Download citation
Download citation
link to html
The syntheses and crystal structures of the title Pt2II and Pt2III dimers doubly bridged with N,N-dimethyl­guanidinate ligands, namely bis­(μ-N,N-dimethyl­guanidinato)bis­[(2,2′-bipyridine)platinum(II)](Pt—Pt) bis­(hexa­fluoro­phosphate) acetonitrile disolvate, [Pt2II(C3H8N3)2(C10H8N2)2](PF6)2·2CH3CN, (I), and guanidinium bis­(μ-N,N-dimethyl­guanidinato)bis­[(2,2′-bipyridine)sulfatoplatinum(III)](Pt—Pt) bis­(hexa­fluoro­phosphate) nitrate hexa­hydrate, (C3H10N3)[PtIII2(C3H8N3)2(SO4)2(C10H8N2)2]NO3·6H2O, (II), are reported. The oxidation of the Pt2II dimer into the Pt2III dimer results in a marked shortening of the Pt—Pt distance from 2.8512 (6) to 2.5656 (4) Å. The change is mainly compensated for by the change in the dihedral angle between the two Pt coordination planes upon oxidation, from 21.9 (2) to 16.9 (3)°. We attribute the relatively strong one-dimensional stack of dimers achieved in the Pt2II compound in part to the strong PtII...C(bpy) associations (bpy is 2,2′-bipyridine) in the crystal structure [Pt...C = 3.416 (10) and 3.361 (12) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106053601/bm3021sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106053601/bm3021Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106053601/bm3021IIsup3.hkl
Contains datablock II

CCDC references: 638297; 638298

Comment top

One-dimensional materials have attracted considerable attention due to their highly anisotropic physical properties. In order to develop new types of one-dimensional substances, interest has for many years concentrated on the use of dinuclear entities as the repeating units, since the electronic structures at the metal centres may be controlled prior to the formation of a one-dimensional stack of dimers. In this context, we reported previously that cis-diammineplatinum dimers doubly bridged with carboxylate ligands afford a new series of one-dimensional platinum chain compounds with general formula [Pt2(NH3)4(µ-carboxylato)2]nm+, where the charge m depends on the average Pt oxidation state (Sakai, Takeshita et al., 1998; Sakai et al., 2002). One of the attractive features of these dimeric units is that they are doubly bridged by carboxylate ligands in a cis fashion, leading to high flexibility in their Pt—Pt distances upon formation of this bond as the partial oxidation at the metal centres proceeds (Sakai, Tanaka et al., 1998). As an extended study of such carboxylate systems, we have also developed a new one-dimensional platinum family by combining a cationic diplatinum complex with an anionic mononuclear complex, e.g. [PtII2(bpy)2(µ-pivalamidato)2]2+ and [PtII(oxalato)2]2- (Akiyama et al., 2000). In that study, a very intriguing alternating stack of dimers and monomers was found in the crystal structure. It was also found that the so-called `HT–HH' isomerization of the pivalamidate-bridged dimer took place to give a mixture of two isomers, where HT and HH correspond to the head-to-tail and head-to-head arrangements, respectively, of the bridging amidate ligands. The coexistence of these two isomers caused difficulties in evaluating the crystal structures and their oligomerization behaviours in aqueous media. For instance, even if a pure HT dimer, HT-[PtII2(bpy)2(µ-pivalamidato)2](NO3)2·5H2O (Sakai & Yokokawa, 2004), is employed as the starting material, in aqueous media the dimer gradually undergoes HT–HH isomerization over a day to give a mixture of two isomers (Sakai, 1996). In order to avoid such complications, dimers bridged by guanidinate derivatives, [PtII2(bpy)2(µ-bridge)2]2+ (bridge is guanidinate, N,N-dimethylguanidinate, N,N-diethylguanidinate, etc.), have been examined in our recent studies, since these dimers afford only one isomer (bridging amidates coordinate with N and O donors, while bridging guanidinates coordinate with two chemically equivalent N donors). Here, we report the syntheses and crystal structures of the PtII2 and PtIII2 dimers bridged by N,N-dimethylguanidinate ligands, [PtII2(bpy)2(µ-dmg)2](PF6)2·2CH3CN, (I), and [PtIII2(bpy)2(SO4)2(µ-dmg)2](dmgH2)(NO3)·6H2O, (II) (dmg is N,N-dimethylguanidinate). [From the Co-Editor: Please check that the Scheme shows the correct bond types for your dimethylguanidinate ligands.]

The asymmetric unit of (I) consists of a dinuclear platinum(II) cation (Fig. 1), two PF6- anions and two acetonitrile solvent molecules. The two square-planar PtII coordination planes are doubly bridged by the N,N-dimethylguanidinate ligands in a cis fashion. The dihedral angle between the two coordination planes (τ) is 21.9 (2)°, where each coordination plane is defined with four coordinated N atoms. In the mean-plane calculations, the r.m.s. deviations are 0.033 (9) Å for N1/N4/N7/N8 and 0.013 (3) Å for N2/N5/N9/N10. The average torsional twist of these coordination planes about the Pt···Pt vector (ω) is 22.5 (10)°. Pt1 and Pt2 are displaced out of their respective least-squares mean planes by 0.038 (5) and 0.036 (5) Å, respectively, suggesting that they have a mutually repulsive interaction. Alternatively, it may be considered that the two N(bpy) atoms in each Pt coordination plane are shifted out of the Pt coordination plane due to the attractive ππ interaction within the dimeric unit. Very similar structural features were previously observed for [PtII2(phen)2(µ-pivalamidato)2](NO3)2·2H2O (phen is 1,10-phenanthroline) [hereinafter (III); τ = 21.5 (4)° and ω = 13 (3)°; Sakai et al., 2003]. The two pyridyl rings attached to atom Pt1 are twisted about the central C11—C12 bond: N7—C11—C12—N8 = -5.4 (13)° and C10—C11—C12—C13 = -3.4 (19)° [Are these angles intended to be negative?]. These two pyridyl planes are canted at an angle of 5.4 (3)°. In contrast, the bpy ligand bound to atom Pt2 possesses a planar geometry, with a 12-atom r.m.s. deviation of 0.02 (2) Å.

The two bpy ligands within the dimeric unit form a π-stacking interaction. The intradimer bpy-to-bpy separation, defined as the separation between the N7/N8/C7/C8/C11/C12 and N9/N10/C20/C21/C22/C26 planes, is 3.45 (15) Å (Fig. 2b). The intradimer Pt···Pt distance [2.8512 (6) Å] is comparable with the value of 2.8489 (17) Å reported for (III). The interdimer Pt···Pt distances [Pt1···Pt1i = 4.9369 (9) and Pt2···Pt2ii = 4.5660 (9) Å; symmetry codes: (i) -x, -y, 1 - z; (ii) -x, -y, -z] reveal that there is no significant intermolecular metal–metal interaction in the crystal structure (Fig. 3). Nevertheless, as previously observed for (III), the dimer units stack along the c axis in a one-dimensional fashion based on relatively strong π(bpy)–π(bpy) and d(Pt)–π(bpy) interactions [Pt1···C11i = 3.416 (10), Pt1···C10i = 3.470 (13) and Pt2···C21ii = 3.361 (12) Å], which is obviously relevant to the dark-red colour of the material (see also Figs. 2a, 2c and 4). The interplanar separation for the Pt1···Pt1(-x, -y, 1 - z) stack is 3.31 (4) Å, while the corresponding value for Pt2···Pt2(-x, -y, -z) is 3.34 (1) Å. These values refer to the stacking of two crystallographically equivalent planes, related by an inversion centre in each case, the planes being Pt1/N7/N8/C7/C8/C10/C11/C12 and Pt2/N9/N10/C17/C18/C21/C22/C26, respectively.

The asymmetric unit of (II) consists of a neutral PtIII2 dimer (Fig. 5), a guanidinium cation, a nitrate anion, and six water solvent molecules. The axial sites of the dinuclear platinum(III) unit are occupied by sulfate O atoms. An interesting structural feature is that each sulfate anion is doubly hydrogen-bonded to the N—H(dmg) groups (Table 5). The non-coordinated guanidinium cation is also hydrogen-bonded to one of the coordinated sulfate anions [N11···O4 = 2.973 (11) and N12···O2 = 2.962 (10) Å; Table 5]. The bridged Pt···Pt distance [2.5656 (4) Å] is very close to the value of 2.5664 (6) Å reported for the pivalamidate-bridged analogue [PtIII2(bpy)2(µ-pivalamidato)2(SO4)2]·4H2O [hereinafter (IV); Yokokawa & Sakai, 2004]. This is the second example of a crystal structure of a platinum(III) dimer with the general formula [PtIII2(bpy)2(µ-bridge)2L2] (bridge is amidate, carboxylate, guanidinate, etc.; L is an axial ligand such as OH2, Cl-, SO42- or NO3-). The PtIIIO(sulfate) distances [2.152 (5) and 2.139 (5) Å] are also similar to the value of 2.144 (7) Å reported for (IV). In this paper, an equatorial coordination plane within overall octahedral geometry is defined for each PtIII ion as the plane which is perpendicular to the PtIII···PtIII axis. Thus, one equatorial PtIII coordination plane is defined by N1/N4/N7/N8 and the other by N2/N5/N9/N10, with a dihedral angle between them of 16.9 (3)° and a mean torsional twist of 18 (1)°. These indicate that the shortening of ca 0.29 Å in the Pt···Pt distance upon oxidation of (I) to (II) is mainly compensated for by the change in τ, giving only a small change in ω. The mean-plane calculations performed for the four-coordinated equatorial donor atoms reveal both planes to be planar, with r.m.s. deviations of 0.0004 (2) Å for N1/N4/N7/N8 and 0.007 (2) Å for N2/N5/N9/N10. Atoms Pt1 and Pt2 are displaced towards each other out of the local equatorial coordination plane by 0.016 (3) and 0.027 (3) Å, respectively.

As shown in Fig. 5b and Table 4, the two bpy planes show short stacking interactions due to the formation of a single PtIII—PtIII bond. The net separation between the stacked bpy moieties is estimated as 3.2 (2) Å, which is calculated from the separation between the C7/N7/C11/C12/N8/C16 and C17/N9/C21/C22/N10/C26 planes. Such short C···C contacts have previously been observed for some special cases {see, for example, the value of the C···C separation [3.252 (2) Å] reported for a one-dimensional-stacked nickel phthalocyanine complex (Schramm et al., 1980)}. The two bpy planes defined by N7/N8/C7–C16 and N9/N10/C17—C26 exhibit r.m.s. deviations of 0.03 (3) and 0.04 (3) Å, respectively. Moreover, each bpy plane is nearly coplanar with the local equatorial coordination plane: the dihedral angle between the N1/N4/N7/N8 and N7/N8/C7–C16 planes is 1.6 (3)°, while the corresponding angle between the N2/N5/N9/N10 and N9/N10/C17–C26 planes is 0.4 (3)°.

The dimer further forms a one-dimensional stack in the [101] direction via ππ stacking interactions between adjacent dimers (Fig. 6). However, the separation between adjacent bpy planes is estimated as 3.68 (4) Å (see also Fig. 7), indicating that the intermolecular ππ associations in (II) are relatively weak in comparison with those achieved in (I). This implies that the d(PtII)–π(bpy) interactions achieved in (I) contribute significantly to the relatively strong interdimer stacking associations in (I).

Related literature top

For related literature, see: Akiyama et al. (2000); Sakai (1996); Sakai & Yokokawa (2004); Sakai et al. (2002, 2003); Sakai, Takeshita, Tanaka, Ue, Yanagisawa, Kosaka, Tsubomura, Ato & Nakano (1998); Sakai, Tanaka, Tsuchiya, Hirata, Tsubomura, Iijima & Bhattacharjee (1998); Schramm et al. (1980); Wimmer et al. (1988); Yokokawa & Sakai (2004).

Experimental top

In order to avoid complexation between the silver ion and the N,N-dimethylguanidinate ligand, compounds (I) and (II) were prepared from a hydroxo-bridged dimer, [Pt2(µ-OH)2(bpy)2](NO3)2 (Wimmer et al., 1988). It is also noteworthy that the preparation of the pivalamidate-bridged analogue was carried out as a one-pot reaction of PtCl2(bpy), silver nitrate and pivalamide (Yokokawa & Sakai, 2004).

For the synthesis of (I), a solution of PtCl2(bpy) (0.5 mmol, 0.221 g) and AgNO3 (1.0 mmol, 0.170 g) in water (10 ml) was refluxed in the dark for 3 h, followed by filtration to remove the precipitated AgCl. To the filtrate were added [(CH3)2NC(:NH)NH2]2·H2SO4 (0.375 mmol, 0.102 g) and methanol (10 ml). After adjusting the pH of the mixture to 8, the solution was refluxed for 24 h, during which time the colour of the solution turned reddish–purple. The solution was then left at room temperature, followed by filtration to remove insoluble material. To the resulting filtrate were added seven to eight drops of an aqueous saturated NH4PF6 solution. The resulting deep-green powder was collected by filtration and dried in vacuo (yield 0.11 g). The crude product was purified on a Sephadex LH-20 column using MeOH–CH3CN (1:1 v/v) as eluent. The first and second deep-brown bands were assumed to correspond to compounds of higher nuclearity, although their identification has been unsuccessful so far. The third reddish–purple band, corresponding to (I), was collected and the solution evaporated to dryness. The compound was redissolved in CH3CN and recrystallized by leaving the solution at room temperature in air in a vial covered with aluminium foil, with several pin holes made in the foil to control the slow evaporation of the solvent (yield 9.6%). The acetonitrile disolvate, (I), easily loses solvent upon exposure to air, so single-crystal X-ray diffractometry was carried out on the solvated form, (I). All other analytical data were obtained for the non-solvated form of the complex, [PtII2(bpy)2(µ-dmg)2](PF6)2, as follows: analysis calculated for C26H32F12N10P2Pt2: C 26.81, H 2.77, N 12.03%; found: C 26.54, H 2.48, N 11. 44%. IR (KBr, ν, cm-1): 3419 (w), 1607 (w), 1547 (m), 1453 (w), 1318 (w), 1176 (w), 1065 (w), 840 (s), 768 (w), 558 (m); 1H NMR (CD3CN, δ, p.p.m.): 3.08 (s, 12H, methyl), 3.61 (s, 4H, NH), 7.35 (t, 4H, bpy), 7.54 (d, 4H, bpy), 8.02 (t, 4H, bpy), 8.70 (d, 4H, bpy); UV–Vis absorption spectrum (CH3CN, 293 K, in air): 500 (ε = 1990 M-1cm-1, metal–metal-to-ligand charge-transfer band), 312 (ε = 18100 M-1cm-1), 251 (ε = 37800 M-1cm-1) nm.

For the synthesis of (II), a solution of PtCl2(bpy) (0.5 mmol, 0.221 g) and AgNO3 (1.0 mmol, 0.170 g) in water (10 ml) was refluxed in the dark for 3 h, followed by filtration to remove the precipitated AgCl. The filtrate was then evaporated to dryness to give a solid corresponding to [Pt2(µ-OH)2(bpy)2](NO3)2 (Wimmer et al., 1988). To this were added [(CH3)2NC(:NH)NH2]2·H2SO4 (0.375 mmol, 0.102 g) and water (2.5 ml). The solution was refluxed for 24 h, during which the colour of the solution turned red. The solution was allowed to stand at room temperature in air for a few days until the volume of the solution was greatly reduced. The deposited product consisted of red crystals of an unidentified by-product and orange prisms of (II). These two types of crystals were collected by filtration, dried in air and manually separated under a microscope. The total yield of the orange compound, (II), was 87 mg (Percentage yield?). Analysis: calculated for C29H54N14O17Pt2S2: C 26.29, H 4.11, N 14.80%; found: C 26.43, H 3.34, N 15.10%. IR (KBr, ν, cm-1): 3364 (m, br), 1636 (m), 1603 (m), 1573 (m), 1541 (m), 1384 (s), 1118 (s), 1030 (w), 766 (m), 618 (s), 420 (w).

Refinement top

Two PF6- anions in (I) show orientational disorder. Around each P atom, there are two sets of possible positions, F1A–F6A and F1B–F6B around P1, and F7A–F12A and F7B–F12B around P2. It was assumed that the disordered F atoms around each P atom would have the same isotropic displacement parameter. Furthermore, P—F distances were restrained to 1.55 (1) Å, and the 12 F···F distances within each PF6- anion were restrained to be equal. The sum of the occupation factors of sites A and B for each PF6- anion was restrained to unity. All H atoms of (I) were located in their idealized positions, with CH(methyl) = 0.98 Å, C—H(aromatic) = 0.95 Å and N—H(guanidinate) = 0.88 Å, and included in the refinement using a riding model, with Uiso(methyl H) = 1.5Ueq(C), Uiso(aromatic H) = 1.2Ueq(C), and Uiso(guanidinate H) = 1.2Ueq(N). In the final difference Fourier synthesis of (I), six residual peaks in the range 2.56–4.44 e Å-3 were observed, primarily near the Pt atoms.

For compound (II), the nitrate anion was observed to be disordered over two sites, A and B. The disordered atoms were assumed to have the same isotropic displacement parameter. Furthermore, the N—O distances were restrained to 1.22 (1) Å, the three O···O distances were restrained to be equal, and the nitrate anion was restrained to be planar. The two sites were assumed to be equally populated and therefore the occupation factors of the atoms were all fixed at 0.50. Two of the six water molecules were also observed to be disordered over two sites (O16A and O16B, and O17A and O17B). For each of them, the disordered atoms were assumed to have the same isotropic displacement parameters, and the occupation factors of the atoms were fixed at 1/2, as for the nitrate geometry. All H atoms, except for those of the water molecules, were located in their idealized positions, with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å and N—H(guanidinate) = 0.86 Å, and included in the refinement using a riding model, with Uiso(methyl H) = 1.5Ueq(C), Uiso(aromatic H) = 1.2Ueq(C) and Uiso(guanidinate H) = 1.2Ueq(N). In the final difference Fourier synthesis of (II), six residual peaks in the range 1.03–2.15 e Å-3 were observed near the Pt atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Views showing three different stacking interactions within the one-dimensional column in (I). (a) The interdimer association of the Pt1···Pt1i geometry. (b) The intradimer association (labels are only given for the atoms used to estimate the intradimer bpy-to-bpy separation). (c) The interdimer association of the Pt2···Pt2ii geometry. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, -y, -z.]
[Figure 3] Fig. 3. A side view showing the way in which three adjacent dimer cations stack to give a one-dimensional chain in (I). Each dimer–dimer interaction is correlated with an inversion centre. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, -y, -z.]
[Figure 4] Fig. 4. Crystal packing views, showing one-dimensional columns consisting of dimer units (a) along the b axis and (b) along the c axis. For clarity, only one of the two disordered sites (site A) is plotted for each PF6- anion. H atoms have been omitted for clarity.
[Figure 5] Fig. 5. Views of (II), showing (a) a side view and (b) a top view down the Pt1···Pt2 vector, together with the atom-labelling scheme. For (b), only those atoms involved in significant intramolecular ππ associations are labelled. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 6] Fig. 6. A side view of (II), showing three adjacent dimer units stacked in the [101] direction. H atoms have been omitted for clarity. [Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) -1/2 + x, 1/2 - y, -1/2 + z.]
[Figure 7] Fig. 7. A view showing the stacking of adjacent dimer units in (II). H atoms have been omitted for clarity. [Symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z.]
(I) bis(µ 1,1-dimethylguanidinato)bis[(2,2'-bipyridine)platinum(II)](Pt—Pt) bis(hexafluorophosphate) bis(acetonitrile) top
Crystal data top
[Pt2(C3H8N3)2(C10H8N2)2](PF6)2·2C2H3NZ = 2
Mr = 1246.84F(000) = 1192
Triclinic, P1Dx = 2.094 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.527 (1) ÅCell parameters from 7382 reflections
b = 12.606 (1) Åθ = 2.4–27.5°
c = 13.3233 (11) ŵ = 7.25 mm1
α = 94.945 (1)°T = 100 K
β = 94.621 (1)°Square prism, dark red
γ = 108.295 (1)°0.21 × 0.16 × 0.09 mm
V = 1977.3 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8671 independent reflections
Radiation source: sealed tube6882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.366 pixels mm-1θmax = 27.1°, θmin = 2.2°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.384, Tmax = 0.521l = 1717
23482 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0584P)2 + 40.2739P]
where P = (Fo2 + 2Fc2)/3
8671 reflections(Δ/σ)max < 0.001
497 parametersΔρmax = 4.41 e Å3
288 restraintsΔρmin = 2.80 e Å3
Crystal data top
[Pt2(C3H8N3)2(C10H8N2)2](PF6)2·2C2H3Nγ = 108.295 (1)°
Mr = 1246.84V = 1977.3 (3) Å3
Triclinic, P1Z = 2
a = 12.527 (1) ÅMo Kα radiation
b = 12.606 (1) ŵ = 7.25 mm1
c = 13.3233 (11) ÅT = 100 K
α = 94.945 (1)°0.21 × 0.16 × 0.09 mm
β = 94.621 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6882 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.521Rint = 0.045
23482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061288 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0584P)2 + 40.2739P]
where P = (Fo2 + 2Fc2)/3
8671 reflectionsΔρmax = 4.41 e Å3
497 parametersΔρmin = 2.80 e Å3
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.4759 (0.0445) x + 2.0816 (0.0436) y + 12.7934 (0.0124) z = 4.7987 (0.0057)

* -0.0318 (0.0046) N1 * 0.0315 (0.0045) N4 * -0.0338 (0.0048) N7 * 0.0341 (0.0049) N8 0.0384 (0.0047) Pt1 - 2.7478 (0.0054) Pt2

Rms deviation of fitted atoms = 0.0328 (94)

- 3.0212 (0.0448) x - 0.9398 (0.0457) y + 13.1334 (0.0081) z = 1.6585 (0.0069)

Angle to previous plane (with approximate e.s.d.) = 21.89 (0.18)

* -0.0122 (0.0046) N2 * 0.0124 (0.0047) N5 * -0.0132 (0.0050) N9 * 0.0130 (0.0050) N10 - 0.0361 (0.0048) Pt2 2.7504 (0.0055) Pt1

Rms deviation of fitted atoms = 0.0127 (34)

- 1.4886 (0.0471) x + 1.7774 (0.0689) y + 12.9713 (0.0184) z = 4.8484 (0.0121)

Angle to previous plane (with approximate e.s.d.) = 17.00 (0.24)

* 0.0318 (0.0078) N7 * -0.0410 (0.0062) N8 * 0.0137 (0.0078) C7 * -0.0327 (0.0072) C8 * 0.0013 (0.0085) C11 * 0.0268 (0.0073) C12 - 3.1560 (0.0157) N9 - 3.4101 (0.0110) N10 - 3.6238 (0.0152) C20 - 3.4868 (0.0135) C21 - 3.6284 (0.0120) C22 - 3.4819 (0.0138) C26

Rms deviation of fitted atoms = 0.028 (25)

- 2.5960 (0.0449) x - 0.4252 (0.0630) y + 13.2133 (0.0059) z = 1.6543 (0.0070)

Angle to previous plane (with approximate e.s.d.) = 13.28 (0.24)

* 0.0048 (0.0041) N9 * -0.0078 (0.0083) N10 * 0.0199 (0.0067) C20 * -0.0144 (0.0102) C21 * -0.0224 (0.0095) C22 * 0.0198 (0.0067) C26 3.3508 (0.0111) N7 3.2747 (0.0138) N8 3.3109 (0.0148) C7 3.5263 (0.0149) C8 3.6179 (0.0112) C11 3.6250 (0.0125) C12

Rms deviation of fitted atoms = 0.016 (14)

- 2.5960 (0.0449) x - 0.4252 (0.0630) y + 13.2133 (0.0059) z = 1.6543 (0.0070)

Angle to previous plane (with approximate e.s.d.) = 0.00 (1/5)

* 0.0199 (0.0067) C20 * -0.0144 (0.0102) C21 * -0.0224 (0.0095) C22 * 0.0198 (0.0067) C26 * 0.0048 (0.0041) N9 * -0.0078 (0.0083) N10 3.3109 (0.0148) C7 3.5263 (0.0149) C8 3.6179 (0.0112) C11 3.6250 (0.0125) C12 3.3508 (0.0111) N7 3.2747 (0.0138) N8

Rms deviation of fitted atoms = 0.0162

- 1.3951 (0.0294) x + 1.9003 (0.0398) y + 12.9352 (0.0103) z = 4.8108 (0.0053)

Angle to previous plane (with approximate e.s.d.) = 14.12 (0.16)

* -0.0433 (0.0053) Pt1 * 0.0524 (0.0079) N7 * -0.0155 (0.0071) N8 * 0.0334 (0.0090) C7 * -0.0310 (0.0088) C8 * -0.0332 (0.0084) C10 * 0.0040 (0.0098) C11 * 0.0332 (0.0084) C12 3.3569 (0.0065) Pt1_$1 3.2612 (0.0103) N7_$1 3.3291 (0.0105) N8_$1 3.2802 (0.0121) C7_$1 3.3446 (0.0107) C8_$1 3.3468 (0.0097) C10_$1 3.3096 (0.0117) C11_$1 3.2804 (0.0108) C12_$1

Rms deviation of fitted atoms = 0.034 (29)

- 2.8024 (0.0314) x - 0.5932 (0.0335) y + 13.1830 (0.0052) z = 1.6682 (0.0033)

Angle to previous plane (with approximate e.s.d.) = 15.56 (0.14)

* 0.0091 (0.0053) Pt2 * -0.0101 (0.0091) N9 * -0.0166 (0.0084) N10 * -0.0073 (0.0091) C17 * 0.0105 (0.0085) C18 * 0.0042 (0.0094) C21 * -0.0010 (0.0085) C22 * 0.0111 (0.0082) C26 - 3.3455 (0.0066) Pt2_$2 - 3.3263 (0.0115) N9_$2 - 3.3199 (0.0105) N10_$2 - 3.3292 (0.0125) C17_$2 - 3.3470 (0.0107) C18_$2 - 3.3407 (0.0109) C21_$2 - 3.3355 (0.0101) C22_$2 - 3.3475 (0.0119) C26_$2

Rms deviation of fitted atoms = 0.0098 (92)

- 2.5432 (0.0322) x - 0.3164 (0.0263) y + 13.2181 (0.0040) z = 1.6558 (0.0050)

Angle to previous plane (with approximate e.s.d.) = 2.14 (0.14)

* 0.0071 (0.0091) N9 * -0.0175 (0.0086) N10 * 0.0225 (0.0097) C17 * 0.0055 (0.0104) C18 * 0.0104 (0.0101) C19 * -0.0020 (0.0107) C20 * -0.0277 (0.0111) C21 * -0.0423 (0.0108) C22 * -0.0086 (0.0115) C23 * 0.0291 (0.0112) C24 * 0.0183 (0.0113) C25 * 0.0053 (0.0097) C26

Rms deviation of fitted atoms = 0.020 (23)

- 2.4949 (0.0577) x - 0.4712 (0.0635) y + 13.2270 (0.0076) z = 1.6454 (0.0108)

Angle to previous plane (with approximate e.s.d.) = 0.70 (0.19)

* 0.0069 (0.0078) N9 * 0.0072 (0.0083) C17 * -0.0129 (0.0086) C18 * 0.0051 (0.0086) C19 * 0.0087 (0.0087) C20 * -0.0150 (0.0083) C21

Rms deviation of fitted atoms = 0.0099 (89)

- 2.6972 (0.0650) x - 0.0334 (0.0628) y + 13.1881 (0.0101) z = 1.5923 (0.0134)

Angle to previous plane (with approximate e.s.d.) = 2.02 (0.26)

* 0.0084 (0.0076) N10 * -0.0098 (0.0082) C22 * 0.0013 (0.0092) C23 * 0.0083 (0.0097) C24 * -0.0095 (0.0094) C25 * 0.0013 (0.0084) C26

Rms deviation of fitted atoms = 0.0074 (65)

- 1.8430 (0.0589) x + 1.6732 (0.0618) y + 13.0038 (0.0144) z = 4.9113 (0.0108)

Angle to previous plane (with approximate e.s.d.) = 10.27 (1/4)

* -0.0017 (0.0072) N7 * 0.0035 (0.0081) C7 * 0.0033 (0.0089) C8 * -0.0118 (0.0090) C9 * 0.0144 (0.0089) C10 * -0.0077 (0.0078) C11

Rms deviation of fitted atoms = 0.0085 (92)

- 1.1726 (0.0624) x + 2.3903 (0.0588) y + 12.7761 (0.0182) z = 4.7167 (0.0195)

Angle to previous plane (with approximate e.s.d.) = 5.41 (0.30)

* 0.0074 (0.0075) N8 * -0.0047 (0.0077) C12 * -0.0039 (0.0087) C13 * 0.0099 (0.0090) C14 * -0.0073 (0.0089) C15 * -0.0013 (0.0084) C16

Rms deviation of fitted atoms = 0.0064 (59)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.11566 (3)0.08579 (3)0.36844 (3)0.01635 (12)
Pt20.10613 (4)0.06965 (4)0.15293 (3)0.01971 (13)
P10.8406 (3)0.4255 (3)0.3009 (3)0.0384 (9)
P20.4158 (3)0.7886 (3)0.1596 (3)0.0461 (10)
F1A0.8824 (12)0.4760 (11)0.4138 (6)0.0588 (15)*0.666 (15)
F1B0.9222 (17)0.4825 (17)0.3985 (12)0.0588 (15)*0.334 (15)
F2A0.8951 (11)0.3309 (9)0.3155 (10)0.0588 (15)*0.666 (15)
F2B0.8603 (19)0.3117 (12)0.3156 (17)0.0588 (15)*0.334 (15)
F3A0.7257 (8)0.3533 (10)0.3264 (11)0.0588 (15)*0.666 (15)
F3B0.7417 (15)0.392 (2)0.3715 (16)0.0588 (15)*0.334 (15)
F4A0.7938 (11)0.5252 (9)0.2833 (11)0.0588 (15)*0.666 (15)
F4B0.8133 (19)0.5367 (12)0.2889 (17)0.0588 (15)*0.334 (15)
F5A0.9597 (8)0.5027 (11)0.2721 (10)0.0588 (15)*0.666 (15)
F5B0.9352 (15)0.459 (2)0.2331 (15)0.0588 (15)*0.334 (15)
F6A0.8086 (12)0.3797 (10)0.1848 (6)0.0588 (15)*0.666 (15)
F6B0.7509 (17)0.3657 (16)0.2083 (13)0.0588 (15)*0.334 (15)
F7A0.3359 (11)0.7822 (13)0.2428 (10)0.0686 (17)*0.556 (9)
F7B0.4019 (16)0.7501 (15)0.2698 (12)0.0686 (17)*0.444 (9)
F8A0.3159 (11)0.6951 (11)0.0893 (10)0.0686 (17)*0.556 (9)
F8B0.3053 (15)0.7018 (15)0.1171 (13)0.0686 (17)*0.444 (9)
F9A0.4565 (13)0.6953 (10)0.2008 (12)0.0686 (17)*0.556 (9)
F9B0.4838 (14)0.7067 (14)0.1404 (14)0.0686 (17)*0.444 (9)
F10A0.5137 (10)0.8819 (11)0.2243 (11)0.0686 (17)*0.556 (9)
F10B0.5301 (11)0.8814 (13)0.2072 (13)0.0686 (17)*0.444 (9)
F11A0.3715 (13)0.8801 (11)0.1137 (12)0.0686 (17)*0.556 (9)
F11B0.3543 (15)0.8758 (13)0.1874 (14)0.0686 (17)*0.444 (9)
F12A0.4895 (12)0.7931 (13)0.0694 (9)0.0686 (17)*0.556 (9)
F12B0.4374 (16)0.8330 (15)0.0558 (8)0.0686 (17)*0.444 (9)
N10.2814 (8)0.1466 (8)0.3592 (8)0.024 (2)
H10.32510.18940.41210.028*
N20.2676 (8)0.0742 (8)0.1922 (8)0.025 (2)
H20.29810.03880.14910.030*
N30.4453 (9)0.1598 (9)0.2831 (9)0.030 (2)
N40.1053 (8)0.2377 (8)0.3428 (8)0.023 (2)
H40.06710.26850.38200.027*
N50.1614 (9)0.2379 (8)0.1814 (8)0.024 (2)
H50.19230.27720.13360.029*
N60.1921 (10)0.4077 (8)0.2814 (9)0.031 (2)
N70.0519 (7)0.0099 (8)0.3689 (6)0.0162 (18)
N80.1153 (8)0.0700 (8)0.3934 (7)0.0193 (19)
N90.0579 (9)0.0569 (8)0.1160 (7)0.025 (2)
N100.0371 (8)0.0991 (8)0.1287 (7)0.020 (2)
N110.3817 (12)0.3533 (12)0.0642 (11)0.053 (4)
N120.4108 (12)0.3541 (10)0.5344 (11)0.047 (3)
C10.3300 (10)0.1261 (10)0.2772 (10)0.024 (2)
C20.5131 (13)0.1613 (15)0.3773 (13)0.049 (4)
H2A0.47670.18230.43470.073*
H2B0.58870.21620.37840.073*
H2C0.51960.08640.38220.073*
C30.5018 (11)0.1522 (11)0.1926 (11)0.034 (3)
H3A0.50170.07480.17650.051*
H3B0.58000.20320.20480.051*
H3C0.46170.17350.13550.051*
C40.1537 (9)0.2935 (10)0.2690 (9)0.022 (2)
C50.2023 (13)0.4692 (11)0.3799 (12)0.037 (3)
H5A0.12760.47100.39510.056*
H5B0.25320.54630.38040.056*
H5C0.23320.43230.43130.056*
C60.1969 (13)0.4695 (11)0.1932 (12)0.041 (4)
H6A0.14620.42050.13590.062*
H6B0.27450.49390.17520.062*
H6C0.17310.53540.20910.062*
C70.1336 (10)0.0590 (11)0.3514 (9)0.024 (2)
H70.11240.13700.34470.029*
C80.2463 (11)0.0041 (11)0.3436 (9)0.028 (3)
H80.30250.03080.33190.034*
C90.2781 (11)0.1175 (12)0.3525 (10)0.032 (3)
H90.35550.16250.34520.038*
C100.1904 (13)0.1643 (10)0.3729 (9)0.034 (3)
H100.21050.24160.38280.041*
C110.0859 (10)0.1070 (11)0.3787 (8)0.023 (3)
C120.0114 (9)0.1456 (9)0.3971 (8)0.016 (2)
C130.0000 (11)0.2552 (10)0.4166 (10)0.027 (3)
H130.07280.30800.41910.033*
C140.0952 (11)0.2855 (10)0.4321 (10)0.028 (3)
H140.08940.35930.44710.034*
C150.1993 (11)0.2083 (10)0.4259 (10)0.028 (3)
H150.26550.22950.43470.033*
C160.2080 (10)0.1015 (10)0.4072 (9)0.025 (2)
H160.28040.04860.40380.029*
C170.0996 (11)0.1418 (11)0.1112 (9)0.027 (3)
H170.04900.21680.12450.033*
C180.2124 (12)0.1248 (12)0.0878 (9)0.033 (3)
H180.23910.18710.08300.039*
C190.2877 (11)0.0157 (12)0.0711 (9)0.032 (3)
H190.36670.00190.05640.039*
C200.2440 (11)0.0731 (11)0.0764 (9)0.030 (3)
H200.29300.14880.06590.036*
C210.1309 (10)0.0499 (11)0.0968 (9)0.026 (3)
C220.0736 (10)0.1385 (10)0.1046 (9)0.024 (3)
C230.1324 (12)0.2517 (12)0.0931 (10)0.034 (3)
H230.21230.27750.07690.041*
C240.0751 (12)0.3278 (11)0.1052 (10)0.033 (3)
H240.11470.40630.09820.039*
C250.0392 (12)0.2878 (11)0.1273 (10)0.033 (3)
H250.08100.33850.13420.039*
C260.0948 (11)0.1720 (10)0.1398 (9)0.025 (3)
H260.17470.14420.15640.030*
C270.4809 (17)0.3906 (17)0.0698 (15)0.062 (5)
C280.6055 (17)0.4336 (19)0.0727 (19)0.077 (7)
H28A0.64000.40540.12870.116*
H28B0.63140.51600.08290.116*
H28C0.62760.40790.00850.116*
C290.4497 (12)0.4262 (13)0.5977 (12)0.038 (3)
C300.5023 (15)0.5171 (14)0.6795 (13)0.051 (4)
H30A0.50880.48540.74340.077*
H30B0.45560.56630.68560.077*
H30C0.57780.56080.66440.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0165 (2)0.0139 (2)0.0205 (2)0.00729 (16)0.00405 (16)0.00098 (16)
Pt20.0200 (2)0.0192 (2)0.0204 (2)0.00614 (18)0.00667 (17)0.00124 (17)
P10.040 (2)0.0265 (18)0.048 (2)0.0130 (16)0.0051 (17)0.0021 (15)
P20.029 (2)0.040 (2)0.074 (3)0.0121 (17)0.0087 (19)0.025 (2)
N10.016 (5)0.025 (5)0.030 (5)0.008 (4)0.001 (4)0.002 (4)
N20.017 (5)0.019 (5)0.035 (6)0.001 (4)0.008 (4)0.003 (4)
N30.020 (5)0.023 (5)0.048 (7)0.009 (4)0.005 (5)0.003 (5)
N40.024 (5)0.017 (5)0.031 (5)0.011 (4)0.010 (4)0.003 (4)
N50.024 (5)0.017 (5)0.031 (5)0.005 (4)0.008 (4)0.003 (4)
N60.034 (6)0.014 (5)0.042 (6)0.005 (4)0.005 (5)0.006 (4)
N70.015 (4)0.023 (5)0.013 (4)0.007 (4)0.008 (3)0.005 (3)
N80.016 (5)0.020 (5)0.026 (5)0.009 (4)0.011 (4)0.007 (4)
N90.032 (6)0.023 (5)0.023 (5)0.011 (4)0.005 (4)0.002 (4)
N100.025 (5)0.018 (5)0.016 (5)0.004 (4)0.004 (4)0.003 (4)
N110.045 (8)0.045 (8)0.060 (9)0.003 (7)0.005 (7)0.002 (7)
N120.048 (8)0.023 (6)0.059 (8)0.004 (6)0.012 (7)0.004 (6)
C10.019 (6)0.017 (5)0.035 (7)0.005 (5)0.003 (5)0.004 (5)
C20.034 (8)0.059 (11)0.055 (10)0.019 (8)0.001 (7)0.005 (8)
C30.017 (6)0.031 (7)0.053 (9)0.005 (5)0.017 (6)0.004 (6)
C40.015 (5)0.020 (6)0.031 (6)0.007 (4)0.004 (5)0.003 (5)
C50.038 (8)0.017 (6)0.056 (9)0.009 (6)0.004 (7)0.002 (6)
C60.043 (8)0.024 (7)0.067 (10)0.019 (6)0.019 (7)0.021 (7)
C70.020 (6)0.027 (6)0.027 (6)0.009 (5)0.004 (5)0.002 (5)
C80.024 (6)0.040 (7)0.029 (6)0.021 (6)0.003 (5)0.010 (5)
C90.019 (6)0.045 (8)0.034 (7)0.009 (6)0.011 (5)0.016 (6)
C100.062 (10)0.014 (6)0.024 (6)0.007 (6)0.005 (6)0.011 (5)
C110.029 (6)0.049 (8)0.012 (5)0.035 (6)0.014 (5)0.018 (5)
C120.015 (5)0.013 (5)0.016 (5)0.001 (4)0.001 (4)0.002 (4)
C130.026 (6)0.017 (6)0.036 (7)0.003 (5)0.008 (5)0.001 (5)
C140.035 (7)0.017 (6)0.036 (7)0.011 (5)0.011 (6)0.007 (5)
C150.031 (7)0.025 (6)0.034 (7)0.020 (5)0.002 (5)0.002 (5)
C160.020 (6)0.022 (6)0.030 (6)0.007 (5)0.001 (5)0.004 (5)
C170.033 (7)0.031 (7)0.021 (6)0.014 (6)0.004 (5)0.000 (5)
C180.041 (8)0.044 (8)0.019 (6)0.021 (7)0.001 (5)0.003 (5)
C190.026 (7)0.045 (8)0.020 (6)0.004 (6)0.003 (5)0.003 (5)
C200.030 (7)0.029 (7)0.023 (6)0.002 (5)0.001 (5)0.002 (5)
C210.014 (6)0.044 (8)0.026 (6)0.011 (5)0.014 (5)0.012 (5)
C220.017 (6)0.029 (6)0.018 (6)0.002 (5)0.005 (4)0.007 (5)
C230.029 (7)0.043 (8)0.031 (7)0.012 (6)0.001 (5)0.010 (6)
C240.033 (7)0.019 (6)0.040 (8)0.001 (5)0.002 (6)0.004 (5)
C250.040 (8)0.023 (6)0.035 (7)0.011 (6)0.005 (6)0.003 (5)
C260.031 (7)0.023 (6)0.021 (6)0.009 (5)0.002 (5)0.000 (5)
C270.054 (12)0.061 (12)0.064 (12)0.007 (10)0.014 (9)0.008 (9)
C280.054 (12)0.067 (14)0.107 (18)0.011 (10)0.007 (12)0.033 (13)
C290.030 (7)0.036 (8)0.045 (8)0.003 (6)0.009 (6)0.012 (7)
C300.057 (11)0.047 (9)0.047 (9)0.018 (8)0.009 (8)0.004 (7)
Geometric parameters (Å, º) top
Pt1—Pt22.8512 (6)N5—H50.8800
Pt1—N11.993 (10)C2—H2A0.9800
Pt1—N42.016 (9)C2—H2B0.9800
Pt1—N72.016 (9)C2—H2C0.9800
Pt1—N82.019 (9)C3—H3A0.9800
Pt2—N22.030 (10)C3—H3B0.9800
Pt2—N52.005 (10)C3—H3C0.9800
Pt2—N92.027 (11)C5—H5A0.9800
Pt2—N102.014 (9)C5—H5B0.9800
P1—F3A1.524 (8)C5—H5C0.9800
P1—F5B1.525 (9)C6—H6A0.9800
P1—F1B1.554 (9)C6—H6B0.9800
P1—F2B1.556 (9)C6—H6C0.9800
P1—F6B1.562 (9)C7—H70.9500
P1—F4B1.562 (9)C8—H80.9500
P1—F1A1.562 (8)C9—H90.9500
P1—F2A1.568 (8)C10—H100.9500
P1—F4A1.571 (8)C13—H130.9500
P1—F6A1.577 (8)C7—C81.376 (17)
P1—F3B1.589 (9)C8—C91.376 (19)
P1—F5A1.602 (8)C9—C101.42 (2)
P2—F8B1.500 (17)C10—C111.273 (19)
P2—F7A1.543 (8)C11—C121.458 (15)
P2—F10A1.543 (9)C12—C131.393 (16)
P2—F9A1.545 (8)C13—C141.369 (18)
P2—F12B1.547 (6)C14—C151.374 (18)
P2—F9B1.548 (9)C15—C161.363 (17)
P2—F11B1.565 (9)C17—C181.367 (19)
P2—F12A1.567 (8)C18—C191.389 (19)
P2—F11A1.575 (8)C19—C201.40 (2)
P2—F10B1.579 (9)C20—C211.352 (17)
P2—F8A1.590 (9)C21—C221.511 (18)
P2—F7B1.592 (16)C22—C231.374 (18)
N1—C11.337 (15)C23—C241.378 (19)
N2—C11.316 (16)C24—C251.359 (19)
N3—C11.365 (15)C25—C261.395 (17)
N3—C21.453 (19)C27—C281.48 (3)
N3—C31.457 (17)C29—C301.46 (2)
N4—C41.333 (15)C14—H140.9500
N5—C41.335 (15)C15—H150.9500
N6—C41.358 (15)C16—H160.9500
N6—C51.441 (18)C17—H170.9500
N6—C61.460 (17)C18—H180.9500
N7—C71.366 (15)C19—H190.9500
N7—C111.421 (15)C20—H200.9500
N8—C161.344 (15)C23—H230.9500
N8—C121.359 (14)C24—H240.9500
N9—C171.333 (16)C25—H250.9500
N9—C211.359 (16)C26—H260.9500
N10—C221.320 (15)C28—H28A0.9800
N10—C261.348 (16)C28—H28B0.9800
N11—C271.18 (2)C28—H28C0.9800
N12—C291.138 (19)C30—H30A0.9800
N1—H10.8800C30—H30B0.9800
N2—H20.8800C30—H30C0.9800
N4—H40.8800
Pt1···Pt1i4.9369 (9)C26···C18ii3.493 (18)
Pt2···Pt2ii4.5660 (9)N7···C12i3.344 (14)
Pt1···C11i3.416 (10)N7···N8i3.406 (12)
Pt1···C10i3.470 (13)N8···C7i3.376 (15)
Pt2···C21ii3.361 (12)C7···N8i3.376 (15)
N9···N10ii3.366 (13)C7···C16i3.464 (17)
N10···C17ii3.390 (15)C8···C16i3.408 (18)
C17···C26ii3.402 (17)
N1—Pt1—N488.3 (4)N5—C4—N6119.6 (11)
N1—Pt1—N7174.1 (4)N7—C7—C8120.4 (11)
N4—Pt1—N796.0 (4)C9—C8—C7120.4 (12)
N1—Pt1—N895.3 (4)C8—C9—C10117.2 (12)
N4—Pt1—N8176.4 (4)C11—C10—C9122.7 (12)
N7—Pt1—N880.4 (4)C10—C11—N7120.5 (10)
N5—Pt2—N10174.7 (4)C10—C11—C12127.9 (12)
N5—Pt2—N995.1 (4)N7—C11—C12111.5 (10)
N10—Pt2—N980.4 (4)N8—C12—C13120.6 (10)
N5—Pt2—N287.6 (4)N8—C12—C11117.1 (10)
N10—Pt2—N296.9 (4)C13—C12—C11122.3 (10)
N9—Pt2—N2177.0 (4)C14—C13—C12118.9 (11)
N5—Pt2—Pt182.1 (3)C13—C14—C15119.4 (11)
N10—Pt2—Pt195.9 (3)C16—C15—C14120.3 (12)
N1—Pt1—Pt282.1 (3)N8—C16—C15120.8 (11)
N4—Pt1—Pt278.9 (3)N9—C17—C18122.4 (13)
N7—Pt1—Pt294.6 (2)C17—C18—C19119.4 (13)
N8—Pt1—Pt2101.1 (3)C18—C19—C20118.1 (12)
N9—Pt2—Pt1100.2 (3)C21—C20—C19119.1 (12)
N2—Pt2—Pt178.8 (3)C20—C21—N9122.6 (12)
F5B—P1—F1B92.5 (7)C20—C21—C22124.1 (12)
F5B—P1—F2B92.5 (7)N9—C21—C22113.3 (10)
F1B—P1—F2B90.3 (7)N10—C22—C23122.0 (12)
F5B—P1—F6B92.0 (7)N10—C22—C21115.0 (10)
F1B—P1—F6B175.5 (8)C23—C22—C21122.8 (11)
F2B—P1—F6B89.6 (7)C22—C23—C24119.8 (13)
F5B—P1—F4B91.0 (7)C25—C24—C23118.4 (12)
F1B—P1—F4B90.5 (7)C24—C25—C26119.6 (13)
F2B—P1—F4B176.3 (8)N10—C26—C25121.0 (12)
F6B—P1—F4B89.3 (7)N11—C27—C28177 (2)
F3A—P1—F1A93.1 (6)N12—C29—C30178.3 (18)
F3A—P1—F2A92.9 (6)C1—N1—H1118.1
F1A—P1—F2A89.9 (6)Pt1—N1—H1118.1
F3A—P1—F4A91.1 (6)C1—N2—H2117.5
F1A—P1—F4A90.5 (6)Pt2—N2—H2117.5
F2A—P1—F4A175.9 (7)C4—N4—H4118.6
F3A—P1—F6A91.7 (5)Pt1—N4—H4118.6
F1A—P1—F6A175.2 (6)C4—N5—H5118.3
F2A—P1—F6A89.3 (5)Pt2—N5—H5118.3
F4A—P1—F6A90.0 (6)N3—C2—H2A109.5
F5B—P1—F3B179.5 (8)N3—C2—H2B109.5
F1B—P1—F3B87.5 (7)H2A—C2—H2B109.5
F2B—P1—F3B87.9 (7)N3—C2—H2C109.5
F6B—P1—F3B88.0 (7)H2A—C2—H2C109.5
F4B—P1—F3B88.5 (7)H2B—C2—H2C109.5
F3A—P1—F5A178.6 (6)N3—C3—H3A109.5
F1A—P1—F5A87.8 (5)N3—C3—H3B109.5
F2A—P1—F5A88.2 (5)H3A—C3—H3B109.5
F4A—P1—F5A87.7 (5)N3—C3—H3C109.5
F6A—P1—F5A87.5 (5)H3A—C3—H3C109.5
F7A—P2—F10A92.7 (6)H3B—C3—H3C109.5
F7A—P2—F9A91.2 (6)N6—C5—H5A109.5
F10A—P2—F9A91.9 (6)N6—C5—H5B109.5
F8B—P2—F12B92.8 (7)H5A—C5—H5B109.5
F8B—P2—F9B93.1 (7)N6—C5—H5C109.5
F12B—P2—F9B91.6 (7)H5A—C5—H5C109.5
F8B—P2—F11B91.0 (7)H5B—C5—H5C109.5
F12B—P2—F11B91.0 (7)N6—C6—H6A109.5
F9B—P2—F11B175.1 (9)N6—C6—H6B109.5
F7A—P2—F12A176.0 (7)H6A—C6—H6B109.5
F10A—P2—F12A90.7 (6)N6—C6—H6C109.5
F9A—P2—F12A90.9 (6)H6A—C6—H6C109.5
F7A—P2—F11A89.6 (6)H6B—C6—H6C109.5
F10A—P2—F11A90.4 (6)N7—C7—H7119.8
F9A—P2—F11A177.6 (7)C8—C7—H7119.8
F12A—P2—F11A88.2 (6)C9—C8—H8119.8
F8B—P2—F10B178.1 (8)C7—C8—H8119.8
F12B—P2—F10B88.4 (7)C8—C9—H9121.4
F9B—P2—F10B88.4 (7)C10—C9—H9121.4
F11B—P2—F10B87.5 (7)C11—C10—H10118.6
F7A—P2—F8A88.8 (6)C9—C10—H10118.6
F10A—P2—F8A177.8 (7)C14—C13—H13120.5
F9A—P2—F8A89.7 (6)C12—C13—H13120.5
F12A—P2—F8A87.8 (6)C13—C14—H14120.3
F11A—P2—F8A88.1 (6)C15—C14—H14120.3
F8B—P2—F7B91.4 (7)C16—C15—H15119.8
F12B—P2—F7B175.8 (9)C14—C15—H15119.8
F9B—P2—F7B88.4 (7)N8—C16—H16119.6
F11B—P2—F7B88.6 (7)C15—C16—H16119.6
F10B—P2—F7B87.4 (7)N9—C17—H17118.8
C1—N1—Pt1123.7 (8)C18—C17—H17118.8
C1—N2—Pt2125.0 (8)C17—C18—H18120.3
C1—N3—C2120.7 (12)C19—C18—H18120.3
C1—N3—C3120.7 (11)C18—C19—H19120.9
C2—N3—C3114.3 (11)C20—C19—H19120.9
C4—N4—Pt1122.9 (8)C21—C20—H20120.4
C4—N5—Pt2123.5 (8)C19—C20—H20120.4
C4—N6—C5120.5 (11)C22—C23—H23120.1
C4—N6—C6119.9 (11)C24—C23—H23120.1
C5—N6—C6117.8 (11)C25—C24—H24120.8
C7—N7—C11118.6 (9)C23—C24—H24120.8
C7—N7—Pt1125.4 (8)C24—C25—H25120.2
C11—N7—Pt1115.6 (7)C26—C25—H25120.2
C16—N8—C12119.8 (10)N10—C26—H26119.5
C16—N8—Pt1125.2 (8)C25—C26—H26119.5
C12—N8—Pt1115.0 (7)C27—C28—H28A109.5
C17—N9—C21118.3 (11)C27—C28—H28B109.5
C17—N9—Pt2126.6 (9)H28A—C28—H28B109.5
C21—N9—Pt2115.1 (8)C27—C28—H28C109.5
C22—N10—C26119.1 (10)H28A—C28—H28C109.5
C22—N10—Pt2116.1 (8)H28B—C28—H28C109.5
C26—N10—Pt2124.7 (8)C29—C30—H30A109.5
N2—C1—N1120.4 (11)C29—C30—H30B109.5
N2—C1—N3120.6 (11)H30A—C30—H30B109.5
N1—C1—N3119.0 (11)C29—C30—H30C109.5
N4—C4—N5120.4 (10)H30A—C30—H30C109.5
N4—C4—N6119.9 (11)H30B—C30—H30C109.5
N4—Pt1—Pt2—N522.0 (4)N8—C12—C13—C140.0 (18)
N8—Pt1—Pt2—N1023.2 (4)C11—C12—C13—C14179.3 (11)
N7—Pt1—Pt2—N923.4 (4)C12—C13—C14—C151.4 (19)
N1—Pt1—Pt2—N221.3 (4)C13—C14—C15—C162 (2)
C2—N3—C1—N2147.5 (13)C12—N8—C16—C150.7 (17)
C3—N3—C1—N27.9 (18)C14—C15—C16—N80.7 (19)
C2—N3—C1—N132.5 (18)C21—N9—C17—C180.0 (18)
C3—N3—C1—N1172.1 (11)N9—C17—C18—C191.9 (19)
C5—N6—C4—N412.6 (18)C17—C18—C19—C201.6 (18)
C6—N6—C4—N4152.2 (12)C18—C19—C20—C210.5 (18)
C5—N6—C4—N5169.5 (12)C19—C20—C21—N92.5 (19)
C6—N6—C4—N525.6 (17)C19—C20—C21—C22180.0 (11)
C11—N7—C7—C80.0 (16)C17—N9—C21—C202.3 (18)
N7—C7—C8—C90.5 (19)C17—N9—C21—C22180.0 (10)
C7—C8—C9—C101.9 (19)C26—N10—C22—C231.8 (17)
C8—C9—C10—C113 (2)C26—N10—C22—C21178.4 (10)
C9—C10—C11—N72.8 (19)C20—C21—C22—N10177.6 (11)
C9—C10—C11—C12178.7 (11)N9—C21—C22—N100.1 (15)
C7—N7—C11—C101.2 (16)C20—C21—C22—C231.1 (19)
C7—N7—C11—C12180.0 (9)N9—C21—C22—C23176.6 (11)
C16—N8—C12—C131.1 (16)N10—C22—C23—C241.2 (19)
C16—N8—C12—C11178.3 (10)C21—C22—C23—C24177.4 (12)
C10—C11—C12—N8175.9 (12)C22—C23—C24—C251 (2)
N7—C11—C12—N85.4 (13)C23—C24—C25—C262 (2)
C10—C11—C12—C133.4 (19)C22—N10—C26—C250.7 (17)
N7—C11—C12—C13175.2 (10)C24—C25—C26—N101.0 (19)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
(II) Bis(µ-N,N-dimethylguanidinato)bis[(2,2'- bipyridine)sulfatoplatinum(III)](Pt—Pt) guanidinium nitrate hexahydrate top
Crystal data top
(C3H10N3)[Pt2(C3H8N3)2(SO4)2(C10H8N2)2](NO3)·6H2OF(000) = 2600
Mr = 1325.16Dx = 1.839 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8005 reflections
a = 12.6189 (6) Åθ = 2.6–28.0°
b = 28.9553 (14) ŵ = 6.01 mm1
c = 14.4197 (7) ÅT = 296 K
β = 114.712 (1)°Square prism, orange
V = 4786.2 (4) Å30.25 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
11376 independent reflections
Radiation source: sealed tube6677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.366 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 716
Absorption correction: gaussian
(XPREP in SAINT; Bruker, 2001)
k = 3838
Tmin = 0.272, Tmax = 0.676l = 1818
31986 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
11376 reflections(Δ/σ)max = 0.003
568 parametersΔρmax = 2.15 e Å3
14 restraintsΔρmin = 1.07 e Å3
Crystal data top
(C3H10N3)[Pt2(C3H8N3)2(SO4)2(C10H8N2)2](NO3)·6H2OV = 4786.2 (4) Å3
Mr = 1325.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6189 (6) ŵ = 6.01 mm1
b = 28.9553 (14) ÅT = 296 K
c = 14.4197 (7) Å0.25 × 0.14 × 0.07 mm
β = 114.712 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
11376 independent reflections
Absorption correction: gaussian
(XPREP in SAINT; Bruker, 2001)
6677 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.676Rint = 0.066
31986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04114 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.95Δρmax = 2.15 e Å3
11376 reflectionsΔρmin = 1.07 e Å3
568 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.6555 (0.0139) x - 3.7278 (0.0686) y + 10.6773 (0.0105) z = 13.6352 (0.0200)

* -0.0466 (0.0059) N7 * 0.0082 (0.0070) C7 * 0.0507 (0.0090) C8 * 0.0318 (0.0089) C9 * -0.0095 (0.0080) C10 * -0.0334 (0.0072) C11 * -0.0185 (0.0055) N8 * -0.0411 (0.0074) C12 * -0.0369 (0.0075) C13 * 0.0133 (0.0074) C14 * 0.0521 (0.0073) C15 * 0.0299 (0.0063) C16

Rms deviation of fitted atoms = 0.034 (31)

3.7195 (0.0273) x - 4.5310 (0.0578) y + 10.5713 (0.0222) z = 13.3506 (0.0185)

Angle to previous plane (with approximate e.s.d.) = 1.65 (0.28)

* 0.0003 (0.0027) N1 * -0.0003 (0.0028) N4 * -0.0004 (0.0029) N7 * 0.0004 (0.0029) N8 - 0.0161 (0.0030) Pt1 - 2.5551 (0.0032) Pt2

Rms deviation of fitted atoms = 0.0004 (2)

3.6327 (0.0268) x + 3.9720 (0.0561) y + 10.6799 (0.0215) z = 12.1130 (0.0136)

Angle to previous plane (with approximate e.s.d.) = 16.89 (0.29)

* 0.0064 (0.0026) N2 * -0.0065 (0.0027) N5 * -0.0069 (0.0029) N9 * 0.0070 (0.0029) N10 0.0266 (0.0029) Pt2 2.5599 (0.0031) Pt1

Rms deviation of fitted atoms = 0.0067 (20)

3.5675 (0.0139) x + 4.1236 (0.0669) y + 10.7213 (0.0103) z = 12.1295 (0.0152)

Angle to previous plane (with approximate e.s.d.) = 0.42 (0.27)

* 0.0224 (0.0055) N9 * -0.0423 (0.0066) C17 * -0.0573 (0.0079) C18 * -0.0162 (0.0078) C19 * 0.0545 (0.0075) C20 * 0.0417 (0.0069) C21 * 0.0470 (0.0055) N10 * 0.0458 (0.0068) C22 * 0.0086 (0.0077) C23 * -0.0530 (0.0079) C24 * -0.0459 (0.0080) C25 * -0.0052 (0.0066) C26

Rms deviation of fitted atoms = 0.041 (34)

3.6555 (0.0139) x - 3.7278 (0.0686) y + 10.6773 (0.0105) z = 13.6352 (0.0200)

Angle to previous plane (with approximate e.s.d.) = 15.59 (0.15)

* -0.0466 (0.0059) N7 * 0.0082 (0.0070) C7 * 0.0507 (0.0090) C8 * 0.0318 (0.0089) C9 * -0.0095 (0.0080) C10 * -0.0334 (0.0072) C11 * -0.0185 (0.0055) N8 * -0.0411 (0.0074) C12 * -0.0369 (0.0075) C13 * 0.0133 (0.0074) C14 * 0.0521 (0.0073) C15 * 0.0299 (0.0063) C16

Rms deviation of fitted atoms = 0.034 (31)

3.7685 (0.0220) x - 3.0046 (0.1442) y + 10.6270 (0.0165) z = 13.7718 (0.0368)

Angle to previous plane (with approximate e.s.d.) = 1.52 (0.24)

* 0.0252 (0.0043) C7 * -0.0330 (0.0058) N7 * 0.0095 (0.0052) C11 * -0.0056 (0.0052) C12 * -0.0179 (0.0053) N8 * 0.0218 (0.0040) C16 - 3.2042 (0.0090) C17 - 3.1274 (0.0066) N9 - 3.3916 (0.0080) C21 - 3.3431 (0.0079) C22 - 3.0252 (0.0087) N10 - 3.0112 (0.0125) C26

Rms deviation of fitted atoms = 0.021 (20)

3.7399 (0.0238) x + 3.2472 (0.1346) y + 10.6375 (0.0171) z = 11.9291 (0.0292)

Angle to previous plane (with approximate e.s.d.) = 12.40 (0.26)

* -0.0257 (0.0041) C17 * 0.0258 (0.0054) N9 * 0.0008 (0.0049) C21 * -0.0054 (0.0050) C22 * 0.0314 (0.0054) N10 * -0.0270 (0.0041) C26 3.0082 (0.0133) C7 3.0179 (0.0092) N7 3.3392 (0.0082) C11 3.3700 (0.0081) C12 3.1163 (0.0068) N8 3.1795 (0.0086) C16

Rms deviation of fitted atoms = 0.023 (20)

3.5675 (0.0139) x + 4.1236 (0.0669) y + 10.7213 (0.0103) z = 12.1295 (0.0152)

Angle to previous plane (with approximate e.s.d.) = 1.90 (0.24)

* 0.0224 (0.0055) N9 * -0.0423 (0.0066) C17 * -0.0573 (0.0079) C18 * -0.0162 (0.0078) C19 * 0.0545 (0.0075) C20 * 0.0417 (0.0069) C21 * 0.0470 (0.0055) N10 * 0.0458 (0.0068) C22 * 0.0086 (0.0077) C23 * -0.0530 (0.0079) C24 * -0.0459 (0.0080) C25 * -0.0052 (0.0066) C26 - 3.7026 (0.0087) N7_$4 - 3.6522 (0.0109) C7_$4 - 3.6297 (0.0119) C8_$4 - 3.6643 (0.0114) C9_$4 - 3.7008 (0.0093) C10_$4 - 3.7045 (0.0082) C11_$4 - 3.6618 (0.0087) N8_$4 - 3.7052 (0.0085) C12_$4 - 3.7140 (0.0088) C13_$4 - 3.6557 (0.0098) C14_$4 - 3.5961 (0.0102) C15_$4 - 3.6060 (0.0102) C16_$4

Rms deviation of fitted atoms = 0.041 (34)

3.6555 (0.0139) x - 3.7278 (0.0686) y + 10.6773 (0.0105) z = 13.6352 (0.0200)

Angle to previous plane (with approximate e.s.d.) = 15.59 (0.15)

* -0.0466 (0.0059) N7 * 0.0082 (0.0070) C7 * 0.0507 (0.0090) C8 * 0.0318 (0.0089) C9 * -0.0095 (0.0080) C10 * -0.0334 (0.0072) C11 * -0.0185 (0.0055) N8 * -0.0411 (0.0074) C12 * -0.0369 (0.0075) C13 * 0.0133 (0.0074) C14 * 0.0521 (0.0073) C15 * 0.0299 (0.0063) C16 3.7283 (0.0087) N9_$1 3.6706 (0.0105) C17_$1 3.6425 (0.0108) C18_$1 3.6627 (0.0103) C19_$1 3.7263 (0.0087) C20_$1 3.7270 (0.0080) C21_$1 3.7423 (0.0086) N10_$1 3.7253 (0.0079) C22_$1 3.6683 (0.0090) C23_$1 3.6023 (0.0102) C24_$1 3.6256 (0.0109) C25_$1 3.6863 (0.0107) C26_$1

Rms deviation of fitted atoms = 0.034 (31)

9.9864 (0.0358) x + 17.6945 (0.1060) y - 4.5528 (0.0583) z = 2.0359 (0.0559)

Angle to previous plane (with approximate e.s.d.) = 80.42 (0.27)

* -0.0028 (0.0070) C1 * 0.0009 (0.0024) N1 * 0.0009 (0.0024) N2 * 0.0009 (0.0024) N3 0.2793 (0.0169) C2 0.0544 (0.0182) C3

Rms deviation of fitted atoms = 0.0016 (19)

-10.6041 (0.0279) x + 15.6454 (0.0995) y + 5.6337 (0.0524) z = 4.3764 (0.0562)

Angle to previous plane (with approximate e.s.d.) = 70.48 (1/4)

* -0.0078 (0.0067) C4 * 0.0026 (0.0023) N4 * 0.0026 (0.0022) N5 * 0.0026 (0.0022) N6 - 0.0897 (0.0150) C5 0.5414 (0.0143) C6

Rms deviation of fitted atoms = 0.0045 (52)

-3.3910 (0.0628) x - 19.1321 (0.1084) y + 10.8006 (0.0479) z = 11.0572 (0.0750)

Angle to previous plane (with approximate e.s.d.) = 84.21 (0.34)

* -0.0011 (0.0083) C27 * 0.0004 (0.0027) N11 * 0.0004 (0.0027) N12 * 0.0004 (0.0029) N13 0.0127 (0.0179) C28 - 0.0904 (0.0189) C29

Rms deviation of fitted atoms = 0.0006 (7)

-3.2015 (0.0437) x - 18.7571 (0.0932) y + 10.9389 (0.0387) z = 11.4465 (0.0655)

Angle to previous plane (with approximate e.s.d.) = 1.51 (0.69)

* 0.0032 (0.0084) C27 * -0.0298 (0.0063) N11 * 0.0214 (0.0062) N12 * 0.0217 (0.0087) N13 * 0.0147 (0.0057) C28 * -0.0312 (0.0059) C29

Rms deviation of fitted atoms = 0.022 (19)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.48052 (2)0.147564 (10)1.15556 (2)0.02842 (9)
Pt20.32555 (2)0.149007 (10)0.97052 (2)0.02824 (9)
S10.6296 (2)0.09835 (8)1.37388 (16)0.0458 (6)
S20.1763 (2)0.10249 (7)0.74874 (16)0.0455 (6)
O10.6102 (4)0.14166 (16)1.3102 (4)0.0378 (13)
O20.7322 (5)0.1079 (2)1.4689 (4)0.0584 (18)
O30.5254 (6)0.0907 (2)1.3926 (5)0.070 (2)
O40.6496 (6)0.0592 (2)1.3199 (5)0.068 (2)
O50.1977 (5)0.14505 (16)0.8160 (4)0.0390 (14)
O60.0802 (5)0.11454 (19)0.6532 (4)0.0582 (19)
O70.2837 (6)0.0922 (3)0.7371 (5)0.087 (3)
O80.1442 (6)0.0643 (2)0.7975 (5)0.073 (2)
O9A0.120 (2)0.1498 (9)1.2980 (17)0.163 (4)*0.50
O9B0.151 (2)0.1713 (8)1.3198 (16)0.163 (4)*0.50
O10A0.0507 (17)0.1316 (8)1.1950 (19)0.163 (4)*0.50
O10B0.0097 (17)0.1520 (8)1.1966 (19)0.163 (4)*0.50
O11A0.0890 (19)0.1035 (8)1.1754 (17)0.163 (4)*0.50
O11B0.1465 (18)0.1189 (8)1.2150 (18)0.163 (4)*0.50
O120.3746 (11)0.1485 (3)1.4560 (8)0.154 (5)
O130.7235 (10)0.0976 (4)1.6577 (6)0.149 (4)
O140.1475 (11)0.1119 (4)0.9800 (9)0.180 (5)
O150.0699 (8)0.0880 (3)0.8292 (6)0.107 (3)
O16A0.407 (2)0.1452 (8)0.663 (2)0.155 (7)*0.50
O16B0.442 (2)0.1213 (9)0.6550 (19)0.155 (7)*0.50
O17A0.6814 (17)0.1679 (7)0.8622 (15)0.117 (5)*0.50
O17B0.6330 (17)0.1709 (7)0.7996 (15)0.117 (5)*0.50
N10.5451 (6)0.0933 (2)1.1111 (5)0.0376 (17)
H10.59300.07551.15740.045*
N20.4399 (5)0.1098 (2)0.9443 (5)0.0350 (16)
H20.43820.11000.88410.042*
N30.5699 (7)0.0482 (2)0.9900 (5)0.056 (2)
N40.3693 (5)0.1059 (2)1.1783 (5)0.0371 (16)
H40.37050.10451.23830.045*
N50.2614 (5)0.09343 (19)1.0099 (4)0.0331 (16)
H50.21010.07720.96240.040*
N60.2469 (6)0.0416 (2)1.1265 (5)0.0405 (17)
N70.5938 (6)0.1941 (2)1.1371 (5)0.0351 (16)
N80.4272 (6)0.2065 (2)1.2011 (5)0.0323 (15)
N90.3750 (6)0.2098 (2)0.9280 (4)0.0321 (15)
N100.2123 (5)0.1935 (2)0.9907 (5)0.0326 (15)
N110.8765 (7)0.0217 (3)1.3374 (6)0.065 (2)
H11A0.88460.00041.30100.078*
H11B0.80790.02981.33010.078*
N120.9500 (7)0.0766 (2)1.4577 (6)0.062 (2)
H12A1.00820.09131.50220.074*
H12B0.88000.08371.44820.074*
N131.0706 (7)0.0317 (3)1.4160 (6)0.058 (2)
N14A0.0539 (17)0.1274 (7)1.2256 (15)0.163 (4)*0.50
N14B0.0951 (18)0.1470 (8)1.2448 (15)0.163 (4)*0.50
C10.5187 (7)0.0834 (2)1.0152 (6)0.0339 (19)
C20.6712 (9)0.0261 (4)1.0652 (8)0.081 (4)
H2A0.72990.04891.09920.121*
H2B0.70100.00401.03250.121*
H2C0.65050.01071.11420.121*
C30.5450 (10)0.0380 (3)0.8842 (8)0.080 (4)
H3A0.46340.04260.84250.120*
H3B0.56540.00650.87850.120*
H3C0.58980.05820.86160.120*
C40.2938 (7)0.0803 (2)1.1053 (6)0.0341 (19)
C50.2886 (9)0.0264 (3)1.2309 (7)0.059 (3)
H5A0.37230.02671.26190.089*
H5B0.26140.00451.23260.089*
H5C0.25980.04671.26770.089*
C60.1315 (7)0.0235 (3)1.0550 (7)0.058 (3)
H6A0.07130.03801.06910.087*
H6B0.12910.00931.06360.087*
H6C0.11940.03020.98610.087*
C70.6783 (7)0.1836 (3)1.1097 (7)0.049 (2)
H70.68920.15301.09620.059*
C80.7505 (8)0.2172 (4)1.1006 (9)0.069 (3)
H80.80990.20931.08140.083*
C90.7343 (9)0.2624 (3)1.1202 (9)0.069 (3)
H90.78180.28561.11350.083*
C100.6481 (8)0.2728 (3)1.1495 (7)0.053 (2)
H100.63620.30331.16310.063*
C110.5779 (7)0.2385 (3)1.1593 (6)0.040 (2)
C120.4836 (7)0.2454 (3)1.1933 (6)0.039 (2)
C130.4530 (8)0.2879 (3)1.2190 (7)0.050 (2)
H130.49040.31461.21260.060*
C140.3675 (9)0.2905 (3)1.2539 (7)0.055 (3)
H140.34680.31891.27160.066*
C150.3127 (8)0.2509 (3)1.2625 (7)0.050 (2)
H150.25480.25201.28650.060*
C160.3443 (7)0.2098 (3)1.2352 (6)0.043 (2)
H160.30650.18311.24060.051*
C170.4572 (8)0.2143 (3)0.8928 (6)0.041 (2)
H170.49660.18820.88650.050*
C180.4845 (9)0.2564 (3)0.8662 (7)0.059 (3)
H180.54230.25910.84240.071*
C190.4243 (9)0.2949 (3)0.8752 (8)0.061 (3)
H190.44090.32380.85670.073*
C200.3406 (8)0.2903 (3)0.9114 (7)0.046 (2)
H200.30180.31620.91970.056*
C210.3145 (7)0.2478 (3)0.9353 (6)0.0334 (18)
C220.2240 (7)0.2385 (2)0.9694 (5)0.0334 (19)
C230.1505 (8)0.2712 (3)0.9778 (7)0.050 (2)
H230.16040.30190.96430.060*
C240.0634 (9)0.2598 (3)1.0054 (7)0.060 (3)
H240.01240.28211.00950.072*
C250.0531 (8)0.2143 (3)1.0270 (8)0.061 (3)
H250.00460.20551.04750.073*
C260.1289 (7)0.1815 (3)1.0182 (6)0.046 (2)
H260.12050.15061.03190.055*
C270.9681 (9)0.0428 (3)1.4035 (7)0.054 (3)
C281.0864 (10)0.0057 (4)1.3559 (8)0.081 (4)
H28A1.03830.03141.35590.121*
H28B1.16670.01511.38500.121*
H28C1.06460.00461.28710.121*
C291.1694 (9)0.0577 (4)1.4847 (9)0.090 (4)
H29A1.15600.09001.46950.134*
H29B1.23800.04821.47670.134*
H29C1.18020.05221.55370.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02696 (16)0.02484 (15)0.02706 (16)0.00180 (13)0.00499 (13)0.00290 (12)
Pt20.02888 (17)0.02287 (15)0.02604 (15)0.00013 (13)0.00464 (12)0.00126 (12)
S10.0442 (14)0.0452 (13)0.0334 (11)0.0001 (11)0.0017 (10)0.0028 (10)
S20.0512 (15)0.0361 (12)0.0307 (11)0.0030 (10)0.0011 (10)0.0057 (9)
O10.034 (3)0.035 (3)0.033 (3)0.002 (2)0.002 (2)0.002 (2)
O20.049 (4)0.066 (4)0.039 (3)0.002 (3)0.002 (3)0.008 (3)
O30.058 (5)0.103 (6)0.043 (4)0.019 (4)0.016 (3)0.008 (4)
O40.088 (5)0.041 (4)0.051 (4)0.022 (4)0.007 (4)0.003 (3)
O50.040 (3)0.028 (3)0.030 (3)0.005 (2)0.003 (2)0.010 (2)
O60.068 (4)0.043 (4)0.033 (3)0.008 (3)0.009 (3)0.006 (3)
O70.061 (5)0.134 (7)0.048 (4)0.023 (5)0.006 (4)0.033 (4)
O80.108 (6)0.039 (4)0.046 (4)0.020 (4)0.005 (4)0.001 (3)
O120.212 (12)0.135 (9)0.141 (10)0.076 (8)0.101 (10)0.018 (7)
O130.189 (11)0.184 (10)0.061 (6)0.061 (9)0.039 (7)0.025 (6)
O140.178 (11)0.179 (12)0.161 (12)0.062 (10)0.050 (10)0.060 (9)
O150.105 (7)0.116 (7)0.093 (6)0.005 (6)0.035 (6)0.003 (5)
N10.042 (4)0.027 (3)0.036 (4)0.011 (3)0.008 (3)0.002 (3)
N20.039 (4)0.030 (3)0.035 (4)0.006 (3)0.014 (3)0.000 (3)
N30.068 (6)0.047 (5)0.041 (4)0.028 (4)0.011 (4)0.002 (4)
N40.036 (4)0.041 (4)0.029 (4)0.010 (3)0.008 (3)0.001 (3)
N50.031 (4)0.026 (3)0.029 (3)0.009 (3)0.000 (3)0.002 (3)
N60.038 (4)0.034 (4)0.045 (4)0.010 (3)0.013 (3)0.001 (3)
N70.032 (4)0.031 (4)0.037 (4)0.006 (3)0.009 (3)0.000 (3)
N80.030 (4)0.030 (3)0.031 (4)0.000 (3)0.007 (3)0.004 (3)
N90.033 (4)0.026 (3)0.030 (4)0.000 (3)0.006 (3)0.001 (3)
N100.028 (4)0.038 (4)0.028 (3)0.002 (3)0.008 (3)0.004 (3)
N110.068 (6)0.061 (5)0.051 (5)0.006 (5)0.009 (5)0.013 (4)
N120.050 (5)0.056 (5)0.062 (5)0.001 (4)0.006 (4)0.023 (4)
N130.047 (5)0.066 (6)0.055 (5)0.014 (4)0.015 (4)0.017 (4)
C10.038 (5)0.025 (4)0.037 (5)0.004 (3)0.013 (4)0.005 (3)
C20.080 (8)0.080 (8)0.066 (7)0.045 (7)0.015 (6)0.012 (6)
C30.115 (10)0.067 (7)0.060 (7)0.038 (7)0.039 (7)0.015 (6)
C40.033 (5)0.027 (4)0.039 (5)0.000 (3)0.012 (4)0.001 (3)
C50.071 (7)0.048 (6)0.057 (6)0.015 (5)0.026 (6)0.005 (5)
C60.041 (5)0.050 (6)0.067 (7)0.021 (4)0.007 (5)0.005 (5)
C70.033 (5)0.054 (6)0.060 (6)0.002 (4)0.019 (5)0.005 (5)
C80.042 (6)0.078 (8)0.106 (9)0.004 (5)0.049 (6)0.006 (7)
C90.060 (7)0.050 (6)0.103 (9)0.026 (5)0.039 (7)0.013 (6)
C100.052 (6)0.042 (5)0.064 (6)0.013 (5)0.024 (5)0.008 (5)
C110.037 (5)0.034 (5)0.035 (5)0.003 (4)0.002 (4)0.007 (4)
C120.036 (5)0.038 (5)0.033 (4)0.003 (4)0.005 (4)0.008 (4)
C130.057 (6)0.031 (5)0.054 (6)0.003 (4)0.016 (5)0.007 (4)
C140.060 (7)0.045 (6)0.060 (6)0.008 (5)0.025 (5)0.014 (5)
C150.047 (6)0.056 (6)0.053 (6)0.008 (5)0.027 (5)0.008 (5)
C160.039 (5)0.046 (5)0.034 (5)0.002 (4)0.007 (4)0.000 (4)
C170.046 (5)0.037 (5)0.041 (5)0.007 (4)0.018 (4)0.006 (4)
C180.063 (7)0.063 (7)0.058 (6)0.001 (6)0.032 (6)0.010 (5)
C190.066 (7)0.035 (5)0.072 (7)0.001 (5)0.020 (6)0.019 (5)
C200.045 (6)0.034 (5)0.056 (6)0.000 (4)0.017 (5)0.007 (4)
C210.029 (4)0.032 (4)0.029 (4)0.002 (3)0.002 (3)0.001 (3)
C220.039 (5)0.028 (4)0.025 (4)0.006 (4)0.005 (4)0.003 (3)
C230.058 (6)0.035 (5)0.052 (6)0.013 (5)0.018 (5)0.009 (4)
C240.066 (7)0.051 (6)0.066 (7)0.021 (5)0.031 (6)0.009 (5)
C250.047 (6)0.071 (7)0.071 (7)0.007 (5)0.032 (6)0.004 (6)
C260.039 (5)0.050 (5)0.045 (5)0.006 (4)0.014 (4)0.002 (4)
C270.062 (7)0.045 (6)0.035 (5)0.009 (5)0.001 (5)0.008 (4)
C280.087 (9)0.075 (8)0.093 (9)0.011 (7)0.051 (8)0.025 (7)
C290.056 (7)0.105 (10)0.106 (10)0.021 (7)0.033 (7)0.030 (8)
Geometric parameters (Å, º) top
Pt1—N11.994 (6)C13—C141.370 (13)
Pt1—N41.980 (6)C14—C151.372 (12)
Pt1—N72.060 (6)C15—C161.363 (11)
Pt1—N82.041 (6)C17—C181.365 (12)
Pt1—Pt22.5656 (4)C18—C191.385 (13)
Pt2—N21.992 (6)C19—C201.367 (13)
Pt2—N51.988 (6)C20—C211.355 (10)
Pt2—N92.045 (6)C21—C221.445 (11)
Pt2—N102.032 (6)C22—C231.366 (11)
Pt1—O12.152 (5)C23—C241.357 (13)
Pt2—O52.139 (5)C24—C251.371 (12)
N1—C11.312 (9)C25—C261.392 (12)
N2—C11.331 (9)N1—H10.8600
N3—C11.337 (9)N2—H20.8600
N3—C21.435 (10)N4—H40.8600
N3—C31.453 (11)N5—H50.8600
N4—C41.313 (9)N11—H11A0.8600
N5—C41.317 (9)N11—H11B0.8600
N6—C41.362 (9)N12—H12A0.8600
N6—C51.439 (10)N12—H12B0.8600
N6—C61.484 (10)C2—H2A0.9600
N11—C271.303 (10)C2—H2B0.9600
N12—C271.329 (11)C2—H2C0.9600
N13—C271.271 (12)C3—H3A0.9600
N13—C291.439 (11)C3—H3B0.9600
N13—C281.451 (12)C3—H3C0.9600
Pt1—Pt2i7.5991 (4)C5—H5A0.9600
S1—O41.456 (6)C5—H5B0.9600
S1—O21.465 (6)C5—H5C0.9600
S1—O31.466 (7)C6—H6A0.9600
S1—O11.512 (5)C6—H6B0.9600
S2—O61.447 (5)C6—H6C0.9600
S2—O81.456 (7)C7—H70.9300
S2—O71.464 (8)C8—H80.9300
S2—O51.521 (5)C9—H90.9300
O9A—N14A1.214 (10)C13—H130.9300
O9B—N14B1.235 (10)C14—H140.9300
O10A—N14A1.209 (10)C10—H100.9300
O10B—N14B1.218 (10)C15—H150.9300
O11A—N14A1.212 (10)C16—H160.9300
O11B—N14B1.225 (10)C17—H170.9300
N7—C71.318 (10)C18—H180.9300
N7—C111.362 (9)C19—H190.9300
N8—C161.332 (10)C20—H200.9300
N8—C121.362 (10)C23—H230.9300
N9—C171.338 (10)C24—H240.9300
N9—C211.367 (9)C25—H250.9300
N10—C261.318 (10)C26—H260.9300
N10—C221.362 (9)C28—H28A0.9600
C7—C81.376 (12)C28—H28B0.9600
C8—C91.373 (13)C28—H28C0.9600
C9—C101.356 (13)C29—H29A0.9600
C10—C111.376 (11)C29—H29B0.9600
C11—C121.477 (12)C29—H29C0.9600
C12—C131.387 (10)
N7···N93.157 (8)N10···C163.244 (10)
N7···C173.263 (10)C7···C173.324 (12)
N8···N103.135 (8)C12···C213.429 (10)
N8···C223.382 (9)C16···C263.278 (11)
N9···C113.352 (9)
N4—Pt1—N189.2 (3)N8—C16—C15122.6 (8)
N4—Pt1—N896.0 (3)N9—C17—C18121.3 (8)
N1—Pt1—N8174.7 (3)C17—C18—C19118.6 (10)
N4—Pt1—N7176.4 (3)C20—C19—C18120.0 (9)
N1—Pt1—N794.3 (3)C21—C20—C19119.6 (8)
N8—Pt1—N780.5 (3)C20—C21—N9120.6 (8)
N4—Pt1—O193.7 (2)C20—C21—C22124.4 (8)
N1—Pt1—O192.0 (2)N9—C21—C22115.0 (7)
N8—Pt1—O186.7 (2)N10—C22—C23120.2 (8)
N7—Pt1—O185.3 (2)N10—C22—C21115.4 (7)
N4—Pt1—Pt284.11 (17)C23—C22—C21124.4 (8)
N1—Pt1—Pt285.13 (18)C24—C23—C22121.4 (9)
N8—Pt1—Pt296.36 (16)C23—C24—C25117.7 (9)
N7—Pt1—Pt297.09 (17)C24—C25—C26120.1 (10)
O1—Pt1—Pt2176.38 (13)N10—C26—C25120.8 (9)
N5—Pt2—N290.4 (3)C1—N1—H1118.2
N5—Pt2—N1094.5 (3)Pt1—N1—H1118.2
N2—Pt2—N10175.0 (3)C1—N2—H2118.3
N5—Pt2—N9173.7 (3)Pt2—N2—H2118.3
N2—Pt2—N995.6 (3)C4—N4—H4118.7
N10—Pt2—N979.6 (3)Pt1—N4—H4118.7
N5—Pt2—O592.0 (2)C4—N5—H5118.4
N2—Pt2—O593.6 (2)Pt2—N5—H5118.4
N10—Pt2—O585.0 (2)C27—N11—H11A120.0
N9—Pt2—O585.7 (2)C27—N11—H11B120.0
N5—Pt2—Pt185.07 (16)H11A—N11—H11B120.0
N2—Pt2—Pt183.71 (18)C27—N12—H12A120.0
N10—Pt2—Pt197.90 (16)C27—N12—H12B120.0
N9—Pt2—Pt197.50 (16)H12A—N12—H12B120.0
O5—Pt2—Pt1175.96 (12)N3—C2—H2A109.5
N1—C1—N2117.5 (7)N3—C2—H2B109.5
N1—C1—N3121.1 (7)H2A—C2—H2B109.5
N2—C1—N3121.4 (7)N3—C2—H2C109.5
C1—N3—C2120.8 (7)H2A—C2—H2C109.5
C1—N3—C3121.5 (7)H2B—C2—H2C109.5
C2—N3—C3116.0 (8)N3—C3—H3A109.5
N4—C4—N5118.7 (7)N3—C3—H3B109.5
N4—C4—N6121.4 (7)H3A—C3—H3B109.5
N5—C4—N6119.9 (7)N3—C3—H3C109.5
C4—N6—C5118.9 (7)H3A—C3—H3C109.5
C4—N6—C6121.7 (7)H3B—C3—H3C109.5
C5—N6—C6116.2 (7)N6—C5—H5A109.5
N13—C27—N11121.5 (9)N6—C5—H5B109.5
N13—C27—N12121.2 (9)H5A—C5—H5B109.5
N11—C27—N12117.2 (10)N6—C5—H5C109.5
C27—N13—C29120.2 (9)H5A—C5—H5C109.5
C27—N13—C28119.4 (8)H5B—C5—H5C109.5
C29—N13—C28120.3 (9)N6—C6—H6A109.5
O4—S1—O2111.4 (4)N6—C6—H6B109.5
O4—S1—O3110.4 (4)H6A—C6—H6B109.5
O2—S1—O3111.5 (4)N6—C6—H6C109.5
O4—S1—O1110.0 (4)H6A—C6—H6C109.5
O2—S1—O1105.5 (3)H6B—C6—H6C109.5
O3—S1—O1107.9 (4)N7—C7—H7119.4
O6—S2—O8110.6 (4)C8—C7—H7119.4
O6—S2—O7112.8 (4)C9—C8—H8120.2
O8—S2—O7111.0 (5)C7—C8—H8120.2
O6—S2—O5105.5 (3)C10—C9—H9120.5
O8—S2—O5108.6 (4)C8—C9—H9120.5
O7—S2—O5108.2 (4)C9—C10—H10119.8
S1—O1—Pt1123.7 (3)C11—C10—H10119.8
S2—O5—Pt2124.3 (3)C14—C13—H13120.1
C1—N1—Pt1123.6 (5)C12—C13—H13120.1
C1—N2—Pt2123.4 (5)C13—C14—H14120.3
C4—N4—Pt1122.5 (5)C15—C14—H14120.3
C4—N5—Pt2123.1 (5)C16—C15—H15120.5
C7—N7—C11120.3 (7)C14—C15—H15120.5
C7—N7—Pt1125.5 (6)N8—C16—H16118.7
C11—N7—Pt1114.2 (6)C15—C16—H16118.7
C16—N8—C12119.3 (7)N9—C17—H17119.3
C16—N8—Pt1126.5 (5)C18—C17—H17119.3
C12—N8—Pt1114.2 (6)C17—C18—H18120.7
C17—N9—C21119.8 (7)C19—C18—H18120.7
C17—N9—Pt2125.4 (5)C20—C19—H19120.0
C21—N9—Pt2114.8 (5)C18—C19—H19120.0
C26—N10—C22119.7 (7)C21—C20—H20120.2
C26—N10—Pt2125.0 (6)C19—C20—H20120.2
C22—N10—Pt2115.2 (5)C24—C23—H23119.3
O10A—N14A—O11A117.0 (12)C22—C23—H23119.3
O10A—N14A—O9A120.7 (13)C23—C24—H24121.1
O11A—N14A—O9A121.9 (13)C25—C24—H24121.1
O10B—N14B—O11B119.1 (12)C24—C25—H25119.9
O10B—N14B—O9B121.5 (13)C26—C25—H25119.9
O11B—N14B—O9B119.3 (12)N10—C26—H26119.6
N7—C7—C8121.2 (9)C25—C26—H26119.6
C9—C8—C7119.5 (10)N13—C28—H28A109.5
C10—C9—C8118.9 (9)N13—C28—H28B109.5
C9—C10—C11120.4 (9)H28A—C28—H28B109.5
N7—C11—C10119.6 (9)N13—C28—H28C109.5
N7—C11—C12115.0 (7)H28A—C28—H28C109.5
C10—C11—C12125.4 (8)H28B—C28—H28C109.5
N8—C12—C13119.9 (8)N13—C29—H29A109.5
N8—C12—C11116.0 (7)N13—C29—H29B109.5
C13—C12—C11124.2 (8)H29A—C29—H29B109.5
C14—C13—C12119.8 (9)N13—C29—H29C109.5
C13—C14—C15119.4 (8)H29A—C29—H29C109.5
C16—C15—C14118.9 (9)H29B—C29—H29C109.5
N4—Pt1—Pt2—N516.3 (3)C12—N8—C16—C150.3 (11)
N1—Pt1—Pt2—N217.5 (3)C14—C15—C16—N80.5 (13)
N8—Pt1—Pt2—N1017.9 (3)C21—N9—C17—C181.6 (12)
N7—Pt1—Pt2—N918.6 (3)N9—C17—C18—C190.6 (14)
C2—N3—C1—N112.7 (14)C17—C18—C19—C200.8 (14)
C3—N3—C1—N1177.3 (9)C18—C19—C20—C212.1 (14)
C2—N3—C1—N2166.8 (9)C19—C20—C21—N93.1 (12)
C3—N3—C1—N22.1 (14)C19—C20—C21—C22176.8 (8)
C5—N6—C4—N45.2 (12)C17—N9—C21—C202.9 (11)
C6—N6—C4—N4154.2 (8)C17—N9—C21—C22177.1 (7)
C5—N6—C4—N5176.3 (8)C26—N10—C22—C230.9 (11)
C6—N6—C4—N524.2 (12)Pt2—N10—C22—C23178.3 (6)
C11—N7—C7—C81.4 (13)C26—N10—C22—C21177.2 (7)
N7—C7—C8—C90.2 (16)Pt2—N10—C22—C210.3 (8)
C7—C8—C9—C100.9 (17)C20—C21—C22—N10179.3 (7)
C8—C9—C10—C110.1 (16)N9—C21—C22—N100.8 (9)
C7—N7—C11—C102.3 (12)C20—C21—C22—C232.8 (12)
C7—N7—C11—C12177.5 (7)N9—C21—C22—C23177.2 (7)
C9—C10—C11—N71.5 (13)N10—C22—C23—C241.2 (13)
C9—C10—C11—C12178.2 (9)C21—C22—C23—C24176.6 (8)
C16—N8—C12—C131.1 (11)C22—C23—C24—C251.5 (14)
C16—N8—C12—C11177.4 (7)C23—C24—C25—C261.3 (15)
N7—C11—C12—N82.0 (10)C22—N10—C26—C250.8 (12)
C10—C11—C12—N8177.8 (8)Pt2—N10—C26—C25178.0 (6)
N7—C11—C12—C13179.7 (7)C24—C25—C26—N101.0 (14)
C10—C11—C12—C130.6 (13)C29—N13—C27—N11175.9 (10)
N8—C12—C13—C141.1 (12)C28—N13—C27—N110.4 (15)
C11—C12—C13—C14177.2 (8)C29—N13—C27—N124.3 (16)
C12—C13—C14—C150.3 (13)C28—N13—C27—N12179.4 (9)
C13—C14—C15—C160.5 (13)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.202.908 (9)140
N2—H2···O70.862.262.854 (9)126
N5—H5···O80.862.202.914 (8)141
N11—H11B···O40.862.122.973 (11)172
N12—H12B···O20.862.132.962 (10)163
N11—H11A···O8ii0.862.273.102 (10)164
N12—H12A···O6iii0.862.092.825 (9)143
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt2(C3H8N3)2(C10H8N2)2](PF6)2·2C2H3N(C3H10N3)[Pt2(C3H8N3)2(SO4)2(C10H8N2)2](NO3)·6H2O
Mr1246.841325.16
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)100296
a, b, c (Å)12.527 (1), 12.606 (1), 13.3233 (11)12.6189 (6), 28.9553 (14), 14.4197 (7)
α, β, γ (°)94.945 (1), 94.621 (1), 108.295 (1)90, 114.712 (1), 90
V3)1977.3 (3)4786.2 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)7.256.01
Crystal size (mm)0.21 × 0.16 × 0.090.25 × 0.14 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Gaussian
(XPREP in SAINT; Bruker, 2001)
Tmin, Tmax0.384, 0.5210.272, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
23482, 8671, 6882 31986, 11376, 6677
Rint0.0450.066
(sin θ/λ)max1)0.6410.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.154, 1.15 0.041, 0.114, 0.95
No. of reflections867111376
No. of parameters497568
No. of restraints28814
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0584P)2 + 40.2739P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)4.41, 2.802.15, 1.07

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), KENX (Sakai, 2004), SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Pt1—Pt22.8512 (6)Pt2—N22.030 (10)
Pt1—N11.993 (10)Pt2—N52.005 (10)
Pt1—N42.016 (9)Pt2—N92.027 (11)
Pt1—N72.016 (9)Pt2—N102.014 (9)
Pt1—N82.019 (9)
Pt1···C11i3.416 (10)Pt2···C21ii3.361 (12)
Pt1···C10i3.470 (13)
N1—Pt1—N488.3 (4)N5—Pt2—N10174.7 (4)
N1—Pt1—N7174.1 (4)N5—Pt2—N995.1 (4)
N4—Pt1—N796.0 (4)N10—Pt2—N980.4 (4)
N1—Pt1—N895.3 (4)N5—Pt2—N287.6 (4)
N4—Pt1—N8176.4 (4)N10—Pt2—N296.9 (4)
N7—Pt1—N880.4 (4)N9—Pt2—N2177.0 (4)
N4—Pt1—Pt2—N522.0 (4)N7—Pt1—Pt2—N923.4 (4)
N8—Pt1—Pt2—N1023.2 (4)N1—Pt1—Pt2—N221.3 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
Contact distances for (I) (Å) top
Pt1—C11i3.416 (10)Pt1—C10i3.470 (13)
Symmetry code: (i) -x, -y, 1-z.
Selected geometric parameters (Å, º) for (II) top
Pt1—N11.994 (6)Pt2—N51.988 (6)
Pt1—N41.980 (6)Pt2—N92.045 (6)
Pt1—N72.060 (6)Pt2—N102.032 (6)
Pt1—N82.041 (6)Pt1—O12.152 (5)
Pt1—Pt22.5656 (4)Pt2—O52.139 (5)
Pt2—N21.992 (6)Pt1—Pt2i7.5991 (4)
N7···N93.157 (8)N10···C163.244 (10)
N7···C173.263 (10)C7···C173.324 (12)
N8···N103.135 (8)C12···C213.429 (10)
N8···C223.382 (9)C16···C263.278 (11)
N9···C113.352 (9)
N4—Pt1—N189.2 (3)N5—Pt2—N290.4 (3)
N4—Pt1—N896.0 (3)N5—Pt2—N1094.5 (3)
N1—Pt1—N8174.7 (3)N2—Pt2—N10175.0 (3)
N4—Pt1—N7176.4 (3)N5—Pt2—N9173.7 (3)
N1—Pt1—N794.3 (3)N2—Pt2—N995.6 (3)
N8—Pt1—N780.5 (3)N10—Pt2—N979.6 (3)
N4—Pt1—O193.7 (2)N5—Pt2—O592.0 (2)
N1—Pt1—O192.0 (2)N2—Pt2—O593.6 (2)
N8—Pt1—O186.7 (2)N10—Pt2—O585.0 (2)
N7—Pt1—O185.3 (2)N9—Pt2—O585.7 (2)
N4—Pt1—Pt2—N516.3 (3)N8—Pt1—Pt2—N1017.9 (3)
N1—Pt1—Pt2—N217.5 (3)N7—Pt1—Pt2—N918.6 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.202.908 (9)140
N2—H2···O70.862.262.854 (9)126
N5—H5···O80.862.202.914 (8)141
N11—H11B···O40.862.122.973 (11)172
N12—H12B···O20.862.132.962 (10)163
N11—H11A···O8ii0.862.273.102 (10)164
N12—H12A···O6iii0.862.092.825 (9)143
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y, z+1.
Contact distances for (II) (Å) top
N7—N93.157 (8)N10—C163.244 (10)
N7—C173.263 (10)C7—C173.324 (12)
N8—N103.135 (8)C12—C213.429 (10)
N8—C223.382 (9)C16—C263.278 (11)
N9—C113.352 (9)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds