Download citation
Download citation
link to html
The title compound, 1-cyclo­hexyl­methyl-1-de(1-methyl­propyl)­asci­dia­cycl­amide N,N-di­methyl­acet­amide di­hy­drate, C39H56N8O6S2·C4H9NO·2H2O, a cyclo­hexyl­alanine-incorporated ascidiacycl­amide analogue ([Cha]ASC), shows a square form similar to natural ASC. On the other hand, CD (circular dichroism) spectra showed [Cha]ASC to have a folded structure in solution, making it the second known analogue to show a discrepancy between its crystal and solution structures. Moreover, the cytotoxicity of [Cha]ASC (ED50 = 5.6 µg ml-1) was approximately two times stronger than that of natural ASC or a related phenyl­alanine-incorporated analogue, viz. cyclo(-Phe-Oxz-D-Val-Thz-Ile-Oxz-D-Val-Thz-) ([Phe]ASC), and was confirmed to be associated with the square form. However, [Phe]ASC was previously shown to be folded in the crystal structure, which suggests that the difference between the aromatic and aliphatic rings affects the molecular folding of the ASC mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103014495/ob1130sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014495/ob1130Isup2.hkl
Contains datablock I

CCDC reference: 205223

Comment top

Ascidiacyclamide (ASC), cyclo(–L-Ile-L-Oxz-D-Val-Thz-)2, is a cytotoxic cyclic peptide isolated from tunicate that contains the unusual amino acids oxazoline (Oxz) and thiazole (Thz) (Hamamoto et al., 1983). X-Ray diffraction analyses have revealed ASC and its analogues to have either square or folded structures (Ishida et al., 1987, 1988, 1992; Schmitz et al., 1989; In et al., 1993). In this regard, our findings suggest that substitution of an amino acid that disturbs the C2-symmetry can affect the structure of the resultant ASC analogue, viz. the folding of the peptide is seen to be related to the bulkiness of the incorporated amino acid (Asano, Doi et al., 2001; Doi et al., 2001; Asano, Yamada et al., 2002). On the other hand, incorporation of an amino acid of appropriate size results in a square structure and associated strong cytotoxicity (Asano, Minoura et al., 2002). One exception is the phenylalanine-incorporated analogue ([Phe]ASC), cyclo(–Phe-Oxz-D-Val-Thz-Ile-Oxz-D-Val-Thz-), in which cytotoxicity is conserved in the folded configuration (Doi et al., 1999). This is notable, as [Phe]ASC contains one the bulkiest of amino acids, and it is the only analogue containing an aromatic amino acid. Therefore, to better understand the determinants of the structure and cytotoxicity of ASC analogues, we incorporated a cyclohexylalanine, which has an aliphatic six-membered ring, into ASC.

The CD spectra of [Phe]ASC and [Cha]ASC, which were measured by titration using two solvents, acetonitril (MeCN) and 2,2,2-trifluoroethanol (TFE), were found to be similar (Fig. 1). Addition of TFE provides a special environment, different from that provided by MeCN (Fioroni et al., 2000). Nevertheless, addition of TFE elicited no drastic change in the spectrum. It is known that in the square form, ASC analogues show small negative cottons at about 250 nm (Asano, Minoura et al., 2002). Since positive cottons in the range of 200–300 nm can be a sign of folding, these CD spectra imply that both [Phe]ASC and [Cha]ASC are in a folded state in solution. Indeed, the crystal structure of [Phe]ASC is known to be folded (Doi et al., 1999).

The crystal structure of [Cha]ASC is shown in Fig. 2. There are two water molecules (W9 and W10) and one N,N-dimethylacetamide molecule (DMA11) in the asymmetric unit. Contrast to the suggestion of the CD spectra, the peptide ring shows a square form similar to previously described structures (Ishida et al., 1987), and the peptide and solvent molecules interact via hydrogen bonds (Table 1). The water molecule W9 (O1_9) is hydrogen bonded to N_1 (Cha1) and N_6 (Oxz6), as well as to O1_11 (DMA11). It was finally located at a deep position within the opened peptide ring, which is reminiscent of the anchored water molecule observed in the ethanol- and water-solvated ASC crystal (In et al., 1994). The other water molecule, viz. W10 (O2_10), bridges two adjacent peptide molecules (O_2 and O_4), which also interact through C—H···O hydrogen bonds (CB_4···O_2 and CA_2···O_8). This type of interaction was also observed in the dimeric ASC (Asano, Taniguchi et al., 2001), but this is the first observation in an ASC analogue.

The ED50 for the toxicity of [Cha]ASC in P388 lymphocytic leukemia cells was 5.6 µg ml−1. This is the strongest toxicity yet reported for an ASC analogue (Doi et al., 1999; Asano, Minoura et al., 2002), and is approximately two times stronger than natural ASC (ED50 = 10.5 µg ml−1) or [Phe]ASC (ED50 = 11.8 µg ml−1). That the square structure of [Cha]ASC is the most cytotoxic strongly supports the association between the square form and cytotoxicity.

We did not determine the cause of the discrepancy between the structures of [Cha]ASC in solid and solution states, though a similar discrepancy was previously seen with the Leu-incorporated analogue ([Leu]ASC), cyclo(–Leu-Oxz-D-Val-Thz-Ile-Oxz-D-Val-Thz-) (Asano, Minoura et al., 2002). The number of C atoms in Cha is the same as in Phe, making the aromaticity of the latter the only difference between [Cha]ASC and [Phe]ASC. It therefore appears likely that it is this aromaticity that accounts for the cytotoxicity of the folded structure of [Phe]ASC.

Experimental top

Peptide synthesis and crystallization: [Cha]ASC was synthesized as previously described (Hamada et al., 1985, 1987). 1H NMR spectra of [Cha]ASC were recorded using a Varian Inova 500 at 300 K in dimethyl sulfoxide-d6: δH 7.70 (1H, br, Ile-NH), 7.70 (1H, br, Cha-NH), 7.57 (2H, s, Thz-H), 7.32 (1H, br, D-Val-NH), 7.29 (1H, br, D-Val-NH), 5.20–5.25 (2H, m, D-Val-CαH), 4.90–4.97 (1H, m, Cha-CαH), 4.90–4.97 (2H, m, Oxz-CβH), 4.72–7.75 (1H, m, Ile-CαH), 4.36 (2H, d, J = 4.12 Hz, Oxz-CαH), 2.31–2.35 (2H, m, D-Val-CβH), 2.05–2.13 (1H, m, Ile-CβH), 1.81–1.95 (1H, m, Cha-CβH2), 1.65–1.79, 0.87–0.95 (11H, m Cha-C6H11), 1.52–1.56 (1H, m, Cha-CβH2), 1.49 (3H, d, J = 6.41 Hz, Oxz-CγH3), 1.47 (3H, d, J = 6.41 Hz, Oxz-CγH3), 1.43–1.53 (1H, m, Ile-Cγ2H2), 1.26–1.33 (1H, m, Ile-Cγ2H2), 1.14–1.20 (12H, m, D-Val-CγH3 × 2), 0.96 (3H, d, J = 6.86 Hz, Ile-Cγ1H3), 0.84 (3H, t, J = 7.32 Hz, Ile-CγH3). [Cha]ASC (7–8 mg) was dissolved in 0.2 ml of N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA), after which approximately 0.02 ml of water was added to each solution. Crystals grew from both solutions in about a week with different crystal froms, but DMF crystals were not suitable for structure determination.

Circular dichroism: CD spectra were measured at 298 K using a JASCO 500 A (JASCO, Tokyo, Japan) dichrograph. The peptide concentration was 0.04 mM and the path length was 1 cm. The spectra were scanned at a rate of 5 nm min−1, with a 0.1 nm interval uptake to a computer. Data were averaged at each 1 nm and plotted.

Cytotoxicity: the cytotoxicity of ASC analogues was evaluated using P-388 lymphocytic leukemia cells essentially as previously described, with some modification (Kohda, Ohta, Kawazoe, et al., 1989; Kohda, Ohta, Yokoyama et al., 1989). All assays were performed three times. Semilogarithmic plots were constructed from the averaged data and the effective dose of the peptide required to inhibit cell growth by 50% (ED50) was determined.

Refinement top

H atoms of the peptide and DMA molecules were calculated at ideal positions and were included in the refinement as riding atoms. Wayer H atoms were located in difference Fourier maps and were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXD (Sheldrick & Gould, 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. CD spectra for [Cha]ASC and [Phe]ASC. TFE was added to MeCN solutions at 0, 10, 20, 50 and 100% concentrations.
[Figure 2] Fig. 2. The molecular structure of [Cha]ASC, with displacement ellipsoids at the 50% probability level. The molecule is projected on (a) side and (b) top of the peptide ring.
Ascidiacyclamide analogue (Ile1 was replaced with Cha) cyclo(–Cha-Oxz-D-Val-Thz-Ile-Oxz-D-Val-Thz-) Cha=cyclohexylalanine from dimethylacetamide solution top
Crystal data top
C39H56N8O6S2·C4H9NO·2H2OF(000) = 988
Mr = 920.19Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.283 (2) ÅCell parameters from 9020 reflections
b = 14.153 (2) Åθ = 2.1–28.3°
c = 13.452 (2) ŵ = 0.17 mm1
β = 105.252 (2)°T = 90 K
V = 2439.8 (7) Å3Block, colourless
Z = 20.40 × 0.25 × 0.20 mm
Data collection top
Bruker AXS SMART APEX CCD
diffractometer
11112 independent reflections
Radiation source: MacScience M18XCE rotating anode9973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.366 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1717
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.797, Tmax = 0.967l = 1717
22268 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.2367P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.004
11112 reflectionsΔρmax = 0.85 e Å3
584 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: (Flack, 1983), 5087 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C39H56N8O6S2·C4H9NO·2H2OV = 2439.8 (7) Å3
Mr = 920.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.283 (2) ŵ = 0.17 mm1
b = 14.153 (2) ÅT = 90 K
c = 13.452 (2) Å0.40 × 0.25 × 0.20 mm
β = 105.252 (2)°
Data collection top
Bruker AXS SMART APEX CCD
diffractometer
11112 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
9973 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.967Rint = 0.023
22268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137Δρmax = 0.85 e Å3
S = 1.04Δρmin = 0.35 e Å3
11112 reflectionsAbsolute structure: (Flack, 1983), 5087 Friedel pairs
584 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data collection was carried out using a Bruker SMART APEX diffractometer at 90 K, and the primary structures were solved using the dual-space recycling method with SHELXD (Sheldrick, & Gould, 1996). The structure was refined using SHELXL97 (Sheldrick, 1997). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N_10.89187 (15)0.58835 (13)0.92788 (14)0.0279 (4)
H1_10.84030.61880.88560.033*
CA_10.98583 (17)0.56998 (15)0.89792 (17)0.0282 (4)
H2_11.03360.53130.95280.034*
CB_10.96620 (19)0.51659 (16)0.79455 (18)0.0315 (5)
H3_10.91440.55270.74180.038*
H4_11.03210.51570.77330.038*
CG_10.92741 (18)0.41553 (15)0.79457 (17)0.0291 (4)
H5_10.85750.41690.80930.035*
CD1_10.9145 (2)0.37317 (18)0.68779 (18)0.0383 (5)
H6_10.86210.41050.63700.046*
H7_10.98170.37790.66920.046*
CE1_10.8803 (2)0.2705 (2)0.6812 (2)0.0460 (6)
H8_10.87730.24560.61170.055*
H9_10.80940.26610.69170.055*
CZ_10.9553 (3)0.2108 (2)0.7619 (2)0.0536 (8)
H10_10.92910.14510.75910.064*
H11_11.02460.20950.74720.064*
CE2_10.9658 (3)0.25163 (19)0.8686 (2)0.0537 (8)
H12_10.89780.24690.88550.064*
H13_11.01720.21390.91990.064*
CD2_11.0003 (2)0.35384 (18)0.87605 (19)0.0389 (6)
H14_11.07190.35770.86720.047*
H15_11.00220.37830.94540.047*
C3_21.03980 (17)0.66093 (16)0.88552 (16)0.0277 (4)
N_20.99507 (15)0.73935 (13)0.86281 (14)0.0280 (4)
CA_21.07289 (17)0.80115 (16)0.83444 (18)0.0294 (4)
H16_21.07900.86220.87300.035*
CB_21.17626 (18)0.74546 (17)0.86825 (18)0.0314 (5)
H17_21.21050.74220.81040.038*
OG1_21.14100 (12)0.65212 (11)0.88943 (14)0.0339 (4)
CG2_21.2513 (2)0.7845 (2)0.9638 (2)0.0434 (6)
H18_21.31520.74650.98050.065*
H19_21.21900.78221.02140.065*
H20_21.26830.85010.95150.065*
C_21.04274 (17)0.81964 (15)0.71983 (18)0.0289 (4)
O_21.10290 (14)0.86211 (14)0.67997 (15)0.0417 (4)
N_30.95016 (14)0.78722 (14)0.66781 (14)0.0288 (4)
H21_30.91100.75880.70220.035*
CA_30.91030 (17)0.79633 (16)0.55678 (18)0.0299 (5)
H22_30.96860.81660.52740.036*
CB_30.82088 (18)0.86828 (18)0.52486 (19)0.0347 (5)
H23_30.75810.84160.54270.042*
CG1_30.8491 (2)0.96176 (19)0.5822 (2)0.0457 (6)
H24_30.86580.95040.65660.069*
H25_30.78991.00530.56210.069*
H26_30.90980.98950.56460.069*
CG2_30.7948 (2)0.8818 (2)0.4091 (2)0.0495 (7)
H27_30.77690.82070.37480.074*
H28_30.85540.90850.39020.074*
H29_30.73550.92510.38740.074*
C3_40.87402 (17)0.70005 (17)0.51550 (16)0.0277 (4)
N_40.79327 (14)0.65901 (14)0.53238 (14)0.0282 (4)
CA_40.77966 (18)0.57019 (16)0.49032 (16)0.0285 (4)
CB_40.85145 (19)0.54298 (19)0.44090 (19)0.0356 (5)
