
DRAFT SPECIFICATIONS OF THE  
DICTIONARY RELATIONAL EXPRESSION LANGUAGE dREL:  

DRAFT:  14 August 2008 
Syd Hall, Doug du Boulay, Ian R. Castleden, and Nick Spadaccini 

 

1.  PURPOSE AND FUNCTION  
The primary purpose of the dictionary relational expression language, dREL, is to enable relationships 
between data items in a dictionary to be specified, simply and succinctly, as a symbolic methods 
script written in dREL.  The facility to derive data values from other items provides a powerful 
approach for precisely defining data and mitigates against the need to archive derivable tertiary 
data, and much of the secondary data - as these can now be calculated from the primary data 
present in data files.   
The definition example in Fig 1 shows how dREL methods are used.  This definition contains the 
attribute _method.expression which specifies, in dREL, the crystallographic unit cell volume as a 
function of the cell lengths and angles.   

save_cell.volume 
    _definition.id            '_cell.volume' 
    _description.text 
; 
     Volume of the crystal unit cell. 
; 
    _name.category_id            cell 
    _name.object_id              volume 
    _type.container              Single 
    _type.contents               Real 
    _type.purpose                Measurement 
    _enumeration.range           0.0: 
    _units.code                  angstroms_cubed 
    _method.expression 
; 
      With v  as  cell_vector 
                 _cell.volume =  v.a * ( v.b ^ v.c ) 
; 
     save_ 

Figure 1:  Definition of the crystal cell volume. 

The evaluation process works as follows, assuming that a data file is being read with a search utility 
that uses associated domain dictionaries for validation and checking support. If the item 
_cell.volume is requested but its value is not present in the file, the utility automatically transfers 
the script from _method.expression to a dREL handler.  This parses the script, identifies the length 
and angle items needed to evaluate the cell volume, requests these values from the data file, and 
calculates the volume.  The evaluation process assumes that any data item referenced not in the 
data file will itself be derived from a methods expression.  The dREL parser will recursively derive 
data values as needed, until either the required items are found or calculated, or the relationship 
pathways are exhausted.  The calculated cell volume is passed back to the utility, which responds 
identically to the request as if the value had been present in the data file. 
This example shows that methods expressions in the dictionaries provide a clarity and precision not 
achievable in the past.  The use of methods, with the coalescence of dictionaries, will promote an 
exploitation of data well beyond that achievable in the past.  For example it would mean that only 
primitive data need be archived in data files, and the related data can be derived when needed 
using algorithms contained in the dictionary.  This would reduce the amount of data that needs to 



be exchanged and archived.  Some derived quantities (e.g. atomic coordinates), may continue to be 
archived, but, having the methods definitions in associated dictionaries, specifying precisely how 
they were derived, will enable new derivations to be evaluated as better approaches are developed.   
 

2.  PRIMITIVE DATA TYPES 

dREL supports the following primitive data types of the values for variables appearing in methods 
expressions. Local variable names (as opposed to global data tags) are restricted to alphanumeric 
characters only. 
 • Character strings 
 • Integer numbers 
 • Real numbers 
 • Complex numbers 
 • Measured numbers 
Data typing may be achieved by explicitly within the dictionary definitions of the object, or 
implicitly from usage in an expression, or explicitly using a function. DDLm dictionary definitions 
specify data types using the TYPE attributes (see _type.contents, _type.container, _type.purpose, 
_type.dimension). 
 

2.1  CHARACTER STRINGS 

2.1.1 Dictionary definition 
The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents. 

2.1.2 Inline definition 

Character strings are created by enclosing a string in quoting literals. Matching single and 
double quote characters at the extremities of a single line string implicitly identify a literal 
object as TYPE CHARACTER.  Matching triple quote characters at the extremities of a multi-
line string implicitly identify a literal object as TYPE CHARACTER. 

2.1.2.1 Single quotes 
Matching single quote characters at the extremities of a single line string implicitly identify a 
literal object as TYPE character.  The following is simple character string. 
 'single quotes make it easy to embed a "double quote"' 

2.1.2.2 Double quotes 
Matching double quote characters at the extremities of a single line string implicitly identify a 
literal object as TYPE character.  The following is simple character string. 
 "double quotes make it easy to embed a 'single quote'" 

It is also possible to use C-style elides to achieve this effect. 
 "double quotes don’t prevent the use of a \"double quote\"" 

2.1.2.3 Triple quotes 
Matching triple quote characters at the extremities of a multi-line string implicitly identify a 
literal object as TYPE character.  The following is simple character string. 
 """ triple quotes  
  are  
  multi-line""" 



This is equivalent to  
 "triple quotes\nare\nmulti line\n" 

Triple quotes comprised of the single quote literal are also supported.  
 '''single or double quotes are can be 
 used to define the triple quote sequence.''' 

2.1.2.4  Special explicit strings 
dREL provides for two special string literal definitions; raw and Unicode strings.  
A raw string is delimited by r"... ".  Characters in a raw string are interpreted literally and 
regular expressions or sequences of characters are protected from parser interpretation.  Here is 
an example.  
  r"raw quotes don't interpret escapes viz:\n << not a newline!" 

This is equivalent to the following string. 
 "raw quotes don't interpret escapes viz:\\n << not a newline!" 

 
2.2  INTEGER NUMBERS 

dREL supports decimal, binary, octal and hexadecimal Integer numbers.  These are identified in 
three ways; explicitly from dictionary definitions of the object, implicitly from usage in the 
expression language, or explicitly using a function. 

2.2.1 Dictionary definition 
The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents. 

2.2.2 Inline definition 
2.2.2.1 Decimal integers 
 The syntax of a decimal integer is:   [+-]?[0-9]+ 
 An example decimal integer is:  -23 
2.2.2.2 Binary integers 
 The syntax of a binary integer is:   [0][bB][0-1]+ 
 An example binary integer is:   0b1101110010111000 
2.2.2.3 Octal integers 
 The syntax of a octal integer is:   [0][oO][0-7]+ 
 An example octal integer is:   0o63103 
2.2.2.4 Hexadecimal integers 
 The syntax of a hexadecimal integer is:  [0][xX][0-9a-fA-F]+ 
 An example hexadecimal integer is:  0x6672af 

 
 2.3  REAL NUMBERS 

dREL supports decimal and scientific Real (or floating-point) objects.  Real numbers are identified in 
three ways; explicitly from dictionary definitions of the object, implicitly from usage in the 
expression language, or explicitly using a function. 

2.3.1 Dictionary definition 
The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents. 



2.3.2 Inline definition 
3.3.2.1 Decimal real numbers 
 The syntax of a decimal real number is:  [+-]? ([0-9]+.[0-9]* | .[0-9]+) [[Ee][+-]?[0-9]+]? 
 An example decimal real number is:  -7893.8221   or   -7.89382e+3 

2.3.3 Explicit definition 
Conversion to real number is achieved with the function:  
 • Float()) 
 
2.4  COMPLEX NUMBERS 

dREL supports Complex number objects.  Complex numbers are identified in three ways; explicitly 
from dictionary definitions of the object, implicitly from usage in the expression language, or 
explicitly using a function. 

2.4.1 Dictionary definition 
The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents. 

2.4.2 Inline definition 
2.4.2.1 Complex numbers 
 The syntax of a complex number is:  ((Real|DecimalInteger) [+-])? (Real|DecimalInteger) [j J] 
 An example complex number is: -7893.8221+54.924j 

2.4.3 Explicit definition 
Conversion to a complex number is achieved with the function:  
 • Complex (Nreal, Nimag) 
 
2.5 MEASURED NUMBERS 

A Measured value consists of a number and its standard uncertainty appended in parentheses.  The 
uncertainty value is an integer scaled to the precision of the last digits of the measurement value.  
Measurement numbers are identified in three ways; explicitly from dictionary definitions of the 
object, implicitly from usage in the expression language, or explicitly using a function. 

2.5.1 Dictionary definition 
The dictionary definitions declare the TYPE of a data tag with the following set of attribute 
declarations: 

 
    _type.contents                  Real 
    _type.purpose                   Measured 

The value of the attribute _type.contents can also be Integer or Complex. 

2.5.2 Inline definition 
3.5.2.1 Measured numbers 
 The syntax of a measurement number is:  [Real|DecimalInteger]\([1-9][0-9]*\) 
 An example measurement number is:  -783.2(12)   = -783.2±1.2 
 Other examples are x.xxE-yy(zz) or x.xx(zz)E-yy or x.xxE-yy(z.zzE+ww) where a ‘.’ in the 
standard uncertainty value indicates an explicit value. 



2.5.3 Explicit definition 
Conversion to a measurement number is achieved with the function:  
 • Measure (val, su) 

 

3.  CONTAINER TYPES FOR dREL 

dREL supports the container types  
 • List  List data is bounded by square brackets [ ] 
 • Array Array data is bounded by square brackets [ } 
 • Tuple Tuple data is bounded by round brackets ( ) 
 • Table Table data is bounded by curly brackets { } 
 • Single 

dREL also supports the nesting and mixing of container types i.e. the definition 
  _type.container   Tuple 
  _type.contents   Array(Real,Real,Real) 
  _type_dimension   [5] 

refers to a tuple of five arrays; each array contains three real numbers.  

 
3.1  LIST CONTAINERS 

List containers are mutable objects with the following properties.  
• Type:   contained items may be of any, but the same, TYPE.  
• Dimension:  Lists are single dimensioned. 
• Size:   the length of a list need not pre-defined. 
• Access:  indexed by integers (implied starting index is 0).  
• Shape:  bounder by [....] and may be nested.  
Lists are created in three ways; explicitly from dictionary definitions of the object, implicitly from 
usage in the expression language, or explicitly using a function. 

3.1.1 Dictionary definition 
The dictionary definitions declare the nature of a List container with attribute declarations.  Here 
are such declarations for a list of real numbers of nine elements. 

    _type.container              List 
    _type.contents               Integer  
    _type.dimension              [9] 

3.1.2 Inline definition 
Lists may be defined inline using the List(…) function.  E.g. 
 List( 1, 7, 3, 10 ) which is also implied by   [1,7,3,10] 
 

3.2  TUPLE CONTAINERS 

Tuple containers are immutable objects with the following properties.  
• Type:   items may be of any TYPE.  
• Dimension:  are single dimensioned. 
• Size:   needs to be defined.  
• Access:  indexed by integers (implied starting index is 0).  
• Shape:  bounded by (...) and may be nested.  



Tuples are created in three ways; explicitly from dictionary definitions of the object, implicitly from 
usage in the expression language, or explicitly using a function. 

3.2.1 Dictionary definition 
The dictionary definitions declare the nature of a Tuple container with attribute declarations.  Here 
are such declarations for a tuple of three values. 

    _type.container              Tuple 
    _type.dimension              [3] 

3.2.2 Inline definition 
Tuples may be defined inline using the Tuple(…) function.  E.g. 
 Tuple(10.2, 12.3, 7.4)   which is also implied by   (10.2,12.3,7.4) 
 Tuple(‘a’, ‘b’, ‘static’) which is also implied by   (‘a’,‘b’,‘static’) 

 
3.3  TABLE CONTAINERS 

Table containers are similar to Lists except that each value in the table may have an associated key.  A 
table has the following properties.  
• Type:   can contain values of any, but the same, TYPE.  
• Dimension:  single dimensioned list; each “key”:val is considered as one element. 
• Size:   the length of a table is not pre-determined.  
• Access:  by key; the default keys are sequential integers starting at 0.  
• Shape:  bounded by {...} and may be nested.  
 
Tables are created in two ways; explicitly from dictionary definitions of the object, implicitly from 
usage in the expression language, or explicitly using a function. 

 

3.3.1 Dictionary definition 
The dictionary definitions identify a Table object with the following attribute declarations.   

    _type.container             Table 
    _type.contents              Real  

A Table differs from a List (see §3.1) in several important ways.  A List object contains a specified 
number of values that are identified explicitly by sequence.  A Table contains a sequence of 
character or number values which identified by a key. 
3.3.2 Explicit definition 
Conversion of a sequence of objects to a new list is achieved with the function Table (‘key’:val,..). E.g. 
         Table(“left”:”links”,“right”:”recht”)  implied by  {“left”:”links”,“right”:”recht”} 
 
3.4.  ARRAY CONTAINERS 

Array containers are immutable objects with the following properties.  
• Type:    only contain items of number TYPE.  
• Dimension:  are single/multi- dimensioned. 
• Size:   pre-defined upper extents; minimum elements assumed as 1. 
• Access:  indexed by integers starting at 0. 
• Shape:  bounded by [...] and may be nested.  
 
Arrays are created in two ways; explicitly from dictionary definitions of the object, implicitly from 
usage in the expression language, or explicitly using a function. 



3.4.1 Dictionary definition 
The dictionary definitions declare the nature of an array with attribute declarations.  Here are the 
attributes for defining a three element integer vector, indexed from 0 to 2. 

    _type.container              Array 
    _type.contents               Real  
    _type.dimension              [3]  

3.4.2 Inline definition 
Vectors may be defined inline using the Array(….) function.  E.g. 
 Array(10.2, 12.3, 7.4)  which is also implied by   [10.2,12.3,7.4]  

 

3.5  SINGLE CONTAINERS 

Single containers are a single value with the following properties.  
• Type:   may be of any TYPE.  
• Dimension:  a single value. 
• Size:   1. 
Single values are created in three ways; explicitly from dictionary definitions of the object, 
implicitly from usage in the expression language, or explicitly using a function. 

3.5.1 Dictionary definition 
The dictionary definitions declare the nature of a Single container with attribute declarations.  Here 
is a declaration for a real number. 

    _type.container              Single 
    _type.contents               Real  

3.5.2 Inline definition 
Single values may be specified inline by equating it to another another single value.  E.g. 
 a = 5. 
 Z = a 
 

 
4.  LANGUAGE BASICS 

 
In this section the basic syntax of dREL, and the language elements that lead up to controlling the 
execution flow, are introduced.  It is important to appreciate that dREL does not support, or require, 
data declarations other than those already discussed in §3.  Nor does it provide, in this version at 
least, input/output control statements.  
 
4.1  ASSIGNMENT EXPRESSIONS 

4.1.1  Named objects 

A NAMED object or “variable” in dREL may only be created on assignment (see §4.1.2),  The typing 
of a variable is by coersion (see §4.1.3 and §4.2).  The scope of a variable is local. 

4.1.2  Assignment statements 
4.1.2.1 The process of object transfer is initiated with the “=“ character which transfers the value of 
the right-hand expression of objects Robjects to the left-hand objects Lobjects.  The general form of 
the object transfer is: 
 Lobjects  =   Robjects  or   Lobjects  =   {  multi-line expression  } 



In the example below the value of the literal Integer object, “5”, is assigned to a mutable NAME 
object, the variable string “x”.   
 x = 5 

Robjects may also be an expression of objects. 
 x = y * z 
 y = Sin (a) + Cos (a) 

Multiple transfers are also allowed. 
 a, b, c = 3.628, -7.67, 5.329 

 

4.1.2.2 The process of object incrementation is initiated with the “+=“ digraph which increments 
the values of the right-hand expression of objects Robjects to the left-hand objects Lobjects.  The 
general form of an object incrementation is: 
 Lobjects  +=   Robjects  
In the example below the value of the literal Integer “1”, is added to the existing value in a mutable 
NAME object, the single variable “x”.   
 x += 2  i.e. if the value of x is initially 5, becomes 7 

Lobjects may also be a muli-element container (see 3. Above) whereas Robjects may be either a single 
value or a multi-element container E.g. 
 vect += 1  i.e. if vect is initially [3,3,3], becomes [4,4,4] 
 vect += [1,2,3] i.e. if vect is initially [3,3,3], becomes [4,5,6] 
 tupl += 5  i.e. if tupl is initially (5,20.6), becomes (10,25.6) 
 

4.1.2.2 The process of object decrementation is initiated with the “-=“ digraph which decrements 
the values of the right-hand expression of objects Robjects to the left-hand objects Lobjects.  The 
general form of an object incrementation is: 
 Lobjects  -=   Robjects  
In the example below the value of the literal Integer “1”, is subtracted from the existing value in a 
mutable NAME object, the single variable “x”.   
 x -= 2  i.e. if the value of x is initially 5, becomes 3 

Lobjects may also be a muli-element container (see 3. Above) whereas Robjects may be either a single 
value or a multi-element container E.g. 
 vect -= 1  i.e. if vect is initially [3,3,3], becomes [2,2,2] 
 vect -= [1,2,3] i.e. if vect is initially [3,3,3], becomes [2,1,0] 
 tupl -= 5  i.e. if tupl is initially (5,20.6), becomes (0.,15.6) 
 

4.1.2.3 The process of object appending is initiated with the “++=“ trigraph which appends the 
values of the right-hand expression of objects Robjects to the end of left-hand objects Lobjects.  The 
general form of an object appending is: 
 Lobjects  ++=   Robjects  
Lobjects must be a muli-element container whereas Robjects may be either a single value or a multi-
element container E.g. 
 vect ++= 1   i.e. if vect is initially [3,3,3], becomes [3,3,3,1]  
 vec2 ++= [1,2,3]  i.e. if vec2 is initially [3,3,3],  becomes [3,3,3,1,2,3]  
 matx ++= [[1,2,3]] i.e. if matx is initially [[3,2,1]],  becomes [[3,2,1],[1,2,3]]  
 tupl ++= 5   i.e. if tupl is initially (5.,20.6),  becomes (5.,20.6,5.)  
 tup2 ++= ((6.,3.)) i.e. if tup2 is initially ((3.,4.)), becomes ((3.,4.),(6.,3.))  



4.1.2.4 The process of object substitution is initiated with the “--=“ trigraph which replaces the last 
accessed values of the left-hand objects Lobjects with right-hand objects Robjects.  The general form 
of an object substitution is: 
 Lobjects  --=   Robjects  
Lobjects must be a muli-element container whereas Robjects may be either a single value or a multi-
element container E.g. 
 vect --= 1   i.e. if vect is initially [3,3,3], becomes [3,3,1]  
 vect --= [1,2,3]  i.e. if vect is initially [3,3,3],  becomes [1,2,3]  
 tupl --= 5    i.e. if tupl is initially (5.,20.6),  becomes (5.,5.)  
 tup2 --= ((6.,3.)) i.e. if tup2 is initially ((3.,4.),(2.,8.)), becomes ((3.,4.),(6.,3.))  

 

4.1.3  Assignment TYPING 
In dREL, object types are not declared.  We have already seen in §3, the typing of Robjects items may 
be determined from dictionary definitions, inline typing constructions or simply inferred by 
association with objects of known type.  The TYPE of Lobjects may be set by the same mechanisms, 
or result directly from the inferred type of the Robjects value. 
It follows that the statement 

x = 5 

sets the TYPE of “x” as Integer.  A new assignment of “x” in the next statement 
x = 10 

is permitted because it has a consistent TYPE.  However, the assignment 
x = "Hello World" 

is illegal but will not cause an error message to be raised. 
This is contrary to the practice of some scripting languages, but it avoids the faulty and misleading 
construction of expressions.  
 
4.2  TYPE COERCION RULES 

Type coercion rules are needed when Robjects expressions contain objects of mixed type.  dREL uses 
the following coercion rule, in order of increasing priority. 
 Integer  →  Real  →  Complex 
In the next statement, Lobjects is of type Real, provided this is the first assignment to "x". 

x  =  5 + 7/2 

 
4.3  COMMENTS 

Comments are non-executable strings.  In dREL a sequence of characters following an unquoted 
sharp or hash symbol # is interpreted as a comment, up to the end-of-line character.  Here are typical 
examples. 

x = 5     # a comment follows an in-line hash 

The following statement does not contain a comment because the hash symbol is contained within a 
quoted string.  

s = "# this is *not* a comment" 

 



4.4  EXPRESSION OPERATORS AND TERMINATORS 

dREL supports the following arithmetic expression operators  
 + addition 
 * product (dot product when applied to vectors) 
 ^ cross product of vectors 
 ** power of 
 - subtraction 
 / division 
The operands apply to Integer, Real and Complex number objects.  They are also applicable to the 
containers List, Tuple, Table, and Array provided the elements of these are of TYPE number.  The 
expression operators + and * have meaning for manipulating character strings. 
dREL supports the following logical expression operators  
 ==  equals 
 !=  not equals 
 >  greater than 
 <  less than 
 >=  greater than or equals 
 <=  less than or equals 
 and  and 
 or  or 
 not  not 
 in  matches element of the list 
 not in does not matches element of the list 
 
dREL supports the following expression terminators  
 ; semicolon separates multiple expressions in a line  
 \n newline  closes a line unless a balancing ')', '}' or ']' is missing 
Example statements using these terminators follow. 

 a = 234 ;  y = 45 ;  z = -2   
 b = (y + z)/2.0 
 c = (45 + 72 *  
  (93 + 4) + z)   

 
4.5  SUPPORTED ESCAPE SEQUENCES 
The following special character sequences are supported in dREL expressions.  Note that the same 
diagraphs may be used for other purposes in data values, but within the literal dREL scripts the 
following meanings will be assumed. 

\n  newline 
\r  carriage return 
\f  formfeed  
\t  horizontal tab 
\b  binary bit pattern  # implements backspace! 
\o  octal bit pattern  # try \0xxx instead 
\x  hexadecimal bit pattern 
\0  null character 
\\  backslash (\) 
\u   Unicode character in hexadecimal  E.g. \u0022 == “ 



Note that a Unicode character in a string makes the entire string of TYPE Unicode. 
 
 

5.  FLOW CONTROL 
 

 dREL supports a range of standard and specialised flow control statements and terminators for 
controlling the repeated execution of object expressions.  These are as follows: 
 • Indexed Do 
 • List Repeat 
 • List For 
 • list Loop 
 • list With 
 • List Where 
 • List Break 
 • List Next 
 • If/ElseIf/Else 
 • Switch/Case/Default 
The essential constituents of a repetitive execution sequence, is as follows. 
  repeat-statement   { 
      *expression block*  
     repeat-terminator (optional) 
     } 
If more than one expression exists within the expression block, it MUST be enclosed within a set of 
braces "{" and "}".  If only one expression is repeated, its association with the repeat_statement is 
implied and the braces are optional.  In general, it is good and safe programming practice to always 
use braces to bound the repeated expression block. 
 
5.1  DO STATEMENT 

Indexed repetition of expressions is supplied with a Do statement. 
 Do   index = first, last, incr          { *expression block* } 
The index variable is initialised with the first index value (or variable) and executes the expression 
block provided index is less than or equal to the last index value (or variable).  The index is 
incremented by the incr value AFTER each execution of the expression block.  The incr value is 
option and has a default value of 1. 
A typical application of the Do operator follows. 

 Do i = 0,20,2 { total = total + subtotal[i]; } 

 

5.2  REPEAT STATEMENT 

Unindexed repetition of expressions is supplied with a Repeat statement. 
 Repeat       { *expression block* } 
The expression block MUST contain one or more invocations of the Break statement in order to exit 
the repeat loop. Repeat loops may be nested. A typical application of the Repeat operator follows. 

 Repeat { i=i+1; if(i>100) Break;….. } 

 



5.3  FOR STATEMENT 

Manipulation of List items is provided with with a For statement. 
  For  a  in  list       : n op m        { * expression block * } 
where a is the current element of the entire list.  An optional expression “:n op m” is available to 
control the accessing of list packets, where n is the index (starting at 0) for each packet; op is the test 
operator (< > <= >= allowed) and m is the test integer operand. The op and m entries are optional. 
The index n is a local variable and may be tested elsewhere in the script. 
An example where list is a literal object follows. 

i = 0 
For a in [“Mon”,“Tues”,“Wednes”,“Thurs”,“Fri”] {  
  Day[i] = a + "day"; i += 1; }  

 
5.4  LOOP STATEMENT 

A fundamental function of dREL is to apply and derive data in a data file using definitions in a 
dictionary.  Much of this data is in looped lists, and, consequently, there needs to be a simple and 
transparent way to identify and apply repetitive data items.  Data items in the same list are, 
according to the dictionary language DDLm, classified as belonging to the same generic category 
group.  The id code of a category is therefore a convenient tag to identify groups of items, and to 
access “packets” (i.e. sub-lists) of data items in lists.  The Loop repetition operator is provided 
primarily for this purpose. 
 Loop  local  as  list        : n op m        { * expression block * } 
The string local is an object variable, local only to the specific methods script in which it is invoked, 
which assumes the successive values of list during the repeated execution of an expression block.  If 
list is a category id code, then the local object contains successive sub-list of tagged values (i.e. an 
implicit Table) and individual data items may be accessed as object attributes of local.  An optional 
expression “:n op m” is available to control the looping of list packets, where n is the loop index 
(starting at 0) for each packet; op is the test operator (< > <= >= allowed) and m is the test integer 
operand. The op and m entries are optional. The index n is a local variable and may be tested 
elsewhere in the script. 
 
5.4.1  Data Loop Example 1 
A simple invocation of Loop will now be considered for data.  This example will access two data 
items in the category POSITION, known by their data names as _position.vector_xyz and 
_position.object_id.  An abbreviated definition of the category and these items follow.  Note 
that _position.object_id is specified as the category key to each packet of these items.  

_category.id                 position 
_category_key.generic      '_position.object_id' 
 

_definition.id             '_position.number' 
_name.category_id            position 
_name.object_id              number 
_type.container              Single 
_type.contents               Integer 
_type.purpose                Index 
 

_definition.id             '_position.object_id' 
_name.category_id            position 
_name.object_id              object_id 



_type.container              Single 
_type.contents               Uchar 
 

_definition.id             '_position.vector_xyz' 
_name.category_id            position 
_name.object_id              vector_xyz 
_type.container              Array   
_type.contents               Real  
_type.dimension              [3] 
 

In a data file these items might appear in a looped list (abbreviated) as follows. 
loop_ 
    _position.number  
    _position.object_id    
    _position.vector_xyz 
         1             origin   [0.0, 0.0, 0.0] 
         2      body-diagonal   [5.0, 5.0, 5.0] 
        32  diagonal-terminal   [10.0, 10.0, 10.0] 

In a dREL script the Loop construct allows individual items in a packet (in this instance the packet 
contains three values) to be addressed by the extension name defined in the dictionary with the 
attribute _item.extension (i.e. number, object_id and vector_xyz).  

Loop a as position { 
          If (a.object_id == "origin")  { 
                       CoordOrigin         = a.vector_xyz   } 
          Else         LocalPosn[a.number] = a.vector_xyz 
} 
 

5.4.2  Data Loop Example 2 
Another example is needed to illustrate the functionality of the Loop operator when handling lists of 
data from non-hierarchically-related but derived, categories. The prototype dictionary language 
allows hierarchical relationships between data items to be defined, via category definitions, and 
these provide access "pathways" which are independent of how these related data are stored in the 
data file.  For instance, items in the same category, or in hierarchically-related categories, may be 
accessed as an attribute extension of either the name of the “parent” category (i.e. the highest 
category in the family hierarchy) or the name of the hierarchically-related category.  
All data in a looped list be of the same category family. Items from hierarchically-related categories 
may be in more than one looped list but for the purposes of access, the dREL parser subsumes these 
items into a common list.  
However, categories of data which are derived from another category will often use category keys 
which refer to the same quanities. In these cases, the keys are not implicitly equivalent (as would be 
the case if the categories were hierarchically related) but they are “linked” using the DDL attribute 
_name.parent_item_id.  Here is the definition of an item in the category GEOM which is linked to a 
category key in the category POSITION (see Example 1). 

_definition.id             '_geom.vertex1_id' 
_name.category_id            geom 
_name.object_id              vertex1_id 
_name.linked_item_id       '_position.object_id' 
_type.container              Single 
_type.contents               Uchar 

The _name.linked_item_id attribute specify that _geom.vertex1_id has a value that is 
common to one of the unique values of the item _position.object_id.  This linkage implies 
that _position.object_id is a "key" unique item in the category POSITION.  The same 



relationships also apply for the items _geom.vertex2_id and _geom.vertex3_id, which are 
shown below in an example data list.  

loop_ 
    _geom.type     
    _geom.vertex1_id     
    _geom.vertex2_id     
    _geom.vertex3_id  
        point      origin          .                  . 
        line       origin          body-diagonal      . 
        line       body-diagonal   diagonal-terminal  . 
        triangle   origin          body-diagonal      diagonal-terminal 

As in §5.4.2, specific values in this list can be accessed via their unique extension names.  However, 
because of the defined relationship between the vertex ID's and the _position.object_id (in 
Example 1), these can be used to “point” to specific packets and items in the POSITION category 
using the <category>[<key>].<extension> construction.  The With command used the example dREL 
script below is described in the next section and the list-append operator "++=" is described in 
section 4.1.2.3. 

With p as position 
Loop g as geom { 
  If (g.type == "point") { 
   PointList ++= Tuple(Tuple(g.vertex1_id, 
         p[g.vertex1_id].vector_xyz))  
   } 
   Else if (g.type == "line") { 

      LineList  ++= Tuple(Tuple(g.vertex1_id, g.vertex2_id), 
                     Tuple(p[g.vertex1_id].vector_xyz,  
          p[g.vertex2_id].vector_xyz)) 

   }} 

This illustrates how values from the category list can be directly accessed simply by appending the 
name extensions to the item which is linked to the key of that list.  Executing this script results in the 
following values strings: 
 PointList[0] is ("origin",[0.,0.,0.]) 
 LineList[0]  is ("origin","body-diagonal"),([0.,0.,0.],[5.,5.,5.]) 
 LineList[1]   is ("body-diagonal","diagonal-terminal"),([5.,5.,5.],[10.,10.,10.]) 
 
5.5   WITH STATEMENT  

The With statement is identical to the Loop statement except that the list pointer is not incremented.  
This statement is used only to identify the current list object within scope and context as a local 
object.  The general form is as follows. 
 With local  as  list { *expression block* } 
This statement is very useful for accessing data items in the current packet of a category lists.  This 
enables items in a list to be addressed as name extension attributes, just as in Loop. 

With p as atom_site 
  If (label == p.id)  x = p.frac_vector 
 

Note the braces about the expression block are required for multiline expressions. 
 
5.6  WHERE STATEMENT 

The Where operator is used to test all elements in arrays or lists, which may be of indeterminate 
length.  This operator has the general form: 



 Where (expr) { *expression block* } 
 Else    { *expression block* } 
If A and B are arrays of the same shape then the statement works element by element.  

Where (A>0) { B = 1.0/A }  
Else        { B = large } 

It is difficult to write an equivalent statement to this using other operators because the shape of 
arrays (e.g. the number of dimensions) might be unknown.  
 
5.7  BREAK TERMINATOR 

Repetitive blocks can be exited prematurely with the Break keyword.  The general form of the 
statement is as follows. 
 Break  
For example, in the sequence 

Do i=1:10 { 
  Do j=i+1:10 { 
   If (a[i] < a[j]) Break 
}} 

 
5.8  NEXT TERMINATOR 

Repetitive blocks can be reset prematurely with the Next keyword.  The general form of the 
statement is as follows. 
 Next   
For example, in the sequence 

Do i=1:10 { 
  Do j=i+1:10 { 
   If (a[i] < a[j]) Next 
}} 

 
5.9  IF/ELSEIF/ELSE STATEMENTS 

The standard If/ElseIf/Else statements have the following form and sequence.  The If statement must 
precede all others in the sequence.  The Else statement must, if used, follow all others.  There may 
be any number of ElseIf statements. 
 If (expr)  { *expression block* } 
 Else If (expr) { *expression block* } 
 Else    { *expression block* } 
Braces around the expression blocks are necessary if they contain more than one statement.  
 
5.10  SWITCH/CASE/DEFAULT STATEMENTS 

The Switch statements are used to execute expression blocks according to a match with an 
enumerated value.  The operators have the general form: 
 Switch (var)  {      ## lowercase ‘switch’ may work 
  Case (val1,.., valN) { *expression block* } ## case 
  Case (valM,.., valQ) { *expression block* } 
  Default  { *expression block* } ## default 



 } 
where var is the variable NAMED object whose value is tested against values val1,.., valQ.  When 
there is a match, the corresponding expression block is entered.  NOTE that all case lists are tested 
and more than one expression block may be entered.  If no case blocks are entered, the default block 
is entered. 
Here is an example of a Switch sequence of statements. 

Switch (NUM) { 
  Case (5) { .... } 
  Case (7,8,6) { ..... } 
  Case (1:4) {...... } 
  Default { ..... }  } 

The case labels must be constant expressions.  
 

6.  INTRINSIC FUNCTIONS 
 

dREL has an extensive set of intrinsic functions, which are listed in this section according to the 
following classes.  
• CONVERSION and MANIPULATION 
• TRIGONOMETRIC  
• MATHEMATICAL  
• DISCIPLINE  
 
6.1  CONVERSION AND MANIPULATION FUNCTIONS. 

These functions are responsible for fixing the TYPE of the contained object. 
Complex()  Convert two arguments (Real, Imag) into a Complex number 
Real(), Imag()  Returns real and imaginary part of Complex argument  
Integer()  Convert argument into an integer number 
Float(), Rem()  Convert to real number, get remainder of real number 
Int(), Nint()  Convert to trucated integer, rounded-up integer value 
List()   Convert arguments into a List object. 
Tuple()   Convert arguments into a Tuple object. 
Table()   Convert arguments into a Table object. 
Array()   Convert arguments into an Array object. 
Numb()   Convert the character argument into the ascii number equivalent. 
Char()   Convert the ascii number argument into a character equivalent.  
Minor()  Generate a matrix of minor elements from the matrix argument. 
Cofactor()  Generate a matrix of cofactor elements from the matrix argument. 
Adjoint()  Generate a matrix of adjoint elements from the matrix argument. 
Inverse()  Generate a matrix of inverse elements from the matrix argument. 
Transpose()  Generate a matrix of transposed elements from the matrix argument. 
Eigen()   Get eigenvalues and vectors of a 3x3 matrix and return as three tuples  
   containing four elements (value plus vector of direction cosines). 
 
6.2  TRIGONOMETRIC FUNCTIONS. 

These functions are responsible for performing trigonometric operations on the argument. 
Sin(), Cos(), Tan()  Sine, cosine and tangent functions of radian arguments. 
Sind(), Cosd(), Tand()  Sine, cosine and tangent functions of degree arguments. 



Asin(), Acos(), Atan()  Arcsine, cosine and tangent functions as radians. 
Arcsin(), Arccos(), Arctan() Arcsine, cosine and tangent functions as radians. 
Asind(), Acosd(), Atand() Arcsine, cosine and tangent functions as degrees. 
Atan2(a,b), Atan2d(a,b) Arctangent function in radians and degrees 
Phase()    Get the phase in radians for a Complex number. 
Exp(), ExpIm(), ExpImag() Exponential functions with Real and Complex arguments. 
Log(), Ln()   Base-10 and natural logarithm functions. 
Pi, TwoPi   Values of π and 2π. 
 
6.3  MATHEMATICAL FUNCTIONS 

These functions are responsible for performing mathematical operations on the arguments. 
Sqrt()   Get square root of number. 
Mod()   Modulus of arg1 to base arg2. 
Abs(), Magn()  Absolute value of the argument. 
Sign()   Sign of argment 2 applied to argument 1. 
Sum()   Sum all of all the values in the list object. 
First(), Last()  Get the first and last element of a list or character string. 
Strip(list, n)  Strip the nth element from the list. (n=0,1,2...) 
Len()   Get the length of a list or character string. 
Map(list,func)  Apply the function func to each element in the list. ## no function defs 
Sort()   Sort all elements in a list from small to large. 
Sort(list, func)  Sort the list according to the function func.  ## no function defs 
Reverse()  Reverse the order of a list. 
TopLo(), TopHi() Sort all elements in a list from small to large; large to small. 
Dim()   Return an integer list of dimension lengths. Zero value is end of array. 
Det()   Get the determinant of a matrix 
Dot(), Cross()  Scalar and vector product of two vectors. 
Norm()   Root mean square value of elements in a list or vector. 
MaxI(list,ind)  Maximum value in list. Index of max value returned as argument 2. 
MinI(list,ind)  Minimum value in list. Index of max value returned as argument 2. 
Max(), Min()  Maximum and minimum values in the list. 
SubString(s1, s2) Returns TRUE if string s1 is a substring of s2. 
Eigen(mat)  Return sorted list of three (value, vector) tuples. 
 
6.3  DISCIPLINE FUNCTIONS 

Specific functions may be defined in a data dictionary using the a definition save frame and DDL 
attributes. These frames are opened with "save_function.<FunctionName>". The typing of the 
function value is specified using the TYPE attributes. The definition of the a discipline function 
within the method expression is achieved as follows: 

 
Function <FunctionName> ( <arg1> :[ <ContainerType> , <ContentsType> ], 

     <arg2> :[ <ContainerType> , <ContentsType> ], etc. )  
{ <expression evaluating FunctionName in terms of the input arguments> } 
 

Note that an argument may be a container type "Category" and contents type "Tag". 
 
In the Crystallographic CORE dictionary the following functions are already defined.  
AtomType(label) Extract the “atom_type” element symbol from an atom label string label. 



Closest(v, u)  Returns [w, t ] where w is the closest real space vector transformation of v to  
   u, and t is the integer cell vector that converts v to w. 
SeitzFromJones(text) Converts a Jones-Faithful equiv. pos. text (x,y,z) into a 4x4 Seitz matrix. 
SymEquiv(s,cat,v) Converts a coordinate vector v into a vector transformed by the symmetry  

seitz matrix extracted from category cat using index n from symop code s. 
SymLat(s)  Convert the symop code n_jkl into a lattice vector [j-5, k-5, l-5] 
SymNum(s)  Convert the symop code n_jkl into a symmetry integer n. (n=0,1,2...) 
Symop(index, lvect) Convert symmetry equivalent position number index and cell lattice vector 
   lvect to the symop code n_jkl. (n=1,2,3...) 
 

7.  LIST OPERATORS 
 
7.1  STRING CONCATENATION 

The following properties of strings apply. 
 • Concatenation of ASCII and UNICODE strings results in a UNICODE string.  
 • Character strings are immutable.  
 • There is no "char" type. Strings of length 1 are used.  
 
7.1.1  Concatenation of literals 
Multiple sequential string literals will be concatenated automatically in statements. E.g.  

 x = "string literals that are adjacent" " are concatenated" 

equivalent to 
 x = "string literals that are adjacent are concatenated" 

 
7.1.2  Concatenation of objects 
The operators + and * may be applied to string objects.  Here is an example of the + operator. 

 s1 = "this" ; s2 = " and that" 
 s3 = s1 + s2  

The object s3 now holds “this and that”. 
Strings made up of multiple instances of the same character sequence can be generated by the * 
operator, as below.  

 s4 = "-"*10  

The object s4 now holds a string "-----------".  The * operator can be applied to named objects as 
well.  

 s4 = "-EOF-"  ;  s5 = s4*3  

The object s4 now holds a string "-EOF--EOF--EOF-".  
 
7.2  LIST MEMBERSHIP 

It is possible to test objects containing lists of strings for the “membership” of specific strings.  
These tests are equivalent to looping through the lists and applying the standard string equivalence 
operators “==” and “!=”, as illustrated in the following example statements.  

cnt = List(["data_", "global_", "save_", "stop_", "loop_"]) 
Do i=0,4 { If(“stop_” == cnt[i]) Break ;} 



The last statement is problematical because the length of the list of items being tested needs to be 
known. It may be replaced simply by:  

If (“stop_” in cnt)  { … } 

This works only if elements of the container are of the same type.  The negation test for 
membership of a list also applies. E.g. 

If (“cell_” not in cnt)  { … } 

 
7.3  LIST NOTATION 

The following notation is available for the formation of lists from existing named lists. 
new = list[:]   New copy of entire list. 
new = list[n:m:i]  New list with elements from indices n to m in steps of i. 
new = list[n:m]   New list of elements from indices n to m in steps of 1. 
new = list[first+1:last-1] New list without the first and last elements. #not implemented 
val  = list[1]   val becomes the value of the second element of list.  
new = list1 + list2  New list of list1 concatenated with list2. 
new = [list1, list2]  New list of list1 concatenated with list2. 
val1 += val2   Increment val1 with val2. 
list1 += val   Increment all elements in list1 with val. 
list1 += list2   Increment matching elements in list1 with values in list2. 
list1 ++= val   Append val to list1. 
list1 ++= list2   Append list2 to list1. 
val1 -= val2   Decrement val1 with val2. 
list1 -= val   Decrement all elements in list1 with val. 
list1 -= list2   Decrement matching elements in list1 with values in list2. 
list1 --= val   Replace the last element in list1 with val. 
list1 --= list2   Replace the last list of elements in list1 with list2. 
list[i:j] = list2   Cut and paste ALL of list2 into the elements i to j-1. 
new = list!n   New list composed of n copies of list.  
new = n*list   New list with list elements multiplied by a number n.  
    E.g.  10*[1,2,3] results in [10,20,30];  
     3*["a","b","c"] results in ["aaa","bbb","ccc"]. 
new = x+list   New list made from list with value x added to all elements 
    E.g. 10+[1,2,3] results in [11,12,13] 
     3+["a","b","c"] results in ["3a","3b","3c"]. 
list = list + x   Add value x to all elements of an existing list. 
 
7.4  ARRAY NOTATION 

The following notation applies strictly to Array objects. 
var = mat[n,m]  Variable contains the value of the matrix element (n,m) 
mat[p,q] = x  Matrix element (p,q) is replace with the value of x. #Its immutable 
vec = mat[:,j]  Vector formed from jth column of row matrix elements. # mat.v[:j] 
vec = mat[first:last-1,k] Vector formed from kth column of row elements first to last-1. 
vec = vec1 + val  Scalar addition.  [9,10,11] = Vector([4,5,6]) + 5 
vec = Function(vec1)  Vector function.  [1,2,0] = Mod([4,5,6], 3) for (Mod, Int, ) 
vec = vec1 + vec2  Vector addition.  [12,14,16] = Vector([4,5,6]) + Vector([8,9,10]) 
var = vec1 * vec2  Scalar (dot) product. 8*4+9*5+10*6 =Vector([4,5,6])*Vector([8,9,10]) 
vec = vec1 ^ vec2  Vector (cross) product. (-4,8,-4) = Vector([4,5,6]) ^ Vector([8,9,10]) 



vec = mat * vec1  Post-matrix vector multiply.  
    E.g. [32,77,112] = Matrix([[1,2,3],[4,5,6],[7,8,9]]) * Vector([4,5,6]) 
vec = vec1 * mat  Pre-matrix vector multiply.  
    E.g. [66,81,96] = Vector([4,5,6]) * Matrix([[1,2,3],[4,5,6],[7,8,9]]) 
mat = mat1 * mat2  Matrix multiply. Matrices must have concordant shapes. 


