
DDLm updates clarifying and revising the typing system
This document describes proposed updates to the DDLm dictionary, focusing on definitions by which
the types of attribute values are specified. Particular attention is devoted to values of compound types
(corresponding to CIF2 Lists and Tables), and mechanisms are introduced for defining value types by
reference to the types defined for values of other attributes.

Change 1: clarification to the description of _type.contents

The 2012-05-07 definition of _type.contents is unclear about how it applies to definitions of
items having _type.container of 'Table'. It appears to be the intent in that case for
_type.contents to define the expected construction of the values (as opposed to the indices)
within (Table) values for the defined attribute. That this interpretation is indeed intended is clarified by
appending the following text to the _description.text attribute of the definition of
_type.contents:

Where the defined attribute is a container of the 'Table' variety, this attribute describes
the construction of the value elements within (Table) values of the defined attribute.

Change 2: definitions for “internal” purposes

Changes described later in this document create a use for defining attributes that serve only internal
purposes within their dictionaries. To enable such definitions to be recognized and distinguished, a
new “Internal” state is added to those permitted for attribute _type.purpose. In CIF form, these
values for _enumeration_set.state and _enumeration_set.detail are added to the
definition of _type.purpose:

Internal
; Used to type items that serve only internal purposes of the dictionary
in which they appear. The particular purpose served is not defined by
this state.
;

Change 3: defining attributes' contents by reference

As of the 2012-05-07 definition of _type.contents, there is no way to define the details of the
content of an attribute having a compound type whose elements are also of compound type, except to
the extent that multi-dimensional Lists, Arrays, and Matrices constitute such content types.
Furthermore, where two attributes of compound type take values that are inherently of the same kind,
DDLm currently offers no way to define explicitly that they have the same content type; one must
simply duplicate the type information. Two changes are introduced to better support such cases.

First, a new “ByReference” state is added to those permitted for attribute _type.contents. In CIF
form, these values for _enumeration_set.state and _enumeration_set.detail are
added to the definition of _type.contents:

ByReference
; The contents have the same form as those of the attribute referenced by
_type.contents_referenced_id.

;

Second, a new attribute _type.contents_referenced_id is added, as foreshadowed by the
new _type.contents code:

save_type.contents_referenced_id
 _definition.id '_type.contents_referenced_id'
 _definition.update 2015-04-24
 _definition.class Attribute
 _description.text
;
 The value of the _definition.id attribute of an attribute definition
 whose type is to be used also as the type of this item. Meaningful only
 when this item's _type.contents attribute has value 'ByReference'.
;
 _type.category_id type
 _type.object_id contents_referenced_id
 _type.purpose Identify
 _type.container Single
 _type.contents Tag
 save_

Change 4: constraining indices of Table entries, including by reference

DDLm currently has an attribute _enumeration_set.table_id that is intended to serve for
enumerating the indices that may be used in the values of an attribute having _type.container
'Table'. This approach does not work well because the ENUMERATION_SET category describes entry
values, not indices, and because even if that is ignored, it requires dummy values to be introduced for
the category key, _enumeration_set.state. In its one use in the DDLm dictionary,
_enumeration_set.table_id is in fact applied at the wrong level. That approach is replaced
with a more workable solution, as detailed next.

Attribute _enumeration_set.table_id is removed.

Two new attributes are introduced:

save_type.indices
 _definition.id '_type.indices'
 _definition.update 2015-04-24
 _definition.class Attribute
 _description.text
;
 Used to specify the syntax construction of indices of the entries in the
 defined object when the defined object has 'Table' as its
 _type.container attribute. Values are a subset of the codes and
 constructions defined for attribute _type.contents, accounting
 for the fact that syntactically, indices are always case-sensitive
 quoted strings.

 Meaningful only when the defined item has _type.container 'Table'.
;
 _name.category_id type
 _name.object_id indices
 _type.purpose State
 _type.container Single
 _type.contents Code
 loop_
 _enumeration_set.state

 _enumeration_set.detail
 Text 'a case-sensitive string/lines of text'
 Filename 'name of an external file'
 Code 'code used for indexing data or referencing data resources'
 Date 'ISO date format yyyy-mm-dd'
 Uri 'an universal resource identifier string, per RFC 3986'
 Version 'version digit string of the form <major>.<version>.<update>'
 ByReference
;
 Indices have the same form as the contents of the attribute identified by
 _type.indices_referenced_id
;
 _enumeration.default Text
 loop_
 _description_example.case
 _description_example.detail
 'Code' 'indices belong to an enumerated set of pre-defined codes'
 'Uri' 'indices have the form of URIs'
 save_

save_type.indices_referenced_id
 _definition.id '_type.indices_referenced_id'
 _definition.update 2015-04-24
 _definition.class Attribute
 _description.text
;
 The _definition.id attribute of a definition whose type describes the
 form and construction of the indices of entries in values of the present item.

 Meaningful only when the defined item's _type.container attribute has
 value 'Table', and its _type.indices attribute has value 'ByReference'.
;
 _type.category_id type
 _type.object_id indices_referenced_id
 _type.purpose Identify
 _type.container Single
 _type.contents Tag
 save_

Change 5: fixing _import.get

Among the attributes currently defined by DDLm, only _import.get uses the
_enumeration_set.table_id attribute removed in change 4. Its definition is updated and two
supporting internal attributes are introduced to accommodate the change. Furthermore, the current
dREL expression is incorrect: it assumes a single available value for _import.file, _import.frame etc.,
when the intent is clearly that multiple values are available that should be inserted into each Table
element of the list. Multiple values imply a loop category, so we move _import.file, etc. into a
new loop category, IMPORT_DETAILS (revised definitions of
_import.file/frame/mode/if_dupl/if_miss not presented here). In order to correctly order
the tables in the overall list, a dataname giving the explicit ordering must also be added to this category
(see _import_details.order below).

save_import.get
 _definition.id '_import.get'
 _definition.update 2015-04-24

 _definition.class Attribute
 _description.text
;
 A list of tables of attributes defined individually in the category
 IMPORT_DETAILS, used to import definitions from other dictionaries.
;
 _name.category_id import
 _name.object_id get
 _type.purpose Import
 _type.container List
 _type.contents ByReference
 _type.contents_referenced_id '_import_details.single'
 loop_
 _method.purpose
 _method.expression
 Evaluation
;
 imp_order_list = []
 loop id as import_details {
 imp_order_list ++= id.order
 }
 sort(imp_order_list)
 final_val = []
 for ord in imp_order_list {
 final_val ++= import_details[ord].single
 }
 _import.get = final_val
;
 save_

save_IMPORT_DETAILS
 _definition.id IMPORT_DETAILS
 _definition.scope Category
 _name.category_id IMPORT
 _name.object_id IMPORT_DETAILS
 _definition.class Loop
 _category.key_id '_import_details.order'
 loop_
 _category_key.name '_import_details.order'
 _description.text
;
 Items in IMPORT_DETAILS describe individual attributes of an import operation.
;
save_

save_import_details.single
 _definition.id '_import_details.single'
 _definition.update 2015-04-24
 _definition.class Attribute
 _description.text
;
 A Table mapping attributes defined individually in category IMPORT to
 their values; used to import definitions from other dictionaries.
;
 _name.category_id import_details
 _name.object_id single
 _type.purpose Internal
 _type.container Table
 _type.contents Text

 _type.indices ByReference
 _type.indices_referenced_id '_import_details.single_index'
 loop_

_method.purpose
_method.expression
Evaluation

;
with id as import_details
import_details.single = {"file":id.file_id

 "save":id.frame_id,
"mode":id.mode,
"dupl":id.if_dupl,
"miss":id.if_miss}

;
 save_

save_import_details.single_index
 _definition.id '_import_details.single_index'
 _definition.update 2015-04-24
 _definition.class Attribute
 _description.text
;
 One of the indices permitted in the entries of values of attribute
_import_details.single.
;
 _name.category_id import
 _name.object_id single_index
 _type.purpose Internal
 _type.container Single
 _type.contents Code
 loop_
 _enumeration_set.table_id
 _enumeration_set.detail
 file 'filename/URI of source dictionary'
 save 'save framecode of source definition'
 mode 'mode for including save frames'
 dupl 'option for duplicate entries'
 miss 'option for missing duplicate entries'
 save_

save_import_details.order
_definition.id '_import_details.order'
_name.category_id 'import_details'
_name.object_id 'order'
_definition.class Attribute
_description.text

;
 The order in which the import described by the referenced row should be

executed.
;

_type.container Single
 _type.contents Integer
save_

	DDLm updates clarifying and revising the typing system
	Change 1: clarification to the description of _type.contents
	Change 2: definitions for “internal” purposes
	Change 3: defining attributes' contents by reference
	Change 4: constraining indices of Table entries, including by reference
	Change 5: fixing _import.get

