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CompComm Chairman’s Message 
 
This is already the fourth newsletter of the IUCr computing commission, capably put together by our 
editor, Lachlan Cranswick, with articles of interest on this issue’s main topic: 'Constraint & Restraint 
refinement'. The subject is of course not new. However, from the current users point of view, what counts 
is whether those features are available within their software environment of choice (SHELXL, 
CRYSTALS, SIR, ..) and well explained. Hopefully, these article may also lead to more 'looking over the 
fence'. 
 
The historical article by Dick van der Helm on early computing brought back to me the many nights (in 
the 60’s) spent at the computer centre in Utrecht writing Direct Methods programs and doing 3D maps 
and SFLS calculations within the constraints of 16K 27bit words.  I still have the sound of the lineprinter 
in my ear that directly reflected the first, second and third Fourier summation steps.   
 
There are 9 computing related sessions planned for the Florence 2005 IUCr congress. The program for the 
IUCr computing school to be held in Siena immediately prior to the Florence meeting is in its refinement 
stage. More info will be available soon, and published in the next edition of this newsletter.  The 
upcoming ECM-22 Budapest meeting (25-31 Aug 2004) includes 5 computing related sessions : 

• Crystal Structure validation: challenges and tools (Chair/Co-chair: Tony Linden/Richard Cooper) 
• Advances and pitfalls in automated structure determination (Chair/Co-Chair: Ton Spek/Simon Parsons) 
• Crystallographic graphics tools and user interfaces( Co-chair: Martin Noble/Laszlo Parkanyi) 
• Advances in powder diffraction methods (Chair/Co-chair: Jordi Rius/Eric Mittemeijer; Jointly with the 

Powder SIG) 
• New methods for phasing, model building and real-time refinement (Chair/Co-chair: Eleanor 

Dodson/George Sheldrick; Jointly with the Protein SIG) 
 

Ton Spek, Chairman or the IUCr Computing Commission, (a.l.spek@chem.uu.nl ) 
 

 

From the Editor of Newsletter No. 4 
 
This current newsletter contains a variety of articles on the theme of "Restraints, Constraints and using 
extra observables". The alleged first documented case of the crystallographer correcting the 
preconceived incorrect molecular restraints of the chemist is that of Mills and Nyburg, "The Molecular 
Structure of Aspidospermine", Tetrahedron Letters No, 11 pp 1-3, 1959; and Mills and Nyburg, J. Chem. 
Soc., pp 1458-1463 (1960) (this is inaccurately described in "From Classical to Modern Chemistry: The 
Instrumental Revolution", Royal Society of Chemistry, 2002, ISBN 0-85404-479-5). However, if 
diffraction data does not allow for a complete analysis, extra observables and chemical information, when 
intelligently applied, can be the difference between success and failure in solving crystallographic 
problems. As with most of crystallography, without good algorithms and computer code, the attempt to 
use extra observables would be a frustrating business. While a goodly range of articles was sought for this 
newsletter, it is not exhaustive, and this theme will no-doubt have to be revisited in a future edition. 
 
The next issue (due January 2005) is intended to have the theme of "At Right Angles to Conventional 
Crystallographic reality: computing and algorithms related to incommensurate, quasicrystal, pair 
distribution function and magnetic structures". That some structures don't fit nicely into a convenient 
commensurate unit-cell can be a disturbing thought, and highly inconvenient, to the classical 
crystallographer (similar perhaps to those who were more at home with classical physics vs that of the 
quantum world). A possible future requirement in crystallography may be the revisiting of published 
crystal structures where more exhaustive examination with CCD single crystal diffractometers may show 
weak satellite reflections or diffuse scattering requiring proper explanation. Submissions relating to the 
control and visualization of raw single crystal image data for the elucidation of many of the above types 
of structural problems are encouraged. Articles of a general nature outside the above theme are also 
welcome, especially those dealing with the history of crystallographic computing. 
 

Lachlan Cranswick (Lachlan.cranswick@nrc.gc.ca) 

mailto:a.l.spek@chem.uu.nl
mailto:Lachlan.cranswick@nrc.gc.ca
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 A preliminary announcement of the IUCr Commission on Crystallographic Computing  

 
 
 
 

Certosa di Pontignano, 
University of Siena, Italy 
18th - 23rd August 2005 

(just prior to the Florence IUCr 2005 congress) 
 

http://www.iucr.org/iucr-top/comm/ccom/siena2005/
 
School Organisers: Prof Anthony Spek 
(Utrecht), Prof. Marcello Mellini (Siena), 
Prof. Alessandro Gualtieri (Modena), Dr 
Harry Powell (Cambridge), Lachlan 
Cranswick (NRC Chalk River) 
Consultants: Dr David Watkin 
(Oxford), Dr Simon Parsons (Edinburgh) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each day of the school is focussed on a different theme: 
  “principles & methods” 
  “joining things together” 
  “crystallographic implementations” 
  “selected topics in crystallography” 
  “special methods” 
 

 
 
 
 
 
 
 
 
 
 

The City 
Siena is described as one of the 
finest examples of a Medieval 
city.  It is in the Italian province 
of Tuscany and has direct bus 
connection to Florence (1 hour) 
and Rome (3 hours).  
 

The Venue
The Certosa di Pontignano has its 
origins as a medieval 14th century 
monastary.  It is now run by the 
University of Siena. Attractively 
placed on the top of a hill, it is 
surrounded by vineyards; with a 
direct view to the town of Siena, 
and a famous Chianti winery. 
 
 
 
 
 
 
 
 
 
 

School Aims 
To have the crystallographic 
computing experts of the present, 
help train and inspire a generation 
of experts for the future. This will 
be achieved by the use of an 
excellent (and full) program of 
lectures, workshops and projects. 
 

 

http://www.iucr2005.it/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/organ.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/venue.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html


 

Winners of the CompComm Logo Competition 
 

 
 

Can people do better than this? 
 

Indeed they can!  With a greatful thankyou to the people who submitted their ideas, Paul (University of 
Florida, USA) and Kathy Sehnke were declared winners of the CompComm logo competition.  Their 
stated synopsis was "This logo represents some important molecular structural components of which the 
computing commission works with and works towards. The X-ray film, diffraction pattern, computer, 
beta strand and helix are surrounded by a line which symbolizes the box that contained the Beevers-
Lipson Strips. These elements within the logo were and are necessary for the end result of solving a 
molecular structure."  The winning graphics are below: a) newsletter logo, b) webpage banner logo and c) 
Siena 2005 Computing School logo. 
 

 
 

 
 

 
 
All submissions received are still viewable via:  

http://www.iucr.org/iucr-top/comm/ccom/ccom/logo_sub.html  
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Refinement on weak or problematic small molecule data using SHELXL97 
 

Alexander J. Blake, 
School of Chemistry, The University of Nottingham, Nottingham UK 
E-mail: A.J.Blake@Nottingham.ac.uk - WWW: http://www.nottingham.ac.uk/chemistry/staff/blake.html  
 
Introduction 
 
Problematic structure refinements can be the result of a number of factors, including poor diffraction, 
twinning, small crystal size, pseudosymmetry, significant absorption effects and positional disorder. (For 
a comprehensive review of difficult refinements see D.J. Watkin, Acta Cryst. 1994, A50, 411−437.) Such 
structures may exhibit low data/parameter ratios, apparent voids, extreme or unrealistic displacement 
parameters, high residual electron density or poorly defined hydrogen atom positions. While certain of 
these problems, such as absorption, are typically dealt with outside the refinement process, it will 
normally be necessary to incorporate a treatment for most of the others as part of refinement. 

 
A principal feature of such refinements is the lack of information in the diffraction data pertaining to 
particular regions of the structure, for example in disordered regions where the disorder components are 
not resolved. In such cases the application of restraints (formally, the addition of extra observations) 
and/or constraints (formally, the fixing of certain parameters) can allow the refinement to proceed to a 
satisfactory conclusion. A simple example of a restraint derived from chemical knowledge would be one 
which states that the chemically-equivalent distances in the BF4

– anion should be the same, while 
constraints would be appropriate to ensure that an atom on a special position did not wander away from it. 
The value of restraints and constraints depends crucially on their validity, with inappropriate ones 
distorting instead of assisting the refinement. Distance and other geometric restraints are sometimes 
familiar through previous experience of the same chemical moieties, while unfamiliar ones can be 
determined from database surveys or even from ordered examples on the same species within the 
structure being studied. 
 
This article will focus primarily on a range of hexanuclear supramolecular cages constructed using a 
ligand (see Figure 1) which is both blocking and chelating. The structures were refined using SHELXL97 
and recently published in Chemical Communications (O.V. Dolomanov, A.J. Blake, N.R. Champness, M. 
Schröder & C. Wilson, "A novel synthetic strategy for hexanuclear supramolecular architectures", Chem. 
Commun. 2003,  pp. 682−683). 

 

 
Figure 1: Ligand which is both blocking and chelating. 
 
The structures are illustrated in Figures 2–5. The refinement problems include disorder in many anions, 
partial occupancy for several anions, low resolution data and low r/p ratios. Moreover, it is important to 
establish the identity and the locations of the anions, in order to understand how they contribute (e.g., as 
templates) to the formation of the different structures. 
 

6 

mailto:A.J.Blake@Nottingham.ac.uk
http://www.nottingham.ac.uk/chemistry/staff/blake.html


   
 
Figures 2 and 3 : hexanuclear cage {[Cu6L6(BF4)](BF4)5}; hexanuclear cage {[Ag6L6(SbF6)](SbF6)5} 
 

   
 
Figures 4 and 5 : hexanuclear cage [Ag6L6(BF4)][Co(C2H11B9)2]5 ; dinuclear cation in 
(AgL)2[Co(C2H11B9)2]2 
 
Some of the refinement tools available in SHELXL97 
 
(http://shelx.uni-ac.gwdg.de/SHELX/) (G.M. Sheldrick, University of Göttingen, Germany, 1997) [values 
in square brackets indicate defaults] 
 
EXYZ atomnames 
The same x, y and z parameters are used for all the named atoms.  
 
EADP atomnames 
The same isotropic or anisotropic displacement parameters are used for all the named atoms.   
 
PART  n  sof 
The following atoms belong to PART n of a disordered group with the site occupation factor (sof) 
shown.   
 
DFIX  d  s[0.02]  atom pairs 
The distance pairs of atoms are restrained to a specified target value of d with standard uncertainty s. 
 
SADI  s[0.02]  atom pairs 
The distances between pairs of atoms are restrained to be equal with an effective s.u. of s (cf. DFIX) 
 
SAME  s1[0.02]  s2[0.02]  atomnames 
The atoms specified here are linked to the same number of atoms which follow. 
 
FLAT  s[0.1]  four or more atoms 
The named atoms are restrained to lie in a plane.   
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SUMP  c  sigma  c1  m1  c2  m2 ... 
The linear restraint:   c = c1*fv(m1) + c2*fv(m2) + ...   is applied to the specified free variables.   
  
DELU/SIMU/ISOR 
Applies various restraints to anisotropic displacement parameters (not discussed here). 
 
FRAG code[17] a … γ 
Enables a fragment to be input using an input cell and coordinates.   
 
FEND 
This must immediately follow the last atom of a FRAG fragment. 
 
AFIX  n>16 
Applies geometry of fragment with this n value. 
 
 
Example 1: Simple distance restraints in a tetrahedral anion (BF4

–) 
 
The first DFIX line below applies a distance restraint to each of the four equivalent B–F bonded 
distances, the second restrains the shape to be a tetrahedron centered on the boron atom by restraining 
non-bonded F…F distances to be equal. The structure is shown in Figure 2 and the atom numbering in 
Figure 6. 
 
DFIX   1.38  0.01    B F1    B F2    B F3    B F4 
DFIX   2.25  0.02    F1 F2   F1 F3  F1 F4   F2 F3   F2 F4   F3 F4 
 
 

 
 
Figure 6 : numbering of tetrahedral anion (BF4

–) 
 
This procedure can serve two purposes, the first being to apply a sensible geometry to a single 
component. It can also serve another purpose: by defining a sensible geometry for one disorder 
component it can improve the definition of a second component. It would then be normal to apply the 
same pattern of restraints to this second (and any subsequent) disorder component. This situation is 
illustrated below, with the atom identification shown in Figure 7. 
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DFIX   1.38  0.01    B F1    B F2    B F3    B F4 
DFIX   2.25  0.02    F1 F2   F1 F3  F1 F4   F2 F3   F2 F4   F3 F4 
 
DFIX   1.38  0.01    B F1’  B F2’  B F3’  B F4’ 
DFIX   2.25  0.02    F1’ F2’  F1’ F3’   F1’ F4’   F2’ F3’   F2’ F4’   F3’ F4' 

 
 
Figure 7 : numbering of disordered tetrahedral anion (BF4

–) 
 

 It should then be possible to the refine the occupancy of F1 to F4 versus that of F1’ to F4’
 
Example 2: Geometric restraints for a less common anion 
 
In this example (Figure 3) the anion (SbF6

–) is less common and although we know it to be octahedral we 
are unsure of the Sb–F and F…F distances involved. In these circumstances we can exploit the geometric 
relationships among the parameters even although we are unsure of their actual values.  
 
There is one Sb–F distance and two F…F distances corresponding to cis and trans dispositions of F. 
 
SADI  0.01  Sb26  F27  Sb26 F28  … Sb26 F32 
SADI  0.02  F27 F28  F27 F29  F27 F30  F27 F31  F27 F32  F28 F29 … F31 F32 
SADI  0.02  F27 F30    F28 F31    F29 F32 
 
Just as it is important to ensure that any explicit restraints (e.g., distances specified using DFIX) are 
sensible, the outcome of the application of any similarity restraints should also be realistic. In this 
example the mean Sb–F distance was 1.86 Å, in very good agreement with the results of a subsequent 
search of the Cambridge Structural Database which yielded 175 entries with a mean value of 1.85(1) Å. 
We did not find any evidence of disorder but the restraints allowed us to refine a sensible geometry for 
light atoms (F, Z = 9) in the presence of a much heavier one (Sb, Z = 51) shown in Figure 8. 
 

 
 

Figure 8 : Refined SbF6
– molecule 

 
Example 3: An ill-defined tripodal ligand 
 
A schematic view of the ligand appears in Figure 9. The three arms emanating from the central nitrogen 
atom are chemically identical and would be expected to exhibit very similar bond distances and valence 
angles, but not necessarily the same torsion angles. Poor crystal quality led to a refinement which gave 
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unrealistic bonds and angles and poor agreement between the geometry in different arms: this outcome 
simply looked unsatisfactory. The solution was to apply similarity restraints between each chain 
involving their bonded distances and valence angles, but no specific values were assigned to any 
parameter. Taking the lower chain (in black and numbered C1 to O7) in Figure 9 as the reference group, 
we first apply similarity restraints to the red chain on the left numbered C11 to O17. 
 

 
 
Figure 9 : tripodal ligand. 
 
SAME  0.01  C1 > O7 
C11  ... 
N12 … 
C13 … 
C14 … 
C15 … 
O16 … 
O17  ... 
 
Then we do the same for the upper blue chain numbered C21 to O27. 
 
SAME  0.01  C1 > O7 
C21  ... 
N22 … 
C23 … 
C24 … 
C25 … 
O26 … 
O27  ... 
 
The effect of this procedure is to average out the discrepancies between the three chains and achieve a 
better result for all three. As in the previous example, the final values for the geometric parameters form 
an important criterion for the validity of the procedure. 
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Example 4: A bromide anion disordered within a cavity 
 
In the next example one bromide ion was required to balance the charge within a structure but instead of 
one large difference peak a number of difference peaks of moderate height were identified inside a cavity 
within the structure. The cavity was much larger than required to accommodate a bromide and there 
seemed to be no single preferred site for it. Five of the difference peaks stood out above the rest, so a 
model was developed based on these: this model is represented schematically by Figure 10.  
 

 
 
Figure 10 : schematic diagram of bromide disordering in a cavity. 
 
Such a situation is likely to cause correlation effects if atom positions, occupancies and displacement 
parameters are refined completely freely: however, application of one simple restraint, namely that the 
sum of the occupancies must equal unity, was sufficient to overcome this problem. On each atom line 
(Br1 … Br5) there is a reference to a free variable which describes the occupancy of that atom; on the 
FVAR line, following the overall scale factor (osf) five free variables numbered 2 to 6 represent a starting 
occupancy of 0.2 for each bromine component; finally, on the SUMP line there appears the linear 
restraint that the sum of the individual occupancies should equal 1.00 with a standard uncertainty of 0.01. 
 
SUMP  1.00   0.01   1  2   1  3   1  4   1  5   1  6 
 
FVAR  osf   0.2  0.2  0.2  0.2  0.2   
 
Br1      5   x y z   21 
Br2      5   x y z   31 
Br3      5   x y z   41 
Br4      5   x y z   51 
Br5      5   x y z   61 
 
In refinement, the individual occupancies are allowed to vary but they are always subject to this restraint 
so that unrealistic values and correlation with displacement parameters can be avoided or minimised. The 
validity of the refinement can be judged in several ways, for example by the behaviour of the 
displacement parameters and by the standard uncertainties on the individual occupancies: in this case the 
criteria were all satisfactory for a model showing unequal occupancies of five sites. [With only two 
disorder components the analogous procedure is somewhat simpler, requiring no SUMP instruction and 
only a single free variable.] 
 

Example 5: a large structure containing rigid [Co(C2B9H11)2]- anions 
 
This structure is shown in Figure 4. It is a big structure constructed using large anions, several of which 
occur in the asymmetric unit. When the structure was refined without restraints there were problems with 
the data/parameter ratio and with poor geometry for the anions. It would be possible, either manually or 
automatically, to generate multiple DFIX instructions for Co—B,  Co—C,  B—B, and B—C distances 
and to apply similarity restraints between the carbaborane cages: however, this would be complicated and 
might still allow the cages to distort. The rigidity of the anions allows a completely different approach to 
be adopted, one using constraints rather than restraints. A model for the anion can be taken from a variety 
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of sources, including a more precise version in the same structure; a better version from another structure; 
a calculated or optimised version; or a typical or average database structure. 
 
Having identified a suitable model, the first step is to import this model into the input file for the 
refinement program 
 
FRAG   17   15.72  20.15 20.39 74.8 70.75 86.50 
Co      4      x y z... 
C1      1      x y z... 
C2      1      x y z... 
B3      3      x y z... 
... 
B19     3      x y z... 
FEND 
 
Note that the input model is bounded by the FRAG and FEND instructions and that the fragment has a 
number (17) which is greater than 16. 
 
This model is then applied to the corresponding parts of the current structure, for example: 
 
AFIX  17 
Co1    7   0.33250   0.76245   0.52909  11.000  0.0608 0.1389 = 
           0.0396   -0.0183   -0.0212    0.0153 
C1     1   0.37668   0.84367   0.54903  11.00000   0.155 
C2     1   0.41382   0.84350   0.45796  11.00000   0.089 
B3     3   0.31680   0.82455   0.43612  11.00000   0.117 
... 
B19    3   0.20793   0.79538   0.51437  11.00000   0.138 
AFIX   0 
 
Before refinement proceeds this part is idealised to the input model; the AFIX 17 … AFIX 0 sequence is 
replaced by a simple rigid group refinement (AFIX 3); the FRAG ... FEND sequence of lines is no longer 
required and is not copied to the output model file. For each [Co(C2B9H11)2]- anion the number of 
positional parameters is reduced from 69 to 6, the latter number corresponding to three positional and 
three orientational parameters for each rigid group. A similar approach was also successful for the 
structure shown in Figure 5. 
 
This is a powerful and attractive technique but it can only be applied in certain circumstances. For 
example, the 3D matching requirements are stringent and the method cannot be applied to fragments 
where there is uncertainty or variability in the positions of any of the constituent atoms. As it is applied as 
a constraint, the input model must be completely valid and it is particularly important to check the 
program's refinement indicators for any warning of errors or problems. 
 
Conclusion 
 
This article has shown how the careful choice and application of geometric restraints or constraints can 
allow acceptable refinement of problematic structures. As small molecule crystallography advances into 
larger and/or poorly diffracting structures these tools will be increasingly called upon to facilitate 
structure analysis. 
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Introduction 
 
SIR (Semi-Invariant Representation) is a collection of Direct Methods programs for automatic crystal 
structure solution based on the Representation Theory1,2. The main elements of this family are Sir923, 
Sir974, Sir20025 and Sir2004 (in preparation).  
 
 
 

 
 
All the programs are equipped with a graphical interface (GUI) to interact with the program. While in the 
older programs X11 libraries were used to build the GUI, in the newest version GTK graphic libraries 
have been used. 
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The main features of the Sir programs are: 
 

• Minimal input information 
• Possibility of complete automatism 
• Reduced user intervention 
• Simple (and powerful) graphic interface 
• Run on almost all platforms 

 
Sir92 was the first program, created by the Sir team and distributed to the scientific community, devoted 
to the automatic solution of crystal structures by direct methods. 
 
In Sir97, it’s evolution, powerful automatisms and  new algorithms were added. Furthermore it was 
possible, via an improved graphical interface, the refinement and the analysis of the crystal structure 
model found by the program. 
 
Both Sir92 and Sir97 were fast and powerful but their goal was small molecules. 
 
Sir2002 constitutes the first approach of the Sir team to the solution of macromolecules: it is able to 
solve, without any user intervention, crystal structure up to 2000 atoms in the asymmetric unit, provided 
the data are at atomic resolution (better than 1.2Å). The strategy adopted in Sir2002 was to explore in 
sequence, via  Direct Space Refinement  and automatic Diagonal Least Squares, all the trials until a 
solution was found. This procedure, very powerful, was also time consuming particularly for large 
structures. 
 
In Sir2004 the use of  suitable Figures Of Merit6 at an early stage of the phasing procedure allows to 
select the most promising trials. So potentially good solutions are separated from bad ones just after the 
Tangent Formula step. Only the most promising trials are submitted to Direct Space Refinement, so 
sparing computing time. 
 
The 1.2Å limit on the atomic resolution of the data has been moved, in Sir2004, to 1.4-1.5Å7,8; new 
procedures able to attain and highlight the solution in these conditions have been developed. 
 
Refinement of the model 
 
The stage of the process of getting the best model of a crystal structure is to find the values of the atomic 
parameters which give the best fit between observed and calculated structure factors. This optimisation 
procedure is called refinement and we implemented in Sir2004 (provided that the resolution is sufficient)  
the well known and most generally used method of least squares. 
 
The specific features of our refinement are the following. 
 

1) The ability to reduce the full matrix of the normal equations defining any kind of blocks. 
2) 18 weighting schemes are available. If the weighting scheme contains adjustable parameters, the 

program refines the values to obtain a good distribution of <w∆2> against ⏐F⏐and resolution and 
the value of the goodness of fit close to the unit. 

3) The program generates constraints for the parameters of atoms on special positions in all space 
groups. 

 
 



 
 
 

4) Automatic or through wizard generation of hydrogen atoms and their contributions are included in 
the refinement allowing the positional parameters to ride on the corresponding parent atom. 

 

 
 
 

5) The possibility to impose conditions (constraints) or additional information (restraints). 
6) Floating origin is restrained automatically by setting the restrain of the sum of the. appropriate 

coordinate 
7) Refinement of the Flack parameter to evaluate the absolute configuration. 
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Restraints 
 
With poor data, a simple way to improve the convergence of the atomic parameters is to incorporate 
constraints and/or restraints in the refinement. A restraint is a function of the coordinates that is lowest 
when the coordinates are “ideal”, and which increases as the coordinates become less ideal. Bond lengths, 
angles, etc. are “measurements” that must be fit by the model and can be considered as supplementary 
observations. The minimization function becomes: 

where gobs is a 
function of the coordinates and gideal is his ideal value, wq is the 1/σ2 multiplied by the square of the of the 
goodness of fit for the reflection data. 
 
The following restraints are available. 
 

1) Geometrical conditions: bond distances, bond angles, planarity. Clicking on the item in the 
“Manage restraints” window the user chooses the requested restraints and then he has to select the 
atoms involved by mouse click. The planarity of a group of atoms is obtained by restraining their 
distances from the least squares plane of the group.  
 
 

 

 
 
 

2) The restraint of the sum of selected parameters could be useful in case of disorder, as well as in 
the non centrosymmetric space groups with floating origin, where this restraints are generated 
automatically by the program.  

3) Limit restraint allows to prevent excessive shifts for some ill-conditioned atomic parameters. 
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The list of defined restraints are shown in the proper window and the user can delete or add new restraints 
at any moment of the process of refinement. 



 
 

 
 
Constraints 
 
A constraint is a mathematical relationship which imposes predefined conditions between atoms of the 
crystal structure or part of it. This technique has the advantage to reduce the number of parameters to 
refine, particularly useful when the ratio between atomic parameters and measured intensities is low. The 
atoms involved have to be regularized to a ideal model structure of known geometry (for example, 
benzene ring) and this rigid body is refined as compact unit assuming three translational parameters and 
three angles which define its orientation. 
 
The method used to compute the coordinates of the model follows the approach described by Arnott & 
Wonacott (1966). In order to build the internal Cartesian coordinates, the program uses the ASCII file 
Sir2004.gru which contains models described using the Z-matrix format. The user can add models 
following the rules specified in the web site: 
http://www.cineca.it/manuali/Unichem/5500/5500_248.html
 
Example of the file Sir2004.gru 

 
Th
the
pr
 

e user has to indicate the label of the model contained in the Sir2004.gru file (benz in the example) and 
 corresponding labels of the atoms. In the current version, the graphic interface is in progress and the 

ogram get this information via input file. 
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Example of input file 
 
 
 
 
 
 
 
 
 
 
 
 
Si
 

 
Re
 
 1 
 2 
 3 

 4 

 5 

6 -

 7 

 8 

 

r2004 reads the following input file to execute the refinement applying these constraints: 

 

ferences 

- Giacovazzo, C. (1977). Acta Cryst., A33, 933-944. 
- Giacovazzo, C. (1980). Acta Cryst., A36, 362-372. 
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G. & Camalli, M. (1994). J. Appl. 

Cryst. 27,435. 
- Altomare, A., Burla, M.C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. & 

Spagna, R. (1999). J. Appl. Cryst., 32, 115-119. 
- Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. 

Cryst., 36, 1103. 
 Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J.  Appl. 

Cryst., 37, in press. 
- Burla, M.C., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C.  & Polidori, G. (2003). Acta Cryst. A59, 245-

249.  
- Burla, M.C., Carrozzini, Caliandro, R., Cascarano, G.L., De Caro, L., Giacovazzo, C.  & Polidori, G. (2003). Acta Cryst. 

A59, 560-568 

18 



19 

 

cctbx news: Geometry restraints and other new features 
 

Ralf W. Grosse-Kunstleve, Pavel V. Afonine and Paul D. Adams, 
Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, One Cyclotron Road, 
BLDG 4R0230, Berkeley, California, 94720-8235, USA - Email : RWGrosse-Kunstleve@lbl.gov ; WWW: 
http://cci.lbl.gov/  
 
1: Introduction 
 
The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source 
component of the Phenix project (http://www.phenix-online.org/). Currently we are finalizing an initial 
version of the Phenix refinement procedures. The emphasis of this article is an introduction to the 
underlying open-source libraries for the handling of geometry restraints, molecular mask calculations, 
bulk-solvent correction, likelihood-based target functions for crystallographic refinement, and the relative 
scaling between these target functions and the geometry restraints. 
 
Some of the functionality covered in this newsletter is implemented in the new top-level mmtbx module 
("macro-molecular toolbox") of the cctbx project. Due to technical reasons the mmtbx source code is not 
currently hosted at the SourceForge site even though it is covered by the same open license as the rest of 
the cctbx project. However, the full mmtbx sources are included in the bundles available at the 
http://cci.lbl.gov/cctbx_build/ download site. For the future we are planning to move the mmtbx code to 
the SourceForge site. 
 
In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit 
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting 
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64 
Unix). On recent machines the installation requires significantly less than one minute of time. Even on the 
slowest machine available to us (SGI O2, R5000, 300MHz) a binary installation takes less than three 
minutes without requiring any manual intervention. A cctbx installation is non-intrusive and does not 
require system privileges. Traceless removal is as easy as running rm -rf or dragging a single folder to 
the Recycle Bin. Nobody will know you did it! 
 
All example scripts shown below were tested with cctbx build 2004_08_05_0113. 
 
2: from cctbx import geometry_restraints 
 
Commonly refinement programs support inclusion of prior chemical knowledge such as bond lengths and 
bond angles via geometry restraints. The cctbx implementation of six types of geometry restraints is 
located in the cctbx.geometry_restraints module. The restraint types available are: 
 

• bond  
• nonbonded repulsion  
• angle  
• dihedral (same as torsion)  
• chirality  
• planarity  

 
The cctbx.geometry_restraints module is designed as a uniform library to support both small-
molecule and macro-molecular refinement. In general the requirements for small-molecule and macro-
molecular refinement are quite different. For example, some macro-molecular refinement programs have 
limited or no support for symmetry bonds (i.e. bonds to atoms generated by symmetry), or bonds 
involving sites on special positions. This is not surprising because of the 27141 pdb*.ent files found at 

mailto:RWGrosse-Kunstleve@lbl.gov
http://cci.lbl.gov/
http://cctbx.sourceforge.net/
http://www.phenix-online.org/
http://cci.lbl.gov/cctbx_build/
http://cci.lbl.gov/cctbx_build/
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ftp.rcsb.org on July 27, 2004, only 256 include LINK records defining symmetry bonds (out of a total 
of 7078 files with LINK records), and only 534 files include heavy atoms on special positions (out of a 
total of 2746 files with atoms on special positions; most are water molecules). This means a little less 
than 98% of all macro-molecular structures can be refined with a program that does not correctly handle 
symmetry bonds or special positions. 
 
In contrast, special positions and symmetry bonds are the norm in small-molecule crystallography, not the 
exception. The is particularly true for inorganic materials. In theory, a system that handles geometry 
restraints for the refinement of small molecules and inorganic materials will therefore immediately be 
able to handle all symmetry aspects of 100% of all macro-molecular structures. In practice however many 
small-molecule programs do not lend themselves to be used for macro-molecular work. This is due to 
fairly trivial nuisances such as unsuitable compiled-in limits on the number of atoms or bonds that can be 
processed, or more seriously, use of algorithms that scale with the square of the number of atoms and 
become prohibitively slow for large macro-molecular structures. Even more seriously, aspects that are 
crucial for the handling of macro-molecular structures may not be covered at all, such as nonbonded 
interactions, dihedral or chirality restraints. 
 
The cctbx.geometry_restraints module was designed under the "completeness and correctness first, 
optimize later" paradigm. The handling of all symmetry aspects of bonded and nonbonded pair 
interactions is as complete as one expects to find in a small-molecule application, but the algorithms and 
data structures are optimized for handling a large number of atoms. I.e. the macro-molecular field will 
benefit from the rigorous treatment of symmetry, and the small-molecule field will benefit from speed 
increases. Owing to the facilities provided by the modern programming languages used (Python and 
C++), compiled-in limits are a problem of the past. The memory for all data is dynamically allocated. 
 
2.1: cctbx.geometry_restraints.bond 
 
Given the Cartesian coordinates of two bonded sites, the ideal bond length, and a weight, we can run the 
following Python code: 
 

from cctbx import geometry_restraints 
bond = geometry_restraints.bond( 
  sites=[(1,2,3),(2,3,4)], 
  distance_ideal=2, 
  weight=10) 
print "distance_model:", bond.distance_model 
print "delta:", bond.delta 
print "residual:", bond.residual() 
print "gradients:", bond.gradients() 

 
Output: 
 

distance_model: 1.73205080757 
delta: 0.267949192431 
residual: 0.717967697245 
gradients: ((3.0940107675850306, 3.0940107675850306, 3.0940107675850306), 
(-3.0940107675850306, -3.0940107675850306, -3.0940107675850306)) 

 
The bond class performs all the basic computations required for gradient-driven refinement. The 
residual() is the contribution of this bond to the total "energy" of the geometry term of the target 
function and defined in the usual way (e.g. Hendrickson, 1985) as weight * bond.delta**2, where 
bond.delta is the difference bond.distance_ideal - bond.distance_model. 
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2.2: cctbx.geometry_restraints.bond_simple_proxy 
 
Of course, during structure refinement the coordinates are changed. Therefore we need a data structure, in 
new speak an object, with some type of reference to the bonded sites along with distance_ideal and 
weight. We call this object bond_simple_proxy and it works like this: 
 

from cctbx import geometry_restraints 
from cctbx.array_family import flex 
sites_cart = flex.vec3_double([ 
  (1,2,3), 
  (2,3,4), 
  (1,3,5)]) 
bond_proxy_1 = geometry_restraints.bond_simple_proxy( 
  i_seqs=[0,1], 
  distance_ideal=2, 
  weight=10) 
bond_proxy_2 = geometry_restraints.bond_simple_proxy( 
  i_seqs=[1,2], 
  distance_ideal=1.8, 
  weight=20) 
for bond_proxy in [bond_proxy_1, bond_proxy_2]: 
  bond = geometry_restraints.bond( 
    sites_cart=sites_cart, 
    proxy=bond_proxy) 
  print "sites:", bond.sites 
  print "residual:", bond.residual() 

 
Output: 
 

sites: ((1.0, 2.0, 3.0), (2.0, 3.0, 4.0)) 
residual: 0.717967697245 
sites: ((2.0, 3.0, 4.0), (1.0, 3.0, 5.0)) 
residual: 2.97662350914 

 
sites_cart is an array of Cartesian coordinates for three sites. The i_seq (Index into SEQuence of 
sites) are the references mentioned above; they are simply integer indices into the sites_cart array. A 
bond_simple_proxy is essentially a bond with one level of indirection. We can turn a 
bond_simple_proxy into a bond by providing the sites_cart array referenced to by the i_seq. Then 
we can use the methods of the bond object to obtain the desired information as shown before, for example 
the residual() as in this example or the gradients() as in the previous example. 
 
2.3: cctbx.geometry_restraints.shared_bond_simple_proxy 
 
In all likelihood we will have to handle a considerable number of bonds. Therefore the next data structure 
we need is an array of bond proxies. The previous example can be rewritten to use "shared" arrays with 
bond proxy objects as the elements: 
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bond_proxies = geometry_restraints.shared_bond_simple_proxy() 
bond_proxies.append(geometry_restraints.bond_simple_proxy( 
  i_seqs=[0,1], 
  distance_ideal=2, 
  weight=10)) 
bond_proxies.append(geometry_restraints.bond_simple_proxy( 
  i_seqs=[1,2], 
  distance_ideal=1.8, 
  weight=20)) 
for bond_proxy in bond_proxies: 
  bond = geometry_restraints.bond( 
    sites_cart=sites_cart, 
    proxy=bond_proxy) 

 
If the number of bonds is very large as in the case of macro-molecular structures, the Python for loop 
will become a performance bottleneck. Python is a dynamically typed language and therefore very 
convenient to use, but the convenience is payed for with a runtime penalty of one to two orders of 
magnitude. The remedy is to reimplement the Python loop in C++ and to do the vector operation at the 
speed of a compiled language. Using Boost.Python (http://www.boost.org/libs/python/doc/, see also 
Grosse-Kunstleve & Adams, 2003), it is easy to make the C++ function available in Python. In this way 
we can, for example, obtain all bond.delta values with a single call from Python to C++: 
 

bond_deltas = geometry_restraints.bond_deltas( 
  sites_cart=sites_cart, 
  proxies=bond_proxies) 
print list(bond_deltas) 

 
Output: 
 

[0.2679491924311227, 0.38578643762690501] 
 
The idea behind this approach is similar to the idea behind vector computers. Python is the slow but 
general scalar unit, C++ the fast but restricted vector unit. Filling the array of bond proxies is similar to 
loading the vector unit and the call from Python to C++ is the vector operation. More on the subject of 
combining Python and C++ can by found in the Newsletter No. 1 in this series (Grosse-Kunstleve & 
Adams, 2003). 
 
As an aside, the array of bond proxies is called a "shared" array because it may have multiple owners. The 
lifetime of shared arrays is controlled by a reference count. If the reference count goes to zero (because all 
owning references go out of scope or are deleted explicitly) the memory for the array is automatically 
deallocated. This is one of the fundamental mechanisms used by Python and C++ for making memory 
management simple (compared to FORTRAN) and at the same time safe (compared to C). 
 
3: Symmetry: Friend or Foe? 
 
The astute reader will have noticed that symmetry was not mentioned in the introduction to the bond, 
bond_simple_proxy, and shared_bond_simple_proxy objects. How does the symmetry come into 
play? The simple part of the two latter symbols is already a hint that there must be something more 
complex, and that is of course the symmetry. While symmetry is always nice to look at and therefore 
appears to be a friend, when it comes to writing algorithms for the handling of symmetry it quickly 
becomes apparent that symmetry is a pretty bad foe. Symmetry introduces singularities and each 
singularity requires special attention. For example, the 230 crystallographic space groups can be 
understood as 230 unique singularities, each of which has a different set of singular positions known as 
special positions. Needless to say, each singularity requires a name or number and therefore we have 
space group symbols and numbers, Wyckoff tables, Wyckoff letters, site symmetry symbols, etc., etc. As 
a rule of thumb, the source code required for handling a problem complete with symmetry is at least ten 

http://www.boost.org/libs/python/doc/
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times the amount of source code required for the "simple" case. The handling of symmetry pair 
interactions and pair interactions involving sites in special positions is, unfortunately, not an exception. 
 
We use the term pair interaction with reference to both bonded and nonbonded interactions. It comes as a 
little relief that the handling of bonded and nonbonded pair interactions is very similar. The main 
difference is the function used to compute the contributions to the total energy term for the geometry. In 
the case of bonded interactions it is the simple harmonic function weight * bond.delta**2, in the case 
of nonbonded interactions it is a more involved function of exponentials. However, up to the point of 
determining the distance_model required in both cases the algorithms are identical. 
 
3.1: cctbx.crystal.direct_space_asu.asu_mappings 
 
One important term we forgot to mention in the list of names and numbers required for the singularities 
introduced by symmetry is that of asymmetric unit. Before we can introduce symmetry pair interactions 
we have to get acquainted with the cctbx.crystal.direct_space_asu.asu_mappings class. The 
development of this class is based on the work published in the Newsletter No. 2 in this series (Grosse-
Kunstleve et al., 2003). The web pages at http://cci.lbl.gov/asu_gallery/ are available for viewing the 
shapes of the standard asymmetric units as defined in the International Tables for Crystallography, 
Volume A. These shapes play a fundamental role in all cctbx algorithms involving pair interactions. 
Pair interactions are commonly considered up to a certain cutoff distance, for example a maximum bond 
length when searching for bonds, or a maximum nonbonded distance when searching for nonbonded 
interactions. A fundamental consideration is that all pair interactions can be mapped by symmetry into the 
shape of the standard asymmetric unit expanded by a buffer region equivalent to the chosen cutoff 
distance. Let's dig out the simple quartz_structure introduced in the Newsletter No. 1 to see how this 
works in practice: 
 

from cctbx import xray 
from cctbx import crystal 
from cctbx.array_family import flex 
quartz_structure = xray.structure( 
  crystal_symmetry=crystal.symmetry( 
    unit_cell=(5.01,5.01,5.47,90,90,120), 
    space_group_symbol="P6222"), 
  scatterers=flex.xray_scatterer([ 
    xray.scatterer( 
      label="Si", 
      site=(1/2.,1/2.,1/3.), 
      u=0.2), 
    xray.scatterer( 
      label="O", 
      site=(0.197,-0.197,0.83333), 
      u=0)])) 
quartz_structure.show_summary().show_scatterers() 
asu_mappings = quartz_structure.asu_mappings(buffer_thickness=2) 
print "n_sites_in_asu_and_buffer:", asu_mappings.n_sites_in_asu_and_buffer() 

 
The second to last line is a high-level interface provided by the xray.structure class for performing the 
process mentioned in the previous paragraph. First, the standard asymmetric unit is determined via lookup 
in the "reference file" introduced in Newsletter No. 2 and, if necessary, a change-of-basis transformation 
from the reference setting of the space group symmetry to the given setting (in the example the given 
setting is already the reference setting). Next, the asymmetric unit is expanded by moving the facets 2 Å 
out to generate the buffer region. Finally the space group symmetry is applied to the sites in order to fill 
the asymmetric unit including the buffer region. The end result is an instance of the class 
cctbx.crystal.direct_space_asu.asu_mappings. The output of running the example is: 

http://cci.lbl.gov/asu_gallery/
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Number of scatterers: 2 
At special positions: 2 
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
Si   Si     3 ( 0.5000  0.5000  0.3333) 1.00 0.2000 
O    O      6 ( 0.1970 -0.1970  0.8333) 1.00 0.0000 
n_sites_in_asu_and_buffer: 20 

 
To understand the workings of the asu_mappings object we start with the asu_mappings.mappings() 
array provided by the object. For each scatterer in our quartz_structure there is one entry in the 
mappings array: 
 

assert asu_mappings.mappings().size() == quartz_structure.scatterers().size() 
for mappings in asu_mappings.mappings(): 
  print type(mappings), len(mappings) 

 
Output: 
 

<type 'tuple'> 3 
<type 'tuple'> 17 

 
This tells us that each element of the asu_mappings.mappings() array is a standard Python tuple, i.e. a 
list-like sequence of Python objects. We also learn that the first tuple has 3 elements and the second tuple 
has 17 elements. Each element represents exactly one site in the asymmetric unit or the buffer region. The 
first element of each tuple is always for the site in the asymmetric unit; by definition there can only be 
one. All following elements of each tuple represent sites in the buffer region. I.e. in this case there are 2 
Si atoms in the 2 Å buffer region and 16 O atoms. To find out where they are we can use other facilities 
provided by the asu_mappings object. To keep the output short we concentrate on the 3 mappings for the 
Si atom: 
 

for mapping in asu_mappings.mappings()[0]: 
  print "i_sym_op:", mapping.i_sym_op() 
  print "unit_shifts:", mapping.unit_shifts() 
  print "symmetry operation:", asu_mappings.get_rt_mx(mapping) 
  print 

 
Output: 
 

i_sym_op: 2 
unit_shifts: (0, 0, -1) 
symmetry operation: y,-x+y,z-1/3 
 
i_sym_op: 0 
unit_shifts: (0, 0, 0) 
symmetry operation: x,y,z 
 
i_sym_op: 1 
unit_shifts: (1, 0, -1) 
symmetry operation: x-y+1,x,z-2/3 

 
Each mapping object stores the number of the symmetry operation and the unit shifts that were used to 
map the original site to the site in the asymmetric unit or the buffer region. To enforce consistency, a 
complete copy of the symmetry operations is stored inside the asu_mappings object. This is enables us to 
use asu_mappings.get_rt_mx(mapping) to compute the final symmetry operations giving the mapping 
object. ("rt_mx" stands for "rotation-translation matrix"). 
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3.2: cctbx.crystal.neighbors_fast_pair_generator 
 
We know that the silicon atoms in the quartz_structure are covalently connected to the oxygen atoms 
and that the Si-O bond distance is around 1.6 Å. This is how we find the bonds: 
 

pair_generator = crystal.neighbors_simple_pair_generator( 
  asu_mappings, 
  distance_cutoff=1.7) 
for pair in pair_generator: 
  print pair.i_seq, pair.j_seq, pair.j_sym, pair.dist_sq**.5 

 
Output: 
 

0 1 0 1.61598604691 
0 1 1 1.61598604691 
0 1 12 1.61598604691 
0 1 15 1.61598604691 
1 0 1 1.61598604691 

 
The pair_generator is a Python iterator that performs a simple-minded search with approximately 
N*N/2 iterations for all pair interactions within the given distance_cutoff of 1.7 Å, where N is the 
number of atoms. At each iteration we obtain a pair object with integer references into the 
asu_mappings.mappings() array as introduced in the previous section. The indices pair.i_seq and 
pair.j_seq are indices into the asu_mappings.mappings() array. The index pair.j_sym is an index 
into the asu_mappings.mappings()[pair.j_seq] tuple (see previous section). To avoid redundancies, 
only bonds that emanate from within the asymmetric unit are considered. Therefore we do not need a 
corresponding i_sym index; it is always 0. I.e. the three integer indices are sufficient to uniquely define a 
bond based on the asu_mappings object. 
 
Alternatively we could generate the same list of pairs with the "fast" pair generator: 
 

pair_generator = crystal.neighbors_fast_pair_generator( 
  asu_mappings, 
  distance_cutoff=1.7) 

 
This alternative pair generator is designed for structures with a large number of sites. The interfaces of the 
simple and the fast pair generators are identical, but internally the fast generator is much more complex. 
The asymmetric unit including the buffer region is subdivided into cubes with a vertex length equivalent 
to distance_cutoff. In the search for pair interactions involving a given pivot site, only the cube of the 
pivot site and the 26 surrounding cubes have to be considered. The average number of sites per cube is 
approximately independent of the size of the structure. For a large number of sites the search time will 
therefore scale approximately linearly with the number of cubes instead of quadratically with the number 
of sites. This leads to dramatic increases in speed. For example (Linux, Xeon 2.8GHz): 
 

number of atoms    time simple search    time fast search 
  3500 (gere)           1.6 seconds           0.1 
 59000 (groel)        377.4                   1.5 

 
In practice there is no good reason for using the simple version of the pair generator. The main reason for 
keeping it in the library is to support a regression test that validates the fast generator. 
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3.3: cctbx.crystal.pair_asu_table 
 
The cctbx.crystal.pair_asu_table is the center piece of the cctbx system for the handling of pair 
interactions involving symmetry. The internal process_pair member function of this C++ extension 
class is the heart of the center piece. It is responsible for generating symmetrically equivalent pair 
interactions and for the removal of redundant interactions. A full description of the algorithm 
implemented by the process_pair function is beyond the scope of this article even though the C++ 
source code comprises only 41 lines (see file cctbx/include/cctbx/crystal/pair_tables.h). 
However, the following example demonstrates the most important features: 
 

pair_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) 
pair_asu_table.add_all_pairs(distance_cutoff=1.7) 

 
The pair_asu_table.add_all_pairs(distance_cutoff=1.7) statement uses the fast pair generator as 
described in the previous section. When the first pair is processed by the process_pair function, the site 
symmetries of the two sites involved are applied to generate all symmetrically equivalent pairs. For the 
simple quartz structure, this step will already generate all pairs and add them to the pair_asu_table 
object. The pairs subsequently produced by the pair generator are found by lookup in the internal table 
and no further processing is necessary. At this stage the pair_asu_table.table() object managed by 
the pair_asu_table object will hold the data: 
 

pair_asu_table.show() 
 
Output: 
 

i_seq: 0 
  j_seq: 1 
    j_syms: [0, 1, 12, 15] 
i_seq: 1 
  j_seq: 0 
    j_syms: [0, 1] 

 
pair_asu_table.table() is the most deeply nested data structure in the entire cctbx. In Python terms it 
is a list of dictionaries associating integers with lists of lists. If this appears overly complicated consider 
Einstein's famous quote: "Make everything as simple as possible, but not simpler." We are certain that 
pair_asu_table.table() is as simple as possible because each level of nesting represents a clear 
concept necessary to fully characterize symmetry pair interactions: 
 

• The outermost list holds one entry per atom. The i_seq index is implied.  

• Each entry is a dictionary. The keys are the j_seq indices.  

• The value corresponding to each j_seq index is a list of groups of j_sym indices.  

• The interactions defined by the j_sym indices in each group are symmetrically 
equivalent.  

 
Since the interactions are fully characterized it is now very simple to extract the interactions unique under 
symmetry. Since we are not concerned about the directionality of the pair interactions (i.e. A-B is the 
same as B-A) we only have to consider interactions with i_seq <= j_seq, and we only need the first 
element from each group of symmetrically equivalent interactions. This procedure is implemented as the 
extract_pair_sym_table method of pair_asu_table: 
 

pair_sym_table = pair_asu_table.extract_pair_sym_table() 
pair_sym_table.show() 
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Output: 
 

i_seq: 0 
  j_seq: 1 
    -y,x-y,z-1/3 
i_seq: 1 

 
This shows that the quartz structure has only one unique Si-O bond under symmetry. 
An important point to note is that pair_sym_table is, in contrast to pair_asu_table, independent of the 
asu_mappings object; hence the naming. pair_sym_table is therefore suitable for communicating 
connectivity between algorithms that may require different asu_mapping objects due to shifts in 
coordinates or modified distance cutoffs. Here is how we can re-generate a new pair_asu_table from a 
pair_sym_table: 
 

new_asu_mappings = quartz_structure.asu_mappings(buffer_thickness=5) 
new_pair_asu_table = crystal.pair_asu_table(asu_mappings=new_asu_mappings) 
new_pair_asu_table.add_pair_sym_table(sym_table=pair_sym_table) 
new_pair_asu_table.show() 

 
Output: 
 

i_seq: 0 
  j_seq: 1 
    j_syms: [0, 3, 55, 68] 
i_seq: 1 
  j_seq: 0 
    j_syms: [0, 8] 

 
In this case the j_syms have changed compared to the output of pair_asu_table.show() because the 
buffer region of new_pair_asu_table is larger compared to that of the initial pair_asu_table. 
The new iotbx.show_distances command provides an easy to use interface to the core functionality 
described in this section. This command reads files in the simple format introduced by the kriber 
program (http://www.crystal.mat.ethz.ch/Software/Kriber). For example: 
 

*quartz 
 
P 62 2 2 
 5.01 5.47 
Si   0.5000  0.5000  0.3333 
O    0.1970 -0.1970  0.8333 
--------------------------- 

 
The full command is: 
 

iotbx.show_distances quartz_structure --distance_cutoff=1.7 
 
Output: 
 

strudat tag: quartz 
 
Number of scatterers: 2 
At special positions: 2 
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
Si   Si     3 ( 0.5000  0.5000  0.3333) 1.00 0.0000 
O    O      6 ( 0.1970 -0.1970  0.8333) 1.00 0.0000 
 

http://www.crystal.mat.ethz.ch/Software/Kriber
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Si(1):          pair count:   4  <<  0.5000,  0.5000,  0.3333>> 
  O(2):        1.6160             (  0.1970,  0.3940,  0.5000) 
  O(2):        1.6160 sym. equiv. (  0.3940,  0.1970,  0.1667) 
  O(2):        1.6160 sym. equiv. (  0.8030,  0.6060,  0.5000) 
  O(2):        1.6160 sym. equiv. (  0.6060,  0.8030,  0.1667) 
O(2):           pair count:   2  <<  0.1970, -0.1970,  0.8333>> 
  Si(1):       1.6160             (  0.0000, -0.5000,  0.6667) 
  Si(1):       1.6160 sym. equiv. (  0.5000,  0.0000,  1.0000) 
 
Pair counts: [4, 2] 

 
The implementation of this command can be found in the file 
 iotbx/iotbx/command_line/show_distances.py. 
 
3.4: Nonbonded exclusions 
 
In the refinement of macro-molecular structures it is common to use nonbonded pair interactions, e.g. 
Lennard-Jones potentials or empirical "repulsive force fields." For sites that are not bonded but are within 
a certain distance (typically around 7 Å) a corresponding nonbonded energy term is added to the total 
energy of the geometry. Experience shows that it is highly advantageous to exclude certain nonbonded 
interactions. Consider this simple molecular fragment: 
 

A-B-C 
    | 
  E-D 

 
The lines indicate bonded interactions. These are often referred to as "1-2" interactions. In our fragment 
we find 1-2 interactions between A-B, B-C, C-D, and D-E. The nonbonded interactions A-C, B-D, and C-
E are commonly referred to as 1-3 interactions, and the nonbonded interaction A-D is called a 1-4 
interaction. In general, 1-2 and 1-3 interactions are excluded from the nonbonded energy term, and 1-4 
interactions are attenuated. 
 
When setting up the nonbonded energy calculations we have to find the 1-3 and 1-4 interactions based on 
the pre-defined bonded (1-2) interactions. If space group symmetry is not involved this is very 
straightforward. However, if symmetry bonds are to be considered the situation becomes much more 
complex again. The algorithm required is known as "coordination sequence algorithm" and is commonly 
used in material science, in particular zeolite research (e.g. Brunner & Laves, 1971, Grosse-Kunstleve et 
al., 1996). See also the Atlas of Zeolite Framework Types available at http://www.iza-structure.org/). 
 
3.5: cctbx.crystal.coordination_sequence 
 
It is surprisingly easy to write a complete coordination sequence algorithm based on the pair_asu_table 
object discussed before. A simple_and_slow reference implementation can be found in the 
cctbx.crystal.coordination_sequences module. The complete function comprises just 36 lines of 
Python code. We can use this short function to easily compute the coordination sequences for the Si and 
O atoms in our quartz_structure: 
 

import cctbx.crystal.coordination_sequences 
term_table = crystal.coordination_sequences.simple_and_slow( 
  pair_asu_table=pair_asu_table, 
  max_shell=10) 
for terms in term_table: 
  print terms 

 

http://www.iza-structure.org/
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Output: 
 

[1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80] 
[1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156] 

 
The first list of terms is for the Si atom, the second for the O atom. The first term (in "shell" 0) is always 
1. The 1 Si is bonded to 4 O atoms (shell 1), which are bonded to 4 new Si atoms (shell 2). Following all 
the bonds from these Si atoms to the next O atoms leads to 12 new O atoms (shell 3), from there to 12 
new Si atoms (shell 4), etc. 
 
In the mathematics of coordination sequences (e.g. Grosse-Kunstleve et al., 1996) it is most natural to 
index the coordination shells in the way shown above. Unfortunately this is not directly compatible with 
the nomenclature of 1-2, 1-3, and 1-4 interactions used in the macro-molecular field. The interactions 
accounted for in shell 1 are the 1-2 interactions, shell 2 accounts for the 1-3 interactions, and shell 3 for 
the 1-4 interactions. 
 
To find the nonbonded exclusions we do have to do a little more work than just counting the number of 
interactions as is done by the simple_and_slow function. For each shell we have to keep a table of the 
interactions found. A much faster, optimized C++ implementation of the coordination sequence algorithm 
with interfaces for both simple counting and the generation of interaction tables is available in the file 
cctbx/include/cctbx/crystal/coordination_sequences.h. The Python interface to the simple and 
fast counting algorithm is very similar to that for the simple_and_slow interface: 
 

term_table = crystal.coordination_sequences.simple( 
  pair_asu_table=pair_asu_table, 
  max_shell=10) 
crystal.coordination_sequences.show_terms( 
  structure=quartz_structure, 
  term_table=term_table) 

 
Output: 
 

Si [1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80] 
O [1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156] 
TD10: 456.33 

 
Here we make use of the show_terms function which shows the scatterer labels along with each list of 
terms and also the TD10, a measure of the "topological density" commonly used in the zeolite field (see 
http://www.iza-structure.org/). 
 
The tabulation of the 1-3 and 1-4 interactions needed for the nonbonded exclusions is equally easy: 
 

shell_asu_tables = crystal.coordination_sequences.shell_asu_tables( 
  pair_asu_table=new_pair_asu_table, 
  max_shell=3) 
print shell_asu_tables 

 
Output: 
 

(<cctbx_crystal_ext.pair_asu_table object at 0x82a2bec>, 
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c34>, 
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c7c>) 

 
The result is a Python tuple with three pair_asu_table objects for the 1-2, 1-3, and 1-4 interactions. The 
first pair_asu_table in the tuple is simply a reference to the original pair_asu_table defining the 
bonds. Keeping the original table together with the derived tables simplifies subsequent algorithms. 

http://www.iza-structure.org/
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As an aside, the 36 lines of the simple_and_slow Python function have turned into 278 lines of C++ 
code in coordination_sequences.h. The size comparison is not quite fair because the C++ 
implementation works for both simple counting and tabulation of nonbonded exclusions, but a doubling 
or tripling of the lines of source code in the conversion from a Python reference implementation to the 
final C++ implementation is the norm. Unfortunately this is what we have to cope with until higher-level 
languages with smarter optimizers are a reality. 
 
4: Putting everything together: cctbx.geometry_restraints.manager 
 
The shell_asu_tables object of the previous section is the key data structure for the computation of the 
bond proxies and the nonbonded proxies. However, there is still much more to manage: we need to define 
the bond parameters (ideal distances and weights), nonbonded "energy types" and VdW (Van der Waals) 
distances, angle, dihedral, chirality and planarity restraints. Clearly we need a professional manager. It is 
implemented in the cctbx.geometry_restraints.manager module. The manager constructor acts as a 
tool for grouping all information required for the geometry restraints calculations: 
 

class manager: 
 
  def __init__(self, 
        crystal_symmetry=None, 
        site_symmetry_table=None, 
        bond_params_table=None, 
        shell_sym_tables=None, 
        nonbonded_params=None, 
        nonbonded_types=None, 
        nonbonded_distance_cutoff=5, 
        nonbonded_buffer=1, 
        angle_proxies=None, 
        dihedral_proxies=None, 
        chirality_proxies=None, 
        planarity_proxies=None): 

 
A self-contained, reasonably simple example (266 lines of Python) for setting up all data structures for the 
bonded and nonbonded calculations can be found in the file 
cctbx/cctbx/geometry_restraints/distance_least_squares.py. This script performs a distance 
least squares minimization of zeolite geometries. It was developed primarily as a regression test, but 
covers almost all the functionality of the pioneering DLS-76 program 
(http://www.crystal.mat.ethz.ch/Software/DLS76). The only major DLS-76 feature missing is the 
refinement of unit cell parameters. The new iotbx.distance_least_squares command provides a 
simple interface to the script. In our internal test we use this command to minimize the geometries of the 
complete Atlas of Zeolite Framework Types (152 structures) in less than 40 seconds (Linux, Xeon 
2.8GHz). This includes the automatic search for Si-Si bonds, the generation of oxygen atoms at the mid-
points of the Si-Si bonds, the generation of angle restraints which are parameterized as pseudo O-O and 
Si-Si bonds, the generation of nonbonded interactions, and a two-stage minimization, first without a 
repulsive force field and in the second pass with the repulsions turned on. The successful completion of 
these minimizations gives us a high confidence that our system for the refinement of bonded and 
nonbonded pair interactions is complete and free of errors. 
 
4.1: angle, dihedral, chirality, planarity restraints 
 
The angle, dihedral, chirality, and planarity restraints are currently implemented in the "simple" version 
only, without treatment of symmetry. For our purposes this is fully sufficient and it may even be 
sufficient in general because angle restraints for small-molecule crystallography are often parameterized 
as pseudo bonds (e.g. DLS-76, see previous section). The three other restraint types are not very common 
in small-molecule crystallography. However, our framework is very open and symmetry-aware restraint 
types could probably be added without disturbing the overall organization of the 

http://www.crystal.mat.ethz.ch/Software/DLS76
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cctbx.geometry_restraints module. To give an example we show how to work with angle restraints: 
 

from cctbx import geometry_restraints 
angle = geometry_restraints.angle( 
  sites=[(1,2,3),(2,3,4),(5,4,3)], 
  angle_ideal=120, 
  weight=1) 
print "angle_model:", angle.angle_model 
print "delta:", angle.delta 
print "residual:", angle.residual() 
print "gradients:", angle.gradients() 

 
Output: 
 

angle_model: 121.482154105 
delta: -1.48215410529 
residual: 2.19678079184 
gradients: ((-69.337848889979, 1.2765767806090013e-14, 69.337848889979028), 
            (63.034408081799093, -25.213763232719657, -113.4619345472384), 
            (6.3034408081799089, 25.213763232719643, 44.124085657259371)) 

 
Comparison with the first example for defining a bond restraint shows that the interfaces are very similar. 
Essentially we just need three sites instead of two, and we have to write angle everywhere instead of 
bond and distance. The higher level support for proxies, arrays of proxies and vector operations on these 
arrays is also very similar. The similarities extend to dihedral and chirality restraints where we need to 
specify four sites instead of two or three. Planarity restraints are slightly different because we have to 
deal with a variable number of sites and each site is associated with an individual weight: 
 

from cctbx import geometry_restraints 
from cctbx.array_family import flex 
sites_cart = flex.vec3_double([ 
  (-6.9, 1.3, -1.4), 
  (-4.9, -1.0, 0.1), 
  (-6.9, -0.6, -1.7), 
  (-4.8, 0.9, 0.5)]) 
weights = flex.double([1, 2, 3, 4]) 
planarity = geometry_restraints.planarity( 
  sites=sites_cart, 
  weights=weights) 
print "deltas:", list(planarity.deltas()) 
print "residual:", planarity.residual() 
print "gradients:", list(planarity.gradients()) 

 
We don't show the rather uninteresting output. The difference to the other restraint types is that we get an 
array of deltas instead of just one value. However the important residual() and gradient() functions 
fit into the common framework. 
 
5: Setting up restraints using the CCP4 Monomer Library 
 
The CCP4 (http://www.ccp4.ac.uk/) Monomer Library is a comprehensive database of protein, nuclear 
acid and hetero-compound geometries. We are grateful for CCP4 to give us permission to use this library. 
The new mmtbx top-level module of the cctbx project (see Newsletter No. 1 for information on the 
overall organization of the cctbx project) includes functions for reading the monomer library files as 
distributed by CCP4, and to generate the geometry proxies introduced above for a given PDB file 
(http://www.rcsb.org/). The end result is a cctbx.geometry_restraints.manager.manager instance 
that is completely independent of the Monomer Library, the PDB file, or any other file format. The 
manager object is then used in the same minimization procedure employed by the 
distance_least_squares.py script introduced before (the minimizer is implemented in 
cctbx.geometry_restraints.lbfgs). This complete separation of file formats and core computations 

http://www.ccp4.ac.uk/
http://www.rcsb.org/
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makes it possible to support any other library defining geometry restraints. E.g. for the future we are 
planning to add support for CNS (http://cns.csb.yale.edu/) topology and parameter files. 
 
Currently the code for working with the CCP4 Monomer Library resides in the 
mmtbx/mmtbx/stereochemisty directory. It is still being worked on in order to cleanly support PDB 
files with alternate conformations and it may be moved to a different place. We will describe the final 
result in the next newsletter. 
 
6: Bulk solvent correction and scaling 
 
It is well known that macromolecular crystals contain a large amount of disordered solvent reaching 
sometimes more than 70% of the unit cell volume. The scattering contribution of this solvent level 
becomes significant at low resolution starting from about 6.0 Å. There are several aspects where the 
appropriate modeling of low resolution data is of great importance: electron density map analysis 
(Urzhumtsev, 1991), crystallographic refinement (Kostrewa, 1997), precise calculation of electrostatic 
properties of molecules (Lecomte, 1999), and the translation search part of structure solution by the 
Molecular Replacement method (Fokine & Urzhumtsev, 2002a). Basically two bulk solvent models are 
currently in use by popular crystallographic packages: the exponential scaling model (Moews & 
Kretsinger, 1975; Tronrud, 1997) and the flat model (Phillips, 1980; Jiang & Brunger, 1994). The 
exponential scaling model is only justified for the very low-resolution data, lower than 15 Å (Podjarny & 
Urzhumtsev, 1997), and becomes incorrect at higher resolutions. The flat model is shown as physically 
more reasonable (Fokine & Urzhumtsev, 2002b) and being compared to all others models is demonstrated 
as more efficient in sense of both computations and quality of final result obtained (Jiang & Brunger, 
1994). 
 
Based on the arguments above, we implemented the flat bulk solvent model in the mmtbx.bulk_solvent 
module. The bulk solvent modeling and scaling procedure contains four main steps: molecule mask 
calculation, structure factors calculation from the mask, determination of solvent parameters ksol and 
Bsol, and determination of the overall anisotropic scale coefficient (Sheriff & Hendrickson, 1987). 
The algorithm for the mask calculation is realized as described by (Jiang & Brunger, 1994). The 
corresponding Python code looks like this: 
 

from mmtbx.bulk_solvent import bulk_solvent_models 
from mmtbx.masks import masks 
from iotbx import reflection_file_reader 
from iotbx import pdb 
pdb_file = "1F8T.pdb" 
hkl_file = "1F8T.hkl" 
xray_structure = pdb.as_xray_structure(pdb_file) 
refl = reflection_file_reader.any_reflection_file(file_name=hkl_file) 
refl_arrays = refl.as_miller_arrays(crystal_symmetry=xray_structure) 
f_obs = refl_arrays[0].resolution_filter(d_min=2.5) 
f_calc = f_obs.structure_factors_from_scatterers( 
  xray_structure=xray_structure).f_calc() 
mask_manager = masks.mask_utils( 
  structure=xray_structure, 
  mask_grid_step=f_obs.d_min()/4., 
  shell=5.0, 
  shrink=1.0, 
  rsolv=1.0) 
f_mask = mask_manager.sf_from_mask(f=f_obs) 
f_mask.set_info("Mask structure factors") 
f_mask.show_summary() 
print "Accessible surface fraction:", \ 
  mask_manager.accessible_surface_fraction() 
print "Contact surface fraction:", \ 
  mask_manager.contact_surface_fraction() 

 

http://cns.csb.yale.edu/


33 

Output: 
 

Miller array info: Mask structure factors 
Observation type: None 
Type of data: complex_double, size=15897 
Type of sigmas: None 
Number of Miller indices: 15897 
Anomalous flag: 0 
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90) 
Space group: P 21 21 21 (No. 19) 
Accessible surface fraction: 0.330885416667 
Contact surface fraction: 0.45850308642 

 
The bulk solvent structure factors and parameters ksol and Bsol can be calculated by adding the following 
lines to the previous code: 
 

bulk_solvent_manager = bulk_solvent_models.bulk_solvent( 
  verbose=-1, 
  f_obs=f_obs, 
  f_calc=f_calc, 
  f_mask=f_mask, 
  aniso_scale_flag=0001, 
  bulk_solvent_correction_flag=0001) 
print "Flat model bulk solvent parameters: ", \ 
  bulk_solvent_manager.ksol_bsol() 
f_bulk = bulk_solvent_manager.f_bulk() 
f_bulk.set_info("Bulk solvent structure factors") 
f_bulk.show_summary() 

 
Output: 
 

Flat model bulk solvent parameters:  (0.31000000000000011, 38.0) 
Miller array info: Bulk solvent structure factors 
Observation type: None 
Type of data: complex_double, size=15897 
Type of sigmas: None 
Number of Miller indices: 15897 
Anomalous flag: 0 
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90) 
Space group: P 21 21 21 (No. 19) 

 
All major refinement programs use minimizers to determine the bulk solvent parameters and the 
anisotropic scaling matrix. However there are a number of difficulties to this approach: 
 

1. The low-resolution diffraction data may not be of sufficient quality or 
completeness.  

2. The starting values for ksol and Bsol may be far from the correct values.  

3. The parameters ksol and Bsol are highly correlated. Therefore the minimizer may 
have difficulties finding a path to the global minimum.  

4. Optimizing a function of two exponentials is generally a difficult problem.  
 
These considerations have lead us to choose a more robust procedure. As was demonstrated by Fokine & 
Urzhumtsev (2002b), the values for ksol and Bsol are distributed around 0.35 eÅ-3 and 46 Å2, 
respectively. Therefore we decided to implement a grid search procedure for the determination of ksol 
and Bsol. The search is conducted in a physically meaningful range of values, [0,1] for ksol and [0,100] 
for Bsol. For each trial pair (ksol, Bsol) in the specified ranges we calculate the anisotropic scaling 
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coefficients using a gradient-driven minimizer. Finally we select the values ksol and Bsol based on the 
best outcome of the minimization. It should be emphasized that we use the whole resolution range of data. 
In contrast, Jiang & Brunger (1994) suggest a partitioning into low-resolution and high-resolution pools. 
This is the approach used by the CNS program (Brunger et al., 1998) to make the minimization procedure 
more stable. Our grid-search procedure is sufficiently robust to work without partitioning the data. 
Another new feature that distinguishes our implementation of the scaling procedure from previous 
implementations is the use of a maximum-likelihood function as the objective function in the 
minimization. Even though maximum-likelihood based refinement is now very common, all existing 
programs use a conventional least-squares target in the determination of the bulk solvent and scaling 
parameters, while maximum-likelihood functions are used to determine all other parameters. This 
inconsistency is eliminated in the mmtbx.bulk_solvent module. 
 
7: Relative scaling of crystallographic functional and restraints 
 
Crystallographic refinement usually considers the minimization of a sum of two functions. One function 
is responsible for fitting the model to the experimental data and the second function introduces restraints 
encoding a priori knowledge, for example the geometry restraints discussed before. The two functions are 
generally on a different scale and it is necessary to determine an appropriate relative scale factor in order 
to balance the contributions to the sum. For this purpose we have implemented the procedure proposed by 
(Adams et al., 1997) in the mmtbx.refinement.weight_xray_term module, which makes use of the new 
mmtbx.dynamics module. 
 
8: Crystallographic target functions 
 
The new mmtbx.refinement module implements two crystallographic target functions in addition to the 
conventional least-squares and correlation target functions provided by the cctbx.xray module. These 
are the full maximum-likelihood function of Lunin et al. (2002) and its quadratic approximation (Lunin & 
Urzhumtsev, 1999). The calculation of the distribution parameters for the target function, "alpha" and 
"beta", is implemented in two ways: 
 

• estimation by maximization of a likelihood function given a current model and 
observed intensities (Lunin & Skovoroda, 1995),  

• determination via an exact formula (see, for example, Afonine et al., 2003).  
 
In the future we will also implement the sigma-a algorithm and likelihood functions including 
experimental phase information. 
 
9: Integration of Clipper 
 
Thanks to generous support by Kevin Cowtan, the Clipper library 
(http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html, see also Cowtan (2003) in Newsletter No. 2) is 
now integrated into the cctbx project and redistributed with the cctbx bundles posted at 
http://cci.lbl.gov/cctbx_build/ . The bundles with the build tag 2004_07_06_0816 are the first to include 
Clipper. Currently the Clipper libraries requiring fast Fourier transforms are not compiled in the cctbx 
build, but this is likely to change in the future. The supporting clipper_adaptbx adaptor toolbox in the 
cctbx tree provides a fully functional Python interface to the sigma-a calculations in Clipper. We will add 
other Python interfaces as the need arises. 
 

http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html
http://cci.lbl.gov/cctbx_build/
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10: Efficient sampling of search spaces 
 
Indirectly Kevin Cowtan has left his mark in the cctbx project in another way. The newly added 
cctbx.crystal.close_packing module implements a hexagonal close packing sampling generator as 
suggested by Kevin for some time. Sampling space at the points of a hexagonal close packing instead of 
the points of a regular grid leads to significant speed increases in search procedures such as the molecular 
replacement translation search or the placement of molecular fragments in electron density maps. The 
cctbx.crystal.close_packing.hexagonal_sampling generator produces points to efficiently sample 
search spaces with various symmetries. Space group symmetry and Euclidean normalizer symmetry (also 
known as Cheshire symmetry) can be arbitrarily combined to define the symmetry of the search space. 
Depending on the settings, the resulting sampling points may cover three, two, one or zero dimensions. 
The symmetry is controlled at a high level via flags. The search-space symmetry operations including 
continuous allowed origin shifts are determined automatically. For example: 
 

from cctbx import crystal 
import cctbx.crystal.close_packing 
from cctbx import sgtbx 
crystal_symmetry = crystal.symmetry( 
  unit_cell="255.260  265.250  184.400  90.00  90.00", 
  space_group_symbol="P 21 21 2") 
for use_space_group_symmetry in [True, False]: 
  sampling_generator = crystal.close_packing.hexagonal_sampling( 
    crystal_symmetry=crystal_symmetry, 
    symmetry_flags=sgtbx.search_symmetry_flags( 
      use_space_group_symmetry=use_space_group_symmetry, 
      use_seminvariants=True, 
      use_normalizer_k2l=False, 
      use_normalizer_l2n=False), 
    point_distance=2) 
  print "number of sampling points:", sampling_generator.count_sites() 

 
Output: 
 

number of sampling points: 46332 
number of sampling points: 162240 

 
The whole procedure takes 0.14 seconds (Linux, Xeon 2.8GHz). See also the reference documentation for 
the classes cctbx::crystal::close_packing::hexagonal_sampling_generator and 
cctbx::sgtbx::search_symmetry_flags available at http://cctbx.sourceforge.net/ under 
"C++ interfaces." 
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Introduction 
 
With the idea in mind that the structure of a compound like τ-AlF3 [1], unique example of a new 3D 6-
connected network (no other isostructural MX3 known up to now), should have been predicted before the 
laborious structure determination succeeded (finalized in 1992, from powder diffraction data), one can 
decide to write the prediction software. Which language would be more appropriate ? This may depend 
on the algorithm retained, but generally it mainly depends on the scientist knowledge. Would it be 
reasonable to propose the subject for a thesis or a post-doc ? Subject : "You will have to demonstrate that 
MX3 compounds, built up from [MX6] regular octahedra, sharing exclusively corners, can be predicted 
just as zeolites are predictable". It would be a bit difficult to find the good candidate. Conclusion, you will 
have to do it by yourself. It is your idea after all... The programming language will be the language which 
you best know, appropriate or not : Fortran77 in that case. A programming language may be considered 
as not obsolete if a compiler still exists for building the executable on recent computers. The project, 
imagined in 1992, was frozen up to the end of 2003, till personal computers became fast enough (the 
frequency of microprocessors increased by a factor 100 in the 1992-2003 range, the number of transistors 
increased as well a lot) for tempting to solve the problem by a Monte Carlo approach. 
 
When the realization of such a project starts, you are not even sure to succeed. Very recent publications 
show that, concerning 3D 4-connected nets, systematic enumeration is now based on advances in 
mathematical tiling theory [2-4]. Unless you are a brilliant mathematician, this may not be of a great help 
when trying to transpose to 3D 6-connected nets (so, it is verified again here that Monte Carlo is the 
solution retained by the illiterates...). Previous works on hypothetical zeolites were made by using 
classical physical model building [5] during the past 60 years, or simulated annealing [6]. Many recent 
works in inorganic structure prediction (as well as organic and organometallic) have produced huge 
quantities of hypothetical compounds (using commercial packages as CERIUS, etc), there is no room 
here for citing them all. But there was no systematic recent work on MX3 compounds, apart from the 
famous book of Wells [7] about three-dimensional nets and polyhedra. Predictions of new MX3 
compounds are non-existent, if one excludes the obvious models built up by intergrowth of known 
structures (perovskite, Hexagonal Tungsten Bronze type - HTB, etc).  
 
Algorithm 
 
It was chosen to manage the Monte Carlo generation of 3D nets by using geometrical restraints 
established from the interatomic distances in known materials. So, this is absolutely not an ab initio 
approach of the structure prediction problem. Multiple difficulties were solved one after the other during 
the writing of the source code. A primarily version of the program named GRINSP (Geometrically 
Restrained INorganic Structure Prediction) [8] was limited to the building of tetrahedra linked by corners 
(3D N-connected nets with N = 4) and to the P1 space group, because this was the more easy for testing 
the feasibility, all being more simple to develop in P1 on the point of view of writing the code. Then, 
obtaining encouraging results (150 hypothetical zeolites built in P1), the project was generalized to 
various values of N (3, 4, 5, 6), and even to mixtures of M and M' cations with different coordinations, in 
any space group [8]. In a N-connected 3D net of M atoms, each M atom is connected to N other M atoms 
through X atoms, giving formulations MX2 for N = 4 (tetrahedra connected by corners as in SiO2 
polymorphs and zeolites), MX3 for N = 6 (octahedra connected by corners) or M2X3 for N = 3 (triangles 
sharing corners as in B2O3), etc. The X atoms have to lie at positions close to the mid point of two M 
atoms. Therefore, the key of the algorithm is to concentrate on the M atoms first. For such N-connected 
3D nets, if a model shows all M atoms surrounded by the expected number of M atoms (3, 4, 5 or 6), then 

mailto:alb@cristal.org
http://www.cristal.org/
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this model is a possible solution. This expected number of neighbours (mvexp below) is checked 
frequently in the GRINSP program code, each times a new set of M atoms is added either on a general or 
on a special position of a selected space group : 
 
      C  We expect to have each M surrounded by 3, 4, 5 or 6 M at first 
      C     M-M distances, then the total of expected neighbours is : 
            mvexp=ncop(mcop(nl(1)))*itot 
      C  See neighbouring - 
      C  Are some M atoms neighbouring already completed ? 
            call complet(itot,x,met,f,g,nv,mv,mv2tot,ncop,mcop,ibad) 
      C  If mvexp-mv2tot = icon then store the result 
            iresult=mvexp-mv2tot 
            if(iresult.eq.icon)go to 1002 
      C Place the next atom of type M at acceptable distances  
      C       considering first and second M-M neighbours 
 
The Fortran77 language is quite easy to understand for people speaking english. GRINSP contains a lot of 
comments (lines starting by C). Either calculations or text sequence manipulations and comparisons can 
be done (etc), you are limited only by your imagination. The subroutine complet in the lines of code 
above is too large for showing it all here. The full GRINSP code contains more than 3000 lines, only 
some parts will be selected and listed in this article. 
 
In the purpose to obtain this adequation (iresult=icon=0 above) between the espected number of 
neighbours and the calculated number, the model is built sequentially, adding one M atom after the other. 
GRINSP does not work by applying simulated annealing to a starting random configuration. Version 1.00 
works schematically as follows, by using the Monte Carlo method :  

• Manual selection of the restraints on cell parameters, of restrained interatomic distances, of the  
type(s) of coordinations, and of the space group. Then the Monte Carlo process starts. 

• Random selection of the cell parameters inside of the predefined range. The random generator 
subroutine in GRINSP is randi (see below), returning a value between 0. and 1., called very 
often in the program; nsym = 1 is corresponding to the cubic case, nsym = 2 corresponds to 
tetragonal, nsym = 3 is hexagonal or trigonal, nsym = 4 is orthorhombic, etc, other variables (a, 
b, c, alp, bet, gam) are self-explicit for crystallographers : 
 
C   Define the cell parameters 
      a=(amax-amin)*randi(iseed)+amin 
      if(nsym.eq.1)then 
      b=a 
      c=a 
      go to 8000 
      endif 
      c=(cmax-cmin)*randi(iseed)+cmin 
      if(nsym.eq.2.or.nsym.eq.3)then 
      b=a 
      go to 8000 
      endif 
      b=(bmax-bmin)*randi(iseed)+bmin 
8000  continue 
      if(nsym.le.5)then 
      alp=90. 
      bet=90. 
      gam=90. 
      if(nsym.eq.3)gam=120. 
      if(nsym.eq.5)bet=betmin+betd*randi(iseed) 
      go to 8500 
      endif 
      alp=alpmin+alpd*randi(iseed) 
      bet=betmin+betd*randi(iseed) 
      gam=gammin+gamd*randi(iseed) 
8500  continue 
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• Random positioning of a first cation M (or M') of the future MxXy (or MxM'yXz) compound on a 
general or special position, itself selected randomly. 
 
C Place the first atom of first type (M1) 
4502  itot=0 
      nl(1)=1 
      nl(2)=0 
C Decide at random for the polyhedra type 
      mcop(nl(1))=int(randi(iseed)*float(npol)+1.) 
      if(mcop(nl(1)).gt.npol)mcop(nl(1))=npol 
C Decide for the Wyckoff position selected between np1 and npos 
      mwyc(nl(1))=int(randi(iseed)*float(npos-np1)+pp1) 
C Decide for the atomic coordinates  
      x0=randi(iseed) 
      y0=randi(iseed) 
      z0=randi(iseed) 
      gen=gen+1. 
C Extend to all positions corresponding to mwyc(nl(1)) 
      is=mwyc(nl(1)) 
      it0=itot+1 
      it01=it0-1+nas(is) 
      if(it01.gt.65)go to 4502 
      DO 299 k=1,nas(is) 
      itot=itot+1 
      it1(itot)=it0 
      it2(itot)=it01 
      ist(itot)=is 
      mcop(itot)=mcop(nl(1)) 
      x(itot,1,1)=x0*smt(is,k,1,1)+y0*smt(is,k,1,2)+z0*smt(is,k,1,3) 
     1+tt(is,k,1) 
      x(itot,1,2)=x0*smt(is,k,2,1)+y0*smt(is,k,2,2)+z0*smt(is,k,2,3) 
     1+tt(is,k,2) 
      x(itot,1,3)=x0*smt(is,k,3,1)+y0*smt(is,k,3,2)+z0*smt(is,k,3,3) 
     1+tt(is,k,3) 
299   continue 
C  Now we have itot atoms already, but... 
C  Avoid short distances 
      if(itot.eq.1)go to 302 
      do 300 mm1=1,itot-1 
      do 300 mm2=it1(itot),itot 
      if(mm1.eq.mm2)go to 300 
        p1=abs(x(mm1,1,1)-x(mm2,1,1)) 
        q1=abs(x(mm1,1,2)-x(mm2,1,2)) 
        r1=abs(x(mm1,1,3)-x(mm2,1,3)) 
        if(p1.gt.0.5)p1=p1-1. 
        if(q1.gt.0.5)q1=q1-1. 
        if(r1.gt.0.5)r1=r1-1. 
      rr=met(1,1)*p1*p1+met(2,2)*q1*q1+met(3,3)*r1*r1 
     1+met(1,2)*p1*q1+met(1,3)*p1*r1+met(2,3)*q1*r1 
        if(rr.lt.f(1,mcop(1))) go to 4502 
300   continue 
302   continue 
 

• Random positioning of the next cations (random choice of M or M') in respect of the distance 
restraints with the previous ones, on a general or special position, itself selected randomly. 
 
C  Select randomly a M atom for adding its next neighbour 
3500  m=int(randi(iseed)*float(itot)+1.) 
      memo=m 
C  Decide first which positions would generate too much M atoms 
C             and eliminate them 
      call toomuch(itot,npos,nas,v,fdmax3,np2,np1,pp1) 
      if(np2.eq.0)go to 5002 
C Decide for the polyhedra type 
      mcop(itot+1)=int(randi(iseed)*float(npol)+1.) 
      if(mcop(itot+1).gt.npol)mcop(itot+1)=npol 
C  Determine how many neighbours ? And according to that, 
C  select the appropriate treatment : 
C  1- if ncop(1)=4 then 
C   if mv(m,1)=4  : atom already completed 
C   if mv(m,1)=3, 2, or 1  : one atom to add in correct position 
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C  2- if ncop(1)=6 then 
C   if mv(m,1)=6  : atom already completed 
C   if mv(m,1)=5, 4, 3, 2, or 1 : one atom to add in correct position 
      if(ncop(mcop(m)).eq.3)go to (3001,3002,3500)mv(m,1) 
      if(ncop(mcop(m)).eq.4)go to (3001,3002,3003,3500)mv(m,1) 
      if(ncop(mcop(m)).eq.5)go to (3001,3002,3003,3004,3500)mv(m,1) 
      if(ncop(mcop(m)).eq.6)go to (3001,3002,3003,3004,3005,3500)mv(m,1) 
C  Case with only one previous neighbour 
3001  continue 
     gen22=0.    
C  Decide for the Wyckoff position selected between np1 and npos 
600   mwyc(itot+1)=int(randi(iseed)*float(npos-np1)+pp1) 
      p=(x(m,1,1)-xa)+xa2*randi(iseed) 
      q=(x(m,1,2)-xb)+xb2*randi(iseed) 
      r=(x(m,1,3)-xc)+xc2*randi(iseed) 
      gen=gen+1. 
      gen22=gen22+1. 
      if(gen.gt.genmax)go to 5002 
C Extend to all positions corresponding to mwyc(nl(1)) 
........ Etc. 
C  Case with already 2 previous neighbours 
3002  continue 
........ Etc 
C  Case with already 3 neighbours  
3003  continue 
........ Etc 

 
• If a model fulfills all distance restraints, place the X atoms at M-M midpoints, refine the atomic 

positions and cell parameters so as to improve an R factor (called Rdt below). 
 
C     Place the X atoms and then refine by Monte Carlo 
      imemnl=nl(1) 
      nl(1)=itot 
      call midpt(x,nv,mv,nl,ncop,mcop) 
............Etc. 
C  Monte Carlo distance improvement 
C    Loop of idls moves per atom  
C            but move also the cell parameters 
      improve=0 
      imove=0 
      nltot=nl(1)+nl(2) 
      mc=idls*nltot 
      do 7500 imc=1,mc 
C  Select an atom  
C          i for type 1 or 2 
C          m for atom order in the list of either nl(1) or nl(2) 
C  or select one cell parameter (icel=1) 
      icel=int(randi(iseed)*2.) 
C  Do not refine the cell if iref = 0 
      if(iref.eq.0)icel=0 
C     change a cell parameter a or b or c by (+ or -) 0.01 A max 
C     change an angle cell parameter alp, bet or gam 
C                             by (+ or -) 0.01 ° max 
      if(icel.eq.1)then 
      if(nsym.le.4)mc=int(randi(iseed)*3.+1.) 
      if(nsym.eq.5)mc=int(randi(iseed)*4.+1.) 
      if(nsym.eq.6)mc=int(randi(iseed)*6.+1.) 
C  Redefine the cell parameters 
      if(mc.eq.1)anew=a+(randi(iseed)-0.5)*0.02 
      if(mc.eq.2)bnew=b+(randi(iseed)-0.5)*0.02 
      if(mc.eq.3)cnew=c+(randi(iseed)-0.5)*0.02 
      if(mc.eq.4)betnew=bet+(randi(iseed)-0.5)*0.02 
      if(mc.eq.5)alpnew=alp+(randi(iseed)-0.5)*0.02 
      if(mc.eq.6)gamnew=gam+(randi(iseed)-0.5)*0.02 
      if(nsym.eq.1)then 
      if(mc.eq.1)then 
      bnew=anew 
      cnew=anew 
      endif 
      if(mc.eq.2)then 
      anew=bnew 
      cnew=bnew 
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      endif 
      if(mc.eq.3)then 
      anew=cnew 
      bnew=cnew 
      endif 
      alpnew=alp 
      betnew=bet 
      gamnew=gam 
      go to 8001 
      endif 
      if(nsym.eq.2.or.nsym.eq.3)then 
.......Etc 
C Orthorhombic or more 
      if(nsym.ge.4)then 
C  If RdT improved, keep the move... 
      rdtnew=sqrt((rd1new+rd2new+rd3new)/ 
     1(rd1dnew+rd2dnew+rd3dnew)) 
      if(rdtnew.ge.rdt)go to 7500 
      improve=improve+1 
C   Move kept, then make all changes... 
C  changes accepted either on cell or atom moves 
      if(icel.eq.1)then 
C  Here modif on cell if accepted 
      a=anew 
      b=bnew 
      c=cnew 
      alp=alpnew 
      bet=betnew 
      gam=gamnew 
      else 
C   changes on coordinates x and Rd1,Rd2 and Rdt 
      x(m,i,1)=pmc 
      x(m,i,2)=qmc 
      x(m,i,3)=rmc 
C   changes on y 
      if(i.eq.1)then 
      do ki=1,27*nl(1) 
      if(ny(ki).eq.m)then 
      y(ki,1)=y(ki,1)+dp 
      y(ki,2)=y(ki,2)+dq 
      y(ki,3)=y(ki,3)+dr 
      endif 
 enddo 
 endif 
C   Also changes on xy if i=2... 
      if(i.eq.2)then 
      do ki=1,nl(1) 
      do kj=1,ncop(mcop(ki)) 
      if(nxy(ki,kj).eq.m)then 
      xy(ki,1,kj)=xy(ki,1,kj)+dp 
      xy(ki,2,kj)=xy(ki,2,kj)+dq 
      xy(ki,3,kj)=xy(ki,3,kj)+dr 
      endif 
      enddo 
 enddo 
 endif 
C   changes on coordinates x and Rd1,Rd2,Rd3 and Rdt 
      rd1=rd1new 
      rd2=rd2new 
      rd3=rd3new 
      rdt=rdtnew 
      endif 
C      write(10,*)'i,m ',i,m 
7500  continue 
C  End of Monte Carlo distance improvement 
C  If Rdt > Rdtmax, reject the cell 
      if(rdt.gt.rdtm)then 
      igood=igood-1 
      go to 5001 
      endif 
C   Do not save if the framework density is outside 
C        of the expected range 
      if(v.lt.1.)then 
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      igood=igood-1 
      go to 5001 
      endif 
      tn=nl(1) 
      rho(igood)=tn/v*1000. 
      if(rho(igood).lt.fdmin)then 
      igood=igood-1 
      go to 5001 
      endif 
      if(rho(igood).gt.fdmax)then 
      igood=igood-1 
      go to 5001 
      endif 
  

• Continue to try to predict structures in that way till a certain number of independent runs are 
made. Verify if the predicted structures are new or were already described (using CS - 
Coordination Sequence, a fingerprint of the structure). 
 
C  Calculate coordination sequence 
      call coorseq(nl,x,met,g,ntype,nr,ns,jmax,ncop,mcop,npol) 
........Etc 
C  Try to identify if this is already known or already predicted 
C     Now compare with data in connectivity.txt ... 
C        prepare the current data 
      iprint=1 
      do i=1,ntype 
      do j=1,10 
      write(t(j),'(i4)')nr(i,j) 
      enddo 
      newcos(i,igood)=t(1)//t(2)//t(3)//t(4)//t(5)//t(6)//t(7)// 
     1t(8)//t(9)//t(10) 
      enddo 
C     compare only on the real length of the predicted sequence 
      l=4*jmax 
      do 6800 i=1,ndat 
C        skip if not same ntype 
      if(nzeot(i).ne.ntype)go to 6800 
      isum=0 
      do 6700 j=1,ntype 
      do 6699 k=1,nzeot(i) 
      if(newcos(j,igood)(1:l).eq.coseq(k,i)(1:l))then 
      isum=isum+1 
      if(isum.eq.ntype)go to 6801 
      endif 
6699  continue       
6700  continue 
6800  continue 
C    Nothing found 
      go to 6810 
C    Something found 
6801  continue   
      ident(igood)=zeot(i) 
      write(10,*) 
      write(10,*)'This is probably ',zeot(i) 
      iprint=0 
C  but make the output files .cif, .dat and .xtl anyway  
C              if this is asked for (isave=1) 
      if(isave.eq.1)iprint=1 
      go to 6820 
6810  continue 
C  Compare also with current list 
      do 6850 i=1,igood-1 
C        skip if not same ntype 
      if(ntype.ne.mntype(i))go to 6850 
      isum=0 
      jmaxmin=jmax 
      if(mjmax(i).lt.jmaxmin)jmaxmin=mjmax(i) 
      l=4*jmaxmin 
      do 6750 j=1,ntype 
      do 6749 k=1,mntype(i) 
      if(newcos(j,igood)(1:l).eq.newcos(k,i)(1:l))then 
      isum=isum+1 
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         if(isum.eq.ntype)then 
         if(rd(igood).gt.rdp(i))iprint=0 
         if(rd(igood).lt.rdp(i))rdp(i)=rd(igood) 
         go to 6851 
         endif 
      go to 6750  
      endif 
6749  continue  
6750  continue 
6850  continue 
C    Nothing found 
      go to 6860 
C    Something found 
6851  continue   
      ident(igood)=ident(i) 
      write(10,*) 
      write(10,*)'This was found already ',ident(i) 
      go to 6820 
6860  continue 
C   If nothing found, this is a new one... 
      inew=inew+1 
      write(ident(igood),'(a4,i7)')'PCOD',inew 
      write(10,*) 
      write(10,*)'Found for the first time ',ident(igood) 
6820  continue 
C  End of checking 
 

 
In the GRINSP algorithm, the number of M or M' atoms in a randomly selected cell is not predetermined, 
it is predicted as well. Only restraints on distances are considered (not angles - though considering a range 
for the second M-M distances is like restraining angles).  
Currently, there are some limitations in that version. GRINSP 1.00 proved to be relatively efficient for a 
maximum number of 64 M/M' atoms on up to 1-10 different general or special positions. It was possible 
to retrieve many known zeolites (ABW, ACO, AFI, ANA, AST, BIK, CAN, EAB, EDI, GIS, GME, LOS, 
LTA, MEP, SOD...) and the compact SiO2 phases (quartz, cristobalite, tridymite, etc), polymorphs for 
B2O3, AlF3, hypothetical phases in binary systems B2O3/SiO2, B2O3/ReO3, SiO2/ReO3 (see the PCOD [9], 
a database accumulating these predicted structures). It is up to you to try GRINSP with other systems, and 
even the above ones have not been completely explored (in part due to that limitation to 64 M/M' atoms 
and because the maximum cell parameters were generally set to 16 Å). One life would not be sufficient if 
one formulation explored for one space group needs one or several days of calculations on a standard PC. 

Further work is needed for improving the GRINSP efficiency : introduction of different linkage modes 
than by corners (edges, faces...) but this would mean that all X atoms could not be placed at the M-M mid 
points; adding the possibility for insertion of big cations K/Sr/Ba/Cs/etc as spheres in the holes/tunnels; 
considering bond valence as an alternative to pure geometrical restraints for the model final refinements; 
increase the speed by not recalculating always everything (distances); increase the box size for the CS 
(coordination sequence) calculations (the 729 cells used are not always enough); increase that 64 M/M' 
atoms limit; allow to select the space group randomly as well; optimize the code; etc ! 
These improvements would need faster microprocessors or using a grid of computers on the internet. 
Anyway, the main problem is that once a model is built, it has to be checked visually. The process is not 
yet completely automatized (my confidence in it is not absolute, some two-dimensional models have to be 
discarded, etc). 
 
A few results with 3D 6-connected frameworks 
 
All the known varieties of AlF3 (pyrochlore, perovskite, HTB...) are predicted by GRINSP, including this 
strange τ-AlF3. New varieties are to be expected, if the GRINSP predictions are confirmed. Mixed 
compounds with two octahedra sizes were also modelled. Some are knowns, other are not. In some cases, 
the chemical composition is enough precise for suggesting the synthesis (contrarily to a simple MX3 or 
MX2 formula), see the figures below. Work is in progress for trying to confirm some of these predictions.  



 

   
 
Figures 1 and 2:  PCOD1000015 [Ca4Al7F33]4-, cubic, a = 10.860 Å. Known with Na atoms in the holes, as 
Na4Ca4Al7F33 ; PCOD1000017 AlF3, cubic, a = 9.668 Å. Known with some OH- and water in the holes : pyrochlore 
 

   
 
Figures 3 and 4: PCOD1010005 [Ca3Al4F21]3-, cubic, a = 9.009 Å. UNKNOWN Could be stuffed by Na 
atoms and give the hypothetical Na3Ca3Al4F21 - or stuffed by Li atoms ; PCOD1000014 AlF3, tetragonal, 
a = 10.216 Å, c = 7.241 Å. Known as t-AlF3
 
The above pictures are screen copies from drawings made by using a VRML visualizer (CosmoPlayer) 
reading the .wrl files stored in the PCOD. These .wrl files were made by the STRUVIR program from the 
.dat files also available in PCOD (as well as CIF files). GRINSP itself has no graphical user interface 
(GUI), which may not be absolutely necessary if one considers the simplicity of the data necessary for a 
prediction : 
 
   Test P-62c - 190          !  Title  
   P -6 2 C                  !  Space group 
   3 1 0 2                   !  Codes for cell symm., 1 or 2 M atom types, icon, min nber of M 
   4                         !  Coordination of the M atom(s) 
   Si  O                     !  Definition of the MX couple(s) 
   6. 16. 6. 16. 6. 16.      !  Min and max a, b, c 
   90. 90. 90. 90. 120. 120. !  Min and max angles 
   5. 30.                    !  Min and max framework density 
   200000 300000 0.02        !  Monte Carlo runs, Monte Carlo events per run, Rdtmax 
   10000 1                   !  Monte Carlo events for x,y,z refinement, cell refined or not 
   1900000                   !  First filename  
 
Concerning the sixfold coordination, GRINSP can produce it randomly as octahedra, trigonal prisms or 
pyramids with a pentagonal base. Moreover, if the tolerance factor R (Rdt in the code) is above 1% , then 
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these polyhedra can be more or less distorted. Some predictions are showing octahedra/trigonal prisms or 
octahedra/pyramids mixtures. Fancy predictions with large tunnels or huge cavities are sometimes 
proposed, such as these two examples (on the left, octahedra and trigonal prisms, on the right, octahedra 
and pyramids mixtures, the pentagonal base of the pyramids covering the tunnel walls) : 
 

   
 
Conclusion 
 
Structure prediction is certainly a promising approach, and an unavoidable part of our future in 
crystallography. It would have to be combined with an efficient prediction of the physical properties and, 
more difficult, with the prediction of a synthesis procedure... Storing and managing the huge quantity of 
hypothetical phases will be a problem, and the one structure/one publication scheme applied for the real 
compounds will not be relevant to predicted compounds. With 540 predicted structures from GRINSP, 
PCOD is a dwarf compared to a brand new database of hypothetical zeolites [10] containing in 3 parts (at 
the time of writing this paper) : 114010 structures in the Bronze database (raw predictions), 33652 refined 
structures in the Silver database, but nothing yet in the Gold database which will contain unique models. 
PCOD contains already unique models (almost), and is not restricted to the SiO2 formulation. The number 
of SiO2 predicted polymorphs in the PCOD continues to increase by the slow exploration of all space 
groups with GRINSP (only the triclinic and cubic space groups were examined systematically yet). The 
final number of structures depends on the limit fixed on R for retaining or not a model. The R value was 
arbitrarily chosen to be smaller than 1% in the SiO2 case. This allows to produce the observed zeolites 
and the known dense SiO2 phases, and will finally add a few thousands of hypothetical ones when the 
exploration will be completed. The MX3 3D 6-connected hypothetical frameworks will certainly be much 
less numerous. The SiO2/B2O3 system was found even richer than for the simple SiO2 formulation, even 
limiting R below 0.6%, though there is not any BxSiyOz in the ICSD database which would include BO3 
triangles and SiO4 tetrahedra interconnected by corners ! So, what to do with all these predictions now ? 
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The success of global optimisation methods in the area of structure determination from powder diffraction 
data (SDPD) for organic molecules depends critically on the incorporation of prior chemical information.  
This information takes the form of the connectivity of the molecule under investigation; molecules are 
typically parameterised as a series of known bond lengths, known bond angles, and a mixture of known 
and unknown torsion angles.  There are numerous ways of describing a molecule, but one of the most 
useful is the internal coordinate description [1] that is widely used in molecular modelling.  As a picture 
of the molecule is built up atom-by-atom using a series of distance, angle and torsion specifications, it 
maps nicely to the requirements of the global optimisation problem.  This is most easily seen with some 
examples.  Consider a hypothetical molecule that consists solely of four sp3 hybridised carbon atoms. 
 

 C1 C2

C3 C4

 
 
This molecule can be described by (a) an atom at an origin (1C) with (b) a second atom (2C) lying 1.54Å 
away from it, (b) an atom (3C) at a distance of 1.54Å away from the 2C, making an angle of 109.5º with 
the 2C and 1C and (d) a fourth atom (4C) at a distance of 1.54Å away from the 3C, making an angle of 
109.5º with the 3C and 2C, and making a torsion (twist) angle with the 3C, 2C and 1C.  The torsion angle 
can take any value from 0 to 360°.  Let us for a moment assume that the fourth carbon needs to lie in the 
same plane as the other three atoms.  This limits the possible values to 0 and 180°, corresponding to the 
following configurations: 
 

C1 C2

C3 C4

C1 C2

C3C4

 
 

180°                                                             0° 
 
A convenient format for writing this description is a Z-matrix; here is a Z-matrix representation of the 
180° configuration shown above: 
 
Atom     Distance Ref       Angle Ref     Torsion Ref   D    A    T 
  C1    0.0000000  0    0.0000000  0    0.0000000  0    0    0    0     
  C2    1.5400000  0    0.0000000  0    0.0000000  0    1    0    0     
  C3    1.5400000  0  109.5000000  0    0.0000000  0    2    1    0     
  C4    1.5400000  0  109.5000000  0  180.0000000  0    3    2    1 
 
D = Atom with which the current atom makes a distance 
A = Atom with which the current atom makes an angle, via the ‘D’ atom 
T = Atom with which the current atom makes a torsion, via the ‘D’ and ‘A’ atoms 
Ref = Refinement flag (0=norefine,1=refine, see later) 
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The Z-matrix can be read line-by-line in English, as follows: 
 
1. Place atom #1, ‘C’, at 0,0,0 
2. Place atom #2, ‘C’, at a distance of 1.54Å away from atom 1 
3. Place atom #3, ‘C’, at a distance of 1.54Å away from atom 2, making an angle of 109.5° with atoms 2 

and 1 
4. Place atom #4, ‘C’, at a distance of 1.54 Å away from atom 3, making an angle of 109.5° with atoms 

3 and 2, and making a torsion of 180° with atoms 3,2 and 1. 
 
Any additional atoms are added in exactly the same way.  It should now be obvious that the internal 
coordinate description allows one to easily describe an isolated molecule.  However, the conformation of 
the molecule will be arbitrary, as one does not know a-priori what the values of certain torsion angles 
will be.  Of course, there will be times when the molecule is completely defined by the Z-matrix e.g. 
benzene: 
 

H
H

H
H

H

H 1

2

3

4

5

6

7

11

8

9

10

12

 
 
  C1    0.0000000  0    0.0000000  0    0.0000000  0    0    0    0     
  C2    1.4000000  0    0.0000000  0    0.0000000  0    1    0    0     
  C3    1.4000000  0  120.0000000  0    0.0000000  0    2    1    0     
  C4    1.4000000  0  120.0000000  0    0.0000000  0    3    2    1 
  C5    1.4000000  0  120.0000000  0    0.0000000  0    4    3    2     
  C6    1.4000000  0  120.0000000  0    0.0000000  0    5    4    3 
  H7    1.0000000  0  120.0000000  0  180.0000000  0    1    2    3 
  H8    1.0000000  0  120.0000000  0  180.0000000  0    2    3    4 
  H9    1.0000000  0  120.0000000  0  180.0000000  0    3    4    5 
  H10   1.0000000  0  120.0000000  0  180.0000000  0    4    5    6 
  H11   1.0000000  0  120.0000000  0  180.0000000  0    5    6    1 
  H12   1.0000000  0  120.0000000  0  180.0000000  0    6    1    2 
 
It should also be apparent from the above description that there are many different ways of defining a Z-
matrix.  One could start with a different atom at the origin, or, for example, H8 could have been described 
by: 
 
  H8    1.0000000  0  120.0000000  0  180.0000000  0    2    1    6 
 
or 
 
  H8    1.0000000  0  120.0000000  0    0.0000000  0    2    1    7 
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Whilst not important for this particular example, it is very important when describing systems where 
torsional flexibility exists.   For example, consider the following: 
 

ClH
H

H

H
H

H

H 1

3
2

4

5

6

7

8

9

10

11
12

15

14

13

 
 
The CH2Cl group can rotate around bond 1-12.  If we assume for a moment that the chlorine atom lies in 
the plane of the ring, then one Z-matrix that would describe this molecule is; 
   
     C1    0.0000000  0    0.0000000  0    0.0000000  0    0    0    0     
  C2    1.4000000  0    0.0000000  0    0.0000000  0    1    0    0     
  C3    1.4000000  0  120.0000000  0    0.0000000  0    2    1    0     
  C4    1.4000000  0  120.0000000  0    0.0000000  0    3    2    1 
  C5    1.4000000  0  120.0000000  0    0.0000000  0    4    3    2     
  C6    1.4000000  0  120.0000000  0    0.0000000  0    5    4    3 
  H7    1.0000000  0  120.0000000  0  180.0000000  0    2    3    4 
  H8    1.0000000  0  120.0000000  0  180.0000000  0    3    4    5 
  H9    1.0000000  0  120.0000000  0  180.0000000  0    4    5    6 
  H10   1.0000000  0  120.0000000  0  180.0000000  0    5    6    1 
  H11   1.0000000  0  120.0000000  0  180.0000000  0    6    1    2 
  C12   1.4000000  0  120.0000000  0  180.0000000  0    1    2    3 
  Cl13  1.7000000  0  109.5000000  0    0.0000000  0   12    1    2 
  H14   1.0000000  0  109.5000000  0  120.0000000  0   12    1    2 
  H15   1.0000000  0  109.5000000  0  240.0000000  0   12    1    2 
 
Whilst this is satisfactory for this single conformation of the molecule, it is clear that if we want the 
ability to generate any permissible conformation about bond 1-12, we need to add an appropriate rotation 
angle to each of the last three torsions e.g. a 15 degree rotation about 12-1 would result in the last three 
lines of the Z-matrix being: 
  
  Cl13  1.7000000  0  109.5000000  0   15.0000000  0   12    1    2 
  H14   1.0000000  0  109.5000000  0  135.0000000  0   12    1    2 
  H15   1.0000000  0  109.5000000  0  255.0000000  0   12    1    2 
 
However, simply by changing the last three lines to: 
 
  Cl13  1.7000000  0  109.5000000  0    0.0000000  1   12    1    2 
  H14   1.0000000  0  109.5000000  0  120.0000000  0   12    1   13 
  H15   1.0000000  0  109.5000000  0  120.0000000  0   12    1   14 
 
we create a Z-matrix where any allowable value can be entered for torsion 13-12-1-2 and the attached 
hydrogen atoms will automatically rotate, as they are now defined relative to the position of the chlorine 
atom.  Thus the chlorine atom makes a proper torsion with atoms 12,1,2, whilst the next hydrogen atom 
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makes an improper torsion with atoms 12,1,13, and the last hydrogen makes an improper torsion with 
atoms 12,1,14.  The 120° angles come from the fact that when we look along the 12-1 bond, we see three 
substituents coming off the sp3 hybridised carbon atom, so the angles between these substituents must be 
120°.   Note also the presence of the '1' in the torsion refinement column, indicating that it is this torsion 
angle that will be varied in order to generate different conformations. 
 
So in creating a Z-matrix that allows torsional rotations, we must take care to ensure that there is only one 
proper torsion in the Z-matrix for each of the torsion angles in the molecule that we want to vary.  Here is 
another example, with the hydrogen atoms on the benzene molecule missed out for clarity. 
 

 
 
  C1    0.0000000  0    0.0000000  0    0.0000000  0    0    0    0     
  C2    1.4000000  0    0.0000000  0    0.0000000  0    1    0    0     
  C3    1.4000000  0  120.0000000  0    0.0000000  0    2    1    0     
  C4    1.4000000  0  120.0000000  0    0.0000000  0    3    2    1 
  C5    1.4000000  0  120.0000000  0    0.0000000  0    4    3    2     
  C6    1.4000000  0  120.0000000  0    0.0000000  0    5    4    3 
  C7    1.4000000  0  120.0000000  0  180.0000000  0    2    3    4 
  C8    1.5400000  0  109.5000000  0    0.0000000  1    7    2    3 
  H9    1.0000000  0  109.5000000  0  120.0000000  0    7    2    8 
  H10   1.0000000  0  109.5000000  0  240.0000000  0    7    2    8 
  C11   1.5400000  0  109.5000000  0  180.0000000  1    8    7    2 
  H12   1.0000000  0  109.5000000  0  120.0000000  0    8    7   11 
  H13   1.0000000  0  109.5000000  0  240.0000000  0    8    7   11 
  H14   1.0000000  0  109.5000000  0  180.0000000  0   11    8    7 
  H15   1.0000000  0  109.5000000  0  120.0000000  0   11    8   14 
  H16   1.0000000  0  109.5000000  0  240.0000000  0   11    8   14 
 
Note again the use of a ‘1’ in the torsion refinement column, to indicate the relevant torsions we wish to 
vary.  Hence in this molecule, we want rotations to occur around C7-C2 and C8-C7.  Rotation around 
C11-C8 is ignored, because C11 has three equivalent ‘H’ atom substituents, and therefore we are unlikely 
to see any impact upon the calculated diffraction pattern as a result of a rotation around this bond.  This 
statement of course holds true only if we are considering X-ray powder diffraction data; with neutron 
data, this rotation would need to be considered. 
 
A Z-matrix can be easily adapted to allow for special situations such as disorder.  For example, taking the 
chlorinated example shown earlier, modification of the last lines of the Z-matrix to those shown below 
allows for the possibility of the rotational disorder of the CH2Cl group, with occupancies set to 50% in 
the last column. 
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Cl13  1.7000000  0  109.5000000  0    0.0000000  1   12    1    2 0.5 
H14   1.0000000  0  109.5000000  0  120.0000000  0   12    1   13 0.5 
H15   1.0000000  0  109.5000000  0  120.0000000  0   12    1   14 0.5 
Cl16  1.7000000  0  109.5000000  0    0.0000000  1   12    1    2 0.5 
H17   1.0000000  0  109.5000000  0  120.0000000  0   12    1   16 0.5 
H18   1.0000000  0  109.5000000  0  120.0000000  0   12    1   17 0.5 
 
 
Sometimes, it can be advantageous to include a dummy atom (D, with zero or near-zero occupancy) in a 
Z-matrix in order to simplify the definition of a particular problem.  For example, consider the case of a 
centrosymmetric molecule, lying on a crystallographic centre of symmetry, where the molecular centre of 
symmetry is not coincident with an atom e.g. a benzene ring.  A Z-matrix definition of, 
 
  D  0.0000000  0    0.0000000  0    0.0000000 0    0    0    0 0.001  
  C  1.4000000  0    0.0000000  0    0.0000000 0    1    0    0 1.000 
  C  1.4000000  0   60.0000000  0    0.0000000 0    2    1    0 1.000 
  C  1.4000000  0  120.0000000  0    0.0000000 0    3    2    1 1.000 
 
followed by fixing the D atom on the centre of symmetry, gives the required result.  Note that for 
practical reasons in the DASH structure determination package, the dummy atom is set to have a non-zero 
(but effectively zero) occupancy. 
 
Often, H-atoms can be omitted from the Z-matrix without affecting either the definition or the structure 
determination.  However, in practice, it is easier to assess the correctness of solutions if they are included 
right from the start of the SDPD process.  Their scattering contribution can be ignored in programs such 
as DASH during the simulated annealing stage so as not to slow down the structure factor calculations.  
One situation where it is positively advantageous to omit H atoms is in the case of water molecules.  If 
the full molecule is defined, six degrees of freedom are introduced to the problem; if the water is 
represented by an oxygen atom only, then only positional degrees of freedom need be considered.   
 
It should now be clear that the Z-matrix acts as a template into which we can plug torsion angle values to 
generate any desired conformation.  Transformation to Cartesian coordinates, followed by reduction to 
fractional coordinates is then straightforward and translations / rotations within the unit cell can be easily 
applied to produce a trial crystal structure. 
 
The parameterization of molecules in terms of the unknown torsion angles and external degrees of 
freedom has proven to be very successful in the context of SDPD.  Constraints derived from the 
crystallography of the system can be applied to these variables; for example, in space group P1 the 
positional degrees of freedom may be fixed at some arbitrary position, or in space group P21, the y 
coordinate of the molecule might be fixed at some arbitrary value.  Of more interest in the determination 
of large flexible structures is the use of constraints on torsion angles to significantly reduce the scope of 
the search problem.  The constraints are generally derived from a search of related structures in the 
Cambridge Structural Database (CSD) and most commonly take the form of bounds on the values that 
can be adopted by particular torsions.  Good examples of such usage can be found in references 2 and 3 
and the interested reader is advised to consult them.  Direct determination of torsion angles by other 
methods is also possible [4].  As neither of these methods directly affects the construction of the Z-
matrix, they will not be discussed further here.   
 
The concept of applying constraints to non-bonded contacts can involve modification of the Z-matrix 
however.  Consider, for example, the case of the chloride ion in tetracaine hydrochloride.   
 



N
H

O
NH

+

O

Cl

 
 
A normal structure determination would involve optimisation of the tetracaine ion position, orientation 
and conformation, together with the position of the chloride ion.  However, a search of the CSD for 
structures involving the NH+…Cl- motif reveals that the chloride ion does not occupy an arbitrary 
position relative to the N+; rather, it lies in a somewhat predictable position and in principle, this 
information can be incorporated into the Z-matrix.  It is a straightforward matter to link the tetracaine and 
chloride fragments into a single Z-matrix where the three positional degrees of freedom of the chloride 
fragment are exchanged for three different degrees of freedom (virtual bond length, bond angle and bond 
torsion) that can be optimised with the existing degrees of freedom in the tetracaine molecule.   
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NH
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At first glance, nothing has been gained; we have simply exchanged three variables for three variables.  
However, these new degrees of freedom can be constrained to chemically sensible values using the prior 
chemical information obtained from the CSD; for example the N+⋅⋅⋅Cl- ionic bond distance can be set to 
3.06Å with an esd of only 0.05 Å, whilst the N-H⋅⋅⋅Cl bond angle can be set to 164° with an esd of 10°.  
In effect, these two variables are removed and the problem collapses to one of determining one more 
torsion angle within the ‘composite molecule’ 
 
Automatic generation of Z-matrices of a type suitable for global optimisation presents an interesting 
algorithmic and programming problem, but that's another story... 
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Abstract 
 
It is not unusual, when refining the structure of a macromolecule, to wish to incorporate some information 
which was not foreseen by the authors of the software being used. This article discusses the mechanisms 
in the TNT refinement package which allow this information to be utilized, without modifying the source 
code for TNT nor recompiling.  A program which calculates the data that TNT requires to apply the new 
restraints must be written by the user. 
 
Introduction 
 
The TNT refinement package (Tronrud et al., 1987) has been available for many years and is still being 
developed and used for a number of refinement problems. One of its unique features is its ability to accept 
information from other programs which allows a macromolecular model to be restrained by information 
not explicitly anticipated within the TNT software. 
 
One example of the successful use of this feature of TNT is the maximum likelihood refinement package 
Buster (Bricogne, 1997). This package uses the TNT refinement package to perform the calculation for 
function optimization and stereochemical restraints but replaces TNT’s least-squares diffraction residual 
function with a much more elaborate maximum likelihood target function. 
 
TNT uses the preconditioned conjugate gradient method of function optimization (Tronrud, 1992). This 
algorithm uses a subset of the Normal matrix (and that subset must be easily invertible) to find an 
alternative coordinate system for the parameters of the model. The new, abstract, coordinate system is one 
where the conjugate gradient method (Fletcher & Reeves, 1964) will be more efficient. The conjugate 
gradient method requires the ability to evaluate the function being optimized given any set of values for 
the parameters of the model, as well as the gradient of this function. The preconditioned conjugate 
gradient method requires, in addition, the ability to calculate the diagonal of the Normal matrix. 
 
If the new information being added to the refinement is statistically independent of the restraints 
implemented in TNT, the expanded restraint function will simply be the sum of the traditional restraints 
and the function based on the new restraints. Since the derivative operator is a linear operator, the first 
and second derivatives of the expanded restraint function will, likewise, be the sum of the derivatives of 
the "traditional" restraint function and the added restraint function. The TNT refinement package can read 
function values, first derivatives, and the diagonal of second derivatives from a formatted file and add 
these values to its own corresponding quantities. 
 
To add restraints to a TNT refinement, the user must write a program which will read a TNT coordinate 
file and produce the value of the restraining function, its first derivative, and diagonal of its second 
derivative. Proper modification of the TNT refinement script will cause the program to run at the 
appropriate time, and instruct TNT’s program Shift to read the supplied data files in addition to TNT’s 
own. 
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Choice of Function 
 
TNT is a least-squares refinement package. If the added restraints are to be compatible with the other 
restraints anticipated by TNT the user should preferably cast them as least-squares restraints, or, failing 
this, in a negative log-likelihood expression.  
 
The form of a least-squares residual function is 
 

 
 
where Qobs is the target value of the restraint, σobs is the standard deviation of, or the confidence in, the 
target value, and Qcalc is the equivalent quantity calculated from the current model. The weight, W, is 
used to control the balance between the added restraints and those of TNT. Its value has to be determined 
empirically by running a series of refinement jobs with a range of values and selecting that value which 
results in either the lowest free R or all the categories of restraints being met to within the precision of 
their libraries. If the σ’s are accurate the value of the weight will be close to unity. 
 
If the new restraints are cast in the form of a probability, the function will be a form incompatible with a 
least-squares residual function. This difference, along with the need to maximize probabilities and 
minimize residuals, makes it impossible to combine within TNT. Taking the negative logarithm of a 
probability distribution will make the function compatible with a leastsquares residual. 
 
Format of TNT’s Data Files 
 
Programs in the TNT refinement package pass data amongst themselves in free-format text files. Each 
line in one of these files contains a packet of information which can be interpreted independent of its 
context - The order of the lines in a file is of no importance. The type of data on a line is defined by a 
keyword written at its head. 
 
To allow TNT to track which piece of information belongs to which part of the function being minimized, 
the user must choose a name for the information being supplied. You can choose whatever name you 
wish (with the exception of RFACTOR, GEOMETRY, and NCS which TNT uses) but only the first four 
letters are significant. In the examples that follow the name "MINE" is used. 
 
The keywords used to pass information about restraints to TNT’s optimizer program (named Shift) are 
 
FUNCVAL  Provides the value of the function being minimized 
 
DRVC  Provides the first derivatives of the function with respect to the 

parameters of a single atom  
 
CRVC, CRVAC, and CRVBC  Provides the second derivatives of the function with respect to the 

parameters of a single atom 
 
Following the keyword is the name chosen for the supplied function. 
 
The FUNCVAL statement only needs the function name and the value of the function when evaluated for 
the current model coordinate file. An example of a FUNCVAL statement is 
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FUNCVAL MINE 1.34567E+11 
 
A DRVC statement contains the first derivative of the function for the parameters of a particular atom. 
There is one DRVC statement for each atom in the model. In this statement the keyword is followed by the 
name chosen by the user, and the derivatives with respect to the five parameters of the atom (X, Y , Z, B, 
and occupancy). These numbers are followed by the atom’s name, the name of the residue containing it, 
and the name of the chain containing it. An example of a DRVC statement is 
 

DRVC MINE 2.12E+02 3.62E+02 1.12E+02 -1.13E+00 7.22E+01 N 1 A 
 
These are the five derivatives for the amide nitrogen of residue 1 in chain A. 
 
A question which now must be answered is "Which coordinate system is being used?" TNT was created 
prior to the establishment of the current "PDB standard" Cartesian coordinate system. While the 
coordinate system used in TNT to describe the location of atoms is Cartesian, it is not that used in a PDB 
format coordinate file. To convert from crystallographic "fractional" coordinate system to TNT’s 
Cartesian system use the conversion matrix 
 

 
 
If the residual function does not depend on the placement of the molecule in the crystal then this 
difference in convention is unimportant. The coordinates found in the TNT coordinate file will already be 
in an appropriate orthonormal coordinate system. 
 
The diagonal second derivatives are defined with the CRVC, CRVAC, and CRVBC statements. In the most 
elaborate form available in TNT the diagonal of the second derivative matrix is defined as a symmetric 
5x5 block for each atom. (The matrix blocks containing second derivatives for parameters in different at-
oms are always assumed to be zero in TNT.)  The values on the diagonal of this 5x5 block (i.e. ∂2f/∂X2, 
∂2f/∂Y2, ∂2f/∂Z2, ∂2f/∂B2, and ∂2f/∂Occ2) are almost always non-zero and significant. The off-diagonal 
elements of this block are almost always zero (except for ∂2f/∂B∂Occ) and can usually be ignored. 
 
Reflecting this pattern, the CRVC statement contains the values of the five diagonal elements of the block. 
If all the other elements are equal to zero there is no need to write CRVAC and CRVBC statements. Since 
the diagonal elements are given on the CRVC statement the order of values on the other statements is a 
little odd. The values are listed in "threaded order"” which is best described by the figure 
 

 
 
The elements identified as 1, 2, 3, 4, and 5 are given (in that order) on the CRVC statement. The elements 
identified as A1, A2, A3, A4, and A5 are given on the CRVAC statement and the elements B1, B2, B3, 
B4, B5 are given on the CRVBC statement. Since the CRVBC statement contains only derivatives which 
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mix positional parameters with the B factor or occupancy it has contained only zeros in our experience. It 
is unlikely that you will ever write a CRVBC statement. 
 
An example of a CRVC/CRVAC pair is 
 

CRVC  MINE 5.90E+02 5.90E+02 642E+02  2.07E-01  8.37E+02 N 1 A 
CRVAC  MINE 0.00E+00 0.00E+00 0.00E+00  -1.15E+01  0.00E+00 N 1 A 

 
Practical Considerations for Curvatures 
 
The diagonal approximation to the second derivative matrix that is used in TNT is a poor one for many 
types of restraints. While it works reasonably well for restraints to diffraction amplitudes, geometrical 
restraints will always have large off-diagonal elements which are a consequence of the "ties" between 
various sets of atoms. 
 
We have determined, empirically, that when refining with restraints which have large off-diagonal 
elements (which are always ignored in TNT) the off-diagonal elements in the diagonal 5x5 block should 
also be ignored. In TNT CRVAC and CRVBC statements are never written for stereochemical and 
noncrystallographic symmetry restraints. 
 
The diagonal block of second derivatives which is calculated for restraints to diffraction amplitudes for 
most atoms contains zeros on all off-diagonal elements (except for the ∂2f/∂B∂Occ element which is not 
important if the occupancy of the atom is held fixed.) The exception to this pattern occurs when an atom 
is near a special position in the unit cell. In that situation, the off-diagonal elements of the positional 
second derivatives are non-zero and are critical to the correct refinement of the location of the atom. 
 
It is recommended that any new restraint programs be written to produce CRVAC and CRVBC statements. 
Tests comparing the efficiency of the refinement with and without these statements, however, should be 
run to determine if the presence of this information is helpful or harmful. 
 
Editing the TNT Refinement Script 
 
TNT consists of a number of programs which are coordinated by a script when running refinement. 
Several csh scripts are supplied for use on unixlike operating systems. The user will have to edit one of 
these scripts to cause the new program to be executed and its data to be read by TNT. 
 
Regardless of the features of a particular script, all cycles of refinement in TNT have two parts. In the 
first part (called the "long loop") each helper program calculates the function value, gradient, and 
diagonal of the second derivative matrix for its restraints. 
 
All this information (along with the previous cycle’s shift vector) is read by the program Shift and three 
things are done: 
 

• A new shift vector is determined by applying the preconditioned conjugate gradient method. 
• An estimate of the fraction of this shift vector to be applied is made and written to a temporary 

file. 
• A coordinate file (named shifted.cor) is written which has the trial shift applied. 

 
In the second part of the cycle of refinement (called the "short loops"), the true fraction of the shift vector 
which optimizes the model is determined.  This goal is accomplished by a one-dimensional search along 
the shift vector.  In each iteration, each helper program evaluates its residual function for the trial 
coordinate file; no derivatives are required here. The program Shift reads the current function values and 
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its own temporary files containing the status of the optimization, and calculates a new estimate. If the new 
estimate is not significantly different the cycle ends and a new cycle begun. 
 
Refinement of a model against diffraction data and stereochemical restraints is performed by the script 
$tntbin/tnt cycle. The simplest way to add new restraints to a cycle of TNT is to make a copy of this 
script and edit it. This script runs the programs Rfactor and Geometry (which are TNT’s helper programs 
for restraints on diffraction data and ideal stereochemistry) and then runs Shift. The user should add the 
commands required to cause their program to calculate its function value and derivatives before the script 
runs Shift. Then modify the script to cause Shift to read the file containing the appropriate file. 
 
The script commands which run Shift are 
 
# 
$tntbin/shift << $eof 
INCLUDE init.cor 
INCLUDE rfactor.dat 
INCLUDE geometry.dat 
INCLUDE olddir.dat 
INCLUDE $control 
$eof 
if ($status >< 0) exit 1 
if (-e tempparm.tmp) rm tempparm.tmp 
# 
rm rfactor.dat geometry.dat 
 
These commands cause Shift to read the starting coordinates (init.cor), the output of the programs Rfactor 
and Geometry (rfactor.dat and geometry. dat), the previous shift vector (olddir.dat), and the TNT control 
file (whose name is stored in the symbol $control). If the user’s program writes its data in the file 
mine.dat add the statement 
 
INCLUDE mine.dat 
 
anywhere in the existing list of INCLUDE statements. 
 
In the second half of the script Rfactor and Geometry are run once again. These programs are followed by 
Shift. The user will have to add commands to run the added program here (This time only calculating the 
function value) and add an INCLUDE statement to force Shift to read the user’s new file. 
 
Example: Restraining to Torsion Angle Distributions 
 
TNT, as well as other refinement packages (e.g. CNS (Brünger et al., 1998)) restrain molecular models to 
ideal torsion angles using a simplistic method.  Each torsion angle can have several "ideal" values which 
represent the allowed rotomers for that group of atoms. These ideal values are required to be equally 
spaced within the circle of 360 degrees, and the width and height of the probability of each of these 
values are assumed to be identical. Priestle (2003) discusses many of these shortcomings.  
 
To create a restraint on torsion angles which does not have these limitations, one could use the raw 
probability distributions for the χ angles in place of the distilled list of most probable χ angles usually 
listed in a rotomer library. Probability distributions suitable for this use are listed in Priestle (2003). 
 
The target function of such a restraint would be 
 



 
 
where W is the overall weight of this term relative to the term restraining the model to the diffraction data 
and the term restraining other stereochemistry items, j is the index of a particular side chain χ angle, χc,j is 
the value of this χ angle calculated from the current model, and Pχj is the probability distribution of all the 
values this χ angle could adopt. 
 
The probability of an entire model is the product of the probabilities of each of its χ angles, assuming that 
the values of these angles are independent of each other. (They are, of course, not independent but to 
handle the relationship between χ angles requires higher dimensional probability distributions which 
introduce their own problems. We will continue this example assuming independence.) The negation of 
the log of this product is calculated to ensure compatibility with TNT. 
 
TNT requires the first, and diagonal of the second derivatives of this function. These derivatives must be 
with respect to the positional parameters of the atoms in the model. The equation for the first derivatives 
are 
 

 
 
and the equation for diagonal of the second derivative matrix is 
 

 
 
xi is the positional parameters (i.e. X, Y , and Z) for the ith atom and {a, b, . . .} are the indices of the 
torsion angles which involve this atom.  ∂χc,k(x)/∂xi indicates how the torsion angle changes as the atom 
is moved.  Values for these derivatives can be found in Tronrud et al. (1987). 
 
The derivative of the probability distribution with respect to the χ angle can either be calculated either by 
discrete differentiation of the histogram itself, or by taking the derivative of a curve fit to the histogram. 
 
The second derivative contains three terms. While the first term is positive in all cases the second and 
third may be either positive or negative. The optimization method used in TNT requires that the second 
derivative matrix be positive definite. For a diagonal matrix this means that all the diagonal entries must 
be positive. The performance of TNT would likely be improved by only calculating the first term. 
 
Further Information 
 
To find further information about the TNT refinement package visit the website 
http://www.uoxray.uoregon.edu/tnt/  
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Abstract 
 
One of the most important aspects in macromolecular structure refinement is the use of prior chemical 
knowledge. Bond lengths, bond angles and other chemical properties are used in restrained refinement as 
subsidiary conditions. This contribution describes the organisation of the flexible and human/machine 
readable dictionary of prior chemical knowledge used by the maximum-likelihood macromolecular 
refinement program REFMAC5. The dictionary stores information about monomers that represent the 
building blocks of biological macromolecules (amino acids, nucleic acids, and saccharides) and about 
numerous organic/inorganic compounds commonly found in macromolecular crystallography. It also 
describes the modifications the building blocks undergo as a result of chemical reactions and the links 
required for polymer formation. More than 2000 monomer, 100 modification, and 200 link entries are 
currently available. 
 
1. Introduction 
 
One of the essential components of macromolecular crystal structure refinement is the use of prior 
information. Prior information available for macromolecular crystallographers can loosely be divided into 
two families: (a) the available three-dimensional structures of macromolecules deposited within the 
Protein Data Bank and (b) such invariant chemical properties of macromolecular building blocks as, bond 
lengths, bond angles, chiral volumes, planes. 
 
A very important, although heavily underused, source of prior information for macromolecular 
experimental techniques is the PDB (Bernstein et al, 1977; Berman et al, 2002). It can be expected that 
many features of the new macromolecular structures are already present within those solved and 
deposited previously. This aspect of the utilisation of the available information is growing rapidly and 
there are already some applications of it in such branches of crystal structure analysis as model building 
(Jones et al, 1991) and density modification (Terwilliger, 2003). In future a heavier utilisation of this type 
of information can be envisaged. A careful analysis and statistically sensible use of this information will 
definitely enhance and extend the applicability of the currently available experimental techniques for 
macromolecular structure analysis (e.g. crystallography). 
 
The importance of using known chemical properties, such as bond lengths, bond angles as subsidiary 
conditions in macromolecular crystallography refinement has been recognised for a long time (Waser, 
1963; Jack & Levitt, 1978; Konnert, 1980). The primary justification for the use of these properties is that 
the experimental data alone are not sufficient to completely define the three-dimensional structure of 
macromolecules. To extract information from the limited and noisy experimental data it is necessary to 
use as much as possible chemical information. 
 
 This contribution presents the design and the organisation of the dictionary of prior chemical information 
used by the maximum-likelihood macromolecular crystallographic refinement program REFMAC5 
(Murshudov et al, 1997) of the CCP4 (Collaborative computational project: Number 4, 1994) suite. Since 
primary purpose of the dictionary is its use by the program REFMAC5, in the following sections it is 
referred as a REFMAC5 dictionary. 
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2. Definitions 
 
Monomer. A monomer indicates a chemical unit that, at least formally, can exist independently. For 
example, amino acids, nucleotides, monosaccharides and ligands are monomers. 
 
Modification. A modification is a formalism that describes the result of changes brought about on a 
monomer by a chemical reaction. Examples of modification are the N-terminus methylation of amino 
acids and the methylation of pyranoses at the O1 position.  
 
Link. A link is a formalism that embeds the information required to describe all changes and newly 
formed bonds occurring when two monomers undergo a chemical reaction that somehow joins them 
together. Examples of links are trans/cis peptide bonds, phosphodiester bonds, and α-4 glycosidic bonds. 
 
Chirality. Chirality is a chemical concept that refers to the property of certain compounds of being non-
superimposable to their mirror image. The type of chirality used in the REFMAC5 dictionary is similar to 
that used in SMILES strings (Weininger, 1988) that is, local chirality as opposed to absolute chirality. 
Unlike the CIP (Cahn et al, 1966) and IUPAC (IUPAC, 1979) conventions for chirality, local chirality is 
defined only by the immediate surrounding of an atom. Local tetrahedral chirality is the most common 
one. It is usually present on carbon and nitrogen atoms with sp3 hybridisation when at least three non-
hydrogen atoms are bound to them. Local tetrahedral chirality is defined by its sign. The sign can be 
either “positive” or “negative”. More complex local chiralities are present at metal centres. 
 
Minimal description. Minimal description refers to the minimal information necessary to describe a 
monomer uniquely. It consists of the monomer name, the list of its atoms identification codes and 
symbols, its bonds list and orders, and optionally the chemical group to which it belongs to (peptide, 
pyranose, etc.). If required, the configuration of the monomer can be defined using chiralities.  
 
Complete description. Complete description is a monomer description that contains all information about 
its internal chemical structure. In addition to the items present in the minimal description it also contains a 
tree representation of the monomer as well as its bond lengths, bond angles, torsion angles. When 
required, planes and chiral centres are also defined. For the appropriate parameters standard deviations 
are given.  
 
 
3. Dictionary of prior chemical information 
 
The dictionary used by the program REFMAC5 has been designed according flexibility criteria. It is 
largely based on the monomer approach and allows dynamic definition of links and modifications. It 
contains carefully analysed descriptions for most common monomers, modifications and links.  
 
REFMAC5 dictionary is written in an extended mmCIF format (Bourne et al, 1997). This is based on the 
star style (Hall, 1991) and the CIF format (Hall et al, 1991) used in small molecules crystallography. The 
attractive side of the mmCIF format is that any data file based on it can easily be extended without 
affecting the functionalities of programs already using it.  
 
3.1 General organisation and current state of the dictionary 
 
REFMAC5 dictionary contains a list of monomers, modifications, and links along with their descriptions. 
Monomer descriptions define the internal coordinate of independent compounds. Modifications and links 
encapsulate the changes brought about on them by chemical reactions. Modifications typically act on a 
single monomer whilst links join monomers together.  
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The currently distributed version of the dictionary has entries for all amino acids as well as for many of 
their possible modifications, for all nucleic acids and for some of their modifications, and for most 
common sugars and their modifications. It has also entries for many organic and inorganic compounds 
frequently encountered when solving macromolecular structures. As some monomers have several well 
established common names the dictionary contains a list of synonyms capable of handling them.The 
dictionary also contains frequently encountered links like trans/cis and methylated peptide links, sugar-
sugar and sugar-protein links, as well as DNA/RNA links. 
 
Current version of the dictionary contains more than 2000 monomer, 100 modification, and 200 links. 
Such a large dictionary covers most common users' needs. A full list of monomers, modifications and 
links available within the REFMAC5 dictionary can be found at the web-page 
http://www.ysbl.york.ac.uk/~alexei/dictionary.html.  
 
The dictionary can easily be extended by users. Users can create and organise personal monomer entries 
as well as modifications and links. In case of conflict user's definitions always override that stored within 
the distributed dictionary. 
 
At present, the dictionary is used mainly by the program REFMAC5 for restrained refinement. However, 
its organisation is so that other programs dealing with macromolecules can use it. For example, the model 
building program COOT  (Emsley and Cowtan, 2004) employs it. Applications for molecular simulation 
and modelling that use the REFMAC5 dictionary are currently being developed. 
 
 
3.2 Monomers 
 
For a monomer to be completely defined information must be available about its constituting atom(s) and, 
if present, about its bonds, angles, torsion angles, planes, and chiral centres. Examples of complete 
monomer descriptions are given in Table 1.  
 
Table 1a. Example of complete monomer description. 
 
This example shows the complete monomer description of the pyranose β-D-glucose. For compactness, 
most description categories given contain only a representative set of items. Missing items are 
represented by “...” symbols. The first category (_chem_comp) is the general category. It contains the 
name of the monomer alongside with its long name and the name of the group to which it belongs to. In 
this category there is an indication of the level of monomer description. If this item has the value “M” the 
entry has a minimal description. In this case the value is “.” which indicates a complete description. The 
second category (_chem_comp_atom) describes atoms with their names, element names, atom types, and 
atom charges. It can also contain a monomer representation in Cartesian coordinates. The third category 
(_chem_comp_tree) is the acyclic graph description. Additional bonds are present to indicate ring 
enclosure also. These bonds have the label “ADD”. Beginning and end of the tree are labelled with 
“START” and “END”, respectively. The fourth category (_chem_comp_bond) lists bonds together with 
their bond lengths, bond orders and uncertainties. Other categories present are for bond angles 
(_chem_comp_angle), torsion angles (_chem_comp_tor), and  chiralities (_chem_comp_chir). When 
required, planes are indicated by the category (_chem_comp_plane_atom). The latter category is not 
present in this example as β-D-glucose does not need planarity restraints.   
# 
data_comp_list 
loop_ 
_chem_comp.id 
_chem_comp.three_letter_code 
_chem_comp.name 
_chem_comp.group 

http://www.ysbl.york.ac.uk/~alexei/dictionary.html
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_chem_comp.number_atoms_all 
_chem_comp.number_atoms_nh 
_chem_comp.desc_level 
GLC-b-D  GLC 'beta_D_glucose                      ' D-pyranose         24  12 
. 
# 
data_comp_GLC-b-D 
# 
loop_ 
_chem_comp_atom.comp_id 
_chem_comp_atom.atom_id 
_chem_comp_atom.type_symbol 
_chem_comp_atom.type_energy 
_chem_comp_atom.partial_charge 
 GLC-b-D       C1     C    CH1       0.000 
 GLC-b-D       H1     H    HCH1      0.000 
 ... 
 ... 
 GLC-b-D       HO6    H    HOH1      0.000 
 GLC-b-D       O5     O    O2        0.000 
loop_ 
_chem_comp_tree.comp_id 
_chem_comp_tree.atom_id 
_chem_comp_tree.atom_back 
_chem_comp_tree.atom_forward 
_chem_comp_tree.connect_type 
 GLC-b-D  C1     n/a    C2     START 
 GLC-b-D  H1     C1     .      . 
 ... 
 ... 
 GLC-b-D  O6     C6     HO6    . 
 GLC-b-D  HO6    O6     .      . 
 GLC-b-D  O5     C5     .      END 
 GLC-b-D  O5     C1     .    ADD 
loop_ 
_chem_comp_bond.comp_id 
_chem_comp_bond.atom_id_1 
_chem_comp_bond.atom_id_2 
_chem_comp_bond.type 
_chem_comp_bond.value_dist 
_chem_comp_bond.value_dist_esd 
 GLC-b-D  O1     C1        single       1.410    0.020 
 GLC-b-D  C2     C1        single       1.524    0.020 
 ... 
 ... 
 GLC-b-D  HO6    O6        single       0.980    0.020 
 GLC-b-D  C1     O5        single       1.410    0.020 
 
loop_ 
_chem_comp_angle.comp_id 
_chem_comp_angle.atom_id_1 
_chem_comp_angle.atom_id_2 
_chem_comp_angle.atom_id_3 
_chem_comp_angle.value_angle 
_chem_comp_angle.value_angle_esd 
 GLC-b-D  H1     C1     O1      109.470    3.000 
 GLC-b-D  O1     C1     C2      109.470    3.000 
 ... 
 ... 
 GLC-b-D  C6     O6     HO6     109.470    3.000 
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 GLC-b-D  C5     O5     C1      111.800    3.000 
loop_ 
_chem_comp_tor.comp_id 
_chem_comp_tor.id 
_chem_comp_tor.atom_id_1 
_chem_comp_tor.atom_id_2 
_chem_comp_tor.atom_id_3 
_chem_comp_tor.atom_id_4 
_chem_comp_tor.value_angle 
_chem_comp_tor.value_angle_esd 
_chem_comp_tor.period 
 GLC-b-D  var_1    C1     C2     O2     HO2        0.000   20.000   1 
 GLC-b-D  var_2    C1     C2     C3     C4       -50.095   20.000   3 
 ... 
 ... 
 GLC-b-D  var_11   C5     O5     C1     C2       -55.889   20.000   3 
 GLC-b-D  var_12   O5     C1     C2     C3        55.889   20.000   3 
loop_ 
_chem_comp_chir.comp_id 
_chem_comp_chir.id 
_chem_comp_chir.atom_id_centre 
_chem_comp_chir.atom_id_1 
_chem_comp_chir.atom_id_2 
_chem_comp_chir.atom_id_3 
_chem_comp_chir.volume_sign 
 GLC-b-D  chir_01  C5     C4     O5     C6        positiv 
 GLC-b-D  chir_02  C4     C3     O4     C5        positiv 
 GLC-b-D  chir_03  C3     C2     O3     C4        negativ 
 GLC-b-D  chir_04  C2     C1     O2     C3        positiv 
 GLC-b-D  chir_05  C1     O1     O5     C2        positiv 
 
Table 1b. Example of the complete monomer description with metal chirality. 
 
Description of seven coordinated calcium. Chirality sign is cross5 shown that there are 5+2=7 atoms 
surrounding the central atom. After the centre, chirality definition has information about up to eight 
atoms. First atom indicated by_chem_comp_chir.atom_id_1 shows starting atom, second atom indicated 
by_chem_comp_chir.atom_id_2 shows the end and all others show surrounding atoms (see Figure 2). 
Apart from centre all atoms are optional. It allows flexible definition of distorted coordination. However 
there must be at least two atoms surrounding the central atom.  
 
global_ 
_lib_name         mon_lib 
_lib_version      4.3 
_lib_update       11/06/03 
# ------------------------------------------------ 
# 
# ---   LIST OF MONOMERS --- 
# 
data_comp_list 
loop_ 
_chem_comp.id 
_chem_comp.three_letter_code 
_chem_comp.name 
_chem_comp.group 
_chem_comp.number_atoms_all 
_chem_comp.number_atoms_nh 
_chem_comp.desc_level 
OC7      .   'CALCIUM ION, 7 WATERS COORDINATED   ' non-polymer    22   8 . 
# 
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# --- DESCRIPTION OF MONOMERS --- 
# 
global_ 
_lib_name         mon_lib 
_lib_version      4.3 
_lib_update       11/06/03 
# ------------------------------------------------ 
# 
# ---   LIST OF MONOMERS --- 
# 
data_comp_list 
loop_ 
_chem_comp.id 
_chem_comp.three_letter_code 
_chem_comp.name 
_chem_comp.group 
_chem_comp.number_atoms_all 
_chem_comp.number_atoms_nh 
_chem_comp.desc_level 
OC7 . 'CALCIUM ION, 7 WATERS COORDINATED' non-polymer   22   8 . 
# 
# --- DESCRIPTION OF MONOMERS --- 
# 
data_comp_OC7 
# 
loop_ 
_chem_comp_atom.comp_id 
_chem_comp_atom.atom_id 
_chem_comp_atom.type_symbol 
_chem_comp_atom.type_energy 
_chem_comp_atom.partial_charge 
_chem_comp_atom.x 
_chem_comp_atom.y 
_chem_comp_atom.z 
 OC7    O7    O  O    0.000   0.000  0.001  0.000 
 ....... 
 OC7    HO12  H  H    0.000   0.241  4.292  0.001 
 OC7    HO11  H  H    0.000  -1.011  3.040  0.002 
loop_ 
_chem_comp_bond.comp_id 
_chem_comp_bond.atom_id_1 
_chem_comp_bond.atom_id_2 
_chem_comp_bond.type 
_chem_comp_bond.value_dist 
_chem_comp_bond.value_dist_esd 
 OC7    O1    CA   single   2.320  0.020 
 ...... 
 OC7    HO72  O7   single   1.040  0.020 
loop_ 
_chem_comp_angle.comp_id 
_chem_comp_angle.atom_id_1 
_chem_comp_angle.atom_id_2 
_chem_comp_angle.atom_id_3 
_chem_comp_angle.value_angle 
_chem_comp_angle.value_angle_esd 
 
 OC7   O7  CA   O5   180.000  3.000 
 ..... 
 OC7   O2  CA   O5    90.000  3.000 
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loop_ 
_chem_comp_chir.comp_id 
_chem_comp_chir.id 
_chem_comp_chir.atom_id_centre 
_chem_comp_chir.atom_id_1 
_chem_comp_chir.atom_id_2 
_chem_comp_chir.atom_id_3 
_chem_comp_chir.volume_sign 
_chem_comp_chir.atom_id_4 
_chem_comp_chir.atom_id_5 
_chem_comp_chir.atom_id_6 
_chem_comp_chir.atom_id_7 
_chem_comp_chir.atom_id_8 
 OC7   chir_01  CA   O5   O7  O1   cross5 
                         O4    O2   O3  O6     . 
 
Monomers are described by the following categories: 
 
General category. This category contains the short and full monomer names, the monomer three letter 
PDB code and the group it belongs to (peptide, DNA/RNA, pyranose, non-polymer). Group names are an 
important part of the monomer description as they facilitate monomer handling. For example, if the 
monomer belongs to the group called “peptide” then all links and modifications described for peptides 
can be applied to it. Moreover, the group type defines whether a monomer can belong to a chain 
(polypeptide, DNA/RNA or polysaccharide chains).  
 
Atom category. This category lists atom and element names and their chemical types and charges. It may 
also contain Cartesian coordinates. 
 
Tree category. This category describes the mathematical tree (acyclic graph) corresponding to the 
monomer chemical connectivity. It is used to generate coordinates. Missing atoms, e.g. hydrogens, are 
restored using this tree.   
 
Bond category. This category contains the list of bonded atoms, bond types, and ideal values of bond 
lengths and uncertainties associated with them. Alongside with the atom category this category defines 
completely the chemical structure of the monomer. In mathematical terms such a structure is called a 
coloured graph. Edges are coloured by bond orders and vertices are coloured by chemical types.   
 
Angle category. This category contains the three-atoms list of all possible angles in the monomer as well 
as their ideal values and associated uncertainties. 
 
Torsion angle category. This category contains the four-atoms list of torsion angles, their types and 
names, their ideal values and associated uncertainties, and their period. The latter value represents the 
number of energetic minima along the torsion angle. For example, χ angles along the Cα-Cβ bond of 
glutamine residue have a period equal to three. A torsion angle can be constant or variable. Constant 
torsion angles generally involve atoms belonging to the same plane or atoms along double bonds. 
Usually, these torsion angles have period equal to zero or one as they can have a single value only.  
 
Plane category. This category contains the list of planes and of all atoms belonging to them.  
 
Chirality category: tetrahedral chirality. This category contains the list of all chiral centres. For each 
chiral centre it also lists the central atom, the atoms bonded to it and the sign of the chiral volume. The 
current version of the dictionary allows undefined signs using “both” or “anomer” keywords. If the 
keyword “both” is used the chirality of the monomer can change during restrained refinement. If the 
keyword “anomer” is used the chirality is fixed and its sign is defined by the input coordinates. If for a 



monomer in a crystal there are two or more configurations all of them can be simultaneously handled 
during refinement by assigning the keyword “anomer” to each chiral centre. 
 
Chirality category: Metal chirality. It is a special case of the general chirality category. This type of 
chirality allows description of surrounding of metals. Keyword used for this is “crossn” where n is 
between zero and six (Table 1b and Figure 1).  
 

 
 
Figure 1:  Schematic view of metal chirality 
 
Ideal values for bond lengths and bond angles for standard amino acids present in the dictionary have 
been taken from Engh and Huber (1991). Ideal values for bond lengths and angles for nucleic acids have 
been taken from (Kennard and Taylor, 1982). Ideal values for bond lengths and angles for most 
saccharides have been taken from Sanger (1983). 
 
At present, about 1000 monomers out of the 2000 available in the REFMAC5 dictionary are present with 
a complete description. The remaining ones are present with a minimal description. Work is in progress to 
deliver in the shortest time possible a dictionary in which all entries are present with checked complete 
descriptions. 
 
3.3 Modifications 
 
A modification is a formalism that describes changes brought about on a single monomer by chemical 
reactions. An example of modification is shown Figure 2a. Its dictionary description is given in Table 2. 
A modification allows atoms, bonds, angles, torsion angles, planes, chiral centres to be added to or 
deleted from monomers.  The use of modifications greatly reduces the number of monomer descriptions 
that need to be stored and allows describe properly links between monomers as some of them require 
monomers to first undergo modifications prior linkage. Modifications can also be used for non-chemical 
changes on monomers such as changes in residues name. This is a convenient way of handling cases of 
multiple monomer names. In such cases the modification keyword is “RENAME”. This keyword is also 
used to overcome the three-letter restriction imposed by the PDB convention. 
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Figure 2: a) Example of a sugar modification. The condensation of α-D-glucose with methanol gives 
methyl-α-D-glucoside; (b) Example of sugar link. The disaccharide β-maltose is formed by condensation 
of α-D-glucose with β-D-glucose. The glycosidic bond is an α-4 link. 
 
Table 2. Example of modification. 
 
This example describes the methylation at the O1 position of pyranoses. See Figure 1a) for a graphical 
representation of this modification. The first - general - category (_chem_mod) reports the code for the 
modification “O1MET” and describes whether the modification is to be applied to a only a particular 
monomer or to group of monomers. “O1MET” modification can be applied to all monomers belonging to 
“pyranose” group. The (_chem_mod_atom) category describes the list of all added, deleted or changed 
atoms. The following category (_chem_mod_bond) describes all added or deleted bonds. In a similar 
manner the tree structure (_chem_mod_tree), bond angles (_chem_mod_angle), torsion angles 
(_chem_mod_tor), planes (_chem_mod_plane_atom), and chiralities (_chem_mod_chir) when affected by 
the modification are handled. 
 
data_mod_list 
loop_ 
_chem_mod.id 
_chem_mod.name 
_chem_mod.comp_id 
_chem_mod.group_id 
O1MET  O1_metyl_of_sugar   .  pyranose 
 
data_mod_O1MET 
 
loop_ 
_chem_mod_atom.mod_id 
_chem_mod_atom.function 
_chem_mod_atom.atom_id 
_chem_mod_atom.new_atom_id 
_chem_mod_atom.new_type_symbol 
_chem_mod_atom.new_type_energy 
_chem_mod_atom.new_partial_charge 
 O1MET    change   O1     .      .    O2      0.000 
 O1MET    delete   HO1    .      .    .       0.000 
 O1MET    add      .      HM3    H    HCH     0.000 
 
loop_ 
_chem_mod_bond.mod_id 
_chem_mod_bond.function 
_chem_mod_bond.atom_id_1 

67 
_chem_mod_bond.atom_id_2 
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_chem_mod_bond.new_type 
_chem_mod_bond.new_value_dist 
_chem_mod_bond.new_value_dist_esd 
 O1MET    add      O1      CM        single      1.420    0.020 
 
 O1MET    add      CM      HM3       single      0.960    0.020 
loop_ 
_chem_mod_angle.mod_id 
_chem_mod_angle.function 
_chem_mod_angle.atom_id_1 
_chem_mod_angle.atom_id_2 
_chem_mod_angle.atom_id_3 
_chem_mod_angle.new_value_angle 
_chem_mod_angle.new_value_angle_esd 
 O1MET    add      C1      O1      CM      120.000    3.000 
 
3.4 Links 
 
The link formalism allows join monomers together. An example of link is shown Figure 2b. Its 
description is given in Table 3. Links can be considered the external counterpart of monomer 
descriptions. Whereas monomer descriptions give the internal structure of single chemical compounds 
link descriptions define in detail the result of chemical reactions between monomers. Link descriptions 
contain information about the monomers or the group of monomers they act on as well as about the 
modifications these monomers should undergo prior linkage. In the current version of the dictionary a 
link can form only one bond. However, the introduction of several angles, torsion angles, planes, chiral 
centres is allowed.  
 
Table 3. Example of link. 
 
This example describes the α1-4 pyranose link. See Figure 1b) for a graphical representation of this link. 
The first - general - category _chem_link describes the name, the link identification code, and the scope of 
this link. It also contains pointers to the modifications the monomers should undergo before the link can 
be applied. This link requires that the monomers belong to “pyranose” group and that the first and second 
monomers undergo DEL-HO4 and DEL-O1 modifications, respectively. The description for both these 
modification need to be available before the link can be applied. Other categories give the list of bonds 
(_chem_link_bond), bond angles (_chem_link_angle), torsion angles (_chem_link_tor), chiralities 
(_chem_link_chir), etc. with their “ideal” values. Atom names in the link description are always given 
together with the monomer numbers they belong to. 
 
# 
data_link_list 
loop_ 
_chem_link.id 
_chem_link.comp_id_1 
_chem_link.mod_id_1 
_chem_link.group_comp_1 
_chem_link.comp_id_2 
_chem_link.mod_id_2 
_chem_link.group_comp_2 
_chem_link.name 
ALPHA1-4 .        DEL-HO4  pyranose .        DEL-O1   pyranose 
glycosidic_bond_alpha1-4 
 
data_link_ALPHA1-4 
# 
loop_ 
_chem_link_bond.link_id 
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_chem_link_bond.atom_1_comp_id 
_chem_link_bond.atom_id_1 
_chem_link_bond.atom_2_comp_id 
_chem_link_bond.atom_id_2 
_chem_link_bond.type 
_chem_link_bond.value_dist 
_chem_link_bond.value_dist_esd 
 ALPHA1-4 1 O4      2 C1        single      1.439    0.020 
loop_ 
_chem_link_angle.link_id 
_chem_link_angle.atom_1_comp_id 
_chem_link_angle.atom_id_1 
_chem_link_angle.atom_2_comp_id 
_chem_link_angle.atom_id_2 
_chem_link_angle.atom_3_comp_id 
_chem_link_angle.atom_id_3 
_chem_link_angle.value_angle 
_chem_link_angle.value_angle_esd 
 ALPHA1-4 1 C4      1 O4      2 C1      108.700    3.000 
 ALPHA1-4 1 O4      2 C1      2 O5      112.300    3.000 
 ALPHA1-4 1 O4      2 C1      2 C2      109.470    3.000 
 ALPHA1-4 1 O4      2 C1      2 H1      109.470    3.000 
loop_ 
_chem_link_tor.link_id 
_chem_link_tor.id 
_chem_link_tor.atom_1_comp_id 
_chem_link_tor.atom_id_1 
_chem_link_tor.atom_2_comp_id 
_chem_link_tor.atom_id_2 
_chem_link_tor.atom_3_comp_id 
_chem_link_tor.atom_id_3 
_chem_link_tor.atom_4_comp_id 
_chem_link_tor.atom_id_4 
_chem_link_tor.value_angle 
_chem_link_tor.value_angle_esd 
_chem_link_tor.period 
 ALPHA1-4 ALPHA_1  1 O4     2 C1     2 C2     2 C3        0.00  20.0 1 
 ALPHA1-4 ALPHA_2  1 C4     1 O4     2 C1     2 C2        0.00  20.0 1 
 ALPHA1-4 ALPHA_3  1 C3     1 C4     1 O4     2 C1        0.00  20.0 1 
loop_ 
_chem_link_chir.link_id 
_chem_link_chir.atom_centre_comp_id 
_chem_link_chir.atom_id_centre 
_chem_link_chir.atom_1_comp_id 
_chem_link_chir.atom_id_1 
_chem_link_chir.atom_2_comp_id 
_chem_link_chir.atom_id_2 
_chem_link_chir.atom_3_comp_id 
_chem_link_chir.atom_id_3 
_chem_link_chir.volume_sign 
 ALPHA1-4   2 C1      1 O4      2 O5      2 C2      negativ 
 
 
3.5 Atom types library 
 
Although the REFMAC5 dictionary is largely based on monomers it also contains an atom type library. 
At present, it contains about 300 atom types. It includes all chemical elements as well as many atom types 
commonly encountered in chemistry. Each entry has information about the chemical element the atom 
type belongs to as well as about its van der Waals (VDW) and ionic radii. The atom type library contains 
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also information about possible bonds between atom types. For many pairs of atom types bond orders and 
bond lengths are tabulated. Angles corresponding to some of the atom type triplets are also listed. The 
atom types library is in mmCIF format. Therefore, it can easily be updated and extended. A full list of all 
atom types library entries can be found at the web-page 
http://www.ysbl.york.ac.uk/~alexei/dictionary.html. 
 
The bond lengths listed in the atom types library have been taken from the International Table for 
Crystallography (Allen et al 1992; Orpen et al, 1992. VDW and ionic radii of atoms have been taken 
from various sources including Greenwood and Earnshaw (1989) and Cotton and Wilkinson (1972). 
Unfortunately, to our knowledge there is no single general reference for bond angles. Some of the angles 
have been taken from the examples of the Cambridge Structural Database (Allen, 2002), others have been 
derived using general information about atoms i.e. their hybridisation and the nature of the surrounding 
atoms.   
 
The atom types library serves two main purposes: a) it provides information about VDW and ionic radii 
as well as about atoms' hydrogen bonding capability that is used to define non-bonding interactions in the 
course of refinement; b) it provides information about initial bond lengths and angles when new monomer 
entries are created.  
 
4 Web resources 
 
Two web resources can produce complete monomer descriptions compatible with REFMAC5. The first 
resource is hosted at the European Bioinformatics Institute (Golovin et al, 2004) and can be accessed 
from the web address http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl. The second one is 
the program PRODRG (Aalten et al, 1996) which can be found at the web address 
http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html. 
Other sources like the CORINA suite (Sadowski et al, 1994) available from http://www2.chemie.uni-
erlangen.de/software/corina/index.html give coordinates that can be used to create REFMAC5 
monomer descriptions. CORINA can be used with help of the CACTVS (Ihlenfeldt et al, 1994) interface. 
There are several databases that can produce coordinates for various sugars. These include: 
 
http://www.cermav.cnrs.fr/databank/mono/index2.html - monosaccharide database 
http://www.cermav.cnrs.fr/databank/disacch/index.html - disaccharide database, 
http://www.dkfz-heidelberg.de/spec/sweet2/doc/index.php - sugar database. 
 
One should be careful when using various databases. Most databases use such built-in chemical 
assumptions as protonation of carboxyl oxygens. These assumptions can affect geometric parameters. 
 
 
 
5 Conclusions and future perspectives 
 
A flexible, machine/human readable dictionary of monomers, links, modification and related items has 
been created and tested on a wide range of compounds. The dictionary is currently used for 
macromolecular restrained refinement by the program REFMAC5. It can also be used by other 
macromolecular programs like model building and macromolecular modelling and simulations 
applications. 
 
Flexibility in the organisation of the dictionary allows researchers to add personal entries and to override 
existing descriptions. The most common crystallographic restraints are dealt with in an automatic manner. 
Complicated cases can also be handled with some user intervention.  
 
The dictionary is distributed by CCP4 under the Part 0 licence that is LGPL compatible. Programs and 
interface are available from CCP4 under the Part 2 licence. Neither programs nor dictionary nor 

http://www.ysbl.york.ac.uk/~alexei/dictionary.html
http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl
http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html
http://www2.chemie.uni-erlangen.de/software/corina/index.html
http://www2.chemie.uni-erlangen.de/software/corina/index.html
http://www.cermav.cnrs.fr/databank/mono/index2.html
http://www.cermav.cnrs.fr/databank/disacch/index.html
http://www.dkfz-heidelberg.de/spec/sweet2/doc/index.php
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algorithms have been patented to make sure that they are available to community of users as well as 
developers. 
 
For further information about REFMAC5 dictionary and tools to create new dictionary entries see: (Vagin 
et al, 2004) and http://www.ysbl.york.ac.uk/~alexei/dictionary.html.  
Information about the latest version of the program REFMAC5 and its dictionary can be found in: 
http://www.ysbl.york.ac.uk/~refmac/index.html  
 
This work was supported by grants from the Wellcome Trust (GNM), BBSRC (AAV). We thank people 
from the YSBL especially Roberto Steiner, Andrey Lebedev, Fei Long, Liz Potterton and Stuart 
McNicholas, CCP4 staff and the user community for their continuous support and encouragements. 
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X-rays don't see atoms 
 

David Watkin, 
Chemical Crystallography, Department of Chemistry, University of Oxford, Chemistry Research 
Laboratory, Mansfield Road, Oxford, OX1 3TA, UK - Email : david.watkin@chem.ox.ac.uk ; WWW: 
http://www.xtl.ox.ac.uk/ and http://www.chem.ox.ac.uk/researchguide/djwatkin.html  
 
 In addition to the three dimensional Bragg equation (1), there are three more fundamental 
equations needed to sum up modern X-ray structure analysis.  
 

αλθ ****2222 cklb2+....a.h  =  /4 CosSin  1 

 
 The first explains what happens during the X-ray diffraction experiment, in which the incident 
wave front falls upon a periodically repeating pattern of varying electron density (2).  Note that 'atoms' do 
not come into this equation.  From the ei term, we can see that the diffracted beams have both magnitude 
and a phase shift with respect to the un-diffracted wave front.   
 

zy.x.e. = F )lz+ky+hxi(2
xyzhkl ∂∂∂∫∫∫ πρ  2 

 
 The second shows that if one has measures of the diffracted magnitudes and phase angles, these 
can be used to compute the value of the electron density at any (and every) point within the 
crystallographic unit cell (3).  Most diffraction experiments yield good estimates of the diffracted 
intensities, but phase angles are much more difficult to measure, and in practical X-ray structure 
determination these phases are not measured.  Instead, values can be estimated from the intensities 
themselves by a process called ‘Direct Methods’ or by other methods. 
 

e|F|
v
1 = )-lz+ky+i(hx2-

hklxyz
hklαπρ ∑∑∑  3 

 
 Equations 2 and 3 are reasonably clear-cut and offer a well defined view of the physics of the 
experiment, provided the periodically varying electron density in the crystal is periodic on the time scale 
of the experiment. 
 
 The third equation requires a much greater leap of confidence, yet is scarcely ever questioned by 
chemists using crystallography as an analytical tool (4).  This equation is related to equation 2, except that 
the integration over a continuously varying periodic electron density has been replaced by a summation 
over a periodic array of atoms.  The popularity of this model undoubtedly comes from the fact that it 
provides a very efficient representation of the electron distribution in the sample1, and that experience has 
shown that this approximation serves well for the computation of other physical properties of materials. 
 

e.f  F )lz+ky+hxi(2
jhkl

jjjπ∑≈  4 
 

 If it were practical to measure the phase angle of every diffracted beam in the same time that it 
takes to measure its intensity, then computation of the continuous electron density would provide a real 
(time and space averaged) image of the material, which could be used to assess the appropriateness of an 
‘atomic’ model.  Since this cannot be done, we resort to using improved atomic models to provide 
(through equation 4) improved estimates of the phases to be used in combination with the observed 
                                                           

73 

1 A 10-atom unit cell in P1 requires 40 parameters in the isotropic adp representation, but would require five and a half thou-
sand electron density values for a three dimensional grid sampled at 1/3 of an Angstrom. 
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amplitudes for the creation of improved electron density maps.  The improvement in the atomic model 
can come from examining the computed electron density for new features, or by mathematically adjusting 
the actual atomic parameter values to improve the agreement between the observed and calculated 
structure amplitudes, usually by some kind of lest-squares method.  There is a tacit belief that a model 
which gives good agreement between the observed and computed amplitudes is a good model, and hence 
yields good estimates of the phase angles.  These two procedures have now become so well automated 
that it is rare that a structure analyst (at least in small molecule crystallography) will actually look at 
electron density maps. 
 
 Luckily this tidy view of crystallography works well most of the time and accounts for the 
commanding role of X-ray structure determination as a definitive analytical tool.  However, it can fail for 
a number of reasons.   
 
 One is quite simply that the information content of the diffraction amplitudes is so low that there 
is no clear ‘best’ match between the observed and computed amplitudes.  This situation could arise when 
the crystals themselves are of a very poor and inconsistent quality.  The most naive solution to this 
situation is to let the structure refine to give a best match and hope that the standard uncertainties on the 
parameters will warn future users that the analysis was sub-optimal.  However, better strategies are 
available.  Weighting schemes have been devised to reduce the impact of observations which probably 
have more than just random errors and thus make the minimisation procedure more robust.  In addition, 
features in the model can be made to conform to some preconceived ideas.  For example, the analyst may 
have some idea about the values of inter-atomic distances.  Inputting this extra information, either as 
restraints or constraints, can be both powerful and dangerous.  The strength is that adding information 
should tighten up the minimisation function leading to a more acceptable model.  The danger is that 
incorrect assumptions may be imposed on the model.   
 
 Another reason for the simple well-located atomistic model to fail is that in the real, actual, 
crystal, the atoms are not well located.  It is now quite evident that the solid state is not always a static 
state.  The evidence from variable temperature X-ray diffraction experiments and from solid state nmr is 
that at room temperatures and some times well below, atoms even in molecular materials can undergo 
large displacements from their mean positions.  The traditional models for these displacements are the 
isotropic and the anisotropic adps.  More sophisticated models for the atomic displacements include 
higher order expansions , but these introduce ever more parameters to be refined against a limited amount 
of reliable data.  Since the diffraction experiment works with samples containing many millions of unit 
cells, there is always the possibility of spatial inhomogeneity, leading to a diffraction effect which is also 
space-averaged. 
 
 There are a number of signs that the ordinary anisotropic adps may be unsatisfactory 
approximations to the atomic displacements in the real crystal structure.  The most evident is one or two 
very long axes to the ellipsoid, while the third axis has a quite normal value.  The traditional response to 
this situation is to replace the single atom with its single elongated adp by two atoms lying towards the 
ends of this axis, each with more isotropic adps.  If the two atomic sites become more or less discernable 
in an electron density map phased by this model, there is a reasonable chance that normal least squares 
refinement will proceed stably.  This situation is often seen in crown ethers, where there are two clear 
alternative potential locations for the ziz-zag ring structure.  If the electron density remains an elongated 
crest, then refinement will almost certainly only proceed to a reasonable physical model if constraints or 
restraints are applied to the model.  Typically, these would be to restrain inter atomic distances (either to 
identical but variable values or to prescribed values), and to constrain or restrain the adps of the ‘split’ 
atom to be identical or similar. 
 
 Another sign that the electron density in the crystal cannot be simply modelled by the normal 
atomic model is the persistent recurrence of electron density residues in the difference density map.  This 
can of course be due to errors in the observed data (e.g. absorption, anisotropic scaling errors, anisotropic 
variations in crystal quality, anisotropic integration errors).  However, if the data has been collected on a 



75 

                                                          

modern instrument with a sufficiently high redundancy in the observations2, it may be an indication that 
the well-located atomic model is inappropriate.  This situation can occur when there is a guest molecule 
located in a lattice whose form is largely determined by a host structure.  Extended-lattice materials (eg 
zeolites) commonly show this phenomenon, but it can also be found in crystals of molecular materials 
where there is a small counter ion or solvent of crystallisation.   
 
 
 The most commonly used method for dealing with this situation is to used a multiply disordered 
cluster of partially occupied atom sites.  The principal attractions of this method are that it can be applied 
by all commonly available structure analysis programs, and it yields an atomic model – which referees 
and users may find comfortingly familiar.   
 
 In this approach, one is adding ever-more terms into a complex expression in the hope that 
eventually they will model the average electron distribution as seen by X-rays3.  If the atoms being added 
in can be related to each other in a way which makes physical sense, this approach has some well-based 
justification.  However, it can lead to a complex model which may have no real value.  It is important to 
be able to model the whole structure reliably4, since a modelling error in one place will lead to a 
systematic error in Fc, and hence lead to shifts in all other parameters as they are adjusted to minimise the 
error in (Fo-Fc)2 or (Fo2-Fc2)2.  However, the atomic model may not be the best model for this kind of 
problem. 
 
 Two other models are easily available to users of CRYSTALS.  Neither is unique to CRYSTALS, 
but neither is commonly and easily available to the ordinary crystallographer in other programs. 
 One model is to say that the ordinary point atoms spread out by a Gaussian smearing function is 
just a special case of more general models.  In 1950 King & Lipscomb proposed that the electron density 
could, in suitable circumstances, be regarded as lying on a hollow shell, and thus could be modelled by a 
suitable Bessel function.  This and related ideas have been re-postulated from time to time ever since, but 
only implemented in programs for local distribution.  Funded by a European Union Human Mobility 
grant, Ludger Schroeder has re-implemented the strategies outlined by Chernyshev, Zhukov, Yatsenko, 
Aslanov & Shenk into CRYSTALS in such a way that electron density distributed uniformly along a line, 
around an annulus or over a hollow shell can be freely refined alongside conventional atoms.  The 
spherical shell, for example, can be used to model a freely rotating C60 fragment, or with an additional 
atom at its centre, to model a tumbling PF6 counter ion.  The line, annulus or shell are infinitely thin (by 
analogy with point atoms), and have an interaction with the incident X-rays given by the conventional 
atomic form factor, site occupation factor and isotropic adp.  The refineable parameters are the centroid of 
the figure, the length of the line or radius of the annulus and sphere, and the direction of the line and 
normal to the annulus, together with site occupancies and isotropic adps.  Because these special figures 
can be mixed freely with conventional atoms, the user has considerable flexibility in building up models 
for highly disordered fragments.  For example, the model could consist of a central atom surrounded by 
concentric shells of different radii.  The hindered rotor described by Bennett, Hutchenson & Foxman has 
not yet been implemented, but can be approximated by a hollow shell containing embedded partial atoms.  
The advantage of these models over heavily disordered atomic models is that very few extra parameters 
need be introduced to achieve an adequate modelling of what is in reality an un-analysable smear of 
electron density. 

 
2 In my opinion, high redundancy is much more important than high completeness in ‘routine’ structure analyses.  High redun-

dancy enables the cross-scaling software (Scalepack, Sortav, Sadabs) to make a much better job of correcting for spatially 
oriented defects in the data.  A wedge or shell of missing data, especially at high angles, has little impact on the analysis. 

3 Just as a square wave can be approximated by a sufficiently high-order Fourier series 
4 It is for this same reason that structure analysts labour so long over hydrogen atoms.  If they cannot be refined from the ob-

served data, then their significance is marginal.  However, omitting them altogether from an analysis leads to a bias in Fc, 
and hence in the other refined parameters.  Just how much labour their positioning justifies in terms of the effect on other 
parameters does not seem to have been systematically surveyed. 



 
 
Fig 1: Screenshot of CRYSTALS showing spherically disordered guest molecule.  ZnGaPO is a templated 
phosphate framework structure produced hydrothermally in space group P -4 3 n (218).  The template, 
piperazine, lies at Wyckoff position a (23), so is necessarily disordered. The radius of the sphere (1.26A) 
corresponds closely to a C1-C3 distance (1.25A).  A. Chippendale & A. Cowley, in preparation. 
 

   
 
Fig 2: a) CRYSTALS screen shot of Cp* complex, with inner ring of atoms modelled by elliptical adps 
embedded in an annulus, and b) corresponding electron density 
 
However, if the smear of electron density computed from the best estimates of phases really is un-
interpretable, perhaps the most honest approach to the analysis is to include it in the model as exactly that.  
This is the tactic adopted by Ton Speck in his superb SQUEEZE program.   
 
The structure factor is a complex number (has both magnitude and phase). The magnitude can be 
represented by: 

 
222 BAF +=  

 
 where A is the real and B the imaginary part.  From the continuous electron density, A can be computed 
from: 
 

( ) vlzkyhxcos
v xyzhklA ∂++∫= πρ 2  
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For a discrete atom model, A can be computed from: 



 
  ( )∑ ++=

j
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with B given by similar sin terms. 
 
Ton has tried to promote a hybrid structure factor expression: 
 

( ) ( ) vlzkyhxlzkyhxfA
v

xyz
j

jhkl ∂+++++= ∫∑ πρπ 2cos2cos  

The first term is a summation over the resolved atoms. The integral in the second term is replaced by a 
summation over unresolved parts of the electron density map, with a similar expression for B. 
 
In this method, a Fourier map is computed based on whatever phases are available.  The unit cell is 
searched for voids large enough to potentially contain atoms or molecules.  The calculated electron 
density in these void volumes can then be reverse-transformed into structure factor contributions5.  In the 
normal application of this method, the structure factor amplitudes computed from the density in the void 
are subtracted from the observed structure factor amplitudes, and the residue used as the target for further 
refinement.  This is evidently far from ideal, since the phases of the contributions from the electron 
density map are not used.  In CRYSTALS, the transform of the void density is save for each reflection as 
the A and B parts, to be used in the computation of Fc and the phase angle together with the A and B 
parts from the discrete atoms.  This means that the strategy does not tinker with the observations, has no 
lasting effect on the model (the A and B parts from the void can be dismissed as required), but more 
importantly, since they contribute to the phase angles, they lead to improved electron density maps. 
 

 
 
Fig 3: The PF6 counter ion in the above complex represented by its computed electron density.  The 
atoms embeded within the density were given occupation factors of zero so that they do not contribute to 
the structure factors, and are just there to illustrate that the electron density does envelop the counter ion. 
(Illustration by Michal Husak's MCE viewer – available via CCP14  website http://www.ccp14.ac.uk/ ) 
 
These strategies have been seamlessly integrated in CRYSTALS so that users can mix them in whatever 
way they choose.  My hope is to see other programs adopt similar ideas, and to see an end-user 
community less uneasy about accepting non-atomic representations of crystal structures.  The benefit will 
be that less time is spent trying to fit almost valueless atomic models to volumes of extreme disorder 
without degrading the quality of the rest of the analysis. 
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5 In macromolecular crystallography, the whole of the structure factor and derivative calculation is based on back-transforming 
a continuous electron density distribution in the cell built up from atomic contributions. 

http://www.ccp14.ac.uk/
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Abstract 
 
In this article, techniques for writing binary data files are detailed. Common issues when writing binary 
data are highlighted and examples in FORTRAN and C are given.  
Introduction 
 
This article is the sequel to the “Reading Binary Data” article in the January 2004 edition of this news 
letter [1]. Much of the introductory material in that article is applicable to writing binary data and should 
be read in conjunction with this article. Specifically, the information on endian and file formats apply to 
both reading and writing binary data. 
 
As with reading binary data, the biggest problem a programmer faces when writing binary data is 
knowing the format of the data to write. Ideally, documentation will be available giving details of the file 
format of interest. For example, widely used image formats such as bmp, gif and jpg are well 
documented. However, proprietry formats may deliberately be kept secret. In this case, analysis of an 
example file using a hex dump utility and a bit of trial and error may be fruitful. Of course, if the 
programmer just wants to devise a file format to be used by programs under his control then handling 
binary data is easy, as will be shown in the rest of this article.   
 
Writing Binary Data (FORTRAN) 
 
Writing binary data basically comprises converting internal data types, like INTEGER and REAL, into 
their byte representations and storing the bytes in a buffer in memory. Once the buffer has been 
constructed, it can be written to a file. 
 
The following routine shows how to convert a REAL to its byte representation and save it to a byte 
BUFFER (the “writebin” software available at the web site above contains conversion routines for other 
types): 
  

C 
C********************************************************************** 
C     Routine: WRITE_BIN_REAL 
C 
C     Description: 
C        Writes a 32-bit real to BUFFER. The bytes will be swapped 
C        if SWAP is true. The function returns the number of bytes 
C        written to BUFFER. 
C         
C********************************************************************** 
      INTEGER FUNCTION WRITE_BIN_REAL(BUFFER, DATA, SWAP) 
      IMPLICIT NONE 
C 
C     Parameters 
C 
      BYTE    BUFFER(4) 
      REAL    DATA 
      LOGICAL SWAP 
C 
C     Variables 
C 
      BYTE         TMPBUF(4) 
      REAL         R4 
      EQUIVALENCE (TMPBUF, R4) 

mailto:scott.belmonte@ntlworld.com
http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/
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C 
      R4 = DATA 
C 
      IF (SWAP) THEN 
         BUFFER(1) = TMPBUF(4) 
         BUFFER(2) = TMPBUF(3) 
         BUFFER(3) = TMPBUF(2) 
         BUFFER(4) = TMPBUF(1) 
      ELSE 
         BUFFER(1) = TMPBUF(1) 
         BUFFER(2) = TMPBUF(2) 
         BUFFER(3) = TMPBUF(3) 
         BUFFER(4) = TMPBUF(4) 
      ENDIF 
C 
      WRITE_BIN_REAL = 4 
      RETURN 
      END 
C 

 
BUFFER points to the location to write the DATA to. The data are converted into bytes using an 
EQUIVALENCE and the bytes are copied to the buffer. If the SWAP variable is .TRUE. then the byte 
order is swapped before copying to the buffer. If the endian of the file is different to the native endian of 
the CPU then the byte order needs to be swapped for the file to be written properly. (See [1] for a 
discussion on “Endian”.) 
 
The routine returns the number of bytes written to the buffer. This can be used by the caller to update the 
position of then next write into the buffer, as will be shown in the next example. 
 
It should be noted that the conversion routines are inherently non-portable. For example, REAL is not 
necessarily a 4-byte quantity on all machines. If problems are encountered then the compiler 
documentation should be checked to find out the sizes of each type and the conversion routines updated 
accordingly. 
 
The following code is an example writing a ficticious image file with the format: 
 
Bytes 1, 2: Unsigned 16-bit integer containing image width. 
Bytes 3, 4: Unsigned 16-bit integer containing image height. 
Bytes 5 to (width*height*size of real + 4): Image data as REALs. 
 

      PROGRAM WRITE_BIN_EX1 
      IMPLICIT NONE 
C 
C     Functions 
C 
      INTEGER WRITE_BIN_UINT16 
      INTEGER WRITE_BIN_REAL 
      INTEGER WRITE_BIN_FILE 
C 
C     Variables 
C 
      INTEGER   REAL_SIZE          ! Size of REAL in bytes 
      PARAMETER(REAL_SIZE = 4) 
C 
      INTEGER   UINT16_SIZE        ! Size of UINT16 in bytes 
      PARAMETER(UINT16_SIZE = 2) 
C 
      INTEGER   WIDTH 
      PARAMETER(WIDTH = 480) 
C 
      INTEGER   HEIGHT 
      PARAMETER(HEIGHT = 640) 
C 
      INTEGER   HDR_SIZE           ! Header size (2 UINT16s) 
      PARAMETER(HDR_SIZE = 2*UINT16_SIZE) 
C 
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      INTEGER   FILELEN            ! Length of file in bytes 
      PARAMETER(FILELEN = HDR_SIZE + WIDTH*HEIGHT*REAL_SIZE) 
C 
      BYTE      BUFFER(FILELEN)    ! Buffer to hold the file 
      REAL      DATA(WIDTH*HEIGHT) ! Data to be written 
      INTEGER   I, INDEX 
C 
C     Initialise buffer 
C 
      DO I = 1, FILELEN 
          BUFFER(I) = 0 
      ENDDO 
C 
C     Fill DATA with an arbitrary number, 3.1416, 
C     for this example 
C 
      DO I = 1, WIDTH*HEIGHT 
          DATA(I) = 3.1416 
      ENDDO 
C 
C     Write the width and height to the buffer as 
C     unsigned 16-bit (2 byte) integers. Then write 
C     the data to the buffer. The byte order is not 
C     swapped. 
C 
      INDEX = 1 
      INDEX = INDEX + WRITE_BIN_UINT16(BUFFER(INDEX), WIDTH, .FALSE.) 
      INDEX = INDEX + WRITE_BIN_UINT16(BUFFER(INDEX), HEIGHT, .FALSE.) 
      DO I = 1, WIDTH*HEIGHT 
        INDEX = INDEX + WRITE_BIN_REAL(BUFFER(INDEX), DATA(I), .FALSE.) 
      ENDDO 
C 
C     Write buffer to a file. 
C 
      IF (WRITE_BIN_FILE('example.dat', BUFFER, FILELEN) .NE. 0) 
     $    GOTO 901 
      RETURN 
C 
C     Error traps 
C 
 901  WRITE(*,*) '** Error writing binary file!' 
      RETURN 
      END 
C 

 
WRITE_BIN_UINT16 is similar to WRITE_BIN_REAL (see the writebin code at the web site above for 
the implementation). 
 
The INDEX variable holds the position of the next byte in the buffer to write. The return value of the 
WRITE_BIN_UINT16 and WRITE_BIN_REAL functions is used to update the INDEX variable by the 
appropriate amount according to the size of the data just written. 
 
The WRITE_BIN_FILE routine writes the buffer to a file. It takes the name of the file to write, the buffer 
and the number of bytes to write.  
 

C********************************************************************** 
C     Routine: WRITE_BIN_FILE 
C 
C     Description: 
C        Writes NUMBYTES bytes from BUFFER to a binary file called 
C        NAME. Returns non-zero if the write fails.         
C 
C********************************************************************** 
      INTEGER FUNCTION WRITE_BIN_FILE(NAME, BUFFER, NUMBYTES) 
      IMPLICIT NONE 
C 
C     Parameters 
C 
      CHARACTER*(*) NAME        ! File name 
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      INTEGER       NUMBYTES    ! Number of bytes in buffer 
      BYTE          BUFFER(NUMBYTES)   ! The data to write 
C 
C 
      OPEN(UNIT=11, FILE=NAME, STATUS='UNKNOWN', FORM='UNFORMATTED', 
     $     ACCESS='DIRECT', RECL=NUMBYTES, ERR=901) 
C 
      WRITE(UNIT=11, REC=1, ERR=902) BUFFER 
      CLOSE(UNIT=11) 
      WRITE_BIN_FILE = 0 
      RETURN 
C 
C     Error trap 
C 
 901  WRITE(*,*) '** Error opening file for output: ', NAME 
      WRITE_BIN_FILE = 1 
      RETURN 
 902  WRITE(*,*) '** Error while writing file: ', NAME 
      WRITE_BIN_FILE = 2 
      RETURN 
      END 
C 

 
The routine writes the buffer to a file in a single unformatted record. The record length (RECL) is set to 
the buffer length in bytes. N.B. RECL on some compilers can be the length of a record in words. On 32-
bit machines, a word is normally defined as 4 bytes. When writing a file, if its length is larger than 
expected then try changing the OPEN statement above to: 
 

      OPEN(UNIT=11, FILE=NAME, STATUS='UNKNOWN', FORM='UNFORMATTED', 
     $     ACCESS='DIRECT', RECL=NUMBYTES/4, ERR=901) 

 
Writing Binary Data (C) 
 
The C standard library provides functions that can be used to write binary files: fopen, fwrite and fclose. 
  
fopen takes the file name and the open mode and returns a handle to the opened file, or NULL if the file 
open failed. An open mode of “wb” means open a binary file for writing. 
 

#include <stdio.h> 
 
    FILE *file_p; 
    file_p = fopen("example.dat", "wb"); 

 
fwrite takes a pointer to the data to write, the size (in bytes) of an individual item of data, the number of 
items of data to write and the handle to the file to write to. fwrite returns the number of items written. 
This might be less than the number of items requested to be written if an error occurred during the write. 
 

    num_items_written = fwrite(data_p, item_size, item_count, file_p);   

 
fclose takes a file handle and closes the file. 
 

    fclose(file_p); 

 
fwrite can be used to write any type of data. It can be used to write C structures directly but this is not 
recommended since the way structure members are arranged in memory is compiler dependent. Each 
member should be written individually to ensure that the file is written in the manner the programmer 
intended. 
 
Some file formats require that the data have a particular endian. If the endian of the file is different to the 
native endian of the CPU then the byte order of the data needs to be swapped before the data are written 
to disc. (See [1] for a discussion on “Endian”.)  
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The following function wraps the fwrite function and swaps the data if required. 
 

/************************** 
 * writebin.h 
 */ 
#ifndef WRITEBIN_H 
#define WRITEBIN_H 
 
#include <stdio.h> 
 
typedef enum 
{ 
    DONT_SWAP, 
    SWAP 
} e_swap; 
 
size_t write_bin_file(const void *data_p, 
                      size_t      item_size, 
                      size_t      item_count, 
                      FILE       *stream_p, 
                      e_swap      swap); 
 
#endif /* WRITEBIN_H */ 
 
 
/************************** 
 * writebin.c 
 */ 
#include <stdlib.h> 
#include "writebin.h" 
 
/**************************************************************************** 
 * 
 * Function: write_bin_file 
 * 
 * Description: This function wraps the standard library function fwrite(). 
 *              It swaps the bytes of the raw data if the parameter swap 
 *              is SWAP and item_size is either 2, 4 or 8. If item_size 
 *              is not 2, 4 or 8 then the raw data are written without 
 *              swapping. 
 * 
 * Input: data_p     - Pointer the buffer containing the data to be written. 
 *        item_size  - The size in bytes of an individual item to be written. 
 *        item_count - The number of items to write. 
 *        stream_p   - File handle of an open file. 
 *        swap       - If SWAP then swap the bytes in the buffer, 
 *                     If DONT_SWAP then don't swap bytes. 
 * 
 * Output: size_t - The actual number of items (not bytes) written. May be 
 *                  less than the number requested if an error occurred 
 *                  while writing the file.  
 * 
 ***************************************************************************/ 
size_t write_bin_file(const void *data_p, 
                      size_t      item_size, 
                      size_t      item_count, 
                      FILE       *stream_p, 
                      e_swap      swap) 
{ 
    const unsigned char *orig_data_p; 
    unsigned char       *swapped_data_p; 
    unsigned char       *pointer; 
    size_t               num_items_written; 
    size_t               i; 
 
    num_items_written = 0; 
 
    if (stream_p != NULL && data_p != NULL) 
    { 
        orig_data_p = (const unsigned char *) data_p; 
 
        /* Swap bytes if asked and if item_size is divisible by two. */  
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        if (swap == SWAP && (item_size % 2 == 0)) 
        { 
            swapped_data_p = (unsigned char *) malloc(item_size*item_count); 
            pointer        = swapped_data_p; 
 
            if (swapped_data_p != NULL) 
            { 
                switch (item_size) 
                { 
                case 2: 
                    for (i = 0; i < item_count; i++)           
                    { 
                        *(pointer)     = *(orig_data_p + 1); 
                        *(pointer + 1) = *(orig_data_p); 
                        pointer     += item_size; 
                        orig_data_p += item_size; 
                    } 
                    break; 
 
                case 4: 
                    for (i = 0; i < item_count; i++)           
                    { 
                        *(pointer)     = *(orig_data_p + 3); 
                        *(pointer + 1) = *(orig_data_p + 2); 
                        *(pointer + 2) = *(orig_data_p + 1); 
                        *(pointer + 3) = *(orig_data_p); 
                        pointer     += item_size; 
                        orig_data_p += item_size; 
                    } 
                    break; 
 
                case 8: 
                    for (i = 0; i < item_count; i++)           
                    { 
                        *(pointer)     = *(orig_data_p + 7); 
                        *(pointer + 1) = *(orig_data_p + 6); 
                        *(pointer + 2) = *(orig_data_p + 5); 
                        *(pointer + 3) = *(orig_data_p + 4); 
                        *(pointer + 4) = *(orig_data_p + 3); 
                        *(pointer + 5) = *(orig_data_p + 2); 
                        *(pointer + 6) = *(orig_data_p + 1); 
                        *(pointer + 7) = *(orig_data_p); 
                        pointer     += item_size; 
                        orig_data_p += item_size; 
                    } 
                    break; 
 
                default: 
                    /* Issue warning message and then write data without swapping */ 
                    fprintf(stderr, "write_bin_file: Cannot swap data. ");  
                    fprintf(stderr, "Unsupported data size: %d\n", item_size); 
                    for (i = 0; i < item_count*item_size; i++) 
                    { 
                        *pointer++ = *orig_data_p++; 
                    } 
                    break; 
                } 
 
                /* Write the swapped items */ 
                num_items_written = 
                    fwrite(swapped_data_p, item_size, item_count, stream_p); 
                free(swapped_data_p); 
            } 
        } 
        else 
        { 
            /* Write the data directly */ 
            num_items_written = fwrite(data_p, item_size, item_count, stream_p); 
        } 
    } 
 
    return num_items_written; 
} 
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The following code is an example writing a ficticious image file with the format: 
 
Bytes 0, 1: Unsigned 16-bit integer containing image width. 
Bytes 2, 3: Unsigned 16-bit integer containing image height. 
Bytes 4 to (width*height*size of float + 3): Image data as float. 
 

/************************** 
 * writebinex1.c 
 */ 
#include <stdlib.h> 
#include "writebin.h" 
 
typedef float data_type; 
 
int main() 
{ 
    FILE           *file_p; 
    unsigned short  width; 
    unsigned short  height; 
    data_type      *data_p; 
    int    i; 
 
    width  = 480; 
    height = 640; 
    data_p = (data_type *) malloc(width*height*sizeof(data_type)); 
 
    if (data_p != NULL && (file_p = fopen("example.dat", "wb")) != NULL) 
    { 
        /* Initialise data with an arbitrary number, 3.1416 for this example */ 
        for (i = 0; i < width*height; i++) 
        { 
            data_p[i] = (data_type) 3.1416; 
        } 
 
        if (write_bin_file(&width, sizeof(width), 1, file_p, DONT_SWAP) != 1) 
        { 
            fprintf(stderr, "Error writing width!\n"); 
            fclose(file_p); 
            exit(1); 
        } 
 
        if (write_bin_file(&height, sizeof(height), 1, file_p, DONT_SWAP) != 1) 
        { 
            fprintf(stderr, "Error writing height!\n"); 
            fclose(file_p); 
            exit(1); 
        } 
 
        if (write_bin_file(data_p, 
                           sizeof(data_type), 
                           width*height, 
                           file_p, DONT_SWAP) != width*height) 
        { 
            fprintf(stderr, "Error writing data!\n"); 
            fclose(file_p); 
            exit(1); 
        } 
 
        fclose(file_p); 
    } 
    else 
    { 
        fprintf(stderr, "Error writing file!\n"); 
        exit(1); 
    } 
 
    return 0; 
} 
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Conclusion 
 
Methods for writing binary data files in FORTRAN and C have been outlined. Using the tools in this 
article it should be possible to write any binary file format. 
 
The source code in this article can be found under the ‘writebin’ directory at: 
http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/
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Introduction 
The Microsoft .NET Framework [1] is a platform for building, deploying, and running applications and 
web services. It provides a standards-based, multi-language environment where language interoperability 
and machine independent programming intersect. Scientific community has therefore an alternative to 
integrate existing investments of source code with modern application design. 

 

.NET Architecture and Execution Model 
The Microsoft .NET framework is a new development platform with a new programming interface that 
provides APIs better suited to modern programmer needs, featuring inter-language and inter-machine 
interoperability. The .NET Framework has two main components: the .NET Framework Class Library 
(FCL) and the Common Language Runtime (CLR). The .NET framework base classes are a collection of 
built-in functions, objects, properties and methods that can be utilized by any .NET compatible language. 
The common language runtime is the foundation of the .NET framework and is responsible for the 
execution and management of .NET applications, as well as the compilation of .NET applications into 
native code. The CLR is the environment under which .NET applications are run. From this perspective, 
the CLR is the part of .NET that supports managed code; that is well-behaved code in terms of multi 
language support, deployment, security, portability, scalability and functionality.  

 

All common language runtime–compliant source code languages compile to the same intermediate 
language (IL) and not immediately to native code. A second step is required, called just-in-time (JIT) 
compilation. A tool called just-in-time compiler, or JITter, reads the IL and translates it into instructions 
for the machine on which it is executing. This translation happens on a method-by-method basis, thus 
avoiding translating large quantities of code that might never be required. Although the use of IL imposes 
a small start-up overhead, it provides .NET with a certain amount of platform independence, as long as 
each platform can have its suitable JITter. Currently, the vast majority of applications supporting .NET 
are for Windows OS while a free implementation of the .NET Development Framework for Linux is 
under development [2]. Moreover, a shared, open source implementation of CLR API, called the 
Common Language Infrastructure, is provided by Microsoft and has been adapted to Windows, FreeBSD 
and MacOS X operating systems, under the name of Rotor (or SSCLI) [3].  

 

 
 
Fig. 1: The .NET Framework sits on top of the OS 
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Schematically the .NET framework is presented in Fig.1, where it is clear that besides being responsible 
for application loading and execution, the CLR provides additional services such as: object lifetime and 
memory management, exception handling (even across languages), interoperation between managed and 
unmanaged code and type safety. 

 
Component Model – Example 
 
.NET programming languages are fully object-oriented, which means they support the four basic tenets of 
object-oriented programming (OOP): abstraction, encapsulation, inheritance and polymorphism. OOP is 
playing a major role in crystallography mostly through reusable modules programmed in Fortran and C++ 
[4]. In .NET terminology these are called assemblies. As an example, PowDLL [5] is a useful .NET 
assembly for the interconversion procedure between variable formats of powder diffraction files. It is 
utilized as a reusable dynamic link library imported in any .NET language using the 
“PowDLL.PowderFileTypes” statement which is the fully qualified type name of the assembly. Upon 
declaration of an appropriate object, three boolean public methods are exposed which return True when 
no exception is raised. These methods which are: DoFileConversion(Input, Output, ShowError), 
LoadDataFromFile(Input, FileType, ShowError) and WriteDataToFile(Output, FileType, ShowError) can 
be accessed by any external module that references the library. If an error occurs, the System.Exception 
object, which is the centralized error handler, takes control and shows a proper message keeping the 
process alive. The following table shows part of the relevant source code written in VB.NET. 
 
#Region "Dll Interface functions" 'Not all code functionality is shown  
Public Function DoFileConversion(ByVal Source As String, ByVal_ Destination As String, Optional 
ByVal sE As ShowErrors = ShowErrors.DontShowErr) As Boolean 
        Dim tmpOb As Object 
        'first tmpOB is passed by reference 
        If LoadDataFromFile(Source, tmpOb, sE) = True Then 
            ' here the loaded object will be written to a file. 
            If WriteDataToFile(tmpOb, Destination, sE) = True Then 
                Return True 
            End If 
        End If 
        Return False 
    End Function 
Public Function LoadDataFromFile(ByVal sFile As String, ByRef q As Object, ByVal sE As 
ShowErrors) As Boolean 
        Dim extS As String = ExtractFileExtention(sFile) 
        Select Case extS 
            Case "xy" 
                Dim tmpOb As fileXY 
                q = tmpob 
            Case Else 
                If sE = ShowErrors.ShowErr Then 
                    MsgBox("*." + extS + " filetype is not supported") 
                End If 
                Return False 
        End Select 
        If q.FromFileToObject(sFile, sE) = 2 Then Return True 
        Return False 
    End Function 
Public Function WriteDataToFile(ByVal Sobj As Object, ByVal dFile As String, ByVal sE As 
ShowErrors) As Boolean 
        Dim ObjectToWrite As Object 
        Dim extD As String = ExtractFileExtention(dFile) 
        Select Case extD 
            Case "xy" 
                Dim tmpObj As fileXY 
                ObjectToWrite = tmpObj 
            Case Else 
                If sE = ShowErrors.ShowErr Then 
                    MsgBox("*." + extD + " filetype is not supported") 
                End If 
                Return False 
        End Select 
        If ObjectToWrite.FromObjectToFile(dFile, sE) = 2 Then Return True 
        Return False 
    End Function 
#End Region 
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Every powder file type acts as a private structure (encapsulation): 
 
#Region "*.xy" 'Plain XY File Format  
Private Structure fileXY 
        Dim LStart, LStop, LStep, y(), Alpha1, Alpha2, Ratio As Decimal 
Public Function FromFileToObject(ByVal Fname As String, Optional ByVal sh As ShowErrors = 
ShowErrors.DontShowErr) As Byte 
        Try 
             Dim sr As StreamReader = New StreamReader(Fname) 
             Dim tmpLine As String 
                 tmpLine = sr.ReadToEnd 
                'now splits it into  
             Dim tmpPIN() As Decimal 
                If Not CutStringIntoIntegers(tmpLine, tmpPIN) Then 
                  sr.Close() 
                  Return 1 
                End If 
                LStep = tmpPIN(2) - (tmpPIN(0)) 
                LStart = tmpPIN(0) 
                LStop = tmpPIN(tmpPIN.GetUpperBound(0) - 1) 
                Alpha1 = 0 
                Alpha2 = 0 
                Ratio = 0 
                ReDim y((tmpPIN.GetUpperBound(0) \ 2)) 
                Dim i, j 
                j = 0    
                For i = 1 To tmpPIN.GetUpperBound(0) Step 2 
                    y(j) = tmpPIN(i) 
                    j += 1 
                Next 
                sr.Close() 
             Catch ex As Exception 
                If sh = ShowErrors.ShowErr Then 
                    MsgBox(ex.Message) 
                End If 
                Return 1 
        End Try 
       Return 2 
 End Function 
Public Function FromObjectToFile(ByVal Fname As String, Optional ByVal sh As ShowErrors = 
ShowErrors.DontShowErr) As Byte 
        Try 
             Dim sw As StreamWriter = New StreamWriter(Fname) 
             Dim tmpXvalue As Decimal 
                 tmpXvalue = LStart 
             Dim i 
                For i = 0 To y.GetUpperBound(0) 
                 sw.WriteLine(tmpXvalue.ToString & " " & y(i).ToString) 
                 tmpXvalue += LStep 
                Next i 
                sw.Close() 
             Catch ex As Exception 
                If sh = ShowErrors.ShowErr Then 
                    MsgBox(ex.Message) 
                End If 
       Return 1 
        End Try 
       Return 2 
 End Function 
End Structure 
#End Region 

 
 
Language Interoperability – Example 
 
Reusable .NET assemblies exploit an additional unique feature: they permit full language integration 
providing the possibility to: (i) inherit from classes, (ii) handle thrown exceptions, (iii) debug, (iv) declare 
variables based on types declared in another language and (v) take advantage of polymorphism across 
different languages. This is possible because of the shared .NET type system which retains high-level 
data-type information such as classes and inheritance hierarchies. Once a program is compiled into the 
.NET architecture, its language of origin disappears and it becomes language neutral. As a consequence, a 
considerable trend appears towards .NET with a variety of different languages which share their 
representation and runtime behavior (Fortran, Ada, Perl, Python, Delphi, Smalltalk, Cobol etc.) [6]. In 



addition, the System.Reflection.Emit namespace provides all the functionality needed for developing new 
compilers that target the CLR.  
 
This seamless interoperability is one of the most realistic reasons for developers to use, for example, 
components written in Fortran and program the main application using C#. One of the issues often arise 
in crystallographic computing is array manipulation which is usually achieved by using optimized, open 
source, Fortran and C routines. These modules can be used smoothly as part of a .NET project. Fig. 2 
illustrates the main GUI written in Visual Basic.NET while the matrix operations modules are a 
combination of Fortran, VB and C#.  
 

 
 
Fig. 2: Mixed Language Environment 
 
 
FORTRAN Routine for Matrix Inverse 
      SUBROUTINE DINVER(A,N,NUS,D,L,M) 
      REAL*8 A(*),L(*),M(*) 
      REAL*8 BIGA,HOLD 
      REAL*8 A,D 
      IF(NUS.GT.1)GOTO 1 
      A(1)=1.0/A(1) 
      D=1.0D0 
      RETURN 
1     D=1.0D0 
      NK=-N 
      DO 11 K=1,NUS 
         NK=NK+N 
         L(K)=K 
         M(K)=K 
         KK=NK+K 
         BIGA=A(KK) 
         DO 2 J=K,NUS 
            IZ=N*(J-1) 
            DO 2 I=K,NUS 
             IJ=IZ+I 

            IK=NK+I 
            A(IK)=A(IK)/(-BIGA) 
8           CONTINUE 
         DO 9 I=1,NUS 
            IK=NK+I 
            HOLD=A(IK) 
            IJ=I-N 
            DO 9 J=1,NUS 
               IJ=IJ+N 
               IF(I.EQ.K)GOTO 9 
               IF(J.EQ.K)GOTO 9 
               KJ=IJ-I+K 
               A(IJ)=HOLD*A(KJ)+A(IJ) 
9              CONTINUE 
         KJ=K-N 
         DO 10 J=1,NUS 
            KJ=KJ+N 
            IF(J.EQ.K)GOTO 10 
            A(KJ)=A(KJ)/BIGA 
10          CONTINUE 
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             IF(ABS(BIGA).GE.ABS(A(IJ)))GOTO 2 
              BIGA=A(IJ) 
              L(K)=I 
              M(K)=J 
2             CONTINUE 
         J=L(K) 
         IF(J.LE.K)GOTO 4 
         KI=K-N 
         DO 3 I=1,NUS 
            KI=KI+N 
            HOLD=-A(KI) 
            JI=KI-K+J 
            A(KI)=A(JI) 
3           A(JI)=HOLD 
4        I=M(K) 
         IF(I.LE.K)GOTO 6 
         JP=N*(I-1) 
         DO 5 J=1,NUS 
            JK=NK+J 
            JI=JP+J 
            HOLD=-A(JK) 
            A(JK)=A(JI) 
5           A(JI)=HOLD 
6        IF(BIGA.NE.0.0)GOTO 7 
         D=0.0 
         RETURN 
7        DO 8 I=1,NUS 
            IF(I.EQ.K)GOTO 8 

         D=D*BIGA 
         A(KK)=1.0/BIGA 
11       CONTINUE 
      K=NUS 
12    K=K-1 
      IF(K.LE.0)RETURN 
      I=L(K) 
      IF(I.LE.K)GOTO 14 
      JQ=N*(K-1) 
      JR=N*(I-1) 
      DO 13 J=1,NUS 
         JK=JQ+J 
         HOLD=A(JK) 
         JI=JR+J 
         A(JK)=-A(JI) 
13       A(JI)=HOLD 
14    J=M(K) 
      IF(J.LE.K)GOTO 12 
      KI=K-N 
      DO 15 I=1,NUS 
         KI=KI+N 
         HOLD=A(KI) 
         JI=KI-K+J 
         A(KI)=-A(JI) 
15       A(JI)=HOLD 
      GOTO 12 
      END 
 

VB.NET Routine for Matrix Transpose 
Public Class MatrixFunctions 
Public Shared Function TransposeMatrix(ByVal A(,) As Double) As Double(,) 
        Dim i, j As Integer 
        ReDim TransposeMatrix(A.GetUpperBound(0), A.GetUpperBound(1)) 
        For i = 0 To A.GetUpperBound(0) 
            For j = 0 To A.GetUpperBound(1) 
                TransposeMatrix.SetValue(A(i, j), j, i) 
            Next j 
        Next i 
End Function 
End Class 
C# Routine for Simple Matrix Addition  
namespace CSharpMatrix 
{ 
  public class CSharpMatrixFunctions 
 { 
     public double[,] AddMatrix(double[,] A, double[,] B) 
  { 
 double[,] ds; 
 ds = new double[A.GetUpperBound(0) + 1, A.GetUpperBound(1) + 1]; 
 if (A.Length == B.Length) 
  { 
  int i2 = A.GetUpperBound(0); 
  for (int i1 = 0; i1 <= i2; i1++) 
  { 
   int k = A.GetUpperBound(1); 
   for (int j = 0; j <= k; j++) 
   { 
   ds.SetValue((A[i1, j] + B[i1, j]), i1, j); 
  }} } 
 return ds; 
}}} 

 
Network Services – High Performance Computing 
 
.NET also supports parallel and distributed computing. This challenging programming effort has been so 
far implemented mostly in Java due to the straightforward management of Java Virtual Machine. A 
virtual machine (VM) is a program that creates an artificial or abstract computer running on top of an 
existing computer. The VMs hide the normal computer hardware behind a simpler or different 
computational model. CLR can be thought of as an advanced design and implementation of a distributed 
virtual machine for handling the wide range of distributed programming paradigms incorporated in .NET 
[7] providing a remoting architecture for open Internet standards, including the Hypertext Transfer 
Protocol (HTTP), Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP). 
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High-performance computing access can be also achieved using .NET architecture by means of tools 
specifically designed for parallel processing and clustering [8]. Although it is widely believed that VMs 
give poor computation performance, the above examples as well as the broad class of optimizations 
performed by JITter [9], suggest the opposite.  

 
In general, an undoubted performance hit is incurred only the first time a method is called, due to IL 
compilation, but it is compensated by "dead code" elimination [10] and various other optimization 
practices [11] which improve performance significantly.  

 
Conclusions 
 
Despite the advantages of the .NET framework we must have in mind that it is a commercial product 
aiming to profit and complying with certain limitations. However, the software development kit (SDK) 
[12] is free (including a detailed, well written documentation) and can be used without any restrictions for 
productive work. All .NET programming languages are expressive enough to address successfully the 
wide variety of problems and the miscellaneous philosophies exhibited by developers. The VMs seem to 
represent the next standard in programming as long as .NET and Java (which is the technological and 
commercial competitor) continue to evolve. No matter which programming approach one chooses, the 
following axiom is diachronic: "There does not now, nor will there ever, exist a programming language in 
which it is the least bit hard to write bad programs" [13].  
 
Availability 
 
The source code presented can be downloaded from: http://users.uoi.gr/nkourkou. For the "Language 
Interoperability" example, Salford Software FTN95 and Microsoft Visual Studio.NET are required [14]. 
Both are freely available by their manufacturers as trial versions. "Mapack" class library [15] has been 
used for some of the calculations. 
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The ICR (Institute for Cancer Research) programs.  Early 
crystallographic code implemented on the IBM 1620 in the beginning of 

the 1960's in the laboratory of A.L.(Lindo) Patterson 
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Oklahoma, Mailing address: 5895 Bay Pine Court,  Ferndale, Washington State, 98248, USA - Email : 
dvdhelm@chemdept.chem.ou.edu ; WWW: http://cheminfo.chem.ou.edu/faculty/dvdh.html  
 
In order to write about the programming of the IBM 1620 one has to set the stage about the use of 
crystallographic computing at that time.  Generally in the forties and early fifties most structure solutions 
were still carried out in two dimensions.  The results of two or three projections were combined to obtain 
a three dimensional picture of the structure of a molecule.  Of course the power to use all data and to 
generate 3-dimensional Fouriers was realized from some remarkable structure solutions, such as Vitamin 
B12 and some others, but in general these calculations were very time consuming.  For instance in the 
middle fifties I worked with Prof. Caroline MacGillavry on a new and active natural compound; a 3-d 
Fourier or S.F. calculation using punched cards and an IBM 604, took more than one month.  This 604 
was the main computer(!) of a large bank in Amsterdam and I used it during the night.  In 1957 I joined 
the lab of Lynne Merritt at Indiana University, and here I had access to the IBM 650.As in many 
universities of that size the computing center consisted of just this one computer. It was quite expensive, 
and therefore beyond the financial reach of individual crystallographic laboratories.  It was a computer 
with a rotating drum memory and four magnetic tape drives, all of which were used in the Fourier 
program which Lynne had written.  Again I had the use of the whole computing center every night, and 
the art of the game was to keep all magnetic drives operating; several failures per night were common. 
However it gave me time to become more familiar with American literature. Besides the 650, the even 
more expensive and powerful 704 existed, but only the large oil companies, federal labs and large 
universities could afford this computer.  At I.U. it was my job to write a general SFLS program which I 
presented in a meeting at the Mellon Institute in November 1958 (Acta Cryst.,12, 350).The way I treated 
symmetry was awkward, and at least in my mind, I was put to shame, in a lecture after me, by the elegant 
matrix and vector method for symmetry of space groups Bill Busing and Henry Levy described  in  the 
ORNL program for the 704.  At least I learned a valuable lesson. 

 

In 1959 I joined the laboratory of A.L. (Lindo) Patterson at the Institute for Cancer Research (ICR) in 
Philadelphia.  The main project were the structures of the molecules involved in the citric acid cycle.  I 
worked a lot with Jenny Glusker who had arrived several years prior after her beautiful work on B12.  
With the use of the 650’s at Princeton, where my cousin was on the faculty, and Indiana University, we 
solved, together, the complete structure of sodium dihydrogen citrate from the 3-d Patterson (although it 
was called a vector synthesis in the lab),and refined the structure. Lindo immediately decided that we 
needed a computer in the lab which could do the 3-dimensional calculations, but of course there were 
financial constraints.  The boundaries were clear: money and computing capability, memory and speed, 
and I was put in charge of choosing the computer.  At that time there were one or two low-cost drum 
machines, but IBM had the design completed of a small and new random-access memory computer, the 
IBM 1620, and all the specs and program codes were already available.  It was in the first wave of small 
computers. In order to decide if the computer would and could serve our purpose, I concentrated on the 
Fourier and SFLS calculations.  The first one was complicated by the logic and the second one by the 
required algebra.  It took a bout with the mumps to figure out that both could be done even for structures 
which were quite large small molecules. 
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Fig.1: The basic IBM 1620 Data Processing System and Console. 
 
The 1620 was arranged in two units(fig 1).  One contained the computer, core storage and typewriter, the 
other the paper tape reader and punch.  The construction of the 1620 was quite interesting.  The whole 
memory was no more than 20000 decimal digits. Just imagine no Gbytes. The 3-d array of the memory is 
shown in fig 2 in which the bit core planes of the even and adjacent odd digit were combined.  Each of the 
20000 core digits could thus be read, written and checked, separately.  The wordsize was variable, using 
the flag bit (F),while the check bit (C) was used for validity, although bit losses rarely happened.  The 
computer could perform about 30 operations (arithmetic, data transmission, logical branch and input-
output),while additional choices could be set with program switches. Each program instruction was 12 
digits,  two for the operation and five each for two addresses in memory( P and Q address).  Addition, 
subtraction and multiplication operations were accomplished by a table-lookup method, which occupied 
300 decimal digits in the core memory. Addition would be, for instance, the adding of the two numbers in 
the fields for which the P and Q address are the units digit, and then stored in the P address.  Two decimal 
digits were required to represent an alphanumerical character. 
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Fig 2: Schematic of the 3-d array of memory within an IBM 1620. 
 
Fortran and utility programs were available but out of the question for the Fourier and SFLS programs 
due to the limited memory. Instead the programs had to be written in machine language or symbolic 
language (which allowed a one to one translation into machine language). 
 
The Fourier program was written, initially, in machine language, which was not very smart, and later 
changed to symbolic language.  The problems which had to be solved were logic, memory size, rounding 
and output, but the calculations were simple: addition and multiplication.  Beevers and Lipson (see 
CompComm Newsletter number 2, Summer 2003) had already clearly shown that the number of 
operations could be reduced 10-15 fold by writing the summation in the, algebraically inelegant, 
multiplication form.  This allowed as well to divide the summation into three separate ones.  It was also 
clear that the limited memory would not allow the calculation to be done in one step.  The results of the 
first summation easily would exceed the size of the memory.  Rather than to punch these results out and 
sort, it was decided to read in the input tape of amplitudes ( 4 or 8 for each  hkl, in the product form), 
once for each section.  Also each x, y or z would be calculated at 1/100th intervals or multiples thereof.  
This is sufficient for even large small molecules.  The sines and cosines were in a 100-entry table lookup.  
The answers of the first summation were stored at the end of the memory in such a manner that the sums 
in the beginning of this section of memory were used first in the subsequent second summation.  The 
sums of the second summation were stored in the memory section between the program and the first 
summation answers, and they could therefore overlap, without interference, with the locations of the first 
summation answers.  This in fact was the key to solve the memory problem.  A separate program to 
prepare the input tape was written and it allowed sorting in such a way that the summation could be done 
in any desired sequence of x, y and z. It was up to the programmer to keep track of the decimal point in 
this fixed number machine, while still maintaining full four digit accuracy after the decimal point.  
Messages by the program indicated various places where overflow occurred or memory overlaps and a 
trial run would indicate where the problems occurred.  These could be  adjusted with the typed input 
parameters (shifts).  The limitations of the program were not serious.  If, for instance, the summation was 
over h and then k and then l, the product of the number of values along the b-axis multiplied by the 
maximum value of l had to be less than 1685.  There were many different ways to output the results.  The 
most convenient was one in which the cell dimensions as well as the angles between axes were 
approximated by horizontal, vertical and shift spacing while the numerical answers were translated into 
alphamerical and other characters with ranges of blanks, so that contouring by hand was not necessary.  
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This was especially useful with a 20-inch typewriter carriage, although this could be a dangerous 
instrument on its return motion.  One section including input and output would take about 30 min.  The 
program was rewritten for card input-output by G.S.D. King in Belgium. 
 
In the SFLS program memory was also a problem.  The available utility programs for exponentials, sines 
and cosines were slow, too accurate and took too much memory.  New utility programs were written 
adapted to the 4-5 digit accuracy which is sufficient for the crystallographic calculations.  For instance 
exp(-a.bcde) was calculated by 10-entry tables for exp(–a.0) and exp (–0.b),while  exp–0.0cde was 
computed with a small Taylor series.  The cosines and sines were reduced to the first quadrant, and 
calculated using : sin(0.abcd)=sin(0.ab)cos(0.00cd) + cos(0.ab)sin(.00cd), with table lookup for sin(0.ab) 
and cos(0.ab), and a small Taylor series for the rest.  Still those two routines took about 1500 decimal 
digits.  Normal calculator routines were adapted for a divide and a square root utility. 
 
In those days (1960) there were still arguments among programmers if the formula’s in the International 
Tables should be used or the ones I alluded to before, those based on P1 or P1 bar, with matrices and 
vectors for equivalent positions or even better for equivalent indices.  The elegance of the latter method 
was evident in the ease by which contributions to the structure factor were calculated as well as the partial 
differentials for the L.S.sums.  This certainly simplified the program code.  The 1620 program was coded 
only for triclinic, monoclinic and orthorhombic, although it would not have been too difficult to include 
all space groups.  The method also allowed a much more direct way to deal with anisotropic temperature 
factors.  Due to the memory limitations it was a block diagonal matrix program ( 3 by 3 for positional and 
6 by 6 for thermal parameters).  The input was a data tape with indices, scattering factors and weight for 
all reflections, and a parameter tape with indices and coordinates.  The limitations were most severe for 
orthorhombic space groups: 27 anisotropic atoms or 70 isotropic atoms, or a combination thereof, still 
quite reasonable for the type of structures solved in those days.  The timing was between 10 and 25 sec 
per 10 atoms, which thus means 14 hrs for 20 anisotropic atoms and 1000 reflections.  Being a fixed point 
computer, when coding was done in machine or symbolic language, there were as many as 20 distinct 
error messages which indicated where overflow occurred and the instruction booklet specified what 
particular action needed to be taken to eliminate the problem.  The SFLS program started with a message: 
“And they all went…”, and ended 10 or so hours later with: “  …to the seashore”.  A quotation from a 
very pleasant Greek movie: “Never on Sunday”. The Fourier program finished with the message: “Mooi”, 
a dutch slang word which can mean all kinds of good things and is possibly best translated with the word: 
“Bien” in French. 
 

 
 

 
Fig 3: A.L.(Lindo) Patterson showing the IBM 1620 to a group of institute donors. 
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The Institute for Cancer Reasearch (ICR) was a private institution and the lease of the computer was a 
significant expense.  Lindo therefore showed the computer to many many groups of donors (see Fig. 3).  
Lindo was very supportive to us making the programs, and wrote programs himself.  The SFLS program, 
for instance, only calculated the least-squares sums, and Lindo wrote the program to calculate the 
coordinate shifts.  He also wrote various programs on topology, because that was a major interest to him 
considering the question if the vector synthesis yielded a unique solution, but in addition topology 
intrigued him as a fundamental mathematical problem.  Many other programs were written, especially by 
Carroll Johnson, see Fig 4.  Examples are an absorption program and a goniostat program, and many are 
listed in one of his publications (Acta Cryst. 18, 1004 (1965)).  When he moved to Oak Ridge he wrote 
the famous ORTEP program (not for the 1620).  After Carroll and I moved to permanent positions Eric 
Gabe and Max Taylor joined the lab and wrote additional programs for the 1620.  The programs, on paper 
tape, and instruction booklets were distributed for free, although I presume that donations were 
appreciated.  I still have much of the correspondence up to 1962 and many friends were made.  The 
programs went to Australia, New Zealand, UK and Europe, the USA and Canada. 
 

 
 
Fig 4: Left to Right - A.L.(Lindo) Patterson, the author and Carroll Johnson 
 
I moved to the University of Oklahoma, which had a homemade large computer off-campus, and a 1620 
on campus for general use.  For a number of years I employed a technician who did run our programs at 
night, five days a week till the university acquired an IBM 360. 

 

The following is included by request of the Editor: 
 
One part of the Fourier program will be analyzed .It is the subroutine calculating from the sums of the 
first summation the sums to be used in the third summation, or in other words the second summation.  It 
shows for instance the rounding of answers and also the shifting when overflows occurred in the making 
of the sums.  The 1620 was a fixed point machine and the programmer had to keep track of the decimal 
point.  The principle of the program was 4-digit accuracy.  The program used a four digit cos or sin 
multiplied by a four digit amplitude giving an 8-digit answer.  The leftmost 4  digits were used in the 
formation of sums, unless an overflow occurred which stopped the computer.  One could find out if the 
overflow occurred in the first, second or third summation, and for each one could change the shift,  
normally thus 4, to for instance 5 (and even 6).  It can also be set to 3 when one wanted more accuracy as 
in a difference Fourier.  The shift parameters were a part of the input.  A trial run would indicate a 
possible problem, although it did not occur often, and the program and parameter tapes had to be 
reloaded, with the indicated change in shift parameter. 
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In the Lipson and Cochran multiplication equation for the Fourier, there are 8 input amplitudes 
(noncentrosymmetric ) or 4 input amplitudes (centrosymmetric) for each value of( h,k,l).  The results of 
the first summation are respectively 4 or 2 amplitudes(sums) for each value (k,l,X).  For the 
centrosymmetric case these are M(k,l,X) and N(k,l,X).  The text described the fact that due to the limited 
memory only one section at a time could be calculated and therefore X is a definite value.  The 
sums(amplitudes) resulting from the second summation in the centrosymmetric case are R(l,X,y), in 
which y varies from y(min) to y(max) with intervals of  ∆y.  The third summation is thus assumed to be 
over l, from z(min) to z(max) with intervals of  ∆z.  One could actually do the summation in any sequence 
by rearranging the amplitudes for the first summation on the input tape. 
 
In the second summation the first amplitudes (k,l,X) which are used are M(0,0,X) and N(0,0,X), and their 
contributions to the sums, generally (l,X,y)), in this case R(0,X,y) are calculated for all values of y, and 
this is thus the part of the program shown below.  Next, not part of the program code shown here, 
amplitudes (k,l,X), M(1,0,X) and N(1,0,X) are located and moved to the subroutine shown below, and 
their contributions for all values of y are added to the R(0,X,y) sums.  This cycle continues till the last 
value of k, and consequently l changes for the M and N amplitudes.  At that point the R(0,X,y) 
amplitudes are stored, not shown in the subroutine below.  The next amplitudes are M(k,1,X) and 
N(k,1,X) in pairs and they are used with k from 0 to kmax, till l changes to 2, and the R(1,X,y) sums are 
stored,  and so on. 
 
As stated in the text the answers for the first summation are stored at the end of memory beginning with  
M(0,0,X) and N(0,0,X)…M(k,0,X) and N(k,0,X), and after that those for l=1 then l=2 etc, filling all the 
memory space till location 19479, which holds the amplitudes with maximum l.  The answers of the 
second summation, however, are stored from location 6000 on.  If overlap does occur during the second 
summation where R(l,X,y) sums could overlap with first summation amplitudes not yet used, an error 
message occurred (only rarely), and the only solution was to do the summation with a different sequence 
of h,k,and l. 
 
Some details about instructions.  Each basic instruction takes 12 digits.  The first two digits are the 
operation, the next 5 the memory location of the P-field and the next 5 the memory location of the 
Q-field.  A flag over the least significant digit means a negative number.  In any other locations it means 
the left- end of the number .In other words numbers could be of any length with a minimum of 2 digits.  
The result of any multiplication was accumulated in location 99 and lower, with the length of the number 
being the sum of the size of the two numbers being multiplied.  Add, subtract and multiply instructions 
are 21,22 and 23.  The corresponding “immediate” instructions are 11, 12 and 13, where instead of the 
number specified in field Q, the actual value in field Q was used to add to the number in the P-field.  Set 
flag and clear flag were 32 and 33.  Transmission of a number in memory specified in the Q field to a 
memory location in the P field, was 26.  A branch instruction (46),was an interrogation of one of 16 
indicators, specified in Q8 and Q9 of the Q part of the instruction.  Most commonly used were, for 
instance” equal zero” and “ positive”, indicators which were set by the previous arithmetic operation or 
compare instruction.  Among the many and important branch instructions was also “branch on no flag”, 
44, and branch on digit, 43. 
 
 
SUBROUTINE,MULTIPLICATION AND SUMMING FOR SECOND AND THIRD SUMMATION. 
 
SUBR06 TF    COUNT1,NUMBR2               02370 26 05031 04900 
                M     SUBR06-1,DELTA                02382 23 02369 05015 
                SF    98                                            02394 32 00098 00000 
                TF    ADDIN,99                              02406 26 05033 00099 
                M     SUBR06-1,XMINT                02418 23 02369 05018 
                SF    97                                            02430 32 00097 00000 
                TF    ARGUM,99                            02442 26 04976 00099 
SUBR04  BD   SUBR10,ARGUM-2              02454 43 02794 04974 
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SUBR09  MM ARGUM,9,10                         02466 13 04976 000ô9 
                A      SUBR01+11,99                      02478 21 02501 00099 
SUBR01  TR   491,5100,7                              02490 31 00491 ô5100 
                S      SUBR01 +11.99                      02502 22 02501 00099 
SUBR13  TFMCOUNT2,2,1                          02514 16 05035 000ô2 
                M     494,461                                   02526 23 00494 00461 
                TF    539,99                                     02538 26 00539 00099 
                M     498,465                                   02550 23 00498 00465 
                A      539,99                                     02562 21 00539 00099 
SUBR03  CF   532                                          02574 33 00532 00000 
SUBR11  SF   532                                           02586 32 00532 00000 
SUBR07  AM  536,5,10                                  02598 11 00536 000ô5 
                BNF SUBR02,539                           02610 44 02634 00539 
SUBR19  SF    535                                          02622 32 00535 00000 
SUBR02  A     6003,535,2                               02634 21 ô6003 00535 
                SM   COUNT2,1,10                         02646 12 05035 000ô1 
                BZ    SUBR14                                  02658 46 02738 01200 
(continue for noncentrosymmetric spacegroup ; go to 02738 for centrosymmetric space group) 
 
 
SUBR14  AM   SUBR02+6,4,10                    02738 11 02640 000ô4 
                 SM   COUNT1,1,10                       02750 12 05031 000ô1 
                 BZ    SUBR05                                02762 46 02814 01200 
                 A      ARGUM,ADDIN                  02774 21 04976 05033 
                 B      SUBR04                                02786  49 02454 
                 DORG*-3(this allows the first two digits of the Q-field to be used for a constant, because every 
digit saved helps with the little memory which the 1620 had, and it shifts the program sequence to 02794 
rather than 02798)   
 SUBR10  TDM ARGUM-2,0,11                   02794 15 04974 0000ô 
                 B        SUBR09                              02806 49 02466 
                 DORG*-3(see above) 
SUBR05   BB                                                  02814 42  
( the contributions for all values of y have been calculated and added, the program branches back to the 
place where a new set of amplitudes is retrieved for a new pass through this subroutine. 
 
In the machine language program above, ô means a zero with a flag. 
 
The two amplitudes M and N are in location   00461 (00458-00461) and 00465.  The present value of k is 
stored in 02368 -02369, (SUBR06-1).  The number of points along y is stored in 05031 (COUNT1).  The 
k∆ y is calculated and stored in location 05033 (ADDIN), and ky in  04976 (ARGUM). 
 
The next instruction BD,43, is kind of interesting.  The idea is that an argument is allowed the be equal to 
1.00 and larger (one might want to calculate y from 0.75 to 1.25).  However in order to look up the 
appropriate cos and sin the arguments 1.00 and above were decreased by one whole cycle :f.i. 1.15 was 
set to 0.15.  This is done in instructions at the end of the subroutine, instructions at 2794 and 2806.  
Setting the ARGUM to just two digits will not work because it could result in an overflow and the 
computer stops. 
 
Instructions in 2466 and 2478 calculates the memory position for the cos-sin values for the particular 
ARGUM value, and the cos and sin values are stored in locations 491-498, each 4 digits long.  Instruction 
in 2502 resets the instruction in 2490 for future use.  The next few instruction calculate Mcosky+Nsinky, 
and stores it in location 532-539. 
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The next two instructions, CF 532 and SF 532 seem odd.  Actually only the SF 532 instruction is 
necessary. It is part of the operations necessary to take care of possible overflow in making the sums and 
is initialized using the shift parameter for the second summation.  The CF 532 does no harm.  The result 
of the multiplications M(cosky) and N(sinky) is 8 digits long and normally the four most significant digits 
are used.  However if in a trial run the second summation has overflow(s), one wants only the three most 
significant digits to be used.  This will become clear in the next paragraph. 
 
The next instruction is to round off the result in 532-539.  Normally the 5 is added to the 5th significant 
digit(536).  If the shift is 5 instead of the normal 4, this is initialized to (537), the 4th significant digit.  
Both positive and negative numbers are rounded properly, because the possible flag for a negative 
number in location 539 is not affected.  Normally the answer in 532-535, a three digit number can be 
added safely to the four digit sum R(l,X,Y), instruction 2634, for which the memory location has 
previously been initialized.  The coding as shown, however made this a 4 digit number by clearing the 
flag in 532 and setting it at 532 if the shift was 4 and at 531 if the shift was 5.  If the result in 532-539 is 
negative, the flag has to be properly placed, normally on 535, but with a shift of 5 it is set in 534.  This is 
done in instruction 2622. 
 
The instructions 2670 till 2730 are for the case the spacegroup is noncentrosymmetric and two other first 
summation sums need to used for the calculation of  S(l,Xy) values the code is not shown.  Instructions 
2738-2762 are a counter to check the number of values of y which has been done.  If not all done the 
argument is increased by  k∆y, and the program branches to instruction 2454 for the next value of ky.  If 
all is done the program branches to SUBR05 to pick up new amplitudes. 
 
It is obvious from the small section of the program code which is shown here and that the program was 
written by an amateur, however the amateur was a responsible one, because the program worked 
properly.  The code and flow diagrams for the programs are archived: http://www.ccp14.ac.uk/ccp/web-
mirrors/ibm1620_xtal_code/.   The flow diagrams for the Fourier program can be found under fourier 
synthesis , pages 43-48 or as images 41-46. The program code checking took quite a long time because 
writing in machine language any failure was your fault or you did not fully understand the meaning of the 
an instruction.  Later on the program was rewritten for card input-output by G.S.D. King, who used many 
more self-explanatory mnemonic codes for constants, which made the program code much more easy to 
read, and also the flow sheet accompanying that program was professional.  Also that program worked 
fine. 
 

http://www.ccp14.ac.uk/ccp/web-mirrors/ibm1620_xtal_code/
http://www.ccp14.ac.uk/ccp/web-mirrors/ibm1620_xtal_code/


Meeting, workshop and school reports 
 
During ACA 2003, July 17 - 22, 2004: Chicago, Illinois, USA: Report on ACA 
Chicago 2004 - 6.03: Advances in Computing Environments for Crystallography 
(http://www.hwi.buffalo.edu/ACA/ACA04/abstracts/S0603.html) 
 
The Computing Environments session 6.03, sponsored by the ACA General Interest SIG, contained a 
good range of talks covering the use of the GRID, distributed computing, protein model building tools, 
through to visualisation and integration of single crystal 3D raw data and comparative visualization of 
molecular and protein structures.   
 
The first talk by Russ Miller (miller@buffalo.edu ; co-authors: M.L. Green and C.M. Weeks) was about 
SnB (Shake-and-Bake)/BnP macromolecular structure solution and protein phasing software on the Grid 
(http://www.hwi.buffalo.edu/SnB/ http://www.ccr.buffalo.edu/grid/content/overview.htm). Russ clearly 
defined GRID computing and, in particular, what is not GRID computing, providing a breath of fresh air 
in laying down the law on the subject separating reality from hype and buzzwords.   Pointing out that 
"The GRID" does not exist in the form that is commonly hyped and is currently under development, Russ 
elaborated on custom administrative tools written at the Center for Computational Research at SUNY-
Buffalo in the context of the SUNY/Hauptman-Woodward Institute collaboration to make GRID 
computing practical for users and managers of GRID infrastructure. SnB/BnP is available via three 
existing GRID networks. Russ then gave a live Internet demonstration of submitting jobs to the SnB/BnP 
software via a standard web interface, followed by showing the tools that allowed users to check status of 
jobs, and quickly evaluate structure solution results. Software for collaborative examination and 
manipulation of molecular models via the Internet was also displayed.  Queried during question time on 
whether authors of crystallographic software should make their programs GRID aware, Russ cautioned 
that unless you have a religious-type belief in the GRID, it might be too early to commit significant 
programming resources to GRID computing until the underlying systems management of GRID 
computing proves itself. Beta testers for the new SnB/BnP for GRID are most welcome and should 
contact Russ via the above address.  The following screen-shot shows the status of submitted grid jobs of 
SnB being run directly on the ACDC Grid Portal via a Web Browser pointed to the Center for 
Computational Research at SUNY-Buffalo. 
 

 
 
Anders Markvardsen ( a.j.markvardsen@rl.ac.uk : co-authors: K. Shankland and W. David) of 
Rutherford-Appleton Laboratory in the UK, then discussed the use of distributed computing in the role of 
finding optimal Hybrid Monte-Carlo (HMC) parameters for structure solution from powder diffraction 

100 

mailto:miller@buffalo.edu
http://www.hwi.buffalo.edu/SnB/
http://www.ccr.buffalo.edu/grid/content/overview.htm
mailto:a.j.markvardsen@rl.ac.uk


data.  These optimal values can then be applied to structure solution software running on single 
workstations.  Using distributed computing tools to link local workstations, results could be obtained in a 
couple of weeks that would have taken half a year or more using a single workstation.  The following 
shows the plotted results for determining optimal HMC parameters based on the structure solution of 
Chlorothiazide. 
 

 
 
Showing a healthy disregard for the forces of computing conformity and conference requirements for 
MS-Windows compliance, Paul Emsley (emsley@ysbl.york.ac.uk) from York, UK used his Apple 
MacOS X laptop to demonstrate the COOT ((Crystallographic Object)-Oriented Toolkit) Model Building 
Tools for protein crystallography.  Coot is part of the CCP4 Molecular Graphics Project and has some 
features that resemble those of Frodo, O, Quanta and XtalView's XFIT.  Paul’s live demonstration 
showing COOT re-optimising the incorrect orientation of a residue in real-time drew “ooh’s” and “ahh’s” 
from the audience.  The two screen images below show the before and after of this demonstration.  COOT 
(http://www.ysbl.york.ac.uk/~emsley/coot/) is freely available in source code form under the GNU GPL 
Licence, and compiled binaries for a variety of operating systems (SGI IRIX, Mac OS X, Redhat Linux) 
are available via (http://www.ysbl.york.ac.uk/~emsley/software/binaries/).   
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Dennis Mikkelson ( mikkelsond@uwstout.edu : co authors: A. Schultz, P. Peterson, R. Mikkelson, T. 
Worlton, J. Hammonds, J. Cowan, Martha Miller, C. Bouzek, Michael Miller), a senior computer scientist 
at University of Wisconsin-Stout introduced a GPL’d user friendly software package for viewing raw 
neutron Time-of-Flight (TOF) single crystal data, with the option of indexing and integration 
(http://www.pns.anl.gov/computing/isaw/).  Speeds of visualisation for reconstructed raw image files of 
reciprocal space collected with multiple detectors were stated as being performed with a second or so.  
Both manual and computer based indexing options were shown for handling multiple crystallites; and the 
software has the ability to perform integration of 3D diffraction spots.  Various "wizards" to aid in 
analysis, and the hkl slice viewer are in the latest build (1.7.1 alpha 7) available on the above ISAW 

mailto:emsley@ysbl.york.ac.uk
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(Integrated Spectral Analysis Workbench software) website.  The 3D reciprocal lattice view described in 
the talk is expected to be in the 1.7.1 "final" build by late August.  Under the tyrannical direction of the 
session chair, Dennis quickly flicked through remaining slides to remain on time.  Had the chair of the 
session (this humble scribe) been more on the ball and quick witted, he would have seen the error of 
keeping this talk to time and insisted that Dennis elaborate on a slide describing the future of this 
software, which included an invitation for collaborators to help develop the software.  This software 
seems to represent not only an opportunity to the TOF single crystal community, but also X-ray CCD 
based crystallographers in providing the freedom to interact and integrate their raw single crystal data in a 
highly flexible manner.  Free software aficionados will note the GPL definition of the word “freedom” is 
being used here.  The following shows the software being manipulated both manually (and with computer 
controlled algorithms) to assist in sorting out effects of multiple single crystals prior to indexing, cell 
assignments and integration. 
 

 
 
The final talk of the session was that of David Duchamp (djduchamp@aol.com), showing the latest 
feature of CrystMol (Mac and MS Windows - http://www.crystmol.com/) for visually comparing 
potentially similar molecules from different structure files, or within the same structure where Z’ is 
greater than 1; as well as proteins.  People comparing polymorphs, or a chemically similar series of 
structures, could find this very beneficial and time saving.  Molecules can be compared automatically; 
using a point and click menu; or via the CrystMol scripting system.  RMS differences are also listed.  
Following is an example of CrystMol comparing the Z’=4 structure from S.Thamotharan, V. 
Parthasarathi, R. Gupta, D.P. Jindal and A. Linden (2004), Acta Cryst C60, o405-o407.   
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Besides thanking the speakers for their presentations, thanks must also go to the staff of the Hyatt-
Regency, Chicago for their effective assistance in the set up of presenter laptops.   
 
Lachlan Cranswick 
 

 

Call for Contributions to the Next CompComm Newsletter 
 

The third issue of the Compcomm Newsletter is expected to appear around January of 2005 with the 
primary theme of “At Right Angles to Conventional Crystallographic reality: incommensurate, 
quasicrystals, pair distribution functions and magnetic structures”.  Articles related to the control and 
visualisation of raw single crystal image data for the elucidation of many of the above types of structural 
problems is also very welcome and appropriate.  If no-one is else can be co-opted, the newsletter will be 
edited by Lachlan Cranswick. 
 
Contributions would be aso greatly appreciated on matters of general interest to the crystallographic 
computing community, e.g. meeting reports, future meetings, developments in software, algorithms, 
coding, programming languages, techniques and other news.  
 
Please send articles and suggestions directly to the editor. 
 
Lachlan M. D. Cranswick 
NPMR, NRC, 
Building 459, Station 18, 
Chalk River Laboratories, 
Chalk River, Ontario, 
Canada, K0J 1J0  
E-mail: lachlan.cranswick@nrc.gc.ca  
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick   
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