
1

Relational Expressions in STAR File Dictionaries

Nick Spadaccini #†, Sydney R. Hall * and Ian R. Castleden †*

†Department of Computer Science and *Crystallography Centre,

University of Western Australia,

Nedlands, Perth, WA 6907, AUSTRALIA.

The STAR File (Hall & Spadaccini, J. Chem. Inf. Comput. Sci. 1994, 34, 505-508) is

used widely in structural chemistry for exchanging numerical and text information with

scientific journals and databases. These exchanges are increasingly dependent on data

dictionaries to facilitate automatic data validation and checking. Definitions in data

dictionaries are constructed using attribute descriptors and this paper describes a

method attribute for specifying the relationships between data items as an executable

script written in a new relational expression language called dREL. The addition of this

attribute improves the precision and the semantic content of dictionaries by providing

relational representations of data, as well as facilitating the direct evaluation of

derivable data items. The capacity to evaluate derivative data directly from the

combination of primitive data and dictionary expressions is expected to change future

archival approaches. The design concepts of the relational expression language dREL

parser, which are applicable to any discipline, are described.

RATIONALE

The main purpose of data dictionaries is to define data items at a precision that will enable their
unambiguous identification. Broadly speaking, data can be classed as either primitive or derivative.
Primitive data are either experimentally measured or theoretically predicted, and need to be defined in
a dictionary in sufficient detail to be unique, and so that dependencies on other experimental or
theoretical parameters are well understood. Derivative data are determined from other data items,
and their definition in a dictionary must specify exactly these relationships. In this paper we describe
a dictionary attribute that enables the precise definition of derivative data items as relational
expressions written in the script language dREL. These definitions are machine interpretable and can
be used to calculate derivative data directly, but can be easily specified and modified by non-experts.

We shall show that the existence of relational expressions in a text dictionary leads to data handling
approaches that seamlessly integrate data values into executable definitions. These facilities are akin
to those of an active knowledge base.

The rationale for direct computation from text dictionaries is many-fold. The growing complexity of
computers and conventional programming languages means that scientists are increasingly removed
from the detail of calculation methods, and are more dependent on “packaged” software. Current
programming practices focus on computer performance and as a consequence considerable
algorithmic knowledge is embedded in computer code that is difficult to understand or to document.

Corresponding author: nick@cs.uwa.edu.au; phone: +618 9380 3452; facsimile: +618 9380 1089

2

This practice is detrimental to both the transfer and the retention of discipline knowledge. In
particular, it limits easy access to this knowledge, and therefore to its extension and application. The
problem is not diminished with recent computing developments. Modern languages and
implementation tasks increasingly require formal training in computer science or software
engineering. Certainly the era when major scientific packages were written by discipline experts for
ready modification by other scientists has passed and there is an real need to develop approaches that
can provide simpler links between discipline knowledge and computational outcomes.

Data dictionaries containing relational expressions are one such approach. Used in conjunction with
databases they provide electronic information that is extensible, interactive and accessible. They are
of enormous value as a pedagogical resource. For example, scientists seeking specific advice and
information within their discipline often use Internet news-groups. Such an approach is not as
reliable or extensive as accessing interactive data dictionaries that have been constructed by
discipline experts.

In this paper we describe a dictionary relational expression language dREL that is functional and
intuitive for humans, and amenable to machine interpretation. It is sufficiently symbolic to be easily
translated into textbook information. It builds upon the previously reported dictionary definition
languages[7,8] for the CIF dictionaries which form part of the STAR File exchange approach[1,2]
widely adopted by the chemical structure community. The prototype version of the dictionary used
as a proof-of-concept for the dREL relational expressions has been defined using structural science
data, but exactly the same principles apply to data in other fields.

We shall also show that data dictionaries are simple text files that are made executable by translation
and then compilation into Java byte-code. This compiled dictionary contains routines for parsing
STAR data files. Data evaluation using the compiled dictionary is not fast by normal computational
standards, but it is certain to benefit from future advances in computer technology. More to the
point, we maintain that the most important measure of “efficiency” is the speed with which users can
specify new relational expressions, and understand what has been previously defined.

BACKGROUND

A STAR File format[1,2] used in the dictionaries described in this paper, is a universal file structure
for exchanging and archiving data electronically. A discipline-specific application of this approach,
the crystallographic information file[3] (CIF), is used widely in structural chemistry for journal and
database purposes[4,5]. The STAR File and CIF were developed in the late 1980’s in response to
the rapid growth in measured and calculated scientific data, and the need to interchange information
electronically over the increasingly accessible Internet. The adoption of the CIF in 1990 by the
International Union of Crystallography, as the recommended standard for the exchange of data, led to
its extensive application to structural science for data submission to both journals and databases.

The development history of data dictionaries in structural science is relevant here as it illustrates the
importance that some scientific disciplines are attributing to the careful organization and delivery of
knowledge, largely in response to massive increases in data. In structural sciences the CIF
development has, in addition to promoting open and flexible information exchange, stimulated the
compilation of data dictionaries which have been internationally approved by the governing bodies in
a number of sub-disciplines[6]. CIF and STAR files use unique tags to identify exchanged data
items and these tags are defined in dictionaries written in a dictionary definition language[7,8]

3

(DDL). Dictionary definitions are composed of attributes that ascribe particular properties to the
item e.g. its data type, its permitted values, and so on. These attributes represent the vocabulary of a
STAR DDL, and determine the richness with which data items can be defined.

Data dictionaries support CIF exchange and archival processes by uniquely identifying and
classifying data items. They also play a pivotal role in the automatic validation of exchanged data.
Currently two dictionary languages are used in structural chemistry, DDL1.4[7] for core
crystallographic and powder diffraction items[6] and DDL2.1[8] for the macromolecular structure
items. Both DDL versions involve similar attributes; however, DDL2.1 contains a richer attribute
set. The access and validation of data using dictionaries is strongly dependent on the scope and
precision of the DDL attributes. The developments described in this paper have highlighted a need
for at least three major additions to the DDL attributes (1) stronger “typing” of data i.e. the inclusion
of “container” types such as lists, matrices, vectors, etc., (2) allow for the hierarchical classification
of data and for inheritance, and (3) an intuitive expression language that permits the concise
representation of algorithmic relationships between data items.

In this paper we will mainly describe the purpose and properties of the DDL method attribute
written in dREL. The detailed specification of the dREL syntax will be the subject of later paper.

THE ROLE OF THE METHOD ATTRIBUTE

Method attributes serve to propagate the values of primitive data items into derivative items. As
discussed earlier, primitive data result from measurement or theory, and are irreducible. Derivative
items can be calculated from other data by following a known algorithm. This derivation is normally
achieved using customized computer software. We propose an alternative approach in which the
method attribute of a derivative item provides this algorithm in the form of a machine-interpretable
text expression.

Method attributes serve two important purposes. They contain data relationships that constitute
precise usable knowledge, and they provide executable algorithms that may be used to evaluate the
defined item in terms of others. Such attributes provide a simple, transparent and direct approach to
automating and generalizing processes which are currently either ad hoc, or, at best, highly
customized. Of longer-term importance is that precise relational information in data definitions is an
essential requirement in extending STAR dictionaries into the realm of active knowledge bases.

A number of major and immediate benefits arise from this approach.

• Enhancement of knowledge

The use of analytical expressions in data definitions has the obvious pedagogical benefit of
making this information more readily accessible to humans. Relational expressions written in
dREL represent symbolic, self-descriptive and mathematically logical descriptions that are easy to
read and to understand. The underpinning objectives of the dREL language are to simplify this
information for all dictionary users, and yet be sufficiently powerful to attract application experts.

Furthermore, the method attribute, along with all other dictionary attributes, is amenable to the
creation of a “textbook” representation of the definitions. A prototype parser is already available
that can create a PDF document from existing CIF dictionaries[9]. It is anticipated that future
CIF definitions will be rendered automatically into a mathematical typeset (using TEX or
MathML), so that pedagogical documents of defined knowledge can be produced directly from a
DDL dictionary.

4

• Retention of knowledge

The loss of discipline-specific technical knowledge, such as computing algorithms, is an
increasing problem with the evolution of computer technology and programming languages. The
erosion occurs in many ways; when computer software is unsupported by a new generation of
hardware; when computing languages evolve and earlier versions are incompatible; when
program authors are no longer accessible; or simply in those cases when knowledge is obscured
by the programming language. The dictionary methods proposed herein offer a long-term
solution because they promote the retention of computer algorithms in terms of a minimal-style
language that enables relationships to closely resemble mathematical formulae. The dictionary
method attribute contains the algorithms as transparent, machine-independent, yet executable
expressions.

• Reduction of data archives

A large proportion of data currently exchanged and archived is superfluous, in that they can be
easily derived from primitive data if the interdependencies are known. The use of dictionary
methods to directly evaluate derivative items will promote new and yet-unthought-of data
handling paradigms. It will reduce the need to exchange or archive derivative data that can be
generated from dictionary methods. Additionally, these methods can be used to automatically
verify and validate existing derivative data values. For example, this approach can replace
customized software performing validation tasks for scientific publishers[10].

• Evaluation of data

The most important long-term advantage of the dREL methods is computational rather than
pedagogical. Executable expressions in dREL avoid most of the obfuscation problems of existing
imperative coding techniques and offer a programming paradigm empowering scientists to control
and modify their computations in ways paralleled only by symbolic programming approaches
within existing algebraic computing packages.

AN EXAMPLE OF THE METHOD ATTRIBUTE

Within the DDL formalism, each attribute is assigned a unique name or tag. A variety of attribute
specifications are illustrated in three simple definitions of data items representing the cell
characteristics of a crystal, as shown in CHART 1. For example, the attributes _type.container
and _type.value specify that the data TYPE for the data item _crystal.density (in CHART
1a) as a SINGLE, REAL number. Each attribute in these definitions serves to identify a particular
property of the defined item.

<<<<<< CHART 1

The attribute _method.expression contains an expression for evaluating the defined item in
terms of other defined items. The way that this is applied is best illustrated using a simple example.
The data dictionary definition of the crystal density shown in CHART 1a has a method attribute
_method.expression containing the simple dREL expression

 _crystal.density <- 1.6605 * _cell.mass / _cell.volume

This expression defines the density d of a crystalline solid (in Mg/m3) as the ratio of the atomic mass
within a crystal unit cell and the volume of that cell, with the mass in units of daltons and the volume
in cubic angstroms. The _method.expression attribute enables the crystal density to be

5

evaluated if both the mass and volume values are known. Otherwise, _cell.mass and
_cell.volume are treated as functions[13] which need to be evaluated from their dictionary
definitions, which are included as CHART 1b and 1c, respectively. This reduction approach to
evaluation continues until either the density value is determined, or all derivation pathways are
exhausted. It is important to note that the relational expressions are kept as simple and as modular
as possible. Second-order relationships, such as those needed to derive _cell.mass or
_cell.volume are not considered part of the _crystal.density method.

<<<<<< CHART 2

CHART 2 shows a small test data file in which the item _crystal.density is flagged as
unknown with a “?”. Parsing this file using dREL-compiled definitions shown in CHART 1
produces an output file shown in CHART 3. This contains a value of _crystal.density
calculated from the method expressions, along with an appended standard uncertainty value derived
from these expressions. Note that there are a number of other data values determined as a
consequence of the derivation processes (shown in bold font).

<<<<<< CHART 3

One further lesson can be drawn from these simple example definitions. Note that the relational
expression in the method of CHART 1a can be easily parsed to derive the formula,

 densitycrystal = 1.6605 masscell
 volumecell

and is very similar to the textbook definition of the crystal density,

 d = 1.6605 Mc
 Vc
Similarly, the expression for the volume of a crystal cell shown in the method of CHART 1b,

 volumecell = acell_vector • (bcell_vector x ccell_vector)
is explicit because vector quantities can be used in the dictionary definitions. Although the
expression for crystal cell mass in the method of CHART 1c,
 atomic_type

 masscell = Σ (number_in_cellt * masst)
 t

is not as straightforward as for the density and volume, the syntax involving a Loop of products in
the atom_type list matches the structure of the data file (see CHART 3). The in-place
operator “+<-“ in the method script signals a summation of these terms.

These introductory examples illustrate that dictionary attributes provide for more than just derivative
evaluation. They restrict data quantities in terms of typing, enumeration (e.g. all values must be non-
negative real numbers) and expected units. These are used to validate existing data values.

THE REDUCTION APPROACH

As the crystal density definition has shown (see CHART 1), it is operationally advantageous to treat
data items in dREL relational expressions as functions, and to employ a reduction approach to their
evaluation. This simplifies the compilation and maintenance of dictionary definitions by enabling
new method scripts to be added with little or no knowledge of data dependencies in the existing

6

definitions. As a consequence, method scripts need only contain the most directly related items (e.g.
in the density method these are the cell mass and volume items, not the cell vector items, etc.), with
no prior knowledge of how these are to be evaluated. This type of modularity promotes simple,
concise and symbolic relational expressions.

Instead of placing the highest priority on execution efficiency, the dREL approach emphasises the
clarity of data relationships. This has important implications for the long-term retention of
knowledge because algorithms are no longer obscured by the syntax of conventional programming
languages. The philosophy underpinning the development of the dictionary relational expression
language dREL is that knowledge be retained in its most comprehensible human-readable form,
independent of current computational constraints. Because large improvements in computer
performance are certain, human, rather than machine, efficiency has been made the main
consideration.

The relative importance of expressing knowledge intuitively needs some elaboration. Most computer
software is written in imperative procedural code that is largely incomprehensible to non-
programmers. To illustrate this we contrast the expression used the volume definition in CHART
1b,

V = a • (b x c)

where the volume V of a parallelepiped is expressed in terms of its cell vectors a, b and c, with the
conventional approach to coding a volume calculation in which the vectors are expressed in terms of
the scalar cell lengths a, b and c and angles α, β and γ, as

s=(alpha+beta+gamma)/2.

V=2.*a*b*c*Sqrt(Sin(s)*Sin(s–alpha)*Sin(s–beta)*Sin(s–gamma))

This expanded code may be computationally efficient, but its intent is obscure, compared to the
dREL expression shown in CHART 1b. The usual coding practices used in C, C++ and Fortran
languages also complicate the algebraic structure of relationships, and this limits their use for non-
computational purposes, such as translation through algebraic manipulation software.

7

DESIGN CONCEPTS OF dREL

“Conventional programming languages are growing evermore enormous, but
not stronger. Inherent defects at the most basic level cause them to be both fat
and weak: the primitive word-at-a-time style of programming inherited from
their close ancestor – the von Neumann computer, their close coupling of
semantics to state transitions, their division of programming into a world of
expressions and a world of statements, their inability to effectively use
powerful combining forms for building new programs from existing ones, and
their lack of useful mathematical properties for reasoning about programs.”
Backus, 1978.

Backus [11] expressed these widely shared concerns in his acceptance speech for the 1977 ACM
Turing Award. Imperative programming languages are efficient because they mimic the von
Neumann architecture, but in doing so they obscure the meaning of the computed algorithm. Despite
this serious limitation, it has only been with the most recent improvements to computer performance
that serious consideration has been given to alternative programming rationales, such as provided by
functional languages. These have been successful with some numerical computing tasks[12,13], but
have been little used in scientific applications.

In the design of dREL, the benefits of the functional, procedural and object-oriented programming
paradigms have been considered. As emphasised earlier, we gave the execution efficiency of method
scripts a lower priority to other dREL objectives, such as expression simplicity, conciseness and
clarity. It was rationalized that future improvements to computer performance would improve
execution efficiency, but only a better language design would lead to similar efficiency gains for the
average user. These considerations made the prospect of designing an intuitive language with good
operational properties an achievable goal.

dREL Design Criteria

The principal design criteria for dREL were the following.

1. The relational expressions in a DDL method attribute of a dictionary definition must be linked
operationally to all other DDL attributes within that definition, and, to other related definitions
in the dictionary. The language scope must encompass the entire contents of a dictionary in
order that all data items and their attributes are accessible in the execution of a method script.

2. The execution of a method script can only produce a result if the values of dependent data items
can be determined. Ultimately, each evaluation depends on the availability of one or more data
values from the data file being parsed by the dictionary application. It follows that the dREL
parser must be completely conversant with the STAR File syntax and structure, and must have
access to particular known values in a data file in order that evaluation can occur.

3. Relational expressions should mimic corresponding mathematical formula as closely as
possible. A comprehensive set of data “container” types, e.g. Complex, List, Tuple, Table,
Vector and Matrix must be supported by dREL and be manipulated without explicit iteration
over the elements of the container type. Operator overloading based on operand types should
be supported. An example of this is given in the penultimate statement of the code fragment in
CHART 6 in which the argument h*S*x represents the multiplication of a matrix S, by the row
vector h and the column vector x).

8

4. dREL must support a data type referred to as Measurement. These are data which are not exact
i.e. each number has an associated uncertainty value (e.g. the measurement value recorded as
10.42(6) means there is a .667 probability that the true value is in the range 10.36 - 10.48). The
statistical uncertainties of measurement data in a relational expression must be handled
automatically. That is, the evaluation of a method script involving any data of type
Measurement must result in a value of this type and have an associated uncertainty value.
Mathematically, the expression for calculating this uncertainty is function of the partial
derivatives of the original evaluation expression, and this can be generated using standard
computer algebraic approaches. Accordingly, an expression language must promote the use of
symbolic representations that can be differentiated algebraically.

Dictionary Attribute Requirements

The dREL design is dependent on the versatility and scope of the dictionary DDL syntax and
attributes[7,8]. The most important of these considerations are as follows.

1. Each definition in a dictionary should be an encapsulation of the properties of a specific data
item, and that this entry be treated as a discrete object. During execution these dictionary objects
are married to specific data values from a data file.

2. That data items be classified into groups of related items, referred to in a STAR File as a
category, and that this classification is declared explicitly in the dictionary. In this context a data
item may be considered an attribute of the category. For example, the data items
_atom_site.label and _atom_site.fract_xyz (see CHART 4 and 5) are members of the
ATOM_SITE category. Within this category they may be accessed through their data name
extensions, label and fract_xyz.

3. A single data item may have a list of values. A category of such items may be thought of as a
table in which the columns contain the values and the item data names form the column header. A
category of list items must have at least one data item with unique values. This item is the
category key for uniquely referencing a loop packet (i.e. a row in the table).

<<<<<<< CHART 4

4. Data categories may be divided into three classes according to their roles. They are major
function, hierarchical and derivation. Identifying these roles assists in the correct definition of
data classes, and in how the method attributes will be parsed by dREL. This is best
conceptualized as a three-dimensional organizational model. The major function categories
each occupy one axis of organizational space. In structural sciences these would be the major
data classes CRYSTAL, DIFFRACTION, STRUCTURE and MODEL, representing the families of data
separated by purpose, origin or computational progression.

 A second dimension of the organizational model separates hierarchical categories. Such
categories form families of data that are potentially merged into a common parent category. For
example, ATOM_SITE data is part of the STRUCTURE family, and ATOM_SITE_ANISO is a child
member of the ATOM_SITE category. The knowledge of such relationships is important because
dREL merges child categories containing list data into the lists of parent categories of the same
family (see CHARTS 4 and 5).

 The third organizational dimension separates derivation categories. These categories contain data
that are derived from other data. They are separated in this dimension by the order in which they

9

can be derived: primary, secondary, tertiary, quaternary, such as with ATOM_SITE,

MODEL_SITE, GEOMETRY and ENTITY.

<<<<<<< CHART 5

5. Data items in list categories related by hierarchy may be merged with “parent” categories in the
same family because their category key items are equivalent and interchangeable. CHART 4
illustrates such a relationship for ATOM_SITE data, and CHART 5 shows how data in these list
categories may be operationally “joined”.

6. Data items belonging to list categories related by derivation share common category keys. These
keys are explicitly specified in the dictionary so that lists related by derivation can be mapped
onto each other.

dREL Operational Requirements

Operational requirements of dREL arise specifically from the need for assignments in the method
scripts. These have had a significant bearing on the dREL design criteria.

1. Defined data names (i.e. tags) appearing on the right hand side of relational expressions are
treated by dREL as functions, in that they reference a specific value, or they refer to a method
script in the dictionary that can be evaluated.

2. The evaluation of specific data items in a relational expression take place on an “as needed”
basis, just as in functional languages.

3. dREL statements involving an imperative syntax will be supported to control access of stored
variables in certain cases.

dREL RUN-TIME SCOPING

Although the specification of the scoping rules for dREL relational expressions is the topic of a later
paper, we give a summary of these requirements here to help explain the fundamental differences
between dREL and other scripting languages. The run-time evaluation model employed by dREL has
similarities to existing functional languages, but differs markedly in that it is based on the specific
scoping requirements for accessing STAR File data. They are as follows.

1. A STAR data tag in a dREL script represents a pointer to either its value in an associated STAR
data file, or its method script from which a value can be derived. Once evaluated, the pointer is
replaced by the value. In this way, evaluation occurs only once.

2. An evaluation in a method script is postponed if the process branches to another method script,
and the new script assumes the same scope and context for data items from the previous process.

3. Only the data item within the current scope is evaluated. In the case of repeated (list) data items,
only one loop packet of data is, by default, in scope. Examples of this scoping requirement are
illustrated in CHART 6.

4. For list categories, the local-reference pointer to the current loop packet (represented by the
current value of the defined category key) in the statement

 With local-reference as category-name

10

 Data items in the category category-name are addressed by appending their data name extension
to the identifier local-reference. Hence, the statement,

 With a as atom_site

 places the items in the current packet of the ATOM_SITE category in scope, and these can be
accessed as, say, a.label , a.fract_xyz , etc. The scope of the “With” statement is
unchanged from the prior evaluation sequence. For example, if the joined list shown in CHART
5b is being processed, and the current loop packet in scope has a category key value of
_atom_site.label = o2 , then the invocation of a new method containing the statement

 With s as atom_site

will not change the scope of a.

5. For list categories, packets of data are successively brought into scope by the statement

 Loop local-reference as category-name {

 Statement-block

 }

For the example in 5. above, the statement

 Loop a as atom_site { }

implies that pointer to all loop packets (identified in CHART 5b as the category key items
_atom_site.label with the values o1 to o3) will be successively placed in scope.

FURTHER dREL APPLICATIONS

Some examples of complex evaluation methods are now needed to illustrate the full versatility of the
dREL approach. The first example calculates the structure factor value for specific diffraction
vectors and this shows, in particular, the operation of the reduction process during data evaluation.
The second example method determines the list of inter-atomic angles within a molecular structure
and this illustrates how ab initio lists of items are created from more primitive data in the derivation
pathway.

EXAMPLE 1. A crystallographic structure factor calculation

For crystallographic studies, the determination of molecular structure from diffraction data requires
the measured structure factors be compared with those values calculated from the proposed
molecular model of individual atom sites. The calculated structure factor F(h) for each diffraction
point, h = h,k,l,

11

 F(h) = ∑ fj(s) e- Bj(s) e-2πi h.rj

 j=1,N

is a Fourier transform expressed as the summation of the N atom sites in the unit cell, where fj is the

atomic scattering as function of the scattering direction s, e-Bj(s) is the atomic displacement factor
and is a function of the scattering direction s, and the atomic site coordinate vectors rj (= xj/a, yj/b,
zj/c). When the crystal unit cell contains atomic sites related by space group symmetry, and the
expression for the structure factor becomes

 F(h) = ∑ fj(s) ∑ e-Bj(s) e-2πi h.Skr j

 j=1,U k=1,M

where Sk is the Seitz matrix for the kth symmetry transformation, and the summation is partitioned
into the number of unique atomic sites U and the number of symmetry matrices M (N=UxM). The
dictionary definition for a calculated structure factor is shown in CHART 6 and the attribute
_method.expression contains a relational expression representing the above equation.

>>>>>>>>>> CHART 6

The different attributes in a dictionary definition contribute to the evaluation of
_refln.F_complex , which is a single complex number belonging to the REFLN category. Its
evaluation from _method.expression is dependent on the values of other data items,
_atom_site.fract_xyz, _atom_site.type_symbol , etc., and these must be available from
either an associated data file or through the method scripts in their definitions. The evaluation of the
calculated structure factor involves the following basic steps. These steps are typical of all dREL
evaluation processes.

Step 1. A STAR file containing list data in the category REFLN is parsed sequentially. Each loop
packet can be uniquely identified by the value of its category key _refln.hkl. The evaluation
of each _refln.F_complex in the REFLN list may be requested simply by the presence of a “?”
in place of a value. The evaluation of _refln.F_complex is made for each loop packet
independently.

Step 2. If the value _refln.F_complex for a specific _refln.hkl value is available from a
prior evaluation, it will be accessed directly, and the _refln.F_complex method script is not
processed.

Step 3. If the value of _refln.F_complex is unknown for the specific _refln.hkl value, the
parser processes the _method.expression script inserting the values of the referenced data
items from either the associated STAR data file, or from processing the defined method scripts of
these referenced data items.

>>>>>>>>>> CHART 7

A typical derivation pathway for Step 3 in this calculation is shown in CHART 7. Method A is the
_method.expression script for _refln.F_complex . Methods B and C are applied only if the
values of _refln.form_factor_list and _function.adp_factor are not available from
the data file or from a prior evaluation. The arrows in CHART 7 represent the branches to the
methods of the items, _refln.form_factor_list and _function.adp_factor . The parser
continues to “stack” incomplete evaluations until all the needed items have been determined, or the
possible derivation pathways have been exhausted.

12

EXAMPLE 2. Creating ab initio list data

This example is intended to show how lists of derivative data are generated ab initio from the
dictionary definitions in the event that a requested data item is not present in a data file. In previous
examples the data name of the required data item was present in the data file, but with a missing
value i.e. “?”. When there are no tags in the data file for a requested category of data, the
_method.expression within the category definition is used to construct a list of data items for
this category. This example also shows how the calculation sequence flows automatically to other
categories referred to in the method expression. In this instance the categories form a derivation
pathway that link the atom coordinate data (available from the data file) to the methods that
evaluate the angles between bonded atomic sites in a molecule. The derivative pathway is as
follows.

 The list of atomic coordinate data (category ATOM_SITE) are present in the data file.
 ↓↓↓↓
 The list of “connected” atom sites in a molecule (category MODEL_SITE) are calculated.
 ↓↓↓↓
 The list of molecular angles (category GEOM_ANGLE) are calculated.

Note that this sequence of calculations requires the generation of an intermediate list of connected
sites; a step that arises automatically from the relationships of the dictionary definitions.

With the request for molecular angles, the dREL evaluation process proceeds as follows.

Step 1. The request for either _geom_angle.value or the GEOM_ANGLE list cannot be satisfied
from the data items present in the STAR data file shown in CHART 2. This file contains the
crystallographic results for the hypothetical molecular structure shown.

Step 2. The parser then refers to the attribute _method.expression in the GEOM_ANGLE
category definition, shown in CHART 8, for the expressions needed to calculate the inter-atomic
angles from the MODEL_SITE list of connected atom sites. However, these sites are also not
available from the STAR file.

Step 3. The parser then refers to the attribute _method.expression in the MODEL_SITE
category definition for the expressions needed to calculate the connected atoms sites in the molecule
from the ATOM_SITE list of symmetry-unique atom sites.

Step 4. The ATOM_SITE list of sites are present on the STAR file (see CHART 2), and the parser
proceeds to generate the connected atom sites based on the algorithm in the MODEL_SITE category
definition. This results in the MODEL_SITE list shown in CHART 9a.

Step 5. The parser process stack now reverts to the algorithm in the GEOM_ANGLE category
definition. This shows that if the positions of three connected atoms in the MODEL_SITE list are
known in terms of the vectors r1, r2, r3 in a Cartesian system then the angle φ subtended at site 2

is Cos φ = v21 • v23 / d21d23

where v21 =r1 – r2; v23 = r3 – r2 are the inter-atomic vectors and d21 = |v21|; d23 = |v23| are the inter-
atomic distances. This step produces the GEOM_ANGLE list shown in CHART 9b.

13

CONCLUSION

We have shown that the addition of relational expressions as method attributes of STAR data
dictionaries can promote their use as active knowledge bases. The rationale and the purpose of these
attributes are described. These provide for much greater clarity and precision in the definition of
data. The availability of method scripts for use in future discipline-specific dictionaries, and in
laboratory dictionaries containing local information, will promote the scientific exchange and
exploitation of data, well beyond that currently achievable.

Relational expressions in dREL are simple, concise and algorithmic, and this greatly improves the
human readability and interpretation of definition information. Additionally, because method
attributes are executable, derivative data can be directly evaluated as needed. This means that much
derivative data need not be stored in data files, reducing the volume of data exchanged and archived.

Access to executable method scripts in dictionaries offer the promise of new computing paradigms
for future scientific applications. Calculations can be initiated simply be requesting the value of a
specific data item. The calculation sequence and algorithms will be determined entirely by the
method attributes encountered in the evaluation pathway.

A prototype parser for dREL may be viewed at the web site www.cs.uwa.edu.au/dREL. The
executable versions of the examples presented in the paper are available at that address, as is
information on future versions of dREL, and related publications. The source code of dREL will in
the future be distributed as open system software entitling users to free use and code access,
conditional that new developments can correctly parse supplied compliance scripts.

REFERENCES AND NOTES

1 Hall, S.R. The STAR File: A New Format for Electronic Data Transfer and Archiving. J. Chem.
Inform. Comp. Sci. 1991, 31, 326-333.

2 Hall, S.R.; Spadaccini, N. The STAR File: Detailed Specifications. J. Chem. Inform. Comp. Sci.
1994, 34, 505-508.

3 Hall, S.R.; Allen, F.H.; Brown, I.D. The Crystallographic Information File (CIF): A New
Standard Archive File for Crystallography. Acta Cryst. 1991, A47, 655-685.

4 Electronic submission of material in the CIF format is recommended by
American Chemical Society (pubs.acs.org:80/supmat/suppdoc.html)

Royal Society of Chemistry (London) (www.rsc.org/is/journals/authrefs/submit.htm)

International Union of Crystallography (www.iucr.org/iucr-top/cif/index.html)

CSIRO/ Australian Academy of Science (www.publish.csiro.au/journals/ajc/)

Oldenbourg Verlage (www.oldenbourg.de/verlag/zkristallogr/)

5 Submission of data in the CIF format is requested by
 Nucleic Acid Database, Rutgers University (ndbsever.rutgers.edu)

 Protein Data Bank, Rutgers University (www.rcsb.org/pdb)

 Cambridge Structural Database (www.ccdc.cam.ac.uk)

 Powder Diffraction Database (www.icdd.com)

 Inorganic Crystal Structure Database (www.fiz-karlsruhe.de/stn/Databases/icsd.html)

 BioMagResBank (www.bmrb.wisc.edu)

6 IUCr approved dictionaries are listed at www.iucr.org/iucr-top/cif/#dics

14

7 Hall, S.R.; Cook, A.P.F. STAR Data Definition Language: Initial Specification. J. Chem. Inform.
Comp. Sci. 1995, 35, 819-825.

8 Westbrook, J.D.; Hall, S.R. A Dictionary Description Language for Macromolecular Structure.
Draft DDL V 2.1.1 1995 (available from ndbserver.rutgers.edu/mmcif/ddl)

9 IUCr PDF verion of the 2.1 Core CIF Dictionary (available from
ftp://ftp.iucr.org/cif_core_2.1.dic.pdf)

10 Acta Crystallographica validation criteria (www.iucr.org/iucr-top/journals/acta/dv.html)

11 Backus, J. Can Programming Be Liberated from the von Neumann Style? A Functional Style and
Its Algebra of Programs. Communications ACM 1978, 21, 613-641

12 Halfant, M.; Sussman, G.J. Abstraction in Numerical Methods. Lisp and Functional
Programming ACM 1988, 1-7

13 Hughes, J. Why Functional Programming Matters. Computer Journal 1989, 32, 98-107

15

CHART 1

Example definitions from a prototype dictionary which includes method attributes
(identified by the tag _method.expression).

a. Dictionary definition of crystal density.

_definition.id 'crystal.density'
_description.text
;
 Crystal density calculated from crystal unit cell and atomic
content.
;
 _type.container Single
 _type.value Real
 _enumeration.range 0.0:
 _units.code megagrams_per_metres_cubed
 _method.expression
;
 _crystal.density <- 1.6605 * _cell.mass / _cell.volume
;

b. Dictionary definition of cell volume.

_definition.id '_cell.volume'
_description.text
;
 Volume of the crystal unit cell.
;
 _type.container Single
 _type.value Real
 _enumeration.range 0.0:
 _units.code angstroms_cubed
 _method.expression
;
 With v as cell_vector
 _cell.volume <- v.a * (v.b ̂v.c)
;

c. Dictionary definition of cell mass.

_definition.id '_cell.mass'
_description.text
;
Atomic mass of the contents of the unit cell. Calculated from the atom
sites present in the ATOM_TYPE list.
;
 _type.container Single
 _type.value Real
 _enumeration.range 0.:
 _units.code daltons
 _method.expression
;
 _cell.mass <- 0.

 Loop t as atom_type
 _cell.mass +<- t.number_in_cell * t.mass
;

16

CHART 2

An example STAR data file that is applied in later example methods. This file contains a mixture of
primitive and derivative data specifying the crystal structure of the molecule shown below. Note that

there is a two-fold symmetry rotor at the centre of the ring, and the atom sites flagged with an
asterisk are implied by this symmetry. The crystal density is included as an unknown value i.e. “?”.

data_example_file

_cell_length.a 6.100(12)
_cell_length.b 5.900(11)
_cell_length.c 4.920(5)
_cell_angle.alpha 90.
_cell_angle.beta 90.
_cell_angle.gamma 90.8331(5)

 loop_
_symmetry_equiv.pos_as_xyz
 +x,+y,+z -x,-y,+z

loop_
_atom_type.symbol
_atom_type.atomic_mass
 O 16.000
 C 12.011

loop_
_atom_site.label
_atom_site.fract_x
_atom_site.fract_y
_atom_site.fract_z
_atom_site.type_symbol

 o1 .880(1) .280(2) .100(3) O
 c1 .280(1) .620(2) .150(3) C
 c2 .720(1) .620(2) .100(3) C
 c3 .500(1) .250(2) .100(3) C

_crystal.density ?

17

CHART 3

The output data file from a dREL run. The input file is shown in CHART 2. The data items
determined from dictionary methods are in bold font.

data_test_example

_cell_length.a 6.100(12)
_cell_length.b 5.900(11)
_cell_length.c 4.920(5)
_cell_angle.alpha 90.
_cell_angle.beta 90.
_cell_angle.gamma 90.8331(5)

_cell_reciprocal.gamma 89.1669(5)
_cell_vector.a [6.099(12), -0.08869(18), 0.0]
_cell_vector.b [0.0, 5.900(11), 0.0]
_cell_vector.c [0.0, 0.0, 4.920(5)]
_cell.orthogonal_matrix
 [[6.099(12), 0, 0], [-0.08869(18), 5.900(11), 0], [0, 0, 4.920(5)]]

_cell.mass 104.066
_cell.volume 177.1(5)

loop_
_symmetry_equiv.pos_as_xyz
_symmetry_equiv.Seitz_matrix
 +x,+y,+z [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
 -x,-y,+z [[-1, 0, 0, 0], [0,-1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

loop_
_atom_type.symbol
_atom_type.atomic_mass
_atom_type.number_in_cell
 O 16.000 2.0
 C 12.011 6.0

loop_
_atom_site.label
_atom_site.fract_x
_atom_site.fract_y
_atom_site.fract_z
_atom_site.type_symbol
_atom_site.symmetry_multiplicity
_atom_site.fract_xyz
 o1 0.8800(10) 0.280(2) 0.100(3) O 2 [0.8800(10), 0.280(2), 0.100(3)]
 c1 0.2800(10) 0.620(2) 0.150(3) C 2 [0.2800(10), 0.620(2), 0.150(3)]
 c2 0.7200(10) 0.620(2) 0.100(3) C 2 [0.7200(10), 0.620(2), 0.100(3)]
 c3 0.5000(10) 0.250(2) 0.100(3) C 2 [0.5000(10), 0.250(2), 0.100(3)]

_crystal.density 0.976(3)

18

CHART 4

Definitions of hierarchically related categories, showing that the category key items for the
ATOM_SITE_ANISO category is identically equivalent to the key for the parent category

ATOM_SITE. See CHART 5 for an example of this sort of data.

save_ATOM_SITE

 _definition.id atom_site
 _defintion_scope CATEGORY
 _definition.update 1999-11-26
 _description.text
;
 The CATEGORY of data items used to describe atomic site information
 used in crystallograhic structure studies.
;
 _category.family_id structure

 _category_key.item_id '_atom_site.label'
save_

save_ATOM_SITE_ANISO

 _definition.id atom_site_aniso
 _defintion_scope CATEGORY
 _definition.update 1999-11-26
 _description.text
;
 The CATEGORY of data items that may be used to describe anisotropic
atomic
 site information in separate loop lists.
;
 _category.family_id atom_site

 _category_key.item_id '_atom_site_aniso.label'
save_

Equivalent keys Parent category

19

CHART 5a

Contents of a data file showing atom site data as separate list of coordinates and a list U values. As
shown in CHART 4, the highlighted items are category keys for referencing packets of items in these
lists.

 loop_
 _atom_site.label
 _atom_site.fract_x
 _atom_site.fract_y
 _atom_site.fract_z
 o1 .5501 .6371 .1601
 o2 .4012 .5162 .2290
 o3 .2502 .5705 .6011

 loop_
 _atom_site_aniso.label
 _atom_site_aniso.U_11
 _atom_site_aniso.U_12
 _atom_site_aniso.U_13
 _atom_site_aniso.U_22
 _atom_site_aniso.U_23
 _atom_site_aniso.U_33
 o1 .035 .012 .003 .043 .001 .022
 o3 .048 .011 .021 .034 .009 .032

CHART 5b

This data file contains the identical atom site items as in CHART 5a but now as a single list. Because
the category ATOM_SITE_ANISO is linked hierarchically to the category ATOM_SITE, the
single reference key _atom_site.label may be used in a merged list.

 loop_
 _atom_site.label
 _atom_site.fract_x
 _atom_site.fract_y
 _atom_site.fract_z
 _atom_site_aniso.U_11
 _atom_site_aniso.U_12
 _atom_site_aniso.U_13
 _atom_site_aniso.U_22
 _atom_site_aniso.U_23
 _atom_site_aniso.U_33
 o1 .5501 .6371 .1601 .035 .012 .003 .043 .001
.022
 o2 .4012 .5162 .2290 ? ? ? ? ? ?
 o3 .2502 .5705 .6011 .048 .011 .021 .034 .009
.032

20

CHART 6

The dictionary definition of the complex structure factor.

 _definition.id '_refln.F_complex'
 _definition.scope SINGLE
 _definition.class ITEM
 _description.text
;
 The structure factor vector for the reflection calculated from
 the atom site data.
;
 _type.container Single
 _type.value Complex

 _ method.expression
;
With r as refln
 h <- r.hkl
 fc <- Complex (0., 0.)

 Loop a as atom_site {
 x <- a.fract_xyz
 f <- r.form_factor_list [a.type_symbol]
 m <- a.symmetry_multiplicity * a.occupancy

 Loop s as symmetry_equiv {
 S <- s.Seitz_matrix
 t <- _function.adp_factor

 fc +<- m * f * t * ExpImag (TwoPi * (h * (S * x)))
 }
 }
 _refln.F_complex <- fc
;

21

CHART 7

A typical derivation pathway for the evaluation of the structure factor.

With r as refln # A.1
 h <- r.hkl # A.2
 fc <- Complex (0., 0.)

 loop a as atom_site { # A.3
 x <- a.fract_xyz
 f <- r.form_factor_list[a.type_symbol]
 m <- a.symmetry_multiplicity * a.occupancy

 loop s as symmetry_equiv {
 S <- s.Seitz_matrix
 t <- _function.adp_factor
 fc +<- m * f * t * ExpImag (TwoPi *
 (h * (S * x)))
 }
 }

 _refln.F_complex <- fc # A.5

With a as atom_site
With r as refln
With s as symmetry_equiv
With l as cell_reciprocal_length

if (a.apd_type == 'Uani') {
 h <- r.hkl
 S <- s.Seitz_matrix
 U <- S * a.matrix_U * Transpose (S)
 C <- [-[l.a,0,0],[0,l.b,0],[0,0,l.c]-]

 u <- Exp (-2 * Pi **2 * (h * (C * (U * (C * (h))))))
 }
 else {
 u <- Exp (-8*Pi**2* a.U_iso_or_equiv *
r.sin_theta_over_lambda**2)
 }
 _function.adp_factor <- u

With r as refln
 s <- r.sin_theta_over_lambda
 Loop t as atom_type {
 if (_diffrn.radiation_probe ==
 'neutron')
 f <- t.length_neutron
 else if (s < 2.0) {
 f <- (t.c
 + t.a1 * Exp (-t.b1 * s*s)
 + t.a2 * Exp (-t.b2 * s*s)
 + t.a3 * Exp (-t.b3 * s*s)
 + t.a4 * Exp (-t.b4 * s*s))
 } else
 f <- Exp (t.c0 + t.c1*s
 + t.c2*s*s + t.c3*s*s*s)

 refln.form_factor_list[t.symbol] <- f
}

Method A Method B

Method C

22

22

CHART 8

The definition of the data category GEOM_ANGLE showing the method attribute that generates a complete list
of molecular geometry angles from the MODEL_SITE list.

 _definition.id geom_angle
 _definition.scope CATEGORY
 _definition.class ITEM
 _definition.update 2000-05-26
 _description.text
;
 The CATEGORY of data items used to specify the geometry angles in the
 structural model as derived from the atomic sites.
;
 _description.compact 'BondAngleList'
 _category.family_id geom
 _category_key.item_id '_geom_angle.id'

 _method.expression
;
 dmin <- _geom.bond_distance_min

 Loop m1 as model_site :i { # loop vertex model site

 rad1 <- m1.radius_bond + _geom.bond_distance_incr

 Loop m2 as model_site :j { # loop first target site

 If (i==j or m1.mole_index != m2.mole_index) Next
 v1 <- m2.Cartn_xyz - m1.Cartn_xyz
 d1 <- Norm (v1)

 If (d1<dmin or d1>(rad1+m2.radius_bond)) Next

 rad2 <- m2.radius_bond + _geom.bond_distance_incr

 Loop m3 as model_site :k>j { # loop second target site

 If (i==k or m1.mole_index != m3.mole_index) Next
 v2 <- m3.Cartn_xyz - m1.Cartn_xyz
 d2 <- Norm (v2)

 If (d2<dmin or d2>(rad2+m3.radius_bond)) Next

 angle <- Acosd (v1*v2 / (d1*d2))

 geom_angle(.id <- Tuple ([m2.id, m1.id, m3.id]),
 .distances <- Tuple ([d1, d2]),
 .value <- angle)
 } } }
;

23

23

CHART 9a

An excerpt from a data file output from a dREL run showing the generated MODEL_SITE data.

loop_
 _model_site.index
 _model_site.id
 _model_site.radius_bond
 _model_site.radius_contact
 _model_site.fract_xyz
 _model_site.Cartn_xyz
1 ['o1','1_555'] 0.74 1.99 [0.8800(10),0.280(2),0.100(3)] [5.367(12),1.574(12),0.492(15)]
2 ['c1','2_665'] 0.77 2.02 [0.7200(10),0.380(2),0.150(3)] [4.392(11),2.178(13),0.738(15)]
3 ['c2','1_555'] 0.77 2.02 [0.7200(10),0.620(2),0.100(3)] [4.392(11),3.594(14),0.492(15)]
4 ['c3','1_555'] 0.77 2.02 [0.5000(10),0.250(2),0.100(3)] [3.050(9), 1.431(12),0.492(15)]
5 ['c3','2_665'] 0.77 2.02 [0.5000(10),0.750(2),0.100(3)] [3.050(9), 4.381(14),0.492(15)]
6 ['c2','2_665'] 0.77 2.02 [0.2800(10),0.380(2),0.100(3)] [1.708(7), 2.217(13),0.492(15)]
7 ['c1','1_555'] 0.77 2.02 [0.2800(10),0.620(2),0.150(3)] [1.708(7), 3.633(14),0.738(15)]
8 ['o1','2_665'] 0.74 1.99 [0.1200(10),0.720(2),0.100(3)] [0.732(6), 4.237(14),0.492(15)]

CHART 9b

An excerpt of a data file output from a dREL run showing the generated GEOM_ANGLE data.

loop_
 _geom_angle.value
 _geom_angle.distances
 _geom_angle.id
 118.1(13) [1.174(12),1.437(13)] [('o1','1_555'),('c1','2_665'),('c2','1_555')]
 115.9(11) [1.174(12),1.556(10)] [('o1','1_555'),('c1','2_665'),('c3','1_555')]
 116.5(11) [1.437(13),1.556(10)] [('c2','1_555'),('c1','2_665'),('c3','1_555')]
 119.9(12) [1.437(13),1.555(11)] [('c1','2_665'),('c2','1_555'),('c3','2_665')]
 120.1(9) [1.556(10),1.555(9)] [('c1','2_665'),('c3','1_555'),('c2','2_665')]
 120.1(9) [1.555(11),1.556(10)] [('c2','1_555'),('c3','2_665'),('c1','1_555')]
 119.9(10) [1.555(9),1.437(13)] [('c3','1_555'),('c2','2_665'),('c1','1_555')]
 116.5(10) [1.556(10),1.437(13)] [('c3','2_665'),('c1','1_555'),('c2','2_665')]
 115.9(10) [1.556(10),1.174(10)] [('c3','2_665'),('c1','1_555'),('o1','2_665')]
 118.1(13) [1.437(13),1.174(10)] [('c2','2_665'),('c1','1_555'),('o1','2_665')]

