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PRACTICAL ASPECTS OF DIRECT PHASE DETERMINATION
Isabella L. Karle

Laboratory for the Structure of Matter .
Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

Page 3




XVIT - 1

The structures of many hundreds of crystals containing only light
atoms have been solved by direct phase determination.. The reﬁuired phases
associated with the reflections obtained from x-ray diffraction of single
crystals can be determined from a knowledge of the experimental structure
factor magnitudes. The only requirement is that a sufficient number of
data be available. Although a number of different relationships between
phases and magnitudes have been.derivedn the mosf useful relﬁtionships for
the practical solution of crystal structures are the following. For
centrosymmetric crystals where all phases are either 0 or TT , ér equiva-
lently the signs of the structure factors are either + or -, the 2{:2

formula applies (Karle and Hauptman, 1950; Hauptman and Karle, 1953),

sE ~ sE E _ , (1)
or for several contributors,
s B~ sz Bl By o - (2)

where the symbol 8 means the "the sign of", Eh is a normalized structure

factor and h = (h,k,1) is a vector whose components are the Miller indices.
At the beginning of the phase determination, single terms, Eq. 1, determine
the sign of Eh. As the phase determination progresses, more terms are

available for determining the sign of a particular E Since, initially,

he

Page 4




»
L XVII - 2
? the process is dependent upon the sequential determination of phases, eac|
| step in Fhe chain of events must be correct. In order to insure the
greatest probability that a sign or phase is correct, the following
expression for the probability that Eh is pogitive is used with Eq. (1) or
(2) (Hauptman and Karle, 1953; Woolfs;n, 1954) :

% 15 2 Sl

i P(E)=%+% tanh _ i o | (3)
if & 3/2

%2

where g = :Z: Z? : Zj is the atomic number of the jth atom and N is the

total number of atoms in the unit cell. The quantity o, /03/2 g

\

for an equal atom crystal. The larger the magnitudes of Eh 5 Ek and ;ﬁ

Eh K are, the higher will be the probability of a correct sign assignment.

Therefote a ‘phase determination should be initiated with reflections
‘with the largest E magnitudes.
For noncentrosymmetric space groups.where the phase of a structure
~ factor, ¢, can agssume ;alues from -TI to +[l , the following phase rela-

tionships are most useful (Karle and Hauptman, 1950 Karle and Karle,
1964a° 1966):

;- - T 1~<¢+¢ )k (4)

| § ’“’ ~

j (w‘here_lcr refers to a|se; of data :estficted to the largest magnitudes)

and (Karle and Hauptman, 1956)
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or

(3)

the

ent.

X¥1l =3

Sin(¢k+ Gh‘K)
(5)

cos(¢ + ¢ )

2=l

The variance associated with the determination of ﬁh can be derived from

a probability formula of Cochran (1955) and 1is giveﬁ by (Karle and Karle,

1966)
2 ~o o0
-1 I ( )
V = 77; + [Io(a)] E 0 [I (a)] E 2"”
- (2n+l)
where .
a = { [Z 203 0-2'3/2 |Eh Ek Eh-k‘ cos(¢ + ¢ k)J £
- a4 ) )

; . l/m
i [Z 204 653/2 | E E EE-‘}"' sm(ﬁ + ¢b lf):’ g }

The In are Bessel functions of imaginary argument. The variance as a
function of @ is shown in Fig. 1. For noncentrosymmetric space groups,
the larger magnitudes of E lead to smaller variances of the determined
phases, a situation comparable to the higher reliability of sign deter-
mination associated with the larger magnitudes of E, in centrosymmetric
crystals.

In addition to Eqs.(l), (2), (4) and (5), several other phase

: 5 Eil

relationships are useful at times. Exampleg are the E 1,;2_13 and
B, 0 formulas (Karle and Hauptman, 1958; Karle, 1970) and are often

referred to as auxiliary formulas.-‘The_g 1 and E 3 formulas
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Fig. 1. Curve showing the variance, V (in radians squared),
of a phase angle determined from known values of other
phase angles. The variance is expressed as a function of

o (Karle and Karle, 1966).
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(Hauptman and Karle, 1953) are space group dependent and will be illus-
trated in the examples for particular space groups.

The normalized structure factors Eh are defined by (Hauptman and

Karle, 1953)

-

N 5 ’ %
B, = Fy <£Zf3h) T
=1
where £, is the scattering factor for the jth atom, N is the total
number of atoms in a unit cell, and € is a small integer that is space

group dependent (see e.g. Karle, 1969). If, for example, we were to start

with the observed magnitudes, IFh,obs , for the structure factors where

N 2
-Bjs
Fh obs > Z fjb_ o exp (2“ il—-‘.EJ) ’ (9)
Jj=1

ar

by use of a data reduction proce&ure to be described below we obtain

through (8) a set of normalized structure factor magnitudes 'Ehl where

E, =~

N
1 ;
h z Z_1 exp (2] ih-gj) . (10)

(£ 2z ja
X

and Zj is the atomic number of the jth atom. Note that the effect of

vibrational motion is jeliminated in the procedure for obtaining the | E |

values, Furthermore, 'the Eh are independent of scattering angie.since

each f

-~

jh that varies with sin®/A is replaced with a constant

Zj ICE ), Zj)%. To see why this is approximately so, it may be assumed
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that the atomic scattering factors for all atoms involved have essential

the same:'shape, so that fjh =:Zj£h where fh is a shape factor. Employin

2k / 2.2.%
Eq.(8) ylelds the factor fjb/(.E }J_j 7 = 20,/ (e VIR
v " .] -~
Zj/’(ﬁ z: Z?)%. This operation, in addition to the elimination of the
3 , .

vibrational factor in Eq.(9), accounts for the form-of Eq. (10). We there-
fore may conclude from Eq.(lO)-that the normali;ed structure factors
represent to a good approximation scattering from stationary point atoms.
For equal atom structures, this 1is exactly true.

2
lEh| values are obtained from the observed intensities, I

as

obs °’

corrected for Lorentz and polarization factors, in two steps. First the

observed intensities are corrected for the effects of thermal motion and

. are placed on an absolute scale by means of a K-curve. The K-curve is
- constructed by dividing the range of s2 (where s.= sinB®/A ) into a number
i of equal segments. For the midpoint of each interval oflsz, the value of
K is computed where
2
Z E .Zlfj(S)
l:

K(spyq) = : (11)

:E: 1obs(s)

and the sum is made over all  the Iobs occurring in the particular interval

and also over the valbes of the scattering factors fj occurring in that

same interval. Figure 2 ghows a typical K-curve for data from an organic T
. 2

compound. In the example, each interval of s contains 200-300 data. A

least-squares procedure is used to fit a best smooth analytic function to

the experimental points. Usually the function used is K = exp(A + Bsc)
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Fig. 2, K-curve for the observed data from a cyclic tetrapeptide
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or ln‘K =A + Bs®, If the exponent ¢ is 2.0, then the expression is é
game as Eilson's curve (1942). For crystals of many organic materials;i
such as the one illustrated in Fig. 2, the expoment ¢ is>2.0. It is
important to fit the K-curve well in order to obtain meaningful |E|

values.

2
The th] corrected for scale and thermal motion are obtained

from
I (KGs) = |F,|”
obs h

and expression (8) is used to calculate the ]Ehlz.

The normalized structure factors |Eh[ have definite statistical
properties, independent of chemical composition, which are useful in
distinguishing between centrosymmetric and noncentrosymmetric space
Some of these properties are associated

groups (see e.g. Karle, 1969).

~with various averages: e.g.

Average Centric Acentric
< IEhI2> 1.0 1.0

< [E;| > 0.798 0.886
<HE§|-1|> 0.968 0.A736

For acentric space groups, the reflections should be divided into
two gtoupé: Those structure factors which are real or pure imaginary, as
determined by the spacr group-symmetry;'have averages corresponding to
the centrosymmetric case. The remainder of the structure factors having
general values for the phases héve averages corresponding to the acentric
case. Other properties are associated with the distribution of IEhl

values:
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Centric _Acentric
'Ehl ) 1 32% 37%
,Eh[ ) 2 5% 27,
[Ehl > 3 0.3% 0.1%

Experimental values are found to be close to the theoretical values.
Details for phase determination in several commonly occurring space

groups will be presented now,

Space Group P21/a

Phase determination in centrosymmetric space groups is quite routine.
The first example will illustrate the complete phase determination for
obtusaquinone, crystallizing in space group P21/a (Karle, 1975). Tables
1-8 contain the refleqtion data, details of phase determination and the
structure, The statistical avefages in Table 3 show that the theoretical
value for (|E|) for centrosymﬁetric crystals; is lower than the
theoretical valug for noncentrosymmetric crystals and that the experimental
value is even lower. Conversely, the theoretical value for ('IE|2-1‘>
is higher for centrosymmetric crystals than for the noncentrosymmetric
case, and that the experimental value is even higher. The deviations of
the experimental valueP from ideal values for centros}mmet;ic crystals
indicate a hypercenter;ng in the cell. And indeed, the structure analysis
shoﬁs that the two independent molecules in the aSymmetr{c unit are nearly
related by a non-crystallographic center. |

The }E:Z relationship, formulas (1) and (2), requires that some

Page 12 ‘
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Table 1. OBTUSAQUINONE

Karle, Bultman and Jurd,
hi, Acta Cryst. B32, 1963(1976).

Two molecules plus
solvent in

asymmetric unit =

44 carbon and oxygen

atoms in asymmetric‘unitb

Space group P21/a

a=19.66A, b=9.72A, c=16.52A, B = 97.8°

1
Table 2, Listing of strongest |E| for obtusaquinone 4
' &« B lel U 6 ¢ [E| 6 U G 13 U U r .
GT4nu o ed 7, 088% 11 =2 10 $,5230 16 =1 4 3,7969 5 a1 6 0840
10 =0 2 4,279%0 11 =¢ ¢ 3,3182 8 7 0 3,1062 1 =5 0 3,58878.; .
Cilinb 0 4 1)1 9 <6 4 5 ,4909 2 =3 =10 3,0801 5 5 .4 3,56148,4 .
& U =8 3,R95y 7 =2 1z §,1767 4 =1 <4 2,9339 9 .1 2 3,3967% z .
e 6 03,679 7 -8z 2,777 4 7 4 2,8406 5 =7 2 2,998 4
L0 a6 Y47 636) 7 6 62,8851 6 =3 4 2,8178 9 o7 .2 2,84548 4
o Be2 10 3 ,598¢ E =8 42,6449 10 =7 =2 2,7746 I 3 4 2,40z%8 4
SBEICTI010 T, 3057 5 <6 & 22,5753 6 1 <8 2,5936 1 3 8 2,30338 6 .«
4 e84 3,209 T2 02,3529 10 =3 02,4164 11«1 4 2,3A349 ¢
Eotied BRI 13,4750 L6 L' 22,5037 2 =1 -10 2,3159 15 1 A& 2,25728 g
47500 714, 72,9968 I w8 G 2, 2411 6 <7 2 2,3052 1 e 10 2,1277 8
6 U =2 2,993k 1 «2 & 2,0786 2 3 6 2,2203 13«1 2 2,06180
0 <6 10 2,7284 $§ =2 10 1,953 12 -1 =10 2,1821 3 <5 <4 2,0014
€ mo B -2,6775 SRR S O 1 6 <3 0 2,1649 1 5 <4 1,9939
& U =0 2,6410 1. s2  ef (L100n73 4 <1 -2 2,1642 7 3 ¢ 1,9437)
¢ =6 10 2,5815 Sire2 4 ,8563 14 =) o6 T2 11«7 01,8548
0 =2 02,5571 {8 € 11,8422 12 -3 8 2,0522 5 7 <2 1,80070
12 U =12 2,444 1 =8 <€ 1 gap4 10 «7 <4 1,9664 14 3 <4 31,7420
& .o 2 2,443¢ 11 =2 € 1,8402 2 =3 4 11,9219 15 o1 4 1,7132%
< v =4 2,3477 18 =2 4 11,8302 6 <3 2 11,8798 7 w7 £ 1,7N0263
& w8 «b 2,3440 S 6 o4 1 7418 2 5 <2 11,8762 9 o5 R 1,7n1Al
12 =0 0 2z,338Y -1 b Lo1,7209 10 -1 -12 11,8283 157 "oy no1,6522%
el - wg =0 2,329 7 e2 <4 31,6712 2 =1 <4 11,7970 1 =7 6 1,63171
12 =6 <2 12,3199 I =6 -4 1,6501 12 -~ +3 8 11,7968 I 7 e 1,5747]
4 -4 w4 2,199y 1 =8 41,6422 14 <4 6 11,7696 5 «3 01,5356 |
i g w0 4 2,0908 7 -6 4 1,6240 0 «1 6 1,7636 1 =7 <4 11,5324
it 16 ¢ 2 1,952y I =2 w2 1,5731% 10 =1 6 11,7233 1 3 6 _ 1,5n3R
il z =0 61,8811 1 =4 t 1,5462 10 «3 10 §,7227 9 7 <6 1,49294
fitdl 16 U 4 1,8771 Yyl -, 6 {iea03 10 =3 =4 1,7099 7 5 <2 1,48an
i E =6 6 1,Bad¢ 7 <8 ez 1,4885 2 7 & 11,6731 137 Y LU gk ey
| 6 ~c *14 1,819> 9 -4 <E 1 ,4710 10 =1 0 11,6458 p AR B e SHRCR LB
i ¢ =0 & 1,P11c 7 =2 ef 1, 4484 8 =5 45 11,6047 S e BEELNS T 0910
li 12 v 6 1,797y 1 »2 =14 1 4041 2 -1 2 1,999% 1."e5 2 1,4n3R
i 16 »¢ 91,7926 B o4 41,3982 6 o7 0 41,5980 PR 8 11,4125
[ 14 =2 <4 1,7393 I «8 z 41,3870 0 =7 8 11,5944 b R TR T
i G eb 4 1,728 9 =6 of 1 3478 4 =5 6 1,5852 5 w5 41,3795
il O Fed 12 45 63Y B ed4 g 1.3p&k13 4 =31 14 1,5748 7 ef 42 1,353n
i 0 <4 U 11,6218 T =4 T 31,3450 10 =3 <2 11,5556 Tipes -8 31,2959
‘ Giw-we. 211, 6204 5 <8 & 11,3665 0 =5 2 11,5531 1«7 2 11,2727 |
im0 U 159998 1 =2 =& 1,2999 4 «5 =2 41,4858 5 5 <R 1.26Q7
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33,7900

3,5R87]

33,5414
3,3967

2,919n.

2,8A54

2,40z¢
2,393%;
2,3A34
2,257
2,1277
2,0618°
2,014
1,9°399
1,9A37
1,8548

1,8n02
1,74210

1,74323%
1,7026 |
1,7014 ¢
1,6522
06317 §

1.5747

BT

1,532
1,513R8
1,4924
1.‘94"
1,4553
1,445%
1,4219

1,403R |
1,4n25

1,3833
1,3795%
1,353n
1,2959
1.272?
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‘Table

11

N O WS

4 . Phase assignments for specifying the origin
and implementing the 2:2 relation for
obtusaquinone.

—5
. |E 7 ¢ 3
16 3.79
210 3.52 0 origin
07 5.19
04 7.09 -
63 3.70 b
111 5.57 &
73 3.43 d
Table 5. Space group P21[a
X, ¥, 2, % + X, % Wiy - (b axis unique)

-x-pypz; k'xi ¥+Ya z

h+keven: oa(hk1l)=ackl)
ath k 1) = ath k 1) B
F(hk1l) #F(h k 1)
h+kodd: ahkl)=7 +atkl) a =0or7
a(h k 1) = 77 + ath k 1)

£.a {g Y 3 Page15 & = 1 for all other hkl.
8

i
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Table 6.

BASIC VECTOR H 4 1 3 Em 64,100
NUMBER OF INTERACTIONS(He=KsL; =  S¢

K EK L EL EH®EKSEL

o112 =2 o7 24260 16 1 4 3.797 52345
@]2 o] 7 64170 16 0 6 1877 700645
©12 =0 =7 20216 16 =) 4 3797 81280
=] <=2 =8 1¢840 18 1 ] 30385 370993
-9 2 =10 16995 13 =3 7 2082 25.337
-g e®7 =3 30111 12 H 0 20339 464387
8 =2 =)0 3.899 ]2 A | - 60170 135,486
8 =0 =10 3:306 12 =) 7 60170 124,428
8 = 7 2188 12 =1 =10 2+182 69.083
«] o8 =2 2778 11 7 el 20348 39.789
«7 o7 3 3437 11 & 0 20294 480095
o7 2 =12 3,177 11 1 9 4,665 90,406
e7 2 7 2:079 11 1 4 24363 294967
-7 2 =12 3,177 11 =3 9 2.643 51,221
-7 g5 =5 1826 1% =6 2 3,338 37,140
6 =8 1 - 3,301 10 7T 4 10966 39,888
=6 =0 2 20994 10 =] =5 2017 36,837
-6 2 =3 3,211 10 =3 0 20416 474322
8 o8 eb 20645 9 7 1 20428 39,175
5 8 @) 20762 9 7 =2 20866 48,287
-8 2 =4 1856 9 =3 1 20151 244353
4 =g 3 1836 8 7 0 30106 34,786
e4 =7 =7 20188 8 6 4 20090 27895
-4 ®)] =13 20116 8 0 10 30306 424673
% =] 3 60100 8 0 =6 20642 980309
4 =) 4 20934 8 0 ‘=7 8,188 92.852
-4 ®) ®14 20997 8 =l 11 85+573 101.884
% = 4 7089 R G 3e347 1440734
b 1 =13 24116 8 =2 10 3.599 46,4584
b 6 b 3,680 8 o7 3 3.111 69,836
=3 S 9 24029 7T =6 6 24695 33,356
-3 s 4 20001 7T =6 =7 2¢021 264669
2 o8 <4 1811 6 7 1 2.784 30,755
-2 @3 =b 22220 ) 2 3 3.2]1 43,483
2 =®] =) 20238 6 0 =2 20994 406873
-2 e 5 1897 6 =] =8 20594 304017
-2 2 =7 3.808 6 =3 4 20818 65+489
.2 7T =S 3,143 6 =8 2 2e444 46,857
o] ‘-8 1) 1,842 5 7 3 10806 20,293
@] e S 20503 [ 7 2 24909 44,415
-] =6 1 3,108 5 5 o4 3561 67,812
-1 2 =8 20079 8 =3 5 1806 22.904
-] 7 =7 3,424 5§ =8 4 20645 55,245
0 =5 1 20198 4 4 =4 24200 294497
0 =2 0 20557 4 1 =3 60100 954146
-0 6 =10 2.728 4 =7 7 2188 36,410
0 7T 7 2.46) 4 8 4 3.229 48,474
1 8 b 14840 Pagg16 7 3 24573 28,879
1 =g 6 10842 3 7 =9 1812 200360
1 «=§ 0 3.589 3 4 =3 20054 440968
1 [ 4 A 2.2RQ - -k o | CYe 7.1-3 Al 1117
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Table 7 . Use of 22 for phase determination in P2,/a.

4 0 b a 1?_11 a+c
1 8T . @ ) FI5 20)
121 7 a+e © 584 ateHd
1217 a+e 353 b
(2) 4 0 4 a (11) 4 0 4 _a_ @ (21)
1673 o FET b
80 7 0 3173 d
3) SR FLN ke (12) 504 a_ (22)
161 4 ¢ 57, akd
5T§_ Y 912 a
SRR Gy 3 (13) 40& a_ @3)
912 a 13172 o
1217 a+ W T&- o
1614 _c (14) 504 _a_
hog 8 12T8 atc
(5) o _ (24)
: 8804, & 161 Tr+a+b
807 0 (15) 404 a @
403 a 565 T+b
363 T+ 363 b
i %04 s ae) 516 o (4)
ey ’ WL (25)
e Lihy 8 873 b
161 3 c @ 17) 1277 ate (62)
Pl e 4 8 4 T+atbic
(7) = : o
404 a 873 b
4 0 4 a 404 _a @ (26)
808 0 477 a+b
= ' (18) N
73 d 4 84 T+atbic
(8) 404 a @ 8 111 T+c 27)
17T ad 477 a+b
516 0 11210 W
¢ %504 ' a @ (19) 58 4 Thatesd
1110 a . 66 6 atct+d
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The numbers within the circles represent the EhEkEh-k product.
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Table 7. (Continued) XVII - 15

150 a+cd 466 atcd 413 a+bicid
53 G8) . Zos @ “8) 275
413 a+tbtcd 06 10 c+d 23710 atbd
ato "522 c+d 4Tz a+b+4cid 415 a+b+c+d
a|L61 a+b 39) 807 o 187 o
cdft T3 atbictd 12 T 10 a+b+ctd 6 3.4 atbed
S i 413  atbtcid woy | 8L 11
e 04 a @ (40) 81 11 7+c _<227 .
ke 17 bicaa 12 0 8 Irva+bid 634 7o
b13 atbicidsT 8 2 10 T+b+d 623 aw
1 7 a+c @ (39} 4 0 4 a 12 17 <Zaye
8 210 T +b+d 12 7 6 T+atbed \634 o
3 at+bted 46 a+c+d T T el
7 _atc @ (2) ~2 73 d 12T.7" “ake
10 bd 11 a+c 1030 g
% (50) s
1 3 atbicd 1119 a+ 6 3% ¢ g
e AR 43) 404 @ 4 b~ g
014 a+b+d 1515 ¢ 1030 a
3 atbted 413 Trtatbredd %7 c
3 7T+a+b+c+d 4b4) 1119 a+c (51) 4 13 T[+a+btc+d
B T 72 12 T+b+d 2110 Tratb+d
3 Ttatbictd 10§ LT
7 0 YL 1 12 1 7 qr+a+c
4 Tatbic+d 17 116 0 T4cd
(52) »

G 2 773 4
b+c+d X 538 4 1 3 TTM+at+b+ctd
a+b+c+d 4i 11 6 0 TT+a+bsc

17
T+a+b+c+d L et

a+c ‘ 12 a

T+brd . (46) 11 L9 at
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o 406 &
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12 1 7 Tr+at+e 369 cd
il (12 17 _atc 1119 a+e
h 020 0k 870 aH
i (60) 3
| 8111 T+ 077 T+d |
i 8. 101 Ltz 807 0 :
| = e 1 cd
I, o020 T 870 T« 1 cc
| ihsss 2 0(:
413 atbteHd @ 369 T+eHd A
(53) / 413 T +atbicH (61) 807 0 @ | co
02 0% £k 11 6 2 T4ctd C(:
0(5
| 1119 at+e (11 6 2 T+cHd 88
F® @ : ®
1119 X 404 _a (63) 3
020. 0 (62) 7 6 6 T +atc+d 0 (4
516 O | 8% - Ay
>k 8 8 4 +a+b+c c(1
516 0 11210 _ (30 c(1
020 0 ‘ 3 c(7
\ \ 766 »a+b+c c(9
4 8 4 Tr+atbic and continue s
(54) 413 atbicid with additional phase C(g
077 T+ determinations. gg&
40 3 & Strong indications: Sg
- (55) 6 6 6 a+cHd @ a+b+d=20 C(s:
‘ 1063 c+d b+d=1 C(l:
a -»n Cgll:t
1063 cHd C (11
(56) 404 a Four possibilities: 28
6 6 7 a+cHd ; C(1¢
_ 1 2 3 4 C (4
6 6 7 a+cHd
5 b I o 0 C (9
(57) 1119  a+c ! C(1:
572 d °o 0 o c(14
o o I n 086
5372 d * C(14
< c(11
(58) 4 2 i a correct solution Cgl.‘i
972 aHd Cc(15
972 a+d EXAMPLE OF MULTIPLE SOLUTION c(2s
59) 1217 T+a+c c(3s
369 Tr+cid C(4s
. c(58
C(6S
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5 Table 8. Obtusaquinone
& E-map Refined Coordinates
| Peak
x y z height B X y z
5 C(1A) .370 .770 .253 417 3.4 .372 .770 .249
1 cEa) .269 .804 .145 395 3.4 .268 816 .147
1 o) .334 .999 214 372 4.6 .340 .998 211
1 c(68B) -.038 .706 .079 340 3.9 -.040 .701 .074
1 c@m) .016 .906 .145 337 3.3 .018 .905 .143
1 ca) .304 .580 .188 333 4.0 .306 .579 .191
1 o(5B) -.104 514 .006 322 4.6 -.105 .520 .002
4 c@B) -.134 .894 -.018 320 3.3 -.137 .901 -.009
1 o@s) -.069 1.081 . 062 315 4.2 -.070 1.077 .060
{ c(2B) -.079 .935 . 044 305 3.4 -.083 .940 .044
0 (4B) =,201 .702 -.071 298 4.5 -.197 .703 -.067
0 (4A) .203 .622 .095 284 5.3 .208 .619 .097
4 c(@5B) .169 .699 .320 274 4.8 172 .691 .319
§ c(10A) .563 774 485 . 266 4.0 565 769 .480
4 c(n) 424 .820 .303 262 3.3 w425 .829  .302
1 cop) .118 .901 .254 261 3.9 .114 .899 .250
1 c(8a) 470 .754 .364 247 3.5 472,753 .359
4 c(6a) .363 .627  .245 246 3.3 .360 .622 .240
4 c@) 324 .852 .204 245 3.6 324 .857 .198
# c@Bs) -.139 747 -.034 227 2.9 -.145 .751 -.022
i c(8B) .070 .826 .196 218 3.2 .068 .825 .198
i 0(5A) 292,439 .181 210 4.0 .292 437 .179
& c(5B) -.094 .662 .023 208 3.6 -.093 .657 .020
c(13B) .265 .733 436 206 5.4 .261 724 436
C(1B) -.031 .848  .089 195 2.4 -.032 .850 .088
c(10B) .168 .838 .308 194 4,2 .166 .833 .310
C(12A) .655 .807 .602 190 5.3 .648 .812 .604
C(11B) .208 .930 .365 186 4.6 .208 .924 .365
C(16A) .285 1.095 .168 172 5.4 .295 1.101 . 164
C(4A) .261 .669 .136 170 4.0 .257 .668 141
C(9A) .516 .822 419 162 4.3 .517 .831 AT
C(12B) .261 .863 425 160 5.4 .259 .863 427
C(14A) .625 .579 .557 159 5.7 .619 .577 .561
C(16B) -.122 1.178 .016 152 3.7 -.118 1.183 .021
C(14B) 224 .632 .382 150 5.4 .219 .638 .381
C(11A) .605 .862 .539 149 5.2 .602 . 864 .536
C(13A) .659 .679 .617 105 4.6 .654 .677 .615
§ C(15A) .567 .650 .483 98 4.5 .574 .626 492
: 1 c(s) 9.2 .083 .257 .360
' : CE%S) 7.9 .016 .242 .318
C(3s) : 8.9 .005 .293 .238
| C(438) solvent molecule 9.5 "083 “351 1208
1 c(ss) 8.2 .129 .326 .264
! C(6S) 13.3 .145 2299 347
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phases (or signs) be known before other phases can be determined. For
P21/a, three phases are known immediately by specifying the origin in the
cell. In addition to following the prescribed rules for origin specif#ca-
tion (Karle, 1974), reflections .for specifying the origin should have
large IEI values and have many interactions. for applying the :z: 2 formula,
In space group P21/a, three reflections for the origin are chosen. from

parity groups other than ggg(g = even, u = odd). If a uug and a ugg are

‘selected, for example, then the phases of reflections in gug are known,

in principle, and the third reflection for specifying the origin must be
chosen from one of the four remaining parity groups.

Usually the assignment of the origin does not supply enough known
phases to proceed with the 2{:2 formula, and phases for additional

reflections are assigned as symbols, see Table 4. The discovery that

very few unknown symbols are needed on which to base an entire phase

determination has mide the direct method practical. Again, the reflections

to which symbols are assigned should have large_lEl and should interact
with many other reflections having large |E[ . To facilitate the appli-

cation of the :E: 2 relationship, a listing is made of all pairs of

reflections, k and h - k with |[E|> 1.8  that can be used to

determine the phase of reflection h. Table 6 shows such a listing for

one reflection, 4 1.3 This listing also contains the E_E  E

{ ~ ~

products which are di%ectly related to the probability, Eq.(3). For this
crystal, a triple product of 30 corréSponds to P+ = 98.9% while a triple
product of 21 corresponds to By /= 95%. For a'probability level of 957%,
it should be remembered that 1 out of 20 indications will be in error.

The sequential application of the :z: formula is shown in Table 7,

2

Indices are added and phases are added since they are expressed as 0 orl[ .
Page 22
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It should be remembered that 2x, wlere x is any symbol, equals 0 for centro-
symmetric space groups. An alternative procedure for centrosymmetric space
groups is to use + and - signs, instead of 0 and T[ , in which case the

signs and unknown symbols are multiplied. At the beginning, phases are

determined by single indications. It is very important to use only those

reflections with the strongest | El values and the strongest triples to

assure that the probabilitxAthat-thg phase i3 correct is at least 997,

Several triples in Table 7, in entries (34) and (53), marked with an>< ,
indicate an erronecous phase., The triples marked with an )( have a con-
siderably lower triple product than other triples in the same entry that
indicate the phase correctly. .

When the phase for reflection hkl is determined in space group

P21/a, then the phases for hkl, hkl and hkl are also known by applying

the symmetry relationships as shown in Table 5. The symmetry relation-
ships for all space groups are listed in Vol.I of the International Tables

for X-Ray Crystallography. For example, in entry (6) of Table 7, the

363 reflection that had been assigned the symbol b is used as 363 and the
phase must be changed to T+ b,
After a number of phases are determined, there. are multiple indica-

tions for new phases. These indications may contain different symbols and,

in that manner, relationships among the symbols are discovered. 1In this

example, the first relationship among the symbols occurred at entry (45)
where it appears that a +d =bor a+ b -+ d = 0. The same relationship
is also indicated at entries (49) and (52). Since all the triple

Eh Ek Eh—k products involved are very strong, it is very probable that the

‘- -

relationship a + b+ d = 0 1is correct. At entries (60) and (62), it

Page 23
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appears that a =)l and b + d =7 . Taken together, these indications are
consiste?t with the indication that a +.b + d = 0. A continuation of the
phase deLermination beyond that shown in Table 7 did not produce any
other reliable relationships among the symbols. Four symbols were
assigned initially, two independent relatioﬁs among the symbols were
found, hence four possibilities remained, as shown at the end of Table 7.
For centrosymmetric space groups, the number of possibilities is equal to
2" where n is the number of unknown symbols. 1In this determination, the
first possibility was the correct one.

After the assignment of the symbols, phases for additional reflec-
tions were determined by computer and an E-map was computed using 364
terms with IE| > l1.1. An E-map (Karle, Hauptman, Karle and Wing, 1958)
is a Fourier map in which the F values are replaced with E values. The
resulting map has peaks that are much sharper than in the qonvencional
Fourier. The coordinates of the atoms as inidcated by the initial E-map,
Fig. 3, are sufficiently good to use directly in a least-squares refine-
ment. Table 8 contains the coordinates of the 38 atoms of the two inde-
pendent molecules as read from the initial E-map, the peak height, the
isotropic thermal factor B, and the coordinates after least-squares
refinement. A comparison of the coordinates shows the accuracy of
position as indicated by the E-map. The peak heights for similar atomic
specie are ranked roughly inversely proportional to the thermal par-
amters. This is par:;cularly_noticeable for the solvent molecule (the
lagt six atoms listed in Table 8) where the peaks for the atoms were

almost non-existent in the E-map and the B values ranged from 8 to 13.

The solvent molecule was found subsequently in a difference map using al%'

the (Fy- Fc) data.
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S e

Space Group Pl

R

Phase determination in space group Pl occasionally presents some

L L o e O e

difficulties owing to the small number of equivalent reflections. Because

F¢hkl) is related only to F(Eii), there are fewer combinations of E E

ke~ hk
for each E_ in the :Z: , relation, Eq.(l) or (2). As a consequence,’ |
%Q among those reflections available for :z: 2 the E,. E E products are

h "k h-k

-

if; usually not as high as in space groups’containiﬁg more symmetry, and,
therefore, the probabilities, Eq.(3) are somewhat lower. Hence, it is
even more important to use phase relationships based on the highest
triple products.

The details for phase determination for jamine (Karle and Karle,

1964b) are shown in Tables 9f16. The statistical averages in Table 11 j

show that the space group is Pl rather than Pl. In Table i0 the data
have been divided inte the eight parity groups for hkl and listed in .
decreasing values of | E[ in each group. The origin specification and the

additional reflections to which a symbol has been assigned for implementing |

the :E: 2 formula are listed in Table 12. The reflections to which a

symbol has been assigned to represent the phase were chosen one at a time, 1

as nceded, to proceed with the E 5 formula and maintain very high

- probability values. The sequential.apﬁlication of the 2 :2 formula is

|
shown in Table 1l4. ﬁymbol d was introduced at entry (25) while symbol g
wag introduced sometime after entry (64) because there still remained a
number of reflections with high | E| values for which phases were not