Download citation
Download citation
link to html
The title compound, C24H24N2O5, was obtained as a reaction inter­mediate in the synthesis of the artificial imidazole nucleoside, which is a highly useful synthetic nucleoside for the formation of metal-ion-mediated base pairs. Compared to the free nucleoside, both OH groups of the sugar moiety are protected by p-toluoyl groups. The sugar is in its C3′-endo conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056760/lh2551sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056760/lh2551Isup2.hkl
Contains datablock I

CCDC reference: 672927

Key indicators

  • Single-crystal X-ray study
  • T = 103 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.060
  • wR factor = 0.137
  • Data-to-parameter ratio = 9.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C6 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C11
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2647 Count of symmetry unique reflns 2659 Completeness (_total/calc) 99.55% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C21 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the course of our studies regarding the use of artificial azole nucleosides (azole = imidazole, 1,2,4-triazole, tetrazole) in metal-ion mediated base pairs (Böhme et al., 2007; Müller et al., 2007; Polonius & Müller, 2007; Müller et al., 2005) we have isolated the title compound (Figure 1) as a reaction intermediate in the synthesis of imidazole nucleoside. It crystallizes in the same space group and with very similar unit-cell dimensions as the related triazole nucleoside (Müller et al., 2005). All bond lengths and angles are within the normal range (Allen et al., 1987). The artificial nucleobase is connected to the sugar moiety via an N-glycosidic bond. It is oriented anti with respect to the sugar. The deoxyribose adopts a C3'-endo conformation (phase angle of pseudorotation = 7.7 (5)°). The title compound forms long columns along the crystallographic b axis (Fig. 2). However, there is no π stacking between neighboring toluoyl rings that are related by the symmetry operator (x, y + 1, z). Instead, neighboring rings that are related by the symmetry operator (1 - x, y + 1/2, 3 - z) are oriented at an angle of 62.7 (2)° with respect to each other.

Related literature top

The structures of the analogous 1,2,4-triazole and tetrazole nucleosides have been reported recently (Müller et al., 2005). These nucleosides have been used in metal-ion-mediated base pairs (Böhme et al., 2007). For related literature, see: Polonius & Müller (2007); Müller et al. (2007); Allen et al. (1987); Farrugia (1997, 1999); Flack (1983).

Experimental top

The title compound was prepared as reported previously (Müller et al., 2005). Single crystals suitable for X-ray measurement were obtained by crystallization from dichloromethane and cyclohexane with triethylamine at room temperature. A satisfactory elemental analysis was obtained: Calcd. for C24H24N2O5: C 68.6, H 5.8, N 6.7; found: C 68.2, H 6.2, N 6.6.

Refinement top

In the absence of significant anomalous dispersion effects, a total of 1277 Friedel pairs have been merged during the final refinement.

