INTRODUCTION TO THE RIETVELD METHOD AND THE PROGRAM MAUD

LUCA LUTTEROTTI

DEPARTMENT OF MATERIALS ENGINEERING AND INDUSTRIAL TECHNOLOGIES, UNIVERSITY OF TRENTO - ITALY

LUCA.LUTTEROTTI@UNITN.IT

GOAL OF THE RIETVELD METHOD

* To minimize the residual function using a non-linear least squares algorithm

$$WSS = \sum_{i} w_i \left(I_i^{\exp} - I_i^{calc} \right)^2, w_i = \frac{1}{I_i^{\exp}}$$

** and thus refine the crystal structure of a compound (cell parameters, atomic positions and Debye-Waller factors)

DIFFRACTION INTENSITIES

The intensity in a powder diffractometer

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

* The structure factor:

$$\left|F_{k,j}\right|^{2} = m_{k} \left|\sum_{n=1}^{N} f_{n} e^{-B_{n} \frac{\sin^{2} \theta}{\lambda^{2}}} \left(e^{2\pi i (hx_{n} + ky_{n} + lz_{n})}\right)\right|^{2}$$

DIFFRACTION ANALYSES

- * Phase identifications (crystalline and amorphous)
- % Crystal structure determination
- **Crystal structure refinements**
- Quantitative phase analysis (and crystallinity determination)
- Microstructural analyses (crystallite sizes microstrain)
- Texture analysis
- Residual stress analysis
- * Order-disorder transitions and compositional analyses* Thin films

GOAL OF THE RIETVELD METHOD

To minimize the residual function:

$$WSS = \sum_{i} w_i (I_i^{exp} - I_i^{calc})^2, w_i = \frac{1}{I_i^{exp}}$$

where:

 $I_{i}^{calc} = S_{F} \sum_{k} L_{k} |F_{k}|^{2} S(2\theta_{i} - 2\theta_{k}) P_{k} A + bkg_{i}$ $P_{k} = \text{preferred orientation function}$ $S(2\theta_{i} - 2\theta_{k}) = \text{profile shape function}$ $(PV: \eta, HWHM)$ $HWHM^{2} = U \tan^{2} \theta + V \tan \theta + W$ $P_{k} = \left(r^{2} \cos^{2} \alpha + \frac{\sin^{2} \alpha}{r}\right)^{-3/2}$

using a non-linear least squares algorithm

The function to minimize by a least squares method (non linear):

$$WSS = \sum_{i} w_i \left(I_i^{\exp} - I_i^{calc} \right)^2, w_i = \frac{1}{I_i^{\exp}}$$

** the spectrum is calculated by the classical intensity equation: $I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$

- The spectrum depends on
 - ** phases: crystal structure, microstructure, quantity, cell volume, texture, stress, chemistry etc.
 - instrument geometry characteristics: beam intensity, Lorentz-Polarization, background, resolution, aberrations, radiation etc.
 - sample: position, shape and dimensions, orientation.
- * Each of the quantity can be written in term of parameters that can be refined (optimized).

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

* The spectrum (at a 2θ point i) is determined by:

a background value

- some reflection peaks that can be described by different terms:
 - Diffraction intensity (determines the "height" of the peaks)
 - Line broadening (determines the shape of the peaks)
 - Number and positions of the peaks

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

* The more used background in Rietveld refinements is a polynomial function in 2θ :

$$bkg(2\theta_i) = \sum_{n=0}^{N_b} a_n (2\theta_i)^n$$

 N_{b} is the polynomial degree

* a_n the polynomial coefficients

For more complex backgrounds specific formulas are availableIt is possible to incorporate also the TDS in the background

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

Starting with the "Diffraction Intensities", the factors are:
A scale factor for each phase
A Lorentz-Polarization factor
The multiplicity
The structure factor

- * The temperature forte
- * The temperature factor
- The absorption
- The texture
- Problems: extinctions, absorption contrast, graininess, sample volume and beam size, inhomogeneity, etc.

$$I_i^{calc} = \left| S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \right|_{k=1}^{Npeaks} L_k \left| F_{k,j} \right|^2 S_j \left(2\theta_i - 2\theta_{k,j} \right) P_{k,j} A_j + bkg_i$$

* The scale factor (for each phase) is written in classical Rietveld programs as: $f_{.}$

$$S_j = S_F \frac{J_j}{V_j^2}$$

 $S_j =$ phase scale factor (the overall Rietveld generic scale factor)

- $S_F =$ beam intensity (it depends on the measurement)
- $\# f_i =$ phase volume fraction
- % V_j = phase cell volume (in some programs it goes in the F factor)
- In Maud the last three terms are kept separated.

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \sum_{k=1}^{Npeaks} \left| L_k \right| F_{k,j} \left|^2 S_j \left(2\theta_i - 2\theta_{k,j} \right) P_{k,j} A_j + bkg_i$$

- ****** The Lorentz-Polarization factor: # it depends on the instrument
 - % geometry
 - \ll monochromator (angle α)
 - # detector
- beam size/sample volume sample positioning (angular) * For a Bragg-Brentano instrument: $1 + D \cos^2(20)$ $=\cos^2(2\alpha)$

$$L_p = \frac{1 + P_h \cos(2\theta)}{2(1 + P_h) \sin^2 \theta \cos \theta} \qquad P_h$$

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

Under a generalized structure factor we include:

- The multiplicity of the k reflection (with h, k, l Miller indices): m_k
 The structure factor
- * The temperature factor: B_n

$$\left|F_{k,j}\right|^{2} = m_{k} \left|\sum_{n=1}^{N} f_{n} e^{-B_{n} \frac{\sin^{2} \theta}{\lambda^{2}}} \left(e^{2\pi i (hx_{n} + ky_{n} + lz_{n})}\right)\right|^{2}$$

 \gg N = number of atoms \gg x_n, y_n, z_n coordinates of the nth atom \gg f_n, atomic scattering factor

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- The absorption factor:
 - in the Bragg-Brentano case (thick sample):
 - $A_j = \frac{1}{2\mu}$, μ is the linear absorption coefficient of the sample
 - For the thin sample or films the absorption depends on 2θ
 For Debye-Scherrer geometry the absorption is also not constant

* There could be problems for microabsorption (absorption contrast)

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \sum_{k=1}^{Npeaks} L_k \left| F_{k,j} \right|^2 S_j \left(2\theta_i - 2\theta_{k,j} \right) P_{k,j} A_j + bkg_i$$

The texture (or preferred orientations):

The March-Dollase formula is used:

$$P_{k,j} = \frac{1}{m_k} \sum_{n=1}^{m_k} \left(P_{MD}^2 \cos^2 \alpha_n + \frac{\sin^2 \alpha_n}{P_{MD}} \right)^{-\frac{3}{2}}$$

 $R P_{MD}$ is the March-Dollase parameter

- summation is done over all equivalent hkl reflections (m_k)
- ** α_{N} is the angle between the preferred orientation vector and the crystallographic plane hkl (in the crystallographic cell coordinate system)
- The formula is intended for a cylindrical texture symmetry (observable in B-B geometry or spinning the sample)

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- The profile shape function:
 - # different profile shape function are available:
 - Gaussian (the original Rietveld function for neutrons)
 - Cauchy
 - * Voigt and Pseudo-Voigt (PV)
 - % Pearson VII, etc.
 - ****** For example the PV:

$$PV(2\theta_i - 2\theta_k) = I_n \left[\eta_k \left(\frac{1}{1 + S_{i,k}^2} \right) + (1 - \eta_k) e^{-S_{i,k}^2 \ln 2} \right] \qquad S_{i,k} = \frac{2\theta_i - 2\theta_k}{\omega_k}$$

** the shape parameters are:

Caglioti formula: $\omega^2 = W + V \tan \theta + U \tan^2 \theta$ Gaussianity: $\eta = \sum_{n=0}^{N_g} c_n (2\theta)^n$

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \sum_{k=1}^{Npeaks} L_k \left| F_{k,j} \right|^2 S_j \left(2\theta_i - 2\theta_{k,j} \right) P_{k,j} A_j + bkg_i$$

- * The number of peaks is determined by the symmetry and space group of the phase.
- One peak is composed by all equivalent reflections m_k
- The position is computed from the d-spacing of the hkl reflection (using the reciprocal lattice matrix):

$$d_{hkl} = \frac{V_C}{\sqrt{s_{11}h^2 + s_{22}k^2 + s_{33}l^2 + 2s_{12}hk + 2s_{13}hl + 2s_{23}kl}}$$
$$S = \begin{pmatrix} a^{*2} & a^*b^*\cos\gamma^* & a^*c^*\cos\beta^* \\ a^*b^*\cos\gamma^* & b^{*2} & b^*c^*\cos\beta^* \\ a^*c^*\cos\beta^* & b^*c^*\cos\alpha^* & c^{*2} \end{pmatrix}$$

QUALITY OF THE REFINEMENT

Weighted Sum of Squares:

$$WSS = \sum_{i=1}^{N} \left[w_i \left(I_i^{\exp} - I_i^{calc} \right) \right]^2, \qquad w_i = \frac{1}{\sqrt{I_i^{\exp}}}$$

R indices (N=number of points, P=number of parameters):

$$R_{wp} = \sqrt{\frac{\left|\sum_{i=1}^{N} \left[w_i \left(I_i^{exp} - I_i^{calc}\right)\right]^2}{\sum_{i=1}^{N} \left[w_i I_i^{exp}\right]^2}}, \qquad w_i = \frac{1}{\sqrt{I_i^{exp}}}$$
$$R_{exp} = \sqrt{\frac{\left(N - P\right)}{\sum_{i=1}^{N} \left[w_i I_i^{exp}\right]^2}}, \qquad w_i = \frac{1}{\sqrt{I_i^{exp}}}$$

The goodness of fit:

$$GofF = \frac{R_{wp}}{R_{exp}}$$

THE R INDICES

- The R_{wp} factor is the more valuable. Its absolute value does not depend on the absolute value of the intensities. But it depends on the background. With a high background is more easy to reach very low values. Increasing the number of peaks (sharp peaks) is more difficult to get a good value.
 - R_{wp} < 0.1 correspond to an acceptable refinement with a medium complex phase</p>
 - * For a complex phase (monoclinic to triclinic) a value < 0.15 is good</p>
 - * For a highly symmetric compound (cubic) with few peaks a value < 0.08 start to be acceptable</p>
- The R_{exp} is the minimum R_{wp} value reachable using a certain number of refineable parameters. It needs a valid weighting scheme to be reliable.

WSS AND GOFF (OR SIGMA)

- The weighted sum of squares is only used for the minimization routines. Its absolute value depends on the intensities and number of points.
- ** The goodness of fit is the ratio between the R_{wp} and R_{exp} and cannot be lower then 1 (unless the weighting scheme is not correctly valuable: for example in the case of detectors not recording exactly the number of photons or neutrons).
- A good refinement gives GofF values lower than 2.
- The goodness of fit is not a very good index to look at as with a noisy pattern is quite easy to reach a value near 1.
- With very high intensities and low noise patterns is difficult to reach a value of 2.
- The GofF is sensible to model inaccuracies.

WHY THE RIETVELD REFINEMENT IS WIDELY USED?

% Pro

- It uses directly the measured intensities points
- It uses the entire spectrum (as wide as possible)
- Less sensible to model errors
- * Less sensible to experimental errors

Cons

- It requires a model
- It needs a wide spectrum
- Rietveld programs are not easy to use
- Rietveld refinements require some experience (1-2 years?)
- Can be enhanced by:
 - More automatic/expert mode of operation
 - Better easy to use programs

RIETVELD PROCEDURE

- * choose the correct instrument/s
- select the experiment conditions
- * prepare the sample and collect the pattern/s

Analysis:

- * verify the data quality and perform the qualitative analysis
- Rietveld refinement:
 - load or input the phases in the sample
 - # adjust manually some parameters (cell, intensities, background)
 - # refine overall intensities and background
 - # refine peaks positions
 - # refine peaks shapes
 - # refine structures
- Assess the results

STARTING POINT: DEFINING THE PHASES

We need to specify which phases we will work with (databases)

ADJUSTING MANUALLY: CELL PARAMETERS, INTENSITIES

The peaks positions must be sufficiently correct for a good start; better also to adjust scale factors and background

STEP 1: REFINING SCALE FACTORS AND BACKGROUND

* After 5 iterations the Rwp is 26.5 %; intensities look better; we use only one overall B factor for all atoms.

STEP 2: PEAKS POSITIONS

* Adding to refinement cell parameters and 2 Θ displacement; Rwp now is at 24.8%; major problems are now peaks shapes

STEP 3: PEAKS SHAPES

We add to the refinement also peaks shapes parameters; either the Caglioti parameters (classical programs) or crystallite sizes and microstrains; Rwp is now at 9.18 %

STEP 4: CRYSTAL STRUCTURE REFINEMENT

** Only if the pattern is very good and the phases well defined. We refine separated B factors and only the coordinates that can be refined. Final Rwp at 8.86%

