
Table of Contents
(This Issue's Editor: Lachlan Cranswick)

(Editor’s warning – unless you want to kill 103 pages worth of forest – DO NOT press the “print” button. For hardcopies –
you may like to only print out the articles of personal interest.)

CompComm chairman’s message, Ton Spek 2

Editor’s message, Lachlan Cranswick 2

IUCr Commission on Crystallographic Computing 3

Preliminary announcement for the IUCr
Computing School, Siena, Italy, August 2005 4

Winners of the CompComm Logo Competition 5

Restraints, Constraints and using extra observables
(programming and general articles) :

Refinement on weak or problematic small
molecule data using SHELXL97 6
Alexander J. Blake

Restraints and Constraints in Sir2004 13
Maria C. Burla, Rocco Caliandro, Mercedes
Camalli, Benedetta Carrozzini, Giovanni L. Casca-
rano, Liberato De Caro, Carmelo Giacovazzo,
Giampiero Polidori, Riccardo Spagna

cctbx news: Geometry restraints and other new
features 19
Ralf W. Grosse-Kunstleve, Pavel V. Afonine and
Paul D. Adams

Geometrically Restrained INorganic Structure
Prediction : GRINSP 37
Armel Le Bail

Whole molecule constraints - the Z-matrix
unravelled 46
Kenneth Shankland

Including Novel Restraints Supplied by the User
to the TNT Refinement Package 52
Dale. E. Tronrud

Organisation of prior chemical knowledge for
macromolecular structure refinement 59
Alexei A. Vagin and Garib N. Murshudov

X-rays don't see atoms 73
David Watkin

General Programming Articles :

Writing Binary Data 78
Scott A. Belmonte

Scientific Programming. The .NET case 86
Nikos Kourkoumelis

The ICR (Institute for Cancer Research)
programs. Early crystallographic code
implemented on the IBM 1620 in the beginning
of the 1960's in the laboratory of A.L.(Lindo)
Patterson 92
Dick van der Helm

Meeting, workshop and school reports 100

ACA 2004: symposium on Advances in
Computing Environments

Calls for contributions to Newsletter No. 5 103

Commission on Crystallographic Computing
International Union of Crystallography

http://www.iucr.org/iucr-top/comm/ccom/
Newsletter No. 4, August 2004

This issue’s theme:
"Restraints, Constraints and using extra

observables"
http://www.iucr.org/iucr-top/comm/ccom/newsletters/

http://www.iucr.org/iucr-top/comm/ccom/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/

2

CompComm Chairman’s Message

This is already the fourth newsletter of the IUCr computing commission, capably put together by our
editor, Lachlan Cranswick, with articles of interest on this issue’s main topic: 'Constraint & Restraint
refinement'. The subject is of course not new. However, from the current users point of view, what counts
is whether those features are available within their software environment of choice (SHELXL,
CRYSTALS, SIR, ..) and well explained. Hopefully, these article may also lead to more 'looking over the
fence'.

The historical article by Dick van der Helm on early computing brought back to me the many nights (in
the 60’s) spent at the computer centre in Utrecht writing Direct Methods programs and doing 3D maps
and SFLS calculations within the constraints of 16K 27bit words. I still have the sound of the lineprinter
in my ear that directly reflected the first, second and third Fourier summation steps.

There are 9 computing related sessions planned for the Florence 2005 IUCr congress. The program for the
IUCr computing school to be held in Siena immediately prior to the Florence meeting is in its refinement
stage. More info will be available soon, and published in the next edition of this newsletter. The
upcoming ECM-22 Budapest meeting (25-31 Aug 2004) includes 5 computing related sessions :

• Crystal Structure validation: challenges and tools (Chair/Co-chair: Tony Linden/Richard Cooper)
• Advances and pitfalls in automated structure determination (Chair/Co-Chair: Ton Spek/Simon Parsons)
• Crystallographic graphics tools and user interfaces(Co-chair: Martin Noble/Laszlo Parkanyi)
• Advances in powder diffraction methods (Chair/Co-chair: Jordi Rius/Eric Mittemeijer; Jointly with the

Powder SIG)
• New methods for phasing, model building and real-time refinement (Chair/Co-chair: Eleanor

Dodson/George Sheldrick; Jointly with the Protein SIG)

Ton Spek, Chairman or the IUCr Computing Commission, (a.l.spek@chem.uu.nl)

From the Editor of Newsletter No. 4

This current newsletter contains a variety of articles on the theme of "Restraints, Constraints and using
extra observables". The alleged first documented case of the crystallographer correcting the
preconceived incorrect molecular restraints of the chemist is that of Mills and Nyburg, "The Molecular
Structure of Aspidospermine", Tetrahedron Letters No, 11 pp 1-3, 1959; and Mills and Nyburg, J. Chem.
Soc., pp 1458-1463 (1960) (this is inaccurately described in "From Classical to Modern Chemistry: The
Instrumental Revolution", Royal Society of Chemistry, 2002, ISBN 0-85404-479-5). However, if
diffraction data does not allow for a complete analysis, extra observables and chemical information, when
intelligently applied, can be the difference between success and failure in solving crystallographic
problems. As with most of crystallography, without good algorithms and computer code, the attempt to
use extra observables would be a frustrating business. While a goodly range of articles was sought for this
newsletter, it is not exhaustive, and this theme will no-doubt have to be revisited in a future edition.

The next issue (due January 2005) is intended to have the theme of "At Right Angles to Conventional
Crystallographic reality: computing and algorithms related to incommensurate, quasicrystal, pair
distribution function and magnetic structures". That some structures don't fit nicely into a convenient
commensurate unit-cell can be a disturbing thought, and highly inconvenient, to the classical
crystallographer (similar perhaps to those who were more at home with classical physics vs that of the
quantum world). A possible future requirement in crystallography may be the revisiting of published
crystal structures where more exhaustive examination with CCD single crystal diffractometers may show
weak satellite reflections or diffuse scattering requiring proper explanation. Submissions relating to the
control and visualization of raw single crystal image data for the elucidation of many of the above types
of structural problems are encouraged. Articles of a general nature outside the above theme are also
welcome, especially those dealing with the history of crystallographic computing.

Lachlan Cranswick (Lachlan.cranswick@nrc.gc.ca)

mailto:a.l.spek@chem.uu.nl
mailto:Lachlan.cranswick@nrc.gc.ca

3

THE IUCR COMMISSION ON CRYSTALLOGRAPHIC COMPUTING - TRIENNIUM 2003-2005

Chairman: Prof. Dr. Anthony L. Spek
Director of National Single Crystal Service Facility,
Utrecht University,
H.R. Kruytgebouw, N-801,
Padualaan 8, 3584 CH Utrecht,
the Netherlands.
Tel: +31-30-2532538
Fax: +31-30-2533940
E-mail: a.l.spek@chem.uu.nl
WWW: http://www.cryst.chem.uu.nl/spea.html

Professor I. David Brown
Brockhouse Institute for Materials Research,
McMaster University,
Hamilton, Ontario, Canada
Tel: 1-(905)-525-9140 ext 24710
Fax: 1-(905)-521-2773
E-mail: idbrown@mcmaster.ca
WWW: http://www.physics.mcmaster.ca/people/faculty/Brown_ID.html

Lachlan M. D. Cranswick
Neutron Program for Materials Research (NPMR),
National Research Council (NRC),
Building 459, Station 18, Chalk River Laboratories,
Chalk River, Ontario, Canada, K0J 1J0
Tel: (613) 584-8811 ext: 3719
Fax: (613) 584-4040
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

Dr Vincent Favre-Nicolin
CEA Grenoble
DRFMC/SP2M/Nano-structures et Rayonnement Synchrotron
17, rue des Martyrs 38054 Grenoble Cedex 9
38054 Grenoble Cedex 9 – France
Tel: (+33) 4 38 78 95 40
Fax: (+33) 4 38 78 51 97
E-mail: vincefn@users.sourceforge.net
WWW: http://objcryst.sourceforge.net/

Dr Ralf Grosse-Kunstleve
Lawrence Berkeley Lab
1 Cyclotron Road,
BLDG 4R0230,
Berkeley, CA 94720-8235, USA.
Tel: 510-486-5713
Fax: 510-486-5909
E-mail: rwgk@yahoo.com
WWW: http://cci.lbl.gov/

Prof Alessandro Gualtieri
Università di Modena e Reggio Emilia,
Dipartimento di Scienze della Terra,
Via S.Eufemia, 19,
41100 Modena, Italy
Tel: +39-059-2055810
Fax: +39-059-2055887
E-mail: alex@unimore.it
WWW: http://www.terra.unimo.it/mineralogia/gualtieri.html

Prof Ethan A Merritt
Department of Biological Structure
University of Washington
Box 357420, HSB G-514
Seattle, Washington, USA
Tel: 206 543 1861
Fax: 206 543 1524
E-mail: merritt@u.washington.edu
WWW: http://www.bmsc.washington.edu/people/merritt/

Dr. Simon Parsons
School of Chemistry
Joseph Black Building,
West Mains Road,
Edinburgh, Scotland EH9 3JJ, UK
Tel: +44 131 650 5804
Fax: +44 131 650 4743
E-mail: s.parsons@ed.ac.uk
WWW: http://www.chem.ed.ac.uk/staff/parsons.html

Dr. Bev Vincent
RigakuMSC
9009 New Trails Dr,
The Woodlands, Texas 77381-5209, USA
Tel: 281-363-1033
Fax: 281-364-3628
E-mail: brv@RigakuMSC.com
WWW: http://www.rigakumsc.com/

Consultants

Dr David Watkin
Chemical Crystallography,
Oxford University,
9 Parks Road,
Oxford, OX1 3PD, UK.
Tel: +44 (0) 1865 272600
Fax: +44 (0) 1865 272699
E-mail: david.watkin@chemistry.oxford.ac.uk
WWW: http://www.chem.ox.ac.uk/researchguide/djwatkin.html

Dr Harry Powell
MRC Laboratory of Molecular Biology,
Hills Road, Cambridge, CB2 2QH, UK.
Tel: +44 (0) 1223 248011
Fax: +44 (0) 1223 213556
E-mail: harry@mrc-lmb.cam.ac.uk
WWW: http://www.mrc-lmb.cam.ac.uk/harry/

mailto:a.l.spek@chem.uu.nl
http://www.cryst.chem.uu.nl/spea.html
mailto:idbrown@mcmaster.ca
http://www.physics.mcmaster.ca/people/faculty/Brown_ID.html
mailto:lachlan.cranswick@nrc.gc.ca
mailto:vincefn@users.sourceforge.net
http://objcryst.sourceforge.net/
mailto:rwgk@yahoo.com
http://cci.lbl.gov/
mailto:alex@unimore.it
http://www.terra.unimo.it/mineralogia/gualtieri.html
mailto:merritt@u.washington.edu
http://www.bmsc.washington.edu/people/merritt/
mailto:s.parsons@ed.ac.uk
http://www.chem.ed.ac.uk/staff/parsons.html
mailto:brv@RigakuMSC.com
http://www.rigakumsc.com/
mailto:david.watkin@chemistry.oxford.ac.uk
http://www.chem.ox.ac.uk/researchguide/djwatkin.html
mailto:harry@mrc-lmb.cam.ac.uk
http://www.mrc-lmb.cam.ac.uk/harry/

4

 A preliminary announcement of the IUCr Commission on Crystallographic Computing

Certosa di Pontignano,
University of Siena, Italy
18th - 23rd August 2005

(just prior to the Florence IUCr 2005 congress)

http://www.iucr.org/iucr-top/comm/ccom/siena2005/

School Organisers: Prof Anthony Spek
(Utrecht), Prof. Marcello Mellini (Siena),
Prof. Alessandro Gualtieri (Modena), Dr
Harry Powell (Cambridge), Lachlan
Cranswick (NRC Chalk River)
Consultants: Dr David Watkin
(Oxford), Dr Simon Parsons (Edinburgh)

Each day of the school is focussed on a different theme:
 “principles & methods”
 “joining things together”
 “crystallographic implementations”
 “selected topics in crystallography”
 “special methods”

The City
Siena is described as one of the
finest examples of a Medieval
city. It is in the Italian province
of Tuscany and has direct bus
connection to Florence (1 hour)
and Rome (3 hours).

The Venue
The Certosa di Pontignano has its
origins as a medieval 14th century
monastary. It is now run by the
University of Siena. Attractively
placed on the top of a hill, it is
surrounded by vineyards; with a
direct view to the town of Siena,
and a famous Chianti winery.

School Aims
To have the crystallographic
computing experts of the present,
help train and inspire a generation
of experts for the future. This will
be achieved by the use of an
excellent (and full) program of
lectures, workshops and projects.

http://www.iucr2005.it/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/organ.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/venue.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html

Winners of the CompComm Logo Competition

Can people do better than this?

Indeed they can! With a greatful thankyou to the people who submitted their ideas, Paul (University of
Florida, USA) and Kathy Sehnke were declared winners of the CompComm logo competition. Their
stated synopsis was "This logo represents some important molecular structural components of which the
computing commission works with and works towards. The X-ray film, diffraction pattern, computer,
beta strand and helix are surrounded by a line which symbolizes the box that contained the Beevers-
Lipson Strips. These elements within the logo were and are necessary for the end result of solving a
molecular structure." The winning graphics are below: a) newsletter logo, b) webpage banner logo and c)
Siena 2005 Computing School logo.

All submissions received are still viewable via:

http://www.iucr.org/iucr-top/comm/ccom/ccom/logo_sub.html
5

http://www.iucr.org/iucr-top/comm/ccom/ccom/logo_sub.html

Refinement on weak or problematic small molecule data using SHELXL97

Alexander J. Blake,
School of Chemistry, The University of Nottingham, Nottingham UK
E-mail: A.J.Blake@Nottingham.ac.uk - WWW: http://www.nottingham.ac.uk/chemistry/staff/blake.html

Introduction

Problematic structure refinements can be the result of a number of factors, including poor diffraction,
twinning, small crystal size, pseudosymmetry, significant absorption effects and positional disorder. (For
a comprehensive review of difficult refinements see D.J. Watkin, Acta Cryst. 1994, A50, 411−437.) Such
structures may exhibit low data/parameter ratios, apparent voids, extreme or unrealistic displacement
parameters, high residual electron density or poorly defined hydrogen atom positions. While certain of
these problems, such as absorption, are typically dealt with outside the refinement process, it will
normally be necessary to incorporate a treatment for most of the others as part of refinement.

A principal feature of such refinements is the lack of information in the diffraction data pertaining to
particular regions of the structure, for example in disordered regions where the disorder components are
not resolved. In such cases the application of restraints (formally, the addition of extra observations)
and/or constraints (formally, the fixing of certain parameters) can allow the refinement to proceed to a
satisfactory conclusion. A simple example of a restraint derived from chemical knowledge would be one
which states that the chemically-equivalent distances in the BF4

– anion should be the same, while
constraints would be appropriate to ensure that an atom on a special position did not wander away from it.
The value of restraints and constraints depends crucially on their validity, with inappropriate ones
distorting instead of assisting the refinement. Distance and other geometric restraints are sometimes
familiar through previous experience of the same chemical moieties, while unfamiliar ones can be
determined from database surveys or even from ordered examples on the same species within the
structure being studied.

This article will focus primarily on a range of hexanuclear supramolecular cages constructed using a
ligand (see Figure 1) which is both blocking and chelating. The structures were refined using SHELXL97
and recently published in Chemical Communications (O.V. Dolomanov, A.J. Blake, N.R. Champness, M.
Schröder & C. Wilson, "A novel synthetic strategy for hexanuclear supramolecular architectures", Chem.
Commun. 2003, pp. 682−683).

Figure 1: Ligand which is both blocking and chelating.

The structures are illustrated in Figures 2–5. The refinement problems include disorder in many anions,
partial occupancy for several anions, low resolution data and low r/p ratios. Moreover, it is important to
establish the identity and the locations of the anions, in order to understand how they contribute (e.g., as
templates) to the formation of the different structures.

6

mailto:A.J.Blake@Nottingham.ac.uk
http://www.nottingham.ac.uk/chemistry/staff/blake.html

Figures 2 and 3 : hexanuclear cage {[Cu6L6(BF4)](BF4)5}; hexanuclear cage {[Ag6L6(SbF6)](SbF6)5}

Figures 4 and 5 : hexanuclear cage [Ag6L6(BF4)][Co(C2H11B9)2]5 ; dinuclear cation in
(AgL)2[Co(C2H11B9)2]2

Some of the refinement tools available in SHELXL97

(http://shelx.uni-ac.gwdg.de/SHELX/) (G.M. Sheldrick, University of Göttingen, Germany, 1997) [values
in square brackets indicate defaults]

EXYZ atomnames
The same x, y and z parameters are used for all the named atoms.

EADP atomnames
The same isotropic or anisotropic displacement parameters are used for all the named atoms.

PART n sof
The following atoms belong to PART n of a disordered group with the site occupation factor (sof)
shown.

DFIX d s[0.02] atom pairs
The distance pairs of atoms are restrained to a specified target value of d with standard uncertainty s.

SADI s[0.02] atom pairs
The distances between pairs of atoms are restrained to be equal with an effective s.u. of s (cf. DFIX)

SAME s1[0.02] s2[0.02] atomnames
The atoms specified here are linked to the same number of atoms which follow.

FLAT s[0.1] four or more atoms
The named atoms are restrained to lie in a plane.

7

http://shelx.uni-ac.gwdg.de/SHELX/

SUMP c sigma c1 m1 c2 m2 ...
The linear restraint: c = c1*fv(m1) + c2*fv(m2) + ... is applied to the specified free variables.

DELU/SIMU/ISOR
Applies various restraints to anisotropic displacement parameters (not discussed here).

FRAG code[17] a … γ
Enables a fragment to be input using an input cell and coordinates.

FEND
This must immediately follow the last atom of a FRAG fragment.

AFIX n>16
Applies geometry of fragment with this n value.

Example 1: Simple distance restraints in a tetrahedral anion (BF4

–)

The first DFIX line below applies a distance restraint to each of the four equivalent B–F bonded
distances, the second restrains the shape to be a tetrahedron centered on the boron atom by restraining
non-bonded F…F distances to be equal. The structure is shown in Figure 2 and the atom numbering in
Figure 6.

DFIX 1.38 0.01 B F1 B F2 B F3 B F4
DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 F2 F3 F2 F4 F3 F4

Figure 6 : numbering of tetrahedral anion (BF4

–)

This procedure can serve two purposes, the first being to apply a sensible geometry to a single
component. It can also serve another purpose: by defining a sensible geometry for one disorder
component it can improve the definition of a second component. It would then be normal to apply the
same pattern of restraints to this second (and any subsequent) disorder component. This situation is
illustrated below, with the atom identification shown in Figure 7.

8

DFIX 1.38 0.01 B F1 B F2 B F3 B F4
DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 F2 F3 F2 F4 F3 F4

DFIX 1.38 0.01 B F1’ B F2’ B F3’ B F4’
DFIX 2.25 0.02 F1’ F2’ F1’ F3’ F1’ F4’ F2’ F3’ F2’ F4’ F3’ F4'

Figure 7 : numbering of disordered tetrahedral anion (BF4

–)

 It should then be possible to the refine the occupancy of F1 to F4 versus that of F1’ to F4’

Example 2: Geometric restraints for a less common anion

In this example (Figure 3) the anion (SbF6

–) is less common and although we know it to be octahedral we
are unsure of the Sb–F and F…F distances involved. In these circumstances we can exploit the geometric
relationships among the parameters even although we are unsure of their actual values.

There is one Sb–F distance and two F…F distances corresponding to cis and trans dispositions of F.

SADI 0.01 Sb26 F27 Sb26 F28 … Sb26 F32
SADI 0.02 F27 F28 F27 F29 F27 F30 F27 F31 F27 F32 F28 F29 … F31 F32
SADI 0.02 F27 F30 F28 F31 F29 F32

Just as it is important to ensure that any explicit restraints (e.g., distances specified using DFIX) are
sensible, the outcome of the application of any similarity restraints should also be realistic. In this
example the mean Sb–F distance was 1.86 Å, in very good agreement with the results of a subsequent
search of the Cambridge Structural Database which yielded 175 entries with a mean value of 1.85(1) Å.
We did not find any evidence of disorder but the restraints allowed us to refine a sensible geometry for
light atoms (F, Z = 9) in the presence of a much heavier one (Sb, Z = 51) shown in Figure 8.

Figure 8 : Refined SbF6
– molecule

Example 3: An ill-defined tripodal ligand

A schematic view of the ligand appears in Figure 9. The three arms emanating from the central nitrogen
atom are chemically identical and would be expected to exhibit very similar bond distances and valence
angles, but not necessarily the same torsion angles. Poor crystal quality led to a refinement which gave

9

unrealistic bonds and angles and poor agreement between the geometry in different arms: this outcome
simply looked unsatisfactory. The solution was to apply similarity restraints between each chain
involving their bonded distances and valence angles, but no specific values were assigned to any
parameter. Taking the lower chain (in black and numbered C1 to O7) in Figure 9 as the reference group,
we first apply similarity restraints to the red chain on the left numbered C11 to O17.

Figure 9 : tripodal ligand.

SAME 0.01 C1 > O7
C11 ...
N12 …
C13 …
C14 …
C15 …
O16 …
O17 ...

Then we do the same for the upper blue chain numbered C21 to O27.

SAME 0.01 C1 > O7
C21 ...
N22 …
C23 …
C24 …
C25 …
O26 …
O27 ...

The effect of this procedure is to average out the discrepancies between the three chains and achieve a
better result for all three. As in the previous example, the final values for the geometric parameters form
an important criterion for the validity of the procedure.

10

Example 4: A bromide anion disordered within a cavity

In the next example one bromide ion was required to balance the charge within a structure but instead of
one large difference peak a number of difference peaks of moderate height were identified inside a cavity
within the structure. The cavity was much larger than required to accommodate a bromide and there
seemed to be no single preferred site for it. Five of the difference peaks stood out above the rest, so a
model was developed based on these: this model is represented schematically by Figure 10.

Figure 10 : schematic diagram of bromide disordering in a cavity.

Such a situation is likely to cause correlation effects if atom positions, occupancies and displacement
parameters are refined completely freely: however, application of one simple restraint, namely that the
sum of the occupancies must equal unity, was sufficient to overcome this problem. On each atom line
(Br1 … Br5) there is a reference to a free variable which describes the occupancy of that atom; on the
FVAR line, following the overall scale factor (osf) five free variables numbered 2 to 6 represent a starting
occupancy of 0.2 for each bromine component; finally, on the SUMP line there appears the linear
restraint that the sum of the individual occupancies should equal 1.00 with a standard uncertainty of 0.01.

SUMP 1.00 0.01 1 2 1 3 1 4 1 5 1 6

FVAR osf 0.2 0.2 0.2 0.2 0.2

Br1 5 x y z 21
Br2 5 x y z 31
Br3 5 x y z 41
Br4 5 x y z 51
Br5 5 x y z 61

In refinement, the individual occupancies are allowed to vary but they are always subject to this restraint
so that unrealistic values and correlation with displacement parameters can be avoided or minimised. The
validity of the refinement can be judged in several ways, for example by the behaviour of the
displacement parameters and by the standard uncertainties on the individual occupancies: in this case the
criteria were all satisfactory for a model showing unequal occupancies of five sites. [With only two
disorder components the analogous procedure is somewhat simpler, requiring no SUMP instruction and
only a single free variable.]

Example 5: a large structure containing rigid [Co(C2B9H11)2]- anions

This structure is shown in Figure 4. It is a big structure constructed using large anions, several of which
occur in the asymmetric unit. When the structure was refined without restraints there were problems with
the data/parameter ratio and with poor geometry for the anions. It would be possible, either manually or
automatically, to generate multiple DFIX instructions for Co—B, Co—C, B—B, and B—C distances
and to apply similarity restraints between the carbaborane cages: however, this would be complicated and
might still allow the cages to distort. The rigidity of the anions allows a completely different approach to
be adopted, one using constraints rather than restraints. A model for the anion can be taken from a variety

11

12

of sources, including a more precise version in the same structure; a better version from another structure;
a calculated or optimised version; or a typical or average database structure.

Having identified a suitable model, the first step is to import this model into the input file for the
refinement program

FRAG 17 15.72 20.15 20.39 74.8 70.75 86.50
Co 4 x y z...
C1 1 x y z...
C2 1 x y z...
B3 3 x y z...
...
B19 3 x y z...
FEND

Note that the input model is bounded by the FRAG and FEND instructions and that the fragment has a
number (17) which is greater than 16.

This model is then applied to the corresponding parts of the current structure, for example:

AFIX 17
Co1 7 0.33250 0.76245 0.52909 11.000 0.0608 0.1389 =
 0.0396 -0.0183 -0.0212 0.0153
C1 1 0.37668 0.84367 0.54903 11.00000 0.155
C2 1 0.41382 0.84350 0.45796 11.00000 0.089
B3 3 0.31680 0.82455 0.43612 11.00000 0.117
...
B19 3 0.20793 0.79538 0.51437 11.00000 0.138
AFIX 0

Before refinement proceeds this part is idealised to the input model; the AFIX 17 … AFIX 0 sequence is
replaced by a simple rigid group refinement (AFIX 3); the FRAG ... FEND sequence of lines is no longer
required and is not copied to the output model file. For each [Co(C2B9H11)2]- anion the number of
positional parameters is reduced from 69 to 6, the latter number corresponding to three positional and
three orientational parameters for each rigid group. A similar approach was also successful for the
structure shown in Figure 5.

This is a powerful and attractive technique but it can only be applied in certain circumstances. For
example, the 3D matching requirements are stringent and the method cannot be applied to fragments
where there is uncertainty or variability in the positions of any of the constituent atoms. As it is applied as
a constraint, the input model must be completely valid and it is particularly important to check the
program's refinement indicators for any warning of errors or problems.

Conclusion

This article has shown how the careful choice and application of geometric restraints or constraints can
allow acceptable refinement of problematic structures. As small molecule crystallography advances into
larger and/or poorly diffracting structures these tools will be increasingly called upon to facilitate
structure analysis.

Restraints and Constraints in Sir2004

Maria C. Burla1, Rocco Caliandro2, Mercedes Camalli3, Benedetta Carrozzini2, Giovanni L. Cascarano2,
Liberato De Caro2, Carmelo Giacovazzo2,4, Giampiero Polidori1, Riccardo Spagna3
1Dipartimento di Scienze della Terra - Piazza Università, 06100 Perugia, Italy; 2Istituto di
Cristallografia, CNR, Via Amendola 122/o, 70125 Bari , Italy;3Istituto di Cristallografia, CNR, Sezione
di Monterotondo, CP 10, Monterotondo Stazione, 00016 Roma, Italy; 4Dipartimento Geomineralogico,
Università di Bari, Campus Universitario, Via Orabona 4, 70125 Bari, Italy.
E-mail: riccardo.spagna@ic.cnr.it - WWW: http://www.ic.cnr.it/

Introduction

SIR (Semi-Invariant Representation) is a collection of Direct Methods programs for automatic crystal
structure solution based on the Representation Theory1,2. The main elements of this family are Sir923,
Sir974, Sir20025 and Sir2004 (in preparation).

All the programs are equipped with a graphical interface (GUI) to interact with the program. While in the
older programs X11 libraries were used to build the GUI, in the newest version GTK graphic libraries
have been used.

13

mailto:riccardo.spagna@ic.cnr.it
http://www.ic.cnr.it/

14

The main features of the Sir programs are:

• Minimal input information
• Possibility of complete automatism
• Reduced user intervention
• Simple (and powerful) graphic interface
• Run on almost all platforms

Sir92 was the first program, created by the Sir team and distributed to the scientific community, devoted
to the automatic solution of crystal structures by direct methods.

In Sir97, it’s evolution, powerful automatisms and new algorithms were added. Furthermore it was
possible, via an improved graphical interface, the refinement and the analysis of the crystal structure
model found by the program.

Both Sir92 and Sir97 were fast and powerful but their goal was small molecules.

Sir2002 constitutes the first approach of the Sir team to the solution of macromolecules: it is able to
solve, without any user intervention, crystal structure up to 2000 atoms in the asymmetric unit, provided
the data are at atomic resolution (better than 1.2Å). The strategy adopted in Sir2002 was to explore in
sequence, via Direct Space Refinement and automatic Diagonal Least Squares, all the trials until a
solution was found. This procedure, very powerful, was also time consuming particularly for large
structures.

In Sir2004 the use of suitable Figures Of Merit6 at an early stage of the phasing procedure allows to
select the most promising trials. So potentially good solutions are separated from bad ones just after the
Tangent Formula step. Only the most promising trials are submitted to Direct Space Refinement, so
sparing computing time.

The 1.2Å limit on the atomic resolution of the data has been moved, in Sir2004, to 1.4-1.5Å7,8; new
procedures able to attain and highlight the solution in these conditions have been developed.

Refinement of the model

The stage of the process of getting the best model of a crystal structure is to find the values of the atomic
parameters which give the best fit between observed and calculated structure factors. This optimisation
procedure is called refinement and we implemented in Sir2004 (provided that the resolution is sufficient)
the well known and most generally used method of least squares.

The specific features of our refinement are the following.

1) The ability to reduce the full matrix of the normal equations defining any kind of blocks.
2) 18 weighting schemes are available. If the weighting scheme contains adjustable parameters, the

program refines the values to obtain a good distribution of <w∆2> against ⏐F⏐and resolution and
the value of the goodness of fit close to the unit.

3) The program generates constraints for the parameters of atoms on special positions in all space
groups.

4) Automatic or through wizard generation of hydrogen atoms and their contributions are included in
the refinement allowing the positional parameters to ride on the corresponding parent atom.

5) The possibility to impose conditions (constraints) or additional information (restraints).
6) Floating origin is restrained automatically by setting the restrain of the sum of the. appropriate

coordinate
7) Refinement of the Flack parameter to evaluate the absolute configuration.

15

Restraints

With poor data, a simple way to improve the convergence of the atomic parameters is to incorporate
constraints and/or restraints in the refinement. A restraint is a function of the coordinates that is lowest
when the coordinates are “ideal”, and which increases as the coordinates become less ideal. Bond lengths,
angles, etc. are “measurements” that must be fit by the model and can be considered as supplementary
observations. The minimization function becomes:

where gobs is a
function of the coordinates and gideal is his ideal value, wq is the 1/σ2 multiplied by the square of the of the
goodness of fit for the reflection data.

The following restraints are available.

1) Geometrical conditions: bond distances, bond angles, planarity. Clicking on the item in the
“Manage restraints” window the user chooses the requested restraints and then he has to select the
atoms involved by mouse click. The planarity of a group of atoms is obtained by restraining their
distances from the least squares plane of the group.

2) The restraint of the sum of selected parameters could be useful in case of disorder, as well as in
the non centrosymmetric space groups with floating origin, where this restraints are generated
automatically by the program.

3) Limit restraint allows to prevent excessive shifts for some ill-conditioned atomic parameters.

16

The list of defined restraints are shown in the proper window and the user can delete or add new restraints
at any moment of the process of refinement.

Constraints

A constraint is a mathematical relationship which imposes predefined conditions between atoms of the
crystal structure or part of it. This technique has the advantage to reduce the number of parameters to
refine, particularly useful when the ratio between atomic parameters and measured intensities is low. The
atoms involved have to be regularized to a ideal model structure of known geometry (for example,
benzene ring) and this rigid body is refined as compact unit assuming three translational parameters and
three angles which define its orientation.

The method used to compute the coordinates of the model follows the approach described by Arnott &
Wonacott (1966). In order to build the internal Cartesian coordinates, the program uses the ASCII file
Sir2004.gru which contains models described using the Z-matrix format. The user can add models
following the rules specified in the web site:
http://www.cineca.it/manuali/Unichem/5500/5500_248.html

Example of the file Sir2004.gru

Th
the
pr

e user has to indicate the label of the model contained in the Sir2004.gru file (benz in the example) and
 corresponding labels of the atoms. In the current version, the graphic interface is in progress and the

ogram get this information via input file.

17

http://www.cineca.it/manuali/Unichem/5500/5500_248.html

Example of input file

Si

Re

 1
 2
 3

 4

 5

6 -

 7

 8

r2004 reads the following input file to execute the refinement applying these constraints:

ferences

- Giacovazzo, C. (1977). Acta Cryst., A33, 933-944.
- Giacovazzo, C. (1980). Acta Cryst., A36, 362-372.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G. & Camalli, M. (1994). J. Appl.

Cryst. 27,435.
- Altomare, A., Burla, M.C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. &

Spagna, R. (1999). J. Appl. Cryst., 32, 115-119.
- Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl.

Cryst., 36, 1103.
 Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl.

Cryst., 37, in press.
- Burla, M.C., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C. & Polidori, G. (2003). Acta Cryst. A59, 245-

249.
- Burla, M.C., Carrozzini, Caliandro, R., Cascarano, G.L., De Caro, L., Giacovazzo, C. & Polidori, G. (2003). Acta Cryst.

A59, 560-568

18

19

cctbx news: Geometry restraints and other new features

Ralf W. Grosse-Kunstleve, Pavel V. Afonine and Paul D. Adams,
Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, One Cyclotron Road,
BLDG 4R0230, Berkeley, California, 94720-8235, USA - Email : RWGrosse-Kunstleve@lbl.gov ; WWW:
http://cci.lbl.gov/

1: Introduction

The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source
component of the Phenix project (http://www.phenix-online.org/). Currently we are finalizing an initial
version of the Phenix refinement procedures. The emphasis of this article is an introduction to the
underlying open-source libraries for the handling of geometry restraints, molecular mask calculations,
bulk-solvent correction, likelihood-based target functions for crystallographic refinement, and the relative
scaling between these target functions and the geometry restraints.

Some of the functionality covered in this newsletter is implemented in the new top-level mmtbx module
("macro-molecular toolbox") of the cctbx project. Due to technical reasons the mmtbx source code is not
currently hosted at the SourceForge site even though it is covered by the same open license as the rest of
the cctbx project. However, the full mmtbx sources are included in the bundles available at the
http://cci.lbl.gov/cctbx_build/ download site. For the future we are planning to move the mmtbx code to
the SourceForge site.

In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64
Unix). On recent machines the installation requires significantly less than one minute of time. Even on the
slowest machine available to us (SGI O2, R5000, 300MHz) a binary installation takes less than three
minutes without requiring any manual intervention. A cctbx installation is non-intrusive and does not
require system privileges. Traceless removal is as easy as running rm -rf or dragging a single folder to
the Recycle Bin. Nobody will know you did it!

All example scripts shown below were tested with cctbx build 2004_08_05_0113.

2: from cctbx import geometry_restraints

Commonly refinement programs support inclusion of prior chemical knowledge such as bond lengths and
bond angles via geometry restraints. The cctbx implementation of six types of geometry restraints is
located in the cctbx.geometry_restraints module. The restraint types available are:

• bond
• nonbonded repulsion
• angle
• dihedral (same as torsion)
• chirality
• planarity

The cctbx.geometry_restraints module is designed as a uniform library to support both small-
molecule and macro-molecular refinement. In general the requirements for small-molecule and macro-
molecular refinement are quite different. For example, some macro-molecular refinement programs have
limited or no support for symmetry bonds (i.e. bonds to atoms generated by symmetry), or bonds
involving sites on special positions. This is not surprising because of the 27141 pdb*.ent files found at

mailto:RWGrosse-Kunstleve@lbl.gov
http://cci.lbl.gov/
http://cctbx.sourceforge.net/
http://www.phenix-online.org/
http://cci.lbl.gov/cctbx_build/
http://cci.lbl.gov/cctbx_build/

20

ftp.rcsb.org on July 27, 2004, only 256 include LINK records defining symmetry bonds (out of a total
of 7078 files with LINK records), and only 534 files include heavy atoms on special positions (out of a
total of 2746 files with atoms on special positions; most are water molecules). This means a little less
than 98% of all macro-molecular structures can be refined with a program that does not correctly handle
symmetry bonds or special positions.

In contrast, special positions and symmetry bonds are the norm in small-molecule crystallography, not the
exception. The is particularly true for inorganic materials. In theory, a system that handles geometry
restraints for the refinement of small molecules and inorganic materials will therefore immediately be
able to handle all symmetry aspects of 100% of all macro-molecular structures. In practice however many
small-molecule programs do not lend themselves to be used for macro-molecular work. This is due to
fairly trivial nuisances such as unsuitable compiled-in limits on the number of atoms or bonds that can be
processed, or more seriously, use of algorithms that scale with the square of the number of atoms and
become prohibitively slow for large macro-molecular structures. Even more seriously, aspects that are
crucial for the handling of macro-molecular structures may not be covered at all, such as nonbonded
interactions, dihedral or chirality restraints.

The cctbx.geometry_restraints module was designed under the "completeness and correctness first,
optimize later" paradigm. The handling of all symmetry aspects of bonded and nonbonded pair
interactions is as complete as one expects to find in a small-molecule application, but the algorithms and
data structures are optimized for handling a large number of atoms. I.e. the macro-molecular field will
benefit from the rigorous treatment of symmetry, and the small-molecule field will benefit from speed
increases. Owing to the facilities provided by the modern programming languages used (Python and
C++), compiled-in limits are a problem of the past. The memory for all data is dynamically allocated.

2.1: cctbx.geometry_restraints.bond

Given the Cartesian coordinates of two bonded sites, the ideal bond length, and a weight, we can run the
following Python code:

from cctbx import geometry_restraints
bond = geometry_restraints.bond(
 sites=[(1,2,3),(2,3,4)],
 distance_ideal=2,
 weight=10)
print "distance_model:", bond.distance_model
print "delta:", bond.delta
print "residual:", bond.residual()
print "gradients:", bond.gradients()

Output:

distance_model: 1.73205080757
delta: 0.267949192431
residual: 0.717967697245
gradients: ((3.0940107675850306, 3.0940107675850306, 3.0940107675850306),
(-3.0940107675850306, -3.0940107675850306, -3.0940107675850306))

The bond class performs all the basic computations required for gradient-driven refinement. The
residual() is the contribution of this bond to the total "energy" of the geometry term of the target
function and defined in the usual way (e.g. Hendrickson, 1985) as weight * bond.delta**2, where
bond.delta is the difference bond.distance_ideal - bond.distance_model.

21

2.2: cctbx.geometry_restraints.bond_simple_proxy

Of course, during structure refinement the coordinates are changed. Therefore we need a data structure, in
new speak an object, with some type of reference to the bonded sites along with distance_ideal and
weight. We call this object bond_simple_proxy and it works like this:

from cctbx import geometry_restraints
from cctbx.array_family import flex
sites_cart = flex.vec3_double([
 (1,2,3),
 (2,3,4),
 (1,3,5)])
bond_proxy_1 = geometry_restraints.bond_simple_proxy(
 i_seqs=[0,1],
 distance_ideal=2,
 weight=10)
bond_proxy_2 = geometry_restraints.bond_simple_proxy(
 i_seqs=[1,2],
 distance_ideal=1.8,
 weight=20)
for bond_proxy in [bond_proxy_1, bond_proxy_2]:
 bond = geometry_restraints.bond(
 sites_cart=sites_cart,
 proxy=bond_proxy)
 print "sites:", bond.sites
 print "residual:", bond.residual()

Output:

sites: ((1.0, 2.0, 3.0), (2.0, 3.0, 4.0))
residual: 0.717967697245
sites: ((2.0, 3.0, 4.0), (1.0, 3.0, 5.0))
residual: 2.97662350914

sites_cart is an array of Cartesian coordinates for three sites. The i_seq (Index into SEQuence of
sites) are the references mentioned above; they are simply integer indices into the sites_cart array. A
bond_simple_proxy is essentially a bond with one level of indirection. We can turn a
bond_simple_proxy into a bond by providing the sites_cart array referenced to by the i_seq. Then
we can use the methods of the bond object to obtain the desired information as shown before, for example
the residual() as in this example or the gradients() as in the previous example.

2.3: cctbx.geometry_restraints.shared_bond_simple_proxy

In all likelihood we will have to handle a considerable number of bonds. Therefore the next data structure
we need is an array of bond proxies. The previous example can be rewritten to use "shared" arrays with
bond proxy objects as the elements:

22

bond_proxies = geometry_restraints.shared_bond_simple_proxy()
bond_proxies.append(geometry_restraints.bond_simple_proxy(
 i_seqs=[0,1],
 distance_ideal=2,
 weight=10))
bond_proxies.append(geometry_restraints.bond_simple_proxy(
 i_seqs=[1,2],
 distance_ideal=1.8,
 weight=20))
for bond_proxy in bond_proxies:
 bond = geometry_restraints.bond(
 sites_cart=sites_cart,
 proxy=bond_proxy)

If the number of bonds is very large as in the case of macro-molecular structures, the Python for loop
will become a performance bottleneck. Python is a dynamically typed language and therefore very
convenient to use, but the convenience is payed for with a runtime penalty of one to two orders of
magnitude. The remedy is to reimplement the Python loop in C++ and to do the vector operation at the
speed of a compiled language. Using Boost.Python (http://www.boost.org/libs/python/doc/, see also
Grosse-Kunstleve & Adams, 2003), it is easy to make the C++ function available in Python. In this way
we can, for example, obtain all bond.delta values with a single call from Python to C++:

bond_deltas = geometry_restraints.bond_deltas(
 sites_cart=sites_cart,
 proxies=bond_proxies)
print list(bond_deltas)

Output:

[0.2679491924311227, 0.38578643762690501]

The idea behind this approach is similar to the idea behind vector computers. Python is the slow but
general scalar unit, C++ the fast but restricted vector unit. Filling the array of bond proxies is similar to
loading the vector unit and the call from Python to C++ is the vector operation. More on the subject of
combining Python and C++ can by found in the Newsletter No. 1 in this series (Grosse-Kunstleve &
Adams, 2003).

As an aside, the array of bond proxies is called a "shared" array because it may have multiple owners. The
lifetime of shared arrays is controlled by a reference count. If the reference count goes to zero (because all
owning references go out of scope or are deleted explicitly) the memory for the array is automatically
deallocated. This is one of the fundamental mechanisms used by Python and C++ for making memory
management simple (compared to FORTRAN) and at the same time safe (compared to C).

3: Symmetry: Friend or Foe?

The astute reader will have noticed that symmetry was not mentioned in the introduction to the bond,
bond_simple_proxy, and shared_bond_simple_proxy objects. How does the symmetry come into
play? The simple part of the two latter symbols is already a hint that there must be something more
complex, and that is of course the symmetry. While symmetry is always nice to look at and therefore
appears to be a friend, when it comes to writing algorithms for the handling of symmetry it quickly
becomes apparent that symmetry is a pretty bad foe. Symmetry introduces singularities and each
singularity requires special attention. For example, the 230 crystallographic space groups can be
understood as 230 unique singularities, each of which has a different set of singular positions known as
special positions. Needless to say, each singularity requires a name or number and therefore we have
space group symbols and numbers, Wyckoff tables, Wyckoff letters, site symmetry symbols, etc., etc. As
a rule of thumb, the source code required for handling a problem complete with symmetry is at least ten

http://www.boost.org/libs/python/doc/

23

times the amount of source code required for the "simple" case. The handling of symmetry pair
interactions and pair interactions involving sites in special positions is, unfortunately, not an exception.

We use the term pair interaction with reference to both bonded and nonbonded interactions. It comes as a
little relief that the handling of bonded and nonbonded pair interactions is very similar. The main
difference is the function used to compute the contributions to the total energy term for the geometry. In
the case of bonded interactions it is the simple harmonic function weight * bond.delta**2, in the case
of nonbonded interactions it is a more involved function of exponentials. However, up to the point of
determining the distance_model required in both cases the algorithms are identical.

3.1: cctbx.crystal.direct_space_asu.asu_mappings

One important term we forgot to mention in the list of names and numbers required for the singularities
introduced by symmetry is that of asymmetric unit. Before we can introduce symmetry pair interactions
we have to get acquainted with the cctbx.crystal.direct_space_asu.asu_mappings class. The
development of this class is based on the work published in the Newsletter No. 2 in this series (Grosse-
Kunstleve et al., 2003). The web pages at http://cci.lbl.gov/asu_gallery/ are available for viewing the
shapes of the standard asymmetric units as defined in the International Tables for Crystallography,
Volume A. These shapes play a fundamental role in all cctbx algorithms involving pair interactions.
Pair interactions are commonly considered up to a certain cutoff distance, for example a maximum bond
length when searching for bonds, or a maximum nonbonded distance when searching for nonbonded
interactions. A fundamental consideration is that all pair interactions can be mapped by symmetry into the
shape of the standard asymmetric unit expanded by a buffer region equivalent to the chosen cutoff
distance. Let's dig out the simple quartz_structure introduced in the Newsletter No. 1 to see how this
works in practice:

from cctbx import xray
from cctbx import crystal
from cctbx.array_family import flex
quartz_structure = xray.structure(
 crystal_symmetry=crystal.symmetry(
 unit_cell=(5.01,5.01,5.47,90,90,120),
 space_group_symbol="P6222"),
 scatterers=flex.xray_scatterer([
 xray.scatterer(
 label="Si",
 site=(1/2.,1/2.,1/3.),
 u=0.2),
 xray.scatterer(
 label="O",
 site=(0.197,-0.197,0.83333),
 u=0)]))
quartz_structure.show_summary().show_scatterers()
asu_mappings = quartz_structure.asu_mappings(buffer_thickness=2)
print "n_sites_in_asu_and_buffer:", asu_mappings.n_sites_in_asu_and_buffer()

The second to last line is a high-level interface provided by the xray.structure class for performing the
process mentioned in the previous paragraph. First, the standard asymmetric unit is determined via lookup
in the "reference file" introduced in Newsletter No. 2 and, if necessary, a change-of-basis transformation
from the reference setting of the space group symmetry to the given setting (in the example the given
setting is already the reference setting). Next, the asymmetric unit is expanded by moving the facets 2 Å
out to generate the buffer region. Finally the space group symmetry is applied to the sites in order to fill
the asymmetric unit including the buffer region. The end result is an instance of the class
cctbx.crystal.direct_space_asu.asu_mappings. The output of running the example is:

http://cci.lbl.gov/asu_gallery/

24

Number of scatterers: 2
At special positions: 2
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120)
Space group: P 62 2 2 (No. 180)
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso
Si Si 3 (0.5000 0.5000 0.3333) 1.00 0.2000
O O 6 (0.1970 -0.1970 0.8333) 1.00 0.0000
n_sites_in_asu_and_buffer: 20

To understand the workings of the asu_mappings object we start with the asu_mappings.mappings()
array provided by the object. For each scatterer in our quartz_structure there is one entry in the
mappings array:

assert asu_mappings.mappings().size() == quartz_structure.scatterers().size()
for mappings in asu_mappings.mappings():
 print type(mappings), len(mappings)

Output:

<type 'tuple'> 3
<type 'tuple'> 17

This tells us that each element of the asu_mappings.mappings() array is a standard Python tuple, i.e. a
list-like sequence of Python objects. We also learn that the first tuple has 3 elements and the second tuple
has 17 elements. Each element represents exactly one site in the asymmetric unit or the buffer region. The
first element of each tuple is always for the site in the asymmetric unit; by definition there can only be
one. All following elements of each tuple represent sites in the buffer region. I.e. in this case there are 2
Si atoms in the 2 Å buffer region and 16 O atoms. To find out where they are we can use other facilities
provided by the asu_mappings object. To keep the output short we concentrate on the 3 mappings for the
Si atom:

for mapping in asu_mappings.mappings()[0]:
 print "i_sym_op:", mapping.i_sym_op()
 print "unit_shifts:", mapping.unit_shifts()
 print "symmetry operation:", asu_mappings.get_rt_mx(mapping)
 print

Output:

i_sym_op: 2
unit_shifts: (0, 0, -1)
symmetry operation: y,-x+y,z-1/3

i_sym_op: 0
unit_shifts: (0, 0, 0)
symmetry operation: x,y,z

i_sym_op: 1
unit_shifts: (1, 0, -1)
symmetry operation: x-y+1,x,z-2/3

Each mapping object stores the number of the symmetry operation and the unit shifts that were used to
map the original site to the site in the asymmetric unit or the buffer region. To enforce consistency, a
complete copy of the symmetry operations is stored inside the asu_mappings object. This is enables us to
use asu_mappings.get_rt_mx(mapping) to compute the final symmetry operations giving the mapping
object. ("rt_mx" stands for "rotation-translation matrix").

25

3.2: cctbx.crystal.neighbors_fast_pair_generator

We know that the silicon atoms in the quartz_structure are covalently connected to the oxygen atoms
and that the Si-O bond distance is around 1.6 Å. This is how we find the bonds:

pair_generator = crystal.neighbors_simple_pair_generator(
 asu_mappings,
 distance_cutoff=1.7)
for pair in pair_generator:
 print pair.i_seq, pair.j_seq, pair.j_sym, pair.dist_sq**.5

Output:

0 1 0 1.61598604691
0 1 1 1.61598604691
0 1 12 1.61598604691
0 1 15 1.61598604691
1 0 1 1.61598604691

The pair_generator is a Python iterator that performs a simple-minded search with approximately
N*N/2 iterations for all pair interactions within the given distance_cutoff of 1.7 Å, where N is the
number of atoms. At each iteration we obtain a pair object with integer references into the
asu_mappings.mappings() array as introduced in the previous section. The indices pair.i_seq and
pair.j_seq are indices into the asu_mappings.mappings() array. The index pair.j_sym is an index
into the asu_mappings.mappings()[pair.j_seq] tuple (see previous section). To avoid redundancies,
only bonds that emanate from within the asymmetric unit are considered. Therefore we do not need a
corresponding i_sym index; it is always 0. I.e. the three integer indices are sufficient to uniquely define a
bond based on the asu_mappings object.

Alternatively we could generate the same list of pairs with the "fast" pair generator:

pair_generator = crystal.neighbors_fast_pair_generator(
 asu_mappings,
 distance_cutoff=1.7)

This alternative pair generator is designed for structures with a large number of sites. The interfaces of the
simple and the fast pair generators are identical, but internally the fast generator is much more complex.
The asymmetric unit including the buffer region is subdivided into cubes with a vertex length equivalent
to distance_cutoff. In the search for pair interactions involving a given pivot site, only the cube of the
pivot site and the 26 surrounding cubes have to be considered. The average number of sites per cube is
approximately independent of the size of the structure. For a large number of sites the search time will
therefore scale approximately linearly with the number of cubes instead of quadratically with the number
of sites. This leads to dramatic increases in speed. For example (Linux, Xeon 2.8GHz):

number of atoms time simple search time fast search
 3500 (gere) 1.6 seconds 0.1
 59000 (groel) 377.4 1.5

In practice there is no good reason for using the simple version of the pair generator. The main reason for
keeping it in the library is to support a regression test that validates the fast generator.

26

3.3: cctbx.crystal.pair_asu_table

The cctbx.crystal.pair_asu_table is the center piece of the cctbx system for the handling of pair
interactions involving symmetry. The internal process_pair member function of this C++ extension
class is the heart of the center piece. It is responsible for generating symmetrically equivalent pair
interactions and for the removal of redundant interactions. A full description of the algorithm
implemented by the process_pair function is beyond the scope of this article even though the C++
source code comprises only 41 lines (see file cctbx/include/cctbx/crystal/pair_tables.h).
However, the following example demonstrates the most important features:

pair_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings)
pair_asu_table.add_all_pairs(distance_cutoff=1.7)

The pair_asu_table.add_all_pairs(distance_cutoff=1.7) statement uses the fast pair generator as
described in the previous section. When the first pair is processed by the process_pair function, the site
symmetries of the two sites involved are applied to generate all symmetrically equivalent pairs. For the
simple quartz structure, this step will already generate all pairs and add them to the pair_asu_table
object. The pairs subsequently produced by the pair generator are found by lookup in the internal table
and no further processing is necessary. At this stage the pair_asu_table.table() object managed by
the pair_asu_table object will hold the data:

pair_asu_table.show()

Output:

i_seq: 0
 j_seq: 1
 j_syms: [0, 1, 12, 15]
i_seq: 1
 j_seq: 0
 j_syms: [0, 1]

pair_asu_table.table() is the most deeply nested data structure in the entire cctbx. In Python terms it
is a list of dictionaries associating integers with lists of lists. If this appears overly complicated consider
Einstein's famous quote: "Make everything as simple as possible, but not simpler." We are certain that
pair_asu_table.table() is as simple as possible because each level of nesting represents a clear
concept necessary to fully characterize symmetry pair interactions:

• The outermost list holds one entry per atom. The i_seq index is implied.

• Each entry is a dictionary. The keys are the j_seq indices.

• The value corresponding to each j_seq index is a list of groups of j_sym indices.

• The interactions defined by the j_sym indices in each group are symmetrically
equivalent.

Since the interactions are fully characterized it is now very simple to extract the interactions unique under
symmetry. Since we are not concerned about the directionality of the pair interactions (i.e. A-B is the
same as B-A) we only have to consider interactions with i_seq <= j_seq, and we only need the first
element from each group of symmetrically equivalent interactions. This procedure is implemented as the
extract_pair_sym_table method of pair_asu_table:

pair_sym_table = pair_asu_table.extract_pair_sym_table()
pair_sym_table.show()

27

Output:

i_seq: 0
 j_seq: 1
 -y,x-y,z-1/3
i_seq: 1

This shows that the quartz structure has only one unique Si-O bond under symmetry.
An important point to note is that pair_sym_table is, in contrast to pair_asu_table, independent of the
asu_mappings object; hence the naming. pair_sym_table is therefore suitable for communicating
connectivity between algorithms that may require different asu_mapping objects due to shifts in
coordinates or modified distance cutoffs. Here is how we can re-generate a new pair_asu_table from a
pair_sym_table:

new_asu_mappings = quartz_structure.asu_mappings(buffer_thickness=5)
new_pair_asu_table = crystal.pair_asu_table(asu_mappings=new_asu_mappings)
new_pair_asu_table.add_pair_sym_table(sym_table=pair_sym_table)
new_pair_asu_table.show()

Output:

i_seq: 0
 j_seq: 1
 j_syms: [0, 3, 55, 68]
i_seq: 1
 j_seq: 0
 j_syms: [0, 8]

In this case the j_syms have changed compared to the output of pair_asu_table.show() because the
buffer region of new_pair_asu_table is larger compared to that of the initial pair_asu_table.
The new iotbx.show_distances command provides an easy to use interface to the core functionality
described in this section. This command reads files in the simple format introduced by the kriber
program (http://www.crystal.mat.ethz.ch/Software/Kriber). For example:

*quartz

P 62 2 2
 5.01 5.47
Si 0.5000 0.5000 0.3333
O 0.1970 -0.1970 0.8333

The full command is:

iotbx.show_distances quartz_structure --distance_cutoff=1.7

Output:

strudat tag: quartz

Number of scatterers: 2
At special positions: 2
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120)
Space group: P 62 2 2 (No. 180)
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso
Si Si 3 (0.5000 0.5000 0.3333) 1.00 0.0000
O O 6 (0.1970 -0.1970 0.8333) 1.00 0.0000

http://www.crystal.mat.ethz.ch/Software/Kriber

28

Si(1): pair count: 4 << 0.5000, 0.5000, 0.3333>>
 O(2): 1.6160 (0.1970, 0.3940, 0.5000)
 O(2): 1.6160 sym. equiv. (0.3940, 0.1970, 0.1667)
 O(2): 1.6160 sym. equiv. (0.8030, 0.6060, 0.5000)
 O(2): 1.6160 sym. equiv. (0.6060, 0.8030, 0.1667)
O(2): pair count: 2 << 0.1970, -0.1970, 0.8333>>
 Si(1): 1.6160 (0.0000, -0.5000, 0.6667)
 Si(1): 1.6160 sym. equiv. (0.5000, 0.0000, 1.0000)

Pair counts: [4, 2]

The implementation of this command can be found in the file
 iotbx/iotbx/command_line/show_distances.py.

3.4: Nonbonded exclusions

In the refinement of macro-molecular structures it is common to use nonbonded pair interactions, e.g.
Lennard-Jones potentials or empirical "repulsive force fields." For sites that are not bonded but are within
a certain distance (typically around 7 Å) a corresponding nonbonded energy term is added to the total
energy of the geometry. Experience shows that it is highly advantageous to exclude certain nonbonded
interactions. Consider this simple molecular fragment:

A-B-C
 |
 E-D

The lines indicate bonded interactions. These are often referred to as "1-2" interactions. In our fragment
we find 1-2 interactions between A-B, B-C, C-D, and D-E. The nonbonded interactions A-C, B-D, and C-
E are commonly referred to as 1-3 interactions, and the nonbonded interaction A-D is called a 1-4
interaction. In general, 1-2 and 1-3 interactions are excluded from the nonbonded energy term, and 1-4
interactions are attenuated.

When setting up the nonbonded energy calculations we have to find the 1-3 and 1-4 interactions based on
the pre-defined bonded (1-2) interactions. If space group symmetry is not involved this is very
straightforward. However, if symmetry bonds are to be considered the situation becomes much more
complex again. The algorithm required is known as "coordination sequence algorithm" and is commonly
used in material science, in particular zeolite research (e.g. Brunner & Laves, 1971, Grosse-Kunstleve et
al., 1996). See also the Atlas of Zeolite Framework Types available at http://www.iza-structure.org/).

3.5: cctbx.crystal.coordination_sequence

It is surprisingly easy to write a complete coordination sequence algorithm based on the pair_asu_table
object discussed before. A simple_and_slow reference implementation can be found in the
cctbx.crystal.coordination_sequences module. The complete function comprises just 36 lines of
Python code. We can use this short function to easily compute the coordination sequences for the Si and
O atoms in our quartz_structure:

import cctbx.crystal.coordination_sequences
term_table = crystal.coordination_sequences.simple_and_slow(
 pair_asu_table=pair_asu_table,
 max_shell=10)
for terms in term_table:
 print terms

http://www.iza-structure.org/

29

Output:

[1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80]
[1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156]

The first list of terms is for the Si atom, the second for the O atom. The first term (in "shell" 0) is always
1. The 1 Si is bonded to 4 O atoms (shell 1), which are bonded to 4 new Si atoms (shell 2). Following all
the bonds from these Si atoms to the next O atoms leads to 12 new O atoms (shell 3), from there to 12
new Si atoms (shell 4), etc.

In the mathematics of coordination sequences (e.g. Grosse-Kunstleve et al., 1996) it is most natural to
index the coordination shells in the way shown above. Unfortunately this is not directly compatible with
the nomenclature of 1-2, 1-3, and 1-4 interactions used in the macro-molecular field. The interactions
accounted for in shell 1 are the 1-2 interactions, shell 2 accounts for the 1-3 interactions, and shell 3 for
the 1-4 interactions.

To find the nonbonded exclusions we do have to do a little more work than just counting the number of
interactions as is done by the simple_and_slow function. For each shell we have to keep a table of the
interactions found. A much faster, optimized C++ implementation of the coordination sequence algorithm
with interfaces for both simple counting and the generation of interaction tables is available in the file
cctbx/include/cctbx/crystal/coordination_sequences.h. The Python interface to the simple and
fast counting algorithm is very similar to that for the simple_and_slow interface:

term_table = crystal.coordination_sequences.simple(
 pair_asu_table=pair_asu_table,
 max_shell=10)
crystal.coordination_sequences.show_terms(
 structure=quartz_structure,
 term_table=term_table)

Output:

Si [1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80]
O [1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156]
TD10: 456.33

Here we make use of the show_terms function which shows the scatterer labels along with each list of
terms and also the TD10, a measure of the "topological density" commonly used in the zeolite field (see
http://www.iza-structure.org/).

The tabulation of the 1-3 and 1-4 interactions needed for the nonbonded exclusions is equally easy:

shell_asu_tables = crystal.coordination_sequences.shell_asu_tables(
 pair_asu_table=new_pair_asu_table,
 max_shell=3)
print shell_asu_tables

Output:

(<cctbx_crystal_ext.pair_asu_table object at 0x82a2bec>,
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c34>,
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c7c>)

The result is a Python tuple with three pair_asu_table objects for the 1-2, 1-3, and 1-4 interactions. The
first pair_asu_table in the tuple is simply a reference to the original pair_asu_table defining the
bonds. Keeping the original table together with the derived tables simplifies subsequent algorithms.

http://www.iza-structure.org/

30

As an aside, the 36 lines of the simple_and_slow Python function have turned into 278 lines of C++
code in coordination_sequences.h. The size comparison is not quite fair because the C++
implementation works for both simple counting and tabulation of nonbonded exclusions, but a doubling
or tripling of the lines of source code in the conversion from a Python reference implementation to the
final C++ implementation is the norm. Unfortunately this is what we have to cope with until higher-level
languages with smarter optimizers are a reality.

4: Putting everything together: cctbx.geometry_restraints.manager

The shell_asu_tables object of the previous section is the key data structure for the computation of the
bond proxies and the nonbonded proxies. However, there is still much more to manage: we need to define
the bond parameters (ideal distances and weights), nonbonded "energy types" and VdW (Van der Waals)
distances, angle, dihedral, chirality and planarity restraints. Clearly we need a professional manager. It is
implemented in the cctbx.geometry_restraints.manager module. The manager constructor acts as a
tool for grouping all information required for the geometry restraints calculations:

class manager:

 def __init__(self,
 crystal_symmetry=None,
 site_symmetry_table=None,
 bond_params_table=None,
 shell_sym_tables=None,
 nonbonded_params=None,
 nonbonded_types=None,
 nonbonded_distance_cutoff=5,
 nonbonded_buffer=1,
 angle_proxies=None,
 dihedral_proxies=None,
 chirality_proxies=None,
 planarity_proxies=None):

A self-contained, reasonably simple example (266 lines of Python) for setting up all data structures for the
bonded and nonbonded calculations can be found in the file
cctbx/cctbx/geometry_restraints/distance_least_squares.py. This script performs a distance
least squares minimization of zeolite geometries. It was developed primarily as a regression test, but
covers almost all the functionality of the pioneering DLS-76 program
(http://www.crystal.mat.ethz.ch/Software/DLS76). The only major DLS-76 feature missing is the
refinement of unit cell parameters. The new iotbx.distance_least_squares command provides a
simple interface to the script. In our internal test we use this command to minimize the geometries of the
complete Atlas of Zeolite Framework Types (152 structures) in less than 40 seconds (Linux, Xeon
2.8GHz). This includes the automatic search for Si-Si bonds, the generation of oxygen atoms at the mid-
points of the Si-Si bonds, the generation of angle restraints which are parameterized as pseudo O-O and
Si-Si bonds, the generation of nonbonded interactions, and a two-stage minimization, first without a
repulsive force field and in the second pass with the repulsions turned on. The successful completion of
these minimizations gives us a high confidence that our system for the refinement of bonded and
nonbonded pair interactions is complete and free of errors.

4.1: angle, dihedral, chirality, planarity restraints

The angle, dihedral, chirality, and planarity restraints are currently implemented in the "simple" version
only, without treatment of symmetry. For our purposes this is fully sufficient and it may even be
sufficient in general because angle restraints for small-molecule crystallography are often parameterized
as pseudo bonds (e.g. DLS-76, see previous section). The three other restraint types are not very common
in small-molecule crystallography. However, our framework is very open and symmetry-aware restraint
types could probably be added without disturbing the overall organization of the

http://www.crystal.mat.ethz.ch/Software/DLS76

31

cctbx.geometry_restraints module. To give an example we show how to work with angle restraints:

from cctbx import geometry_restraints
angle = geometry_restraints.angle(
 sites=[(1,2,3),(2,3,4),(5,4,3)],
 angle_ideal=120,
 weight=1)
print "angle_model:", angle.angle_model
print "delta:", angle.delta
print "residual:", angle.residual()
print "gradients:", angle.gradients()

Output:

angle_model: 121.482154105
delta: -1.48215410529
residual: 2.19678079184
gradients: ((-69.337848889979, 1.2765767806090013e-14, 69.337848889979028),
 (63.034408081799093, -25.213763232719657, -113.4619345472384),
 (6.3034408081799089, 25.213763232719643, 44.124085657259371))

Comparison with the first example for defining a bond restraint shows that the interfaces are very similar.
Essentially we just need three sites instead of two, and we have to write angle everywhere instead of
bond and distance. The higher level support for proxies, arrays of proxies and vector operations on these
arrays is also very similar. The similarities extend to dihedral and chirality restraints where we need to
specify four sites instead of two or three. Planarity restraints are slightly different because we have to
deal with a variable number of sites and each site is associated with an individual weight:

from cctbx import geometry_restraints
from cctbx.array_family import flex
sites_cart = flex.vec3_double([
 (-6.9, 1.3, -1.4),
 (-4.9, -1.0, 0.1),
 (-6.9, -0.6, -1.7),
 (-4.8, 0.9, 0.5)])
weights = flex.double([1, 2, 3, 4])
planarity = geometry_restraints.planarity(
 sites=sites_cart,
 weights=weights)
print "deltas:", list(planarity.deltas())
print "residual:", planarity.residual()
print "gradients:", list(planarity.gradients())

We don't show the rather uninteresting output. The difference to the other restraint types is that we get an
array of deltas instead of just one value. However the important residual() and gradient() functions
fit into the common framework.

5: Setting up restraints using the CCP4 Monomer Library

The CCP4 (http://www.ccp4.ac.uk/) Monomer Library is a comprehensive database of protein, nuclear
acid and hetero-compound geometries. We are grateful for CCP4 to give us permission to use this library.
The new mmtbx top-level module of the cctbx project (see Newsletter No. 1 for information on the
overall organization of the cctbx project) includes functions for reading the monomer library files as
distributed by CCP4, and to generate the geometry proxies introduced above for a given PDB file
(http://www.rcsb.org/). The end result is a cctbx.geometry_restraints.manager.manager instance
that is completely independent of the Monomer Library, the PDB file, or any other file format. The
manager object is then used in the same minimization procedure employed by the
distance_least_squares.py script introduced before (the minimizer is implemented in
cctbx.geometry_restraints.lbfgs). This complete separation of file formats and core computations

http://www.ccp4.ac.uk/
http://www.rcsb.org/

32

makes it possible to support any other library defining geometry restraints. E.g. for the future we are
planning to add support for CNS (http://cns.csb.yale.edu/) topology and parameter files.

Currently the code for working with the CCP4 Monomer Library resides in the
mmtbx/mmtbx/stereochemisty directory. It is still being worked on in order to cleanly support PDB
files with alternate conformations and it may be moved to a different place. We will describe the final
result in the next newsletter.

6: Bulk solvent correction and scaling

It is well known that macromolecular crystals contain a large amount of disordered solvent reaching
sometimes more than 70% of the unit cell volume. The scattering contribution of this solvent level
becomes significant at low resolution starting from about 6.0 Å. There are several aspects where the
appropriate modeling of low resolution data is of great importance: electron density map analysis
(Urzhumtsev, 1991), crystallographic refinement (Kostrewa, 1997), precise calculation of electrostatic
properties of molecules (Lecomte, 1999), and the translation search part of structure solution by the
Molecular Replacement method (Fokine & Urzhumtsev, 2002a). Basically two bulk solvent models are
currently in use by popular crystallographic packages: the exponential scaling model (Moews &
Kretsinger, 1975; Tronrud, 1997) and the flat model (Phillips, 1980; Jiang & Brunger, 1994). The
exponential scaling model is only justified for the very low-resolution data, lower than 15 Å (Podjarny &
Urzhumtsev, 1997), and becomes incorrect at higher resolutions. The flat model is shown as physically
more reasonable (Fokine & Urzhumtsev, 2002b) and being compared to all others models is demonstrated
as more efficient in sense of both computations and quality of final result obtained (Jiang & Brunger,
1994).

Based on the arguments above, we implemented the flat bulk solvent model in the mmtbx.bulk_solvent
module. The bulk solvent modeling and scaling procedure contains four main steps: molecule mask
calculation, structure factors calculation from the mask, determination of solvent parameters ksol and
Bsol, and determination of the overall anisotropic scale coefficient (Sheriff & Hendrickson, 1987).
The algorithm for the mask calculation is realized as described by (Jiang & Brunger, 1994). The
corresponding Python code looks like this:

from mmtbx.bulk_solvent import bulk_solvent_models
from mmtbx.masks import masks
from iotbx import reflection_file_reader
from iotbx import pdb
pdb_file = "1F8T.pdb"
hkl_file = "1F8T.hkl"
xray_structure = pdb.as_xray_structure(pdb_file)
refl = reflection_file_reader.any_reflection_file(file_name=hkl_file)
refl_arrays = refl.as_miller_arrays(crystal_symmetry=xray_structure)
f_obs = refl_arrays[0].resolution_filter(d_min=2.5)
f_calc = f_obs.structure_factors_from_scatterers(
 xray_structure=xray_structure).f_calc()
mask_manager = masks.mask_utils(
 structure=xray_structure,
 mask_grid_step=f_obs.d_min()/4.,
 shell=5.0,
 shrink=1.0,
 rsolv=1.0)
f_mask = mask_manager.sf_from_mask(f=f_obs)
f_mask.set_info("Mask structure factors")
f_mask.show_summary()
print "Accessible surface fraction:", \
 mask_manager.accessible_surface_fraction()
print "Contact surface fraction:", \
 mask_manager.contact_surface_fraction()

http://cns.csb.yale.edu/

33

Output:

Miller array info: Mask structure factors
Observation type: None
Type of data: complex_double, size=15897
Type of sigmas: None
Number of Miller indices: 15897
Anomalous flag: 0
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90)
Space group: P 21 21 21 (No. 19)
Accessible surface fraction: 0.330885416667
Contact surface fraction: 0.45850308642

The bulk solvent structure factors and parameters ksol and Bsol can be calculated by adding the following
lines to the previous code:

bulk_solvent_manager = bulk_solvent_models.bulk_solvent(
 verbose=-1,
 f_obs=f_obs,
 f_calc=f_calc,
 f_mask=f_mask,
 aniso_scale_flag=0001,
 bulk_solvent_correction_flag=0001)
print "Flat model bulk solvent parameters: ", \
 bulk_solvent_manager.ksol_bsol()
f_bulk = bulk_solvent_manager.f_bulk()
f_bulk.set_info("Bulk solvent structure factors")
f_bulk.show_summary()

Output:

Flat model bulk solvent parameters: (0.31000000000000011, 38.0)
Miller array info: Bulk solvent structure factors
Observation type: None
Type of data: complex_double, size=15897
Type of sigmas: None
Number of Miller indices: 15897
Anomalous flag: 0
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90)
Space group: P 21 21 21 (No. 19)

All major refinement programs use minimizers to determine the bulk solvent parameters and the
anisotropic scaling matrix. However there are a number of difficulties to this approach:

1. The low-resolution diffraction data may not be of sufficient quality or
completeness.

2. The starting values for ksol and Bsol may be far from the correct values.

3. The parameters ksol and Bsol are highly correlated. Therefore the minimizer may
have difficulties finding a path to the global minimum.

4. Optimizing a function of two exponentials is generally a difficult problem.

These considerations have lead us to choose a more robust procedure. As was demonstrated by Fokine &
Urzhumtsev (2002b), the values for ksol and Bsol are distributed around 0.35 eÅ-3 and 46 Å2,
respectively. Therefore we decided to implement a grid search procedure for the determination of ksol
and Bsol. The search is conducted in a physically meaningful range of values, [0,1] for ksol and [0,100]
for Bsol. For each trial pair (ksol, Bsol) in the specified ranges we calculate the anisotropic scaling

34

coefficients using a gradient-driven minimizer. Finally we select the values ksol and Bsol based on the
best outcome of the minimization. It should be emphasized that we use the whole resolution range of data.
In contrast, Jiang & Brunger (1994) suggest a partitioning into low-resolution and high-resolution pools.
This is the approach used by the CNS program (Brunger et al., 1998) to make the minimization procedure
more stable. Our grid-search procedure is sufficiently robust to work without partitioning the data.
Another new feature that distinguishes our implementation of the scaling procedure from previous
implementations is the use of a maximum-likelihood function as the objective function in the
minimization. Even though maximum-likelihood based refinement is now very common, all existing
programs use a conventional least-squares target in the determination of the bulk solvent and scaling
parameters, while maximum-likelihood functions are used to determine all other parameters. This
inconsistency is eliminated in the mmtbx.bulk_solvent module.

7: Relative scaling of crystallographic functional and restraints

Crystallographic refinement usually considers the minimization of a sum of two functions. One function
is responsible for fitting the model to the experimental data and the second function introduces restraints
encoding a priori knowledge, for example the geometry restraints discussed before. The two functions are
generally on a different scale and it is necessary to determine an appropriate relative scale factor in order
to balance the contributions to the sum. For this purpose we have implemented the procedure proposed by
(Adams et al., 1997) in the mmtbx.refinement.weight_xray_term module, which makes use of the new
mmtbx.dynamics module.

8: Crystallographic target functions

The new mmtbx.refinement module implements two crystallographic target functions in addition to the
conventional least-squares and correlation target functions provided by the cctbx.xray module. These
are the full maximum-likelihood function of Lunin et al. (2002) and its quadratic approximation (Lunin &
Urzhumtsev, 1999). The calculation of the distribution parameters for the target function, "alpha" and
"beta", is implemented in two ways:

• estimation by maximization of a likelihood function given a current model and
observed intensities (Lunin & Skovoroda, 1995),

• determination via an exact formula (see, for example, Afonine et al., 2003).

In the future we will also implement the sigma-a algorithm and likelihood functions including
experimental phase information.

9: Integration of Clipper

Thanks to generous support by Kevin Cowtan, the Clipper library
(http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html, see also Cowtan (2003) in Newsletter No. 2) is
now integrated into the cctbx project and redistributed with the cctbx bundles posted at
http://cci.lbl.gov/cctbx_build/ . The bundles with the build tag 2004_07_06_0816 are the first to include
Clipper. Currently the Clipper libraries requiring fast Fourier transforms are not compiled in the cctbx
build, but this is likely to change in the future. The supporting clipper_adaptbx adaptor toolbox in the
cctbx tree provides a fully functional Python interface to the sigma-a calculations in Clipper. We will add
other Python interfaces as the need arises.

http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html
http://cci.lbl.gov/cctbx_build/

35

10: Efficient sampling of search spaces

Indirectly Kevin Cowtan has left his mark in the cctbx project in another way. The newly added
cctbx.crystal.close_packing module implements a hexagonal close packing sampling generator as
suggested by Kevin for some time. Sampling space at the points of a hexagonal close packing instead of
the points of a regular grid leads to significant speed increases in search procedures such as the molecular
replacement translation search or the placement of molecular fragments in electron density maps. The
cctbx.crystal.close_packing.hexagonal_sampling generator produces points to efficiently sample
search spaces with various symmetries. Space group symmetry and Euclidean normalizer symmetry (also
known as Cheshire symmetry) can be arbitrarily combined to define the symmetry of the search space.
Depending on the settings, the resulting sampling points may cover three, two, one or zero dimensions.
The symmetry is controlled at a high level via flags. The search-space symmetry operations including
continuous allowed origin shifts are determined automatically. For example:

from cctbx import crystal
import cctbx.crystal.close_packing
from cctbx import sgtbx
crystal_symmetry = crystal.symmetry(
 unit_cell="255.260 265.250 184.400 90.00 90.00",
 space_group_symbol="P 21 21 2")
for use_space_group_symmetry in [True, False]:
 sampling_generator = crystal.close_packing.hexagonal_sampling(
 crystal_symmetry=crystal_symmetry,
 symmetry_flags=sgtbx.search_symmetry_flags(
 use_space_group_symmetry=use_space_group_symmetry,
 use_seminvariants=True,
 use_normalizer_k2l=False,
 use_normalizer_l2n=False),
 point_distance=2)
 print "number of sampling points:", sampling_generator.count_sites()

Output:

number of sampling points: 46332
number of sampling points: 162240

The whole procedure takes 0.14 seconds (Linux, Xeon 2.8GHz). See also the reference documentation for
the classes cctbx::crystal::close_packing::hexagonal_sampling_generator and
cctbx::sgtbx::search_symmetry_flags available at http://cctbx.sourceforge.net/ under
"C++ interfaces."

11: Acknowledgments

We like thank the CCP4 project for giving us permission to use the Monomer Library, Kevin Cowtan for
giving us permission to use Clipper, and the mmLib (http://pymmlib.sourceforge.net/) development team
(E. Merritt and J. Painter) for giving us permission to use the mmCIF.py file. We gratefully acknowledge
the financial support of NIH/NIGMS. Our work was supported in part by the US Department of Energy
under Contract No. DE-AC03-76SF00098.

http://cctbx.sourceforge.net/
http://pymmlib.sourceforge.net/

36

12: References

Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. (1997). Proc. Natl. Acad. Sci. USA, 94, 5018-5023.
Afonine, P., Lunin, V. & Urzhumtsev, A. (2003). J. Appl.Cryst., 36,158-159.
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J.,
Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54, 905-921.
Brunner, G.O. & Laves, F. (1971). Wiss. Z. Techn. Univers. Dresden 20, 387-390.
Cowtwn, K. (2003). Newsletter of the IUCr Commission on Crystallographic Computing, 2, 4-9.
Fokine, A. & Urzhumtsev, A. (2002a). Acta Cryst., A58, 72-74.
Fokine, A. & Urzhumtsev, A. (2002b). Acta Cryst., D58, 1387-1392.
Grosse-Kunstleve, R.W., Brunner G.O., Sloane N.J.A. (1996). Acta Cryst. A52, 879-889.
Grosse-Kunstleve, R.W., Adams, P.D. (2003). Newsletter of the IUCr Commission on Crystallographic Computing, 1, 28-38.
Grosse-Kunstleve, R.W., Wong, B., Adams, P.D. (2003). Newsletter of the IUCr Commission on Crystallographic Computing,
2, 10-16.
Hendrickson, W.A. (1985). Meth. Enzym. 115, 252-270.
Jiang, J.-S. & Brunger, A.T. (1994). J. Mol. Biol. 243, 100-115.
Kostrewa, D. (1997). CCP4 Newsl. 34, 9-22.
Lecomte, C. (1999). Implications of Molecular and Materials Structure for New Technologies, NATO ASI and
Euroconference, Serie E: Applied Science, pp. 23-44. Dordrecht: Kluwer.
Lunin, V.Y., Afonine, P.V. & Urzhumtsev, A. (2002). Acta Cryst. A58, 270-282.
Lunin, V.Y. & Skovoroda, T.P. (1995). Acta Cryst. A51, 880-887.
Lunin, V.Y., Urzhumtsev, A.G. (1999). CCP4 Newsletter on Protein Crystallography, 37, 14-28.
Moews, P.C. & Kretsinger, R.H. (1975). J. Mol. Biol. 91, 201-228.
Phillips, S.E.V. (1980). J. Mol. Biol. 142, 531-554.
Podjarny, A.D., Urzhumtsev, A.G. (1997). In Methods in Enzymology, Academic Press, San Diego., C.W.Carter, Jr.,
R.M.Sweet, eds. 276A, 641-658.
Sheriff, S. & Hendrickson, W.A. (1987). Acta Cryst. A43, 118-121.
Tronrud, D.E. (1997). Methods Enzymol. 277, 306-319.
Urzhumtsev, A. (1991). Acta Cryst. A47, 794-801.

37

Geometrically Restrained INorganic Structure Prediction : GRINSP

Armel Le Bail,
Université du Maine, Laboratoire des Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans
9, France - Email : alb@cristal.org ; WWW: http://www.cristal.org/

Introduction

With the idea in mind that the structure of a compound like τ-AlF3 [1], unique example of a new 3D 6-
connected network (no other isostructural MX3 known up to now), should have been predicted before the
laborious structure determination succeeded (finalized in 1992, from powder diffraction data), one can
decide to write the prediction software. Which language would be more appropriate ? This may depend
on the algorithm retained, but generally it mainly depends on the scientist knowledge. Would it be
reasonable to propose the subject for a thesis or a post-doc ? Subject : "You will have to demonstrate that
MX3 compounds, built up from [MX6] regular octahedra, sharing exclusively corners, can be predicted
just as zeolites are predictable". It would be a bit difficult to find the good candidate. Conclusion, you will
have to do it by yourself. It is your idea after all... The programming language will be the language which
you best know, appropriate or not : Fortran77 in that case. A programming language may be considered
as not obsolete if a compiler still exists for building the executable on recent computers. The project,
imagined in 1992, was frozen up to the end of 2003, till personal computers became fast enough (the
frequency of microprocessors increased by a factor 100 in the 1992-2003 range, the number of transistors
increased as well a lot) for tempting to solve the problem by a Monte Carlo approach.

When the realization of such a project starts, you are not even sure to succeed. Very recent publications
show that, concerning 3D 4-connected nets, systematic enumeration is now based on advances in
mathematical tiling theory [2-4]. Unless you are a brilliant mathematician, this may not be of a great help
when trying to transpose to 3D 6-connected nets (so, it is verified again here that Monte Carlo is the
solution retained by the illiterates...). Previous works on hypothetical zeolites were made by using
classical physical model building [5] during the past 60 years, or simulated annealing [6]. Many recent
works in inorganic structure prediction (as well as organic and organometallic) have produced huge
quantities of hypothetical compounds (using commercial packages as CERIUS, etc), there is no room
here for citing them all. But there was no systematic recent work on MX3 compounds, apart from the
famous book of Wells [7] about three-dimensional nets and polyhedra. Predictions of new MX3
compounds are non-existent, if one excludes the obvious models built up by intergrowth of known
structures (perovskite, Hexagonal Tungsten Bronze type - HTB, etc).

Algorithm

It was chosen to manage the Monte Carlo generation of 3D nets by using geometrical restraints
established from the interatomic distances in known materials. So, this is absolutely not an ab initio
approach of the structure prediction problem. Multiple difficulties were solved one after the other during
the writing of the source code. A primarily version of the program named GRINSP (Geometrically
Restrained INorganic Structure Prediction) [8] was limited to the building of tetrahedra linked by corners
(3D N-connected nets with N = 4) and to the P1 space group, because this was the more easy for testing
the feasibility, all being more simple to develop in P1 on the point of view of writing the code. Then,
obtaining encouraging results (150 hypothetical zeolites built in P1), the project was generalized to
various values of N (3, 4, 5, 6), and even to mixtures of M and M' cations with different coordinations, in
any space group [8]. In a N-connected 3D net of M atoms, each M atom is connected to N other M atoms
through X atoms, giving formulations MX2 for N = 4 (tetrahedra connected by corners as in SiO2
polymorphs and zeolites), MX3 for N = 6 (octahedra connected by corners) or M2X3 for N = 3 (triangles
sharing corners as in B2O3), etc. The X atoms have to lie at positions close to the mid point of two M
atoms. Therefore, the key of the algorithm is to concentrate on the M atoms first. For such N-connected
3D nets, if a model shows all M atoms surrounded by the expected number of M atoms (3, 4, 5 or 6), then

mailto:alb@cristal.org
http://www.cristal.org/

38

this model is a possible solution. This expected number of neighbours (mvexp below) is checked
frequently in the GRINSP program code, each times a new set of M atoms is added either on a general or
on a special position of a selected space group :

 C We expect to have each M surrounded by 3, 4, 5 or 6 M at first
 C M-M distances, then the total of expected neighbours is :
 mvexp=ncop(mcop(nl(1)))*itot
 C See neighbouring -
 C Are some M atoms neighbouring already completed ?
 call complet(itot,x,met,f,g,nv,mv,mv2tot,ncop,mcop,ibad)
 C If mvexp-mv2tot = icon then store the result
 iresult=mvexp-mv2tot
 if(iresult.eq.icon)go to 1002
 C Place the next atom of type M at acceptable distances
 C considering first and second M-M neighbours

The Fortran77 language is quite easy to understand for people speaking english. GRINSP contains a lot of
comments (lines starting by C). Either calculations or text sequence manipulations and comparisons can
be done (etc), you are limited only by your imagination. The subroutine complet in the lines of code
above is too large for showing it all here. The full GRINSP code contains more than 3000 lines, only
some parts will be selected and listed in this article.

In the purpose to obtain this adequation (iresult=icon=0 above) between the espected number of
neighbours and the calculated number, the model is built sequentially, adding one M atom after the other.
GRINSP does not work by applying simulated annealing to a starting random configuration. Version 1.00
works schematically as follows, by using the Monte Carlo method :

• Manual selection of the restraints on cell parameters, of restrained interatomic distances, of the
type(s) of coordinations, and of the space group. Then the Monte Carlo process starts.

• Random selection of the cell parameters inside of the predefined range. The random generator
subroutine in GRINSP is randi (see below), returning a value between 0. and 1., called very
often in the program; nsym = 1 is corresponding to the cubic case, nsym = 2 corresponds to
tetragonal, nsym = 3 is hexagonal or trigonal, nsym = 4 is orthorhombic, etc, other variables (a,
b, c, alp, bet, gam) are self-explicit for crystallographers :

C Define the cell parameters
 a=(amax-amin)*randi(iseed)+amin
 if(nsym.eq.1)then
 b=a
 c=a
 go to 8000
 endif
 c=(cmax-cmin)*randi(iseed)+cmin
 if(nsym.eq.2.or.nsym.eq.3)then
 b=a
 go to 8000
 endif
 b=(bmax-bmin)*randi(iseed)+bmin
8000 continue
 if(nsym.le.5)then
 alp=90.
 bet=90.
 gam=90.
 if(nsym.eq.3)gam=120.
 if(nsym.eq.5)bet=betmin+betd*randi(iseed)
 go to 8500
 endif
 alp=alpmin+alpd*randi(iseed)
 bet=betmin+betd*randi(iseed)
 gam=gammin+gamd*randi(iseed)
8500 continue

39

• Random positioning of a first cation M (or M') of the future MxXy (or MxM'yXz) compound on a
general or special position, itself selected randomly.

C Place the first atom of first type (M1)
4502 itot=0
 nl(1)=1
 nl(2)=0
C Decide at random for the polyhedra type
 mcop(nl(1))=int(randi(iseed)*float(npol)+1.)
 if(mcop(nl(1)).gt.npol)mcop(nl(1))=npol
C Decide for the Wyckoff position selected between np1 and npos
 mwyc(nl(1))=int(randi(iseed)*float(npos-np1)+pp1)
C Decide for the atomic coordinates
 x0=randi(iseed)
 y0=randi(iseed)
 z0=randi(iseed)
 gen=gen+1.
C Extend to all positions corresponding to mwyc(nl(1))
 is=mwyc(nl(1))
 it0=itot+1
 it01=it0-1+nas(is)
 if(it01.gt.65)go to 4502
 DO 299 k=1,nas(is)
 itot=itot+1
 it1(itot)=it0
 it2(itot)=it01
 ist(itot)=is
 mcop(itot)=mcop(nl(1))
 x(itot,1,1)=x0*smt(is,k,1,1)+y0*smt(is,k,1,2)+z0*smt(is,k,1,3)
 1+tt(is,k,1)
 x(itot,1,2)=x0*smt(is,k,2,1)+y0*smt(is,k,2,2)+z0*smt(is,k,2,3)
 1+tt(is,k,2)
 x(itot,1,3)=x0*smt(is,k,3,1)+y0*smt(is,k,3,2)+z0*smt(is,k,3,3)
 1+tt(is,k,3)
299 continue
C Now we have itot atoms already, but...
C Avoid short distances
 if(itot.eq.1)go to 302
 do 300 mm1=1,itot-1
 do 300 mm2=it1(itot),itot
 if(mm1.eq.mm2)go to 300
 p1=abs(x(mm1,1,1)-x(mm2,1,1))
 q1=abs(x(mm1,1,2)-x(mm2,1,2))
 r1=abs(x(mm1,1,3)-x(mm2,1,3))
 if(p1.gt.0.5)p1=p1-1.
 if(q1.gt.0.5)q1=q1-1.
 if(r1.gt.0.5)r1=r1-1.
 rr=met(1,1)*p1*p1+met(2,2)*q1*q1+met(3,3)*r1*r1
 1+met(1,2)*p1*q1+met(1,3)*p1*r1+met(2,3)*q1*r1
 if(rr.lt.f(1,mcop(1))) go to 4502
300 continue
302 continue

• Random positioning of the next cations (random choice of M or M') in respect of the distance
restraints with the previous ones, on a general or special position, itself selected randomly.

C Select randomly a M atom for adding its next neighbour
3500 m=int(randi(iseed)*float(itot)+1.)
 memo=m
C Decide first which positions would generate too much M atoms
C and eliminate them
 call toomuch(itot,npos,nas,v,fdmax3,np2,np1,pp1)
 if(np2.eq.0)go to 5002
C Decide for the polyhedra type
 mcop(itot+1)=int(randi(iseed)*float(npol)+1.)
 if(mcop(itot+1).gt.npol)mcop(itot+1)=npol
C Determine how many neighbours ? And according to that,
C select the appropriate treatment :
C 1- if ncop(1)=4 then
C if mv(m,1)=4 : atom already completed
C if mv(m,1)=3, 2, or 1 : one atom to add in correct position

40

C 2- if ncop(1)=6 then
C if mv(m,1)=6 : atom already completed
C if mv(m,1)=5, 4, 3, 2, or 1 : one atom to add in correct position
 if(ncop(mcop(m)).eq.3)go to (3001,3002,3500)mv(m,1)
 if(ncop(mcop(m)).eq.4)go to (3001,3002,3003,3500)mv(m,1)
 if(ncop(mcop(m)).eq.5)go to (3001,3002,3003,3004,3500)mv(m,1)
 if(ncop(mcop(m)).eq.6)go to (3001,3002,3003,3004,3005,3500)mv(m,1)
C Case with only one previous neighbour
3001 continue
 gen22=0.
C Decide for the Wyckoff position selected between np1 and npos
600 mwyc(itot+1)=int(randi(iseed)*float(npos-np1)+pp1)
 p=(x(m,1,1)-xa)+xa2*randi(iseed)
 q=(x(m,1,2)-xb)+xb2*randi(iseed)
 r=(x(m,1,3)-xc)+xc2*randi(iseed)
 gen=gen+1.
 gen22=gen22+1.
 if(gen.gt.genmax)go to 5002
C Extend to all positions corresponding to mwyc(nl(1))
........ Etc.
C Case with already 2 previous neighbours
3002 continue
........ Etc
C Case with already 3 neighbours
3003 continue
........ Etc

• If a model fulfills all distance restraints, place the X atoms at M-M midpoints, refine the atomic

positions and cell parameters so as to improve an R factor (called Rdt below).

C Place the X atoms and then refine by Monte Carlo
 imemnl=nl(1)
 nl(1)=itot
 call midpt(x,nv,mv,nl,ncop,mcop)
............Etc.
C Monte Carlo distance improvement
C Loop of idls moves per atom
C but move also the cell parameters
 improve=0
 imove=0
 nltot=nl(1)+nl(2)
 mc=idls*nltot
 do 7500 imc=1,mc
C Select an atom
C i for type 1 or 2
C m for atom order in the list of either nl(1) or nl(2)
C or select one cell parameter (icel=1)
 icel=int(randi(iseed)*2.)
C Do not refine the cell if iref = 0
 if(iref.eq.0)icel=0
C change a cell parameter a or b or c by (+ or -) 0.01 A max
C change an angle cell parameter alp, bet or gam
C by (+ or -) 0.01 ° max
 if(icel.eq.1)then
 if(nsym.le.4)mc=int(randi(iseed)*3.+1.)
 if(nsym.eq.5)mc=int(randi(iseed)*4.+1.)
 if(nsym.eq.6)mc=int(randi(iseed)*6.+1.)
C Redefine the cell parameters
 if(mc.eq.1)anew=a+(randi(iseed)-0.5)*0.02
 if(mc.eq.2)bnew=b+(randi(iseed)-0.5)*0.02
 if(mc.eq.3)cnew=c+(randi(iseed)-0.5)*0.02
 if(mc.eq.4)betnew=bet+(randi(iseed)-0.5)*0.02
 if(mc.eq.5)alpnew=alp+(randi(iseed)-0.5)*0.02
 if(mc.eq.6)gamnew=gam+(randi(iseed)-0.5)*0.02
 if(nsym.eq.1)then
 if(mc.eq.1)then
 bnew=anew
 cnew=anew
 endif
 if(mc.eq.2)then
 anew=bnew
 cnew=bnew

41

 endif
 if(mc.eq.3)then
 anew=cnew
 bnew=cnew
 endif
 alpnew=alp
 betnew=bet
 gamnew=gam
 go to 8001
 endif
 if(nsym.eq.2.or.nsym.eq.3)then
.......Etc
C Orthorhombic or more
 if(nsym.ge.4)then
C If RdT improved, keep the move...
 rdtnew=sqrt((rd1new+rd2new+rd3new)/
 1(rd1dnew+rd2dnew+rd3dnew))
 if(rdtnew.ge.rdt)go to 7500
 improve=improve+1
C Move kept, then make all changes...
C changes accepted either on cell or atom moves
 if(icel.eq.1)then
C Here modif on cell if accepted
 a=anew
 b=bnew
 c=cnew
 alp=alpnew
 bet=betnew
 gam=gamnew
 else
C changes on coordinates x and Rd1,Rd2 and Rdt
 x(m,i,1)=pmc
 x(m,i,2)=qmc
 x(m,i,3)=rmc
C changes on y
 if(i.eq.1)then
 do ki=1,27*nl(1)
 if(ny(ki).eq.m)then
 y(ki,1)=y(ki,1)+dp
 y(ki,2)=y(ki,2)+dq
 y(ki,3)=y(ki,3)+dr
 endif
 enddo
 endif
C Also changes on xy if i=2...
 if(i.eq.2)then
 do ki=1,nl(1)
 do kj=1,ncop(mcop(ki))
 if(nxy(ki,kj).eq.m)then
 xy(ki,1,kj)=xy(ki,1,kj)+dp
 xy(ki,2,kj)=xy(ki,2,kj)+dq
 xy(ki,3,kj)=xy(ki,3,kj)+dr
 endif
 enddo
 enddo
 endif
C changes on coordinates x and Rd1,Rd2,Rd3 and Rdt
 rd1=rd1new
 rd2=rd2new
 rd3=rd3new
 rdt=rdtnew
 endif
C write(10,*)'i,m ',i,m
7500 continue
C End of Monte Carlo distance improvement
C If Rdt > Rdtmax, reject the cell
 if(rdt.gt.rdtm)then
 igood=igood-1
 go to 5001
 endif
C Do not save if the framework density is outside
C of the expected range
 if(v.lt.1.)then

42

 igood=igood-1
 go to 5001
 endif
 tn=nl(1)
 rho(igood)=tn/v*1000.
 if(rho(igood).lt.fdmin)then
 igood=igood-1
 go to 5001
 endif
 if(rho(igood).gt.fdmax)then
 igood=igood-1
 go to 5001
 endif

• Continue to try to predict structures in that way till a certain number of independent runs are
made. Verify if the predicted structures are new or were already described (using CS -
Coordination Sequence, a fingerprint of the structure).

C Calculate coordination sequence
 call coorseq(nl,x,met,g,ntype,nr,ns,jmax,ncop,mcop,npol)
........Etc
C Try to identify if this is already known or already predicted
C Now compare with data in connectivity.txt ...
C prepare the current data
 iprint=1
 do i=1,ntype
 do j=1,10
 write(t(j),'(i4)')nr(i,j)
 enddo
 newcos(i,igood)=t(1)//t(2)//t(3)//t(4)//t(5)//t(6)//t(7)//
 1t(8)//t(9)//t(10)
 enddo
C compare only on the real length of the predicted sequence
 l=4*jmax
 do 6800 i=1,ndat
C skip if not same ntype
 if(nzeot(i).ne.ntype)go to 6800
 isum=0
 do 6700 j=1,ntype
 do 6699 k=1,nzeot(i)
 if(newcos(j,igood)(1:l).eq.coseq(k,i)(1:l))then
 isum=isum+1
 if(isum.eq.ntype)go to 6801
 endif
6699 continue
6700 continue
6800 continue
C Nothing found
 go to 6810
C Something found
6801 continue
 ident(igood)=zeot(i)
 write(10,*)
 write(10,*)'This is probably ',zeot(i)
 iprint=0
C but make the output files .cif, .dat and .xtl anyway
C if this is asked for (isave=1)
 if(isave.eq.1)iprint=1
 go to 6820
6810 continue
C Compare also with current list
 do 6850 i=1,igood-1
C skip if not same ntype
 if(ntype.ne.mntype(i))go to 6850
 isum=0
 jmaxmin=jmax
 if(mjmax(i).lt.jmaxmin)jmaxmin=mjmax(i)
 l=4*jmaxmin
 do 6750 j=1,ntype
 do 6749 k=1,mntype(i)
 if(newcos(j,igood)(1:l).eq.newcos(k,i)(1:l))then
 isum=isum+1

43

 if(isum.eq.ntype)then
 if(rd(igood).gt.rdp(i))iprint=0
 if(rd(igood).lt.rdp(i))rdp(i)=rd(igood)
 go to 6851
 endif
 go to 6750
 endif
6749 continue
6750 continue
6850 continue
C Nothing found
 go to 6860
C Something found
6851 continue
 ident(igood)=ident(i)
 write(10,*)
 write(10,*)'This was found already ',ident(i)
 go to 6820
6860 continue
C If nothing found, this is a new one...
 inew=inew+1
 write(ident(igood),'(a4,i7)')'PCOD',inew
 write(10,*)
 write(10,*)'Found for the first time ',ident(igood)
6820 continue
C End of checking

In the GRINSP algorithm, the number of M or M' atoms in a randomly selected cell is not predetermined,
it is predicted as well. Only restraints on distances are considered (not angles - though considering a range
for the second M-M distances is like restraining angles).
Currently, there are some limitations in that version. GRINSP 1.00 proved to be relatively efficient for a
maximum number of 64 M/M' atoms on up to 1-10 different general or special positions. It was possible
to retrieve many known zeolites (ABW, ACO, AFI, ANA, AST, BIK, CAN, EAB, EDI, GIS, GME, LOS,
LTA, MEP, SOD...) and the compact SiO2 phases (quartz, cristobalite, tridymite, etc), polymorphs for
B2O3, AlF3, hypothetical phases in binary systems B2O3/SiO2, B2O3/ReO3, SiO2/ReO3 (see the PCOD [9],
a database accumulating these predicted structures). It is up to you to try GRINSP with other systems, and
even the above ones have not been completely explored (in part due to that limitation to 64 M/M' atoms
and because the maximum cell parameters were generally set to 16 Å). One life would not be sufficient if
one formulation explored for one space group needs one or several days of calculations on a standard PC.

Further work is needed for improving the GRINSP efficiency : introduction of different linkage modes
than by corners (edges, faces...) but this would mean that all X atoms could not be placed at the M-M mid
points; adding the possibility for insertion of big cations K/Sr/Ba/Cs/etc as spheres in the holes/tunnels;
considering bond valence as an alternative to pure geometrical restraints for the model final refinements;
increase the speed by not recalculating always everything (distances); increase the box size for the CS
(coordination sequence) calculations (the 729 cells used are not always enough); increase that 64 M/M'
atoms limit; allow to select the space group randomly as well; optimize the code; etc !
These improvements would need faster microprocessors or using a grid of computers on the internet.
Anyway, the main problem is that once a model is built, it has to be checked visually. The process is not
yet completely automatized (my confidence in it is not absolute, some two-dimensional models have to be
discarded, etc).

A few results with 3D 6-connected frameworks

All the known varieties of AlF3 (pyrochlore, perovskite, HTB...) are predicted by GRINSP, including this
strange τ-AlF3. New varieties are to be expected, if the GRINSP predictions are confirmed. Mixed
compounds with two octahedra sizes were also modelled. Some are knowns, other are not. In some cases,
the chemical composition is enough precise for suggesting the synthesis (contrarily to a simple MX3 or
MX2 formula), see the figures below. Work is in progress for trying to confirm some of these predictions.

Figures 1 and 2: PCOD1000015 [Ca4Al7F33]4-, cubic, a = 10.860 Å. Known with Na atoms in the holes, as
Na4Ca4Al7F33 ; PCOD1000017 AlF3, cubic, a = 9.668 Å. Known with some OH- and water in the holes : pyrochlore

Figures 3 and 4: PCOD1010005 [Ca3Al4F21]3-, cubic, a = 9.009 Å. UNKNOWN Could be stuffed by Na
atoms and give the hypothetical Na3Ca3Al4F21 - or stuffed by Li atoms ; PCOD1000014 AlF3, tetragonal,
a = 10.216 Å, c = 7.241 Å. Known as t-AlF3

The above pictures are screen copies from drawings made by using a VRML visualizer (CosmoPlayer)
reading the .wrl files stored in the PCOD. These .wrl files were made by the STRUVIR program from the
.dat files also available in PCOD (as well as CIF files). GRINSP itself has no graphical user interface
(GUI), which may not be absolutely necessary if one considers the simplicity of the data necessary for a
prediction :

 Test P-62c - 190 ! Title
 P -6 2 C ! Space group
 3 1 0 2 ! Codes for cell symm., 1 or 2 M atom types, icon, min nber of M
 4 ! Coordination of the M atom(s)
 Si O ! Definition of the MX couple(s)
 6. 16. 6. 16. 6. 16. ! Min and max a, b, c
 90. 90. 90. 90. 120. 120. ! Min and max angles
 5. 30. ! Min and max framework density
 200000 300000 0.02 ! Monte Carlo runs, Monte Carlo events per run, Rdtmax
 10000 1 ! Monte Carlo events for x,y,z refinement, cell refined or not
 1900000 ! First filename

Concerning the sixfold coordination, GRINSP can produce it randomly as octahedra, trigonal prisms or
pyramids with a pentagonal base. Moreover, if the tolerance factor R (Rdt in the code) is above 1% , then

44

these polyhedra can be more or less distorted. Some predictions are showing octahedra/trigonal prisms or
octahedra/pyramids mixtures. Fancy predictions with large tunnels or huge cavities are sometimes
proposed, such as these two examples (on the left, octahedra and trigonal prisms, on the right, octahedra
and pyramids mixtures, the pentagonal base of the pyramids covering the tunnel walls) :

Conclusion

Structure prediction is certainly a promising approach, and an unavoidable part of our future in
crystallography. It would have to be combined with an efficient prediction of the physical properties and,
more difficult, with the prediction of a synthesis procedure... Storing and managing the huge quantity of
hypothetical phases will be a problem, and the one structure/one publication scheme applied for the real
compounds will not be relevant to predicted compounds. With 540 predicted structures from GRINSP,
PCOD is a dwarf compared to a brand new database of hypothetical zeolites [10] containing in 3 parts (at
the time of writing this paper) : 114010 structures in the Bronze database (raw predictions), 33652 refined
structures in the Silver database, but nothing yet in the Gold database which will contain unique models.
PCOD contains already unique models (almost), and is not restricted to the SiO2 formulation. The number
of SiO2 predicted polymorphs in the PCOD continues to increase by the slow exploration of all space
groups with GRINSP (only the triclinic and cubic space groups were examined systematically yet). The
final number of structures depends on the limit fixed on R for retaining or not a model. The R value was
arbitrarily chosen to be smaller than 1% in the SiO2 case. This allows to produce the observed zeolites
and the known dense SiO2 phases, and will finally add a few thousands of hypothetical ones when the
exploration will be completed. The MX3 3D 6-connected hypothetical frameworks will certainly be much
less numerous. The SiO2/B2O3 system was found even richer than for the simple SiO2 formulation, even
limiting R below 0.6%, though there is not any BxSiyOz in the ICSD database which would include BO3
triangles and SiO4 tetrahedra interconnected by corners ! So, what to do with all these predictions now ?

References

[1] A. Le Bail, J.L. Fourquet and U. Bentrup, J. Solid State Chem. 100 (1992) 151-159.
[2] O. Delgado Friedrichs, A.W.M. Dress, D.H. Huson,, J. Klinowski, A.L. Mackay, Nature 400 (1999) 644.
[3] M.D. Foster, O. Delgado Friedrichs, R.G. Bell, F.A. Almeida Paz, J. Klinowski, Angew Chem. Int. Ed. 42
(2003) 3896-3899.
[4] Systematic enumeration of crystalline networks : http://www-klinowski.ch.cam.ac.uk/SistEnumHome.htm
[5] J.V. Smith, Chem. Rev. 88 (1988) 149-182.
[6] M.W. Deem and J.M. Newsam, J. Am. Chem. Soc. 114 (1992) 7189-7198.
[7] A.F. Wells (1977). Three-dimensional Nets and Polyhedra (Wiley-Interscience, New York).
[8] GRINSP : http://sdpd.univ-lemans.fr/grinsp/
[9] PCOD - Predicted Crystallography Open Database: http://www.crystallography.net/pcod/
[10] Database of Hypothetical Zeolites : http://www.hypotheticalzeolites.net/

45

http://www-klinowski.ch.cam.ac.uk/SistEnumHome.htm
http://sdpd.univ-lemans.fr/grinsp/
http://www.crystallography.net/pcod/
http://www.hypotheticalzeolites.net/

Whole molecule constraints - the Z-matrix unravelled

Kenneth Shankland,
ISIS Facility, Rutherford Appleton Lab., Oxon OX11 0QX, U.K. - Email : K.Shankland@rl.ac.uk ;
WWW: http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM

The success of global optimisation methods in the area of structure determination from powder diffraction
data (SDPD) for organic molecules depends critically on the incorporation of prior chemical information.
This information takes the form of the connectivity of the molecule under investigation; molecules are
typically parameterised as a series of known bond lengths, known bond angles, and a mixture of known
and unknown torsion angles. There are numerous ways of describing a molecule, but one of the most
useful is the internal coordinate description [1] that is widely used in molecular modelling. As a picture
of the molecule is built up atom-by-atom using a series of distance, angle and torsion specifications, it
maps nicely to the requirements of the global optimisation problem. This is most easily seen with some
examples. Consider a hypothetical molecule that consists solely of four sp3 hybridised carbon atoms.

 C1 C2

C3 C4

This molecule can be described by (a) an atom at an origin (1C) with (b) a second atom (2C) lying 1.54Å
away from it, (b) an atom (3C) at a distance of 1.54Å away from the 2C, making an angle of 109.5º with
the 2C and 1C and (d) a fourth atom (4C) at a distance of 1.54Å away from the 3C, making an angle of
109.5º with the 3C and 2C, and making a torsion (twist) angle with the 3C, 2C and 1C. The torsion angle
can take any value from 0 to 360°. Let us for a moment assume that the fourth carbon needs to lie in the
same plane as the other three atoms. This limits the possible values to 0 and 180°, corresponding to the
following configurations:

C1 C2

C3 C4

C1 C2

C3C4

180° 0°

A convenient format for writing this description is a Z-matrix; here is a Z-matrix representation of the
180° configuration shown above:

Atom Distance Ref Angle Ref Torsion Ref D A T
 C1 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0
 C2 1.5400000 0 0.0000000 0 0.0000000 0 1 0 0
 C3 1.5400000 0 109.5000000 0 0.0000000 0 2 1 0
 C4 1.5400000 0 109.5000000 0 180.0000000 0 3 2 1

D = Atom with which the current atom makes a distance
A = Atom with which the current atom makes an angle, via the ‘D’ atom
T = Atom with which the current atom makes a torsion, via the ‘D’ and ‘A’ atoms
Ref = Refinement flag (0=norefine,1=refine, see later)

46

mailto:K.Shankland@rl.ac.uk
http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM

The Z-matrix can be read line-by-line in English, as follows:

1. Place atom #1, ‘C’, at 0,0,0
2. Place atom #2, ‘C’, at a distance of 1.54Å away from atom 1
3. Place atom #3, ‘C’, at a distance of 1.54Å away from atom 2, making an angle of 109.5° with atoms 2

and 1
4. Place atom #4, ‘C’, at a distance of 1.54 Å away from atom 3, making an angle of 109.5° with atoms

3 and 2, and making a torsion of 180° with atoms 3,2 and 1.

Any additional atoms are added in exactly the same way. It should now be obvious that the internal
coordinate description allows one to easily describe an isolated molecule. However, the conformation of
the molecule will be arbitrary, as one does not know a-priori what the values of certain torsion angles
will be. Of course, there will be times when the molecule is completely defined by the Z-matrix e.g.
benzene:

H
H

H
H

H

H 1

2

3

4

5

6

7

11

8

9

10

12

 C1 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0
 C2 1.4000000 0 0.0000000 0 0.0000000 0 1 0 0
 C3 1.4000000 0 120.0000000 0 0.0000000 0 2 1 0
 C4 1.4000000 0 120.0000000 0 0.0000000 0 3 2 1
 C5 1.4000000 0 120.0000000 0 0.0000000 0 4 3 2
 C6 1.4000000 0 120.0000000 0 0.0000000 0 5 4 3
 H7 1.0000000 0 120.0000000 0 180.0000000 0 1 2 3
 H8 1.0000000 0 120.0000000 0 180.0000000 0 2 3 4
 H9 1.0000000 0 120.0000000 0 180.0000000 0 3 4 5
 H10 1.0000000 0 120.0000000 0 180.0000000 0 4 5 6
 H11 1.0000000 0 120.0000000 0 180.0000000 0 5 6 1
 H12 1.0000000 0 120.0000000 0 180.0000000 0 6 1 2

It should also be apparent from the above description that there are many different ways of defining a Z-
matrix. One could start with a different atom at the origin, or, for example, H8 could have been described
by:

 H8 1.0000000 0 120.0000000 0 180.0000000 0 2 1 6

or

 H8 1.0000000 0 120.0000000 0 0.0000000 0 2 1 7

47

Whilst not important for this particular example, it is very important when describing systems where
torsional flexibility exists. For example, consider the following:

ClH
H

H

H
H

H

H 1

3
2

4

5

6

7

8

9

10

11
12

15

14

13

The CH2Cl group can rotate around bond 1-12. If we assume for a moment that the chlorine atom lies in
the plane of the ring, then one Z-matrix that would describe this molecule is;

 C1 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0
 C2 1.4000000 0 0.0000000 0 0.0000000 0 1 0 0
 C3 1.4000000 0 120.0000000 0 0.0000000 0 2 1 0
 C4 1.4000000 0 120.0000000 0 0.0000000 0 3 2 1
 C5 1.4000000 0 120.0000000 0 0.0000000 0 4 3 2
 C6 1.4000000 0 120.0000000 0 0.0000000 0 5 4 3
 H7 1.0000000 0 120.0000000 0 180.0000000 0 2 3 4
 H8 1.0000000 0 120.0000000 0 180.0000000 0 3 4 5
 H9 1.0000000 0 120.0000000 0 180.0000000 0 4 5 6
 H10 1.0000000 0 120.0000000 0 180.0000000 0 5 6 1
 H11 1.0000000 0 120.0000000 0 180.0000000 0 6 1 2
 C12 1.4000000 0 120.0000000 0 180.0000000 0 1 2 3
 Cl13 1.7000000 0 109.5000000 0 0.0000000 0 12 1 2
 H14 1.0000000 0 109.5000000 0 120.0000000 0 12 1 2
 H15 1.0000000 0 109.5000000 0 240.0000000 0 12 1 2

Whilst this is satisfactory for this single conformation of the molecule, it is clear that if we want the
ability to generate any permissible conformation about bond 1-12, we need to add an appropriate rotation
angle to each of the last three torsions e.g. a 15 degree rotation about 12-1 would result in the last three
lines of the Z-matrix being:

 Cl13 1.7000000 0 109.5000000 0 15.0000000 0 12 1 2
 H14 1.0000000 0 109.5000000 0 135.0000000 0 12 1 2
 H15 1.0000000 0 109.5000000 0 255.0000000 0 12 1 2

However, simply by changing the last three lines to:

 Cl13 1.7000000 0 109.5000000 0 0.0000000 1 12 1 2
 H14 1.0000000 0 109.5000000 0 120.0000000 0 12 1 13
 H15 1.0000000 0 109.5000000 0 120.0000000 0 12 1 14

we create a Z-matrix where any allowable value can be entered for torsion 13-12-1-2 and the attached
hydrogen atoms will automatically rotate, as they are now defined relative to the position of the chlorine
atom. Thus the chlorine atom makes a proper torsion with atoms 12,1,2, whilst the next hydrogen atom

48

makes an improper torsion with atoms 12,1,13, and the last hydrogen makes an improper torsion with
atoms 12,1,14. The 120° angles come from the fact that when we look along the 12-1 bond, we see three
substituents coming off the sp3 hybridised carbon atom, so the angles between these substituents must be
120°. Note also the presence of the '1' in the torsion refinement column, indicating that it is this torsion
angle that will be varied in order to generate different conformations.

So in creating a Z-matrix that allows torsional rotations, we must take care to ensure that there is only one
proper torsion in the Z-matrix for each of the torsion angles in the molecule that we want to vary. Here is
another example, with the hydrogen atoms on the benzene molecule missed out for clarity.

 C1 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0
 C2 1.4000000 0 0.0000000 0 0.0000000 0 1 0 0
 C3 1.4000000 0 120.0000000 0 0.0000000 0 2 1 0
 C4 1.4000000 0 120.0000000 0 0.0000000 0 3 2 1
 C5 1.4000000 0 120.0000000 0 0.0000000 0 4 3 2
 C6 1.4000000 0 120.0000000 0 0.0000000 0 5 4 3
 C7 1.4000000 0 120.0000000 0 180.0000000 0 2 3 4
 C8 1.5400000 0 109.5000000 0 0.0000000 1 7 2 3
 H9 1.0000000 0 109.5000000 0 120.0000000 0 7 2 8
 H10 1.0000000 0 109.5000000 0 240.0000000 0 7 2 8
 C11 1.5400000 0 109.5000000 0 180.0000000 1 8 7 2
 H12 1.0000000 0 109.5000000 0 120.0000000 0 8 7 11
 H13 1.0000000 0 109.5000000 0 240.0000000 0 8 7 11
 H14 1.0000000 0 109.5000000 0 180.0000000 0 11 8 7
 H15 1.0000000 0 109.5000000 0 120.0000000 0 11 8 14
 H16 1.0000000 0 109.5000000 0 240.0000000 0 11 8 14

Note again the use of a ‘1’ in the torsion refinement column, to indicate the relevant torsions we wish to
vary. Hence in this molecule, we want rotations to occur around C7-C2 and C8-C7. Rotation around
C11-C8 is ignored, because C11 has three equivalent ‘H’ atom substituents, and therefore we are unlikely
to see any impact upon the calculated diffraction pattern as a result of a rotation around this bond. This
statement of course holds true only if we are considering X-ray powder diffraction data; with neutron
data, this rotation would need to be considered.

A Z-matrix can be easily adapted to allow for special situations such as disorder. For example, taking the
chlorinated example shown earlier, modification of the last lines of the Z-matrix to those shown below
allows for the possibility of the rotational disorder of the CH2Cl group, with occupancies set to 50% in
the last column.

49

50

Cl13 1.7000000 0 109.5000000 0 0.0000000 1 12 1 2 0.5
H14 1.0000000 0 109.5000000 0 120.0000000 0 12 1 13 0.5
H15 1.0000000 0 109.5000000 0 120.0000000 0 12 1 14 0.5
Cl16 1.7000000 0 109.5000000 0 0.0000000 1 12 1 2 0.5
H17 1.0000000 0 109.5000000 0 120.0000000 0 12 1 16 0.5
H18 1.0000000 0 109.5000000 0 120.0000000 0 12 1 17 0.5

Sometimes, it can be advantageous to include a dummy atom (D, with zero or near-zero occupancy) in a
Z-matrix in order to simplify the definition of a particular problem. For example, consider the case of a
centrosymmetric molecule, lying on a crystallographic centre of symmetry, where the molecular centre of
symmetry is not coincident with an atom e.g. a benzene ring. A Z-matrix definition of,

 D 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0 0.001
 C 1.4000000 0 0.0000000 0 0.0000000 0 1 0 0 1.000
 C 1.4000000 0 60.0000000 0 0.0000000 0 2 1 0 1.000
 C 1.4000000 0 120.0000000 0 0.0000000 0 3 2 1 1.000

followed by fixing the D atom on the centre of symmetry, gives the required result. Note that for
practical reasons in the DASH structure determination package, the dummy atom is set to have a non-zero
(but effectively zero) occupancy.

Often, H-atoms can be omitted from the Z-matrix without affecting either the definition or the structure
determination. However, in practice, it is easier to assess the correctness of solutions if they are included
right from the start of the SDPD process. Their scattering contribution can be ignored in programs such
as DASH during the simulated annealing stage so as not to slow down the structure factor calculations.
One situation where it is positively advantageous to omit H atoms is in the case of water molecules. If
the full molecule is defined, six degrees of freedom are introduced to the problem; if the water is
represented by an oxygen atom only, then only positional degrees of freedom need be considered.

It should now be clear that the Z-matrix acts as a template into which we can plug torsion angle values to
generate any desired conformation. Transformation to Cartesian coordinates, followed by reduction to
fractional coordinates is then straightforward and translations / rotations within the unit cell can be easily
applied to produce a trial crystal structure.

The parameterization of molecules in terms of the unknown torsion angles and external degrees of
freedom has proven to be very successful in the context of SDPD. Constraints derived from the
crystallography of the system can be applied to these variables; for example, in space group P1 the
positional degrees of freedom may be fixed at some arbitrary position, or in space group P21, the y
coordinate of the molecule might be fixed at some arbitrary value. Of more interest in the determination
of large flexible structures is the use of constraints on torsion angles to significantly reduce the scope of
the search problem. The constraints are generally derived from a search of related structures in the
Cambridge Structural Database (CSD) and most commonly take the form of bounds on the values that
can be adopted by particular torsions. Good examples of such usage can be found in references 2 and 3
and the interested reader is advised to consult them. Direct determination of torsion angles by other
methods is also possible [4]. As neither of these methods directly affects the construction of the Z-
matrix, they will not be discussed further here.

The concept of applying constraints to non-bonded contacts can involve modification of the Z-matrix
however. Consider, for example, the case of the chloride ion in tetracaine hydrochloride.

N
H

O
NH

+

O

Cl

A normal structure determination would involve optimisation of the tetracaine ion position, orientation
and conformation, together with the position of the chloride ion. However, a search of the CSD for
structures involving the NH+…Cl- motif reveals that the chloride ion does not occupy an arbitrary
position relative to the N+; rather, it lies in a somewhat predictable position and in principle, this
information can be incorporated into the Z-matrix. It is a straightforward matter to link the tetracaine and
chloride fragments into a single Z-matrix where the three positional degrees of freedom of the chloride
fragment are exchanged for three different degrees of freedom (virtual bond length, bond angle and bond
torsion) that can be optimised with the existing degrees of freedom in the tetracaine molecule.

N
H

O
NH

+

O

Cl

At first glance, nothing has been gained; we have simply exchanged three variables for three variables.
However, these new degrees of freedom can be constrained to chemically sensible values using the prior
chemical information obtained from the CSD; for example the N+⋅⋅⋅Cl- ionic bond distance can be set to
3.06Å with an esd of only 0.05 Å, whilst the N-H⋅⋅⋅Cl bond angle can be set to 164° with an esd of 10°.
In effect, these two variables are removed and the problem collapses to one of determining one more
torsion angle within the ‘composite molecule’

Automatic generation of Z-matrices of a type suitable for global optimisation presents an interesting
algorithmic and programming problem, but that's another story...

1. Leach, A. R. (1996). Molecular Modelling Principles and Applications. Longman.
2. Docherty, A (2004). Crystal Structure Solution and Refinement of Pharmaceutical Molecules Using X-Ray Powder
Diffraction. PhD Thesis, University of Strathclyde, Glasgow
3. Nowell, H., Attfield, J.P., Cole, J.C., Cox, P.J., Shankland, K., Maginn, S.J. and Motherwell, W.D.S. New J. Chem. 26
(2002) 469-472.
4. Middleton, D.A., Peng, X., Saunders, D., David, W.I.F., Shankland, K and Markvardsen, A.J. Chem. Commun. (2002)
1976-1977.

Thanks to Charlie Broder, Tom Griffin and Andrea Johnston for critical comments and helpful
suggestions regarding this article.

51

52

Including Novel Restraints Supplied by the User to the TNT Refinement
Package

Dale. E. Tronrud,
Howard Hughes Medical Institute and Institute of Molecular Biology University of Oregon Eugene,
Oregon 97403, USA - Email : dale@uoxray.uoregon.edu ; WWW:
http://www.uoxray.uoregon.edu/dale/welcome.html

Abstract

It is not unusual, when refining the structure of a macromolecule, to wish to incorporate some information
which was not foreseen by the authors of the software being used. This article discusses the mechanisms
in the TNT refinement package which allow this information to be utilized, without modifying the source
code for TNT nor recompiling. A program which calculates the data that TNT requires to apply the new
restraints must be written by the user.

Introduction

The TNT refinement package (Tronrud et al., 1987) has been available for many years and is still being
developed and used for a number of refinement problems. One of its unique features is its ability to accept
information from other programs which allows a macromolecular model to be restrained by information
not explicitly anticipated within the TNT software.

One example of the successful use of this feature of TNT is the maximum likelihood refinement package
Buster (Bricogne, 1997). This package uses the TNT refinement package to perform the calculation for
function optimization and stereochemical restraints but replaces TNT’s least-squares diffraction residual
function with a much more elaborate maximum likelihood target function.

TNT uses the preconditioned conjugate gradient method of function optimization (Tronrud, 1992). This
algorithm uses a subset of the Normal matrix (and that subset must be easily invertible) to find an
alternative coordinate system for the parameters of the model. The new, abstract, coordinate system is one
where the conjugate gradient method (Fletcher & Reeves, 1964) will be more efficient. The conjugate
gradient method requires the ability to evaluate the function being optimized given any set of values for
the parameters of the model, as well as the gradient of this function. The preconditioned conjugate
gradient method requires, in addition, the ability to calculate the diagonal of the Normal matrix.

If the new information being added to the refinement is statistically independent of the restraints
implemented in TNT, the expanded restraint function will simply be the sum of the traditional restraints
and the function based on the new restraints. Since the derivative operator is a linear operator, the first
and second derivatives of the expanded restraint function will, likewise, be the sum of the derivatives of
the "traditional" restraint function and the added restraint function. The TNT refinement package can read
function values, first derivatives, and the diagonal of second derivatives from a formatted file and add
these values to its own corresponding quantities.

To add restraints to a TNT refinement, the user must write a program which will read a TNT coordinate
file and produce the value of the restraining function, its first derivative, and diagonal of its second
derivative. Proper modification of the TNT refinement script will cause the program to run at the
appropriate time, and instruct TNT’s program Shift to read the supplied data files in addition to TNT’s
own.

mailto:dale@uoxray.uoregon.edu
http://www.uoxray.uoregon.edu/dale/welcome.html

Choice of Function

TNT is a least-squares refinement package. If the added restraints are to be compatible with the other
restraints anticipated by TNT the user should preferably cast them as least-squares restraints, or, failing
this, in a negative log-likelihood expression.

The form of a least-squares residual function is

where Qobs is the target value of the restraint, σobs is the standard deviation of, or the confidence in, the
target value, and Qcalc is the equivalent quantity calculated from the current model. The weight, W, is
used to control the balance between the added restraints and those of TNT. Its value has to be determined
empirically by running a series of refinement jobs with a range of values and selecting that value which
results in either the lowest free R or all the categories of restraints being met to within the precision of
their libraries. If the σ’s are accurate the value of the weight will be close to unity.

If the new restraints are cast in the form of a probability, the function will be a form incompatible with a
least-squares residual function. This difference, along with the need to maximize probabilities and
minimize residuals, makes it impossible to combine within TNT. Taking the negative logarithm of a
probability distribution will make the function compatible with a leastsquares residual.

Format of TNT’s Data Files

Programs in the TNT refinement package pass data amongst themselves in free-format text files. Each
line in one of these files contains a packet of information which can be interpreted independent of its
context - The order of the lines in a file is of no importance. The type of data on a line is defined by a
keyword written at its head.

To allow TNT to track which piece of information belongs to which part of the function being minimized,
the user must choose a name for the information being supplied. You can choose whatever name you
wish (with the exception of RFACTOR, GEOMETRY, and NCS which TNT uses) but only the first four
letters are significant. In the examples that follow the name "MINE" is used.

The keywords used to pass information about restraints to TNT’s optimizer program (named Shift) are

FUNCVAL Provides the value of the function being minimized

DRVC Provides the first derivatives of the function with respect to the

parameters of a single atom

CRVC, CRVAC, and CRVBC Provides the second derivatives of the function with respect to the

parameters of a single atom

Following the keyword is the name chosen for the supplied function.

The FUNCVAL statement only needs the function name and the value of the function when evaluated for
the current model coordinate file. An example of a FUNCVAL statement is

53

54

FUNCVAL MINE 1.34567E+11

A DRVC statement contains the first derivative of the function for the parameters of a particular atom.
There is one DRVC statement for each atom in the model. In this statement the keyword is followed by the
name chosen by the user, and the derivatives with respect to the five parameters of the atom (X, Y , Z, B,
and occupancy). These numbers are followed by the atom’s name, the name of the residue containing it,
and the name of the chain containing it. An example of a DRVC statement is

DRVC MINE 2.12E+02 3.62E+02 1.12E+02 -1.13E+00 7.22E+01 N 1 A

These are the five derivatives for the amide nitrogen of residue 1 in chain A.

A question which now must be answered is "Which coordinate system is being used?" TNT was created
prior to the establishment of the current "PDB standard" Cartesian coordinate system. While the
coordinate system used in TNT to describe the location of atoms is Cartesian, it is not that used in a PDB
format coordinate file. To convert from crystallographic "fractional" coordinate system to TNT’s
Cartesian system use the conversion matrix

If the residual function does not depend on the placement of the molecule in the crystal then this
difference in convention is unimportant. The coordinates found in the TNT coordinate file will already be
in an appropriate orthonormal coordinate system.

The diagonal second derivatives are defined with the CRVC, CRVAC, and CRVBC statements. In the most
elaborate form available in TNT the diagonal of the second derivative matrix is defined as a symmetric
5x5 block for each atom. (The matrix blocks containing second derivatives for parameters in different at-
oms are always assumed to be zero in TNT.) The values on the diagonal of this 5x5 block (i.e. ∂2f/∂X2,
∂2f/∂Y2, ∂2f/∂Z2, ∂2f/∂B2, and ∂2f/∂Occ2) are almost always non-zero and significant. The off-diagonal
elements of this block are almost always zero (except for ∂2f/∂B∂Occ) and can usually be ignored.

Reflecting this pattern, the CRVC statement contains the values of the five diagonal elements of the block.
If all the other elements are equal to zero there is no need to write CRVAC and CRVBC statements. Since
the diagonal elements are given on the CRVC statement the order of values on the other statements is a
little odd. The values are listed in "threaded order"” which is best described by the figure

The elements identified as 1, 2, 3, 4, and 5 are given (in that order) on the CRVC statement. The elements
identified as A1, A2, A3, A4, and A5 are given on the CRVAC statement and the elements B1, B2, B3,
B4, B5 are given on the CRVBC statement. Since the CRVBC statement contains only derivatives which

55

mix positional parameters with the B factor or occupancy it has contained only zeros in our experience. It
is unlikely that you will ever write a CRVBC statement.

An example of a CRVC/CRVAC pair is

CRVC MINE 5.90E+02 5.90E+02 642E+02 2.07E-01 8.37E+02 N 1 A
CRVAC MINE 0.00E+00 0.00E+00 0.00E+00 -1.15E+01 0.00E+00 N 1 A

Practical Considerations for Curvatures

The diagonal approximation to the second derivative matrix that is used in TNT is a poor one for many
types of restraints. While it works reasonably well for restraints to diffraction amplitudes, geometrical
restraints will always have large off-diagonal elements which are a consequence of the "ties" between
various sets of atoms.

We have determined, empirically, that when refining with restraints which have large off-diagonal
elements (which are always ignored in TNT) the off-diagonal elements in the diagonal 5x5 block should
also be ignored. In TNT CRVAC and CRVBC statements are never written for stereochemical and
noncrystallographic symmetry restraints.

The diagonal block of second derivatives which is calculated for restraints to diffraction amplitudes for
most atoms contains zeros on all off-diagonal elements (except for the ∂2f/∂B∂Occ element which is not
important if the occupancy of the atom is held fixed.) The exception to this pattern occurs when an atom
is near a special position in the unit cell. In that situation, the off-diagonal elements of the positional
second derivatives are non-zero and are critical to the correct refinement of the location of the atom.

It is recommended that any new restraint programs be written to produce CRVAC and CRVBC statements.
Tests comparing the efficiency of the refinement with and without these statements, however, should be
run to determine if the presence of this information is helpful or harmful.

Editing the TNT Refinement Script

TNT consists of a number of programs which are coordinated by a script when running refinement.
Several csh scripts are supplied for use on unixlike operating systems. The user will have to edit one of
these scripts to cause the new program to be executed and its data to be read by TNT.

Regardless of the features of a particular script, all cycles of refinement in TNT have two parts. In the
first part (called the "long loop") each helper program calculates the function value, gradient, and
diagonal of the second derivative matrix for its restraints.

All this information (along with the previous cycle’s shift vector) is read by the program Shift and three
things are done:

• A new shift vector is determined by applying the preconditioned conjugate gradient method.
• An estimate of the fraction of this shift vector to be applied is made and written to a temporary

file.
• A coordinate file (named shifted.cor) is written which has the trial shift applied.

In the second part of the cycle of refinement (called the "short loops"), the true fraction of the shift vector
which optimizes the model is determined. This goal is accomplished by a one-dimensional search along
the shift vector. In each iteration, each helper program evaluates its residual function for the trial
coordinate file; no derivatives are required here. The program Shift reads the current function values and

56

its own temporary files containing the status of the optimization, and calculates a new estimate. If the new
estimate is not significantly different the cycle ends and a new cycle begun.

Refinement of a model against diffraction data and stereochemical restraints is performed by the script
$tntbin/tnt cycle. The simplest way to add new restraints to a cycle of TNT is to make a copy of this
script and edit it. This script runs the programs Rfactor and Geometry (which are TNT’s helper programs
for restraints on diffraction data and ideal stereochemistry) and then runs Shift. The user should add the
commands required to cause their program to calculate its function value and derivatives before the script
runs Shift. Then modify the script to cause Shift to read the file containing the appropriate file.

The script commands which run Shift are

$tntbin/shift << $eof
INCLUDE init.cor
INCLUDE rfactor.dat
INCLUDE geometry.dat
INCLUDE olddir.dat
INCLUDE $control
$eof
if ($status >< 0) exit 1
if (-e tempparm.tmp) rm tempparm.tmp

rm rfactor.dat geometry.dat

These commands cause Shift to read the starting coordinates (init.cor), the output of the programs Rfactor
and Geometry (rfactor.dat and geometry. dat), the previous shift vector (olddir.dat), and the TNT control
file (whose name is stored in the symbol $control). If the user’s program writes its data in the file
mine.dat add the statement

INCLUDE mine.dat

anywhere in the existing list of INCLUDE statements.

In the second half of the script Rfactor and Geometry are run once again. These programs are followed by
Shift. The user will have to add commands to run the added program here (This time only calculating the
function value) and add an INCLUDE statement to force Shift to read the user’s new file.

Example: Restraining to Torsion Angle Distributions

TNT, as well as other refinement packages (e.g. CNS (Brünger et al., 1998)) restrain molecular models to
ideal torsion angles using a simplistic method. Each torsion angle can have several "ideal" values which
represent the allowed rotomers for that group of atoms. These ideal values are required to be equally
spaced within the circle of 360 degrees, and the width and height of the probability of each of these
values are assumed to be identical. Priestle (2003) discusses many of these shortcomings.

To create a restraint on torsion angles which does not have these limitations, one could use the raw
probability distributions for the χ angles in place of the distilled list of most probable χ angles usually
listed in a rotomer library. Probability distributions suitable for this use are listed in Priestle (2003).

The target function of such a restraint would be

where W is the overall weight of this term relative to the term restraining the model to the diffraction data
and the term restraining other stereochemistry items, j is the index of a particular side chain χ angle, χc,j is
the value of this χ angle calculated from the current model, and Pχj is the probability distribution of all the
values this χ angle could adopt.

The probability of an entire model is the product of the probabilities of each of its χ angles, assuming that
the values of these angles are independent of each other. (They are, of course, not independent but to
handle the relationship between χ angles requires higher dimensional probability distributions which
introduce their own problems. We will continue this example assuming independence.) The negation of
the log of this product is calculated to ensure compatibility with TNT.

TNT requires the first, and diagonal of the second derivatives of this function. These derivatives must be
with respect to the positional parameters of the atoms in the model. The equation for the first derivatives
are

and the equation for diagonal of the second derivative matrix is

xi is the positional parameters (i.e. X, Y , and Z) for the ith atom and {a, b, . . .} are the indices of the
torsion angles which involve this atom. ∂χc,k(x)/∂xi indicates how the torsion angle changes as the atom
is moved. Values for these derivatives can be found in Tronrud et al. (1987).

The derivative of the probability distribution with respect to the χ angle can either be calculated either by
discrete differentiation of the histogram itself, or by taking the derivative of a curve fit to the histogram.

The second derivative contains three terms. While the first term is positive in all cases the second and
third may be either positive or negative. The optimization method used in TNT requires that the second
derivative matrix be positive definite. For a diagonal matrix this means that all the diagonal entries must
be positive. The performance of TNT would likely be improved by only calculating the first term.

Further Information

To find further information about the TNT refinement package visit the website
http://www.uoxray.uoregon.edu/tnt/

57

http://www.uoxray.uoregon.edu/tnt/

58

Acknowledgements

This work was supported in part by NIH grant GM20066 to B.W. Matthews.

References

Bricogne, G. (1997). In Macromolecular Crystallography, Part A, edited by R. M. Sweet & C. W. Carter,
Jr volume 276 of Methods in Enzymology pp. 361-423. New York: Academic Press, Inc.

Brünger, A. T., Adams, P. D., Clore, G. M., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski,
J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., & Warren, G. L. (1998). Acta Cryst.
D54, 905-921.

Fletcher, R. & Reeves, C. (1964). Computer Journal, 7, 81-84.

Priestle, J. P. (2003). J. Appl Cryst, 36, 34-42.

Tronrud, D. E. (1992). Acta Cryst. A48, 912-916.

Tronrud, D. E., Ten Eyck, L. F., & Matthews, B. W. (1987). Acta Cryst. A43, 489-501.

59

Organisation of prior chemical knowledge for macromolecular structure
refinement

Alexei A. Vagin and Garib N.Murshudov,
Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5YW, UK,
E-mail: garib@ysbl.york.ac.uk and alexei@ysbl.york.ac.uk - WWW: http://www.ysbl.york.ac.uk/~garib/
and http://www.ysbl.york.ac.uk/~alexei/

Abstract

One of the most important aspects in macromolecular structure refinement is the use of prior chemical
knowledge. Bond lengths, bond angles and other chemical properties are used in restrained refinement as
subsidiary conditions. This contribution describes the organisation of the flexible and human/machine
readable dictionary of prior chemical knowledge used by the maximum-likelihood macromolecular
refinement program REFMAC5. The dictionary stores information about monomers that represent the
building blocks of biological macromolecules (amino acids, nucleic acids, and saccharides) and about
numerous organic/inorganic compounds commonly found in macromolecular crystallography. It also
describes the modifications the building blocks undergo as a result of chemical reactions and the links
required for polymer formation. More than 2000 monomer, 100 modification, and 200 link entries are
currently available.

1. Introduction

One of the essential components of macromolecular crystal structure refinement is the use of prior
information. Prior information available for macromolecular crystallographers can loosely be divided into
two families: (a) the available three-dimensional structures of macromolecules deposited within the
Protein Data Bank and (b) such invariant chemical properties of macromolecular building blocks as, bond
lengths, bond angles, chiral volumes, planes.

A very important, although heavily underused, source of prior information for macromolecular
experimental techniques is the PDB (Bernstein et al, 1977; Berman et al, 2002). It can be expected that
many features of the new macromolecular structures are already present within those solved and
deposited previously. This aspect of the utilisation of the available information is growing rapidly and
there are already some applications of it in such branches of crystal structure analysis as model building
(Jones et al, 1991) and density modification (Terwilliger, 2003). In future a heavier utilisation of this type
of information can be envisaged. A careful analysis and statistically sensible use of this information will
definitely enhance and extend the applicability of the currently available experimental techniques for
macromolecular structure analysis (e.g. crystallography).

The importance of using known chemical properties, such as bond lengths, bond angles as subsidiary
conditions in macromolecular crystallography refinement has been recognised for a long time (Waser,
1963; Jack & Levitt, 1978; Konnert, 1980). The primary justification for the use of these properties is that
the experimental data alone are not sufficient to completely define the three-dimensional structure of
macromolecules. To extract information from the limited and noisy experimental data it is necessary to
use as much as possible chemical information.

 This contribution presents the design and the organisation of the dictionary of prior chemical information
used by the maximum-likelihood macromolecular crystallographic refinement program REFMAC5
(Murshudov et al, 1997) of the CCP4 (Collaborative computational project: Number 4, 1994) suite. Since
primary purpose of the dictionary is its use by the program REFMAC5, in the following sections it is
referred as a REFMAC5 dictionary.

mailto:garib@ysbl.york.ac.uk
mailto:alexei@ysbl.york.ac.uk
http://www.ysbl.york.ac.uk/~garib/
http://www.ysbl.york.ac.uk/~alexei/

60

2. Definitions

Monomer. A monomer indicates a chemical unit that, at least formally, can exist independently. For
example, amino acids, nucleotides, monosaccharides and ligands are monomers.

Modification. A modification is a formalism that describes the result of changes brought about on a
monomer by a chemical reaction. Examples of modification are the N-terminus methylation of amino
acids and the methylation of pyranoses at the O1 position.

Link. A link is a formalism that embeds the information required to describe all changes and newly
formed bonds occurring when two monomers undergo a chemical reaction that somehow joins them
together. Examples of links are trans/cis peptide bonds, phosphodiester bonds, and α-4 glycosidic bonds.

Chirality. Chirality is a chemical concept that refers to the property of certain compounds of being non-
superimposable to their mirror image. The type of chirality used in the REFMAC5 dictionary is similar to
that used in SMILES strings (Weininger, 1988) that is, local chirality as opposed to absolute chirality.
Unlike the CIP (Cahn et al, 1966) and IUPAC (IUPAC, 1979) conventions for chirality, local chirality is
defined only by the immediate surrounding of an atom. Local tetrahedral chirality is the most common
one. It is usually present on carbon and nitrogen atoms with sp3 hybridisation when at least three non-
hydrogen atoms are bound to them. Local tetrahedral chirality is defined by its sign. The sign can be
either “positive” or “negative”. More complex local chiralities are present at metal centres.

Minimal description. Minimal description refers to the minimal information necessary to describe a
monomer uniquely. It consists of the monomer name, the list of its atoms identification codes and
symbols, its bonds list and orders, and optionally the chemical group to which it belongs to (peptide,
pyranose, etc.). If required, the configuration of the monomer can be defined using chiralities.

Complete description. Complete description is a monomer description that contains all information about
its internal chemical structure. In addition to the items present in the minimal description it also contains a
tree representation of the monomer as well as its bond lengths, bond angles, torsion angles. When
required, planes and chiral centres are also defined. For the appropriate parameters standard deviations
are given.

3. Dictionary of prior chemical information

The dictionary used by the program REFMAC5 has been designed according flexibility criteria. It is
largely based on the monomer approach and allows dynamic definition of links and modifications. It
contains carefully analysed descriptions for most common monomers, modifications and links.

REFMAC5 dictionary is written in an extended mmCIF format (Bourne et al, 1997). This is based on the
star style (Hall, 1991) and the CIF format (Hall et al, 1991) used in small molecules crystallography. The
attractive side of the mmCIF format is that any data file based on it can easily be extended without
affecting the functionalities of programs already using it.

3.1 General organisation and current state of the dictionary

REFMAC5 dictionary contains a list of monomers, modifications, and links along with their descriptions.
Monomer descriptions define the internal coordinate of independent compounds. Modifications and links
encapsulate the changes brought about on them by chemical reactions. Modifications typically act on a
single monomer whilst links join monomers together.

61

The currently distributed version of the dictionary has entries for all amino acids as well as for many of
their possible modifications, for all nucleic acids and for some of their modifications, and for most
common sugars and their modifications. It has also entries for many organic and inorganic compounds
frequently encountered when solving macromolecular structures. As some monomers have several well
established common names the dictionary contains a list of synonyms capable of handling them.The
dictionary also contains frequently encountered links like trans/cis and methylated peptide links, sugar-
sugar and sugar-protein links, as well as DNA/RNA links.

Current version of the dictionary contains more than 2000 monomer, 100 modification, and 200 links.
Such a large dictionary covers most common users' needs. A full list of monomers, modifications and
links available within the REFMAC5 dictionary can be found at the web-page
http://www.ysbl.york.ac.uk/~alexei/dictionary.html.

The dictionary can easily be extended by users. Users can create and organise personal monomer entries
as well as modifications and links. In case of conflict user's definitions always override that stored within
the distributed dictionary.

At present, the dictionary is used mainly by the program REFMAC5 for restrained refinement. However,
its organisation is so that other programs dealing with macromolecules can use it. For example, the model
building program COOT (Emsley and Cowtan, 2004) employs it. Applications for molecular simulation
and modelling that use the REFMAC5 dictionary are currently being developed.

3.2 Monomers

For a monomer to be completely defined information must be available about its constituting atom(s) and,
if present, about its bonds, angles, torsion angles, planes, and chiral centres. Examples of complete
monomer descriptions are given in Table 1.

Table 1a. Example of complete monomer description.

This example shows the complete monomer description of the pyranose β-D-glucose. For compactness,
most description categories given contain only a representative set of items. Missing items are
represented by “...” symbols. The first category (_chem_comp) is the general category. It contains the
name of the monomer alongside with its long name and the name of the group to which it belongs to. In
this category there is an indication of the level of monomer description. If this item has the value “M” the
entry has a minimal description. In this case the value is “.” which indicates a complete description. The
second category (_chem_comp_atom) describes atoms with their names, element names, atom types, and
atom charges. It can also contain a monomer representation in Cartesian coordinates. The third category
(_chem_comp_tree) is the acyclic graph description. Additional bonds are present to indicate ring
enclosure also. These bonds have the label “ADD”. Beginning and end of the tree are labelled with
“START” and “END”, respectively. The fourth category (_chem_comp_bond) lists bonds together with
their bond lengths, bond orders and uncertainties. Other categories present are for bond angles
(_chem_comp_angle), torsion angles (_chem_comp_tor), and chiralities (_chem_comp_chir). When
required, planes are indicated by the category (_chem_comp_plane_atom). The latter category is not
present in this example as β-D-glucose does not need planarity restraints.

data_comp_list
loop_
_chem_comp.id
_chem_comp.three_letter_code
_chem_comp.name
_chem_comp.group

http://www.ysbl.york.ac.uk/~alexei/dictionary.html

62

_chem_comp.number_atoms_all
_chem_comp.number_atoms_nh
_chem_comp.desc_level
GLC-b-D GLC 'beta_D_glucose ' D-pyranose 24 12
.

data_comp_GLC-b-D

loop_
_chem_comp_atom.comp_id
_chem_comp_atom.atom_id
_chem_comp_atom.type_symbol
_chem_comp_atom.type_energy
_chem_comp_atom.partial_charge
 GLC-b-D C1 C CH1 0.000
 GLC-b-D H1 H HCH1 0.000
 ...
 ...
 GLC-b-D HO6 H HOH1 0.000
 GLC-b-D O5 O O2 0.000
loop_
_chem_comp_tree.comp_id
_chem_comp_tree.atom_id
_chem_comp_tree.atom_back
_chem_comp_tree.atom_forward
_chem_comp_tree.connect_type
 GLC-b-D C1 n/a C2 START
 GLC-b-D H1 C1 . .
 ...
 ...
 GLC-b-D O6 C6 HO6 .
 GLC-b-D HO6 O6 . .
 GLC-b-D O5 C5 . END
 GLC-b-D O5 C1 . ADD
loop_
_chem_comp_bond.comp_id
_chem_comp_bond.atom_id_1
_chem_comp_bond.atom_id_2
_chem_comp_bond.type
_chem_comp_bond.value_dist
_chem_comp_bond.value_dist_esd
 GLC-b-D O1 C1 single 1.410 0.020
 GLC-b-D C2 C1 single 1.524 0.020
 ...
 ...
 GLC-b-D HO6 O6 single 0.980 0.020
 GLC-b-D C1 O5 single 1.410 0.020

loop_
_chem_comp_angle.comp_id
_chem_comp_angle.atom_id_1
_chem_comp_angle.atom_id_2
_chem_comp_angle.atom_id_3
_chem_comp_angle.value_angle
_chem_comp_angle.value_angle_esd
 GLC-b-D H1 C1 O1 109.470 3.000
 GLC-b-D O1 C1 C2 109.470 3.000
 ...
 ...
 GLC-b-D C6 O6 HO6 109.470 3.000

63

 GLC-b-D C5 O5 C1 111.800 3.000
loop_
_chem_comp_tor.comp_id
_chem_comp_tor.id
_chem_comp_tor.atom_id_1
_chem_comp_tor.atom_id_2
_chem_comp_tor.atom_id_3
_chem_comp_tor.atom_id_4
_chem_comp_tor.value_angle
_chem_comp_tor.value_angle_esd
_chem_comp_tor.period
 GLC-b-D var_1 C1 C2 O2 HO2 0.000 20.000 1
 GLC-b-D var_2 C1 C2 C3 C4 -50.095 20.000 3
 ...
 ...
 GLC-b-D var_11 C5 O5 C1 C2 -55.889 20.000 3
 GLC-b-D var_12 O5 C1 C2 C3 55.889 20.000 3
loop_
_chem_comp_chir.comp_id
_chem_comp_chir.id
_chem_comp_chir.atom_id_centre
_chem_comp_chir.atom_id_1
_chem_comp_chir.atom_id_2
_chem_comp_chir.atom_id_3
_chem_comp_chir.volume_sign
 GLC-b-D chir_01 C5 C4 O5 C6 positiv
 GLC-b-D chir_02 C4 C3 O4 C5 positiv
 GLC-b-D chir_03 C3 C2 O3 C4 negativ
 GLC-b-D chir_04 C2 C1 O2 C3 positiv
 GLC-b-D chir_05 C1 O1 O5 C2 positiv

Table 1b. Example of the complete monomer description with metal chirality.

Description of seven coordinated calcium. Chirality sign is cross5 shown that there are 5+2=7 atoms
surrounding the central atom. After the centre, chirality definition has information about up to eight
atoms. First atom indicated by_chem_comp_chir.atom_id_1 shows starting atom, second atom indicated
by_chem_comp_chir.atom_id_2 shows the end and all others show surrounding atoms (see Figure 2).
Apart from centre all atoms are optional. It allows flexible definition of distorted coordination. However
there must be at least two atoms surrounding the central atom.

global_
_lib_name mon_lib
_lib_version 4.3
_lib_update 11/06/03
--

--- LIST OF MONOMERS ---

data_comp_list
loop_
_chem_comp.id
_chem_comp.three_letter_code
_chem_comp.name
_chem_comp.group
_chem_comp.number_atoms_all
_chem_comp.number_atoms_nh
_chem_comp.desc_level
OC7 . 'CALCIUM ION, 7 WATERS COORDINATED ' non-polymer 22 8 .

64

--- DESCRIPTION OF MONOMERS ---

global_
_lib_name mon_lib
_lib_version 4.3
_lib_update 11/06/03
--

--- LIST OF MONOMERS ---

data_comp_list
loop_
_chem_comp.id
_chem_comp.three_letter_code
_chem_comp.name
_chem_comp.group
_chem_comp.number_atoms_all
_chem_comp.number_atoms_nh
_chem_comp.desc_level
OC7 . 'CALCIUM ION, 7 WATERS COORDINATED' non-polymer 22 8 .

--- DESCRIPTION OF MONOMERS ---

data_comp_OC7

loop_
_chem_comp_atom.comp_id
_chem_comp_atom.atom_id
_chem_comp_atom.type_symbol
_chem_comp_atom.type_energy
_chem_comp_atom.partial_charge
_chem_comp_atom.x
_chem_comp_atom.y
_chem_comp_atom.z
 OC7 O7 O O 0.000 0.000 0.001 0.000

 OC7 HO12 H H 0.000 0.241 4.292 0.001
 OC7 HO11 H H 0.000 -1.011 3.040 0.002
loop_
_chem_comp_bond.comp_id
_chem_comp_bond.atom_id_1
_chem_comp_bond.atom_id_2
_chem_comp_bond.type
_chem_comp_bond.value_dist
_chem_comp_bond.value_dist_esd
 OC7 O1 CA single 2.320 0.020

 OC7 HO72 O7 single 1.040 0.020
loop_
_chem_comp_angle.comp_id
_chem_comp_angle.atom_id_1
_chem_comp_angle.atom_id_2
_chem_comp_angle.atom_id_3
_chem_comp_angle.value_angle
_chem_comp_angle.value_angle_esd

 OC7 O7 CA O5 180.000 3.000

 OC7 O2 CA O5 90.000 3.000

65

loop_
_chem_comp_chir.comp_id
_chem_comp_chir.id
_chem_comp_chir.atom_id_centre
_chem_comp_chir.atom_id_1
_chem_comp_chir.atom_id_2
_chem_comp_chir.atom_id_3
_chem_comp_chir.volume_sign
_chem_comp_chir.atom_id_4
_chem_comp_chir.atom_id_5
_chem_comp_chir.atom_id_6
_chem_comp_chir.atom_id_7
_chem_comp_chir.atom_id_8
 OC7 chir_01 CA O5 O7 O1 cross5
 O4 O2 O3 O6 .

Monomers are described by the following categories:

General category. This category contains the short and full monomer names, the monomer three letter
PDB code and the group it belongs to (peptide, DNA/RNA, pyranose, non-polymer). Group names are an
important part of the monomer description as they facilitate monomer handling. For example, if the
monomer belongs to the group called “peptide” then all links and modifications described for peptides
can be applied to it. Moreover, the group type defines whether a monomer can belong to a chain
(polypeptide, DNA/RNA or polysaccharide chains).

Atom category. This category lists atom and element names and their chemical types and charges. It may
also contain Cartesian coordinates.

Tree category. This category describes the mathematical tree (acyclic graph) corresponding to the
monomer chemical connectivity. It is used to generate coordinates. Missing atoms, e.g. hydrogens, are
restored using this tree.

Bond category. This category contains the list of bonded atoms, bond types, and ideal values of bond
lengths and uncertainties associated with them. Alongside with the atom category this category defines
completely the chemical structure of the monomer. In mathematical terms such a structure is called a
coloured graph. Edges are coloured by bond orders and vertices are coloured by chemical types.

Angle category. This category contains the three-atoms list of all possible angles in the monomer as well
as their ideal values and associated uncertainties.

Torsion angle category. This category contains the four-atoms list of torsion angles, their types and
names, their ideal values and associated uncertainties, and their period. The latter value represents the
number of energetic minima along the torsion angle. For example, χ angles along the Cα-Cβ bond of
glutamine residue have a period equal to three. A torsion angle can be constant or variable. Constant
torsion angles generally involve atoms belonging to the same plane or atoms along double bonds.
Usually, these torsion angles have period equal to zero or one as they can have a single value only.

Plane category. This category contains the list of planes and of all atoms belonging to them.

Chirality category: tetrahedral chirality. This category contains the list of all chiral centres. For each
chiral centre it also lists the central atom, the atoms bonded to it and the sign of the chiral volume. The
current version of the dictionary allows undefined signs using “both” or “anomer” keywords. If the
keyword “both” is used the chirality of the monomer can change during restrained refinement. If the
keyword “anomer” is used the chirality is fixed and its sign is defined by the input coordinates. If for a

monomer in a crystal there are two or more configurations all of them can be simultaneously handled
during refinement by assigning the keyword “anomer” to each chiral centre.

Chirality category: Metal chirality. It is a special case of the general chirality category. This type of
chirality allows description of surrounding of metals. Keyword used for this is “crossn” where n is
between zero and six (Table 1b and Figure 1).

Figure 1: Schematic view of metal chirality

Ideal values for bond lengths and bond angles for standard amino acids present in the dictionary have
been taken from Engh and Huber (1991). Ideal values for bond lengths and angles for nucleic acids have
been taken from (Kennard and Taylor, 1982). Ideal values for bond lengths and angles for most
saccharides have been taken from Sanger (1983).

At present, about 1000 monomers out of the 2000 available in the REFMAC5 dictionary are present with
a complete description. The remaining ones are present with a minimal description. Work is in progress to
deliver in the shortest time possible a dictionary in which all entries are present with checked complete
descriptions.

3.3 Modifications

A modification is a formalism that describes changes brought about on a single monomer by chemical
reactions. An example of modification is shown Figure 2a. Its dictionary description is given in Table 2.
A modification allows atoms, bonds, angles, torsion angles, planes, chiral centres to be added to or
deleted from monomers. The use of modifications greatly reduces the number of monomer descriptions
that need to be stored and allows describe properly links between monomers as some of them require
monomers to first undergo modifications prior linkage. Modifications can also be used for non-chemical
changes on monomers such as changes in residues name. This is a convenient way of handling cases of
multiple monomer names. In such cases the modification keyword is “RENAME”. This keyword is also
used to overcome the three-letter restriction imposed by the PDB convention.

66

Figure 2: a) Example of a sugar modification. The condensation of α-D-glucose with methanol gives
methyl-α-D-glucoside; (b) Example of sugar link. The disaccharide β-maltose is formed by condensation
of α-D-glucose with β-D-glucose. The glycosidic bond is an α-4 link.

Table 2. Example of modification.

This example describes the methylation at the O1 position of pyranoses. See Figure 1a) for a graphical
representation of this modification. The first - general - category (_chem_mod) reports the code for the
modification “O1MET” and describes whether the modification is to be applied to a only a particular
monomer or to group of monomers. “O1MET” modification can be applied to all monomers belonging to
“pyranose” group. The (_chem_mod_atom) category describes the list of all added, deleted or changed
atoms. The following category (_chem_mod_bond) describes all added or deleted bonds. In a similar
manner the tree structure (_chem_mod_tree), bond angles (_chem_mod_angle), torsion angles
(_chem_mod_tor), planes (_chem_mod_plane_atom), and chiralities (_chem_mod_chir) when affected by
the modification are handled.

data_mod_list
loop_
_chem_mod.id
_chem_mod.name
_chem_mod.comp_id
_chem_mod.group_id
O1MET O1_metyl_of_sugar . pyranose

data_mod_O1MET

loop_
_chem_mod_atom.mod_id
_chem_mod_atom.function
_chem_mod_atom.atom_id
_chem_mod_atom.new_atom_id
_chem_mod_atom.new_type_symbol
_chem_mod_atom.new_type_energy
_chem_mod_atom.new_partial_charge
 O1MET change O1 . . O2 0.000
 O1MET delete HO1 . . . 0.000
 O1MET add . HM3 H HCH 0.000

loop_
_chem_mod_bond.mod_id
_chem_mod_bond.function
_chem_mod_bond.atom_id_1

67
_chem_mod_bond.atom_id_2

68

_chem_mod_bond.new_type
_chem_mod_bond.new_value_dist
_chem_mod_bond.new_value_dist_esd
 O1MET add O1 CM single 1.420 0.020

 O1MET add CM HM3 single 0.960 0.020
loop_
_chem_mod_angle.mod_id
_chem_mod_angle.function
_chem_mod_angle.atom_id_1
_chem_mod_angle.atom_id_2
_chem_mod_angle.atom_id_3
_chem_mod_angle.new_value_angle
_chem_mod_angle.new_value_angle_esd
 O1MET add C1 O1 CM 120.000 3.000

3.4 Links

The link formalism allows join monomers together. An example of link is shown Figure 2b. Its
description is given in Table 3. Links can be considered the external counterpart of monomer
descriptions. Whereas monomer descriptions give the internal structure of single chemical compounds
link descriptions define in detail the result of chemical reactions between monomers. Link descriptions
contain information about the monomers or the group of monomers they act on as well as about the
modifications these monomers should undergo prior linkage. In the current version of the dictionary a
link can form only one bond. However, the introduction of several angles, torsion angles, planes, chiral
centres is allowed.

Table 3. Example of link.

This example describes the α1-4 pyranose link. See Figure 1b) for a graphical representation of this link.
The first - general - category _chem_link describes the name, the link identification code, and the scope of
this link. It also contains pointers to the modifications the monomers should undergo before the link can
be applied. This link requires that the monomers belong to “pyranose” group and that the first and second
monomers undergo DEL-HO4 and DEL-O1 modifications, respectively. The description for both these
modification need to be available before the link can be applied. Other categories give the list of bonds
(_chem_link_bond), bond angles (_chem_link_angle), torsion angles (_chem_link_tor), chiralities
(_chem_link_chir), etc. with their “ideal” values. Atom names in the link description are always given
together with the monomer numbers they belong to.

data_link_list
loop_
_chem_link.id
_chem_link.comp_id_1
_chem_link.mod_id_1
_chem_link.group_comp_1
_chem_link.comp_id_2
_chem_link.mod_id_2
_chem_link.group_comp_2
_chem_link.name
ALPHA1-4 . DEL-HO4 pyranose . DEL-O1 pyranose
glycosidic_bond_alpha1-4

data_link_ALPHA1-4

loop_
_chem_link_bond.link_id

69

_chem_link_bond.atom_1_comp_id
_chem_link_bond.atom_id_1
_chem_link_bond.atom_2_comp_id
_chem_link_bond.atom_id_2
_chem_link_bond.type
_chem_link_bond.value_dist
_chem_link_bond.value_dist_esd
 ALPHA1-4 1 O4 2 C1 single 1.439 0.020
loop_
_chem_link_angle.link_id
_chem_link_angle.atom_1_comp_id
_chem_link_angle.atom_id_1
_chem_link_angle.atom_2_comp_id
_chem_link_angle.atom_id_2
_chem_link_angle.atom_3_comp_id
_chem_link_angle.atom_id_3
_chem_link_angle.value_angle
_chem_link_angle.value_angle_esd
 ALPHA1-4 1 C4 1 O4 2 C1 108.700 3.000
 ALPHA1-4 1 O4 2 C1 2 O5 112.300 3.000
 ALPHA1-4 1 O4 2 C1 2 C2 109.470 3.000
 ALPHA1-4 1 O4 2 C1 2 H1 109.470 3.000
loop_
_chem_link_tor.link_id
_chem_link_tor.id
_chem_link_tor.atom_1_comp_id
_chem_link_tor.atom_id_1
_chem_link_tor.atom_2_comp_id
_chem_link_tor.atom_id_2
_chem_link_tor.atom_3_comp_id
_chem_link_tor.atom_id_3
_chem_link_tor.atom_4_comp_id
_chem_link_tor.atom_id_4
_chem_link_tor.value_angle
_chem_link_tor.value_angle_esd
_chem_link_tor.period
 ALPHA1-4 ALPHA_1 1 O4 2 C1 2 C2 2 C3 0.00 20.0 1
 ALPHA1-4 ALPHA_2 1 C4 1 O4 2 C1 2 C2 0.00 20.0 1
 ALPHA1-4 ALPHA_3 1 C3 1 C4 1 O4 2 C1 0.00 20.0 1
loop_
_chem_link_chir.link_id
_chem_link_chir.atom_centre_comp_id
_chem_link_chir.atom_id_centre
_chem_link_chir.atom_1_comp_id
_chem_link_chir.atom_id_1
_chem_link_chir.atom_2_comp_id
_chem_link_chir.atom_id_2
_chem_link_chir.atom_3_comp_id
_chem_link_chir.atom_id_3
_chem_link_chir.volume_sign
 ALPHA1-4 2 C1 1 O4 2 O5 2 C2 negativ

3.5 Atom types library

Although the REFMAC5 dictionary is largely based on monomers it also contains an atom type library.
At present, it contains about 300 atom types. It includes all chemical elements as well as many atom types
commonly encountered in chemistry. Each entry has information about the chemical element the atom
type belongs to as well as about its van der Waals (VDW) and ionic radii. The atom type library contains

70

also information about possible bonds between atom types. For many pairs of atom types bond orders and
bond lengths are tabulated. Angles corresponding to some of the atom type triplets are also listed. The
atom types library is in mmCIF format. Therefore, it can easily be updated and extended. A full list of all
atom types library entries can be found at the web-page
http://www.ysbl.york.ac.uk/~alexei/dictionary.html.

The bond lengths listed in the atom types library have been taken from the International Table for
Crystallography (Allen et al 1992; Orpen et al, 1992. VDW and ionic radii of atoms have been taken
from various sources including Greenwood and Earnshaw (1989) and Cotton and Wilkinson (1972).
Unfortunately, to our knowledge there is no single general reference for bond angles. Some of the angles
have been taken from the examples of the Cambridge Structural Database (Allen, 2002), others have been
derived using general information about atoms i.e. their hybridisation and the nature of the surrounding
atoms.

The atom types library serves two main purposes: a) it provides information about VDW and ionic radii
as well as about atoms' hydrogen bonding capability that is used to define non-bonding interactions in the
course of refinement; b) it provides information about initial bond lengths and angles when new monomer
entries are created.

4 Web resources

Two web resources can produce complete monomer descriptions compatible with REFMAC5. The first
resource is hosted at the European Bioinformatics Institute (Golovin et al, 2004) and can be accessed
from the web address http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl. The second one is
the program PRODRG (Aalten et al, 1996) which can be found at the web address
http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html.
Other sources like the CORINA suite (Sadowski et al, 1994) available from http://www2.chemie.uni-
erlangen.de/software/corina/index.html give coordinates that can be used to create REFMAC5
monomer descriptions. CORINA can be used with help of the CACTVS (Ihlenfeldt et al, 1994) interface.
There are several databases that can produce coordinates for various sugars. These include:

http://www.cermav.cnrs.fr/databank/mono/index2.html - monosaccharide database
http://www.cermav.cnrs.fr/databank/disacch/index.html - disaccharide database,
http://www.dkfz-heidelberg.de/spec/sweet2/doc/index.php - sugar database.

One should be careful when using various databases. Most databases use such built-in chemical
assumptions as protonation of carboxyl oxygens. These assumptions can affect geometric parameters.

5 Conclusions and future perspectives

A flexible, machine/human readable dictionary of monomers, links, modification and related items has
been created and tested on a wide range of compounds. The dictionary is currently used for
macromolecular restrained refinement by the program REFMAC5. It can also be used by other
macromolecular programs like model building and macromolecular modelling and simulations
applications.

Flexibility in the organisation of the dictionary allows researchers to add personal entries and to override
existing descriptions. The most common crystallographic restraints are dealt with in an automatic manner.
Complicated cases can also be handled with some user intervention.

The dictionary is distributed by CCP4 under the Part 0 licence that is LGPL compatible. Programs and
interface are available from CCP4 under the Part 2 licence. Neither programs nor dictionary nor

http://www.ysbl.york.ac.uk/~alexei/dictionary.html
http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl
http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html
http://www2.chemie.uni-erlangen.de/software/corina/index.html
http://www2.chemie.uni-erlangen.de/software/corina/index.html
http://www.cermav.cnrs.fr/databank/mono/index2.html
http://www.cermav.cnrs.fr/databank/disacch/index.html
http://www.dkfz-heidelberg.de/spec/sweet2/doc/index.php

71

algorithms have been patented to make sure that they are available to community of users as well as
developers.

For further information about REFMAC5 dictionary and tools to create new dictionary entries see: (Vagin
et al, 2004) and http://www.ysbl.york.ac.uk/~alexei/dictionary.html.
Information about the latest version of the program REFMAC5 and its dictionary can be found in:
http://www.ysbl.york.ac.uk/~refmac/index.html

This work was supported by grants from the Wellcome Trust (GNM), BBSRC (AAV). We thank people
from the YSBL especially Roberto Steiner, Andrey Lebedev, Fei Long, Liz Potterton and Stuart
McNicholas, CCP4 staff and the user community for their continuous support and encouragements.

References

van Aalten, D., Bywater, R., Findlay, J., Hendlich, M., Hooft, R. and Vriend, G. (1996). Journal of Computer Aided Molecular
Design, 10, 255--262.

Allen, F. (2002). Acta Cryst. B58, 380--388.

Allen, F., Kennard, O., Watson, D., Brammer, L., Orpen, A. and Taylor, R. (1992). In International Tables for
Crystallographers, edited by A. Wilson, vol. C, pp. 685-706. Dordrech, Boston, London: Kluwer Academic Publishers.

Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S.,

Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D. and Zardecki, C.
(2002). Acta Cryst. D58 6 Part 1, 899--907.

Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer Jr, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and
Tasumi, M. (1977). J. Mol. Biol. 112(3), 535--542.

Bourne, P., Berman, H., McMahon, B., Watenpaugh, K., Westbrook, J. and Fitzgerald, P. (1997). Meth. Enzymol. 277, 571-
590.

Cahn, R., Ingold, C. Prelog, V. (1966). Angew. Chem. 78, 413-447.

Collaborative Computational Project Number 4. (1994). Acta Cryst. D50, 760-763.

Cotton, F. and Wilkinson, G. (1972). Advanced Inorganic Chemistry. Interscience Publishers.

Emsley, P. and Cowtan, K. (2004). Acta Cryst. Section D, in press.

Engh, R.A. and Huber, R. (1991). Acta Cryst.} A47, 39--400.

Golovin, A., Oldfield, T., Tate, J., Velankar, S., Barton, G., Boutselakis, H., Dimitropoulos, D., Fillon, J., Hussain, A., Ionides,
J., John, M., Keller, P., Krissinel, E., McNeil, P., Naim, A., Newman, R., Pajon, A., Pineda, J., Richedi, A., Copeland, J.,
Sitnov, A., Sobhany, S., Suarez-Uruena, A., Swiminathan, J., Tagari, M., Tromm, S., Vranken, W. and Henrick, K. (2004).
Nucleic Acid Research, 32, D211-D216.

Greenwood, N. and Earnshaw, A. (1989). Chemistry of the Elements. Pergamen Press.

Hall, S. (1991) J. Chem. Inf. Comp. Sci, 31, 326--333.

Hall, S., Allen, A. and Brown, I. (1991). Acta Cryst., A47, 655-685.

Ihlenfeldt, W., Takahashi, Y., Abe, H. and Sasaki, S. (1994). J.Chem. Inf. Comp. Sci. 34, 109--116.

IUPAC (1979). Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H. Pergamon Press.

Jack, A. and Levitt, M. (1978). Acta Cryst. A34, 931--935.

Jones, A. T. (1991). Acta Cryst. D47, 442-450.

http://www.ysbl.york.ac.uk/~alexei/dictionary.html
http://www.ysbl.york.ac.uk/~refmac/index.html

72

Kennard, O. and Taylor, R. (1982). J. Am. Chem. Soc. 104, 3209-3212.

Konnert, J. and Hendrickson, W. (1980). Acta Cryst., A36, 344--350.

Murshudov, G.N., Vagin, A.A. and Dodson, E.J. (1997). Acta Cryst., D53, 240--255.

Orpen, A., Brammer, L., Allen, F., Kennard, O., Watson, D. and Taylor, R. (1992). International Tables for Crystallographers,
edited by A. Wilson, vol.C, pp. 707--791. Dordrech, Boston, London: Kluwer Academic Publishers.

Sadowski, J., Gasteiger, J. and Klebe, G. (1994). Chem. Inf. Comput. Sci, 34, 1000-1008.

Saenger, W. (1983). Principles of Nucleic Acid Structure. Springer-Verlag.

Terwilliger, T. (2003). Acta Cryst., D59, 1688--1701.

Vagin, A., Steiner, R., Lebedev, A., Potterton, L., McNicholas, S., Long, F and Murshudov, G.N. (2004). Acta Cryst. Section
D in press.

Waser, J. (1963). Acta Cryst. 16, 1091--1094.

Weininger, D. (1988). J. Chem. Inf. Comput. Sci., 28, 31--.

X-rays don't see atoms

David Watkin,
Chemical Crystallography, Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford, OX1 3TA, UK - Email : david.watkin@chem.ox.ac.uk ; WWW:
http://www.xtl.ox.ac.uk/ and http://www.chem.ox.ac.uk/researchguide/djwatkin.html

 In addition to the three dimensional Bragg equation (1), there are three more fundamental
equations needed to sum up modern X-ray structure analysis.

αλθ ****2222 cklb2+....a.h = /4 CosSin 1

 The first explains what happens during the X-ray diffraction experiment, in which the incident
wave front falls upon a periodically repeating pattern of varying electron density (2). Note that 'atoms' do
not come into this equation. From the ei term, we can see that the diffracted beams have both magnitude
and a phase shift with respect to the un-diffracted wave front.

zy.x.e. = F)lz+ky+hxi(2
xyzhkl ∂∂∂∫∫∫ πρ 2

 The second shows that if one has measures of the diffracted magnitudes and phase angles, these
can be used to compute the value of the electron density at any (and every) point within the
crystallographic unit cell (3). Most diffraction experiments yield good estimates of the diffracted
intensities, but phase angles are much more difficult to measure, and in practical X-ray structure
determination these phases are not measured. Instead, values can be estimated from the intensities
themselves by a process called ‘Direct Methods’ or by other methods.

e|F|
v
1 =)-lz+ky+i(hx2-

hklxyz
hklαπρ ∑∑∑ 3

 Equations 2 and 3 are reasonably clear-cut and offer a well defined view of the physics of the
experiment, provided the periodically varying electron density in the crystal is periodic on the time scale
of the experiment.

 The third equation requires a much greater leap of confidence, yet is scarcely ever questioned by
chemists using crystallography as an analytical tool (4). This equation is related to equation 2, except that
the integration over a continuously varying periodic electron density has been replaced by a summation
over a periodic array of atoms. The popularity of this model undoubtedly comes from the fact that it
provides a very efficient representation of the electron distribution in the sample1, and that experience has
shown that this approximation serves well for the computation of other physical properties of materials.

e.f F)lz+ky+hxi(2
jhkl

jjjπ∑≈ 4

 If it were practical to measure the phase angle of every diffracted beam in the same time that it
takes to measure its intensity, then computation of the continuous electron density would provide a real
(time and space averaged) image of the material, which could be used to assess the appropriateness of an
‘atomic’ model. Since this cannot be done, we resort to using improved atomic models to provide
(through equation 4) improved estimates of the phases to be used in combination with the observed

73

1 A 10-atom unit cell in P1 requires 40 parameters in the isotropic adp representation, but would require five and a half thou-
sand electron density values for a three dimensional grid sampled at 1/3 of an Angstrom.

mailto:david.watkin@chem.ox.ac.uk
http://www.xtl.ox.ac.uk/
http://www.chem.ox.ac.uk/researchguide/djwatkin.html

74

amplitudes for the creation of improved electron density maps. The improvement in the atomic model
can come from examining the computed electron density for new features, or by mathematically adjusting
the actual atomic parameter values to improve the agreement between the observed and calculated
structure amplitudes, usually by some kind of lest-squares method. There is a tacit belief that a model
which gives good agreement between the observed and computed amplitudes is a good model, and hence
yields good estimates of the phase angles. These two procedures have now become so well automated
that it is rare that a structure analyst (at least in small molecule crystallography) will actually look at
electron density maps.

 Luckily this tidy view of crystallography works well most of the time and accounts for the
commanding role of X-ray structure determination as a definitive analytical tool. However, it can fail for
a number of reasons.

 One is quite simply that the information content of the diffraction amplitudes is so low that there
is no clear ‘best’ match between the observed and computed amplitudes. This situation could arise when
the crystals themselves are of a very poor and inconsistent quality. The most naive solution to this
situation is to let the structure refine to give a best match and hope that the standard uncertainties on the
parameters will warn future users that the analysis was sub-optimal. However, better strategies are
available. Weighting schemes have been devised to reduce the impact of observations which probably
have more than just random errors and thus make the minimisation procedure more robust. In addition,
features in the model can be made to conform to some preconceived ideas. For example, the analyst may
have some idea about the values of inter-atomic distances. Inputting this extra information, either as
restraints or constraints, can be both powerful and dangerous. The strength is that adding information
should tighten up the minimisation function leading to a more acceptable model. The danger is that
incorrect assumptions may be imposed on the model.

 Another reason for the simple well-located atomistic model to fail is that in the real, actual,
crystal, the atoms are not well located. It is now quite evident that the solid state is not always a static
state. The evidence from variable temperature X-ray diffraction experiments and from solid state nmr is
that at room temperatures and some times well below, atoms even in molecular materials can undergo
large displacements from their mean positions. The traditional models for these displacements are the
isotropic and the anisotropic adps. More sophisticated models for the atomic displacements include
higher order expansions , but these introduce ever more parameters to be refined against a limited amount
of reliable data. Since the diffraction experiment works with samples containing many millions of unit
cells, there is always the possibility of spatial inhomogeneity, leading to a diffraction effect which is also
space-averaged.

 There are a number of signs that the ordinary anisotropic adps may be unsatisfactory
approximations to the atomic displacements in the real crystal structure. The most evident is one or two
very long axes to the ellipsoid, while the third axis has a quite normal value. The traditional response to
this situation is to replace the single atom with its single elongated adp by two atoms lying towards the
ends of this axis, each with more isotropic adps. If the two atomic sites become more or less discernable
in an electron density map phased by this model, there is a reasonable chance that normal least squares
refinement will proceed stably. This situation is often seen in crown ethers, where there are two clear
alternative potential locations for the ziz-zag ring structure. If the electron density remains an elongated
crest, then refinement will almost certainly only proceed to a reasonable physical model if constraints or
restraints are applied to the model. Typically, these would be to restrain inter atomic distances (either to
identical but variable values or to prescribed values), and to constrain or restrain the adps of the ‘split’
atom to be identical or similar.

 Another sign that the electron density in the crystal cannot be simply modelled by the normal
atomic model is the persistent recurrence of electron density residues in the difference density map. This
can of course be due to errors in the observed data (e.g. absorption, anisotropic scaling errors, anisotropic
variations in crystal quality, anisotropic integration errors). However, if the data has been collected on a

75

modern instrument with a sufficiently high redundancy in the observations2, it may be an indication that
the well-located atomic model is inappropriate. This situation can occur when there is a guest molecule
located in a lattice whose form is largely determined by a host structure. Extended-lattice materials (eg
zeolites) commonly show this phenomenon, but it can also be found in crystals of molecular materials
where there is a small counter ion or solvent of crystallisation.

 The most commonly used method for dealing with this situation is to used a multiply disordered
cluster of partially occupied atom sites. The principal attractions of this method are that it can be applied
by all commonly available structure analysis programs, and it yields an atomic model – which referees
and users may find comfortingly familiar.

 In this approach, one is adding ever-more terms into a complex expression in the hope that
eventually they will model the average electron distribution as seen by X-rays3. If the atoms being added
in can be related to each other in a way which makes physical sense, this approach has some well-based
justification. However, it can lead to a complex model which may have no real value. It is important to
be able to model the whole structure reliably4, since a modelling error in one place will lead to a
systematic error in Fc, and hence lead to shifts in all other parameters as they are adjusted to minimise the
error in (Fo-Fc)2 or (Fo2-Fc2)2. However, the atomic model may not be the best model for this kind of
problem.

 Two other models are easily available to users of CRYSTALS. Neither is unique to CRYSTALS,
but neither is commonly and easily available to the ordinary crystallographer in other programs.
 One model is to say that the ordinary point atoms spread out by a Gaussian smearing function is
just a special case of more general models. In 1950 King & Lipscomb proposed that the electron density
could, in suitable circumstances, be regarded as lying on a hollow shell, and thus could be modelled by a
suitable Bessel function. This and related ideas have been re-postulated from time to time ever since, but
only implemented in programs for local distribution. Funded by a European Union Human Mobility
grant, Ludger Schroeder has re-implemented the strategies outlined by Chernyshev, Zhukov, Yatsenko,
Aslanov & Shenk into CRYSTALS in such a way that electron density distributed uniformly along a line,
around an annulus or over a hollow shell can be freely refined alongside conventional atoms. The
spherical shell, for example, can be used to model a freely rotating C60 fragment, or with an additional
atom at its centre, to model a tumbling PF6 counter ion. The line, annulus or shell are infinitely thin (by
analogy with point atoms), and have an interaction with the incident X-rays given by the conventional
atomic form factor, site occupation factor and isotropic adp. The refineable parameters are the centroid of
the figure, the length of the line or radius of the annulus and sphere, and the direction of the line and
normal to the annulus, together with site occupancies and isotropic adps. Because these special figures
can be mixed freely with conventional atoms, the user has considerable flexibility in building up models
for highly disordered fragments. For example, the model could consist of a central atom surrounded by
concentric shells of different radii. The hindered rotor described by Bennett, Hutchenson & Foxman has
not yet been implemented, but can be approximated by a hollow shell containing embedded partial atoms.
The advantage of these models over heavily disordered atomic models is that very few extra parameters
need be introduced to achieve an adequate modelling of what is in reality an un-analysable smear of
electron density.

2 In my opinion, high redundancy is much more important than high completeness in ‘routine’ structure analyses. High redun-

dancy enables the cross-scaling software (Scalepack, Sortav, Sadabs) to make a much better job of correcting for spatially
oriented defects in the data. A wedge or shell of missing data, especially at high angles, has little impact on the analysis.

3 Just as a square wave can be approximated by a sufficiently high-order Fourier series
4 It is for this same reason that structure analysts labour so long over hydrogen atoms. If they cannot be refined from the ob-

served data, then their significance is marginal. However, omitting them altogether from an analysis leads to a bias in Fc,
and hence in the other refined parameters. Just how much labour their positioning justifies in terms of the effect on other
parameters does not seem to have been systematically surveyed.

Fig 1: Screenshot of CRYSTALS showing spherically disordered guest molecule. ZnGaPO is a templated
phosphate framework structure produced hydrothermally in space group P -4 3 n (218). The template,
piperazine, lies at Wyckoff position a (23), so is necessarily disordered. The radius of the sphere (1.26A)
corresponds closely to a C1-C3 distance (1.25A). A. Chippendale & A. Cowley, in preparation.

Fig 2: a) CRYSTALS screen shot of Cp* complex, with inner ring of atoms modelled by elliptical adps
embedded in an annulus, and b) corresponding electron density

However, if the smear of electron density computed from the best estimates of phases really is un-
interpretable, perhaps the most honest approach to the analysis is to include it in the model as exactly that.
This is the tactic adopted by Ton Speck in his superb SQUEEZE program.

The structure factor is a complex number (has both magnitude and phase). The magnitude can be
represented by:

222 BAF +=

 where A is the real and B the imaginary part. From the continuous electron density, A can be computed
from:

() vlzkyhxcos
v xyzhklA ∂++∫= πρ 2

76
For a discrete atom model, A can be computed from:

 ()∑ ++=

j
lzkyhxcosjfhklA π2

with B given by similar sin terms.

Ton has tried to promote a hybrid structure factor expression:

() () vlzkyhxlzkyhxfA
v

xyz
j

jhkl ∂+++++= ∫∑ πρπ 2cos2cos

The first term is a summation over the resolved atoms. The integral in the second term is replaced by a
summation over unresolved parts of the electron density map, with a similar expression for B.

In this method, a Fourier map is computed based on whatever phases are available. The unit cell is
searched for voids large enough to potentially contain atoms or molecules. The calculated electron
density in these void volumes can then be reverse-transformed into structure factor contributions5. In the
normal application of this method, the structure factor amplitudes computed from the density in the void
are subtracted from the observed structure factor amplitudes, and the residue used as the target for further
refinement. This is evidently far from ideal, since the phases of the contributions from the electron
density map are not used. In CRYSTALS, the transform of the void density is save for each reflection as
the A and B parts, to be used in the computation of Fc and the phase angle together with the A and B
parts from the discrete atoms. This means that the strategy does not tinker with the observations, has no
lasting effect on the model (the A and B parts from the void can be dismissed as required), but more
importantly, since they contribute to the phase angles, they lead to improved electron density maps.

Fig 3: The PF6 counter ion in the above complex represented by its computed electron density. The
atoms embeded within the density were given occupation factors of zero so that they do not contribute to
the structure factors, and are just there to illustrate that the electron density does envelop the counter ion.
(Illustration by Michal Husak's MCE viewer – available via CCP14 website http://www.ccp14.ac.uk/)

These strategies have been seamlessly integrated in CRYSTALS so that users can mix them in whatever
way they choose. My hope is to see other programs adopt similar ideas, and to see an end-user
community less uneasy about accepting non-atomic representations of crystal structures. The benefit will
be that less time is spent trying to fit almost valueless atomic models to volumes of extreme disorder
without degrading the quality of the rest of the analysis.

77

5 In macromolecular crystallography, the whole of the structure factor and derivative calculation is based on back-transforming
a continuous electron density distribution in the cell built up from atomic contributions.

http://www.ccp14.ac.uk/

78

Writing Binary Data
Scott A. Belmonte,
91 Lord Nelson Street, Warrington, Cheshire, WA1 2JF, U.K. E-mail: scott.belmonte@ntlworld.com -
WWW: http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/

Abstract

In this article, techniques for writing binary data files are detailed. Common issues when writing binary
data are highlighted and examples in FORTRAN and C are given.
Introduction

This article is the sequel to the “Reading Binary Data” article in the January 2004 edition of this news
letter [1]. Much of the introductory material in that article is applicable to writing binary data and should
be read in conjunction with this article. Specifically, the information on endian and file formats apply to
both reading and writing binary data.

As with reading binary data, the biggest problem a programmer faces when writing binary data is
knowing the format of the data to write. Ideally, documentation will be available giving details of the file
format of interest. For example, widely used image formats such as bmp, gif and jpg are well
documented. However, proprietry formats may deliberately be kept secret. In this case, analysis of an
example file using a hex dump utility and a bit of trial and error may be fruitful. Of course, if the
programmer just wants to devise a file format to be used by programs under his control then handling
binary data is easy, as will be shown in the rest of this article.

Writing Binary Data (FORTRAN)

Writing binary data basically comprises converting internal data types, like INTEGER and REAL, into
their byte representations and storing the bytes in a buffer in memory. Once the buffer has been
constructed, it can be written to a file.

The following routine shows how to convert a REAL to its byte representation and save it to a byte
BUFFER (the “writebin” software available at the web site above contains conversion routines for other
types):

C
C**
C Routine: WRITE_BIN_REAL
C
C Description:
C Writes a 32-bit real to BUFFER. The bytes will be swapped
C if SWAP is true. The function returns the number of bytes
C written to BUFFER.
C
C**
 INTEGER FUNCTION WRITE_BIN_REAL(BUFFER, DATA, SWAP)
 IMPLICIT NONE
C
C Parameters
C
 BYTE BUFFER(4)
 REAL DATA
 LOGICAL SWAP
C
C Variables
C
 BYTE TMPBUF(4)
 REAL R4
 EQUIVALENCE (TMPBUF, R4)

mailto:scott.belmonte@ntlworld.com
http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/

79

C
 R4 = DATA
C
 IF (SWAP) THEN
 BUFFER(1) = TMPBUF(4)
 BUFFER(2) = TMPBUF(3)
 BUFFER(3) = TMPBUF(2)
 BUFFER(4) = TMPBUF(1)
 ELSE
 BUFFER(1) = TMPBUF(1)
 BUFFER(2) = TMPBUF(2)
 BUFFER(3) = TMPBUF(3)
 BUFFER(4) = TMPBUF(4)
 ENDIF
C
 WRITE_BIN_REAL = 4
 RETURN
 END
C

BUFFER points to the location to write the DATA to. The data are converted into bytes using an
EQUIVALENCE and the bytes are copied to the buffer. If the SWAP variable is .TRUE. then the byte
order is swapped before copying to the buffer. If the endian of the file is different to the native endian of
the CPU then the byte order needs to be swapped for the file to be written properly. (See [1] for a
discussion on “Endian”.)

The routine returns the number of bytes written to the buffer. This can be used by the caller to update the
position of then next write into the buffer, as will be shown in the next example.

It should be noted that the conversion routines are inherently non-portable. For example, REAL is not
necessarily a 4-byte quantity on all machines. If problems are encountered then the compiler
documentation should be checked to find out the sizes of each type and the conversion routines updated
accordingly.

The following code is an example writing a ficticious image file with the format:

Bytes 1, 2: Unsigned 16-bit integer containing image width.
Bytes 3, 4: Unsigned 16-bit integer containing image height.
Bytes 5 to (width*height*size of real + 4): Image data as REALs.

 PROGRAM WRITE_BIN_EX1
 IMPLICIT NONE
C
C Functions
C
 INTEGER WRITE_BIN_UINT16
 INTEGER WRITE_BIN_REAL
 INTEGER WRITE_BIN_FILE
C
C Variables
C
 INTEGER REAL_SIZE ! Size of REAL in bytes
 PARAMETER(REAL_SIZE = 4)
C
 INTEGER UINT16_SIZE ! Size of UINT16 in bytes
 PARAMETER(UINT16_SIZE = 2)
C
 INTEGER WIDTH
 PARAMETER(WIDTH = 480)
C
 INTEGER HEIGHT
 PARAMETER(HEIGHT = 640)
C
 INTEGER HDR_SIZE ! Header size (2 UINT16s)
 PARAMETER(HDR_SIZE = 2*UINT16_SIZE)
C

80

 INTEGER FILELEN ! Length of file in bytes
 PARAMETER(FILELEN = HDR_SIZE + WIDTH*HEIGHT*REAL_SIZE)
C
 BYTE BUFFER(FILELEN) ! Buffer to hold the file
 REAL DATA(WIDTH*HEIGHT) ! Data to be written
 INTEGER I, INDEX
C
C Initialise buffer
C
 DO I = 1, FILELEN
 BUFFER(I) = 0
 ENDDO
C
C Fill DATA with an arbitrary number, 3.1416,
C for this example
C
 DO I = 1, WIDTH*HEIGHT
 DATA(I) = 3.1416
 ENDDO
C
C Write the width and height to the buffer as
C unsigned 16-bit (2 byte) integers. Then write
C the data to the buffer. The byte order is not
C swapped.
C
 INDEX = 1
 INDEX = INDEX + WRITE_BIN_UINT16(BUFFER(INDEX), WIDTH, .FALSE.)
 INDEX = INDEX + WRITE_BIN_UINT16(BUFFER(INDEX), HEIGHT, .FALSE.)
 DO I = 1, WIDTH*HEIGHT
 INDEX = INDEX + WRITE_BIN_REAL(BUFFER(INDEX), DATA(I), .FALSE.)
 ENDDO
C
C Write buffer to a file.
C
 IF (WRITE_BIN_FILE('example.dat', BUFFER, FILELEN) .NE. 0)
 $ GOTO 901
 RETURN
C
C Error traps
C
 901 WRITE(*,*) '** Error writing binary file!'
 RETURN
 END
C

WRITE_BIN_UINT16 is similar to WRITE_BIN_REAL (see the writebin code at the web site above for
the implementation).

The INDEX variable holds the position of the next byte in the buffer to write. The return value of the
WRITE_BIN_UINT16 and WRITE_BIN_REAL functions is used to update the INDEX variable by the
appropriate amount according to the size of the data just written.

The WRITE_BIN_FILE routine writes the buffer to a file. It takes the name of the file to write, the buffer
and the number of bytes to write.

C**
C Routine: WRITE_BIN_FILE
C
C Description:
C Writes NUMBYTES bytes from BUFFER to a binary file called
C NAME. Returns non-zero if the write fails.
C
C**
 INTEGER FUNCTION WRITE_BIN_FILE(NAME, BUFFER, NUMBYTES)
 IMPLICIT NONE
C
C Parameters
C
 CHARACTER*(*) NAME ! File name

81

 INTEGER NUMBYTES ! Number of bytes in buffer
 BYTE BUFFER(NUMBYTES) ! The data to write
C
C
 OPEN(UNIT=11, FILE=NAME, STATUS='UNKNOWN', FORM='UNFORMATTED',
 $ ACCESS='DIRECT', RECL=NUMBYTES, ERR=901)
C
 WRITE(UNIT=11, REC=1, ERR=902) BUFFER
 CLOSE(UNIT=11)
 WRITE_BIN_FILE = 0
 RETURN
C
C Error trap
C
 901 WRITE(*,*) '** Error opening file for output: ', NAME
 WRITE_BIN_FILE = 1
 RETURN
 902 WRITE(*,*) '** Error while writing file: ', NAME
 WRITE_BIN_FILE = 2
 RETURN
 END
C

The routine writes the buffer to a file in a single unformatted record. The record length (RECL) is set to
the buffer length in bytes. N.B. RECL on some compilers can be the length of a record in words. On 32-
bit machines, a word is normally defined as 4 bytes. When writing a file, if its length is larger than
expected then try changing the OPEN statement above to:

 OPEN(UNIT=11, FILE=NAME, STATUS='UNKNOWN', FORM='UNFORMATTED',
 $ ACCESS='DIRECT', RECL=NUMBYTES/4, ERR=901)

Writing Binary Data (C)

The C standard library provides functions that can be used to write binary files: fopen, fwrite and fclose.

fopen takes the file name and the open mode and returns a handle to the opened file, or NULL if the file
open failed. An open mode of “wb” means open a binary file for writing.

#include <stdio.h>

 FILE *file_p;
 file_p = fopen("example.dat", "wb");

fwrite takes a pointer to the data to write, the size (in bytes) of an individual item of data, the number of
items of data to write and the handle to the file to write to. fwrite returns the number of items written.
This might be less than the number of items requested to be written if an error occurred during the write.

 num_items_written = fwrite(data_p, item_size, item_count, file_p);

fclose takes a file handle and closes the file.

 fclose(file_p);

fwrite can be used to write any type of data. It can be used to write C structures directly but this is not
recommended since the way structure members are arranged in memory is compiler dependent. Each
member should be written individually to ensure that the file is written in the manner the programmer
intended.

Some file formats require that the data have a particular endian. If the endian of the file is different to the
native endian of the CPU then the byte order of the data needs to be swapped before the data are written
to disc. (See [1] for a discussion on “Endian”.)

82

The following function wraps the fwrite function and swaps the data if required.

/**************************
 * writebin.h
 */
#ifndef WRITEBIN_H
#define WRITEBIN_H

#include <stdio.h>

typedef enum
{
 DONT_SWAP,
 SWAP
} e_swap;

size_t write_bin_file(const void *data_p,
 size_t item_size,
 size_t item_count,
 FILE *stream_p,
 e_swap swap);

#endif /* WRITEBIN_H */

/**************************
 * writebin.c
 */
#include <stdlib.h>
#include "writebin.h"

/**
 *
 * Function: write_bin_file
 *
 * Description: This function wraps the standard library function fwrite().
 * It swaps the bytes of the raw data if the parameter swap
 * is SWAP and item_size is either 2, 4 or 8. If item_size
 * is not 2, 4 or 8 then the raw data are written without
 * swapping.
 *
 * Input: data_p - Pointer the buffer containing the data to be written.
 * item_size - The size in bytes of an individual item to be written.
 * item_count - The number of items to write.
 * stream_p - File handle of an open file.
 * swap - If SWAP then swap the bytes in the buffer,
 * If DONT_SWAP then don't swap bytes.
 *
 * Output: size_t - The actual number of items (not bytes) written. May be
 * less than the number requested if an error occurred
 * while writing the file.
 *
 ***/
size_t write_bin_file(const void *data_p,
 size_t item_size,
 size_t item_count,
 FILE *stream_p,
 e_swap swap)
{
 const unsigned char *orig_data_p;
 unsigned char *swapped_data_p;
 unsigned char *pointer;
 size_t num_items_written;
 size_t i;

 num_items_written = 0;

 if (stream_p != NULL && data_p != NULL)
 {
 orig_data_p = (const unsigned char *) data_p;

 /* Swap bytes if asked and if item_size is divisible by two. */

83

 if (swap == SWAP && (item_size % 2 == 0))
 {
 swapped_data_p = (unsigned char *) malloc(item_size*item_count);
 pointer = swapped_data_p;

 if (swapped_data_p != NULL)
 {
 switch (item_size)
 {
 case 2:
 for (i = 0; i < item_count; i++)
 {
 *(pointer) = *(orig_data_p + 1);
 *(pointer + 1) = *(orig_data_p);
 pointer += item_size;
 orig_data_p += item_size;
 }
 break;

 case 4:
 for (i = 0; i < item_count; i++)
 {
 *(pointer) = *(orig_data_p + 3);
 *(pointer + 1) = *(orig_data_p + 2);
 *(pointer + 2) = *(orig_data_p + 1);
 *(pointer + 3) = *(orig_data_p);
 pointer += item_size;
 orig_data_p += item_size;
 }
 break;

 case 8:
 for (i = 0; i < item_count; i++)
 {
 *(pointer) = *(orig_data_p + 7);
 *(pointer + 1) = *(orig_data_p + 6);
 *(pointer + 2) = *(orig_data_p + 5);
 *(pointer + 3) = *(orig_data_p + 4);
 *(pointer + 4) = *(orig_data_p + 3);
 *(pointer + 5) = *(orig_data_p + 2);
 *(pointer + 6) = *(orig_data_p + 1);
 *(pointer + 7) = *(orig_data_p);
 pointer += item_size;
 orig_data_p += item_size;
 }
 break;

 default:
 /* Issue warning message and then write data without swapping */
 fprintf(stderr, "write_bin_file: Cannot swap data. ");
 fprintf(stderr, "Unsupported data size: %d\n", item_size);
 for (i = 0; i < item_count*item_size; i++)
 {
 *pointer++ = *orig_data_p++;
 }
 break;
 }

 /* Write the swapped items */
 num_items_written =
 fwrite(swapped_data_p, item_size, item_count, stream_p);
 free(swapped_data_p);
 }
 }
 else
 {
 /* Write the data directly */
 num_items_written = fwrite(data_p, item_size, item_count, stream_p);
 }
 }

 return num_items_written;
}

84

The following code is an example writing a ficticious image file with the format:

Bytes 0, 1: Unsigned 16-bit integer containing image width.
Bytes 2, 3: Unsigned 16-bit integer containing image height.
Bytes 4 to (width*height*size of float + 3): Image data as float.

/**************************
 * writebinex1.c
 */
#include <stdlib.h>
#include "writebin.h"

typedef float data_type;

int main()
{
 FILE *file_p;
 unsigned short width;
 unsigned short height;
 data_type *data_p;
 int i;

 width = 480;
 height = 640;
 data_p = (data_type *) malloc(width*height*sizeof(data_type));

 if (data_p != NULL && (file_p = fopen("example.dat", "wb")) != NULL)
 {
 /* Initialise data with an arbitrary number, 3.1416 for this example */
 for (i = 0; i < width*height; i++)
 {
 data_p[i] = (data_type) 3.1416;
 }

 if (write_bin_file(&width, sizeof(width), 1, file_p, DONT_SWAP) != 1)
 {
 fprintf(stderr, "Error writing width!\n");
 fclose(file_p);
 exit(1);
 }

 if (write_bin_file(&height, sizeof(height), 1, file_p, DONT_SWAP) != 1)
 {
 fprintf(stderr, "Error writing height!\n");
 fclose(file_p);
 exit(1);
 }

 if (write_bin_file(data_p,
 sizeof(data_type),
 width*height,
 file_p, DONT_SWAP) != width*height)
 {
 fprintf(stderr, "Error writing data!\n");
 fclose(file_p);
 exit(1);
 }

 fclose(file_p);
 }
 else
 {
 fprintf(stderr, "Error writing file!\n");
 exit(1);
 }

 return 0;
}

85

Conclusion

Methods for writing binary data files in FORTRAN and C have been outlined. Using the tools in this
article it should be possible to write any binary file format.

The source code in this article can be found under the ‘writebin’ directory at:
http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/

References

[1] “Reading Binary Data”, IUCr Compcomm January 2004, http://www.iucr.org/iucr-
top/comm/ccom/newsletters/2004jan/ .

http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004jan/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004jan/

Scientific Programming. The .NET case

Nikos Kourkoumelis,
Department of Physics, University of Ioannina, 45110 Ioannina, Greece - Email : nkourkou@cc.uoi.gr ;
WWW: http://users.uoi.gr/nkourkou/

Introduction
The Microsoft .NET Framework [1] is a platform for building, deploying, and running applications and
web services. It provides a standards-based, multi-language environment where language interoperability
and machine independent programming intersect. Scientific community has therefore an alternative to
integrate existing investments of source code with modern application design.

.NET Architecture and Execution Model
The Microsoft .NET framework is a new development platform with a new programming interface that
provides APIs better suited to modern programmer needs, featuring inter-language and inter-machine
interoperability. The .NET Framework has two main components: the .NET Framework Class Library
(FCL) and the Common Language Runtime (CLR). The .NET framework base classes are a collection of
built-in functions, objects, properties and methods that can be utilized by any .NET compatible language.
The common language runtime is the foundation of the .NET framework and is responsible for the
execution and management of .NET applications, as well as the compilation of .NET applications into
native code. The CLR is the environment under which .NET applications are run. From this perspective,
the CLR is the part of .NET that supports managed code; that is well-behaved code in terms of multi
language support, deployment, security, portability, scalability and functionality.

All common language runtime–compliant source code languages compile to the same intermediate
language (IL) and not immediately to native code. A second step is required, called just-in-time (JIT)
compilation. A tool called just-in-time compiler, or JITter, reads the IL and translates it into instructions
for the machine on which it is executing. This translation happens on a method-by-method basis, thus
avoiding translating large quantities of code that might never be required. Although the use of IL imposes
a small start-up overhead, it provides .NET with a certain amount of platform independence, as long as
each platform can have its suitable JITter. Currently, the vast majority of applications supporting .NET
are for Windows OS while a free implementation of the .NET Development Framework for Linux is
under development [2]. Moreover, a shared, open source implementation of CLR API, called the
Common Language Infrastructure, is provided by Microsoft and has been adapted to Windows, FreeBSD
and MacOS X operating systems, under the name of Rotor (or SSCLI) [3].

Fig. 1: The .NET Framework sits on top of the OS

86

mailto:nkourkou@cc.uoi.gr
http://users.uoi.gr/nkourkou/

87

Schematically the .NET framework is presented in Fig.1, where it is clear that besides being responsible
for application loading and execution, the CLR provides additional services such as: object lifetime and
memory management, exception handling (even across languages), interoperation between managed and
unmanaged code and type safety.

Component Model – Example

.NET programming languages are fully object-oriented, which means they support the four basic tenets of
object-oriented programming (OOP): abstraction, encapsulation, inheritance and polymorphism. OOP is
playing a major role in crystallography mostly through reusable modules programmed in Fortran and C++
[4]. In .NET terminology these are called assemblies. As an example, PowDLL [5] is a useful .NET
assembly for the interconversion procedure between variable formats of powder diffraction files. It is
utilized as a reusable dynamic link library imported in any .NET language using the
“PowDLL.PowderFileTypes” statement which is the fully qualified type name of the assembly. Upon
declaration of an appropriate object, three boolean public methods are exposed which return True when
no exception is raised. These methods which are: DoFileConversion(Input, Output, ShowError),
LoadDataFromFile(Input, FileType, ShowError) and WriteDataToFile(Output, FileType, ShowError) can
be accessed by any external module that references the library. If an error occurs, the System.Exception
object, which is the centralized error handler, takes control and shows a proper message keeping the
process alive. The following table shows part of the relevant source code written in VB.NET.

#Region "Dll Interface functions" 'Not all code functionality is shown
Public Function DoFileConversion(ByVal Source As String, ByVal_ Destination As String, Optional
ByVal sE As ShowErrors = ShowErrors.DontShowErr) As Boolean
 Dim tmpOb As Object
 'first tmpOB is passed by reference
 If LoadDataFromFile(Source, tmpOb, sE) = True Then
 ' here the loaded object will be written to a file.
 If WriteDataToFile(tmpOb, Destination, sE) = True Then
 Return True
 End If
 End If
 Return False
 End Function
Public Function LoadDataFromFile(ByVal sFile As String, ByRef q As Object, ByVal sE As
ShowErrors) As Boolean
 Dim extS As String = ExtractFileExtention(sFile)
 Select Case extS
 Case "xy"
 Dim tmpOb As fileXY
 q = tmpob
 Case Else
 If sE = ShowErrors.ShowErr Then
 MsgBox("*." + extS + " filetype is not supported")
 End If
 Return False
 End Select
 If q.FromFileToObject(sFile, sE) = 2 Then Return True
 Return False
 End Function
Public Function WriteDataToFile(ByVal Sobj As Object, ByVal dFile As String, ByVal sE As
ShowErrors) As Boolean
 Dim ObjectToWrite As Object
 Dim extD As String = ExtractFileExtention(dFile)
 Select Case extD
 Case "xy"
 Dim tmpObj As fileXY
 ObjectToWrite = tmpObj
 Case Else
 If sE = ShowErrors.ShowErr Then
 MsgBox("*." + extD + " filetype is not supported")
 End If
 Return False
 End Select
 If ObjectToWrite.FromObjectToFile(dFile, sE) = 2 Then Return True
 Return False
 End Function
#End Region

88

Every powder file type acts as a private structure (encapsulation):

#Region "*.xy" 'Plain XY File Format
Private Structure fileXY
 Dim LStart, LStop, LStep, y(), Alpha1, Alpha2, Ratio As Decimal
Public Function FromFileToObject(ByVal Fname As String, Optional ByVal sh As ShowErrors =
ShowErrors.DontShowErr) As Byte
 Try
 Dim sr As StreamReader = New StreamReader(Fname)
 Dim tmpLine As String
 tmpLine = sr.ReadToEnd
 'now splits it into
 Dim tmpPIN() As Decimal
 If Not CutStringIntoIntegers(tmpLine, tmpPIN) Then
 sr.Close()
 Return 1
 End If
 LStep = tmpPIN(2) - (tmpPIN(0))
 LStart = tmpPIN(0)
 LStop = tmpPIN(tmpPIN.GetUpperBound(0) - 1)
 Alpha1 = 0
 Alpha2 = 0
 Ratio = 0
 ReDim y((tmpPIN.GetUpperBound(0) \ 2))
 Dim i, j
 j = 0
 For i = 1 To tmpPIN.GetUpperBound(0) Step 2
 y(j) = tmpPIN(i)
 j += 1
 Next
 sr.Close()
 Catch ex As Exception
 If sh = ShowErrors.ShowErr Then
 MsgBox(ex.Message)
 End If
 Return 1
 End Try
 Return 2
 End Function
Public Function FromObjectToFile(ByVal Fname As String, Optional ByVal sh As ShowErrors =
ShowErrors.DontShowErr) As Byte
 Try
 Dim sw As StreamWriter = New StreamWriter(Fname)
 Dim tmpXvalue As Decimal
 tmpXvalue = LStart
 Dim i
 For i = 0 To y.GetUpperBound(0)
 sw.WriteLine(tmpXvalue.ToString & " " & y(i).ToString)
 tmpXvalue += LStep
 Next i
 sw.Close()
 Catch ex As Exception
 If sh = ShowErrors.ShowErr Then
 MsgBox(ex.Message)
 End If
 Return 1
 End Try
 Return 2
 End Function
End Structure
#End Region

Language Interoperability – Example

Reusable .NET assemblies exploit an additional unique feature: they permit full language integration
providing the possibility to: (i) inherit from classes, (ii) handle thrown exceptions, (iii) debug, (iv) declare
variables based on types declared in another language and (v) take advantage of polymorphism across
different languages. This is possible because of the shared .NET type system which retains high-level
data-type information such as classes and inheritance hierarchies. Once a program is compiled into the
.NET architecture, its language of origin disappears and it becomes language neutral. As a consequence, a
considerable trend appears towards .NET with a variety of different languages which share their
representation and runtime behavior (Fortran, Ada, Perl, Python, Delphi, Smalltalk, Cobol etc.) [6]. In

addition, the System.Reflection.Emit namespace provides all the functionality needed for developing new
compilers that target the CLR.

This seamless interoperability is one of the most realistic reasons for developers to use, for example,
components written in Fortran and program the main application using C#. One of the issues often arise
in crystallographic computing is array manipulation which is usually achieved by using optimized, open
source, Fortran and C routines. These modules can be used smoothly as part of a .NET project. Fig. 2
illustrates the main GUI written in Visual Basic.NET while the matrix operations modules are a
combination of Fortran, VB and C#.

Fig. 2: Mixed Language Environment

FORTRAN Routine for Matrix Inverse
 SUBROUTINE DINVER(A,N,NUS,D,L,M)
 REAL*8 A(*),L(*),M(*)
 REAL*8 BIGA,HOLD
 REAL*8 A,D
 IF(NUS.GT.1)GOTO 1
 A(1)=1.0/A(1)
 D=1.0D0
 RETURN
1 D=1.0D0
 NK=-N
 DO 11 K=1,NUS
 NK=NK+N
 L(K)=K
 M(K)=K
 KK=NK+K
 BIGA=A(KK)
 DO 2 J=K,NUS
 IZ=N*(J-1)
 DO 2 I=K,NUS
 IJ=IZ+I

 IK=NK+I
 A(IK)=A(IK)/(-BIGA)
8 CONTINUE
 DO 9 I=1,NUS
 IK=NK+I
 HOLD=A(IK)
 IJ=I-N
 DO 9 J=1,NUS
 IJ=IJ+N
 IF(I.EQ.K)GOTO 9
 IF(J.EQ.K)GOTO 9
 KJ=IJ-I+K
 A(IJ)=HOLD*A(KJ)+A(IJ)
9 CONTINUE
 KJ=K-N
 DO 10 J=1,NUS
 KJ=KJ+N
 IF(J.EQ.K)GOTO 10
 A(KJ)=A(KJ)/BIGA
10 CONTINUE

89

90

 IF(ABS(BIGA).GE.ABS(A(IJ)))GOTO 2
 BIGA=A(IJ)
 L(K)=I
 M(K)=J
2 CONTINUE
 J=L(K)
 IF(J.LE.K)GOTO 4
 KI=K-N
 DO 3 I=1,NUS
 KI=KI+N
 HOLD=-A(KI)
 JI=KI-K+J
 A(KI)=A(JI)
3 A(JI)=HOLD
4 I=M(K)
 IF(I.LE.K)GOTO 6
 JP=N*(I-1)
 DO 5 J=1,NUS
 JK=NK+J
 JI=JP+J
 HOLD=-A(JK)
 A(JK)=A(JI)
5 A(JI)=HOLD
6 IF(BIGA.NE.0.0)GOTO 7
 D=0.0
 RETURN
7 DO 8 I=1,NUS
 IF(I.EQ.K)GOTO 8

 D=D*BIGA
 A(KK)=1.0/BIGA
11 CONTINUE
 K=NUS
12 K=K-1
 IF(K.LE.0)RETURN
 I=L(K)
 IF(I.LE.K)GOTO 14
 JQ=N*(K-1)
 JR=N*(I-1)
 DO 13 J=1,NUS
 JK=JQ+J
 HOLD=A(JK)
 JI=JR+J
 A(JK)=-A(JI)
13 A(JI)=HOLD
14 J=M(K)
 IF(J.LE.K)GOTO 12
 KI=K-N
 DO 15 I=1,NUS
 KI=KI+N
 HOLD=A(KI)
 JI=KI-K+J
 A(KI)=-A(JI)
15 A(JI)=HOLD
 GOTO 12
 END

VB.NET Routine for Matrix Transpose
Public Class MatrixFunctions
Public Shared Function TransposeMatrix(ByVal A(,) As Double) As Double(,)
 Dim i, j As Integer
 ReDim TransposeMatrix(A.GetUpperBound(0), A.GetUpperBound(1))
 For i = 0 To A.GetUpperBound(0)
 For j = 0 To A.GetUpperBound(1)
 TransposeMatrix.SetValue(A(i, j), j, i)
 Next j
 Next i
End Function
End Class
C# Routine for Simple Matrix Addition
namespace CSharpMatrix
{
 public class CSharpMatrixFunctions
 {
 public double[,] AddMatrix(double[,] A, double[,] B)
 {
 double[,] ds;
 ds = new double[A.GetUpperBound(0) + 1, A.GetUpperBound(1) + 1];
 if (A.Length == B.Length)
 {
 int i2 = A.GetUpperBound(0);
 for (int i1 = 0; i1 <= i2; i1++)
 {
 int k = A.GetUpperBound(1);
 for (int j = 0; j <= k; j++)
 {
 ds.SetValue((A[i1, j] + B[i1, j]), i1, j);
 }} }
 return ds;
}}}

Network Services – High Performance Computing

.NET also supports parallel and distributed computing. This challenging programming effort has been so
far implemented mostly in Java due to the straightforward management of Java Virtual Machine. A
virtual machine (VM) is a program that creates an artificial or abstract computer running on top of an
existing computer. The VMs hide the normal computer hardware behind a simpler or different
computational model. CLR can be thought of as an advanced design and implementation of a distributed
virtual machine for handling the wide range of distributed programming paradigms incorporated in .NET
[7] providing a remoting architecture for open Internet standards, including the Hypertext Transfer
Protocol (HTTP), Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP).

91

High-performance computing access can be also achieved using .NET architecture by means of tools
specifically designed for parallel processing and clustering [8]. Although it is widely believed that VMs
give poor computation performance, the above examples as well as the broad class of optimizations
performed by JITter [9], suggest the opposite.

In general, an undoubted performance hit is incurred only the first time a method is called, due to IL
compilation, but it is compensated by "dead code" elimination [10] and various other optimization
practices [11] which improve performance significantly.

Conclusions

Despite the advantages of the .NET framework we must have in mind that it is a commercial product
aiming to profit and complying with certain limitations. However, the software development kit (SDK)
[12] is free (including a detailed, well written documentation) and can be used without any restrictions for
productive work. All .NET programming languages are expressive enough to address successfully the
wide variety of problems and the miscellaneous philosophies exhibited by developers. The VMs seem to
represent the next standard in programming as long as .NET and Java (which is the technological and
commercial competitor) continue to evolve. No matter which programming approach one chooses, the
following axiom is diachronic: "There does not now, nor will there ever, exist a programming language in
which it is the least bit hard to write bad programs" [13].

Availability

The source code presented can be downloaded from: http://users.uoi.gr/nkourkou. For the "Language
Interoperability" example, Salford Software FTN95 and Microsoft Visual Studio.NET are required [14].
Both are freely available by their manufacturers as trial versions. "Mapack" class library [15] has been
used for some of the calculations.

References

[1] .NET Information (http://www.microsoft.com/net/)
[2] Mono Project open development initiative (http://www.go-mono.net)
[3] Jason Whittington, "Rotor, Shared Source CLI Provides Source Code for a FreeBSD Implementation of .NET", MSDN

Magazine, 17, 7 (2002)
[4] (i) P. Jane Brown, 11-14 (ii) Ralf W. Grosse-Kunstleve and Paul D. Adams 28-38 (iii) Juan Rodríguez-Carvajal and Javier

González-Platas Computing Commission Newsletter, 1, 50-58 (2003) (http://www.iucr.org/iucr-
top/comm/ccom/newsletters/2003jan)

[5] PowDLL: a reusable XRPD .NET Component
(http://www.ccp14.ac.uk/ccp/web-mirrors/powdll/nkourkou)

[6] Other DotNet Languages (http://c2.com/cgi/wiki?OtherDotNetLanguages)
[7] Gary Nutt, Distributed Virtual Machines: Inside the Rotor CLI, Addison-Wesley (2004).
[8] Cornell Theory Center (http://www.ctc-hpc.com/casestudies.html)
[9] Salford FTN95 and the .NET Framework Whitepaper

(http://www.salfordsoftware.co.uk/compilers/support/documentation.html)
[10] Jeffrey Richter, Applied Microsoft .NET Framework Programming, Chapter 1, Microsoft Press (2002)
[11] Fahad Gilani, "C# In-Depth: Harness the Features of C# to Power Your Scientific Computing Projects", MSDN Magazine,

19, 3 (2004)
[12] .NET Framework Software Development Kit (SDK) version 1.1

(http://msdn.microsoft.com/netframework/technologyinfo/howtoget/default.aspx)
[13] Lawrence Flon, ACM SIGPLAN Notices, 10, 10 (1975)
[14] http://www.salfordsoftware.co.uk/compilers/ftn95 & http://msdn.microsoft.com/vstudio/
[15] Lutz Roeder, Mapack: a .NET class library for basic linear algebra computations (http://www.aisto.com/roeder/dotnet)

http://users.uoi.gr/nkourkou
http://www.microsoft.com/net/
http://www.go-mono.net/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2003jan
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2003jan
http://www.ccp14.ac.uk/ccp/web-mirrors/powdll/nkourkou
http://c2.com/cgi/wiki?OtherDotNetLanguages
http://www.ctc-hpc.com/casestudies.html
http://www.salfordsoftware.co.uk/compilers/support/documentation.html
http://msdn.microsoft.com/netframework/technologyinfo/howtoget/default.aspx
http://www.salfordsoftware.co.uk/compilers/ftn95
http://msdn.microsoft.com/vstudio/
http://www.aisto.com/roeder/dotnet

92

The ICR (Institute for Cancer Research) programs. Early
crystallographic code implemented on the IBM 1620 in the beginning of

the 1960's in the laboratory of A.L.(Lindo) Patterson

Dick van der Helm,
George Lynn Cross Research Professor(ret.), Department of Chemistry & Biochemistry, University of
Oklahoma, Mailing address: 5895 Bay Pine Court, Ferndale, Washington State, 98248, USA - Email :
dvdhelm@chemdept.chem.ou.edu ; WWW: http://cheminfo.chem.ou.edu/faculty/dvdh.html

In order to write about the programming of the IBM 1620 one has to set the stage about the use of
crystallographic computing at that time. Generally in the forties and early fifties most structure solutions
were still carried out in two dimensions. The results of two or three projections were combined to obtain
a three dimensional picture of the structure of a molecule. Of course the power to use all data and to
generate 3-dimensional Fouriers was realized from some remarkable structure solutions, such as Vitamin
B12 and some others, but in general these calculations were very time consuming. For instance in the
middle fifties I worked with Prof. Caroline MacGillavry on a new and active natural compound; a 3-d
Fourier or S.F. calculation using punched cards and an IBM 604, took more than one month. This 604
was the main computer(!) of a large bank in Amsterdam and I used it during the night. In 1957 I joined
the lab of Lynne Merritt at Indiana University, and here I had access to the IBM 650.As in many
universities of that size the computing center consisted of just this one computer. It was quite expensive,
and therefore beyond the financial reach of individual crystallographic laboratories. It was a computer
with a rotating drum memory and four magnetic tape drives, all of which were used in the Fourier
program which Lynne had written. Again I had the use of the whole computing center every night, and
the art of the game was to keep all magnetic drives operating; several failures per night were common.
However it gave me time to become more familiar with American literature. Besides the 650, the even
more expensive and powerful 704 existed, but only the large oil companies, federal labs and large
universities could afford this computer. At I.U. it was my job to write a general SFLS program which I
presented in a meeting at the Mellon Institute in November 1958 (Acta Cryst.,12, 350).The way I treated
symmetry was awkward, and at least in my mind, I was put to shame, in a lecture after me, by the elegant
matrix and vector method for symmetry of space groups Bill Busing and Henry Levy described in the
ORNL program for the 704. At least I learned a valuable lesson.

In 1959 I joined the laboratory of A.L. (Lindo) Patterson at the Institute for Cancer Research (ICR) in
Philadelphia. The main project were the structures of the molecules involved in the citric acid cycle. I
worked a lot with Jenny Glusker who had arrived several years prior after her beautiful work on B12.
With the use of the 650’s at Princeton, where my cousin was on the faculty, and Indiana University, we
solved, together, the complete structure of sodium dihydrogen citrate from the 3-d Patterson (although it
was called a vector synthesis in the lab),and refined the structure. Lindo immediately decided that we
needed a computer in the lab which could do the 3-dimensional calculations, but of course there were
financial constraints. The boundaries were clear: money and computing capability, memory and speed,
and I was put in charge of choosing the computer. At that time there were one or two low-cost drum
machines, but IBM had the design completed of a small and new random-access memory computer, the
IBM 1620, and all the specs and program codes were already available. It was in the first wave of small
computers. In order to decide if the computer would and could serve our purpose, I concentrated on the
Fourier and SFLS calculations. The first one was complicated by the logic and the second one by the
required algebra. It took a bout with the mumps to figure out that both could be done even for structures
which were quite large small molecules.

mailto:dvdhelm@chemdept.chem.ou.edu
http://cheminfo.chem.ou.edu/faculty/dvdh.html

Fig.1: The basic IBM 1620 Data Processing System and Console.

The 1620 was arranged in two units(fig 1). One contained the computer, core storage and typewriter, the
other the paper tape reader and punch. The construction of the 1620 was quite interesting. The whole
memory was no more than 20000 decimal digits. Just imagine no Gbytes. The 3-d array of the memory is
shown in fig 2 in which the bit core planes of the even and adjacent odd digit were combined. Each of the
20000 core digits could thus be read, written and checked, separately. The wordsize was variable, using
the flag bit (F),while the check bit (C) was used for validity, although bit losses rarely happened. The
computer could perform about 30 operations (arithmetic, data transmission, logical branch and input-
output),while additional choices could be set with program switches. Each program instruction was 12
digits, two for the operation and five each for two addresses in memory(P and Q address). Addition,
subtraction and multiplication operations were accomplished by a table-lookup method, which occupied
300 decimal digits in the core memory. Addition would be, for instance, the adding of the two numbers in
the fields for which the P and Q address are the units digit, and then stored in the P address. Two decimal
digits were required to represent an alphanumerical character.

93

Fig 2: Schematic of the 3-d array of memory within an IBM 1620.

Fortran and utility programs were available but out of the question for the Fourier and SFLS programs
due to the limited memory. Instead the programs had to be written in machine language or symbolic
language (which allowed a one to one translation into machine language).

The Fourier program was written, initially, in machine language, which was not very smart, and later
changed to symbolic language. The problems which had to be solved were logic, memory size, rounding
and output, but the calculations were simple: addition and multiplication. Beevers and Lipson (see
CompComm Newsletter number 2, Summer 2003) had already clearly shown that the number of
operations could be reduced 10-15 fold by writing the summation in the, algebraically inelegant,
multiplication form. This allowed as well to divide the summation into three separate ones. It was also
clear that the limited memory would not allow the calculation to be done in one step. The results of the
first summation easily would exceed the size of the memory. Rather than to punch these results out and
sort, it was decided to read in the input tape of amplitudes (4 or 8 for each hkl, in the product form),
once for each section. Also each x, y or z would be calculated at 1/100th intervals or multiples thereof.
This is sufficient for even large small molecules. The sines and cosines were in a 100-entry table lookup.
The answers of the first summation were stored at the end of the memory in such a manner that the sums
in the beginning of this section of memory were used first in the subsequent second summation. The
sums of the second summation were stored in the memory section between the program and the first
summation answers, and they could therefore overlap, without interference, with the locations of the first
summation answers. This in fact was the key to solve the memory problem. A separate program to
prepare the input tape was written and it allowed sorting in such a way that the summation could be done
in any desired sequence of x, y and z. It was up to the programmer to keep track of the decimal point in
this fixed number machine, while still maintaining full four digit accuracy after the decimal point.
Messages by the program indicated various places where overflow occurred or memory overlaps and a
trial run would indicate where the problems occurred. These could be adjusted with the typed input
parameters (shifts). The limitations of the program were not serious. If, for instance, the summation was
over h and then k and then l, the product of the number of values along the b-axis multiplied by the
maximum value of l had to be less than 1685. There were many different ways to output the results. The
most convenient was one in which the cell dimensions as well as the angles between axes were
approximated by horizontal, vertical and shift spacing while the numerical answers were translated into
alphamerical and other characters with ranges of blanks, so that contouring by hand was not necessary.

94

This was especially useful with a 20-inch typewriter carriage, although this could be a dangerous
instrument on its return motion. One section including input and output would take about 30 min. The
program was rewritten for card input-output by G.S.D. King in Belgium.

In the SFLS program memory was also a problem. The available utility programs for exponentials, sines
and cosines were slow, too accurate and took too much memory. New utility programs were written
adapted to the 4-5 digit accuracy which is sufficient for the crystallographic calculations. For instance
exp(-a.bcde) was calculated by 10-entry tables for exp(–a.0) and exp (–0.b),while exp–0.0cde was
computed with a small Taylor series. The cosines and sines were reduced to the first quadrant, and
calculated using : sin(0.abcd)=sin(0.ab)cos(0.00cd) + cos(0.ab)sin(.00cd), with table lookup for sin(0.ab)
and cos(0.ab), and a small Taylor series for the rest. Still those two routines took about 1500 decimal
digits. Normal calculator routines were adapted for a divide and a square root utility.

In those days (1960) there were still arguments among programmers if the formula’s in the International
Tables should be used or the ones I alluded to before, those based on P1 or P1 bar, with matrices and
vectors for equivalent positions or even better for equivalent indices. The elegance of the latter method
was evident in the ease by which contributions to the structure factor were calculated as well as the partial
differentials for the L.S.sums. This certainly simplified the program code. The 1620 program was coded
only for triclinic, monoclinic and orthorhombic, although it would not have been too difficult to include
all space groups. The method also allowed a much more direct way to deal with anisotropic temperature
factors. Due to the memory limitations it was a block diagonal matrix program (3 by 3 for positional and
6 by 6 for thermal parameters). The input was a data tape with indices, scattering factors and weight for
all reflections, and a parameter tape with indices and coordinates. The limitations were most severe for
orthorhombic space groups: 27 anisotropic atoms or 70 isotropic atoms, or a combination thereof, still
quite reasonable for the type of structures solved in those days. The timing was between 10 and 25 sec
per 10 atoms, which thus means 14 hrs for 20 anisotropic atoms and 1000 reflections. Being a fixed point
computer, when coding was done in machine or symbolic language, there were as many as 20 distinct
error messages which indicated where overflow occurred and the instruction booklet specified what
particular action needed to be taken to eliminate the problem. The SFLS program started with a message:
“And they all went…”, and ended 10 or so hours later with: “ …to the seashore”. A quotation from a
very pleasant Greek movie: “Never on Sunday”. The Fourier program finished with the message: “Mooi”,
a dutch slang word which can mean all kinds of good things and is possibly best translated with the word:
“Bien” in French.

Fig 3: A.L.(Lindo) Patterson showing the IBM 1620 to a group of institute donors.

95

The Institute for Cancer Reasearch (ICR) was a private institution and the lease of the computer was a
significant expense. Lindo therefore showed the computer to many many groups of donors (see Fig. 3).
Lindo was very supportive to us making the programs, and wrote programs himself. The SFLS program,
for instance, only calculated the least-squares sums, and Lindo wrote the program to calculate the
coordinate shifts. He also wrote various programs on topology, because that was a major interest to him
considering the question if the vector synthesis yielded a unique solution, but in addition topology
intrigued him as a fundamental mathematical problem. Many other programs were written, especially by
Carroll Johnson, see Fig 4. Examples are an absorption program and a goniostat program, and many are
listed in one of his publications (Acta Cryst. 18, 1004 (1965)). When he moved to Oak Ridge he wrote
the famous ORTEP program (not for the 1620). After Carroll and I moved to permanent positions Eric
Gabe and Max Taylor joined the lab and wrote additional programs for the 1620. The programs, on paper
tape, and instruction booklets were distributed for free, although I presume that donations were
appreciated. I still have much of the correspondence up to 1962 and many friends were made. The
programs went to Australia, New Zealand, UK and Europe, the USA and Canada.

Fig 4: Left to Right - A.L.(Lindo) Patterson, the author and Carroll Johnson

I moved to the University of Oklahoma, which had a homemade large computer off-campus, and a 1620
on campus for general use. For a number of years I employed a technician who did run our programs at
night, five days a week till the university acquired an IBM 360.

The following is included by request of the Editor:

One part of the Fourier program will be analyzed .It is the subroutine calculating from the sums of the
first summation the sums to be used in the third summation, or in other words the second summation. It
shows for instance the rounding of answers and also the shifting when overflows occurred in the making
of the sums. The 1620 was a fixed point machine and the programmer had to keep track of the decimal
point. The principle of the program was 4-digit accuracy. The program used a four digit cos or sin
multiplied by a four digit amplitude giving an 8-digit answer. The leftmost 4 digits were used in the
formation of sums, unless an overflow occurred which stopped the computer. One could find out if the
overflow occurred in the first, second or third summation, and for each one could change the shift,
normally thus 4, to for instance 5 (and even 6). It can also be set to 3 when one wanted more accuracy as
in a difference Fourier. The shift parameters were a part of the input. A trial run would indicate a
possible problem, although it did not occur often, and the program and parameter tapes had to be
reloaded, with the indicated change in shift parameter.

96

97

In the Lipson and Cochran multiplication equation for the Fourier, there are 8 input amplitudes
(noncentrosymmetric) or 4 input amplitudes (centrosymmetric) for each value of(h,k,l). The results of
the first summation are respectively 4 or 2 amplitudes(sums) for each value (k,l,X). For the
centrosymmetric case these are M(k,l,X) and N(k,l,X). The text described the fact that due to the limited
memory only one section at a time could be calculated and therefore X is a definite value. The
sums(amplitudes) resulting from the second summation in the centrosymmetric case are R(l,X,y), in
which y varies from y(min) to y(max) with intervals of ∆y. The third summation is thus assumed to be
over l, from z(min) to z(max) with intervals of ∆z. One could actually do the summation in any sequence
by rearranging the amplitudes for the first summation on the input tape.

In the second summation the first amplitudes (k,l,X) which are used are M(0,0,X) and N(0,0,X), and their
contributions to the sums, generally (l,X,y)), in this case R(0,X,y) are calculated for all values of y, and
this is thus the part of the program shown below. Next, not part of the program code shown here,
amplitudes (k,l,X), M(1,0,X) and N(1,0,X) are located and moved to the subroutine shown below, and
their contributions for all values of y are added to the R(0,X,y) sums. This cycle continues till the last
value of k, and consequently l changes for the M and N amplitudes. At that point the R(0,X,y)
amplitudes are stored, not shown in the subroutine below. The next amplitudes are M(k,1,X) and
N(k,1,X) in pairs and they are used with k from 0 to kmax, till l changes to 2, and the R(1,X,y) sums are
stored, and so on.

As stated in the text the answers for the first summation are stored at the end of memory beginning with
M(0,0,X) and N(0,0,X)…M(k,0,X) and N(k,0,X), and after that those for l=1 then l=2 etc, filling all the
memory space till location 19479, which holds the amplitudes with maximum l. The answers of the
second summation, however, are stored from location 6000 on. If overlap does occur during the second
summation where R(l,X,y) sums could overlap with first summation amplitudes not yet used, an error
message occurred (only rarely), and the only solution was to do the summation with a different sequence
of h,k,and l.

Some details about instructions. Each basic instruction takes 12 digits. The first two digits are the
operation, the next 5 the memory location of the P-field and the next 5 the memory location of the
Q-field. A flag over the least significant digit means a negative number. In any other locations it means
the left- end of the number .In other words numbers could be of any length with a minimum of 2 digits.
The result of any multiplication was accumulated in location 99 and lower, with the length of the number
being the sum of the size of the two numbers being multiplied. Add, subtract and multiply instructions
are 21,22 and 23. The corresponding “immediate” instructions are 11, 12 and 13, where instead of the
number specified in field Q, the actual value in field Q was used to add to the number in the P-field. Set
flag and clear flag were 32 and 33. Transmission of a number in memory specified in the Q field to a
memory location in the P field, was 26. A branch instruction (46),was an interrogation of one of 16
indicators, specified in Q8 and Q9 of the Q part of the instruction. Most commonly used were, for
instance” equal zero” and “ positive”, indicators which were set by the previous arithmetic operation or
compare instruction. Among the many and important branch instructions was also “branch on no flag”,
44, and branch on digit, 43.

SUBROUTINE,MULTIPLICATION AND SUMMING FOR SECOND AND THIRD SUMMATION.

SUBR06 TF COUNT1,NUMBR2 02370 26 05031 04900
 M SUBR06-1,DELTA 02382 23 02369 05015
 SF 98 02394 32 00098 00000
 TF ADDIN,99 02406 26 05033 00099
 M SUBR06-1,XMINT 02418 23 02369 05018
 SF 97 02430 32 00097 00000
 TF ARGUM,99 02442 26 04976 00099
SUBR04 BD SUBR10,ARGUM-2 02454 43 02794 04974

98

SUBR09 MM ARGUM,9,10 02466 13 04976 000ô9
 A SUBR01+11,99 02478 21 02501 00099
SUBR01 TR 491,5100,7 02490 31 00491 ô5100
 S SUBR01 +11.99 02502 22 02501 00099
SUBR13 TFMCOUNT2,2,1 02514 16 05035 000ô2
 M 494,461 02526 23 00494 00461
 TF 539,99 02538 26 00539 00099
 M 498,465 02550 23 00498 00465
 A 539,99 02562 21 00539 00099
SUBR03 CF 532 02574 33 00532 00000
SUBR11 SF 532 02586 32 00532 00000
SUBR07 AM 536,5,10 02598 11 00536 000ô5
 BNF SUBR02,539 02610 44 02634 00539
SUBR19 SF 535 02622 32 00535 00000
SUBR02 A 6003,535,2 02634 21 ô6003 00535
 SM COUNT2,1,10 02646 12 05035 000ô1
 BZ SUBR14 02658 46 02738 01200
(continue for noncentrosymmetric spacegroup ; go to 02738 for centrosymmetric space group)

SUBR14 AM SUBR02+6,4,10 02738 11 02640 000ô4
 SM COUNT1,1,10 02750 12 05031 000ô1
 BZ SUBR05 02762 46 02814 01200
 A ARGUM,ADDIN 02774 21 04976 05033
 B SUBR04 02786 49 02454
 DORG*-3(this allows the first two digits of the Q-field to be used for a constant, because every
digit saved helps with the little memory which the 1620 had, and it shifts the program sequence to 02794
rather than 02798)
 SUBR10 TDM ARGUM-2,0,11 02794 15 04974 0000ô
 B SUBR09 02806 49 02466
 DORG*-3(see above)
SUBR05 BB 02814 42
(the contributions for all values of y have been calculated and added, the program branches back to the
place where a new set of amplitudes is retrieved for a new pass through this subroutine.

In the machine language program above, ô means a zero with a flag.

The two amplitudes M and N are in location 00461 (00458-00461) and 00465. The present value of k is
stored in 02368 -02369, (SUBR06-1). The number of points along y is stored in 05031 (COUNT1). The
k∆ y is calculated and stored in location 05033 (ADDIN), and ky in 04976 (ARGUM).

The next instruction BD,43, is kind of interesting. The idea is that an argument is allowed the be equal to
1.00 and larger (one might want to calculate y from 0.75 to 1.25). However in order to look up the
appropriate cos and sin the arguments 1.00 and above were decreased by one whole cycle :f.i. 1.15 was
set to 0.15. This is done in instructions at the end of the subroutine, instructions at 2794 and 2806.
Setting the ARGUM to just two digits will not work because it could result in an overflow and the
computer stops.

Instructions in 2466 and 2478 calculates the memory position for the cos-sin values for the particular
ARGUM value, and the cos and sin values are stored in locations 491-498, each 4 digits long. Instruction
in 2502 resets the instruction in 2490 for future use. The next few instruction calculate Mcosky+Nsinky,
and stores it in location 532-539.

99

The next two instructions, CF 532 and SF 532 seem odd. Actually only the SF 532 instruction is
necessary. It is part of the operations necessary to take care of possible overflow in making the sums and
is initialized using the shift parameter for the second summation. The CF 532 does no harm. The result
of the multiplications M(cosky) and N(sinky) is 8 digits long and normally the four most significant digits
are used. However if in a trial run the second summation has overflow(s), one wants only the three most
significant digits to be used. This will become clear in the next paragraph.

The next instruction is to round off the result in 532-539. Normally the 5 is added to the 5th significant
digit(536). If the shift is 5 instead of the normal 4, this is initialized to (537), the 4th significant digit.
Both positive and negative numbers are rounded properly, because the possible flag for a negative
number in location 539 is not affected. Normally the answer in 532-535, a three digit number can be
added safely to the four digit sum R(l,X,Y), instruction 2634, for which the memory location has
previously been initialized. The coding as shown, however made this a 4 digit number by clearing the
flag in 532 and setting it at 532 if the shift was 4 and at 531 if the shift was 5. If the result in 532-539 is
negative, the flag has to be properly placed, normally on 535, but with a shift of 5 it is set in 534. This is
done in instruction 2622.

The instructions 2670 till 2730 are for the case the spacegroup is noncentrosymmetric and two other first
summation sums need to used for the calculation of S(l,Xy) values the code is not shown. Instructions
2738-2762 are a counter to check the number of values of y which has been done. If not all done the
argument is increased by k∆y, and the program branches to instruction 2454 for the next value of ky. If
all is done the program branches to SUBR05 to pick up new amplitudes.

It is obvious from the small section of the program code which is shown here and that the program was
written by an amateur, however the amateur was a responsible one, because the program worked
properly. The code and flow diagrams for the programs are archived: http://www.ccp14.ac.uk/ccp/web-
mirrors/ibm1620_xtal_code/. The flow diagrams for the Fourier program can be found under fourier
synthesis , pages 43-48 or as images 41-46. The program code checking took quite a long time because
writing in machine language any failure was your fault or you did not fully understand the meaning of the
an instruction. Later on the program was rewritten for card input-output by G.S.D. King, who used many
more self-explanatory mnemonic codes for constants, which made the program code much more easy to
read, and also the flow sheet accompanying that program was professional. Also that program worked
fine.

http://www.ccp14.ac.uk/ccp/web-mirrors/ibm1620_xtal_code/
http://www.ccp14.ac.uk/ccp/web-mirrors/ibm1620_xtal_code/

Meeting, workshop and school reports

During ACA 2003, July 17 - 22, 2004: Chicago, Illinois, USA: Report on ACA
Chicago 2004 - 6.03: Advances in Computing Environments for Crystallography
(http://www.hwi.buffalo.edu/ACA/ACA04/abstracts/S0603.html)

The Computing Environments session 6.03, sponsored by the ACA General Interest SIG, contained a
good range of talks covering the use of the GRID, distributed computing, protein model building tools,
through to visualisation and integration of single crystal 3D raw data and comparative visualization of
molecular and protein structures.

The first talk by Russ Miller (miller@buffalo.edu ; co-authors: M.L. Green and C.M. Weeks) was about
SnB (Shake-and-Bake)/BnP macromolecular structure solution and protein phasing software on the Grid
(http://www.hwi.buffalo.edu/SnB/ http://www.ccr.buffalo.edu/grid/content/overview.htm). Russ clearly
defined GRID computing and, in particular, what is not GRID computing, providing a breath of fresh air
in laying down the law on the subject separating reality from hype and buzzwords. Pointing out that
"The GRID" does not exist in the form that is commonly hyped and is currently under development, Russ
elaborated on custom administrative tools written at the Center for Computational Research at SUNY-
Buffalo in the context of the SUNY/Hauptman-Woodward Institute collaboration to make GRID
computing practical for users and managers of GRID infrastructure. SnB/BnP is available via three
existing GRID networks. Russ then gave a live Internet demonstration of submitting jobs to the SnB/BnP
software via a standard web interface, followed by showing the tools that allowed users to check status of
jobs, and quickly evaluate structure solution results. Software for collaborative examination and
manipulation of molecular models via the Internet was also displayed. Queried during question time on
whether authors of crystallographic software should make their programs GRID aware, Russ cautioned
that unless you have a religious-type belief in the GRID, it might be too early to commit significant
programming resources to GRID computing until the underlying systems management of GRID
computing proves itself. Beta testers for the new SnB/BnP for GRID are most welcome and should
contact Russ via the above address. The following screen-shot shows the status of submitted grid jobs of
SnB being run directly on the ACDC Grid Portal via a Web Browser pointed to the Center for
Computational Research at SUNY-Buffalo.

Anders Markvardsen (a.j.markvardsen@rl.ac.uk : co-authors: K. Shankland and W. David) of
Rutherford-Appleton Laboratory in the UK, then discussed the use of distributed computing in the role of
finding optimal Hybrid Monte-Carlo (HMC) parameters for structure solution from powder diffraction

100

mailto:miller@buffalo.edu
http://www.hwi.buffalo.edu/SnB/
http://www.ccr.buffalo.edu/grid/content/overview.htm
mailto:a.j.markvardsen@rl.ac.uk

data. These optimal values can then be applied to structure solution software running on single
workstations. Using distributed computing tools to link local workstations, results could be obtained in a
couple of weeks that would have taken half a year or more using a single workstation. The following
shows the plotted results for determining optimal HMC parameters based on the structure solution of
Chlorothiazide.

Showing a healthy disregard for the forces of computing conformity and conference requirements for
MS-Windows compliance, Paul Emsley (emsley@ysbl.york.ac.uk) from York, UK used his Apple
MacOS X laptop to demonstrate the COOT ((Crystallographic Object)-Oriented Toolkit) Model Building
Tools for protein crystallography. Coot is part of the CCP4 Molecular Graphics Project and has some
features that resemble those of Frodo, O, Quanta and XtalView's XFIT. Paul’s live demonstration
showing COOT re-optimising the incorrect orientation of a residue in real-time drew “ooh’s” and “ahh’s”
from the audience. The two screen images below show the before and after of this demonstration. COOT
(http://www.ysbl.york.ac.uk/~emsley/coot/) is freely available in source code form under the GNU GPL
Licence, and compiled binaries for a variety of operating systems (SGI IRIX, Mac OS X, Redhat Linux)
are available via (http://www.ysbl.york.ac.uk/~emsley/software/binaries/).

101

Dennis Mikkelson (mikkelsond@uwstout.edu : co authors: A. Schultz, P. Peterson, R. Mikkelson, T.
Worlton, J. Hammonds, J. Cowan, Martha Miller, C. Bouzek, Michael Miller), a senior computer scientist
at University of Wisconsin-Stout introduced a GPL’d user friendly software package for viewing raw
neutron Time-of-Flight (TOF) single crystal data, with the option of indexing and integration
(http://www.pns.anl.gov/computing/isaw/). Speeds of visualisation for reconstructed raw image files of
reciprocal space collected with multiple detectors were stated as being performed with a second or so.
Both manual and computer based indexing options were shown for handling multiple crystallites; and the
software has the ability to perform integration of 3D diffraction spots. Various "wizards" to aid in
analysis, and the hkl slice viewer are in the latest build (1.7.1 alpha 7) available on the above ISAW

mailto:emsley@ysbl.york.ac.uk
http://www.ysbl.york.ac.uk/~emsley/coot/
http://www.ysbl.york.ac.uk/~emsley/software/binaries/
mailto:mikkelsond@uwstout.edu
http://www.pns.anl.gov/computing/isaw/

(Integrated Spectral Analysis Workbench software) website. The 3D reciprocal lattice view described in
the talk is expected to be in the 1.7.1 "final" build by late August. Under the tyrannical direction of the
session chair, Dennis quickly flicked through remaining slides to remain on time. Had the chair of the
session (this humble scribe) been more on the ball and quick witted, he would have seen the error of
keeping this talk to time and insisted that Dennis elaborate on a slide describing the future of this
software, which included an invitation for collaborators to help develop the software. This software
seems to represent not only an opportunity to the TOF single crystal community, but also X-ray CCD
based crystallographers in providing the freedom to interact and integrate their raw single crystal data in a
highly flexible manner. Free software aficionados will note the GPL definition of the word “freedom” is
being used here. The following shows the software being manipulated both manually (and with computer
controlled algorithms) to assist in sorting out effects of multiple single crystals prior to indexing, cell
assignments and integration.

The final talk of the session was that of David Duchamp (djduchamp@aol.com), showing the latest
feature of CrystMol (Mac and MS Windows - http://www.crystmol.com/) for visually comparing
potentially similar molecules from different structure files, or within the same structure where Z’ is
greater than 1; as well as proteins. People comparing polymorphs, or a chemically similar series of
structures, could find this very beneficial and time saving. Molecules can be compared automatically;
using a point and click menu; or via the CrystMol scripting system. RMS differences are also listed.
Following is an example of CrystMol comparing the Z’=4 structure from S.Thamotharan, V.
Parthasarathi, R. Gupta, D.P. Jindal and A. Linden (2004), Acta Cryst C60, o405-o407.

102

mailto:djduchamp@aol.com
http://www.crystmol.com/

Besides thanking the speakers for their presentations, thanks must also go to the staff of the Hyatt-
Regency, Chicago for their effective assistance in the set up of presenter laptops.

Lachlan Cranswick

Call for Contributions to the Next CompComm Newsletter

The third issue of the Compcomm Newsletter is expected to appear around January of 2005 with the
primary theme of “At Right Angles to Conventional Crystallographic reality: incommensurate,
quasicrystals, pair distribution functions and magnetic structures”. Articles related to the control and
visualisation of raw single crystal image data for the elucidation of many of the above types of structural
problems is also very welcome and appropriate. If no-one is else can be co-opted, the newsletter will be
edited by Lachlan Cranswick.

Contributions would be aso greatly appreciated on matters of general interest to the crystallographic
computing community, e.g. meeting reports, future meetings, developments in software, algorithms,
coding, programming languages, techniques and other news.

Please send articles and suggestions directly to the editor.

Lachlan M. D. Cranswick
NPMR, NRC,
Building 459, Station 18,
Chalk River Laboratories,
Chalk River, Ontario,
Canada, K0J 1J0
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

103

mailto:lachlan.cranswick@nrc.gc.ca

	Alexander J. Blake
	Maria C. Burla, Rocco Caliandro, Mercedes Camalli, Benedetta
	Ralf W. Grosse-Kunstleve, Pavel V. Afonine and Paul D. Adams
	Armel Le Bail
	Kenneth Shankland
	Dale. E. Tronrud
	Alexei A. Vagin and Garib N. Murshudov
	David Watkin
	Scott A. Belmonte
	Nikos Kourkoumelis
	Dick van der Helm
	The IUCr Commission on Crystallographic Computing - Trienn

	EADP atomnames
	PART n sof
	DFIX d s[0.02] atom pairs
	SADI s[0.02] atom pairs
	SAME s1[0.02] s2[0.02] atomnames
	DELU/SIMU/ISOR
	DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 F2 F3 F2 F4
	Example 3: An ill-defined tripodal ligand
	Sir2002 constitutes the first approach of the Sir team to th
	Refinement of the model
	Restraints
	Constraints

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

