Download citation
Download citation
link to html
The X-ray crystal structure of the title compound, 1-methyl­cytosinium iodide 1-methyl­cytosine, [(1-MeC)2H]I (1-MeC is 1-methyl­cytosine) or C5H8N3O+·I-·C5H7N3O, has been determined at 163 K. In this compound, one protonated (1-MeCH+) and one neutral methyl­cytosine (1-MeC) moiety form an asymmetric base pair comprising three hydrogen bonds. A previous structure determination [Krüger, Bruhn & Steinborn (2004). Org. Biomol. Chem. 2, 2513-2516] showed the same cell parameters but a centrosymmetric base pair in space group P21/c. At low temperature, however, we discovered the title compound to be a racemic twin showing pseudo-centrosymmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805000693/lh6348sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805000693/lh6348Isup2.hkl
Contains datablock I

CCDC reference: 263691

Key indicators

  • Single-crystal X-ray study
  • T = 163 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.020
  • wR factor = 0.043
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT035_ALERT_1_A No _chemical_absolute_configuration info given . ?
Author Response: The presented compound is a racemic twin with twin fractions of 0.52(2) and 0.48(2), thus inversion of the structure yielded identical R values.
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem...          n
Author Response: The presented compound features a hemiprotonated cytosine- cytosine base pair with pseudo-centrosymmetry. Solution of the structure in the centrosymmetric space group P21/c with only one cytosine molecule yielded 114 systematic absence violations (62>3s):
    Systematic absence exceptions:
         -21-   -a-   -c-   -n-

  N         5    87    89    88
  N I>3s    0    73    62    75
  <I>     2.6 532.5  56.1 525.0
  <I/s>   0.7  18.1  12.0  18.4

 Refinement in P21/c converged against R1 = 0.0851 for 1192 Fo >
 4sig(Fo) and wR2 =  0.2085 (GooF = 1.484) with N1 and C6 NPD.

PLAT113_ALERT_2_A ADDSYM Suggests Possible Pseudo/New Spacegroup .      P21/c
Author Response: see response above.

Alert level B PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 100 PerFit
Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.520 From the CIF: _refine_ls_abs_structure_Flack_su 0.020 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT033_ALERT_2_C Flack Parameter Value Deviates from Zero ....... 0.52 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 - C2 .. 5.79 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C5 - C6 .. 5.37 su PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 5 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C5 H8 N3 O
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.35 From the CIF: _reflns_number_total 2519 Count of symmetry unique reflns 1396 Completeness (_total/calc) 180.44% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1123 Fraction of Friedel pairs measured 0.804 Are heavy atom types Z>Si present yes
3 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: KappaCCD Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (VMS) (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97.

1-Methylcytosinium iodide 1-methylcytosine top
Crystal data top
C5H8N3O+·I·C5H7N3OF(000) = 372
Mr = 378.18Dx = 1.771 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 4452 reflections
a = 7.195 (1) Åθ = 2.9–25.4°
b = 8.629 (2) ŵ = 2.27 mm1
c = 11.522 (2) ÅT = 163 K
β = 97.59 (3)°Block, colourless
V = 709.1 (2) Å30.50 × 0.40 × 0.38 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 44 pixels mm-1θmax = 25.4°, θmin = 2.9°
360 frames via ω–rotation (Δω1°) and two times 5s per frame scansh = 88
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1010
Tmin = 0.358, Tmax = 0.427l = 1313
4435 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0118P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.31 e Å3
2519 reflectionsΔρmin = 0.27 e Å3
183 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0174 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1166 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.52 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Intensity data were collected on an Enraf–Nonius KappaCCD (Nonius BV, Netherlands) (Mo Kα, λ = 0.71069 Å, graphite-monochromator). The structure was solved by standard Patterson methods (Sheldrick 1990a) and refined by full-matrix least-squares based on F2 using the SHELXTL-Plus (Sheldrick 1990b) and SHELXL97 (Sheldrick 1997) programs. The positions of all non-hydrogen atoms were deduced from difference Fourier maps and refined anisotropically. Initially, the Flack parameter was refined to a value of 0.51 (2) with: _refine_ls_R_factor_all 0.0263 _refine_ls_R_factor_gt 0.0220 _refine_ls_wR_factor_ref 0.0493 _refine_ls_wR_factor_gt 0.0485 and _refine_ls_goodness_of_fit_ref 1.040 Accordingly, subsequent application of the twin law (-1 0 0, 0 - 1 0, 0 0 - 1) resulted in a racemic twin fraction of 0.51881 with the R factors presented below. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H3'0.163 (5)0.025 (5)0.248 (3)0.045 (10)*
I10.75919 (2)0.00071 (13)0.754516 (15)0.03646 (9)
N10.6507 (4)0.2149 (4)0.2055 (4)0.0297 (9)
C10.7037 (5)0.3110 (5)0.1102 (3)0.0419 (10)
H1A0.70330.24880.04100.048 (4)*
H1B0.82700.35260.13250.048 (4)*
H1C0.61570.39430.09460.048 (4)*
C20.4866 (4)0.1298 (4)0.1845 (3)0.0261 (8)
O20.3983 (3)0.1308 (3)0.08405 (16)0.0308 (6)
N30.4287 (3)0.0467 (3)0.27326 (19)0.0230 (8)
C40.5352 (4)0.0432 (4)0.3781 (3)0.0252 (10)
N40.4765 (3)0.0428 (3)0.4622 (2)0.0305 (9)
H4A0.37330.09390.44840.046 (5)*
H4B0.54180.04720.53020.046 (5)*
C50.7054 (4)0.1272 (4)0.4009 (3)0.0313 (9)
H50.77890.12390.47360.041 (4)*
C60.7560 (5)0.2133 (5)0.3103 (6)0.0334 (12)
H60.86550.27170.32180.041 (4)*
N1'0.1634 (4)0.2274 (4)0.2974 (4)0.0290 (9)
C1'0.2220 (5)0.3265 (5)0.3885 (3)0.0434 (11)
H1'10.34590.36530.36350.048 (4)*
H1'20.22230.26770.45920.048 (4)*
H1'30.13640.41180.40280.048 (4)*
C2'0.0013 (4)0.1463 (4)0.3218 (3)0.0256 (8)
O2'0.0890 (3)0.1442 (3)0.41984 (17)0.0319 (6)
N3'0.0596 (4)0.0656 (3)0.2310 (2)0.0257 (8)
C4'0.0342 (4)0.0578 (4)0.1211 (3)0.0263 (10)
N4'0.0347 (3)0.0217 (6)0.04203 (19)0.0351 (8)
H4'10.13960.06940.05920.046 (5)*
H4'20.02440.02690.02780.046 (5)*
C5'0.2075 (4)0.1396 (4)0.0995 (3)0.0303 (9)
H5'0.28000.13520.02650.041 (4)*
C6'0.2631 (5)0.2221 (5)0.1857 (5)0.0316 (12)
H6'0.37360.27890.17070.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03211 (11)0.04901 (13)0.02584 (11)0.00791 (16)0.00519 (7)0.00848 (13)
N10.0295 (16)0.0269 (18)0.0332 (19)0.0005 (16)0.006 (2)0.0043 (18)
C10.0320 (16)0.041 (2)0.053 (2)0.0079 (16)0.0045 (18)0.010 (2)
C20.0184 (13)0.0252 (19)0.0337 (18)0.0049 (13)0.0000 (15)0.0023 (16)
O20.0299 (10)0.0366 (14)0.0247 (11)0.0012 (10)0.0008 (10)0.0042 (11)
N30.0246 (11)0.023 (2)0.0211 (11)0.0006 (10)0.0016 (10)0.0003 (11)
C40.0220 (13)0.026 (3)0.0269 (15)0.0071 (12)0.0003 (14)0.0073 (15)
N40.0298 (12)0.036 (2)0.0244 (13)0.0013 (12)0.0026 (12)0.0021 (14)
C50.0274 (15)0.035 (2)0.0298 (17)0.0036 (15)0.0040 (15)0.0060 (18)
C60.018 (2)0.029 (2)0.049 (3)0.0022 (19)0.008 (2)0.011 (2)
N1'0.0204 (15)0.0280 (19)0.0368 (19)0.0002 (16)0.0030 (18)0.0009 (18)
C1'0.0327 (17)0.047 (3)0.052 (2)0.0041 (16)0.0094 (18)0.015 (2)
C2'0.0262 (15)0.0226 (19)0.0279 (17)0.0063 (13)0.0032 (15)0.0038 (16)
O2'0.0305 (10)0.0371 (15)0.0264 (11)0.0023 (10)0.0022 (10)0.0046 (11)
N3'0.0206 (11)0.0295 (19)0.0256 (14)0.0020 (11)0.0017 (12)0.0023 (12)
C4'0.0258 (14)0.028 (3)0.0232 (16)0.0053 (13)0.0024 (15)0.0042 (16)
N4'0.0292 (11)0.052 (2)0.0220 (12)0.0027 (18)0.0041 (11)0.004 (2)
C5'0.0224 (14)0.034 (2)0.0318 (18)0.0028 (14)0.0043 (15)0.0063 (18)
C6'0.031 (2)0.026 (2)0.036 (3)0.0009 (19)0.001 (2)0.005 (2)
Geometric parameters (Å, º) top
N1—C61.338 (9)C5'—C6'1.326 (6)
N1—C21.384 (5)C1—H1A0.9600
N1—C11.466 (5)C1—H1B0.9600
C2—O21.245 (3)C1—H1C0.9600
C2—N31.359 (4)N4—H4B0.8600
N3—C41.342 (3)N4—H4A0.8600
C4—N41.333 (4)C5—H50.9300
C4—C51.417 (4)C6—H60.9300
C5—C61.370 (7)C1'—H1'30.9600
N1'—C2'1.373 (4)C1'—H1'20.9600
N1'—C6'1.389 (9)C1'—H1'10.9600
N1'—C1'1.459 (6)N3'—H3'0.82 (4)
C2'—O2'1.219 (3)N4'—H4'20.8600
C2'—N3'1.368 (4)N4'—H4'10.8600
N3'—C4'1.355 (3)C5'—H5'0.9300
C4'—N4'1.291 (5)C6'—H6'0.9300
C4'—C5'1.426 (4)
C6—N1—C2121.4 (4)H1'1—C1'—H1'3109.00
C6—N1—C1120.6 (3)H1'2—C1'—H1'3109.00
C2—N1—C1118.0 (3)C2'—N3'—H3'113 (2)
O2—C2—N3122.3 (3)C4'—C5'—H5'121.00
O2—C2—N1118.6 (3)C4'—N3'—H3'122 (2)
N3—C2—N1119.2 (3)C6'—C5'—H5'121.00
C4—N3—C2119.6 (2)C4'—N4'—H4'1120.00
N4—C4—N3117.9 (3)C5'—C6'—H6'119.00
N4—C4—C5119.9 (2)C4'—N4'—H4'2120.00
N3—C4—C5122.2 (3)N1'—C6'—H6'119.00
C6—C5—C4116.5 (3)H4'1—N4'—H4'2120.00
N1—C6—C5121.2 (3)H4A—N4—H4B120.00
C2'—N1'—C6'120.0 (4)C4—N4—H4B120.00
C2'—N1'—C1'118.4 (3)C4—N4—H4A120.00
C6'—N1'—C1'121.5 (3)N1—C1—H1A109.00
O2'—C2'—N3'121.8 (3)N1—C1—H1B109.00
O2'—C2'—N1'121.7 (4)N1—C1—H1C109.00
N3'—C2'—N1'116.5 (3)H1A—C1—H1B109.00
C4'—N3'—C2'125.1 (3)H1A—C1—H1C109.00
N4'—C4'—N3'119.7 (3)H1B—C1—H1C109.00
N4'—C4'—C5'123.2 (3)C4—C5—H5122.00
N3'—C4'—C5'117.0 (3)C6—C5—H5122.00
C6'—C5'—C4'118.6 (3)N1'—C1'—H1'1109.00
C5'—C6'—N1'122.8 (3)N1—C6—H6119.00
N1'—C1'—H1'3109.00N1'—C1'—H1'2110.00
H1'1—C1'—H1'2109.00C5—C6—H6119.00
C6—N1—C2—O2177.1 (3)C6'—N1'—C2'—O2'177.5 (3)
C1—N1—C2—O24.6 (5)C1'—N1'—C2'—O2'6.9 (5)
C6—N1—C2—N32.0 (5)C6'—N1'—C2'—N3'1.2 (5)
C1—N1—C2—N3176.4 (3)C1'—N1'—C2'—N3'174.4 (3)
O2—C2—N3—C4176.3 (3)O2'—C2'—N3'—C4'177.4 (3)
N1—C2—N3—C42.7 (4)N1'—C2'—N3'—C4'1.3 (5)
C2—N3—C4—N4178.3 (3)C2'—N3'—C4'—N4'179.8 (4)
C2—N3—C4—C51.6 (4)C2'—N3'—C4'—C5'0.5 (5)
N4—C4—C5—C6179.8 (3)N4'—C4'—C5'—C6'177.8 (4)
N3—C4—C5—C60.3 (5)N3'—C4'—C5'—C6'2.4 (5)
C2—N1—C6—C50.0 (6)C4'—C5'—C6'—N1'2.6 (6)
C1—N1—C6—C5178.3 (4)C2'—N1'—C6'—C5'0.8 (6)
C4—C5—C6—N11.2 (6)C1'—N1'—C6'—C5'176.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N30.82 (4)1.99 (4)2.808 (4)171 (4)
N4—H41···O20.861.922.762 (4)166
N4—H4A···O20.862.072.901 (3)161
N4—H4B···I10.862.873.717 (2)169
N4—H42···I1i0.862.783.633 (2)171
C5—H5···O2ii0.932.473.088 (4)124
C5—H5···O2iii0.932.483.085 (4)123
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1/2, z+1; (iii) x, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds