_2/a | -i_2a |  |
| 15:a1 | c2h^6 | b_2/b_1_1 | -b_2xb |  |
| 15:a2 | c2h^6 | c_2/n_1_1 | -c_2xac | \# -c_2xbc |
| 15:a3 | c2h^6 | i_2/c_1_1 | -i_2xc |  |
| 15:-a1 | c2h^6 | c_2/c_1_1 | -c_2xc |  |
| 15:-a2 | c2h^6 | b_2/n_1_1 | -b_2xab | \# -b_2xbc |
| 15:-a3 | c2h^6 | i_2/b_1_1 | -i_2xb |  |
| 16 | d2^1 | p_2_2_2 | p_2_2 |  |
| 17 | d2^2 | p_2_2_21 | p_2c_2 |  |
| 17 | d2^2 | p_2_2_21 | p_21_2 |  |
| 17:cab | d2^2 | p_21_2_2 | p_2a_2a |  |
| 17:bca | d2^2 | p_2_21_2 | p_2_2b |  |
| 18 | d2^3 | p_21_21_2 | p_2_2ab |  |
| 18:cab | d2^3 | p_2_21_21 | p_2bc_2 |  |
| 18:bca | d2^3 | p_21_2_21 | p_2ac_2ac |  |
| 19 | d2^4 | p_21_21_21 | p_2ac_2ab |  |
| 20 | d2^5 | c_2_2_21 | c_2c_2 |  |
| 20 | d2^5 | c_2_2_21 | c_21_2 |  |
| 20:cab | d2^5 | a_21_2_2 | a_2a_2a |  |
| 20:cab | d2^5 | a_21_2_2 | a_2a_21 |  |
| 20:bca | d2^5 | b_2_21_2 | b_2_2b |  |
| 21 | d2^6 | c_2_2_2 | c_2_2 |  |
| 21:cab | d2^6 | a_2_2_2 | a_2_2 |  |
| 21:bca | d2^6 | b_2_2_2 | b_2_2 |  |
| 22 | d2^7 | f_2_2_2 | f_2_2 |  |
| 23 | d2^8 | i_2_2_2 | i_2_2 |  |
| 24 | d2^9 | i_21_21_21 | i_2b_2c |  |
| 25 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 1$ | p_m_m_2 | p_2_-2 |  |
| 25:cab | $\mathrm{c} 2 \mathrm{v}^{\wedge} 1$ | p_2_m_m | p_-2_2 |  |
| 25:bca | $\mathrm{c} 2 \mathrm{v}^{\wedge} 1$ | p_m_2_m | p_-2_-2 |  |
| 26 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_m_c_21 | p_2c_-2 |  |
| 26 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_m_c_21 | p_21_-2 |  |
| 26:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_c_m_21 | p_2c_-2c |  |
| 26:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_c_m_21 | p_21_-2c |  |
| 26:cab | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_21_m_a | p_-2a_2a |  |
| 26:-cba | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_21_a_m | $\mathrm{p}_{-}-2 \_2 \mathrm{a}$ |  |
| 26:bca | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_b_21_m | $\mathrm{p}_{-}-2{ }_{-}-2 \mathrm{~b}$ |  |
| 26:a-cb | $\mathrm{c} 2 \mathrm{v}^{\wedge} 2$ | p_m_21_b | $\mathrm{p}_{-}-2 \mathrm{~b}_{-}-2$ |  |
| 27 | $\mathrm{c} 2 \mathrm{v} \wedge 3$ | p_c_c_2 | p_2_-2c |  |
| 27:cab | $\mathrm{c} 2 \mathrm{v} \wedge 3$ | p_2_a_a | $\mathrm{p}-2 \mathrm{a}$ _2 |  |
| 27:bca | $\mathrm{c} 2 \mathrm{v} \wedge 3$ | p_b_2_b | p_-2b_-2b |  |
| 28 | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_m_a_2 | p_2_-2a |  |
| 28 | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_m_a_2 | p_2_-21 |  |


| 28:ba-c | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_b_m_2 | p_2_-2b |
| :---: | :---: | :---: | :---: |
| 28:cab | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_2_m_b | p_-2b_2 |
| 28:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_2_c_m | $\mathrm{p}-2 \mathrm{c}$ - 2 |
| 28:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_2_c_m | p_-21_2 |
| 28:bca | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_c_2_m | $\mathrm{p}_{-}-2 \mathrm{c}_{-}-2 \mathrm{c}$ |
| 28:a-cb | $\mathrm{c} 2 \mathrm{v} \wedge 4$ | p_m_2_a | $p_{-}-2 a_{-}-2 \mathrm{a}$ |
| 29 | $\mathrm{c} 2 \mathrm{v} \wedge 5$ | p_c_a_21 | p_2c_-2ac |
| 29:ba-c | $\mathrm{c} 2 \mathrm{v} \wedge 5$ | p_b_c_21 | p_2c_-2b |
| 29:cab | c2v^5 | p_21_a_b | p_-2b_2a |
| 29:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 5$ | p_21_c_a | p_-2ac_2a |
| 29:bca | $\mathrm{c} 2 \mathrm{v} \wedge 5$ | p_c_21_b | $p_{-}-2 \mathrm{bc} \mathbf{-}^{\text {-2c }}$ |
| 29:a-cb | $\mathrm{c} 2 \mathrm{v} \wedge 5$ | p_b_21_a | $\mathrm{p}_{-}-2 \mathrm{a}-2 \mathrm{ab}$ |
| 30 | c2v^6 | p_n_c_2 | p_2_-2bc |
| 30:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 6$ | p_c_n_2 | p_2_-2ac |
| 30:cab | $\mathrm{c} 2 \mathrm{v}^{\wedge} 6$ | p_2_n_a | p_-2ac_2 |
| 30:-cba | c2v^6 | p_2_a_n | $\mathrm{p}-2 \mathrm{ab} \_2$ |
| 30:bca | $\mathrm{c} 2 \mathrm{v}^{\wedge} 6$ | p_b_2_n | p_-2ab_-2ab |
| 30:a-cb | $\mathrm{c} 2 \mathrm{v} \wedge 6$ | p_n_2_b | p_-2bc_-2bc |
| 31 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 7$ | p_m_n_21 | p_2ac_-2 |
| 31:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 7$ | p_n_m_21 | p_2bc_-2bc |
| 31:cab | $\mathrm{c} 2 \mathrm{v}^{\wedge} 7$ | p_21_m_n | $\mathrm{p}-2 \mathrm{ab} \_2 \mathrm{ab}$ |
| 31:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 7$ | p_21_n_m | p_-2_2ac |
| 31:bca | $\mathrm{c} 2 \mathrm{v} \wedge 7$ | p_n_21_m | p_-2_-2bc |
| 31:a-cb | $\mathrm{c} 2 \mathrm{v}^{\wedge} 7$ | p_m_21_n | p_-2ab_-2 |
| 32 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 8$ | p_b_a_2 | p_2_-2ab |
| 32:cab | $\mathrm{c} 2 \mathrm{v} \wedge 8$ | p_2_c_b | p_-2bc_2 |
| 32:bca | $\mathrm{c} 2 \mathrm{v} \wedge 8$ | p_c_2_a | p_-2ac_-2ac |
| 33 | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_n_a_21 | p_2c_-2n |
| 33 | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_n_a_21 | p_21_-2n |
| 33:ba-c | c2v^9 | p_b_n_21 | p_2c_-2ab |
| 33:ba-c | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_b_n_21 | p_21_-2ab |
| 33:cab | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_21_n_b | p_-2bc_2a |
| 33:cab | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_21_n_b | p_-2bc_21 |
| 33:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_21_c_n | $\mathrm{p}-2 \mathrm{n} \_2 \mathrm{a}$ |
| 33:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_21_c_n | p - $2 \mathrm{n} \_21$ |
| 33:bca | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_c_21_n | $\mathrm{p}_{-}-2 \mathrm{n}_{-}-2 \mathrm{ac}$ |
| 33:a-cb | $\mathrm{c} 2 \mathrm{v} \wedge 9$ | p_n_21_a | $p_{-}-2 \mathrm{ac}_{-}-2 \mathrm{n}$ |
| 34 | $c 2 \mathrm{v}^{\wedge} 10$ | p_n_n_2 | p_2_-2n |
| 34:cab | c2v^10 | p_2_n_n | $\mathrm{p}-2 \mathrm{n}$ _2 |
| 34:bca | c $2 \mathrm{v}^{\wedge} 10$ | p_n_2_n | $\mathrm{p}_{-}-2 \mathrm{n}_{-}-2 \mathrm{n}$ |
| 35 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 11$ | c_m_m_2 | c_2_-2 |
| 35:cab | $\mathrm{c} 2 \mathrm{v}^{\wedge} 11$ | a_2_m_m | a_-2_2 |
| 35:bca | c 2 v ^11 | b_m_2_m | $\mathrm{b}_{-}-2$ - 2 |
| 36 | c 2 v ^12 | c_m_c_21 | c_2c_-2 |
| 36 | c $2 \mathrm{v}^{\wedge} 12$ | c_m_c_21 | c_21_-2 |
| 36:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 12$ | c_c_m_21 | c_2c_-2c |
| 36:ba-c | c 2 v ^12 | c_c_m_21 | c_21_-2c |
| 36:cab | c $2 \mathrm{v}^{\wedge} 12$ | a_21_m_a | a_-2a_2a |
| 36:cab | c 2 v ^12 | a_21_m_a | a_-2a_21 |
| 36:-cba | c 2 v ^12 | a_21_a_m | a_-2_2a |
| 36:-cba | c2v^12 | a_21_a_m | a_-2_21 |
| 36:bca | c2v^12 | b_b_21_m | $\mathrm{b}_{-}-2$ - 2 b |
| 36:a-cb | c $2 \mathrm{v}^{\wedge} 12$ | b_m_21_b | $\mathrm{b}_{-}-2 \mathrm{~b}-2$ |
| 37 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 13$ | c_c_c_2 | c_2_-2c |
| 37:cab | c $2 \mathrm{v}^{\wedge} 13$ | a_2_a_a | $\mathrm{a}-2 \mathrm{a}$-2 |
| 37:bca | c2v^13 | b_b_2_b | $\mathrm{b}_{-}-2 \mathrm{~b}-2 \mathrm{~b}$ |


| 38 | $\mathrm{c} 2 \mathrm{v} \wedge 14$ | a_m_m_2 | a_2_-2 |  |
| :---: | :---: | :---: | :---: | :---: |
| 38:ba-c | c2v^14 | b_m_m_2 | b_2_-2 |  |
| 38:cab | c $2 \mathrm{v} \wedge 14$ | b_2_m_m | b_-2_2 |  |
| 38:-cba | c2v^14 | c_2_m_m | c_-2_2 |  |
| 38:bca | c $2 \mathrm{v} \wedge 14$ | c_m_2_m | c_-2_-2 |  |
| 38:a-cb | c $2 \mathrm{v} \wedge 14$ | a_m_2_m | a_-2_-2 |  |
| 39 | c 2 v ^15 | a_b_m_2 | a_2_-2c |  |
| 39:ba-c | $\mathrm{c} 2 \mathrm{v} \wedge 15$ | b_m_a_2 | b_2_-2a | \# b_2_-2c |
| 39:cab | c 2 v ^15 | b_2_c_m | b_-2a_2 | \# b_-2c_2 |
| 39:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 15$ | c_2_m_b | c_-2a_2 | \# c_-2b_2 |
| 39:bca | c 2 v ^15 | c_m_2_a | c_-2a_-2a | \# c_-2b_-2b |
| 39:a-cb | c 2 v ^15 | a_c_2_m | a_-2c_-2c |  |
| 40 | c $2 \mathrm{v}^{\wedge} 16$ | a_m_a_2 | a_2_-2a |  |
| 40:ba-c | c $2 \mathrm{v} \wedge 16$ | b_b_m_2 | b_2_-2b |  |
| 40:cab | c $2 \mathrm{v} \wedge 16$ | b_2_m_b | b_-2b_2 |  |
| 40:-cba | c2v^16 | c_2_c_m | c_-2c_2 |  |
| 40:bca | c $2 \mathrm{v} \wedge 16$ | c_c_2_m | c_-2c_-2c |  |
| 40:a-cb | c $2 \mathrm{v} \wedge 16$ | a_m_2_a | a_-2a_-2a |  |
| 41 | $\mathrm{c} 2 \mathrm{v}^{\wedge} 17$ | a_b_a_2 | a_2_-2ab | \# a_2_-2ac |
| 41:ba-c | c2v^17 | b_b_a_2 | b_2_-2ab | \# b_2_-2bc |
| 41:cab | $\mathrm{c} 2 \mathrm{v} \wedge 17$ | b_2_c_b | $\mathrm{b}-2 \mathrm{ab} \_2$ | \# b_-2bc_2 |
| 41:-cba | $\mathrm{c} 2 \mathrm{v} \wedge 17$ | c_2_c_b | c_-2ac_2 | \# c_-2bc_2 |
| 41:bca | c 2 v ^17 | c_c_2_a | c_-2ac_-2ac | \# c_-2bc_-2bc |
| 41:a-cb | c $2 \mathrm{v} \wedge 17$ | a_c_2_a | a_-2ab_-2ab | \# a_-2ac_-2ac |
| 42 | c $2 \mathrm{v} \wedge 18$ | f _m_m_2 | f_2_-2 |  |
| 42:cab | c2v^18 | f _2_m_m | f_-2_2 |  |
| 42:bca | c2v^18 | f_m_2_m | f_-2_-2 |  |
| 43 | c2v^19 | f_d_d_2 | f_2_-2d |  |
| 43:cab | c2v^19 | f_2_d_d | $\mathrm{f}-2 \mathrm{~d}$-2 |  |
| 43:bca | c2v^19 | f_d_2_d | f_-2d_-2d |  |
| 44 | c2v^20 | i_m_m_2 | i_2_-2 |  |
| 44:cab | c 2 v ^20 | i_2_m_m | i_-2_2 |  |
| 44:bca | c2v^20 | i_m_2_m | i_-2_-2 |  |
| 45 | c 2 v ^21 | i_b_a_2 | i_2_-2c |  |
| 45:cab | c 2 v ^21 | i_2_c_b | i_-2a_2 |  |
| 45:bca | c 2 v ^21 | i_c_2_a | i_-2b_-2b |  |
| 46 | c 2 v ^22 | i_m_a_2 | i_2_-2a |  |
| 46:ba-c | $\mathrm{c} 2 \mathrm{v}^{\wedge} 22$ | i_b_m_2 | i_2_-2b |  |
| 46:cab | c 2 v ^22 | i_2_m_b | i_-2b_2 |  |
| 46:-cba | c 2 v ^22 | i_2_c_m | i_-2c_2 |  |
| 46:bca | c 2 v ^22 | i_c_2_m | i_-2c_-2c |  |
| 46:a-cb | c 2 v ^22 | i_m_2_a | i_-2a_-2a |  |
| 47 | d 2 h ^1 | p_m_m_m | -p_2_2 |  |
| 48:1 | d2h^2 | p_n_n_n:1 | p_2_2_-1n |  |
| 48:2 | d2h^2 | p_n_n_n:2 | -p_2ab_2bc |  |
| 49 | d2h^3 | p_c_c_m | -p_2_2c |  |
| 49:cab | d2h^3 | p_m_a_a | -p_2a_2 |  |
| 49:bca | d2h^3 | p_b_m_b | -p_2b_2b |  |
| 50:1 | d2h^4 | p_b_a_n:1 | p _2_2_-1ab |  |
| 50:2 | $\mathrm{d} 2 \mathrm{~h}{ }^{\wedge} 4$ | p_b_a_n:2 | -p_2ab_2b |  |
| 50:1cab | $\mathrm{d} 2 \mathrm{~h} \wedge 4$ | p_n_c_b:1 | p_2_2_-1bc |  |
| 50:2cab | $\mathrm{d} 2 \mathrm{~h} \wedge 4$ | p_n_c_b:2 | -p_2b_2bc |  |
| 50:1bca | d2h^4 | p_c_n_a:1 | p_2_2_-1ac |  |
| 50:2bca | d2h^4 | p_c_n_a:2 | -p_2a_2c |  |
| 51 | d2h^5 | p_m_m_a | -p_2a_2a |  |
| 51:ba-c | d2h^5 | p_m_m_b | -p_2b_2 |  |
| 51:cab | d2h^5 | p_b_m_m | -p_2_2b |  |
| 51:-cba | d2h^5 | p_c_m_m | -p_2c_2c |  |


| 51:bca | d2h^5 | p_m_c_m | -p_2c_2 |
| :---: | :---: | :---: | :---: |
| 51:a-cb | d2h^5 | p_m_a_m | -p_2_2a |
| 52 | d2h^6 | p_n_n_a | -p_2a_2bc |
| 52:ba-c | d2h^6 | p_n_n_b | -p_2b_2n |
| 52:cab | d2h^6 | p_b_n_n | -p_2n_2b |
| 52:-cba | d2h^6 | p_c_n_n | -p_2ab_2c |
| 52:bca | d2h^6 | p_n_c_n | -p_2ab_2n |
| 52:a-cb | d2h^6 | p_n_a_n | -p_2n_2bc |
| 53 | d2h^7 | p_m_n_a | -p_2ac_2 |
| 53:ba-c | d2h^7 | p_n_m_b | -p_2bc_2bc |
| 53:cab | d2h^7 | p_b_m_n | -p_2ab_2ab |
| 53:-cba | d2h^7 | p_c_n_m | -p_2_2ac |
| 53:bca | d2h^7 | p_n_c_m | -p_2_2bc |
| 53:a-cb | d2h^7 | p_m_a_n | -p_2ab_2 |
| 54 | d2h ${ }^{\wedge} 8$ | p_c_c_a | -p_2a_2ac |
| 54:ba-c | d2h ${ }^{\wedge} 8$ | p_c_c_b | -p_2b_2c |
| 54:cab | d2h^8 | p_b_a_a | -p_2a_2b |
| 54:-cba | d2h $\wedge^{\wedge} 8$ | p_c_a_a | -p_2ac_2c |
| 54:bca | d2h ${ }^{\wedge} 8$ | p_b_c_b | -p_2bc_2b |
| 54:a-cb | d2h ${ }^{\wedge} 8$ | p_b_a_b | -p_2b_2ab |
| 55 | d2h^9 | p_b_a_m | -p_2_2ab |
| 55:cab | d2h^9 | p_m_c_b | -p_2bc_2 |
| 55:bca | d2h^9 | p_c_m_a | -p_2ac_2ac |
| 56 | $\mathrm{d} 2 \mathrm{~h} \wedge 10$ | p_c_c_n | -p_2ab_2ac |
| 56:cab | d2h^10 | p_n_a_a | -p_2ac_2bc |
| 56:bca | d2h^10 | p_b_n_b | -p_2bc_2ab |
| 57 | d2h^11 | p_b_c_m | -p_2c_2b |
| 57:ba-c | d2h^11 | p_c_a_m | -p_2c_2ac |
| 57:cab | $\mathrm{d} 2 \mathrm{~h} \wedge 11$ | p_m_c_a | -p_2ac_2a |
| 57:-cba | d2h^11 | p_m_a_b | -p_2b_2a |
| 57:bca | d2h^11 | p_b_m_a | -p_2a_2ab |
| 57:a-cb | $\mathrm{d} 2 \mathrm{~h} \wedge 11$ | p_c_m_b | -p_2bc_2c |
| 58 | $\mathrm{d} 2 \mathrm{~h} \wedge 12$ | p_n_n_m | -p_2_2n |
| 58:cab | $\mathrm{d} 2 \mathrm{~h} \wedge 12$ | p_m_n_n | -p_2n_2 |
| 58:bca | $\mathrm{d} 2 \mathrm{~h} \wedge 12$ | p_n_m_n | -p_2n_2n |
| 59:1 | d2h^13 | p_m_m_n:1 | p_2_2ab_-1ab |
| 59:2 | d2h^13 | p_m_m_n:2 | -p_2ab_2a |
| 59:1cab | d2h^13 | p_n_m_m:1 | p_2bc_2_-1bc |
| 59:2cab | $\mathrm{d} 2 \mathrm{~h} \wedge 13$ | p_n_m_m:2 | -p_2c_2bc |
| 59:1bca | d2h^13 | p_m_n_m:1 | p_2ac_2ac_-1ac |
| 59:2bca | d2h^13 | p_m_n_m:2 | -p_2c_2a |
| 60 | d2h^14 | p_b_c_n | -p_2n_2ab |
| 60:ba-c | d2h^14 | p_c_a_n | -p_2n_2c |
| 60:cab | $\mathrm{d} 2 \mathrm{~h} \wedge 14$ | p_n_c_a | -p_2a_2n |
| 60:-cba | $\mathrm{d} 2 \mathrm{~h} \wedge 14$ | p_n_a_b | -p_2bc_2n |
| 60:bca | d2h^14 | p_b_n_a | -p_2ac_2b |
| 60:a-cb | d2h^14 | p_c_n_b | -p_2b_2ac |
| 61 | d2h^15 | p_b_c_a | -p_2ac_2ab |
| 61:ba-c | d2h^15 | p_c_a_b | -p_2bc_2ac |
| 62 | $\mathrm{d} 2 \mathrm{~h} \wedge 16$ | p_n_m_a | -p_2ac_2n |
| 62:ba-c | d2h^16 | p_m_n_b | -p_2bc_2a |
| 62:cab | d2h^16 | p_b_n_m | -p_2c_2ab |
| 62:-cba | d2h^16 | p_c_m_n | -p_2n_2ac |
| 62:bca | d2h^16 | p_m_c_n | -p_2n_2a |
| 62:a-cb | d2h^16 | p_n_a_m | -p_2c_2n |


| 63 | d2h^17 | c_m_c_m | -c_2c_2 |  |
| :---: | :---: | :---: | :---: | :---: |
| 63:ba-c | d2h^17 | c_c_m_m | -c_2c_2c |  |
| 63:cab | d2h^17 | a_m_m_a | -a_2a_2a |  |
| 63:-cba | d2h^17 | a_m_a_m | -a_2_2a |  |
| 63:bca | d2h^17 | b_b_m_m | -b_2_2b |  |
| 63:a-cb | d2h^17 | b_m_m_b | -b_2b_2 |  |
| 64 | d2h^18 | c_m_c_a | -c_2ac_2 | \# -c_2bc_2 |
| 64:ba-c | d2h^18 | c_c_m_b | -c_2ac_2ac | \# -c_2bc_2bc |
| 64:cab | d2h^18 | a_b_m_a | -a_2ab_2ab | \# -a_2ac_2ac |
| 64:-cba | d2h^18 | a_c_a_m | -a_2_2ab | \# -a_2_2ac |
| 64:bca | d2h^18 | b_b_c_m | -b_2_2ab | \# -b_2_2bc |
| 64:a-cb | d2h^18 | b_m_a_b | -b_2ab_2 | \# -b_2bc_2 |
| 65 | d2h^19 | c_m_m_m | -c_2_2 |  |
| 65:cab | d2h^19 | a_m_m_m | -a_2_2 |  |
| 65:bca | d2h^19 | b_m_m_m | -b_2_2 |  |
| 66 | d2h^20 | c_c_c_m | -c_2_2c |  |
| 66:cab | d2h^20 | a_m_a_a | -a_2a_2 |  |
| 66:bca | d2h^20 | b_b_m_b | -b_2b_2b |  |
| 67 | d2h^21 | c_m_m_a | -c_2a_2 | \# -c_2b_2 |
| 67:ba-c | d2h^21 | c_m_m_b | -c_2a_2a | \# -c_2b_2b |
| 67:cab | d2h^21 | a_b_m_m | -a_2b_2b | \# -a_2c_2c |
| 67:-cba | d2h^21 | a_c_m_m | -a_2_2c |  |
| 67:bca | d2h^21 | b_m_c_m | -b_2_2a | \# -b_2_2c |
| 67:a-cb | d2h^21 | b_m_a_m | -b_2a_2 | \# -b_2c_2 |
| 68:1 | d2h^22 | c_c_c_a:1 | c_2_2_-1ac | \# c_2_2_-1bc |
| 68:2 | d2h^22 | c_c_c_a:2 | -c_2a_2ac | \# -c_2b_2bc |
| 68:1ba-c | d2h^22 | c_c_c_b: 1 | c_2_2_-1ac | \# c_2_2_-1bc |
| 68:2ba-c | d2h^22 | c_c_c_b:2 | -c_2a_2c | \# -c_2b_2c |
| 68:1cab | d2h^22 | a_b_a_a:1 | a_2_2_-1ab | \# a_2_2_-1ac |
| 68:2cab | d2h^22 | a_b_a_a:2 | -a_2a_2c |  |
| 68:1-cba | d2h^22 | a_c_a_a:1 | a_2_2_-1ab | \# a_2_2_-1 ac |
| 68:2-cba | d2h^22 | a_c_a_a:2 | -a_2ab_2b | \# -a_2ac_2c |
| 68:1bca | d2h^22 | b_b_c_b:1 | $\mathrm{b} \_2 \_2$ - 1 ab | \# b_2_2_-1bc |
| 68:2bca | d2h^22 | b_b_c_b:2 | -b_2ab_2b | \# -b_2bc_2b |
| 68:1a-cb | d2h^22 | b_b_a_b:1 | $\mathrm{b} \_2 \_2 \_-1 \mathrm{ab}$ | \# b_2_2_-1bc |
| 68:2a-cb | d2h^22 | b_b_a_b:2 | -b_2b_2ab | \# -b_2b_2bc |
| 69 | d2h^23 | f_m_m_m | -f_2_2 |  |
| 70:1 | d2h^24 | f_d_d_d:1 | f_2_2_-1d |  |
| 70:2 | d2h^24 | f_d_d_d:2 | -f_2uv_2vw |  |
| 71 | d2h^25 | i_m_m_m | -i_2_2 |  |
| 72 | d2h^26 | i_b_a_m | -i_2_2c |  |
| 72:cab | d2h^26 | i_m_c_b | -i_2a_2 |  |
| 72:bca | d2h^26 | i_c_m_a | -i_2b_2b |  |
| 73 | d2h^27 | i_b_c_a | -i_2b_2c |  |
| 73:ba-c | d2h^27 | i_c_a_b | -i_2a_2b |  |
| 74 | d2h^28 | i_m_m_a | -i_2b_2 |  |
| 74:ba-c | d2h^28 | i_m_m_b | -i_2a_2a |  |
| 74:cab | d2h^28 | i_b_m_m | -i_2c_2c |  |
| 74:-cba | d2h^28 | i_c_m_m | -i_2_2b |  |
| 74:bca | d2h^28 | i_m_c_m | -i_2_2a |  |
| 74:a-cb | d2h^28 | i_m_a_m | -i_2c_2 |  |
| 75 | c4^1 | p_4 | p_4 |  |
| 76 | c4^2 | p_41 | p_4w |  |
| 76 | c4^2 | p_41 | p_41 |  |
| 77 | c4^3 | p_42 | p_4c |  |
| 77 | c4^3 | p_42 | p_42 |  |
| 78 | c4^4 | p_43 | p_4cw |  |
| 78 | c4^4 | p_43 | p_43 |  |
| 79 | c4^5 | i_4 | i_4 |  |


| 80 | c4^ 6 | i_41 | i_4bw |
| :---: | :---: | :---: | :---: |
| 81 | s4^1 | $\mathrm{p}_{-}-4$ | $\mathrm{p}_{-}-4$ |
| 82 | s4^2 | i_-4 | i_-4 |
| 83 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 1$ | p_4/m | -p_4 |
| 84 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 2$ | p_42/m | -p_4c |
| 84 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 2$ | p_42/m | -p_42 |
| 85:1 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 3$ | p_4/n:1 | p_4ab_-1ab |
| 85:2 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 3$ | p_4/n:2 | -p_4a |
| 86:1 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 4$ | p_42/n:1 | p_4n_-1n |
| 86:2 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 4$ | p_42/n:2 | -p_4bc |
| 87 | c4h^5 | i_4/m | -i_4 |
| 88:1 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 6$ | i_41/a:1 | i_4bw_-1bw |
| 88:2 | $\mathrm{c} 4 \mathrm{~h}^{\wedge} 6$ | i_41/a:2 | -i_4ad |
| 89 | d4^1 | p_4_2_2 | p_4_2 |
| 90 | $\mathrm{d} 4 \wedge 2$ | p_4_21_2 | p_4ab_2ab |
| 91 | d4^ 3 | p_41_2_2 | p_4w_2c |
| 91 | d4^3 | p_41_2_2 | p_41_2c |
| 92 | $\mathrm{d} 4 \wedge 4$ | p_41_21_2 | p_4abw_2nw |
| 93 | d4^5 | p_42_2_2 | p_4c_2 |
| 93 | d4^5 | p_42_2_2 | p_42_2 |
| 94 | d4^ 6 | p_42_21_2 | p - 4 n _ 2 n |
| 95 | $\mathrm{d} 4 \wedge 7$ | p_43_2_2 | p_4cw_2c |
| 95 | d4^7 | p_43_2_2 | p_43_2c |
| 96 | d4^8 | p_43_21_2 | p_4nw_2abw |
| 97 | d4^9 | i_4_2_2 | i_4_2 |
| 98 | d4^10 | i_41_2_2 | i_4bw_2bw |
| 99 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 1$ | p_4_m_m | p_4_-2 |
| 100 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 2$ | p_4_b_m | p_4_-2ab |
| 101 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 3$ | p_42_c_m | p_4c_-2c |
| 101 | c4v^3 | p_42_c_m | p_42_-2c |
| 102 | $\mathrm{c} 4 \mathrm{v} \wedge 4$ | p_42_n_m | $\mathrm{p} \_4 \mathrm{n}$ - -2 n |
| 103 | c4v^5 | p_4_c_c | p_4_-2c |
| 104 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 6$ | p_4_n_c | p_4_-2n |
| 105 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 7$ | p_42_m_c | p_4c_-2 |
| 105 | c4v^7 | p_42_m_c | p_42_-2 |
| 106 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 8$ | p_42_b_c | p_4c_-2ab |
| 106 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 8$ | p_42_b_c | p_42_-2ab |
| 107 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 9$ | i_4_m_m | i_4_-2 |
| 108 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 10$ | i_4_c_m | i_4_-2c |
| 109 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 11$ | i_41_m_d | i_4bw_-2 |
| 110 | $\mathrm{c} 4 \mathrm{v}^{\wedge} 12$ | i_41_c_d | i_4bw_-2c |
| 111 | $\mathrm{d} 2 \mathrm{~d}^{\wedge} 1$ | p_-4_2_m | $\mathrm{p}-4 \_2$ |
| 112 | $\mathrm{d} 2 \mathrm{~d}^{\wedge} 2$ | p_-4_2_c | p_-4_2c |
| 113 | d2d^3 | p_-4_21_m | p_-4_2ab |
| 114 | $\mathrm{d} 2 \mathrm{~d}^{\wedge} 4$ | p_-4_21_c | $\mathrm{p}-4 \_2 \mathrm{n}$ |
| 115 | d2d^5 | p_-4_m_2 | $\mathrm{p}_{-}-4-2$ |
| 116 | d2d^6 | p_-4_c_2 | $\mathrm{p}_{-}-4-2 \mathrm{c}$ |
| 117 | $\mathrm{d} 2 \mathrm{~d}^{\wedge} 7$ | p_-4_b_2 | $p_{-}-4-2 \mathrm{ab}$ |
| 118 | d2d^8 | p_-4_n_2 | $\mathrm{p}_{-}-4-2 \mathrm{n}$ |
| 119 | d2d^9 | i_-4_m_2 | i_-4_-2 |
| 120 | d2d^10 | i_-4_c_2 | i_-4_-2c |
| 121 | d2d^11 | i_-4_2_m | i_-4_2 |
| 122 | $\mathrm{d} 2 \mathrm{~d}^{\wedge} 12$ | i_-4_2_d | i_-4_2bw |
| 123 | d4h^1 | p_4/m_m_m | -p_4_2 |
| 124 | d4h^2 | p_4/m_c_c | -p_4_2c |
| 125:1 | d44 ${ }^{\wedge} 3$ | p_4/n_b_m:1 | p_4_2_-1ab |


| 125:2 | d4 $h^{\wedge}$ 3 | p_4/n_b_m:2 | -p_4a_2b |  |
| :---: | :---: | :---: | :---: | :---: |
| 126:1 | d4 $\mathrm{h}^{\wedge} 4$ | p_4/n_n_c: 1 | p_4_2_-1n |  |
| 126:2 | d4 $\mathrm{h}^{\wedge}$ 4 | p_4/n_n_c:2 | -p_4a_2bc |  |
| 127 | d4h^5 | p_4/m_b_m | -p_4_2ab |  |
| 128 | d4h^6 | p_4/m_n_c | -p_4_2n |  |
| 129:1 | d4h^7 | $\mathrm{p} \_4 / \mathrm{n}$ _m_m:1 | p_4ab_2ab_-1ab |  |
| 129:2 | d4h^7 | p_4/n_m_m:2 | -p_4a_2a |  |
| 130:1 | d4h^8 | p_4/n_c_c: 1 | p_4ab_2n_-1ab |  |
| 130:2 | d4h^8 | p_4/n_c_c:2 | -p_4a_2ac |  |
| 131 | d44 ${ }^{\wedge}$ 9 | p_42/m_m_c | -p_4c_2 |  |
| 132 | d4h^10 | p_42/m_c_m | -p_4c_2c |  |
| 133:1 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 11$ | p_42/n_b_c: 1 | p_4n_2c_-1n |  |
| 133:2 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 11$ | p_42/n_b_c:2 | -p_4ac_2b |  |
| 134:1 | $\mathrm{d} 4 \mathrm{~h} \wedge 12$ | p_42/n_n_m:1 | p_4n_2_-1n |  |
| 134:2 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 12$ | p_42/n_n_m:2 | -p_4ac_2bc |  |
| 135 | d4h^13 | p_42/m_b_c | -p_4c_2ab |  |
| 135 | d4h^13 | p_42/m_b_c | -p_42_2ab |  |
| 136 | $\mathrm{d} 4 \mathrm{~h} \wedge 14$ | p_42/m_n_m | -p_4n_2n |  |
| 137:1 | $\mathrm{d} 4 \mathrm{~h} \wedge 15$ | p_42/n_m_c: 1 | p_4n_2n_-1n |  |
| 137:2 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 15$ | p_42/n_m_c:2 | -p_4ac_2a |  |
| 138:1 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 16$ | p_42/n_c_m: 1 | p_4n_2ab_-1n |  |
| 138:2 | d4h^16 | p_42/n_c_m: 2 | -p_4ac_2ac |  |
| 139 | d4h^17 | i_4/m_m_m | -i_4_2 |  |
| 140 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 18$ | i_4/m_c_m | -i_4_2c |  |
| 141:1 | d4h^19 | i_41/a_m_d:1 | i_4bw_2bw_-1bw |  |
| 141:2 | d4h^19 | i_41/a_m_d:2 | -i_4bd_2 |  |
| 142:1 | $\mathrm{d} 4 \mathrm{~h}^{\wedge} 20$ | i_41/a_c_d:1 | i_4bw_2aw_-1bw |  |
| 142:2 | d4h^20 | i_41/a_c_d:2 | -i_4bd_2c |  |
| 143 | c3^1 | p_3 | p_3 |  |
| 144 | c3^2 | p_31 | p_31 |  |
| 145 | c3^3 | p_32 | p_32 |  |
| 146:h | c3^4 | r_3:h | r_3 |  |
| 146:r | c3^4 | r_3:r | p_3* |  |
| 147 | c3i^1 | $\mathrm{p}_{-}-3$ | -p_3 |  |
| 148:h | c3i^2 | $\mathrm{r}_{-}-3: \mathrm{h}$ | -r_3 |  |
| 148:r | c3i^2 | r_-3:r | -p_3* |  |
| 149 | d3^1 | p_3_1_2 | p_3_2 |  |
| 150 | d3^2 | p_3_2_1 | p_3_2" |  |
| 151 | d3^3 | p_31_1_2 | p_31_2_(0_0_4) | \# p_31_2c_(0_0_1) |
| 152 | d3^4 | p_31_2_1 | p_31_2" |  |
| 153 | d3^5 | p_32_1_2 | p_32_2_(0_0_2) | \# p_32_2c_(0_0_-1) |
| 154 | d3^ 6 | p_32_2_1 | p_32_2" |  |
| 155:h | d3^7 | r_3_2:h | r_3_2" |  |
| 155:r | d3^7 | r_3_2:r | p_3*_2 |  |
| 156 | c3v^1 | p_3_m_1 | p_3_-2" |  |
| 157 | c3v^2 | p_3_1_m | p_3_-2 |  |
| 158 | $\mathrm{c} 3 \mathrm{v}^{\wedge} 3$ | p_3_c_1 | p_3_-2"c |  |
| 159 | c3v^4 | p_3_1_c | p_3_-2c |  |
| 160:h | c3v^5 | r_3_m:h | r_3_-2" |  |
| 160:r | $\mathrm{c} 3 \mathrm{v}^{\wedge} 5$ | r_3_m:r | p_3*_-2 |  |
| 161:h | c3v^6 | r_3_c:h | r_3_-2"c |  |
| 161:r | $\mathrm{c} 3 \mathrm{v}^{\wedge} 6$ | r_3_c:r | p_3*_-2n |  |
| 162 | $\mathrm{d} 3 \mathrm{~d}^{\wedge} 1$ | p_-3_1_m | -p_3_2 |  |
| 163 | $\mathrm{d} 3 \mathrm{~d}^{\wedge} 2$ | p_-3_1_c | -p_3_2c |  |
| 164 | $\mathrm{d} 3 \mathrm{~d}^{\wedge} 3$ | p_-3_m_1 | -p_3_2" |  |
| 165 | d3d^4 | p_-3_c_1 | -p_3_2"c |  |


| 166:h | d3d^5 | r_-3_m:h | -r_3_2" |  |
| :---: | :---: | :---: | :---: | :---: |
| 166:r | d3d^5 | r_-3_m:r | -p_3*_2 |  |
| 167:h | d3d^6 | r_-3_c:h | -r_3_2"c |  |
| 167:r | d3d^6 | r_-3_c:r | -p_3*_2n |  |
| 168 | c6^1 | p_6 | p_6 |  |
| 169 | c6^2 | p_61 | p_61 |  |
| 170 | c6^3 | p_65 | p_65 |  |
| 171 | c6^4 | p_62 | p_62 |  |
| 172 | c6^5 | p_64 | p_64 |  |
| 173 | c6^6 | p_63 | p_6c |  |
| 173 | c6^6 | p_63 | p_63 |  |
| 174 | c3h^1 | p_-6 | p_-6 |  |
| 175 | c6h^1 | p_6/m | -p_6 |  |
| 176 | c6h^2 | p_63/m | -p_6c |  |
| 176 | c6h^2 | p_63/m | -p_63 |  |
| 177 | d6^1 | p_6_2_2 | p_6_2 |  |
| 178 | d6^2 | p_61_2_2 | p_61_2_(0_0_5) | \# p_61_2_(0_0_-1) |
| 179 | d6^3 | p_65_2_2 | p_65_2_(0_0_1) |  |
| 180 | d6^4 | p_62_2_2 | p_62_2_(0_0_4) | \# p_62_2c_(0_0_1) |
| 181 | d6^5 | p_64_2_2 | p_64_2_(0_0_2) | \# p_64_2c_(0_0_-1) |
| 182 | d6^6 | p_63_2_2 | p_6c_2c |  |
| 182 | d6^6 | p_63_2_2 | p_63_2c |  |
| 183 | c6v^1 | p_6_m_m | p_6_-2 |  |
| 184 | c6v^2 | p_6_c_c | p_6_-2c |  |
| 185 | c6v^3 | p_63_c_m | p_6c_-2 |  |
| 185 | c6v^3 | p_63_c_m | p_63_-2 |  |
| 186 | c6v^4 | p_63_m_c | p_6c_-2c |  |
| 186 | c6v^4 | p_63_m_c | p_63_-2c |  |
| 187 | d3h^1 | p_-6_m_2 | p_-6_2 |  |
| 188 | d3h^2 | p_-6_c_2 | p_-6c_2 |  |
| 189 | d3h^3 | p_-6_2_m | p_-6_-2 |  |
| 190 | d3h^4 | p_-6_2_c | p_-6c_-2c |  |
| 191 | d6h^1 | p_6/m_m_m | -p_6_2 |  |
| 192 | d6h^2 | p_6/m_c_c | -p_6_2c |  |
| 193 | d6h^3 | p_63/m_c_m | -p_6c_2 |  |
| 193 | d6h^3 | p_63/m_c_m | -p_63_2 |  |
| 194 | d6h^4 | p_63/m_m_c | -p_6c_2c |  |
| 194 | d6h^4 | p_63/m_m_c | -p_63_2c |  |
| 195 | $\mathrm{t}^{\wedge} 1$ | p_2_3 | p_2_2_3 |  |
| 196 | $\mathrm{t}^{\wedge} 2$ | f_2_3 | f_2_2_3 |  |
| 197 | $\mathrm{t}^{\wedge} 3$ | i_2_3 | i_2_2_3 |  |
| 198 | $\mathrm{t}^{\wedge} 4$ | p_21_3 | p_2ac_2ab_3 |  |
| 199 | $\mathrm{t}^{\wedge} 5$ | i_21_3 | i_2b_2c_3 |  |
| 200 | th^1 | p_m_-3 | -p_2_2_3 |  |
| 201:1 | th^2 | p_n_-3:1 | p_2_2_3_-1n |  |
| 201:2 | th^2 | p_n_-3:2 | -p_2ab_2bc_3 |  |
| 202 | th^3 | f_m_-3 | -f_2_2_3 |  |
| 203:1 | th^4 | f_d_-3:1 | f_2_2_3_-1d |  |
| 203:2 | th^4 | f_d_-3:2 | -f_2uv_2vw_3 |  |
| 204 | th ${ }^{\text {5 }}$ | i_m_-3 | -i_2_2_3 |  |
| 205 | th^6 | p_a_-3 | -p_2ac_2ab_3 |  |
| 206 | th^7 | i_a_-3 | -i_2b_2c_3 |  |
| 207 | $\mathrm{o}^{\wedge} 1$ | p_4_3_2 | p_4_2_3 |  |
| 208 | $\mathrm{o}^{\wedge} 2$ | p_42_3_2 | p_4n_2_3 |  |
| 209 | $\mathrm{o}^{\wedge} 3$ | f_4_3_2 | f_4_2_3 |  |
| 210 | $\mathrm{o}^{\wedge} 4$ | f_41_3_2 | f_4d_2_3 |  |


| 211 | $\mathrm{o}^{\wedge} 5$ | i_4_3_2 | i_4_2_3 |  |
| :---: | :---: | :---: | :---: | :---: |
| 212 | $\mathrm{o}^{\wedge} 6$ | p_43_3_2 | p_4acd_2ab_3 |  |
| 213 | $\mathrm{o}^{\wedge} 7$ | p_41_3_2 | p_4bd_2ab_3 |  |
| 214 | $\mathrm{o}^{\wedge} 8$ | i_41_3_2 | i_4bd_2c_3 |  |
| 215 | $\mathrm{td}^{\wedge} 1$ | p--4_3_m | p_-4_2_3 |  |
| 216 | $\mathrm{td}^{\wedge} 2$ | $\mathrm{f}-4 \_3 \_\mathrm{m}$ | f_-4_2_3 |  |
| 217 | $\mathrm{td}^{\wedge} 3$ | i_-4_3_m | i_-4_2_3 |  |
| 218 | $\mathrm{td}^{\wedge} 4$ | p--4_3_n | p_-4n_2_3 |  |
| 219 | td^5 | f_-4_3_c | f_-4a_2_3 | \# f_-4c_2_3 |
| 220 | $\mathrm{td}^{\wedge} 6$ | i_-4_3_d | i_-4bd_2c_3 |  |
| 221 | oh^1 | p_m_-3_m | -p_4_2_3 |  |
| 222:1 | oh^2 | p_n_-3_n:1 | p_4_2_3_-1n |  |
| 222:2 | oh^2 | p_n_-3_n:2 | -p_4a_2bc_3 |  |
| 223 | oh^3 | p_m_-3_n | -p_4n_2_3 |  |
| 224:1 | oh^4 | p_n_-3_m:1 | p_4n_2_3_-1n |  |
| 224:2 | oh^4 | p_n_-3_m:2 | -p_4bc_2bc_3 |  |
| 225 | oh^5 | f_m_-3_m | -f_4_2_3 |  |
| 226 | oh^6 | f_m_-3_c | -f_4a_2_3 | \# -f_4c_2_3 |
| 227:1 | oh^7 | f_d_-3_m:1 | f_4d_2_3_-1d |  |
| 227:2 | oh^7 | f_d_-3_m:2 | -f_4vw_2vw_3 |  |
| 228:1 | oh^8 | f_d_-3_c:1 | f_4d_2_3_-1ad | \# f_4d_2_3_-1cd |
| 228:2 | oh^8 | f_d_-3_c:2 | -f_4ud_2vw_3 | \# -f_4cvw_2vw_3 |
| 229 | oh^9 | i_m_-3_m | -i_4_2_3 |  |
| 230 | oh^10 | i_a_-3_d | -i_4bd_2c_3 |  |


[^0]:    Notes:
    a. A master line, if entered, mustprecede the first program initiation line.

[^1]:    Notes:
    Notes.
    a.

[^2]:    Notes:
    a. Outputs input data as data lines to the punch file
    b. data is stored as f 2 rl and not irel stored in STARTX. The azimuthal angle calculation has not been verified as correct!
    d. adjustments for bugged software. Generally not required. input file must contain at least the quantities $\mathrm{h}, \mathrm{k}, \mathrm{l}, \mathrm{I}, \sigma(\mathrm{I})$, and rcode. All other quantities are discarded.
    f. If an encountered scan time is less than $t$ following the mint option, the reflection is rejected. rcode $=1$. All other reflections will be coded as unobserved with an rcode $=2$. to have negative values.
    i. See the DIFDAT section in the Reference Manual for a description.
    attenu a 1- attenuator factors (minimum of 1.0)

    ## Notes:

    | stands | 1 | character string that identifies |
    | :---: | :---: | :---: |
    |  |  | standard or observed reflection |
    |  |  | a |
    |  | 2 | integer assigned to reflection |
    |  |  | identified by string in field 1 |
    |  |  | for a normal reflection |
    |  |  | for a standard |
    |  | 3, 4 | same as 1 and 2 above |

    c. The Bruker SMART .raw file contains primary and diffracted beam direction cosines, to represent the orientation of the crystal at reflection measurement time (generally anything other than the bisecting position). DIFDAT contains code to convert those direction cosines to an orientation specified in terms of the Crystal Based Azimuthal Psi Angle (lrefl: IDNUM n011), which should permit absorption correction using programs such as LSABS and LSLS (But NOT ABSORB). This requires the orientation matrix UB to be
    e. The add option copies unaltered reflections from the input logical record lrrefl: and adds newly processed reflections to them. The
    g. Reflections with intensities greater than $\mathrm{n} \sigma$ above background as defined by the obst n option will be classed as observed,
    h . The obth option allows the user to replace the value of an intensity with an rcode $=2$ by the quantity $n * \sigma(\mathrm{I})$, where n is the value specified in the obst $n$ option. The default allows intensities to be stored just as they are calculated. This includes intensities calculated
    a. The first attenuator factor does not refer to the open attenuator position. The attenuator factors are used as multiplicative factors.

    ## Notes:

    a. The observed reflection/standard reflection identifiers may be either a character string or a single decimal digit. (e.g., \#ST or 1). A maximum of 11 pairs ( 1 observed and up to 10 standards) may appear on the stands line. This line may be used as an alternative to the sthkls lines. Note that this line is used only in conjunction with data lines.

    ## sthkls a 1-3 hkl indices of first standard reflection <br> 4-6 hkl indices of second standard reflection, and so on

    ## Notes:

    a. A maximum of 10 standards may be defined. More than one sthkls line may be used. The first blank h field terminates the scan. These lines may be used as an alternative to a stands line. Note that this line is used only in conjunction with data lines.
    

    | $2 \theta$ | tth |
    | :--- | :--- |
    | $\omega$ | omg |
    | $\chi$ | chi |
    | $\phi$ | phi |


    data a 1- reflection input quantities
    Notes:
    a. These quantities are specified in the fetch line as described previously. In practice the use of a setid line or a field line followed by a setid line may be found useful. The intention is that the diffractometer output tape will be processed through local operating system utilities to form a coded file. This file will be edited using a text editor and then fed to the Xtal system in the input stream. (See examples in the Reference Manual.)
    genscl a 1 number of standard groups scale factors are smoothed 5
    Notes:
    a. This line will be ignored if preceded by a setscl line. It causes the generation of scale factors based on observations of standard reflections. If setscl lines follow, they will replace specified group scale factors.
    setscl $1 \quad$ scale factor to supersede value for specified standard group
    2 serial number a of the last standard reflection of the group of standards for which this scale supersedes

    ## Notes:

    a. The serial number refers to the diffractometer serial number, if that has been supplied, otherwise it refers to the sequence number developed as the reflections are being treated on input. Smoothing will take place over the scale factors unless prevented by discon input lines. The serial number given must be that of the LAST standard reflection of the group of standards used to establish the scale. Otherwise, the setscl line will be ignored.
    discon $^{\text {a }} 1-\quad \begin{aligned} & \text { serial number of the last standard reflection of the group of } \\ & \text { standards used to establish the scale factor }\end{aligned}$

    ## Notes:

    a. A preliminary run of DIFDAT may have to be made to find discontinuities in the scale factors.
    transfan transformation matrix $\mathbf{a}_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$
    Notes:
    a. The transformation is: $h^{\prime} k^{\prime} l^{\prime}=h_{k l}{ }^{*} \mathbf{a}$-matrix

