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‘Standard’ small molecule refinement has been around for 
decades. 
 
Modern examples include, but may not be limited to: Olex2, 
Shelxle, WinGX, CRYSTALS, Oscail.  
 
In our group we develop CRYSTALS – a package for analysis and 
refinement of crystal structures from X-ray or neutron 
diffraction data. 
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Talk in three parts  
 
(i) Recap the model commonly used to refine crystal structures. The 
model is usually fit to measured data using least-squares.  
A simple non-linear least squares example is introduced. Addition of 
restraints to the fit is described and the example revisited. 
 
(ii) Examples of how the model can be made more complicated to better 
fit the data. 
 
(iii) Crystallographic examples of recent developments in CRYSTALS 
restraints, non-atomic scattering density, and remeasuring data to 
improve parameter estimates. 
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Standard model 
Linear least squares 
Non-linear least squares 
Restraints example 
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Examples of simple mathematical models used for computing structure 
factors.  
 
Top: the standard model computes structure factors from atom positions 
and displacement parameters in a unit cell. 
fj is the atomic scattering factor (or form factor) for the atom type. 
 
Middle: Model allowing partial occupancy for disorder – this simple 
change enables modelling of significantly more complicated systems, 
including mixed site occupancies, partially occupied solvent molecules 
(for example), and disordered crystals. 
 
Bottom: Model extended to extinction (G = function of extinction 
parameter and intensity) and twinning (sum over multiple domains with 
relative occupancy xi). 
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Top:  
Linear equations can be written as matrices. 
Middle:  
Multiple equations with common parameters can be written as matrices too. These 
equations could correspond to experimental observations, y1-y3, taken under conditions, x1-
x3 respectively.  
The parameters a and c are common to all of the equations and we would like to determine 
their values. In general when number of equations (here 3) is greater than number of 
parameters (2) there will not be an exact solution. 
Least squares gives us the values of a and c which minimize the sum of the squares of the 
difference between the equation values and the measured values. 
Bottom: 
Matrices represented by bold letters.  
 
A is sometimes called the design matrix (it tells us about the conditions used for the 
experiment, here x). A column for each parameter, one row for each equation. Contains the 
coefficients of the parameters in the equation (here 1 and xn

) 

 
p is a vector of the parameters (a row for each parameter, one column) 
 
Y is a vector of measurements y1 – y3.  A row for each measurement / equation and one 
column. 
 
Finally – the matrix operations required to find the least-squares fit for p. 
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In reality one would use an optimised linear algebra library (e.g. 
OpenBLAS, MKL) to solve these equations. In fact, for most problems you 
would avoid inverting the matrix altogether for more efficient solution. 
In small molecule crystallography we make use of the inverted matrix to 
give us estimates of the parameter errors, so it is often computed by 
default. 
 
 
 
Non-linear equations cannot be written in matrix form. It is not possible 
to separate the equation into a sum of parameters with linear 
coefficients (see examples above). 
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For non-linear problems we can find a best fit by writing the equations in 
terms of shifts to existing parameters.  
 
Line 1. Approximate differences using the linear terms of a Taylor series 
expansion of the non-linear function, f(xi,p).  
The current set of parameters is given by pk. The best solution is pk.  
The first term of the Taylor expansion is given by the function evaluated 
with the current parameters. The second term is the first derivative of 
the function (evaluated at the current set of parameters) multiplied by 
the difference between these sets of parameters is (pj-pjk) on the right 
hand side.  
Line 2. Condense – the first derivatives (known) become our A matrix and 
the parameters sought are the differences between the current model 
and best solution. 
Line 3. Written as matrix algebra. We get Y by subtracting the first term 
in (2) from both sides (also note the sides are swapped for comparison to 
previous slides). 
Line 4. The least squares solution for shifts to find the best fit 
(approximate) – therefore need to repeat until convergence.  
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Six points which look like a gaussian curve. Gaussian model equation given below a is 
proportional to the height of the peak, b is the offset of the mean value from 0, c is 
the width of the peak. 
 
Aside for pedants: 
Although the equation above is non-linear, it can be transformed by taking logs of 
both sides to give a linear equation.  
 
(i) It is generally not advised to apply non-linear transformations to your data as the 

effect will be to change the distribution of errors, and least-squares is predicated 
on having a normal distribution of errors. However, in this case to improve 
stability you could use the transformation to find the required parameters and 
then optimize them a bit more with the non-linear least squares approach. This 
approach is used, for example, in finding peaks in electron density from Fourier 
maps. 
 

(ii) The transformation does not work if you need to fit the sum of two Gaussian 
shaped peaks (e.g. overlapped peaks), or even If you want to fit a background  
term along with the peak parameters. 
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Starting guess Gaussian parameters a,b,c shown at top. First 
derivative equations for parameters b and c shown below (a is 
trivial).  
 
For each equation / observation we compute the difference 
between the observed value and the value predicted by the 
model: y, and the first derivative evaluated for the current 
model with respect to each parameter a, b, c in turn.  
 
Finally we apply the matrix algebra shown at the bottom right to 
obtain some shifts to the parameters (see next slide). 
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1st iteration. 
a has increased a bit, b has shifted a bit too far to the right and c  
has widened out. 
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2nd iteration. Looking better! 
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3rd iteration, nearly there. 
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4th iteration. Good fit and very small shifts to parameters. We 
are approaching convergence. 
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Non-linear least squares needs an approximate solution to start. 
Because the derivatives rely on the starting model, if the model 
is too far from the best fit then the derivatives will not help to 
find the best solution. 
 
For this reason we can’t solve the fit of Gaussian parameters by 
simply making up parameters and refining them to the right 
solution. The crystallographic equivalent would be throwing lots 
of atoms into a unit cell and refining to try to find the best 
model – it will rarely work. 
 
 
Here, a and c are as before, but starting value of b is 0.0 instead 
of 0.4. 
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Looks OK but a has shifted in the wrong direction. 
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Now a has shifted back the other way and c has become far too 
narrow.  
 
The shape is now too sharp to be represented by the sampling 
on my graph. 
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Uh-oh. a has now gone negative. c is still far too narrow. 
The normal matrix (ATA) is shown. It’s determinant is 
now zero so it can’t be inverted. No further iteration is 
possible (even if it were desirable)… 
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Restraints are extra equations that include some of the 
parameters of the model. Think of them as extra data. 
 
The equations above for crystallographic structure factor and 
interatomic distance (in an cartesian coordinate system) show 
their equivalence. In each case the left hand side value is known 
(or measured), and the right hand side is a function (non-linear 
in this case) of some atom parameters (xi, yi and zi) in a model. 
 
For the pedants: 
The coordinate systems are different for each equation, the 
purpose of the equations is to demonstrate as simply as 
possible the equivalence of these types of equation. 
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In non-linear least squares the derivatives of the restraints are added into the design 
matrix. 
 
 
This is probably the simplest restraint possible, but can be tricky to imagine as it 
doesn’t map onto a real world observation. We are restraining a to be equal to the 
current value of a. 
 
In this case the first restraint equation would be y=a. 
The first partial derivative dy/da = 1 
The difference (observed y – model y) = 0. 
 
And so on for b and c. 
 
The equations take their place at the bottom of the design matrix (one extra row for 
each new restraint equation). 
The number of parameters is unchanged. 
The y vector is extened by one row for each restraint equation. 
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Why should this restraint improve our fit? 
 
It won’t affect the end result (since a=a introduces no 
new information), however it will tend to reduce the 
shift in parameters between cycles, thus it can stabilize 
our unstable example from earlier. 
 
The first six equations provide information which will 
drive the parameters towards better values, the last 
three will tend to counteract this and make the shifts 
smaller – prevents catastrophic overshifts which end in 
divergence from the best fit. 
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Much better! 
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Hooray! 
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Almost there 
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Two effects: 
 
(i) Convergence is slowed down. These restraints can be 

removed once the refinement is stable. 
 

(ii) Augmenting the normal matrix with these restraints means 
that the parameters uncertainties will be smaller than those 
estimated by the data alone. It is a philosophical choice 
and/or what is expected in your area of science to decide 
whether this is OK. In crystallography it is usually not OK and 
a final cycle without restraints is recommended to obtain 
‘true’ parameter error estimates. 
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The restraints above fall into class 1, where they are needed to 
stabilize the mathematical solutions due to poor starting 
models. 
 
Note: 
The use of weights in least squares has so far been omitted. 
They can easily be introduced – just multiply every equation in 
the list by its own weight which reflects the accuracy of the 
measurement or restraint information. 
 

W A p = W y 
p = (ATWA)-1ATWy 

 
W is a square matrix (one row/col for every equation, but is 
diagonal, so mostly zeroes. Each diagonal term, wii, is the weight 
for the ith equation. 
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More complicated models 
Automation 
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These approaches used in charge density analysis and 
invariom methods respectively are related. The models 
for the latter either come from high-quality refinement 
or ab-initio DFT calculations. 
 
In fact, using quantum mechanical calculations to obtain 
atomic scattering factors is the basis of the standard 
model. The Cromer-Mann parameters used to compute 
the non-resonant part of the spherical atomic scattering 
factor fj are a fit to relativitic Hartree-Fock wave 
functions for the elements. See references in 
http://reference.iucr.org/dictionary/Cromer%E2%80%93
Mann_coefficients 

28 



Modern charge density studies: the entanglement of experiment and 
theory Macchi, Piero  2013 Crystallography Reviews 
 
“The most adopted method to reconstruct the electron density is the 
multipolar model, where ρ(r) is expanded into atomic - or better pseudo-
atomic - multipolar functions, based on a radial function centered at the 
nuclear site and an angular function (spherical harmonics, usually 
truncated at hexadecapolar level).” 
 
Standard small molecule refinement obtains R-factors of 2%-5%. 
Each atom is an independent and spherical scattering centre that 
oscillates harmonically about its nucleus, i.e. according to a restoring 
force F = −kx.   To fit more complicated atomic models, we must consider 
that as well as the non-spherical atomic denisty, this 2-5% discrepancy 
includes statistical errors of the diffraction measurements and systematic 
errors (such as crystal sample absorption). 
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Charge density maps highlight the deformation from the 
spherical atom model, hence show up bonding (valence) 
electron density. 
 
The residual density map after multipole refinement (a),  
the X–X deformation density map (b),  
the model dynamic deformation density map (c), 
the static deformation density map (d)  
 
of the hydrogen oxalate ion in l-histidinium hydrogen oxalate 
[14], from experimental electron density modelling using data at 
100 K, and at 0.45 Å diffraction resolution.  
 
All data are included in these Fourier summations. Contours are 
drawn at ±0.05 eÅ−3 , with positive electron density contours 
shown as solid lines, negative electron density contours shown 
as dotted lines. 
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Acta Cryst. (2005). A61, 314–320 
 
Ideally we could compute or find examples of the electron 
density deformation around an atom and apply it to other 
structures where we don’t have good enough data to refine 
these parameters. 
 
This is the invariom model. 
 
Can be applied to refinement of protein data (e.g. with MoPro) 
by transferring data from high-res amino acids to protein 
structure. 
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“Hirshfeld atom refinement (HAR) is a method which 
determines structural parameters from single-crystal X-ray 
diffraction data by using an aspherical atom partitioning of 
tailor-made ab initio quantum mechanical molecular electron 
densities without any further approximation.  
Here the original HAR method is extended by implementing an 
iterative procedure of successive cycles of electron density 
calculations, Hirshfeld atom scattering factor calculations and 
structural least-squares refinements, repeated until 
convergence. The importance of this iterative procedure is 
illustrated via the example of crystalline ammonia.”  
 
Silvia C. Capelli Hans-Beat Bürgi Birger Dittrich Simon 
Grabowskyf and Dylan Jayatilakaf  
IUCrJ 1(5) 2014 361-379 
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Above: Bruker X2S automated small molecule crystallography instrument. 
 
Can work with or without a chemical formula, using multiple solution methods and 
multiple space groups to try to solve routine structures.  
Atoms are modeled anisotropically where the data supports it and hydrogen atoms 
are included in calculated geometric positions. A final structure report is generated. 
 
Structure solution has been automated to such an extent that we rarely even 
consider interacting with a solution program these days. 
The attempts at structure refinement below show that it is a harder problem – but 
some inroads are being made, especially for ‘routine’ samples. 
 
Automated solution 
ShelxT 
Superflip/EDMA  
 
Automated solution and refinement 
System-S (Platon) 
X2S (Bruker) 
Autochem (Olex2/Rigaku) 
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Displacement parameter restraints 
Non-atomic scattering density 
Targetted parameter precision 
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Displacement parameters have an intuitive 
relationship with each other. For a given fragment 
of a molecule in a crystal they are typically about 
the same size.  
 
The Hirshfeld ‘rigid-bond’ test states that for equal 
atoms, the components of the displacement along 
a bond should be the same. 
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When a model or data is wrong the displacement 
parameters are often the first place that errors show up. 
 
 
 
Above – examples of cigar shaped and oblate (flat) adps. 
Many adps connected by bonds show entirely different 
behaviour. The problem is explained away here by a 
heavy atom (Pr) which dominates the scattering and 
make the other parameters difficult to determine.  
However, in fact, the space group should be P-1, not P1. 
Hence 2x too many parameters are introduced into the 
refinement, giving a near singular matrix inversion and 
resulting in distorted bonds, angles and adps. 
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For the cases of poor or incomplete data, additional 
information about the relationship between 
displacement parameters may be introduced in the form 
of restraints. 
 
Above – the Hirshfeld rigid bond test criteria (see 
previous slide) as VIBR (CRYSTALS) or DELU (SHELXL) and 
a straightforward equivalence between all ADP 
parameters, SIMU (SHELXL) and UIJs (CRYSTALS). 
 
The former restraint is physically meaningful (atoms 
connected and moving in a symmetric potential), the 
latter is less meaningful (see example picture top right), 
but may be required in the event of very disordered 
regions or poor data:parameter ratio. 
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RIGU introduced into SHELXL by Thorn, allows restraining 
direction (but not magnitude) of displacements of atoms 
related by a bond. 
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RIGU introduced into SHELXL by Thorn, allows restraining 
direction (but not magnitude) of displacements of atoms 
related by a bond. 
 
Effect on protein side chain shown. Paper describes 
validation of restraint against high quality examples (i.e. 
molecules really do tend to behave like this – as 
expected). 
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The small molecule equivalent of low-res protein 
data sets could be high pressure data sets where 
the opening angle of the pressure cell physically 
limits the resolution of the experiment, and 
reciprocal space may not be fully accessible due to 
the fixed relationship between the sample and the 
path of the beam. 
 
Above – RIGU-type restraint in CRYSTALS allows 
better model than either isotropic model 
(published) or unrestrainted anisotropic model 
(left). 
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More adp restraints are possible, where applicable:  
 
Rotating groups usually have adps aligned 
perpendicular to a bond (top), and the adps tend 
to be aligned in the plane of rotation (bottom). 
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Example of refinement against truncated data set. 
A Ru-Cp* ring with poor data:parameter ratio (left) 
is fixed by perpendicular and in-plane restraints. 
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These are similar mathematically to the invarioms 
seen earlier - in that we are modifying the shape of 
the scattering density of an atom. However the 
purpose here is to fit non-atomic average density 
in the crystal structure (e.g. due to disorder due to 
molecular rotations, or randomly filled solvent 
channels), rather than to attempt a high-resolution 
fit of the data. 
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These shapes are convolutions of scattering 
density in real space. Remember that convolutions 
in real space are just multiplications in reciprocal 
space, so if we can describe the shape by a 
function, its analytical FT can be substituted into 
the structure factor equation and parameters fit. 
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Using CRYSTALS, a  
structure reported by A. 
L. Kieran et al. (Chem. 
Commun. 2005, 1276–
1278) used just five 
parameters to model a 
disordered C60 in a 
porphyrin cage. 
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The question is not “how can I make the structure more 
accurate?”, but “how can I make the Cr-Cr bond more 
accurate?”. 
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The standard uncertainty of the parameters is derived from the 
standard uncertainties of the data via the model. 
The more accurate the data, the better the model parameters 
will be (on average). 
 
Therefore a simple approach is to collect data for longer, or with 
more redundancy to improve the signal to noise. 
 
Unfortunately this gets boring quite quickly. Assuming Poisson 
counting stats we need to collect 4x longer to achieve 2x 
signal:noise improvement. Can we be more selective? 
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1. Solution of parameter shifts  including weights (see earlier) 
 

2. The Variance-Covariance matrix, V, is the inverse normal matrix scaled 
by the reduced chi-squared (called goodness-of-fit in crystallographic 
literature). When only the relative variance of the measurements is 
known this a posteriori correction puts the errors on the right scale. 
(For this reason anyone telling you that the goodness of fit should be 
one is wrong). 
 

3. The variance of a single parameter is the corresponding diagonal 
element in this matrix. Take the square root for the standard 
uncertainty. 
 

4. For functions of parameters (e.g. a distance) use a linearised version 
of the function with respect to each parameter (eqn 5) to extract both 
the variance and covariance in order to compute the variance of the 
function itself. 
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The following example shows a proof of concept that by 
some careful analysis of an initial model, data can be 
selected for remeasurement to target specific derived 
parameters (in this case, a distance). 
 
We picked Cu-O because the Cu-Cu (which is a more 
obvious target of interest) is already incredibly well 
determined due to the high scattering power of Cu. 
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A little thought experiment is shown here. We can surely 
do this analysis simply by adding one extra reflection at a 
time (a simulated remeasurement) into the least squares 
and seeing how it improves the variance of our selected 
parameter. 
 
The computational time would be quite a waste. 
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The shortcut is given by Prince’s book 
Mathematical Techniques for Crystallography and 
Materials Science  (3rd edition p122), and also his 
related article in International Tables for 
Crystallography. 
It shortcuts the inversion step to allow a quick 
calculation of the improvement in a parameter 
error estimate due to adding one more 
observation with a short bit of matrix 
multiplication (the zH vector is one row of the 
design matrix with sqrt weight applied), this can be 
output by some crystallographic software. (e.g. 
CRYSTALS). 
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Here are the initial values.  
 
 
Note for pedants – we’ve quoted the error to more d.p’s that 
the value. It is bad practice (and I could go back to the source 
and dig out the value), but note that it’s the error that we are 
interested in improving – the value is sort of irrelevant until its 
precision is improved. 
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Here’s the interesting graph. Each point is one reflection and 
how much it will improve the Cu-O error estimate if we 
remeasure it and add it into the refinement.  
 
The data are sorted so the best improvements are at the left 
hand end of the horizontal axis. 
 
Beyond 28% of the data set the rest of the improvements are 
negligible. We can get to a 50% reduction in Cu-O error 
(cumulative) with only 7% of the data. 
NB. This improvement will probably not be additive, since after 
adding in the first extra observation, the model will change 
slightly, so the rest of the analysis is approximate. This is why its 
useful to try a real experiment… 
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Here we define a strategy on an area detector 
instrument to remeasure 33 reflections. 
 
Actual improvement in Cu-O error is 0.0024 to 0.0018 
Angstrom (about 25% off).  
 
This is about what we would expect if we remeasured 
the whole dataset for one hour, so there is some 
advantage to prioritising reflections. 
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Patterns of reflections in reciprocal space are interesting. 
Different parameters have different reciprocal space 
distributions (according to the Fourier transform of the function 
studied). 
 
E.g. points in reciprocal space parallel to a bond distance will 
have most influence (defining the distance between the atoms). 
For groups in a plane the most influential points defining 
geometry are found in a halo in the same plane in reciprocal 
space. 
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Real applications: calculating optimal scans for excited 
state measurements. Differences may be small and 
collecting the right data quickly enables better time 
resolution. 
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For those interested, CRYSTALS is available from http://www.xtl.ox.ac.uk 
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