Welcome to the

International Union of Crystallography

The IUCr is an International Scientific Union. Its objectives are to promote international cooperation in crystallography and to contribute to all aspects of crystallography, to promote international publication of crystallographic research, to facilitate standardization of methods, units, nomenclatures and symbols, and to form a focus for the relations of crystallography to other sciences.

press release

Bookmark and Share
[IUCrData banner]

The birth of IUCrData: a new era in data publication

The International Union of Crystallography is delighted to announce the launch of a new open-access data publication, IUCrData. This innovative publication aims to provide short descriptions of crystallographic datasets and datasets from related scientific disciplines, as well as facilitating access to the data.

The first phase of this venture enables authors rapidly to publish brief, peer-reviewed Data Reports on individual crystal structures, making them readily available to the scientific community.

A global team of 25 editors forms the editorial board of IUCrData, bringing a wealth of experience and enthusiasm to the new data publication.

Data Reports in IUCrData include the following components:

  • a short abstract
  • an interactive 3D structure representation
  • a structure description section
  • a synthesis and crystallization section
  • relevant figures
  • tabular structural data
  • literature references.

A key characteristic of Data Reports is the brevity of the discussion. The metric data and plots appear in the main body of the publication and provide the bulk of the information. Readers are able to access the complete diffraction data, the submitted crystallographic information file (CIF) and the full checking output.

Use of the IUCr’s publCIF software makes submission of a Data Report to IUCrData easy. publCIF can be downloaded free of charge from http://iucrdata.iucr.org/services/cif/publcif/,.

To find out more about the new open-access data publication IUCrData and keep up to date with announcements on future phases of this project, go to http://iucrdata.iucr.org.

Dr Jonathan Agbenyega
Business Development Manager, IUCr

Download full press release.

Posted 10 Feb 2016


Bookmark and Share

Aloysio Janner (1928-2016)

[Aloysio Janner]Aloysio Janner passed away on 27 January 2016. He was born in 1928 in Muralto, Ticino, the Italian-speaking part of Switzerland. He was awarded his master's degree with a thesis under Pauli at the ETH Zurich, but during his PhD work Pauli died, so Aloysio finished his PhD with Thellung, at the University of Zurich. Then he went to the Batelle Research Institute in Geneva, where he worked with Edgar Ascher. In 1963 he came to Nijmegen as head of the theoretical solid-state physics group. There his interest in the relation between structure and properties led him to study the symmetry of electromagnetic fields in terms of four-dimensional space–time groups. I was his first PhD student and we derived the first list of these groups.

In 1972 Aloysio met Pim de Wolff, who had found that the γ-phase of anhydrous sodium carbonate has a structure that does not have lattice periodicity but still has sharp diffraction peaks, which, however, require four indices in order to be indexed. He proposed a four-dimensional space for the description of its structure. The symmetry groups he needed were exactly the four-dimensional groups in our work, now called superspace groups. Aloysio continued this research with Pim and me by generalizing this approach, called the superspace approach, to include other aperiodic structures, such as density-modulated and composite compounds, and quasicrystals. He was very happy that the result of this research led to international recognition. He received the Aminoff Prize of the Swedish Academy of Science (with Pim and me) and the Ewald Prize of the International Union of Crystallography (with me). Furthermore, he was awarded honorary degrees from the Universities of Rennes, Geneva and Lausanne. After his official retirement he became interested in the symmetry of biological molecules and viruses.

Aloysio was a very enthusiastic and warm person. In the last ten years he did not travel much, but at every conference I attended in that period there were always people asking about him. He was always happy to discuss the problems he was working on, and his advice was very stimulating for his PhD students. Some of them were experimentalists because he thought that, just as experimental groups sometimes include theoreticians, a group of theoreticians could have experimentalists as members; they could carry out the research suggested by the calculations of the theoreticians.

Besides his research, he was active in other fields. He was the Dean of the faculty for several years, twice he (co-)organized the Conference on Group-Theoretical Methods in Physics, he was a member of an EPS Committee on Physics and Education, and Chair of the Committee on University, Industry and Public Authorities of the University in Nijmegen. These tasks he also performed with much energy.

We have lost a great colleague.

T. Janssen
Posted 10 Feb 2016 

research news

Bookmark and Share

Twisted X-rays unravel the complexity of helical structures

vk5008Since the discovery of the diffraction of X-rays by crystals just over 100 years ago, X-ray diffraction as a method of structure determination has dominated structural research in materials science and biology. However, many of the most important materials whose structures remain unknown do not readily crystallize as three-dimensional periodic structures. Crystallization can also alter the properties of the material to be studied: a crystallized protein may not function in the way that it would in its natural state, and confining nanostructures such as carbon nanotubes within a crystal lattice can also alter their behaviour.

In the March issue of Acta Crystallographica Section A, Jüstel, Friesecke and James propose a new method for studying these kinds of structures, using twisted X-rays [Acta Cryst. (2016). A71, doi:10.1107/S2053273315024390]. They show that the key to obtaining diffraction data from non-crystalline but symmetric structures, such as helices, lies in matching the symmetry of the incoming radiation to the symmetry of the structure to be studied.

The interesting resonance effects of twisted waves with helical structures suggests that this could be a promising new method for structure determination: send twisted X-rays onto a helical structure, align the waves, the structure and the detector axially, and the outgoing radiation shows sharp, discrete peaks as the incoming wavelength and the amount of twist are varied. Structure prediction from the diffraction pattern then works in exactly the same way as in the case of crystals. Using computer simulations, the authors show that the accuracy of a structure determined using twisted X-rays would be comparable to that obtained by 'classical' X-ray methods.

Remarkably, the method can applied to some of the most important structures in biology and a striking number of the structures that are emerging in nanoscience: buckyballs and many fullerenes, the parts of many viruses, actin, carbon nanotubes (all chiralities), graphene and a large collection of other two-dimensional structures, such as the currently important structures of black phosphorus and the dichalcogenides.

Now someone just has to design the machine to put the twist into the X-rays!

Posted 08 Feb 2016 


Bookmark and Share

Eleventh Ewald Prize – Call for Nominations

[Ewald Prize medal]The International Union of Crystallography is pleased to invite nominations for the Ewald Prize for outstanding contributions to the science of crystallography. The Prize is named after Professor Paul P. Ewald, in recognition of his significant contributions to the foundations of crystallography and to the founding of the International Union of Crystallography. Professor Ewald was the President of the Provisional International Crystallographic Committee from 1946 to 1948, the first Editor of the IUCr publication Acta Crystallographica from 1948 to 1959 and the President of the IUCr from 1960 to 1963.

The Prize consists of a medal, a certificate and a financial award, and is presented once every three years during the triennial International Congresses of Crystallography. The recipients to date are as follows:

Year Place Recipients
1987 Perth, Australia Professor J.M. Cowley and Dr A.F. Moodie
1990 Bordeaux, France Professor B.K. Vainshtein
1993 Beijing, People's Republic of China Professor N. Kato
1996 Seattle, USA Professor M.G. Rossmann
1999 Glasgow, UK Professor G.N. Ramachandran
2002 Geneva, Switzerland Professor M.M. Woolfson
2005 Florence, Italy Professor P. Coppens
2008 Osaka, Japan Dr D. Sayre
2011 Madrid, Spain Professor E. Dodson, Professor C. Giacovazzo and Professor G.M. Sheldrick
2014 Montreal, Canada Professor A. Janner and Professor T.W.J.M. Janssen

The eleventh Prize, for which nominations are now being invited, will be presented at the Hyderabad Congress in August 2017.

Scientists who have made contributions of exceptional distinction to the science of crystallography are eligible for the Ewald Prize, irrespective of nationality, age or experience. The Selection Committee will give careful attention to the nominations of outstanding scientists who have not yet won a Nobel Prize. Either an exceptionally distinguished scientific career or a major scientific accomplishment may be recognised. Current members of the Selection Committee and the President of the IUCr are not eligible. No restrictions are placed on the time or the means of publication of the nominee's contributions. The Prize may be shared by more than one contributor, but not more than three, to the same scientific achievement.

Nominations for the Ewald Prize should be submitted electronically using the Ewald Prize Nomination Form, to the Executive Secretary of the International Union of Crystallography, 2 Abbey Square, Chester CH1 2HU, England (execsec@iucr.org). Copies of the Nomination Form and the names of the Selection Committee may be obtained from http://www.iucr.org/iucr/ewald-prize. The closing date for nominations is 31 August 2016.

Posted 02 Feb 2016 

research news

Bookmark and Share

Nucleoprotein C-terminal domain from the Ebola and Marburg viruses

Ebolavirus and Marburgvirus belong to a virus family called Filoviridae and can cause severe hemorrhagicgm5041 fever in humans. The outbreak of Ebola virus disease (EVD) in West Africa demonstrates the grave threat that these viruses pose globally to human health. While the EVD outbreak is slowly losing momentum, it is still unprecedented, resulting in over 23 000 cases and more than 9000 deaths by late 2015.

There are two species of Marburgvirus (MARV and RAVV) and five species of Ebolavirus (Zaire, Reston, Sudan, Taï Forest and Bundibugyo) within the Filoviridae family of negative-sense, single-stranded RNA (ssRNA) viruses. In each of these viruses the ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell. It is tightly associated with the viral RNA in the nucleocapsid and is essential for transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation.

Until recently, the nucleoprotein was one of two proteins encoded by the Ebolavirus genome, that have not yet had their structures characterized. Since this protein is critical for the assembly and replication of the virus, it is recognised as a suitable drug target. Recently a group of scientists [Baker et al. (2016). Acta Cryst. D72, 49-58; doi: 10.1107/S2059798315021439] have shown that the homologous C-terminal domains of NP from two related pathogenic species of Ebolavirus, Taï Forest and Bundibugyo, have structures that are highly similar to that of a Zaire variant, in spite of differences in the amino-acid sequence. Interestingly, the related NPCt domain from MARV has a structure that is significantly different from the Ebolavirus consensus structure.

In addition, structural characterization of NPCt from the different Ebolavirus species is important since the Ebolavirus NPCt has also been identified as a possible target for the development of species-specific diagnostic tests.

Posted 28 Jan 2016 


Bookmark and Share

2016 Alexander Hollaender Award in Biophysics

[Richard Henderson]Richard Henderson, member of the scientific staff in the MRC (Medical Research Council) Laboratory of Molecular Biology in Cambridge, UK, and editorial advisory board member of the open-access journal IUCrJ, will receive the 2016 Alexander Hollaender Award in Biophysics.

In 1975, Henderson and colleague Nigel Unwin determined the structure of bacteriorhodopsin - a light-driven proton pump found in the membrane of Archaea - using electron microscopy. This was revolutionary because the technique usually requires a stain that can obfuscate details, but Henderson and Unwin realized they could instead place the crystals on a thin carbon support and eliminate the stain. Starting in the 1990s, Henderson again revolutionized the field of structural biology when he turned his sights on another method for determining protein structure: cryoEM. In this technique, proteins are flash-frozen by plunging into liquid ethane then imaged with electron microscopy. Henderson and others made major improvements to the method - developing better sensors for electron microscopes, as well as better software for the system - that improved cryoEM to such an extent that it is now the preferred technique for determining protein structures.

The Alexander Hollaender Award in Biophysics is presented every three years and carries with it a $20,000 prize. The Award recognizes outstanding contributions made to the field of biophysics.

This article is a short extract reprinted from a press release published on the National Academy of Sciences website.

Posted 26 Jan 2016