H30_40.85260.48370.40800.043*
SG_40.93975 (5)0.63203 (5)0.44692 (5)0.03871 (15)
C_40.69220 (18)0.51101 (17)0.50475 (17)0.0291 (4)
O_40.66503 (13)0.43751 (12)0.45794 (13)0.0352 (4)
N_50.64664 (14)0.54521 (14)0.57581 (15)0.0288 (4)
H31_50.67180.59650.61050.035*
CA_50.55692 (17)0.49857 (15)0.59574 (17)0.0274 (4)
H32_50.51230.47460.52860.033*
CB_50.58932 (18)0.41282 (16)0.66903 (18)0.0320 (5)
H33_50.64850.38090.64950.038*
CG1_50.5008 (2)0.34017 (18)0.6546 (2)0.0424 (6)
H34_50.51930.29410.71190.051*
H35_50.43670.37330.65960.051*
CG2_50.6292 (2)0.4428 (2)0.7809 (2)0.0432 (6)
H36_50.68580.48870.78740.065*
H37_50.65530.38740.82350.065*
H38_50.57220.47180.80390.065*
CD_50.4772 (3)0.2867 (2)0.5541 (3)0.0580 (8)
H39_50.41960.24260.55110.087*
H40_50.53930.25150.54940.087*
H41_50.45730.33140.49660.087*
C3_60.49518 (17)0.57090 (15)0.63623 (16)0.0254 (4)
N_60.53314 (14)0.64243 (13)0.68874 (14)0.0278 (4)
CA_60.44570 (17)0.69207 (15)0.71452 (16)0.0270 (4)
H42_60.43870.75740.68510.032*
CB_60.34881 (16)0.63329 (17)0.66352 (17)0.0297 (4)
H43_60.31710.60720.71740.036*
OG1_60.39207 (12)0.55590 (12)0.61431 (14)0.0334 (4)
CG2_60.2676 (2)0.68453 (19)0.5832 (2)0.0416 (6)
H44_60.20880.64210.55490.062*
H45_60.29780.70550.52790.062*
H46_60.24320.73960.61440.062*
C_60.46537 (17)0.69625 (16)0.83230 (17)0.0278 (4)
O_60.41764 (15)0.64814 (13)0.87847 (13)0.0419 (4)
N_70.54012 (14)0.75738 (15)0.87774 (14)0.0300 (4)
H47_70.56880.79320.83920.036*
CA_70.57512 (18)0.76621 (18)0.98862 (17)0.0314 (5)
H48_70.51350.75781.01740.038*
CB_70.6195 (2)0.86551 (18)1.01650 (18)0.0353 (5)
H49_70.67600.87560.98100.042*
CG1_70.6679 (2)0.8769 (2)1.1317 (2)0.0468 (6)
H50_70.69570.94101.14600.070*
H51_70.72450.83101.15460.070*
H52_70.61450.86591.16880.070*
CG2_70.5366 (3)0.9404 (2)0.9778 (2)0.0539 (8)
H53_70.50640.93240.90360.081*
H54_70.56831.00330.99110.081*
H55_70.48170.93401.01370.081*
C3_80.65293 (18)0.68950 (17)1.03147 (17)0.0307 (5)
N_80.72820 (14)0.66647 (14)0.99234 (14)0.0274 (4)
CA_80.78841 (18)0.59688 (16)1.04885 (17)0.0301 (4)
CB_80.7591 (2)0.56596 (18)1.1327 (2)0.0387 (5)
H56_80.79360.51841.17910.046*
SG_80.65077 (5)0.62613 (5)1.14128 (5)0.04115 (15)
C_80.88180 (18)0.55963 (15)1.01979 (18)0.0288 (4)
O_80.94435 (15)0.50875 (12)1.07897 (15)0.0393 (4)
O1_90.75291 (15)0.68878 (15)0.75797 (13)0.0367 (4)
H1_90.754 (2)0.748 (3)0.767 (2)0.034 (8)*
H2_90.684 (4)0.683 (3)0.740 (3)0.073 (12)*
O2_101.32160 (18)0.89334 (16)0.74102 (17)0.0504 (5)
H1_101.248 (2)0.880 (2)0.718 (2)0.030 (7)*
H2_101.326 (2)0.910 (2)0.676 (2)0.030 (7)*
O1_110.66817 (16)0.86930 (14)0.75907 (16)0.0466 (4)
C1_110.7052 (2)0.9453 (2)0.7962 (2)0.0429 (6)
N1_110.6504 (2)1.02515 (18)0.7720 (2)0.0501 (6)
C2_110.8118 (3)0.9481 (3)0.8705 (3)0.0661 (10)
H1_110.82941.01340.89240.099*
H2_110.86330.92350.83670.099*
H3_110.81200.90910.93080.099*
C3_110.5478 (2)1.0228 (3)0.7000 (3)0.0536 (7)
H4_110.51851.08680.69120.080*
H5_110.50200.98120.72670.080*
H6_110.55360.99890.63330.080*
C4_110.6817 (4)1.1166 (3)0.8187 (5)0.0939 (15)
H7_110.62831.16370.78850.141*
H8_110.74831.13520.80600.141*
H9_110.68961.11270.89310.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N_10.0276 (9)0.0246 (8)0.0299 (9)0.0004 (7)0.0049 (7)0.0027 (7)
CA_10.0285 (10)0.0238 (10)0.0307 (10)0.0024 (8)0.0050 (8)0.0028 (8)
CB_10.0345 (12)0.0284 (11)0.0318 (11)0.0008 (9)0.0091 (9)0.0018 (9)
CG_10.0320 (11)0.0245 (10)0.0301 (10)0.0028 (8)0.0067 (8)0.0003 (8)
CD1_10.0449 (14)0.0371 (12)0.0281 (11)0.0051 (11)0.0010 (10)0.0012 (9)
CE1_10.0533 (16)0.0367 (14)0.0426 (14)0.0017 (11)0.0033 (12)0.0094 (11)
CZ_10.088 (2)0.0313 (13)0.0411 (15)0.0129 (14)0.0165 (15)0.0056 (11)
CE2_10.096 (2)0.0292 (13)0.0360 (13)0.0151 (14)0.0179 (14)0.0020 (11)
CD2_10.0528 (15)0.0321 (12)0.0287 (11)0.0112 (11)0.0053 (10)0.0011 (9)
C3_20.0307 (10)0.0283 (10)0.0233 (9)0.0006 (8)0.0056 (8)0.0009 (8)
N_20.0302 (9)0.0268 (9)0.0279 (9)0.0007 (7)0.0094 (7)0.0009 (7)
CA_20.0281 (11)0.0251 (10)0.0346 (11)0.0023 (8)0.0078 (9)0.0013 (8)
CB_20.0268 (10)0.0318 (11)0.0342 (11)0.0021 (9)0.0058 (9)0.0044 (9)
OG1_20.0298 (8)0.0270 (8)0.0439 (9)0.0002 (6)0.0081 (7)0.0055 (7)
CG2_20.0346 (13)0.0499 (15)0.0404 (13)0.0094 (11)0.0004 (10)0.0041 (11)
C_20.0279 (10)0.0211 (10)0.0377 (11)0.0014 (8)0.0086 (9)0.0069 (8)
O_20.0336 (9)0.0452 (10)0.0459 (10)0.0060 (8)0.0098 (7)0.0190 (8)
N_30.0265 (9)0.0312 (9)0.0294 (9)0.0011 (7)0.0086 (7)0.0071 (7)
CA_30.0273 (10)0.0318 (11)0.0315 (11)0.0024 (8)0.0094 (9)0.0087 (9)
CB_30.0292 (11)0.0336 (12)0.0409 (13)0.0044 (9)0.0087 (9)0.0081 (10)
CG1_30.0453 (15)0.0319 (13)0.0568 (17)0.0025 (11)0.0076 (12)0.0075 (12)
CG2_30.0473 (15)0.0548 (17)0.0443 (15)0.0196 (13)0.0081 (12)0.0142 (13)
C3_40.0252 (10)0.0349 (11)0.0245 (10)0.0077 (8)0.0090 (8)0.0072 (8)
N_40.0270 (9)0.0327 (10)0.0267 (9)0.0057 (7)0.0099 (7)0.0054 (7)
CA_40.0277 (10)0.0327 (11)0.0247 (10)0.0073 (8)0.0061 (8)0.0035 (8)
CB_40.0379 (12)0.0360 (12)0.0365 (12)0.0003 (10)0.0162 (10)0.0017 (10)
SG_40.0353 (3)0.0431 (3)0.0451 (3)0.0016 (3)0.0237 (2)0.0022 (3)
C_40.0292 (10)0.0331 (11)0.0256 (10)0.0079 (9)0.0082 (8)0.0044 (8)
O_40.0374 (9)0.0338 (9)0.0360 (8)0.0001 (7)0.0127 (7)0.0054 (7)
N_50.0318 (9)0.0265 (9)0.0303 (9)0.0001 (7)0.0120 (7)0.0009 (7)
CA_50.0296 (11)0.0265 (10)0.0268 (10)0.0005 (8)0.0087 (8)0.0003 (8)
CB_50.0306 (11)0.0281 (11)0.0393 (12)0.0056 (9)0.0126 (9)0.0078 (9)
CG1_50.0420 (14)0.0315 (12)0.0597 (16)0.0036 (10)0.0242 (12)0.0105 (11)
CG2_50.0442 (14)0.0466 (14)0.0372 (13)0.0073 (12)0.0080 (11)0.0124 (11)
CD_50.0582 (18)0.0361 (14)0.082 (2)0.0075 (13)0.0220 (16)0.0040 (14)
C3_60.0262 (10)0.0249 (10)0.0238 (9)0.0001 (7)0.0043 (8)0.0045 (8)
N_60.0263 (8)0.0306 (9)0.0270 (8)0.0013 (7)0.0080 (7)0.0028 (7)
CA_60.0260 (10)0.0263 (10)0.0273 (10)0.0020 (8)0.0046 (8)0.0010 (8)
CB_60.0252 (10)0.0316 (11)0.0307 (10)0.0043 (9)0.0047 (8)0.0059 (9)
OG1_60.0236 (7)0.0278 (8)0.0464 (9)0.0001 (6)0.0051 (7)0.0097 (7)
CG2_60.0313 (12)0.0400 (13)0.0447 (14)0.0071 (10)0.0056 (10)0.0101 (11)
C_60.0261 (10)0.0295 (10)0.0279 (10)0.0044 (8)0.0074 (8)0.0004 (8)
O_60.0494 (10)0.0437 (11)0.0327 (8)0.0125 (8)0.0109 (7)0.0006 (7)
N_70.0276 (9)0.0397 (10)0.0235 (9)0.0042 (8)0.0078 (7)0.0035 (7)
CA_70.0282 (10)0.0444 (13)0.0231 (10)0.0009 (9)0.0092 (8)0.0052 (9)
CB_70.0397 (12)0.0398 (13)0.0264 (11)0.0010 (10)0.0087 (9)0.0085 (9)
CG1_70.0545 (16)0.0519 (16)0.0303 (12)0.0003 (13)0.0048 (11)0.0129 (11)
CG2_70.0625 (19)0.0518 (17)0.0427 (15)0.0180 (15)0.0058 (13)0.0139 (13)
C3_80.0327 (11)0.0367 (12)0.0233 (10)0.0091 (9)0.0087 (8)0.0025 (9)
N_80.0274 (9)0.0301 (9)0.0249 (8)0.0032 (7)0.0071 (7)0.0010 (7)
CA_80.0348 (11)0.0268 (10)0.0287 (10)0.0060 (9)0.0084 (9)0.0011 (8)
CB_80.0463 (14)0.0350 (13)0.0358 (12)0.0053 (10)0.0125 (11)0.0069 (10)
SG_80.0463 (3)0.0479 (3)0.0347 (3)0.0051 (3)0.0203 (2)0.0056 (3)
C_80.0340 (11)0.0195 (9)0.0327 (11)0.0028 (8)0.0083 (9)0.0028 (8)
O_80.0449 (10)0.0305 (8)0.0434 (10)0.0047 (7)0.0130 (8)0.0146 (7)
O1_90.0326 (10)0.0447 (11)0.0320 (8)0.0051 (7)0.0071 (7)0.0017 (7)
O2_100.0497 (12)0.0569 (13)0.0441 (11)0.0023 (10)0.0113 (9)0.0003 (10)
O1_110.0448 (10)0.0379 (10)0.0559 (12)0.0040 (8)0.0112 (9)0.0020 (9)
C1_110.0395 (14)0.0531 (16)0.0378 (13)0.0101 (12)0.0132 (11)0.0008 (12)
N1_110.0467 (13)0.0450 (13)0.0583 (15)0.0099 (11)0.0132 (11)0.0170 (11)
C2_110.0407 (16)0.101 (3)0.0539 (18)0.0200 (18)0.0068 (14)0.0003 (19)
C3_110.0490 (16)0.0567 (18)0.0520 (17)0.0061 (14)0.0075 (13)0.0037 (14)
C4_110.087 (3)0.061 (2)0.130 (4)0.022 (2)0.022 (3)0.046 (3)
Geometric parameters (Å, º) top
N_1—C_81.341 (3)CA_5—H32_51.0000
N_1—CA_11.433 (3)CB_5—CG2_51.518 (4)
N_1—H1_10.8800CB_5—CG1_51.535 (3)
CA_1—C3_21.504 (3)CB_5—H33_51.0000
CA_1—CB_11.543 (3)CG1_5—CD_51.508 (5)
CA_1—H2_11.0000CG1_5—H34_50.9900
CB_1—CG_11.520 (3)CG1_5—H35_50.9900
CB_1—H3_10.9900CG2_5—H36_50.9800
CB_1—H4_10.9900CG2_5—H37_50.9800
CG_1—CD1_11.524 (3)CG2_5—H38_50.9800
CG_1—CD2_11.531 (3)CD_5—H39_50.9800
CG_1—H5_11.0000CD_5—H40_50.9800
CD1_1—CE1_11.518 (4)CD_5—H41_50.9800
CD1_1—H6_10.9900C3_6—N_61.261 (3)
CD1_1—H7_10.9900C3_6—OG1_61.340 (3)
CE1_1—CZ_11.522 (4)N_6—CA_61.475 (3)
CE1_1—H8_10.9900CA_6—CB_61.534 (3)
CE1_1—H9_10.9900CA_6—C_61.538 (3)
CZ_1—CE2_11.520 (4)CA_6—H42_61.0000
CZ_1—H10_10.9900CB_6—OG1_61.473 (3)
CZ_1—H11_10.9900CB_6—CG2_61.497 (3)
CE2_1—CD2_11.513 (4)CB_6—H43_61.0000
CE2_1—H12_10.9900CG2_6—H44_60.9800
CE2_1—H13_10.9900CG2_6—H45_60.9800
CD2_1—H14_10.9900CG2_6—H46_60.9800
CD2_1—H15_10.9900C_6—O_61.208 (3)
C3_2—N_21.258 (3)C_6—N_71.337 (3)
C3_2—OG1_21.337 (3)N_7—CA_71.446 (3)
N_2—CA_21.479 (3)N_7—H47_70.8800
CA_2—C_21.510 (3)CA_7—C3_81.505 (3)
CA_2—CB_21.544 (3)CA_7—CB_71.532 (4)
CA_2—H16_21.0000CA_7—H48_71.0000
CB_2—OG1_21.455 (3)CB_7—CG2_71.519 (4)
CB_2—CG2_21.508 (3)CB_7—CG1_71.522 (3)
CB_2—H17_21.0000CB_7—H49_71.0000
CG2_2—H18_20.9800CG1_7—H50_70.9800
CG2_2—H19_20.9800CG1_7—H51_70.9800
CG2_2—H20_20.9800CG1_7—H52_70.9800
C_2—O_21.230 (3)CG2_7—H53_70.9800
C_2—N_31.327 (3)CG2_7—H54_70.9800
N_3—CA_31.453 (3)CG2_7—H55_70.9800
N_3—H21_30.8800C3_8—N_81.288 (3)
CA_3—C3_41.502 (3)C3_8—SG_81.735 (2)
CA_3—CB_31.537 (3)N_8—CA_81.367 (3)
CA_3—H22_31.0000CA_8—CB_81.358 (3)
CB_3—CG2_31.516 (4)CA_8—C_81.492 (3)
CB_3—CG1_31.528 (4)CB_8—SG_81.702 (3)
CB_3—H23_31.0000CB_8—H56_80.9500
CG1_3—H24_30.9800C_8—O_81.223 (3)
CG1_3—H25_30.9800O1_9—H1_90.84 (4)
CG1_3—H26_30.9800O1_9—H2_90.88 (5)
CG2_3—H27_30.9800O2_10—H1_100.96 (3)
CG2_3—H28_30.9800O2_10—H2_100.93 (3)
CG2_3—H29_30.9800O1_11—C1_111.232 (4)
C3_4—N_41.291 (3)C1_11—N1_111.337 (4)
C3_4—SG_41.722 (2)C1_11—C2_111.504 (4)
N_4—CA_41.371 (3)N1_11—C3_111.451 (4)
CA_4—CB_41.354 (3)N1_11—C4_111.451 (4)
CA_4—C_41.486 (3)C2_11—H1_110.9800
CB_4—SG_41.709 (3)C2_11—H2_110.9800
CB_4—H30_40.9500C2_11—H3_110.9800
C_4—O_41.220 (3)C3_11—H4_110.9800
C_4—N_51.349 (3)C3_11—H5_110.9800
N_5—CA_51.448 (3)C3_11—H6_110.9800
N_5—H31_50.8800C4_11—H7_110.9800
CA_5—C3_61.501 (3)C4_11—H8_110.9800
CA_5—CB_51.551 (3)C4_11—H9_110.9800
C_8—N_1—CA_1120.66 (18)N_5—CA_5—CB_5111.72 (18)
C_8—N_1—H1_1119.7C3_6—CA_5—CB_5112.94 (18)
CA_1—N_1—H1_1119.7N_5—CA_5—H32_5108.0
N_1—CA_1—C3_2110.60 (18)C3_6—CA_5—H32_5108.0
N_1—CA_1—CB_1112.90 (18)CB_5—CA_5—H32_5108.0
C3_2—CA_1—CB_1106.96 (18)CG2_5—CB_5—CG1_5111.6 (2)
N_1—CA_1—H2_1108.8CG2_5—CB_5—CA_5112.1 (2)
C3_2—CA_1—H2_1108.8CG1_5—CB_5—CA_5111.62 (19)