Hydrogen atoms were included in the refinement at calculated positions with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: KappaCCD (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title compound with a view along the b axis.
3,5-Di-p-toluoyl-1,2-dideoxy-β-1-(imidazol-1-yl)-D-ribofuranose top
Crystal data top
C24H24N2O5Z = 2
Mr = 420.45F(000) = 444
Monoclinic, P21Dx = 1.33 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 14.436 (3) Åθ = 3–27.5°
b = 5.3850 (11) ŵ = 0.09 mm1
c = 15.061 (3) ÅT = 103 K
β = 116.25 (3)°Cubes, colorless
V = 1050.1 (5) Å30.1 × 0.1 × 0.1 mm
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
Rint = 0.097
profile fitled scansθmax = 27.5°, θmin = 3.0°
12891 measured reflectionsh = 1818
2647 independent reflectionsk = 75
1726 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2112P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.28 e Å3
2647 reflectionsΔρmin = 0.34 e Å3
280 parameters
Crystal data top
C24H24N2O5V = 1050.1 (5) Å3
Mr = 420.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 14.436 (3) ŵ = 0.09 mm1
b = 5.3850 (11) ÅT = 103 K
c = 15.061 (3) Å0.1 × 0.1 × 0.1 mm
β = 116.25 (3)°
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
1726 reflections with I > 2σ(I)
12891 measured reflectionsRint = 0.097
2647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2647 reflectionsΔρmin = 0.34 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O300.3603 (2)0.8395 (6)0.96544 (19)0.0222 (7)
N290.1239 (2)1.0452 (6)0.9936 (2)0.0200 (8)
O280.44002 (19)0.7940 (6)1.24729 (19)0.0221 (7)
O270.4201 (2)0.9804 (6)0.8587 (2)0.0259 (7)
C260.5335 (3)0.5234 (8)1.3793 (3)0.0200 (9)
C250.0239 (3)0.8334 (9)0.8628 (3)0.0268 (10)
H25A0.00140.70640.81410.032*
C240.6206 (3)0.6745 (9)1.4091 (3)0.0267 (11)
H24A0.61790.8221.37340.032*
N230.0292 (3)1.0479 (8)0.8608 (3)0.0303 (9)
C220.1929 (3)0.5296 (8)0.6379 (3)0.0242 (10)
H22A0.17370.55160.56940.029*
C210.2101 (3)1.1388 (8)1.0832 (3)0.0205 (10)
H21A0.18661.28551.10850.025*
C200.2901 (3)0.6638 (8)0.8066 (3)0.0196 (9)
C190.0339 (3)1.1715 (9)0.9398 (3)0.0249 (10)
H19A0.01871.33040.95750.03*
O180.3571 (2)0.4591 (6)1.2656 (2)0.0262 (7)
C170.1172 (3)0.8278 (9)0.9437 (3)0.0256 (10)
H17A0.16750.69950.9620.031*
C160.7183 (3)0.3957 (9)1.5446 (3)0.0283 (12)
C150.2466 (3)0.4697 (8)0.8370 (3)0.0214 (9)
H15A0.26540.44780.90540.026*
C140.5391 (3)0.3097 (9)1.4337 (3)0.0257 (10)
H14A0.480.20641.41470.031*
C130.3831 (3)1.0697 (8)1.1102 (3)0.0194 (9)
H13A0.43381.17261.16570.023*
C120.4342 (3)0.5834 (8)1.2935 (3)0.0209 (10)
C110.8179 (3)0.3260 (12)1.6335 (3)0.0429 (14)
H11A0.87090.45081.64310.064*
H11B0.84120.16321.62230.064*
H11C0.80590.31881.69270.064*
C100.1487 (3)0.3368 (9)0.6677 (3)0.0245 (10)
C90.1769 (3)0.3097 (9)0.7689 (3)0.0261 (10)
H9A0.14770.17940.79070.031*
C80.3638 (3)0.8416 (9)0.8767 (3)0.0220 (9)
C70.3513 (3)0.8494 (8)1.1542 (3)0.0180 (9)
H7A0.33210.70321.10870.022*
C60.0724 (3)0.1619 (9)0.5931 (3)0.0337 (12)
H6A0.06190.20860.52650.051*
H6B0.00640.17130.59690.051*
H6C0.09910.00820.60750.051*
C50.6310 (3)0.2462 (9)1.5159 (3)0.0299 (11)
H5A0.6340.10011.55240.036*
C40.2640 (3)0.6893 (9)0.7056 (3)0.0266 (10)
H4A0.2950.81590.68380.032*
C30.4296 (3)1.0075 (9)1.0408 (3)0.0234 (10)
H3A0.43921.16091.00960.028*
H3B0.49790.92791.07790.028*
C20.7116 (3)0.6093 (10)1.4912 (3)0.0315 (12)
H2A0.77030.7141.5110.038*
C10.2577 (3)0.9476 (9)1.1657 (3)0.0199 (9)
H1A0.20820.81221.15760.024*
H1B0.27921.02561.23140.024*
O310.2904 (2)1.2143 (5)1.05768 (19)0.0208 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O300.0189 (14)0.0291 (16)0.0216 (15)0.0078 (14)0.0116 (12)0.0057 (14)
N290.0149 (17)0.0197 (19)0.0251 (18)0.0006 (16)0.0087 (15)0.0016 (16)
O280.0160 (14)0.0252 (16)0.0221 (15)0.0017 (13)0.0057 (12)0.0027 (13)
O270.0230 (15)0.0327 (19)0.0266 (16)0.0017 (15)0.0153 (13)0.0005 (15)
C260.022 (2)0.022 (2)0.020 (2)0.0020 (19)0.0131 (18)0.0048 (18)
C250.023 (2)0.027 (2)0.029 (2)0.003 (2)0.010 (2)0.001 (2)
C240.021 (2)0.032 (3)0.029 (2)0.001 (2)0.014 (2)0.001 (2)
N230.0244 (19)0.033 (2)0.027 (2)0.0011 (19)0.0055 (17)0.0014 (19)
C220.026 (2)0.025 (3)0.022 (2)0.005 (2)0.0110 (19)0.001 (2)
C210.014 (2)0.023 (2)0.027 (2)0.0015 (19)0.0100 (18)0.001 (2)
C200.016 (2)0.023 (2)0.022 (2)0.006 (2)0.0095 (18)0.000 (2)
C190.017 (2)0.026 (2)0.033 (2)0.007 (2)0.012 (2)0.006 (2)
O180.0247 (16)0.0233 (16)0.0275 (16)0.0036 (15)0.0087 (13)0.0007 (15)
C170.020 (2)0.028 (2)0.027 (2)0.001 (2)0.009 (2)0.001 (2)
C160.025 (2)0.043 (3)0.019 (2)0.011 (2)0.010 (2)0.001 (2)
C150.022 (2)0.026 (2)0.018 (2)0.004 (2)0.0107 (18)0.005 (2)
C140.026 (2)0.026 (2)0.026 (2)0.004 (2)0.012 (2)0.001 (2)
C130.016 (2)0.021 (2)0.021 (2)0.0005 (18)0.0076 (17)0.0008 (19)
C120.025 (2)0.018 (2)0.021 (2)0.006 (2)0.0122 (19)0.002 (2)
C110.026 (2)0.066 (4)0.034 (3)0.019 (3)0.012 (2)0.010 (3)
C100.017 (2)0.025 (2)0.028 (2)0.007 (2)0.0070 (19)0.001 (2)
C90.021 (2)0.026 (2)0.035 (2)0.005 (2)0.016 (2)0.000 (2)
C80.018 (2)0.028 (2)0.024 (2)0.006 (2)0.0132 (19)0.002 (2)
C70.0150 (19)0.023 (2)0.017 (2)0.0027 (19)0.0075 (17)0.0003 (19)
C60.024 (2)0.033 (3)0.036 (3)0.001 (2)0.006 (2)0.003 (2)
C50.034 (3)0.035 (3)0.025 (2)0.009 (2)0.017 (2)0.010 (2)
C40.024 (2)0.033 (3)0.028 (2)0.003 (2)0.016 (2)0.002 (2)
C30.018 (2)0.029 (3)0.025 (2)0.004 (2)0.0101 (18)0.001 (2)
C20.024 (2)0.044 (3)0.025 (2)0.002 (2)0.010 (2)0.000 (2)
C10.0130 (19)0.026 (2)0.023 (2)0.0015 (19)0.0096 (17)0.000 (2)
O310.0145 (14)0.0247 (16)0.0266 (15)0.0009 (13)0.0123 (12)0.0029 (13)
Geometric parameters (Å, º) top
O30—C81.360 (5)C16—C21.382 (6)
O30—C31.450 (5)C16—C51.393 (7)
N29—C191.370 (5)C16—C111.516 (6)
N29—C171.371 (6)C15—C91.377 (6)
N29—C211.462 (5)C15—H15A0.95
O28—C121.352 (5)C14—C51.400 (6)
O28—C71.451 (4)C14—H14A0.95
O27—C81.220 (5)C13—O311.445 (5)
C26—C141.394 (6)C13—C31.509 (5)
C26—C241.395 (6)C13—C71.525 (6)
C26—C121.480 (5)C13—H13A1
C25—C171.360 (6)C11—H11A0.98
C25—N231.379 (6)C11—H11B0.98
C25—H25A0.95C11—H11C0.98
C24—C21.393 (6)C10—C91.400 (6)
C24—H24A0.95C10—C61.506 (6)
N23—C191.315 (6)C9—H9A0.95
C22—C41.381 (6)C7—C11.530 (6)
C22—C101.393 (6)C7—H7A1
C22—H22A0.95C6—H6A0.98
C21—O311.432 (5)C6—H6B0.98
C21—C11.523 (6)C6—H6C0.98
C21—H21A1C5—H5A0.95
C20—C151.396 (6)C4—H4A0.95
C20—C41.404 (5)C3—H3A0.99
C20—C81.473 (6)C3—H3B0.99
C19—H19A0.95C2—H2A0.95
O18—C121.205 (5)C1—H1A0.99
C17—H17A0.95C1—H1B0.99
C8—O30—C3116.8 (3)O28—C12—C26112.1 (4)
C19—N29—C17106.3 (3)C16—C11—H11A109.5
C19—N29—C21124.9 (4)C16—C11—H11B109.5
C17—N29—C21128.7 (3)H11A—C11—H11B109.5
C12—O28—C7116.1 (3)C16—C11—H11C109.5
C14—C26—C24118.9 (4)H11A—C11—H11C109.5
C14—C26—C12118.3 (4)H11B—C11—H11C109.5
C24—C26—C12122.7 (4)C22—C10—C9118.3 (4)
C17—C25—N23111.0 (4)C22—C10—C6121.0 (4)
C17—C25—H25A124.5C9—C10—C6120.7 (4)
N23—C25—H25A124.5C15—C9—C10120.7 (4)
C2—C24—C26120.0 (4)C15—C9—H9A119.6
C2—C24—H24A120C10—C9—H9A119.6
C26—C24—H24A120O27—C8—O30122.8 (4)
C19—N23—C25104.4 (4)O27—C8—C20125.5 (4)
C4—C22—C10121.5 (4)O30—C8—C20111.7 (4)
C4—C22—H22A119.2O28—C7—C13105.9 (3)
C10—C22—H22A119.2O28—C7—C1114.1 (3)
O31—C21—N29108.0 (3)C13—C7—C1103.3 (3)
O31—C21—C1106.5 (3)O28—C7—H7A111
N29—C21—C1114.4 (4)C13—C7—H7A111
O31—C21—H21A109.3C1—C7—H7A111
N29—C21—H21A109.3C10—C6—H6A109.5
C1—C21—H21A109.3C10—C6—H6B109.5
C15—C20—C4119.0 (4)H6A—C6—H6B109.5
C15—C20—C8122.6 (4)C10—C6—H6C109.5
C4—C20—C8118.4 (4)H6A—C6—H6C109.5
N23—C19—N29112.3 (4)H6B—C6—H6C109.5
N23—C19—H19A123.8C16—C5—C14120.5 (4)
N29—C19—H19A123.8C16—C5—H5A119.8
C25—C17—N29105.9 (4)C14—C5—H5A119.8
C25—C17—H17A127.1C22—C4—C20119.7 (4)
N29—C17—H17A127.1C22—C4—H4A120.2
C2—C16—C5118.6 (4)C20—C4—H4A120.2
C2—C16—C11121.0 (5)O30—C3—C13108.4 (3)
C5—C16—C11120.3 (4)O30—C3—H3A110
C9—C15—C20120.7 (4)C13—C3—H3A110
C9—C15—H15A119.6O30—C3—H3B110
C20—C15—H15A119.6C13—C3—H3B110
C26—C14—C5120.4 (4)H3A—C3—H3B108.4
C26—C14—H14A119.8C16—C2—C24121.5 (5)
C5—C14—H14A119.8C16—C2—H2A119.2
O31—C13—C3109.2 (3)C24—C2—H2A119.2
O31—C13—C7105.8 (3)C21—C1—C7104.1 (3)
C3—C13—C7116.1 (4)C21—C1—H1A110.9
O31—C13—H13A108.5C7—C1—H1A110.9
C3—C13—H13A108.5C21—C1—H1B110.9
C7—C13—H13A108.5C7—C1—H1B110.9
O18—C12—O28123.0 (4)H1A—C1—H1B109
O18—C12—C26124.9 (4)C21—O31—C13111.3 (3)
C12—O28—C7—C175.4 (5)C22—C4—C20—C8178.2 (4)
C12—O28—C7—C13171.7 (3)C22—C4—C20—C152.7 (7)
C7—O28—C12—O187.0 (6)C20—C4—C22—C102.3 (7)
C7—O28—C12—C26171.5 (3)C14—C5—C16—C21.0 (7)
C8—O30—C3—C13153.6 (4)C14—C5—C16—C11179.8 (4)
C3—O30—C8—O271.7 (6)C16—C5—C14—C260.0 (7)
C3—O30—C8—C20180.0 (4)O28—C7—C13—O31146.7 (3)
C21—O31—C13—C3139.0 (4)O28—C7—C13—C392.0 (4)
C21—O31—C13—C713.4 (4)C1—C7—C13—O3126.5 (4)
C13—O31—C21—N29117.7 (3)C1—C7—C13—C3147.8 (4)
C13—O31—C21—C15.6 (4)O30—C8—C20—C1517.9 (6)
C19—N23—C25—C171.3 (5)O27—C8—C20—C15163.9 (5)
C25—N23—C19—N291.3 (5)O30—C8—C20—C4163.0 (4)
C19—N29—C17—C250.0 (5)O27—C8—C20—C415.2 (7)
C19—N29—C21—O31104.2 (4)C15—C9—C10—C6180.0 (4)
C19—N29—C21—C1137.4 (4)C10—C9—C15—C200.5 (7)
C21—N29—C19—N23177.9 (4)C15—C9—C10—C220.0 (7)
C21—N29—C17—C25176.9 (4)C6—C10—C22—C4179.1 (4)
C17—N29—C19—N230.9 (5)C9—C10—C22—C41.0 (7)
C17—N29—C21—O3172.1 (5)O18—C12—C26—C24179.6 (4)
C17—N29—C21—C146.3 (6)O28—C12—C26—C14179.6 (4)
C21—C1—C7—C1329.4 (4)O18—C12—C26—C141.1 (7)
C7—C1—C21—O3122.1 (4)O28—C12—C26—C241.9 (6)
C21—C1—C7—O28143.8 (4)C5—C14—C26—C12179.5 (4)
C7—C1—C21—N2997.1 (4)C5—C14—C26—C240.9 (7)
C16—C2—C24—C260.2 (7)C9—C15—C20—C8179.1 (4)
C24—C2—C16—C11179.7 (4)C9—C15—C20—C41.8 (7)
C24—C2—C16—C51.1 (7)N29—C17—C25—N230.8 (5)
O30—C3—C13—O3167.2 (4)C2—C24—C26—C140.8 (7)
O30—C3—C13—C752.4 (5)C2—C24—C26—C12179.3 (4)

Experimental details

Crystal data
Chemical formulaC24H24N2O5
Mr420.45
Crystal system, space groupMonoclinic, P21
Temperature (K)103
a, b, c (Å)14.436 (3), 5.3850 (11), 15.061 (3)
β (°) 116.25 (3)
V3)1050.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerBruker–Nonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12891, 2647, 1726
Rint0.097
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.137, 1.01
No. of reflections2647
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: KappaCCD (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds