This is an archive copy of the IUCr web site dating from 2008. For current content please visit https://www.iucr.org.
[IUCr Home Page] [Commission Home Page]
next up previous
Up: (IUCr) Crystal Packing Previous: References

Suggestions for further reading

(a) Two fundamental books on condensed phases are those by A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses, New York: Wiley (1968), and A. R. Ubbelohde, The Molten State of Matter: melting and crystal structure, Chichester: Wiley (1978). They are long out of print, but may be still available in your chemistry library.

(b) The works of A. I. Kitaigorodski, a pioneer in the field of crystal packing studies, are collected in two main books: (i) the one quoted in [5]; (ii) A. I. Kitaigorodski, Molecular Crystals and Molecules, New York: Academic Press (1973).

(c) A similar role is played for inorganic structures by the multi-author book: Structure and Bonding in Crystals, edited by M. O'Keeffe and A. Navrotsky, New York: Academic Press (1981).

(d) A compendium of the theory of the structure and of the optical and electrical properties of organic materials is in J. D. Wright, Molecular Crystals, Cambridge University Press (1987).

(e) If you want to read an amusing and stimulating book, and learn about molecular orbitals for periodic systems into the bargain: R. Hoffmann, Solids and Surfaces, a Chemist's View of Bonding in Extended Structures, New York: VCH (1988).

(f) On methods for the investigation of the geometrical and energetic properties of crystal packing, see: Crystal symmetry and molecular recognition in Theoretical aspects and computer modeling of the molecular solid state, edited by A. Gavezzotti, Chichester: Wiley and Sons (1997); A. Gavezzotti and G. Filippini (1998), Self-organization of small organic molecules in liquids, solutions and crystals: static and dynamic calculations, Chem. Commun. 3, 287-294 [doi:10.1039/a707818h]; A. Gavezzotti (1998), The crystal packing of organic molecules: challenge and fascination below 1000 dalton, Crystallogr. Rev. 7, 5-121; J. D. Dunitz and A. Gavezzotti (1999), Attractions and repulsions in organic crystals: what can be learned from the crystal structures of condensed-ring aromatic hydrocarbons? Acc. Chem. Res. 32, 677-684 [doi:10.1021/ar980007+]; A. Gavezzotti (2002), The chemistry of intermolecular bonding: organic crystals, their structures and transformations, Synth. Lett., pp. 201-214; A. Gavezzotti (2002), Structure and intermolecular potentials in molecular crystals, Modelling Simul. Mater. Sci. Eng. 10, R1-R29; J. D. Dunitz and A. Gavezzotti (2005), Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew. Chem. Int. Ed. 44, 1766-1787 [doi:10.1002/anie.200460157].

(g) A quick reference monograph on the nature of intermolecular forces is M. Rigby, E. B. Smith, W. A. Wakeham and G. C. Maitland, The Forces between Molecules, Oxford: Clarendon Press (1986). The principles and the early stages of the empirical fitting of potential functions for organic crystals, and their use in lattice statics and dynamics, has been reviewed by A. J. Pertsin and A. I. Kitaigorodski, The Atom-Atom Potential Method, Berlin: Springer Verlag (1987).

(h) Studies of hydrogen bonding have been reviewed and analyzed in many books and monographs; a classic one is G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, San Francisco: Freeman & Co. (1960); a more recent one is by G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Berlin: Springer Verlag (1991).

(i) A collection of over 1000 heats of sublimation for organic compounds has been given by J. S. Chickos, in Molecular Structure and Energetics, vol. 2, edited by J. F. Liebman and A. Greenberg, New York: VCH (1987). Such compilations may seem uninspiring, but quantitative measurements are the only sound basis of quantitative understanding. See also http://webbook.nist.gov/.

(j) For attempts at the computer prediction of the crystal structure of organic compounds see J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, W. T. M. Mooij, S. L. Price, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer and D. E. Williams (2000), A test of crystal structure prediction of small organic molecules, Acta Cryst. B56, 697-714 [doi:10.1107/S0108768100004584]; W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko, P. Erk, A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, J. P. M. Lommerse, W. T. M. Mooij, S. L. Price, H. Scheraga, B. Schweizer, M. U. Schmidt , B. P. van Eijck, P. Verwer and D. E. Williams (2002), Crystal structure prediction of small organic molecules: a second blind test, Acta Cryst. B58, 647-661 [doi:10.1107/S0108768102005669].

(k) A classical study of the chemical consequences of crystal symmetry is in Chemical consequences of the polar axis in organic solid-state chemistry, D. Y. Curtin and I. C. Paul (1981), Chem. Rev. 81, 525-541 [doi:10.1021/cr00046a001].

(l) On NMR spectroscopy, see C. A. Fyfe, Solid State NMR for Chemists, Guelph, Ontario: CFC Press, (1983).

(m) For those who wish to understand more about the way chirality plays a role in crystal structures and the molecules forming them, the book by J. Jacques, A. Collet, and S. Wilen, Enantiomers, Racemates and Resolutions, New York: Wiley (1981) is a prime source of information nicely written and presented. Other useful texts are H. D. Flack (2003), Chiral and achiral crystal structures, Helv. Chim. Acta, 86, 905-921 [doi:10.1002/hlca.200390109] and H. D. Flack and G. Bernardinelli (2003), The Mirror of Galadriel: looking at chiral and achiral crystal structures, Cryst. Eng. 6, 213-223 [doi:10.1016/j.cryseng.2003.10.001].

(n) For a recent book on polymorphism, see J. M. Bernstein, Polymorphism in Molecular Crystals, Oxford University Press (2002).


next up previous
Up: (IUCr) Crystal Packing Previous: References

Copyright © 2005 International Union of Crystallography

IUCr Webmaster