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Series Preface 

The  long te rm aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rog ramme is to produce a large collection of 
short s ta tements  each dealing with a specific topic at a specific level. The  
emphasis  is on a particular teaching approach and there may well, in time, 
be  pamphlets  giving alternative teaching approaches to the same topic. It  
is not the function of the .Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope  that  the same topics will be covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents a 
sample of the various levels and approaches and it is hoped that it will 
st imulate many  more  people  to contribute to this scheme. It  does not take 
very long to write a short pampMet,  but its value to someone  teaching a 
top ic  for the first t ime can be very great. 

Each pamphle t  is prefaced by a s ta tement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Edi tor  for  the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To use the ideas of vector  and matrix calculus to introduce the concepts 
of symmetry operat ions and symmetry  elements  and to derive the crystal- 
lographic point groups on this basis. 

Level 

T h i s  is a fairly high level course which would be most  appropr ia te  to 
the later years of undergraduate  study or to the early years of post-  
graduate research. It  could be helpful in relating crystallography to other  
disciplines such as physical chemistry and physics provided that the 
mathematical  background of the students is high enough. 

Background Required 
Students need a sound basic knowledge of vector  and matrix calculus 

and of group theory in order  to appreciate this course. 

P r a c t i c a l  Resources 
No particular practical resources are required. 

Time Required for Teaching 

This is a meaty  course and could well occupy 7-10  hours of teaching 
and discussion for full assimilation. 



Metric Tensor and Symmetry Operations 
in Crystallography 

G e r m a n o  R i g a u l t  

Istituto di Mineralogia, Universit~ di Torino, Italy 

I n t r o d u c t i o n  

In the first par t  of this monograph  the concepts of symmetry opera-  
tions, symmetry  elements and symmetry  groups based on the metric 
tensor invariance are introduced. 

In the second part  the crystallographic point groups are derived: first 
the enant iomorphic  groups using all possible combinations of the rotation 
axes; secondly the centrosymmetr ic  groups; and, finally, the non- 
enantiomorphic,  non-centrosymmetr ic  groups. 

This scheme is directed to students who already have a basic knowledge 
of vector and matrix calculus, and of group theory (i.e. students of the I I I  
course in Chemistry). 

I hope this presentation will be  helpful to teachers in relating some 
aspects of crystallography to other  topics in the field of physical 
chemistry. 

In a crystallography course this subject should be preceded by an 
introduction to direct lattice and to reciprocal lattice (distances and 
angles, transformations) and followed by a discussion of space groups, i.e. 
of the combinations of the possible symmetry operations of the type 
{A/t}. 

Metric tensor 

The scalar product  of two vectors rl and r2 referred to the same base 
system consisting of the three non-coplanar  vectors "rl, "r2, % is defined as: 

r l  • r 2  = ( x i , r  I q- y l , r 2  q - z i ' r 3 )  • ( x 2 ' r  1 q- y 2 ' r 2  q- z 2 ' r 3 ) .  ( 1 )  

In matrix notation it could be  written: 

"]?] "rl • "rl'rl • "r2"r~ 

rl • r 2 = - [ X l Y l Z i ]  ' r2 ' ' I '1~ '2"~ '2"i '2  '1"3 Y2 ; (2) 

I..'1" 3 - ,1-1,r 3 • ,'1"2,I" 3 ,I" 3 Z 2 

it is easy to verify that formulae (1) and (2) are equivalent. Relation (2) 
can be written more  briefly as follows: 

r i "  r2 = r'i Gr2 (3) 



I 
X2] " 

where  r2 is a co lumn mat r ix  Y2 and r~ a t r ansposed  co lumn matr ix  

. Z2 
[xl yl z~]; 9 is the  3 x 3 ma t r ix  of  re la t ion  (2) and is called a met r ic  mat r ix  
or  met r ic  tensor*,  because  its e l ements  g~i ='r~ • 'r~ are  d e p e n d e n t  bo th  on 
the  length of the  base  vec tors  and  on the  angles f o r m e d  by them.  

If  in (3) we assume rl  = r2, we  have:  

r~ -r~ = [r~l" Ih[ = 6Gr~ (4) 

and therefore :  

Irll= (5) 
On the o the r  hand,  bea r ing  in mind  that  rl  • r2 = [rll Ir21 cos ~b, whe re  ~fi 

is the angle be tween  rl  and r2, we have:  

h "  r2 = IrJ Ir2[ cos ~ = r ] G r  2 (6) 

and  finally, using re la t ion (5), we obtain:  

r'~ Gr2 
c o s  (7) 

Equa t ions  (5) and  (7) are the  rules to obta in  the  vec tor  lengths and the  
angles be tween  vectors .  T h e  space  in which the  lengths and  the  angles 
be tween  vec tors  are defined, is called met r ic  space.  T h e  met r ic  is given by 
the  G matr ix .  

S y m m e t r y  o p e r a t i o n s  

W e  can r ep re sen t  every  s y m m e t r y  opera t ion  by a mat r ix  A :  

[all a12 a13] 
A = | a 2 , .  a22 o23/ ;  (8) 

La31 a32 a33..I 

the  va lue  of the e l emen t s  of this mat r ix  is d e p e n d e n t  on the  kind and 
or ien ta t ion  of the  co r respond ing  s y m m e t r y  e l emen t  with respec t  to the 
base  system, and  on the  choice  of the  latter.  In fact,  in direct  space  a 
s y m m e t r y  opera t ion  t r ans fo rms  a given vec to r  r into the  vec to r  r ' ;  in 
mat r ix  no ta t ion  we can write:  

r' : A r  (9) 

where  r and r' a re  the  two column matr ices  whose  e lements  are  given by 
the  c o m p o n e n t s  of  the  two vectors .  

• Note that on the basis of the commutative property of the scalar product the G matrix is 
symmetric. 
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If the  base system is given by the three  vectors  ~1, 'r2, ~3 of a primitive 
lattice, the  e lements  % of the A matrix are necessarily integers. In fact 
relat ion (9) must  hold t rue for  every vector  r of the lattice; A t ransforms r 
in another  vector  r ' :  in this case the componen t s  of r and r '  are integers, 
and since relat ion (9) holds for  every group of three  integers relative to r, 

the  e lements  of A must  be  integers. 
We  will now examine  o ther  restrict ions on A which allow us to define 

the  single e lements  % as a funct ion of the metr ic  tensor.  A symmet ry  
opera t ion  obviously must  not  change  the length of a vector  or  the angle 

be tween  vectors.  There fo re  we have:  

r '  • r '  = r • r 

f rom which foUows, applying relat ion (4): 

r " a r '  = r ' G r  

and f rom (9): 

r ' A  ' G A r  = r ' G r  

and finally, since the previous  relation must  hold for  any value of r: 

G = A ' G A  (10) 
i.e.: 

g,2 go_= g23]=|al= a== a3o-llg,._ a=2 a23| 
gz3 g23 g33 I_a13 ao_3 a33--ILgz3 go_3 g33JLa31 a32 a33-1 

(11) 

This identity is the matrix expression of  the scalar p roduc t  conservat ion 
on the crystal lographic base system. All the matr ices satisfying relation 
(10), are symmet ry  opera t ions  on the base system defined by G (see the 

example  in the Appendix) .  
F rom relation (10), using matrix and de te rminan t  properties,  we ob-  

tain: 

I G I = I A ' I "  IGI" IAI 

f rom which, keeping in mind  that  IA'l  = IA[, follows that  the de te rminant  
associated with the A matrix must  be  equal to +1.  If the de te rminant  is 
equal  to +1  the symmet ry  opera t ion  is said to be long  to the type I and it 
is defined as a rota t ion;  if the de te rminant  is equal to - 1  the symmet ry  
opera t ion  is of type  II  and defined as a ro to invers ionY 

* One can demonstrate in fact that, since the determinant of A is equal to +l, there is no 
variation of the unit-ceU volume; when the value of the determinant is negative the base 
system passes from a fight-handed one to a left-handed one and vice versa. 



Symmetry elements and their orientation 

The  symmet ry  e lement  is the geometr ic  enti ty a round  which one  o r  
more  symmet ry  opera t ions  take  place, and corresponds  to the locus of  the 
points  that  are left unm ove d  by these operat ions .  The  posit ion of the 
symmet ry  e lement  is ob ta ined  by solving the equat ion:  

A r =  r 
f rom which 

( A - 1 ) r = 0  

where  i is the unit  matrix. A solution, o ther  than the trivial solution r = 0, 
can be obta ined  only if the condi t ion I A -  11 = 0 is satisfied. If this does 
not  happen,  it is necessary to take into account  the matrix A • A.  

Rotations compatible with a lattice base system 

If  matrix A represents  a type I symmet ry  operat ion,  we can calculate 
the  rotat ion angle a f rom the value of the A matrix trace. W e  must  
r e m e m b e r  that  the t race of  A is invafiant  with respect  to a base system 
t ransformat ion.  

In a lattice base system the t race is an integer  number ,  since the 
e lements  of  the matrix are integers. In an o r th0normal  base system, the 
counter-c lockwise  rota t ion of  an angle a, for  example,  a round  the z axis 
is given by: 

sin a cos ~ 

0 0 
and then the t race is equal to 2 cos o~ + 1. 

W e  have then: 2 cos a + 1 = an integer,  f rom which it is seen that  the 
values of  o~ compat ib le  with a lattice base system are: 60 °, 90 °, 120 °, 
180 °, 240 °, 270 °, 300 °, 360 °. 

Symmetry groups 

If  A1 and A2 are two matr ices represent ing a symmet ry  operat ion,  it is 
not  difficult to demons t r a t e  that  the p roduc t  matrix A = A I " A z  also 
represents  a symmet ry  operat ion.  In  fact, since A ~ G A I = G  and 
A t2GA2 = G we have:  

(Az " A 2 )  t • G • (A1 " A2) = A ~ A ~  • G • A I A  2 = A ~ G A 2  = G. 

This result  obviously holds not  only for  the p roduc t  of  two matr ices 
A1 • A2, but  also for  the p roduc t  of several matrices A~ • A2 • A3 • • • (a 
special case of this is AT). 

Fur the rmore ,  if A1 represents  a symmet ry  opera t ion,  A ?  t also does:  in 
fact f rom relat ion A~ • G • A~ = G, pre-  and post-mult iplying both  m e m -  
bers by (A~) -1 and  by (A~) -~ respectively,  and keeping in mind that  
(A~) -1 = (ATe) ' we obtain:  

G =  (A?~) ' • G -  (A~-~). 
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Finally it is obvious that matrix 1 represents a symmetry operation 
(identity) no mat ter  what the base system defined by G may be. In this 
way we have demonstra ted  that all group theory postulates are applicable 
to the symmetry operations. Therefore  the symmetry  operations are the 
elements  of a group, called a s y m m e t r y  group. Since all symmetry 
operat ions A t  leave a point with coordinates (0, 0, 0,) unchanged, (i.e. all 
the symmetry elements pass through that point) these symmetry groups 
are called point groups. 

Derivat ion of  the  Crystallographic Point  Groups  

Groups containing only one rotation axis 
If A1 represents a rotation of an angle a around a given axis, A~, 

A~ . . . . .  A~ = 1 are the symmetry  operations corresponding to rotations of 
2a., 3 a  . . . . .  n a  = 360 ° respectively, around the same axis; keeping in 
mind the values of a compatible  with a lattice base system we obtain the 
groups named by the symbol n, i.e. 1, 2, 3, 4, 6. 

Groups containing more than one rotation axis 
Let us take two symmetry operations: the first one corresponding to a 

rotation of an angle a around one axis, and the second one to a rotation 
of an angle /3 around another  axis. Le t  us call o) the angle between the 
two axes. Then,  the product  of the two rotation matrices is also a rotation 
matrix. The  rotation axis of the product  matrix is, in general, oriented in a 
different way than the other two. We can obtain the matrices correspond- 
ing to symmetry  operat ions in the following manner :  for a given ortho- 
normal vector basis, A 1 A 2 A 3  (Fig. 1), the symmetry  operat ion corres- 
ponding to a counter-clockwise rotat ion of an angle a around the A3 axis 
is represented by the matrix: 

A3 

A'3  

A2  • 

Fig. 1. 

R3-[si0o cos o0 
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If, on the other hand, the rotation takes place around the A~ axis, 
which lies on the plane determined by A1 and As and forms the angle ~o 
with As (Fig. 1), the corresponding symmetry operation is given by: 

where: 

R 3,  = R 2 • R s • R21 

[c 0 si; ] 
Rz = 1 

L- s in  co 0 cos~0_J 

represents a counter-clockwise rotation of an angle w around A2. We 
have to bear in mind, in fact, that R2 • R 3  • t{21 represents the symmetry 
operation Rs as it is transformed by the operation Rz. 

In explicit form we have: 

[COCO 0 s i ; co] [cosaL 0 - s in  a ! ] [ C o O )  0 - s  O~o l 

L - - s i n  co 0 COS WJ  0 Ls in  co 0 COS Co J 

cos2 w cos a +sin2 o) - c o s  ~o sin a --cos ~o sin ~o cos a + sin ~o cos col 
= sin a cos ~o cos o~ -s in  a sin co . 

- s in  ~o cos ~o cos ~ + cos ~o sin ~0 sin ~o sin a sin 2 co cos a + cos z ~o 

The counter-clockwise rotation of an angle /3 around the A3 axis is 
given by the matrix: 

!] cos 0 
The combination of two rotations (one of an angle /3 around the A 3 

axis and the other one of an angle a around the A3, axis which forms an 
angle co with A3 and lies on the plane A1A3) is also a rotation, 
represented by the R matrix, given by: 

R = R 3 , R 3 .  

[ cos2mcosa+s in2~o  - c o s w s i n a  - c o s  co sin o) cos a + sin ~o cos w] 

sin a cos co cos a - s in  a sin co . 

- s in  co cos ~0 cos a + cos co sin w sin w sin a sin 2 ~o cos a + cos z w 

['cos 13 - s in /3  i l  
. [ s i ; / 3  cos/30 " 



T h e  t r ace  of the  R mat r ix ,  given by  the  sum of  the  e l e m e n t s  of  the  
p r inc ipa l  d iagona l ,  is: 

cos 2 09 cos ~x cos/3 + sin 2 09 cos/3 - cos 09 sin c~ sin/3 - - -  

- -  - s i n  cz cos 09 s i n / 3 + c o s  a cos/3 

- -  - -  sin ~ 09 cos o~ + cos  2 09 

i.eo 

t r ace  = cos 2 09 (cos o~ cos/3 + 1) + sin'- 09 (cos/3 + cos a )  

- 2 cos 09 (sin o~ s in/3)  + cos ~ cos/3 

= cos 2 09(cos ~ cos/3 - c o s  o~ - c o s / 3  + 1) 

- 2 c o s  09 sin o~ s i n / 3 + c o s  oL cos/3  + c o s  ~ + c o s / 3 .  (12) 

This  ro t a t i on  R mus t  b e  c o m p a t i b l e  wi th  t h e  la t t i ce  as well .  T h e r e f o r e ,  
t he  va lue  of  the  t race ,  i nva r i an t  wi th  r e spec t  to  a ba se  sys tem t r a n s f o r m a -  
t ion,  mus t  b e  an in teger .  T h e  poss ib l e  va lues  of  t he  t r ace  are :  + 3, + 2, 
+ 1, 0, - 1. T h e s e  n u m b e r s  give t he  o r d e r  of t he  resu l t ing  r o t a t i o n  axis. 

W h e n  we  assign to  o~ and  /3 in t he  express ion  (12) all the  poss ib le  
va lues ,  d e p e n d i n g  upon  the  o r d e r  of  the  ro t a t i on  axis, w e  ob ta in  t h e  
s e c o n d  d e g r e e  equa t i ons  in cos 09 l i s ted  in T a b l e  1, w h e r e  m is an in t ege r  
r e p r e s e n t i n g  the  t race  of the  R mat r ix .  

In  T a b l e  1 t hose  so lu t ions  for  which  cos co is g r e a t e r  than  1 are  
obv ious ly  no t  shown,  as well  as t hose  tha t  d o  no t  ~ v e  as a resu l t  bo th  co 
and  180°-o9 .  Th is  last  cond i t ion  is ev iden t ly  necessa ry  if two axes 
in te rsec t .  

O n  the  basis  of the  resul t s  l i s ted  in the  tab le ,  we  can ob t a in  t he  axis 
c o m b i n a t i o n s  shown in Fig. 2, i .e.  t he  p o i n t  g roups  222,  32, 422,  622, 23, 
432.  

G r o u p s  c o n t 2 i n i n g  t y p e  II s y m m e t r y  o p e r a t i o n s  

T o  de r ive  t he  po in t  g roups  which  con ta in  t ype  I I  s y m m e t r y  o p e r a t i o n s  
as well ,  it  is necessa ry  to  r e m e m b e r  tha t  the  p r o d u c t  of  two o p e r a t i o n s  of 
t h e  s a m e  type  is an o p e r a t i o n  of type  I, whi le  the  p r o d u c t  of  two 
o p e r a t i o n s  of  d i f ferent  t ype  is an o p e r a t i o n  of t ype  I I .  

In  such po in t  g roups  t he  o p e r a t i o n s  of t ype  I, equa l  in n u m b e r  to  those  
of  t y p e  I I ,  f o rm  a group .  

F r o m  the  11 g roups  given a b o v e  we  can  o b t a i n  11 o t h e r  p o i n t  g roups  
which  have  as e l e m e n t s  t h e  t ype  I o p e r a t i o n s ,  p lus  o t h e r  o p e r a t i o n s  
o b t a i n e d  f rom these  by  combin ing  t h e m  with  t he  invers ion  o p e r a t i o n ,  



Table I 

O r d e r  

O r d e r  o f  t h e  
o f  t h e  r e s u l t a n t  
a x e s  ~ T r a c e  m P o s s i b l e  v a l u e s  o f  co ax i s  O r i e n t a t i o n  2 

+ 3  0 °, 180  ° 1 - -  
+ 2  30  °, 150  ° , 2 1 0  ° , 3 3 0  ° 6 0 1 0  

2 - 2  . 4 c o s 2 ~ o - l - m = 0  + 1  4 5  ° , 1 3 5 ° , 2 2 5 ° , 3 1 5  ° 4 0 1 0  
0 6 0  °, 120  °, 2 4 0  °, 3 0 0  ° 3 0 1 0  

- 1  90  ° , 2 7 0  ° 2 0 1 0  

+ 2  0 °, 1 8 0  ° 6 001 
+ 1 3 5 ° 1 6  ', 1 4 4 ° 4 4  ', 4 

3 - 2  3 c o s :  oJ - 1 - m = 0 2 1 5 ° 1 6 "  3 2 4 ° 4 4 '  
0 5 4 ° 4 4  ', 1 2 5 ° 1 6  ', 3 

2 3 4 ° 4 4  ', 3 0 5 o 1 6  ' 
-I 90  °, 2 7 0  ° 2 112 - - f ~ 2  0 

+ 1  0 °, 180  ° 4 0 0 1  
'~  o o 4 - 2  _ c o s -  co - 1 - m = 0 0 4 5  °, 1 3 5 , 2 2 5 , 3 1 5  ° 3 1 / , / 3 -  1 / , / 3  1/ ,73 

- 1  90  °, 2 7 0  ° 2 1 / ,~ -  - 1 / , ~  0 

0 0 °, 180  ° 3 0 0 1  
6 - 2  cos'-  co - 1 - m = 0 - 1 9 0  °, 2 7 0  ° 2 , f 3 / 2  - 1 / 2  0 

3 - 3  9 c o s " - ~ - 6 c o s ~ 0  + 3  180  ° 1 - -  
0 0 °, 1 0 9 o 2 8  ', 2 5 0 0 3 2  ' 3 0 0 1  

- 3 - 4 m = 0  - 1  7 0 o 3 2  ' , 2 8 9 0 2 8  ' 2 

4 - 3  3 cos'- ~ o -  2 , / 3 c o s  ro + 1  1 2 5 0 1 6  ', 2 3 4 0 4 4  ' 4 
- 1 - 2 m = 0  - 1  5 4 ° 4 4  ' , 3 0 5 0 1 6  ' 2 

6 - 3  3 cos'-  m - 6 co s  ~o + 2  1 8 0  ° 6 0 0 1  
- 1 - 4 m = 0  - 1  0 ° 2 0 0 1  

4 - 4  cos"- ~ - 2  cos  co + 3  180  ° 1 - -  
0 9 0  °, 2 7 0  ° 3 1 / , f 3  - 1 / , f i  1/,f3~ 

-m =0 -i 0 ° 2 001 

6-4 cos 2 co - 2wz'3 cos co there are no 

+ 1 - 2 m  = 0 p o s s i b l e  s o l u t i o n s  

6 - 6  cos ' -  ~o - 6 co s  co + 3  180  ° 1 - -  
+ 5 - 4 m = 0  0 0 ° 3 0 0 1  

1 T h e  first  r o t a t i o n  axis  is c o i n c i d e n t  w i t h  A 3 ,  t h e  s e c o n d  o n e  w i t h  A y .  
2 T h e  r e s u l t i n g  axis  o r i e n t a t i o n  is N v e n  b y  t h e  d i r e c t i o n  c o s i n e s  r e f e r r e d  to  t h e  o r t h o n o r m a l  b a s e  s y s t e m  

A I A 2 A  3 a n d  it is o b t a i n e d  s o l v i n g  t h e  e q u a t i o n  ( R - 1 ) x  = 0. 

represented  by the matrix: 

i . 

0 

The  centrosymmetr ic  groups so obtained,  which have an order  double 
with. respect  to t h e  order  of the groups with which we started, are 
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Q 

T 

222 32 

- ; 

422 622 

" / ~  ¢, ~~ 

23 432 
Fig. 2. 



Table 2 

Order  

24 

12 

8 

6 

4 

3 

2 

1 

432 

l 
23 

222 

422 

4 

1 

622 

6 32 

respectively: 

-1, 2/m, -3, 4/m, 6/m, mmm, 3ra, 4/mmm, 6/mmm, m3, m3m. 

It is also possible to obtain groups containing type I I  symmetry  operat ions 
but which do not contain the inversion operation.  In this case we must first 
obtain, f rom the starting groups which contain only type I symmetry  
operations,  the corresponding subgroups, which have order  ½ with respect 

to the starting groups. 
From the scheme shown in Table  2 we see that there are 10 subgroups 

satisfying this condition. So, to obtain the new groups we multiply by the 
inversion operat ion all the operat ions of the starting group which do not 
belong to the subgroup. 

The  sum of the operat ions obtained in this way, plus the operat ions 
belonging to the subgroup gives all the elements  of the new group. The  order  
of the new group is then equal to the order  of the starting group. 

Let us fully analyse an example:  the group 422, of order  8, has the groups 4 
and 222 as subgroups of order  4. 

In the first case, the subgroup 4 contains the symmetrY operat ions 41, 42, 43,  

1; therefore the operat ions corresponding to an 180 ° rotation around the axis 
or thogonal  to the 4-fold axis are inverted. In this way we obtain mirror  planes 
parallel to the 4-fold axis, and the resulting point group is 4ram. 

In the second case, the subgroup 222 contains three 180 ° rotations around 
three perpendicular  axes. The  operat ions inverted in this case are 41, 43 , 21 lo, 
21 ~0- W e  obtain the operations: ~1, ~3, mtlo0~ ' m(1 r0}; the resul t ingpoint  group 
is Z~2m. Altogether  we can derive 10 groups, using the following scheme. (The 
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subgroup utilized is shown in parentheses . )  - 

4 3 2 -  (23) ~ 4-3m 
6 2 2 -  (6) ~ 6ram 

6 2 2 -  (32) > 6 m 2  
4 2 2 -  (4) > 4ram 
4 2 2 -  (222) > 42rn 

6 -  (3) ~ 
3 2 -  (3) > 3m 

4 - -  (2) :, 4 
2 2 2 -  (2) > ram2 

2 - -  (1) , m 

Al toge the r  thirty two poin t  groups  are possible in th ree-d imens iona l  space:  
11 enan t iomorph ic ;  11 cen t rosymmetr ic ;  and 10 non-enan t iomorph ic ,  
non-cen t rosymmet r i c .  

A p p e n d i x  

Let  us examine,  as an example,  the cubic lattice: since the unit  cell 
constants  are a0 = bo = Co, oe =/3  = 3 '  = 90 °, the metr ic  tensor  G is given 
by:  

G =  

F r o m  relation (10) we  have:  

?000] 
g t l  

0 g n  

gll  " 1 =  g n  " A '  • 1 • A 

and consequent ly :  

A ' ' A = I .  

In this part icular  case the  matr ices  A are such that  their  inverse A -1 is 
equal  to their  t ransposed  matrix A ' ;  therefore  we can obtain the follow- 
ing relations: 

a ~ a n  + azla21 + a3~a3~ = 1 (11) 

alia12+ a 2 1 a 2 2  + a31a32 = 0 (12) 

aal a13 + a21 a2z + a3a a33 = 0 ( 1 3 )  

alza12 + a22a22 + a32a32 = 1 (22) 

a12a13 + a22a23 + a32a33-- 0 (23) 

aa3a13 + aEaa2a + aaaa33 = 1. (33) 

Rela t ions  (11), (22), (33) impose  the condi t ion that,  in each co lumn of  the 
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A matrix, one element is equal to ±1, and the other two are equal to 
zero. Relations (12), (13), (23) impose the same condition for each row, 
since the element different from zero of each column must lie in a 
different row from the one occupied by the non-zero element of the other 
two columns. 

In conclusion the symmetry operations compatible with a cubic lattice 
are represented by the following matrices: 

[i°!l [i°il Iil!l 1 , 0 , 0 , 

0 1 0 

I! i]0° [i°il0  I!°il0 
plus those obtained from the above matrices, considering, for each of 
them, all the possible permutations of one, two and three negative signs. 
It is not difficult to see that from each of the above six matrices, we can 
obtain seven others containing negative elements. The symmetry opera- 
tions compatible with a cubic lattice are, thus, 48 in all. Their respective 
matrices are shown in Table 3. For each matrix in the table the corres- 
ponding symmetry operation and the orientation of the symmetry ele- 
ment, derived as above, are given. 

From the table it is seen that the symmetry operation corresponding to 
a rotation of 60 °, i.e. symmetry element of order 6, is incompatible with 
the cubic lattice, but is compatible with a different lattice (ao = bo, Co, 
a =/3 = 90 °, , /=  120°). As it is known, all 32 point groups are subg-roups 
of m3m or 6/mrnm or both. 

Finally, the relation A ' G A  = G can be used to derive, if matrix A is 
known, the metric tensor compatible with the symmetry operation A. 
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Table 3. A matrices for the cubic lattice 

li°!] o, [i°°I ~o o~ [i°!] o ' I' oo o~°ir [i °° ] o~ ~o [, oo o~°i] If°i)o , I!°il o 
z T m(~oo) m(o~o) m(oo~) 2[,oo] 2[0,0] 21ooi ] 

[i°!] o, li°iJ ~° li ° o , iJ [°°il o , o, li ~o° il [!I o° il 
I 

411oo] 4[0;{0] 4 [ o i o ]  4roox] 4[oo,] 

--I  ----I - - I  ----I -- I  ----I 
4[~oo] 4[~oo] 4[o:~o] 4[oxo] 4[oo:q 4[oo~] 

[i°iJ o, [i,il o° [!°iI o ~ li~ii o° I!°!] ~° [i ~° ] oo o~ [°°il o~ ~o li~!l o° 

[!o ~° i] [o~ ~o oo !] [i ° ~° i] [!,oj oo o~ [oo ~o o~ i] {i ~ o° !] [i oo o~ ~o l[ ~o oo o,o o,] 
- I  -- I  ----I - I  - - - I  - - I  - - - I  3E,,, ] ~[~,,] 3~,,] 3~,,] 3~T,] s~ , j  3[,~,] 3[,~] 

I! o, o ,o° j [ooi] o ~  ~o  [!'i] o° [i:!] ~ [°°ii ~ o  ° ~  {!~i] o o 
2[oH] 2DoI ] 2[xxo] 2[oix] e[Tox] 2[iio] 

[i °° ] ~o o~ {i ° o , )j [o~ oo ~o il [i°i] o , [i °o , il [i'i] o° 
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