    ### 3.21. $D Y N A M O$ : Molecular Dynamics structure factor calculation ${ }^{\text {NEW }}$

    | scale | Frel scale factor |
    | :--- | :--- |
    | transf | transformation matrix from archive unit cell to molecular dynamics cell |
    | typinf | molecular dynamics data file atom type information |
    | format | molecular dynamics data file format |
    | maxhkl $_{\text {select }_{a}}$ | maximum and minimum $\mathrm{h}, \mathrm{k}, \mathrm{l}$ and $\sin \theta / \lambda$ |
    | omit $_{\mathrm{a}}$ | select a subset of atoms in the bdf for $\mathrm{F}_{\mathrm{cal}}$ |
    | Notes: | omit a subset of atoms in the bdf for $\mathrm{F}_{\mathrm{cal}}$ |

    a. Either select lines may be used, or omit lines, but not both.

    | DYNAMO | Option store Fmd as | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | frel |  |  |  |
    |  |  | fcal |  |  |  |
    |  | molecular dynamics | file | name | absolute or relative path to file |  |
    |  |  |  |  | a |  |
    |  | temperature factor | mix |  | mixed iso and aniso |  |
    |  |  | iso |  | isotropic U only |  |
    |  |  | ani |  | anisotropic Uij only |  |
    |  |  | ove |  | overall isotropic, all atoms |  |
    |  | anom. dispersion | dis |  | apply dispersion terms |  |
    |  |  | nod |  | do not apply dispersion |  |
    |  | extinction correction | noex |  | do not apply extinction |  |
    |  |  | ext |  | apply extinction correction |  |
    |  | $\sin / \cos$ function | nos |  | calculate from library routine |  |
    |  |  | sct |  | use prestored table look-up |  |
    |  | dataset number reflection control | dset | n | use dataset n on bdf | 1 |
    |  |  | $\underline{\text { nlis }}$ |  | produce no hkl listing |  |
    |  |  | $\begin{aligned} & \text { lis } \\ & \text { nrej } \end{aligned}$ | s | list hkl with $\mathrm{F}_{\text {obs }}-\mathrm{F}_{\text {cal }}>\mathrm{s}$ treat all reflections | 0 |
    |  |  | rej | t | reject hkl if rcode $>=\mathrm{t}$ | 2 |

    Notes:
    a. file should be the last option on the command line
    transf $1-9$ transformation matrix $\mathrm{T}_{11}, \mathrm{~T}_{12}, \mathrm{~T}_{13}, \mathrm{~T}_{21}, \mathrm{~T}_{22}, \mathrm{~T}_{23}, \mathrm{~T}_{31}, \mathrm{~T}_{32}, \mathrm{~T}_{33}$ a
    Notes:
    a. Transformation is $\alpha^{\prime}=\mathrm{T} \alpha, \alpha$ is a column vector of the unit cell vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
    typinfa 1 1- sequential atom type character code
    2 number of consecutive sites of atom type in MD file
    $3-4 \ldots$ as for $1-2$, up to 15 types per line, to a max of 40 sequences
    Notes:
    a. Mandatory sub command line for the DYNAMO calculation.
    format $1 \quad \mathrm{~mol}$. dynam. file format
    (3F8.5,24x,I5)
    scale $\quad 1 \quad$ Frel scale factor
    2 scale group 1
    maxhkl $\quad 1-3 \quad \max |\mathrm{~h}|,|\mathrm{k}|,|1|$
    $4 \min \sin \theta / \lambda \quad 0$
    $5 \max \sin \theta / \lambda \quad 2$
    select ${ }_{a}$ 1- atom labels of atoms to be selected
    Notes:
    a. Any number of atom names may be supplied; those given will be included in the DYNAMO calculation. If no select or omit lines are used, all atoms in the bdf will be used in the calculation.
    omit $\quad 1-\quad$ atom labels of atoms to be omitted

    ### 3.22. EXPAND: Expand archive atom sites ${ }^{N E W}$

    Arg
    n
    fill n cells
    Def
    1

    | contract to independents | not |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | site overlap tolerance | tolc | d | separation d in Angstroms | 0.1 |
    | move atoms within tolerance to | stolc | d | distance d in Angstroms | 0.4 |
    | special sites |  |  |  |  |
    | atom name strip | nost |  | don't strip symm from name |  |

    ### 3.23. FC: Calculated structure factors

    | scale | Frel scale factor |
    | :--- | :--- |
    | maxhkl | maximum and minimum $\mathrm{h}, \mathrm{k}, 1$ and $\sin \theta / \lambda$ |
    | select a | select a subset of atoms in the bdf for $\mathrm{F}_{\text {cal }}$ |
    | omit a | omit a subset of atoms in the bdf for $\mathrm{F}_{\text {cal }}$ |
    | archiv | direct addition or deletion of items in logical record lrrefl: |

    Notes:
    a. Either select lines may be used, or omit lines, but not both.
    

    ## Notes:

    a. : Coordinates will be listed if reset psta 4 line is entered before FC line.
    scale $1 \quad$ Frel scale factor
    2 scale group 1
    maxhkl $\quad 1-3 \quad \max |\mathrm{~h}|,|\mathrm{k}|,|\mathrm{l}|$
    $4 \min \sin \theta / \lambda \quad 0$
    $5 \max \sin \theta / \lambda \quad 2$
    select $\quad 1-\quad$ atom labels of atoms to be selected a
    Notes:
    a. Any number of atom names may be supplied; those given will be included in the FC calculation. If no select or omit lines are used, all atoms in the bdf will be used in the calculation.
    omit $\quad 1-\quad$ atom labels of atoms to be omitted
    archiv 1- ID numbers of reflection data to be added or deleted on the
    bdf a


    ### 3.24. FOURR: Fourier maps

    | scale | Frel scale factors |
    | :--- | :--- |
    | maxhkl | max and $\min \mathrm{h}, \mathrm{k}, \mathrm{l}$ and $\sin \theta / \lambda$ |
    | fzero | non-default Fo00 coefficient |
    | print | print control parameters |
    | map | Fourier map output |
    | grid | axial divisions of Fourier map |
    | layout | presentation of Fourier map |
    | coeff | special summation coefficients |


    | FOURR | Option | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Map type |  |  | coeff. | phase symm |
    |  | $\Delta \mathrm{F}$ | fdif |  | $\Delta \mathrm{F}$ | A\&B, $\phi$ full |
    |  | Patterson | patt |  | $\mathrm{F}_{2}$ | none Laue |
    |  | E-Patt. | epat |  | E*F | none Laue |
    |  | Vector | vect |  | $\mathrm{E}_{2}-1$ | none Laue |
    |  | Emap | emap |  | Ex | $\phi \mathrm{n}$ full |
    |  | Fobs | fobs |  | $\mathrm{kF}_{\text {rel }}$ | A\&B, $\phi$ full |
    |  | $\mathrm{F}_{\text {cal }}$ | fcal |  | $\mathrm{F}_{\text {cal }}$ | A\&B, $\phi$ full |
    |  | Sim Fobs | wfob |  | $w k F_{\text {rel }}$ | A\&B, $\phi$ full |
    |  | $\operatorname{Sim} \Delta \mathrm{F}$ | wdif |  | $\mathrm{w} \Delta \mathrm{F}$ | A\&B, $\phi$ full |
    |  | elect. potential | pdif |  | $\Delta \mathrm{F} /\|\mathrm{S}\|_{2}$ | A\&B, $\phi$ full |
    |  | elect. field | edif |  | $\Delta \mathrm{FSi} / / \mathrm{S}_{2}$ | A\&B, $\phi$ full |
    |  | elect. gradient | gdif |  | $\Delta \mathrm{F}\left(\mathrm{SiS}_{\mathrm{i}} / / \mathrm{S}_{2}-1 / 3\right)$ | A\&B, $\phi$ full |
    |  | Fourier symmetry | gsym |  | general space group symmetry |  |
    |  |  |  |  | a |  |
    |  |  | laue |  | Laue symmetry |  |
    |  | map volume | asym |  | asymmetric unit |  |
    |  |  | full |  | full unit cell (default for |  |
    |  |  |  |  | E-Patt.) |  |
    |  | rejection criteria | r1 | n | reject rcode1 hkl ifnFobs $>\mathrm{F}_{\text {cal }}$ |  |
    |  |  | r2 | n | reject b rcode $2 \mathrm{hkl} \mathrm{ifnFobs}>\mathrm{F}_{\text {cal }}$ |  |
    |  |  | rf | n | reject if $\mathrm{F}_{\text {obs }}>_{\text {n }}$ |  |
    |  |  | rs | n | reject if $\mathbf{n} \sigma \mathrm{F}_{\text {obs }}>$ Fobs |  |
    |  | summation method | blsum |  | Beevers-Lipson ${ }_{c}$ |  |
    |  |  | ffsum |  | Fast-Fourier with BL first sum |  |
    |  | output map file ${ }_{\text {d }}$ | file |  | output map to map file |  |
    |  |  | nofile |  | suppress output on map |  |
    |  | print map | nprint |  | do not print map |  |
    |  |  | print |  | print map |  |
    |  | E definition | $\underline{\text { e } 1}$ |  | E-value 1 from bdf |  |
    |  |  | e2 |  | E-value 2 from bdf |  |
    |  | E map phase set | pset | n | use $\phi_{\mathrm{n}}$ from bdf | 1 |


    | data set number | dset | n | use hkl datasetn <br> list atom coords | $\underline{\text { ne }}$ |
    | :--- | :--- | :--- | :--- | :--- |

    Notes:
    a. The default is determined by the map. If a coeff line is entered this symmetry must be defined explicitly.
    b. If n is omitted, all rcode 2 reflections are rejected.
    c. Must be used for pdif, edif and gdif maps.
    d. No archive file is generated by FOURR unless a difference map is generated.

    | scale | 1 | Frel scale factor | from bdf or 1 |
    | :---: | :---: | :---: | :---: |
    |  | 2 | scale group number | 1 |
    | maxhkl | 1-3 | max $\|\mathrm{h}\|,\|\mathrm{k}\|,\|1\|$ for accepted coefficient |  |
    |  | 4 | $\min \sin \theta / \lambda$ for acceptedcoefficient | 0 |
    |  | 5 | $\max \sin \theta / \lambda$ for acceptedcoefficient | 2 |
    | fzero a | 1 | forced value of $(0,0,0)$ coefficient in Fourier | 0 |

    fzero a 1 forced value of $(0,0,0)$ coefficient in Fourier 0
    Notes:
    a. Do not enter an fzero line if automatic assignment is required.
    print 1 map print-out format code

    | base-10 integers | normal |
    | :--- | :--- |
    | base-36 $(0-9 A-Z)$ code | packed |
    | shade character in intervals | shaded |

    defined in field 5
    2 density scale for map print-out a PATT, EPAT, VECT $\quad 1$
    EMAP, FOBS, FCAL 10
    FDIF 100
    3 upper-bound for print 10
    suppression (HI)
    4 lower-bound for print -9999,
    suppression (LO)
    for FDIF -10
    5 density interval for shaded $\quad 10$
    format output
    6 calculate density scale so no
    first-point density is this value
    7 explicit page layout - print 4
    columns per map point $b$
    8 explicit page layout - print lines 2
    per map pointb
    9 printer lines per inch default
    10 printer columns per inch default
    11 print character for rejected (.)
    density c LO < d < HI
    Notes:
    a. Scaling of printed densities does not affect the values output to the map file.
    b. If a non-default choice for either field 7 or 8 is desired, both fields must be specified. For field 7 the equation is (lines/point) $*($ col/inch $) /($ lines/inch). For field 8 the equation is $(\mathrm{col} / \mathrm{point}) *($ lines $/ \mathrm{inch}) /(\mathrm{col} / \mathrm{inch})$. The packed and shaded printout is one-col/one-line per map point. packed output rejects negative densities.
    c. Enter the character bounded by $=$ (e.g. $=+=$ for + character $). \mathrm{HI}$ and LO values of 1 and -1 cause all points to be printed. A map will be printed if the print line is present, even if the nprint option from the FOURR line is in effect.
    $\operatorname{map} a$ layer-to-layer axis of map longest axis
    layer down $a, b$, or $c$ axis $\quad a b c$

    ```
                projection down a, b, or c axis pa pb pc
            2-4 lower bound of map in fractions automatic
            5-7 upper bound of map in automatic
            fractions of a, b, c
            8 automatic map definition
            (points per Angstrom)
    Notes:
    a. The map line should not be used if the layout line is entered, and vice versa.
    grid 1-3 map point divisions along axes a, b, c automatic
    layout
            1-3 map orientation codes for the
                                    automatic
            axes a, b, c
            axis as page-to-page direction a layer
            axis as down page direction down
            axis as across page direction across
            specifies axis as for projection project
                        Fourier
            4-6 number of map grid points
                                    grid or
            along axes a, b, c auto b
            7-9 first grid point of map along auto
            axes a, b, c
            10-12 grid increment of map along 1
            axes a,b,c
    ```

    automatic
    automatic
    auto b
    auto

    1

    ``` axes a, b, c
    ```


    ## Notes:

    ```
    a. Either layer or project may be used but not both.
    b. Layout parameters define explicitly the calculated map in terms of grid points. The map output to the map file will have these dimensions. The actual number of points output in each direction is defined by the width of the map (fields 4-6) divided by the grid increment (fields 10-12). For printing purposes, however, the grid across the page may be adjusted in order that the requested span will fit the output device.
    coeff a \(1 \quad\) logical record lrrefl: ID no. for factorl, or constant scale1
    2 logical record lrrefl: ID no. for factor2, or constant scale2
    3 logical record lrrefl: ID no. for group number of scale3
    4 logical record lrrefl: ID no. for factor4, or constant scale4
    5 logical record lrrefl: ID no. for factor5, or constant scale5
    6 logical record lrrefl: ID no. for group number of scale6
    7 logical record lrrefl: ID no. for real component of structure factor
    8 logical record lrrefl: ID no. for imaginary comp. of structure factor
    9 logical record lrrefl: ID no. for structure factor phase in cycles
    ```


    ## Notes:

    ```
    a. ALL values must be entered. Constants are entered as negative values. Enter -1 for unused fields \(1,2,3,4,5\), or 6 . Enter 0 for unused fields 7,8 , or 9 . ID numbers must include the dataset bias ( \(n * 1000\) ).
    ```


    ### 3.25. GENEV: Normalized structure factors (E values)

    fraga fragment definition line
    grid $b \quad$ specify cell grid intervals

    ```
    site a c atom coordinates as cell fractions
    siteg ac atom coordinates as cell grid
    sitea ac atom coordinates as orthogonal Angstrom units
    indexk hkl index rescaling parameters
    ```


    ## Notes:

    a. Optional, but a frag line must precede each group of site, siteg, sitea lines.
    b. Optional, but a grid line must precede the first siteg line if entered.
    c. Only one method of supplying atom coordinates may be used.
    
    sitea $\quad$ The sitea line is the same as the site line except for Cartesian coordinates.
    indexk a $1 \quad \mathrm{~h}$ product p (condition 1)
    2 k product q (condition 1)
    31 product r (condition 1)
    4 modulus m (condition 1)
    5 residual n (condition 1)
    6-10 same format as fields 1-5 for condition 2
    $11-15$ same format as fields $1-5$ for condition 3
    $16 \quad$ Frel scale applied to defined hkl group to put $\quad \mathrm{E}_{2}=1$

    ## Notes:

    a. Conditions 1,2 , and 3 are satisfied if (p.h+q. $\mathrm{k}+\mathrm{r} .1$ ) $\bmod \mathrm{m}=\mathrm{n}$, for fields $1-5,6-10$, and $11-15$ respectively. The indexk is for one index scale group. A single blank (i.e. all fields void) in the indexk line is interpreted as conditions for the 8 general hkl even-odd parity groups.

    ### 3.26. GENSIN: Generate triplets and quartets

    | trip | control generation of triplet invariants |
    | :--- | :--- |
    | quar | control generation of quartet invariants |
    | gener | specify generator reflections |
    | psical | use bdf $\phi($ h) and Fcalvalues to calculate $\psi$ |
    | print | control listing of invariant information |
    | change | modify reflection data from the input bdf |


    | GENSIN | Option apply qpsi values attenuate large $\|E\|$ 's | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\underline{\text { qpsi }}$ |  | include fragment $\psi$ estimate |  |
    |  |  | nqpi |  | exclude fragment $\psi$ estimate |  |
    |  |  | atte |  | attenuate \|E|'s > 3.5 |  |
    |  |  | natt |  | do not attenuate large $\|\mathrm{E}\|$ 's |  |
    |  | max $\sin \theta / \lambda$ of $\|E\|$ 's | smax | $s$ | restrict data sphere | from bdf |
    |  | type of E applied | etyp | n | type 1 or 2 from bdf | 1 |
    |  | dataset number | dset | n |  | 1 |

    trip $1 \quad$ control generation of triplet
    invariants
    do generate triplets yes
    do not generate triplets no
    $2 \min$ A value of generated triplet $\quad 1.0$
    or calculated based on $\mathrm{E}=1.5$
    (centro); $\mathrm{E}=1.8$ (noncentro)
    $\left.\begin{array}{llc}3 & \text { max unique triplets generated } & \text { auto } \\ 4 & \text { max triplets per generator }\end{array}\right] 500$

    ```
                                    or calculated assuming E=1.8
                                    (centro); E=2.2(noncentro)
    3 maximum unique quartets to be
    auto generated
    4 maximum quartets per 500 generator
    5 permitted cross-vectors for quartets
    all cross-vectors must be inside insxv
    data sphere
    all cross-vectors are permitted
    one or more cross-vectors
    allxv
    outside data sphere
    ignore cross-vectors and notxv include all quartets
    6 minimum single cross-vector 0 |E| accepted
    7 maximum single cross-vector 100 |E| accepted
    8 low cross-vector sum limit 2.5
    (max for negative quartets)
    9 high cross-vector sum limit 4 (min for positive quartets)
    ```

    

    ```
    2 number of generator reflections (max 10,000) auto
    3 minimum \(\sin \theta / \lambda\) eligible as generator 0
    4 maximum \(\sin \theta / \lambda\) eligible as generator 2
    5 minimum \(|E|\)-to- \(\sigma \mid\) E|ratio eligible as generator \(\quad 1\)
    6 maximum number of \(\psi(0)\) reflections allowed auto
    psical 1 select reflections used in
    structure invariant generation
    select generators from hkl with refine
    input \(\phi\) values
    allow all reflections to be extend generators
    2 bdf ID number of \(\phi\) used to n750
    estimate \(\psi\) of invariant
    3 bdf ID number of \(\mathrm{F}_{\text {cal }}\) used to n751 estimate A and B
    print a 1 print invariant summary for N generators for all
    2 first generator number of detailed listing 0
    3 last generator number of detailed listing 0
    4 maximum generator number listed in invariant blocks 100
    5 minimum A or B listed in invariant blocks 0
    ```

    Notes:
    a. A detailed listing of invariants for each generator in the range defined by fields 2 and 3 . Only invariants where all reflections satisfy the constraints defined by fields 4 and 5 are listed. See example in the GENSIN.
    change a $1-3 \quad \mathrm{~h}, \mathrm{k}, 1$ of reflection to be changed
    $4 \quad|\mathrm{E}|$ value to replace value on input bdf not replaced
    $5 \quad \sigma|\mathrm{E}|$ to replace value on input bdf not replaced

    ## Notes:

    a. The change line is entered in the order of hkl on input bdf.

    ### 3.27. GENTAN: Tangent phasing

    | invar | control structure invariant relationships used |
    | :--- | :--- |
    | select | control starting phase selection process |
    | phi | input specific starting phase |
    | assign | assign starting phase by sequence number |
    | refine | parameters controlling tangent refinement process |
    | partsf | parameters for partial structure factor input |
    | setfom | input figure-of-merit parameters |
    | psets | specify phase sets to be output |
    | dump | print detailed information on the phasing process |
    | archiv | control items output to logical record lrrefl: of bdf |

    GENTAN Option $\min |E|$ applied max phases calc. max phase sets max phase sets bdf list phase sets phase convergence
    bdf starting phases
    data set number

    Code
    emin e
    rmax m
    pset
    pout $k$
    plis x
    pacc
    nacc
    nbdf
    pbdf
    dset
    Arg
    only $|E|$ 's > e phased
    the m largest $|E|$ 's phased
    Def
    from file
    inv
    calculate s permutations 64
    output $\mathbf{k}$ phase sets to the bdf 4
    list top $\times$ phase sets $(\max 8) \quad 0$
    fix phase when converged
    phase refined every cycle
    do not use bdf phases to start process use bdf phases to start
    invar 1 invariant types to be used in the phasing process use triplet and quartet invariants all
    use triplets only trip use quartets only quar
    2 minimum A of triplets used
    3 minimum $B$ of quartets used
    from file
    inv
    from file
    inv
    4 maximum triplets allowed per
    generator
    5 maximum quartets allowed per
    generator
    6 reduce A and B values by this
    fraction of $\sigma \mathrm{A}$ and B
    7 control eligible quartets
    according to X -vector sum
    include quartets with
    XVsums $<\mathrm{LO}$ or $>\mathrm{HI}$
    include all quartets
    
    

    ```
    7 refinement cutoff as fraction of0.02 average \(\alpha_{2}\) shift
    8 fix odr phase for n refinement 30 iterations
    9 fix edr phase for n refinement 10 iterations
    10 fix perm phase for n refinement 5 iterations
    11 fix set phase for n refinement 5 iterations
    12 disable null phase for \(\mathrm{n} \quad 30\) refinementiterations
    1 control application of fragment \(\psi\) estimate include \(\psi\) estimated qpsi
    fromfragment data exclude \(\psi\) estimated from nqpi fragment data
    2 control use of starting phases
    from input archive bdf
    do not use phases from input no
    archive bdf
    include FC phases according to fc
    4,5 and 6 below
    include GENTAN phases gt
    according to 3 and 4 below
    3 phase set number of GENTAN
    phases to be entered
    \(4 \quad\) minimum \(|\mathrm{E}|\) of phases to be emin
    entered
    5 fraction x of \(\mathrm{F}_{\text {cal }}\) phases0.5
    acceptedif \(\mathrm{F}_{\text {cal }}>\times * \mathrm{~F}_{\text {rel }}\)
    \(6 \quad\) Frel scale applied before test in bdf value field 5
    setfom \(1 \quad\) control flag for pretest of FOM values pretest FOM values after the 6 th pret tangent iteration do not pretest FOM values
    nopr
    optimum RFOM value for CFOM/AMOS calculation
    3 optimum RFAC value for
    CFOM/AMOS calculation
    4 optimum PSI0 value for CFOM/AMOS calculation
    5 optimum NEGQ value for 60
    CFOM/AMOS calculation
    6 weight of RFOM value for 1
    CFOM/AMOS calculation
    7 weight of RFAC value for 1
    CFOM/AMOS calculation
    8 weight of PSIO value for 2
    CFOM/AMOS calculation a
    ```

    | 9 | weight of NEGQ value for <br> CFOM/AMOS calculation a <br> automatic termination of <br> multi-solution process <br> continue even if FOMs < cont <br> optimal FOMs | 2 |
    | :--- | :--- | :---: |
    | 11 | RFOM lower rejection limit for <br> 014 and 024 | yes |

    ## Notes:

    a. The PSIO weight is scaled down if the number of PSIO triplets is less than 100 . The reduction factor is the number of triplets per 100. The NEGQ weight is similarly adjusted according to the number of negative quartets.
    psets a 1- specific phase set numbers to be output to the bdf
    Notes:
    a. Used to select specific phase sets, independent of their FOM values, when repeating an identical GENTAN run.

    | dump | Option | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | generator \& selection list | sel |  | print start set data |  |
    |  | specify phase set limits | pse | m n | phase sets m to n | 11 |
    |  | generator set limits | gen | t u | generators t to u | all |
    |  | print starting phases a | sta |  | starting phase set |  |
    |  | print phase iterations a | ite | P q | iterations p to q | 199 |
    |  | print invariants a b | inv |  | print each invariant |  |
    |  | print phase history map a | map |  | print phase est./iteration |  |
    |  | print FOM sums | fom |  | print sums used in FOM's |  |
    |  | terminate phasing process | hal | t | stop after phase set t | 1 |

    Notes:
    a. These print dumps are limited by pset and gen entries.
    b. CAUTION! This printout can be enormous unless limited.
    archiva 1- bdf ID numbers to be added or deleted from logical record lrref:
    Notes:
    a. Normally this line is not entered. The items added to the reflection record are controlled via pout of the GENTAN control line, not this line.

    Caution: A maximum of 70 items may appear in the archive list and 64 are generated automatically in order to delete existing phase sets and weights. This means that a maximum of 6 user-generated deletes may be entered on this line. Negative identification numbers indicate the items to be deleted (if present) from the bdf.

    ### 3.28. GIP: Reciprocal space PIG

    GIP

    | Option <br> graphics displayCode <br> dbuf | drg | double buffering |
    | :--- | :--- | :--- | :--- |

    ### 3.29. LATCON: Refine lattice parameters

    | theta | reflection line |
    | :--- | :--- |
    | skip | skip reflection stored on the bdf |


    | LATCON | Option crystal system | Code <br> tr <br> mo <br> mc <br> mb <br> ma <br> or <br> te <br> he <br> rh <br> cu | Arg | triclinic <br> monoclinic b-axis unique monoclinic c-axis unique monoclinic b-axis unique monoclinic a-axis unique orthorhombic tetragonal hexagonal rhombohedral cubic | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | wavelength | wl | n | in $\AA$ | 1.54183 |
    |  | $\sigma$ (wavelength) | sw | n | in $\AA$ |  |
    |  | $2 \theta$ zero | tz | n | in degrees | 0 |
    |  | refine Q -values a | $\underline{r q}$ |  |  |  |
    |  | refine $2 \theta$ zero a | rz | n | refine for n cycles | 4 |
    |  | input from bdf | bi |  | crystal system and hkl angles |  |
    |  | output to bdf | bo |  | refined cell parameters |  |
    |  |  | ds | n | dataset number | 1 |

    ## Notes:

    a. Note that the $r q$ and $r z$ are mutually exclusive.

    | theta | $1-3$ | $\mathrm{~h}, \mathrm{k}, 1$ indices |
    | :--- | :--- | :--- |
    |  | 4 | $2 \theta$ in degrees |
    |  | 5 | $\sigma(2 \theta)$ |
    |  | 6 | wavelength (if different from LATCON line) |

    ### 3.30. LISTFC: List formated reflection data

    | output | specify items to be listed |
    | :--- | :--- |
    | format | specify formats of items to be listed |
    | pscale | print scales of items to be listed |
    | scale | structure factor scale |
    | maxhkl | specify max h,k,l and min $/ \max \sin \theta / \lambda$ to be listed |


    | LISTFC | Option | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | hkl indices listed | ind | n | indices listed (1 or 3) | 1 |
    |  | hkl sort order a | ord | hkl | hkl chars in order slo/med/fast $b d f$ |  |
    |  | list rcode flags | $\underline{n f 1}$ |  | rcode flags will not be listed |  |
    |  |  | fla | f | four chars for rcodes 2345 | -*** |
    |  | output pch file | pun |  | punch data (80 chars max) |  |
    |  |  | npun |  | no punch output |  |
    |  | output line width b | wid | w | chars per output line | local |
    |  |  |  |  |  | default |
    |  | output lines/page ${ }_{\mathrm{b}}$ | lin | 1 | lines per page header | local |
    |  |  |  |  |  | default |
    |  | dataset number | dse | n |  | 1 |
    |  | print void items | vbl |  | print void items as blank | no |


    output a 1-20 items output (as codes or bdf ID numbers)
    Notes:
    a. The item specification for field 1 MUST be either hkl or 1. Alphabetic codes accepted are those defined for ADDREF bdfin (with the exception of all and Friedel reflection packets) and the addition of $f 2 \mathrm{cl}$ and ical for outputting calculated intensity $I$ and $\mathrm{F}_{2 \text { cal }}$ and
     order of output. A maximum of 20 items may be entered.
    NOTE that if the output line is not entered hkl frel fcal and sigf will be listed.

    | format | $1-20$ | format of output items as 'Inn' or 'Fnn.m' |
    | :--- | :--- | :--- |
    | pscale | $1-20$ | print scale of output items a |

    Notes:
    a. Defaults only apply if output line not entered.

    | scale | 1 | Frel scale |  |
    | :--- | :--- | :--- | :--- |
    | scale group number | 1.0 |  |  |
    | maxhkl | $1-3$ | $\max \|\mathrm{~h}\|,\|\mathrm{k}\|,\|\mathrm{l}\|$ output | 1 |
    |  | 4 | $\min \sin \theta / \lambda$ output | 9999 |
    |  | 5 | $\max \sin \theta / \lambda$ output | 0 |
    |  |  | 2 |  |

    ### 3.31. LSABS: Absorption corrections

    | face | input of bounding faces |
    | :--- | :--- |
    | sphere | input of sphere description |
    | shape | crystal shape description |
    | grid | Gaussian grid description |
    | sgrid | Gaussian surface grid description |
    | noabs | skip calculation for selected reflections |


    | LSABS | Option | Code | Arg |  | Def |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | absorption coefficient in mm-1 | mu | $v$ |  | auto |
    |  | data set number | dset | n |  | 1 |
    |  | absorption method | anal |  | Tompa method |  |
    |  |  | gauss |  | Gaussian integration |  |
    |  | list all reflection data | list | n |  | all |

    ## face $\quad 1-3 \quad$ Miller indices of face

    4 distance from origin to face in mm
    5 esd of distance in $\mathrm{mm} \quad 5 \%$ of distance
    6 weight of observation
    $1 / e s d_{2}$
    sphere $1 \quad$ radius in mm
    2 esd of radius in $\mathrm{mm} \quad 5 \%$ of radius
    3 weight of observation $\quad 1 / e s d_{2}$
    shape 1 shape option code: (fixes grid z axis for Gaussian integration) plate shape plate

    ```
                needle shape needle
    2-4 for plate, Miller indices(hkl)
        of the plate
        for needle, zone axis [ ```