CB_1—CA_1—H2_1108.8CG2_5—CB_5—H33_5107.0
CG_1—CB_1—CA_1115.94 (19)CG1_5—CB_5—H33_5107.0
CG_1—CB_1—H3_1108.3CA_5—CB_5—H33_5107.0
CA_1—CB_1—H3_1108.3CD_5—CG1_5—CB_5114.9 (2)
CG_1—CB_1—H4_1108.3CD_5—CG1_5—H34_5108.5
CA_1—CB_1—H4_1108.3CB_5—CG1_5—H34_5108.5
H3_1—CB_1—H4_1107.4CD_5—CG1_5—H35_5108.5
CB_1—CG_1—CD1_1108.91 (19)CB_5—CG1_5—H35_5108.5
CB_1—CG_1—CD2_1112.7 (2)H34_5—CG1_5—H35_5107.5
CD1_1—CG_1—CD2_1110.10 (19)CB_5—CG2_5—H36_5109.5
CB_1—CG_1—H5_1108.3CB_5—CG2_5—H37_5109.5
CD1_1—CG_1—H5_1108.3H36_5—CG2_5—H37_5109.5
CD2_1—CG_1—H5_1108.3CB_5—CG2_5—H38_5109.5
CE1_1—CD1_1—CG_1112.9 (2)H36_5—CG2_5—H38_5109.5
CE1_1—CD1_1—H6_1109.0H37_5—CG2_5—H38_5109.5
CG_1—CD1_1—H6_1109.0CG1_5—CD_5—H39_5109.5
CE1_1—CD1_1—H7_1109.0CG1_5—CD_5—H40_5109.5
CG_1—CD1_1—H7_1109.0H39_5—CD_5—H40_5109.5
H6_1—CD1_1—H7_1107.8CG1_5—CD_5—H41_5109.5
CD1_1—CE1_1—CZ_1111.1 (2)H39_5—CD_5—H41_5109.5
CD1_1—CE1_1—H8_1109.4H40_5—CD_5—H41_5109.5
CZ_1—CE1_1—H8_1109.4N_6—C3_6—OG1_6119.0 (2)
CD1_1—CE1_1—H9_1109.4N_6—C3_6—CA_5125.07 (19)
CZ_1—CE1_1—H9_1109.4OG1_6—C3_6—CA_5115.89 (18)
H8_1—CE1_1—H9_1108.0C3_6—N_6—CA_6106.89 (18)
CE2_1—CZ_1—CE1_1110.0 (2)N_6—CA_6—CB_6104.86 (17)
CE2_1—CZ_1—H10_1109.7N_6—CA_6—C_6109.26 (17)
CE1_1—CZ_1—H10_1109.7CB_6—CA_6—C_6112.13 (18)
CE2_1—CZ_1—H11_1109.7N_6—CA_6—H42_6110.2
CE1_1—CZ_1—H11_1109.7CB_6—CA_6—H42_6110.2
H10_1—CZ_1—H11_1108.2C_6—CA_6—H42_6110.2
CD2_1—CE2_1—CZ_1112.2 (2)OG1_6—CB_6—CG2_6109.15 (18)
CD2_1—CE2_1—H12_1109.2OG1_6—CB_6—CA_6102.92 (16)
CZ_1—CE2_1—H12_1109.2CG2_6—CB_6—CA_6114.8 (2)
CD2_1—CE2_1—H13_1109.2OG1_6—CB_6—H43_6109.9
CZ_1—CE2_1—H13_1109.2CG2_6—CB_6—H43_6109.9
H12_1—CE2_1—H13_1107.9CA_6—CB_6—H43_6109.9
CE2_1—CD2_1—CG_1112.0 (2)C3_6—OG1_6—CB_6106.28 (17)
CE2_1—CD2_1—H14_1109.2CB_6—CG2_6—H44_6109.5
CG_1—CD2_1—H14_1109.2CB_6—CG2_6—H45_6109.5
CE2_1—CD2_1—H15_1109.2H44_6—CG2_6—H45_6109.5
CG_1—CD2_1—H15_1109.2CB_6—CG2_6—H46_6109.5
H14_1—CD2_1—H15_1107.9H44_6—CG2_6—H46_6109.5
N_2—C3_2—OG1_2119.8 (2)H45_6—CG2_6—H46_6109.5
N_2—C3_2—CA_1125.0 (2)O_6—C_6—N_7123.8 (2)
OG1_2—C3_2—CA_1114.80 (19)O_6—C_6—CA_6122.6 (2)
C3_2—N_2—CA_2105.48 (19)N_7—C_6—CA_6113.60 (19)
N_2—CA_2—C_2110.51 (18)C_6—N_7—CA_7121.7 (2)
N_2—CA_2—CB_2104.47 (17)C_6—N_7—H47_7119.1
C_2—CA_2—CB_2111.43 (19)CA_7—N_7—H47_7119.1
N_2—CA_2—H16_2110.1N_7—CA_7—C3_8109.55 (19)
C_2—CA_2—H16_2110.1N_7—CA_7—CB_7109.3 (2)
CB_2—CA_2—H16_2110.1C3_8—CA_7—CB_7112.74 (19)
OG1_2—CB_2—CG2_2109.9 (2)N_7—CA_7—H48_7108.4
OG1_2—CB_2—CA_2102.35 (17)C3_8—CA_7—H48_7108.4
CG2_2—CB_2—CA_2113.6 (2)CB_7—CA_7—H48_7108.4
OG1_2—CB_2—H17_2110.2CG2_7—CB_7—CG1_7110.4 (2)
CG2_2—CB_2—H17_2110.2CG2_7—CB_7—CA_7111.0 (2)
CA_2—CB_2—H17_2110.2CG1_7—CB_7—CA_7112.2 (2)
C3_2—OG1_2—CB_2106.25 (17)CG2_7—CB_7—H49_7107.6
CB_2—CG2_2—H18_2109.5CG1_7—CB_7—H49_7107.6
CB_2—CG2_2—H19_2109.5CA_7—CB_7—H49_7107.6
H18_2—CG2_2—H19_2109.5CB_7—CG1_7—H50_7109.5
CB_2—CG2_2—H20_2109.5CB_7—CG1_7—H51_7109.5
H18_2—CG2_2—H20_2109.5H50_7—CG1_7—H51_7109.5
H19_2—CG2_2—H20_2109.5CB_7—CG1_7—H52_7109.5
O_2—C_2—N_3123.9 (2)H50_7—CG1_7—H52_7109.5
O_2—C_2—CA_2120.1 (2)H51_7—CG1_7—H52_7109.5
N_3—C_2—CA_2116.01 (19)CB_7—CG2_7—H53_7109.5
C_2—N_3—CA_3123.23 (19)CB_7—CG2_7—H54_7109.5
C_2—N_3—H21_3118.4H53_7—CG2_7—H54_7109.5
CA_3—N_3—H21_3118.4CB_7—CG2_7—H55_7109.5
N_3—CA_3—C3_4107.10 (17)H53_7—CG2_7—H55_7109.5
N_3—CA_3—CB_3113.06 (19)H54_7—CG2_7—H55_7109.5
C3_4—CA_3—CB_3110.39 (18)N_8—C3_8—CA_7123.7 (2)
N_3—CA_3—H22_3108.7N_8—C3_8—SG_8113.93 (18)
C3_4—CA_3—H22_3108.7CA_7—C3_8—SG_8122.38 (17)
CB_3—CA_3—H22_3108.7C3_8—N_8—CA_8111.01 (19)
CG2_3—CB_3—CG1_3111.6 (2)CB_8—CA_8—N_8116.1 (2)
CG2_3—CB_3—CA_3108.7 (2)CB_8—CA_8—C_8122.9 (2)
CG1_3—CB_3—CA_3111.3 (2)N_8—CA_8—C_8120.96 (19)
CG2_3—CB_3—H23_3108.4CA_8—CB_8—SG_8109.10 (19)
CG1_3—CB_3—H23_3108.4CA_8—CB_8—H56_8125.5
CA_3—CB_3—H23_3108.4SG_8—CB_8—H56_8125.5
CB_3—CG1_3—H24_3109.5CB_8—SG_8—C3_889.84 (12)
CB_3—CG1_3—H25_3109.5O_8—C_8—N_1124.3 (2)
H24_3—CG1_3—H25_3109.5O_8—C_8—CA_8120.5 (2)
CB_3—CG1_3—H26_3109.5N_1—C_8—CA_8115.21 (19)
H24_3—CG1_3—H26_3109.5H1_9—O1_9—H2_996 (4)
H25_3—CG1_3—H26_3109.5H1_10—O2_10—H2_1093 (2)
CB_3—CG2_3—H27_3109.5O1_11—C1_11—N1_11120.4 (2)
CB_3—CG2_3—H28_3109.5O1_11—C1_11—C2_11119.8 (3)
H27_3—CG2_3—H28_3109.5N1_11—C1_11—C2_11119.8 (3)
CB_3—CG2_3—H29_3109.5C1_11—N1_11—C3_11119.9 (3)
H27_3—CG2_3—H29_3109.5C1_11—N1_11—C4_11125.0 (3)
H28_3—CG2_3—H29_3109.5C3_11—N1_11—C4_11114.9 (3)
N_4—C3_4—CA_3122.9 (2)C1_11—C2_11—H1_11109.5
N_4—C3_4—SG_4113.86 (18)C1_11—C2_11—H2_11109.5
CA_3—C3_4—SG_4123.14 (17)H1_11—C2_11—H2_11109.5
C3_4—N_4—CA_4111.44 (19)C1_11—C2_11—H3_11109.5
CB_4—CA_4—N_4115.5 (2)H1_11—C2_11—H3_11109.5
CB_4—CA_4—C_4125.4 (2)H2_11—C2_11—H3_11109.5
N_4—CA_4—C_4119.07 (19)N1_11—C3_11—H4_11109.5
CA_4—CB_4—SG_4109.3 (2)N1_11—C3_11—H5_11109.5
CA_4—CB_4—H30_4125.4H4_11—C3_11—H5_11109.5
SG_4—CB_4—H30_4125.4N1_11—C3_11—H6_11109.5
CB_4—SG_4—C3_489.96 (12)H4_11—C3_11—H6_11109.5
O_4—C_4—N_5123.0 (2)H5_11—C3_11—H6_11109.5
O_4—C_4—CA_4123.3 (2)N1_11—C4_11—H7_11109.5
N_5—C_4—CA_4113.7 (2)N1_11—C4_11—H8_11109.5
C_4—N_5—CA_5120.83 (19)H7_11—C4_11—H8_11109.5
C_4—N_5—H31_5119.6N1_11—C4_11—H9_11109.5
CA_5—N_5—H31_5119.6H7_11—C4_11—H9_11109.5
N_5—CA_5—C3_6108.14 (18)H8_11—C4_11—H9_11109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N_1—H1_1···O1_90.882.062.904 (2)162
O1_9—H1_9···O1_110.85 (4)2.05 (4)2.793 (3)147 (4)
O1_9—H2_9···N_60.89 (5)2.02 (5)2.896 (3)168 (5)
O2_10—H1_10···O_20.96 (3)1.88 (3)2.838 (3)175 (3)
CB_4—H30_4···O_2i0.952.253.175 (3)163
CA_2—H16_2···O_8ii1.002.223.191 (3)164
O2_10—H2_10···O_4iii0.92 (3)1.89 (3)2.799 (3)177 (2)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+2; (iii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC39H56N8O6S2·C4H9NO·2H2O
Mr920.19
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)13.283 (2), 14.153 (2), 13.452 (2)
β (°) 105.252 (2)
V3)2439.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker AXS SMART APEX CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
22268, 11112, 9973
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 1.04
No. of reflections11112
No. of parameters584
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.35
Absolute structure(Flack, 1983), 5087 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 1998), SMART, SAINT-Plus (Bruker, 1998), SHELXD (Sheldrick & Gould, 1996), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001), PARST (Nardelli, 1983).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N_1—H1_1···O1_90.8792.0562.904 (2)161.6
O1_9—H1_9···O1_110.85 (4)2.05 (4)2.793 (3)147 (4)
O1_9—H2_9···N_60.89 (5)2.02 (5)2.896 (3)168 (5)
O2_10—H1_10···O_20.96 (3)1.88 (3)2.838 (3)175 (3)
CB_4—H30_4···O_2i0.9512.2543.175 (3)163.1
CA_2—H16_2···O_8ii1.0002.2183.191 (3)163.8
O2_10—H2_10···O_4iii0.92 (3)1.89 (3)2.799 (3)177 (2)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+2; (iii) x+2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds