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The STAR File (Hall & Spadaccini, J. Chem. Inf. Comput. Sci. 1994, 34, 505-508) is 

used widely in structural chemistry for exchanging numerical and text information with 

scientific journals and databases.  These exchanges are increasingly dependent on data 

dictionaries to facilitate automatic data validation and checking.  Definitions in data 

dictionaries are constructed using attribute descriptors and this paper describes a 

method attribute for specifying the relationships between data items as an executable 

script written in a new relational expression language called dREL.  The addition of this 

attribute improves the precision and the semantic content of dictionaries by providing 

relational representations of data, as well as facilitating the direct evaluation of 

derivable data items.  The capacity to evaluate derivative data directly from the 

combination of primitive data and dictionary expressions is expected to change future 

archival approaches.  The design concepts of the relational expression language dREL 

parser, which are applicable to any discipline, are described. 

RATIONALE  

The main purpose of data dictionaries is to define data items at a precision that will enable their 
unambiguous identification.  Broadly speaking, data can be classed as either primitive or derivative.  
Primitive data are either experimentally measured or theoretically predicted, and need to be defined in 
a dictionary in sufficient detail to be unique, and so that dependencies on other experimental or 
theoretical parameters are well understood.  Derivative data are determined from other data items, 
and their definition in a dictionary must specify exactly these relationships.  In this paper we describe 
a dictionary attribute that enables the precise definition of derivative data items as relational 
expressions written in the script language dREL.  These definitions are machine interpretable and can 
be used to calculate derivative data directly, but can be easily specified and modified by non-experts. 

We shall show that the existence of relational expressions in a text dictionary leads to data handling 
approaches that seamlessly integrate data values into executable definitions.  These facilities are akin 
to those of an active knowledge base. 

The rationale for direct computation from text dictionaries is many-fold.  The growing complexity of 
computers and conventional programming languages means that scientists are increasingly removed 
from the detail of calculation methods, and are more dependent on “packaged” software.  Current 
programming practices focus on computer performance and as a consequence considerable 
algorithmic knowledge is embedded in computer code that is difficult to understand or to document.  
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This practice is detrimental to both the transfer and the retention of discipline knowledge.  In 
particular, it limits easy access to this knowledge, and therefore to its extension and application.  The 
problem is not diminished with recent computing developments. Modern languages and 
implementation tasks increasingly require formal training in computer science or software 
engineering.  Certainly the era when major scientific packages were written by discipline experts for 
ready modification by other scientists has passed and there is an real need to develop approaches that 
can provide simpler links between discipline knowledge and computational outcomes. 

Data dictionaries containing relational expressions are one such approach.  Used in conjunction with 
databases they provide electronic information that is extensible, interactive and accessible.  They are 
of enormous value as a pedagogical resource.  For example, scientists seeking specific advice and 
information within their discipline often use Internet news-groups.  Such an approach is not as 
reliable or extensive as accessing interactive data dictionaries that have been constructed by 
discipline experts.   

In this paper we describe a dictionary relational expression language dREL that is functional and 
intuitive for humans, and amenable to machine interpretation.  It is sufficiently symbolic to be easily 
translated into textbook information.  It builds upon the previously reported dictionary definition 
languages[7,8] for the CIF dictionaries which form part of the STAR File exchange approach[1,2] 
widely adopted by the chemical structure community.  The prototype version of the dictionary used 
as a proof-of-concept for the dREL relational expressions has been defined using structural science 
data, but exactly the same principles apply to data in other fields.   

We shall also show that data dictionaries are simple text files that are made executable by translation 
and then compilation into Java byte-code.  This compiled dictionary contains routines for parsing 
STAR data files.  Data evaluation using the compiled dictionary is not fast by normal computational 
standards, but it is certain to benefit from future advances in computer technology.  More to the 
point, we maintain that the most important measure of “efficiency” is the speed with which users can 
specify new relational expressions, and understand what has been previously defined.  

 

BACKGROUND  

A STAR File format[1,2] used in the dictionaries described in this paper, is a universal file structure 
for exchanging and archiving data electronically.  A discipline-specific application of this approach, 
the crystallographic information file[3] (CIF), is used widely in structural chemistry for journal and 
database purposes[4,5].  The STAR File and CIF were developed in the late 1980’s in response to 
the rapid growth in measured and calculated scientific data, and the need to interchange information 
electronically over the increasingly accessible Internet.  The adoption of the CIF in 1990 by the 
International Union of Crystallography, as the recommended standard for the exchange of data, led to 
its extensive application to structural science for data submission to both journals and databases. 

The development history of data dictionaries in structural science is relevant here as it illustrates the 
importance that some scientific disciplines are attributing to the careful organization and delivery of 
knowledge, largely in response to massive increases in data.  In structural sciences the CIF 
development has, in addition to promoting open and flexible information exchange, stimulated the 
compilation of data dictionaries which have been internationally approved by the governing bodies in 
a number of sub-disciplines[6].  CIF and STAR files use unique tags to identify exchanged data 
items and these tags are defined in dictionaries written in a dictionary definition language[7,8] 
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(DDL).  Dictionary definitions are composed of attributes that ascribe particular properties to the 
item e.g. its data type, its permitted values, and so on.  These attributes represent the vocabulary of a 
STAR DDL, and determine the richness with which data items can be defined.   

Data dictionaries support CIF exchange and archival processes by uniquely identifying and 
classifying data items.  They also play a pivotal role in the automatic validation of exchanged data.  
Currently two dictionary languages are used in structural chemistry, DDL1.4[7] for core 
crystallographic and powder diffraction items[6] and DDL2.1[8] for the macromolecular structure 
items.  Both DDL versions involve similar attributes; however, DDL2.1 contains a richer attribute 
set.  The access and validation of data using dictionaries is strongly dependent on the scope and 
precision of the DDL attributes.  The developments described in this paper have highlighted a need 
for at least three major additions to the DDL attributes (1) stronger “typing” of data i.e. the inclusion 
of “container” types such as lists, matrices, vectors, etc., (2) allow for the hierarchical classification 
of data and for inheritance, and (3) an intuitive expression language that permits the concise 
representation of algorithmic relationships between data items.   

In this paper we will mainly describe the purpose and properties of the DDL method attribute 
written in dREL.  The detailed specification of the dREL syntax will be the subject of later paper.   

 

THE ROLE OF THE METHOD ATTRIBUTE  

Method attributes serve to propagate the values of primitive data items into derivative items.  As 
discussed earlier, primitive data result from measurement or theory, and are irreducible.  Derivative 
items can be calculated from other data by following a known algorithm.  This derivation is normally 
achieved using customized computer software.  We propose an alternative approach in which the 
method attribute of a derivative item provides this algorithm in the form of  a machine-interpretable 
text expression.   

Method attributes serve two important purposes.  They contain data relationships that constitute 
precise usable knowledge, and they provide executable algorithms that may be used to evaluate the 
defined item in terms of others.  Such attributes provide a simple, transparent and direct approach to 
automating and generalizing processes which are currently either ad hoc, or, at best, highly 
customized.  Of longer-term importance is that precise relational information in data definitions is an 
essential requirement in extending STAR dictionaries into the realm of active knowledge bases.   

A number of major and immediate benefits arise from this approach. 

• Enhancement of knowledge 

The use of analytical expressions in data definitions has the obvious pedagogical benefit of 
making this information more readily accessible to humans.  Relational expressions written in 
dREL represent symbolic, self-descriptive and mathematically logical descriptions that are easy to 
read and to understand.  The underpinning objectives of the dREL language are to simplify this 
information for all dictionary users, and yet be sufficiently powerful to attract application experts. 

Furthermore, the method attribute, along with all other dictionary attributes, is amenable to the 
creation of a “textbook” representation of the definitions.  A prototype parser is already available 
that can create a PDF document from existing CIF dictionaries[9].  It is anticipated that future 
CIF definitions will be rendered automatically into a mathematical typeset (using TEX or 
MathML), so that pedagogical documents of defined knowledge can be produced directly from a 
DDL dictionary. 
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• Retention of knowledge 

The loss of discipline-specific technical knowledge, such as computing algorithms, is an 
increasing problem with the evolution of computer technology and programming languages.  The 
erosion occurs in many ways; when computer software is unsupported by a new generation of 
hardware; when computing languages evolve and earlier versions are incompatible; when 
program authors are no longer accessible; or simply in those cases when knowledge is obscured 
by the programming language.  The dictionary methods proposed herein offer a long-term 
solution because they promote the retention of computer algorithms in terms of a minimal-style 
language that enables relationships to closely resemble mathematical formulae.  The dictionary 
method attribute contains the algorithms as transparent, machine-independent, yet executable 
expressions.  

• Reduction of data archives 

A large proportion of data currently exchanged and archived is superfluous, in that they can be 
easily derived from primitive data if the interdependencies are known.  The use of dictionary 
methods to directly evaluate derivative items will promote new and yet-unthought-of data 
handling paradigms.  It will reduce the need to exchange or archive derivative data that can be 
generated from dictionary methods.  Additionally, these methods can be used to automatically 
verify and validate existing derivative data values.  For example, this approach can replace 
customized software performing validation tasks for scientific publishers[10]. 

• Evaluation of data 

The most important long-term advantage of the dREL methods is computational rather than 
pedagogical.  Executable expressions in dREL avoid most of the obfuscation problems of existing 
imperative coding techniques and offer a programming paradigm empowering scientists to control 
and modify their computations in ways paralleled only by symbolic programming approaches 
within existing algebraic computing packages.   

 

AN EXAMPLE OF THE METHOD ATTRIBUTE  

Within the DDL formalism, each attribute is assigned a unique name or tag.  A variety of attribute 
specifications are illustrated in three simple definitions of data items representing the cell 
characteristics of a crystal, as shown in CHART 1.  For example, the attributes _type.container  
and _type.value  specify that the data TYPE for the data item _crystal.density (in CHART 
1a) as a SINGLE, REAL number.  Each attribute in these definitions serves to identify a particular 
property of the defined item. 

<<<<<< CHART 1 

The attribute _method.expression  contains an expression for evaluating the defined item in 
terms of other defined items.  The way that this is applied is best illustrated using a simple example.   
The data dictionary definition of the crystal density shown in CHART 1a has a method attribute 
_method.expression  containing the simple dREL expression 

 _crystal.density <- 1.6605 * _cell.mass / _cell.volume 

This expression defines the density d of a crystalline solid (in Mg/m3) as the ratio of the atomic mass 
within a crystal unit cell and the volume of that cell, with the mass in units of daltons and the volume 
in cubic angstroms.  The _method.expression  attribute enables the crystal density to be 
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evaluated if both the mass and volume values are known.  Otherwise, _cell.mass  and 
_cell.volume  are treated as functions[13] which need to be evaluated from their dictionary 
definitions, which are included as CHART 1b and 1c, respectively.  This reduction approach to 
evaluation continues until either the density value is determined, or all derivation pathways are 
exhausted.  It is important to note that the relational expressions are kept as simple and as modular 
as possible.  Second-order relationships, such as those needed to derive _cell.mass or 
_cell.volume are not considered part of the _crystal.density  method.  

<<<<<< CHART 2 

CHART 2 shows a small test data file in which the item _crystal.density  is flagged as 
unknown with a “?”.  Parsing this file using dREL-compiled definitions shown in CHART 1 
produces an output file shown in CHART 3.  This contains a value of _crystal.density  
calculated from the method expressions, along with an appended standard uncertainty value derived 
from these expressions.  Note that there are a number of other data values determined as a 
consequence of the derivation processes (shown in bold font).  

<<<<<< CHART 3 

One further lesson can be drawn from these simple example definitions.  Note that the relational 
expression in the method of CHART 1a can be easily parsed to derive the formula, 

 densitycrystal  =  1.6605  masscell 
 volumecell 

and is very similar to the textbook definition of the crystal density, 

 d  =  1.6605  Mc 
 Vc 
Similarly, the expression for the volume of a crystal cell shown in the method of CHART 1b, 

 volumecell  =  acell_vector  •  (bcell_vector   x  ccell_vector ) 
is explicit because vector quantities can be used in the dictionary definitions.  Although the 
expression for crystal cell mass in the method of CHART 1c, 
 atomic_type 

 masscell  =  Σ (number_in_cellt  *  masst) 
 t 

is not as straightforward as for the density and volume, the syntax involving a Loop  of products in 
the atom_type  list matches the structure of the data file (see CHART 3). The in-place 
operator “+<-“  in the method script signals a summation of these terms. 

These introductory examples illustrate that dictionary attributes provide for more than just derivative 
evaluation.  They restrict data quantities in terms of typing, enumeration (e.g. all values must be non-
negative real numbers) and expected units.  These are used to validate existing data values.  

 

THE REDUCTION APPROACH 

As the crystal density definition has shown (see CHART 1), it is operationally advantageous to treat 
data items in dREL relational expressions as functions, and to employ a reduction approach to their 
evaluation.  This simplifies the compilation and maintenance of dictionary definitions by enabling 
new method scripts to be added with little or no knowledge of data dependencies in the existing 
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definitions.  As a consequence, method scripts need only contain the most directly related items (e.g. 
in the density method these are the cell mass and volume items, not the cell vector items, etc.), with 
no prior knowledge of how these are to be evaluated.  This type of modularity promotes simple, 
concise and symbolic relational expressions.  

Instead of placing the highest priority on execution efficiency, the dREL approach emphasises the 
clarity of data relationships.  This has important implications for the long-term retention of 
knowledge because algorithms are no longer obscured by the syntax of conventional programming 
languages.  The philosophy underpinning the development of the dictionary relational expression 
language dREL is that knowledge be retained in its most comprehensible human-readable form, 
independent of current computational constraints.  Because large improvements in computer 
performance are certain, human, rather than machine, efficiency has been made the main 
consideration.  

The relative importance of expressing knowledge intuitively needs some elaboration.  Most computer 
software is written in imperative procedural code that is largely incomprehensible to non-
programmers.  To illustrate this we contrast the expression used the volume definition in CHART 
1b,  

V = a • (b x c) 

where the volume V  of a parallelepiped is expressed in terms of its cell vectors a, b and c, with the 
conventional approach to coding a volume calculation in which the vectors are expressed in terms of 
the scalar cell lengths a, b and c and angles α, β and γ, as  

s=(alpha+beta+gamma)/2. 

V=2.*a*b*c*Sqrt(Sin(s)*Sin(s–alpha)*Sin(s–beta)*Sin(s–gamma))  

This expanded code may be computationally efficient, but its intent is obscure, compared to the 
dREL expression shown in CHART 1b.  The usual coding practices used in C, C++ and Fortran 
languages also complicate the algebraic structure of relationships, and this limits their use for non-
computational purposes, such as translation through algebraic manipulation software. 
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DESIGN CONCEPTS OF dREL 

“Conventional programming languages are growing evermore enormous, but 
not stronger.  Inherent defects at the most basic level cause them to be both fat 
and weak: the primitive word-at-a-time style of programming inherited from 
their close ancestor – the von Neumann computer, their close coupling of 
semantics to state transitions, their division of programming into a world of 
expressions and a world of statements, their inability to effectively use 
powerful combining forms for building new programs from existing ones, and 
their lack of useful mathematical properties for reasoning about programs.”  
Backus, 1978. 

Backus [11] expressed these widely shared concerns in his acceptance speech for the 1977 ACM 
Turing Award.  Imperative programming languages are efficient because they mimic the von 
Neumann architecture, but in doing so they obscure the meaning of the computed algorithm.  Despite 
this serious limitation, it has only been with the most recent improvements to computer performance 
that serious consideration has been given to alternative programming rationales, such as provided by 
functional languages.  These have been successful with some numerical computing tasks[12,13], but 
have been little used in scientific applications. 

In the design of dREL, the benefits of the functional, procedural and object-oriented programming 
paradigms have been considered.  As emphasised earlier, we gave the execution efficiency of method 
scripts a lower priority to other dREL objectives, such as expression simplicity, conciseness and 
clarity.  It was rationalized that future improvements to computer performance would improve 
execution efficiency, but only a better language design would lead to similar efficiency gains for the 
average user.  These considerations made the prospect of designing an intuitive language with good 
operational properties an achievable goal. 

 

dREL Design Criteria 

The principal design criteria for dREL were the following. 

1. The relational expressions in a DDL method attribute of a dictionary definition must be linked 
operationally to all other DDL attributes within that definition, and, to other related definitions 
in the dictionary.  The language scope must encompass the entire contents of a dictionary in 
order that all data items and their attributes are accessible in the execution of a method script. 

2. The execution of a method script can only produce a result if the values of dependent data items 
can be determined.  Ultimately, each evaluation depends on the availability of one or more data 
values from the data file being parsed by the dictionary application.  It follows that the dREL 
parser must be completely conversant with the STAR File syntax and structure, and must have 
access to particular known values in a data file in order that evaluation can occur. 

3. Relational expressions should mimic corresponding mathematical formula as closely as 
possible.  A comprehensive set of data “container” types, e.g. Complex, List, Tuple, Table, 
Vector and Matrix must be supported by dREL and be manipulated without explicit iteration 
over the elements of the container type.  Operator overloading based on operand types should 
be supported.  An example of this is given in the penultimate statement of the code fragment in 
CHART 6 in which the argument h*S*x represents the multiplication of a matrix S, by the row 
vector h and the column vector x). 
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4. dREL must support a data type referred to as Measurement. These are data which are not exact 
i.e. each number has an associated uncertainty value (e.g. the measurement value recorded as 
10.42(6) means there is a .667 probability that the true value is in the range 10.36 - 10.48).  The 
statistical uncertainties of measurement data in a relational expression must be handled 
automatically.  That is, the evaluation of a method script involving any data of type 
Measurement must result in a value of this type and have an associated uncertainty value.  
Mathematically, the expression for calculating this uncertainty is function of the partial 
derivatives of the original evaluation expression, and this can be generated using standard 
computer algebraic approaches.  Accordingly, an expression language must promote the use of 
symbolic representations that can be differentiated algebraically.  

 

Dictionary Attribute Requirements 

The dREL design is dependent on the versatility and scope of the dictionary DDL syntax and 
attributes[7,8].  The most important of these considerations are as follows. 

1. Each definition in a dictionary should be an encapsulation of the properties of a specific data 
item, and that this entry be treated as a discrete object.  During execution these dictionary objects 
are married to specific data values from a data file. 

2. That data items be classified into groups of related items, referred to in a STAR File as a 
category, and that this classification is declared explicitly in the dictionary.  In this context a data 
item may be considered an attribute of the category.  For example, the data items 
_atom_site.label  and _atom_site.fract_xyz  (see CHART 4 and 5) are members of the 
ATOM_SITE category. Within this category they may be accessed through their data name 
extensions, label  and fract_xyz.  

3. A single data item may have a list of values. A category of such items may be thought of as a 
table in which the columns contain the values and the item data names form the column header.  A 
category of list items must have at least one data item with unique values.  This item is the 
category key for uniquely referencing a loop packet (i.e. a row in the table). 

<<<<<<< CHART 4 

4. Data categories may be divided into three classes according to their roles.  They are major 
function, hierarchical and derivation.  Identifying these roles assists in the correct definition of 
data classes, and in how the method attributes will be parsed by dREL.  This is best 
conceptualized as a three-dimensional organizational model.  The major function categories 
each occupy one axis of organizational space.  In structural sciences these would be the major 
data classes CRYSTAL, DIFFRACTION, STRUCTURE and MODEL, representing the families of data 
separated by purpose, origin or computational progression.   

 A second dimension of the organizational model separates hierarchical categories.  Such 
categories form families of data that are potentially merged into a common parent category.  For 
example, ATOM_SITE data is part of the STRUCTURE family, and ATOM_SITE_ANISO is a child 
member of the ATOM_SITE category.  The knowledge of such relationships is important because 
dREL merges child categories containing list data into the lists of parent categories of the same 
family (see CHARTS 4 and 5).   

 The third organizational dimension separates derivation categories.  These categories contain data 
that are derived from other data. They are separated in this dimension by the order in which they 
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can be derived: primary, secondary, tertiary, quaternary, such as with ATOM_SITE, 

MODEL_SITE, GEOMETRY and ENTITY.  

<<<<<<< CHART 5 

5. Data items in list categories related by hierarchy may be merged with “parent” categories in the 
same family because their category key items are equivalent and interchangeable.  CHART 4 
illustrates such a relationship for ATOM_SITE data, and CHART 5 shows how data in these list 
categories may be operationally “joined”.  

6. Data items belonging to list categories related by derivation share common category keys.  These 
keys are explicitly specified in the dictionary so that lists related by derivation can be mapped 
onto each other.   

 

dREL Operational Requirements 

Operational requirements of dREL arise specifically from the need for assignments in the method 
scripts. These have had a significant bearing on the dREL design criteria. 

1. Defined data names (i.e. tags) appearing on the right hand side of relational expressions are 
treated by dREL as functions, in that they reference a specific value, or they refer to a method 
script in the dictionary that can be evaluated. 

2. The evaluation of specific data items in a relational expression take place on an “as needed” 
basis, just as in functional languages. 

3. dREL statements involving an imperative syntax will be supported to control access of stored 
variables in certain cases. 

 

dREL RUN-TIME SCOPING  

Although the specification of the scoping rules for dREL relational expressions is the topic of a later 
paper, we give a summary of these requirements here to help explain the fundamental differences 
between dREL and other scripting languages.  The run-time evaluation model employed by dREL has 
similarities to existing functional languages, but differs markedly in that it is based on the specific 
scoping requirements for accessing STAR File data.  They are as follows. 

1. A STAR data tag in a dREL script represents a pointer to either its value in an associated STAR 
data file, or its method script from which a value can be derived. Once evaluated, the pointer is 
replaced by the value.  In this way, evaluation occurs only once. 

2. An evaluation in a method script is postponed if the process branches to another method script, 
and the new script assumes the same scope and context for data items from the previous process. 

3. Only the data item within the current scope is evaluated. In the case of repeated (list) data items, 
only one loop packet of data is, by default, in scope.  Examples of this scoping requirement are 
illustrated in CHART 6. 

4. For list categories, the local-reference pointer to the current loop packet (represented by the 
current value of the defined category key) in the statement 

                     With   local-reference  as  category-name 
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 Data items in the category category-name are addressed by appending their data name extension 
to the identifier local-reference. Hence, the statement, 

                      With a as atom_site 

 places the items in the current packet of the ATOM_SITE category in scope, and these can be 
accessed as, say, a.label , a.fract_xyz , etc.  The scope of the “With” statement is 
unchanged from the prior evaluation sequence.  For example, if the joined list shown in CHART 
5b is being processed, and the current loop packet in scope has a category key value of 
_atom_site.label = o2 , then the invocation of a new method containing the statement 

           With s as atom_site 

will not change the scope of a. 

5. For list categories, packets of data are successively brought into scope by the statement 

 Loop  local-reference  as  category-name { 

  Statement-block 

 }  

For the example in 5. above, the statement 

   Loop a as atom_site {  } 

implies that pointer to all loop packets (identified in CHART 5b as the category key items 
_atom_site.label  with the values o1 to o3) will be successively placed in scope. 

 

FURTHER dREL APPLICATIONS  

Some examples of complex evaluation methods are now needed to illustrate the full versatility of the 
dREL approach.  The first example calculates the structure factor value for specific diffraction 
vectors and this shows, in particular, the operation of the reduction process during data evaluation.  
The second example method determines the list of inter-atomic angles within a molecular structure 
and this illustrates how ab initio lists of items are created from more primitive data in the derivation 
pathway. 

 

EXAMPLE 1.  A crystallographic structure factor calculation 

For crystallographic studies, the determination of molecular structure from diffraction data requires 
the measured structure factors be compared with those values calculated from the proposed 
molecular model of individual atom sites.  The calculated structure factor F(h) for each diffraction 
point, h = h,k,l, 
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 F(h) =  ∑   fj(s) e- Bj(s) e-2πi h.rj 

 j=1,N 

is a Fourier transform expressed as the summation of the N atom sites in the unit cell, where fj is the 

atomic scattering as function of the scattering direction s, e-Bj(s) is the atomic displacement factor 
and is a function of the scattering direction s, and the atomic site coordinate vectors rj (= xj/a, yj/b, 
zj/c).  When the crystal unit cell contains atomic sites related by space group symmetry, and the 
expression for the structure factor becomes 

 F(h) =  ∑  fj(s)   ∑ e-Bj(s) e-2πi h.Skr j
 

 j=1,U k=1,M 

where Sk is the Seitz matrix for the kth symmetry transformation, and the summation is partitioned 
into the number of unique atomic sites U and the number of symmetry matrices M (N=UxM).  The 
dictionary definition for a calculated structure factor is shown in CHART 6 and the attribute 
_method.expression  contains a relational expression representing the above equation. 

>>>>>>>>>> CHART 6 

The different attributes in a dictionary definition contribute to the evaluation of 
_refln.F_complex , which is a single complex number belonging to the REFLN category.  Its 
evaluation from _method.expression  is dependent on the values of other data items, 
_atom_site.fract_xyz, _atom_site.type_symbol , etc., and these must be available from 
either an associated data file or through the method scripts in their definitions.  The evaluation of the 
calculated structure factor involves the following basic steps.  These steps are typical of all dREL 
evaluation processes. 

Step 1. A STAR file containing list data in the category REFLN is parsed sequentially.  Each loop 
packet can be uniquely identified by the value of its category key _refln.hkl.   The evaluation 
of each _refln.F_complex  in the REFLN list may be requested simply by the presence of a “?” 
in place of a value.  The evaluation of _refln.F_complex  is made for each loop packet 
independently. 

Step 2. If the value _refln.F_complex  for a specific _refln.hkl  value is available from a 
prior evaluation, it will be accessed directly, and the _refln.F_complex  method script is not 
processed. 

Step 3. If the value of _refln.F_complex  is unknown for the specific _refln.hkl  value, the 
parser processes the _method.expression  script inserting the values of the referenced data 
items from either the associated STAR data file, or from processing the defined method scripts of 
these referenced data items.   

>>>>>>>>>> CHART 7 

A typical derivation pathway for Step 3 in this calculation is shown in CHART 7.  Method A is the 
_method.expression  script for _refln.F_complex .  Methods B and C are applied only if the 
values of  _refln.form_factor_list  and _function.adp_factor  are not available from 
the data file or from a prior evaluation.  The arrows in CHART 7 represent the branches to the 
methods of the items, _refln.form_factor_list  and _function.adp_factor .  The parser 
continues to “stack” incomplete evaluations until all the needed items have been determined, or the 
possible derivation pathways have been exhausted.  
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EXAMPLE 2. Creating ab initio list data  

This example is intended to show how lists of derivative data are generated ab initio from the 
dictionary definitions in the event that a requested data item is not present in a data file.  In previous 
examples the data name of the required data item was present in the data file, but with a missing 
value i.e. “?”.  When there are no tags in the data file for a requested category of data, the 
_method.expression  within the category definition is used to construct a list of data items for 
this category.  This example also shows how the calculation sequence flows automatically to other 
categories referred to in the method expression.  In this instance the categories form a derivation 
pathway that link the atom coordinate data (available from the data file) to the methods that 
evaluate the angles between bonded atomic sites in a molecule.  The derivative pathway is as 
follows. 

 The list of atomic coordinate data (category ATOM_SITE) are present in the data file. 
      ↓↓↓↓    
 The list of “connected” atom sites in a molecule (category MODEL_SITE) are calculated. 
      ↓↓↓↓ 
 The list of molecular angles (category GEOM_ANGLE) are calculated. 

Note that this sequence of calculations requires the generation of an intermediate list of connected 
sites; a step that arises automatically from the relationships of the dictionary definitions. 

With the request for molecular angles, the dREL evaluation process proceeds as follows.  

Step 1. The request for either _geom_angle.value  or the GEOM_ANGLE list cannot be satisfied 
from the data items present in the STAR data file shown in CHART 2.  This file contains the 
crystallographic results for the hypothetical molecular structure shown. 

Step 2. The parser then refers to the attribute _method.expression  in the GEOM_ANGLE 
category definition, shown in CHART 8, for the expressions needed to calculate the inter-atomic 
angles from the MODEL_SITE list of connected atom sites.  However, these sites are also not 
available from the STAR file. 

Step 3.  The parser then refers to the attribute _method.expression  in the MODEL_SITE 
category definition for the expressions needed to calculate the connected atoms sites in the molecule 
from the ATOM_SITE list of symmetry-unique atom sites.  

Step 4. The ATOM_SITE list of sites are present on the STAR file (see CHART 2), and the parser 
proceeds to generate the connected atom sites based on the algorithm in the MODEL_SITE category 
definition.  This results in the MODEL_SITE list shown in CHART 9a. 

Step 5. The parser process stack now reverts to the algorithm in the GEOM_ANGLE category 
definition. This shows that if the positions of three connected atoms in the MODEL_SITE list are 
known in terms of the vectors r1, r2, r3 in a Cartesian system then the angle φ subtended at site 2 

is     Cos φ =  v21 • v23 / d21d23  

where v21 =r1 – r2; v23 = r3 – r2 are the inter-atomic vectors and d21 = |v21|; d23 = |v23| are the inter-
atomic distances. This step produces the GEOM_ANGLE list shown in CHART 9b. 
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CONCLUSION 

We have shown that the addition of relational expressions as method attributes of STAR data 
dictionaries can promote their use as active knowledge bases.  The rationale and the purpose of these 
attributes are described.  These provide for much greater clarity and precision in the definition of 
data.  The availability of method scripts for use in future discipline-specific dictionaries, and in 
laboratory dictionaries containing local information, will promote the scientific exchange and 
exploitation of data, well beyond that currently achievable.   

Relational expressions in dREL are simple, concise and algorithmic, and this greatly improves the 
human readability and interpretation of definition information.  Additionally, because method 
attributes are executable, derivative data can be directly evaluated as needed. This means that much 
derivative data need not be stored in data files, reducing the volume of data exchanged and archived.  

Access to executable method scripts in dictionaries offer the promise of new computing paradigms 
for future scientific applications. Calculations can be initiated simply be requesting the value of a 
specific data item.  The calculation sequence and algorithms will be determined entirely by the 
method attributes encountered in the evaluation pathway.  

A prototype parser for dREL may be viewed at the web site www.cs.uwa.edu.au/dREL.  The 
executable versions of the examples presented in the paper are available at that address, as is 
information on future versions of dREL, and related publications.  The source code of dREL will in 
the future be distributed as open system software entitling users to free use and code access, 
conditional that new developments can correctly parse supplied compliance scripts.  
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CHART 1 

Example definitions from a prototype dictionary which includes method attributes 
(identified by the tag _method.expression ). 

 

a. Dictionary definition of crystal density. 
 

_definition.id                  'crystal.density' 
_description.text 
; 
     Crystal density calculated from crystal unit cell and atomic 
content. 
; 
    _type.container              Single 
    _type.value                  Real 
    _enumeration.range           0.0: 
    _units.code                  megagrams_per_metres_cubed 
    _method.expression 
; 
    _crystal.density <- 1.6605 * _cell.mass / _cell.volume 
;  

 

b. Dictionary definition of cell volume. 
 

_definition.id                 '_cell.volume' 
_description.text 
; 
     Volume of the crystal unit cell. 
; 
    _type.container              Single 
    _type.value                  Real 
    _enumeration.range           0.0: 
    _units.code                  angstroms_cubed 
    _method.expression 
; 
      With v  as  cell_vector 
            _cell.volume <-  v.a * ( v.b  ̂v.c ) 
; 

 

c. Dictionary definition of cell mass. 
 

_definition.id                 '_cell.mass' 
_description.text 
; 
Atomic mass of the contents of the unit cell. Calculated from the atom 
sites present in the ATOM_TYPE list. 
; 
    _type.container              Single 
    _type.value                  Real    
    _enumeration.range           0.: 
    _units.code                  daltons 
    _method.expression 
; 
    _cell.mass <- 0. 
 
    Loop t as atom_type 
       _cell.mass +<- t.number_in_cell * t.mass 
; 



16 

CHART 2 
 

An example STAR data file that is applied in later example methods.  This file contains a mixture of 
primitive and derivative data specifying the crystal structure of the molecule shown below. Note that 

there is a two-fold symmetry rotor at the centre of the ring, and the atom sites flagged with an 
asterisk are implied by this symmetry.  The crystal density is included as an unknown value i.e. “?”. 

 
 
 
data_example_file 
 
_cell_length.a                         6.100(12) 
_cell_length.b                         5.900(11) 
_cell_length.c                         4.920(5) 
_cell_angle.alpha                      90. 
_cell_angle.beta                       90. 
_cell_angle.gamma                      90.8331(5) 
  
 
 loop_ 
_symmetry_equiv.pos_as_xyz 
  +x,+y,+z  -x,-y,+z  
 
loop_ 
_atom_type.symbol 
_atom_type.atomic_mass 
  O     16.000   
  C     12.011   
 
loop_ 
_atom_site.label 
_atom_site.fract_x 
_atom_site.fract_y 
_atom_site.fract_z 
_atom_site.type_symbol 

 

 
  o1  .880(1)  .280(2)  .100(3)  O 
  c1  .280(1)  .620(2)  .150(3)  C 
  c2  .720(1)  .620(2)  .100(3)  C 
  c3  .500(1)  .250(2)  .100(3)  C 
  
_crystal.density     ? 
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CHART 3 
 

The output data file from a dREL run. The input file is shown in CHART 2. The data items 
determined from dictionary methods are in bold font. 

 
data_test_example 
 
_cell_length.a                         6.100(12) 
_cell_length.b                         5.900(11) 
_cell_length.c                         4.920(5) 
_cell_angle.alpha                      90. 
_cell_angle.beta                       90. 
_cell_angle.gamma                      90.8331(5) 
 
_cell_reciprocal.gamma  89.1669(5)  
_cell_vector.a     [6.099(12), -0.08869(18), 0.0] 
_cell_vector.b     [0.0, 5.900(11), 0.0] 
_cell_vector.c    [0.0, 0.0, 4.920(5)] 
_cell.orthogonal_matrix  
  [[6.099(12), 0, 0], [-0.08869(18), 5.900(11), 0], [0, 0, 4.920(5)]] 
 
_cell.mass         104.066 
_cell.volume       177.1(5)  
 
loop_ 
_symmetry_equiv.pos_as_xyz 
_symmetry_equiv.Seitz_matrix 
  +x,+y,+z  [[ 1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]  
  -x,-y,+z  [[-1, 0, 0, 0], [0,-1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]  
 
loop_ 
_atom_type.symbol 
_atom_type.atomic_mass 
_atom_type.number_in_cell 
  O     16.000    2.0  
  C     12.011    6.0  
 
loop_ 
_atom_site.label 
_atom_site.fract_x 
_atom_site.fract_y 
_atom_site.fract_z 
_atom_site.type_symbol 
_atom_site.symmetry_multiplicity 
_atom_site.fract_xyz 
  o1  0.8800(10)  0.280(2)  0.100(3) O  2  [0.8800(10), 0.280(2), 0.100(3)]   
  c1  0.2800(10)  0.620(2)  0.150(3) C  2  [0.2800(10), 0.620(2), 0.150(3)]  
  c2  0.7200(10)  0.620(2)  0.100(3) C  2  [0.7200(10), 0.620(2), 0.100(3)]  
  c3  0.5000(10)  0.250(2)  0.100(3) C  2  [0.5000(10), 0.250(2), 0.100(3)]  
 
_crystal.density 0.976(3) 
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CHART 4 
 

Definitions  of  hierarchically related categories, showing that the category key items for the 
ATOM_SITE_ANISO category is identically equivalent to the key for the parent category 

ATOM_SITE. See CHART 5 for an example of this sort of data. 
 

save_ATOM_SITE 
  
    _definition.id               atom_site 
    _defintion_scope             CATEGORY 
    _definition.update           1999-11-26 
    _description.text 
; 
     The CATEGORY of data items used to describe atomic site information 
     used in crystallograhic structure studies. 
; 
    _category.family_id          structure 
 
    _category_key.item_id      '_atom_site.label' 
save_ 
 
 
 

 

save_ATOM_SITE_ANISO 
  
    _definition.id               atom_site_aniso 
    _defintion_scope             CATEGORY 
    _definition.update           1999-11-26 
    _description.text 
; 
     The CATEGORY of data items that may be used to describe anisotropic 
atomic 
     site information in separate loop lists. 
; 
    _category.family_id          atom_site 
 
    _category_key.item_id              '_atom_site_aniso.label' 
save_ 

Equivalent keys Parent category 
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CHART 5a 

Contents of a data file showing atom site data as separate list of coordinates and a list U values. As 
shown in CHART 4, the highlighted items are category keys for referencing packets of items in these 
lists.  
 

 loop_ 
 _atom_site.label 
 _atom_site.fract_x 
 _atom_site.fract_y 
 _atom_site.fract_z 
  o1 .5501 .6371 .1601  
  o2 .4012 .5162 .2290  
  o3 .2502 .5705 .6011  
 
 loop_ 
 _atom_site_aniso.label 
 _atom_site_aniso.U_11 
 _atom_site_aniso.U_12 
 _atom_site_aniso.U_13 
 _atom_site_aniso.U_22 
 _atom_site_aniso.U_23 
 _atom_site_aniso.U_33 
    o1 .035 .012 .003 .043 .001 .022  
    o3 .048 .011 .021 .034 .009 .032 
 

 

CHART 5b 

This data file contains the identical atom site items as in CHART 5a but now as a single list.  Because 
the category ATOM_SITE_ANISO is linked hierarchically to the category ATOM_SITE, the 
single reference key _atom_site.label  may be used in a merged list.  

 
 loop_ 
 _atom_site.label 
 _atom_site.fract_x 
 _atom_site.fract_y 
 _atom_site.fract_z 
 _atom_site_aniso.U_11 
 _atom_site_aniso.U_12 
 _atom_site_aniso.U_13 
 _atom_site_aniso.U_22 
 _atom_site_aniso.U_23 
 _atom_site_aniso.U_33 
  o1  .5501 .6371 .1601 .035  .012  .003 .043  .001  
.022  
  o2  .4012 .5162 .2290 ? ? ? ? ? ? 
  o3  .2502 .5705 .6011 .048  .011  .021 .034  .009  
.032 
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CHART 6 
 

The dictionary definition of the complex structure factor. 
 

    _definition.id             '_refln.F_complex' 
    _definition.scope            SINGLE 
    _definition.class         ITEM 
    _description.text 
; 
     The structure factor vector for the reflection calculated from 
     the atom site data. 
; 
    _type.container              Single 
    _type.value                  Complex 
 
    _ method.expression 
; 
With r  as  refln 
      h   <-  r.hkl 
      fc  <-  Complex (0., 0.) 
  
   Loop a  as  atom_site  { 
          x  <-  a.fract_xyz 
          f  <-  r.form_factor_list [a.type_symbol] 
          m  <-  a.symmetry_multiplicity * a.occupancy 
  
      Loop s  as  symmetry_equiv  { 
              S  <-  s.Seitz_matrix 
              t  <-  _function.adp_factor 
  
             fc +<-  m * f * t * ExpImag ( TwoPi * ( h * (S * x) ) ) 
      } 
   } 
      _refln.F_complex  <-  fc 
;  
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CHART 7 

A typical derivation pathway for the evaluation of the structure factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With r  as  refln      # A.1  
  h   <-  r.hkl        # A.2  
  fc  <-  Complex (0., 0.) 
  
  loop a  as  atom_site  {   # A.3  
    x <-  a.fract_xyz 
    f <- r.form_factor_list[a.type_symbol]   
     m <-  a.symmetry_multiplicity * a.occupancy 
  
     loop s  as  symmetry_equiv  {        
       S  <-  s.Seitz_matrix 
       t  <-  _function.adp_factor                 
       fc +<-  m * f * t * ExpImag ( TwoPi * 
                    ( h * (S * x) ) ) 
      } 
   } 

      _refln.F_complex  <-  fc       # A.5  

 

With a  as  atom_site 
With r  as  refln 
With s  as  symmetry_equiv 
With l  as  cell_reciprocal_length 
  
if (a.apd_type == 'Uani')   { 
  h <- r.hkl 
  S <- s.Seitz_matrix 
  U <- S * a.matrix_U * Transpose ( S ) 
  C <- [-[l.a,0,0],[0,l.b,0],[0,0,l.c]-] 
  
  u <- Exp (-2 * Pi **2 * ( h * ( C * ( U * ( C * ( h )))))) 
 }  
 else             { 
  u <- Exp (-8*Pi**2* a.U_iso_or_equiv * 
r.sin_theta_over_lambda**2) 
 } 
  _function.adp_factor <- u 

With r  as  refln 
  s <- r.sin_theta_over_lambda 
  Loop t as atom_type  { 
    if (_diffrn.radiation_probe ==  
                         'neutron') 
      f <- t.length_neutron 
    else if (s < 2.0 ) { 
      f <- (t.c  
         + t.a1 * Exp (-t.b1 * s*s) 
         + t.a2 * Exp (-t.b2 * s*s) 
         + t.a3 * Exp (-t.b3 * s*s) 
         + t.a4 * Exp (-t.b4 * s*s) ) 
   } else 
     f <- Exp (t.c0 + t.c1*s  
        + t.c2*s*s + t.c3*s*s*s) 
  
  refln.form_factor_list[t.symbol] <- f 
} 

Method A Method B  

Method C  



 

22 

22

CHART 8 

 

The definition of the data category GEOM_ANGLE showing the method attribute that generates a complete list 
of molecular geometry angles from the MODEL_SITE list. 

 
    _definition.id               geom_angle 
    _definition.scope            CATEGORY 
    _definition.class            ITEM 
    _definition.update           2000-05-26 
    _description.text 
; 
     The CATEGORY of data items used to specify the geometry angles in the 
     structural model as derived from the atomic sites. 
; 
    _description.compact        'BondAngleList' 
    _category.family_id          geom 
    _category_key.item_id      '_geom_angle.id' 
 
    _method.expression 
; 
     dmin <- _geom.bond_distance_min 
 
     Loop  m1  as  model_site  :i  {   # loop vertex model site 
 
        rad1  <-  m1.radius_bond + _geom.bond_distance_incr 
 
        Loop  m2  as  model_site  :j  {  # loop first target site 
 
           If (i==j or m1.mole_index != m2.mole_index) Next 
           v1 <- m2.Cartn_xyz - m1.Cartn_xyz 
           d1 <- Norm (v1) 
 
           If (d1<dmin or d1>(rad1+m2.radius_bond))  Next 
 
           rad2  <-  m2.radius_bond + _geom.bond_distance_incr 
 
           Loop  m3  as  model_site  :k>j  {  # loop second target site 
 
              If (i==k or m1.mole_index != m3.mole_index) Next 
              v2 <- m3.Cartn_xyz - m1.Cartn_xyz 
              d2 <- Norm (v2) 
 
              If (d2<dmin or d2>(rad2+m3.radius_bond)) Next 
 
              angle <- Acosd ( v1*v2 / (d1*d2) ) 
 
              geom_angle( .id        <- Tuple ([m2.id, m1.id, m3.id]), 
                          .distances <- Tuple ([d1, d2]), 
                          .value     <- angle ) 
     }   }   }  
; 
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CHART 9a 

An excerpt from a data file output from a dREL run showing the generated MODEL_SITE data. 

 
 
loop_ 
  _model_site.index 
  _model_site.id 
  _model_site.radius_bond 
  _model_site.radius_contact 
  _model_site.fract_xyz 
  _model_site.Cartn_xyz 
1  ['o1','1_555']  0.74 1.99 [0.8800(10),0.280(2),0.100(3)] [5.367(12),1.574(12),0.492(15)] 
2  ['c1','2_665']  0.77 2.02 [0.7200(10),0.380(2),0.150(3)] [4.392(11),2.178(13),0.738(15)] 
3  ['c2','1_555']  0.77 2.02 [0.7200(10),0.620(2),0.100(3)] [4.392(11),3.594(14),0.492(15)] 
4  ['c3','1_555']  0.77 2.02 [0.5000(10),0.250(2),0.100(3)] [3.050(9), 1.431(12),0.492(15)] 
5  ['c3','2_665']  0.77 2.02 [0.5000(10),0.750(2),0.100(3)] [3.050(9), 4.381(14),0.492(15)] 
6  ['c2','2_665']  0.77 2.02 [0.2800(10),0.380(2),0.100(3)] [1.708(7), 2.217(13),0.492(15)] 
7  ['c1','1_555']  0.77 2.02 [0.2800(10),0.620(2),0.150(3)] [1.708(7), 3.633(14),0.738(15)] 
8  ['o1','2_665']  0.74 1.99 [0.1200(10),0.720(2),0.100(3)] [0.732(6), 4.237(14),0.492(15)] 
 

 

CHART 9b 

An excerpt of a data file output from a dREL run showing the generated GEOM_ANGLE data. 

 
 
loop_ 
  _geom_angle.value 
  _geom_angle.distances 
  _geom_angle.id 
  118.1(13)  [1.174(12),1.437(13)]  [('o1','1_555'),('c1','2_665'),('c2','1_555')] 
  115.9(11)  [1.174(12),1.556(10)]  [('o1','1_555'),('c1','2_665'),('c3','1_555')] 
  116.5(11)  [1.437(13),1.556(10)]  [('c2','1_555'),('c1','2_665'),('c3','1_555')] 
  119.9(12)  [1.437(13),1.555(11)]  [('c1','2_665'),('c2','1_555'),('c3','2_665')] 
  120.1(9)   [1.556(10),1.555(9)]   [('c1','2_665'),('c3','1_555'),('c2','2_665')] 
  120.1(9)   [1.555(11),1.556(10)]  [('c2','1_555'),('c3','2_665'),('c1','1_555')] 
  119.9(10)  [1.555(9),1.437(13)]   [('c3','1_555'),('c2','2_665'),('c1','1_555')] 
  116.5(10)  [1.556(10),1.437(13)]  [('c3','2_665'),('c1','1_555'),('c2','2_665')] 
  115.9(10)  [1.556(10),1.174(10)]  [('c3','2_665'),('c1','1_555'),('o1','2_665')] 
  118.1(13)  [1.437(13),1.174(10)]  [('c2','2_665'),('c1','1_555'),('o1','2_665')] 
 

 


