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Abstract

This chapter will describe preliminary attempts to de-
scribe a series of inhibitors jointly, that is, the portions of
the protein relatively unaffected by binding must be con-
sistent with all the data sets.  The goal is to model the
greatest number of observations with the fewest parame-
ters.

The results of this work have applications when-
ever a set of crystals have similar contents.  Such sets
occur in inhibitor and mutant studies as well as when
solving structures using molecular replacement.

1 Introduction

Quite often a crystallographer will solve a series of almost
identical structures.  This occurs in the study of an enzy-
matic mechanism through the use of inhibitor models of
reactants, intermediates, or products.  The crystallographic
procedures used in structure-assisted drug design are
practically the same. With the growth of  genetic pro-
cedures for the production of mutant forms of proteins, it
is now quite common for series of similar protein struc-
tures to be generated which differ at only one or a few
amino acids.

A requirement of this work will be the develop-
ment of means to model the small nonisomorphisms which
will occur from one complex to another.  Such a model
will be useful in a wide range of applications, from an
additional tool in refinement to increase the radius of
convergence (a generalization of rigid body refinement) to
the optimization of molecular replacement models prior to
the solution of the translation function.

The work to be described in this paper has de-
veloped out of the continuing project for studying the
protease Thermolysin [1].  While Thermolysin is of inter-
est because of its thermostability and its similarity to the
angiotensin-converting enzyme neither of these matters
will be discussed here.

This paper will discuss the consequences of what
appeared to be a very simple decision.  It was realized that
the model of  “native” Thermolysin, which was the

starting point for all inhibitor refinement, contained a
number of errors.  These errors included large torsion
angle errors in the side chains of about 5% of the residues
in the model and the presence of a dipeptide of unknown
composition bound in the active site of the enzyme.  Since
the model had been built and refined prior to 1981 and no
interactive computer graphics were available to aid in the
interpretation of the maps, it is perhaps not surprising that
such errors were made.  It was decided to re-collect the
diffraction data for the “native” crystals and refine the
model to the current standards for a 1.6Å resolution
model.

The additional refinement was completed [2].
The dipeptide was modeled with the sequence val-lys
(which is the terminal dipeptide of thermolysin) although
there is some evidence in the density map that the contents
of the active site are not completely homogenous.  The
new model contains 185 water molecules (0.6/residue),
one DMSO molecule, and 6 side chains with two discrete
conformations where the fractional occupancies of each
conformation were refined.

The plan was to extract the active site contents of
each of the previously refined protein:inhibitor models,
place these atoms in the active site of the new “native”
model, and remove any atoms in the “native” model which
clash with the inhibitor or new solvent atoms.  This
chimera model was to be the starting model for the
updated refinement of the inhibitor.

So much for plans.  The first inhibitor complex to
be refined was that of the Phosphoramidon  inhibitor [3].
The structure of this natural product is Rhamanose-P(O2)-
leu-trp.  The central phosphoamide group is a mimic of the
presumed tetrahedral intermediate of peptide cleavage.
While the crystals diffracted quite well, diffraction data
were only collected to 2.3Å as that was the limit of the
precession photography method used to collect the data.
This inhibitor was chosen as a test case for nostalgic
reasons and as a limiting case – it and the other precession
data inhibitors have the lowest resolution data sets of any
of the Thermolysin inhibitors solved so far.

When this inhibitor was refined using the new
“native” model as a base the R-value dropped quite low
(12 to 13%), but many of the water molecules did not re-



main near their original locations, and the occupancies of
the statically disordered side chains were quite misbe-
haved.  The problem with the occupancies is expected for
this resolution, and they can easily be fixed at the “native”
values.  The problem with the wandering solvent is more
difficult to solve.  This is because the solvent merely
exhibits more seriously a general shortcoming of the re-
finement.

A comparison of the new “native” and the refined
thermolysin:phosphorhamidon models shows that many
atoms throughout the protein have been shifted by varying
amounts.  Since the protein does not appear to change
overall conformation, outside the vicinity of the active
site, one would not expect such alterations to reflect
anything other than the greater imprecision of the lower-
resolution data set.  The low-resolution inhibitor model
contains errors which can be identified as such by using
the high-resolution data of the “native” crystal but this
high-resolution information is not included in the
refinement residual.

The traditional means for handling this situation
is to impose a “similarity” restraint.  The low-resolution
model is exposed to the additional restraint that the atoms
distant from the active site should be near the location of
their mates in the high-resolution model.

There are two major problems with this ap-
proach.  The first is that similarity restraints, as usually
implemented, do not allow much flexibility – literally.  If
there are cell-constant changes or alterations in the ori-
entation of domains upon binding of the inhibitor, it is not
proper to impose the similarity.  While this problem is
purely an implementation choice and could be generalized,
the second problem is more fundamental.  The similarity
restraint does not embody the basic symmetry of the
situation.

Suppose we have a dozen protein:inhibitor data
sets we wish to refine.  In each case the constant protein
part will be restrained to the protein part of the “standard”
model.  In the end there will be a dozen models, each
restrained to their own diffraction data set and the
conformation of the standard. But there will be no in-
formation passing from one inhibitor to another, even
though there are eleven more versions of the protein part
to consider.  The waste is most evident when the pro-
tein:inhibitor crystals diffract as well the “native,” and it
especially clear when the “native” is really simply another
protien:inhibitor complex.

One would like a method where the high-resolu-
tion data from each complex crystal would affect the re-
finement of all the other complexes.

It is even useful for the data of the lower-resolu-
tion crystals to be used in the higher-resolution refine-
ments.  In the case of thermolysin, the lower-resolution
data sets were collected with the precession film method,
and one would expect the precision of these data to be
better than the lower-resolution part of the high-resolution

oscillation film data sets because of their higher redun-
dancy.  In general, as long as the model can handle it, it is
always better to use data than to exclude it.

One cannot build this symmetry into the simi-
larity restraints.  One could attempt it by building in all the
cross-similarities between all the protein parts of the
complexes, but some sort of weighting would have to be
used to adjust for the differing resolutions of the models.
This weighting would be very complicated as it would
have to account for the resolution, quality, and complete-
ness of each data set.  My rule of thumb is “When the
weighting gets tough, you are using the wrong approach.”

2 The Joint Refinement Method

I have chosen to attempt the definition of these restraints
as an analog of noncrystallographic restraints.  In this
approach the model of the protein is segregated in two
regions.  The first is the region which is essentially un-
changed when the inhibitor binds, and the second is the
region which does change.  During refinement the atoms
of the unchanged portion of the model are refined against
the diffraction pattern of each inhibitor data set -- there is
only one model for all inhibitors.  There are independent
models for each inhibitor of the variable regions.  These
atoms are refined in the usual way.  If the number of atoms
in the variable regions is a small percentage of the total in
the crystal, the total number of parameters needed to
describe all of the protein:inhibitor complexes will be
approximately 1/N that of the parameters used to generate
a separate model for each crystal, where N is the number
of inhibitors in the joint refinement.

There are two major problems which must be
solved when beginning a joint refinement.  First, the
boundary between the constant and variable regions must
be established, and second, the nonisomorphism of the
constant region – as it is substituted into each pro-
tein:inhibitor crystal – must be modeled.  The two prob-
lems are connected in that the boundary between the con-
stant and variable regions will depend upon the quality of
the nonisomorphism correction.

While the correction for nonisomorphism is the
most difficult part of the joint refinement model to con-
struct, it is also quite interesting.  Usually protein:inhibitor
complexes are refined as independent problems.  The
result is two sets of coordinates which exhibit a
background of variability.  It is not easy to examine the
two coordinate sets to determine which shifts are
significant and which are not.  The modeling of non-
isomorphism in joint refinement encourages the con-
struction of a model of these differences which requires
the fewest parameters.  These parameters can be refined
with great precision while at the same time the model is



simply not allowed to vary in ways which do not make any
improvement in the fit to the observations.

On the other hand, the model of the nonisomor-
phism is the greatest weakness of joint refinement.  It may
simply be impossible to generate a model with fewer than
a new set of atoms for each new crystal added to the
refinement.  The existence of  a nonisomorphism model
cannot be determined from basic principles.  One must try
to construct a model and decide if the result sufficiently
explains the observations.

The overall strategy of  joint refinement is:

1) Divide the protein:inhibitor models into constant and
variable regions.

2) Design a model of the nonisomorphism of the con-
stant region from crystal to crystal.

3) Refine the joint model against all the diffraction
patterns and stereochemical restraints.

4) Compare the joint model, as expressed in each crystal,
with the model based on individual refinement.  Also
compare each joint model with the residual difference
map.  To correct problems, either move atoms from
the constant to the variable part of the model or
elaborate the nonisomorphism model.

5) Compare the model of the constant region to the av-
eraged map, and make any required correction.  This
would include rotating side chains, rebuilding loops,
and adding and deleting solvent molecules.

6) Compare the model of the variable region to the map
of each crystal.

7) If the model has been changed go to step 3.

(As this paper is principally concerned with the
development of the joint refinement method and the mod-
eling of nonisomorphism, steps 5 and 6 were not per-
formed in any of its trial refinements. Refined models
described in a paper concerned with the structure and
function of thermolysin would have to be processed by all
these steps.)

Since the number of parameters in a joint re-
finement is so much smaller than the set of individual
refinements, one would expect that the joint model would
agree less with the diffraction data.  We should not expect
the R-values to be as low as those achieved before.

The Mathematics of Joint Refinement

The parameters of a joint refinement model fall into three
classes.  The first class is the positions, B factors, and
occupancies of the atoms in the constant region.  These
parameters are global in the sense that they affect the
model of each and every particular protein:inhibitor com-
plex.  These parameters will be identified by the symbol

c ix , which is the parameter vector for the ith atom in the

constant region.  The second class of parameters are the
parameters of each atom in each variable region.  There is

a separate variable region for each crystal.  The symbol for
these will bej ix , where j is the number of the crystal and

i is the ID number of the atom in that region.
The third class of parameters are of a different

type.  They are the parameters of the nonisomorphism, and
their character will depend on the model of the non-
isomorphism.  We cannot know their exact form until we
have defined the model.  In general, however, we can
describe the nonisomorphism as a mapping function which
takes the general c ix  parameters and produces the

expression of these atoms in a particular unit cell.  This
mapping function will be called j c iM ( )x .  There will

be a different mapping function for each crystal j.
Once the atoms of the constant region have been

transformed by the mapping function, they can be added to
the atoms of the variable region for that crystal, and the
resulting coordinate set can be used for the evaluation of
the R-value, standard geometry agreement, and refinement
gradient calculation just like a normal coordinate set.

To analyze the refinement of a model of this
nature let us start with the crystallographic residual.  For
each crystal the residual is
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To complete the residual, one must combine the contribu-
tions of all the crystals.  One is tempted to simply sum the
individual residuals to get the equation
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This is not correct.
The problem is that the residuals —( )F Fo c−

— for each reflection across all the different crystals are
not independent.  In effect each additional crystal does not
provide an amount of information equivalent to that of the
first crystal.  In the extreme case, if the second crystal
provided residuals which were equal to those of the first,
no new information would be added by considering it.

We will make the simplifying assumption that the
residual for one reflection is independent of the residuals
of all the reflections with differing hkl’s. However, for a
given hkl the residuals from all the crystals are correlated
with  each other to some extent.  Given this assumption,
the form of the total residual is
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where V −1( )hkl is now a j×j covariance matrix.

(Generally the square root of the variance is defined to be
the standard deviation, σ.  Least-squares is usually defined
in terms of standard deviations even though the math is
more direct when expressed in variances.)  The diagonal
of V( )hkl  contains the variance of the reflection in each

crystal while the off-diagonal elements are the products of
the standard deviation of each crystal times their
correlation coefficient.  For a three-crystal joint refinement
the variance matrix for a particular reflection would be
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where i σ  is the standard deviation of the reflection

measured in the ith  crystal and ij r is the correlation co-

efficient between the reflection in crystal i and that in
crystal j.

In practice it is difficult to estimate the individual
standard deviations for observed reflections, and it is
much harder to estimate all the correlation coefficients.  It
is much simpler to assume the standard deviation is the
same for all crystals and the correlation coefficients are
equal as well.  This simplification results in the variance
matrix
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The resulting variance matrix will depend upon

the correlation coefficient and the number of crystals in
the joint refinement.  This relationship is shown in Figure
1.

As can be seen, when the residuals from the
crystals are uncorrelated, the least-squares sum simply
expands to a sum over the crystals.  The contribution of a
reflection is the number of crystals.  As the residuals be-
come more correlated, the contribution to the least-squares
residual drops until, in the limit of a coefficient of  one,
the contribution of a reflection is independent of the
number of crystals.

Figure 1  Decrease in Information Content as the
Similarity of the Crystals Increases.  This plot

shows that, for three crystals, the information content
or effective arm of the variance matrix drops with

increasing correlation coefficient.

This relationship is simply a generalization of the
notion of  “counting statistics.”  When you have N
independent measurements the variance of the mean is 1/N
that of a single measurement.  If the N measurements are
not independent but correlated with a coefficient of one,
there is in effect, only one measurement and the variance
of the mean is equal to that of a single measurement.
Figure 1 shows all the values between.

Implementation Details
The ideal implementation of joint refinement

would be to write code which would evaluate Equation 1
using an estimate of the correlation coefficient based on an
analysis of the diffraction residuals found following
separate refinement of every crystal.  The correlation co-
efficient could be estimated as a function of resolution.

Implementing joint refinement in this fashion
would be very costly, both in programmers’ time and
execution time.  The project would require very different
code than that existing in TNT [4], the package of choice
for this investigator.  In addition, computational optimi-
zations such as the real-space calculation of function gra-
dients [5] would not be possible.

For the purpose of testing the viability and utility
of joint refinement, several approximations were made to
produce a simpler implementation. The joint model con-
sists of a coordinate set containing atoms from the com-
mon portion and atoms from each inhibitor.  During re-
finement this coordinate file is expanded (“scattered” in
TNT nomenclature) to a separate, complete, coordinate
file for each crystal.  The least-squares residual function,
along with its first derivatives and diagonal elements of
the second derivatives, is calculated for each crystal.
These derivatives are then collapsed (“gathered”) back
into the smaller parameter set by the application of the
appropriate transformation for each crystal to the common
portion and summing the derivatives.



This implementation is proper only if the residu-
als are completely uncorrelated.  If the residuals are
strongly correlated the gradient will be overestimated by a
factor of the number of crystals.  The diagonal element of
the second derivative will, likewise, be overestimated by
the same factor.  Since the refinement shift is calculated
from the ratio of the two, the error cancels.

The cancellation of errors is only approximate
because the gradient used to calculate the refinement shift
is the sum of the crystallographic term and the stereo-
chemical term and the second derivative is also such a
sum.  Because the stereochemical validity of the model is
determined separately for each crystal, the derivatives of
this term are overestimated by a factor of the number of
crystals as well.  When the residuals are highly correlated,
the current method works properly.  If the residuals are
uncorrelated, this method will not properly balance the
crystallographic and stereochemical derivatives.  A com-
parison of the final refined Fo-Fc maps shows that the
correlation coefficients of the residuals for these inhibitors
are on the order of 0.6.

There is an additional difficulty.  Usually the data
set from any crystal is not complete.  Even though a joint
refinement might have six crystals, some reflections might
have only been measured five, four, or even fewer times.
When this problem occurs, the errors in the crys-
tallographic derivatives  and those in the stereochemical
derivatives will not cancel.  With the current implemen-
tation one must be careful to ensure that the areas of re-
ciprocal space covered by the data collection are highly
congruent.  This limitation results in the requirement that
the resolution limits of the crystals’ data sets be the same.
The original problem of refining a low-resolution model
jointly with a high-resolution one cannot be solved with
this implementation, but the difficult problem of modeling
nonisomorphism can be investigated.

3 Joint Refinement in Practice

To test the feasibility of joint refinement, it was decided to
choose a set of thermolysin:inhibitor complexes with the
most favorable characteristics.  The complexes chosen all
diffract to at least 1.7Å and are very similar in structure.
In addition the diffraction data for each crystal was col-
lected using the same procedure at about the same time.  If
joint refinement cannot be made to work for these in-
hibitors it will never work.

The inhibitors are named ZGPLL, ZGPoLL,
ZFPLA, and ZFPoLA [6][7][8].  They can be ordered as a
pair of pairs.  ZGPLL has the sequence Cbz-Gly-Leu-Leu
where the C=O of the peptide bond between the glycine
and leucine has been replaced with a PO2  group to

mimic the transition state of the peptide bond cleavage.
ZFPLA differs only in that the glycine has been replaced

by phenoalinine and the terminal leucine by alanine.  In
the inhibitors whose names contain the lower-case “o” the
amide nitrogen of the central leucine has been replaced
with an oxygen.

When the structures of these complexes were
originally solved, it was observed that the conformations
of each amide-ester pair were nearly identical, but the ZG
part binds in a very different conformation from the ZF
part of the other inhibitors.  This difference in binding
caused a small change in the location of a nearby β strand
of the protein.  While all of the atoms far from the active
site differ in location from one inhibitor to another these
differences were small and were considered insignificant.

The test of joint refinement was begun by con-
structing a standard starting model for each crystal.  This
model contained the new model for “native” and the
model of the inhibitor and associated water molecules
from the best refinement performed prior to this test.  Any
water molecules from the “native” model which clashed
with the inhibitor were deleted.  No attempt was made to
manually move any atoms.

For each complex this model was refined in the
usual way, 20 cycles with the TNT refinement package
[4].  The resolution limit of the diffraction data was 1.7Å,
the B factors were allowed to vary without stereochemical
restraint, and the group occupancies of the disordered side
chains and the inhibitors themselves were allowed to vary.
For simplicity’s sake, no manual evaluations of the
resulting models were made.  The R-values of the resulting
models are given in the first column of Table 1.

The first test of joint refinement was made with
no attempt to model nonisomorphism.  Three refinement
runs were performed.  The inhibitors were joined pairwise
and then all together.  To allow for the adjustment of the
protein due to inhibitor binding, residues 111 through 119,
143, and the zinc atom were modeled with separate copies
for each crystal, along with the inhibitor itself and the
associated water molecules.  In ZGPLL and ZGPoLL an
additional DMSO molecule binds near the inhibitor, and
this molecule was treated as inhibitor-associated solvent.

A number of details must be considered when
performing this refinement.  The most important is that the
overall B factor of all but one of the crystals in a re-
finement must be allowed to vary.  In general one should
also allow for varying the overall anisotropic B factor, but
this was not done in this case because the diffraction de-
cayed very similarly in all cases.

Initially the crystals were refined pairwise.  This
seemed to be the most ideal arrangement because the two
“ZG” inhibitors and the two “ZF” inhibitors are very
similar to one another.  The R-values in Table 1 show that
the resulting model for the “ZG” inhibitors generates
agreement with the individual diffraction data sets almost
as well as the individual models.  The “ZF” models lose
about four tenths of a percent of R-value in each case,
which is slightly worst than the “ZG” joint refinement.



The agreement of the resulting models with the
diffraction data shows a small decrease in the quality of
the fit when the “ZG” variants are joined, and again a
small decrease with the joined “ZF” variants, but a large
drop in quality when all four are joined.  This pattern
implies that the two types of inhibitors are in some sense
incompatible.

The decrease in the fit of the models to the data
could arise from the large decrease in the number of para-
meters.  The models for four crystals refined independ-
ently  contain about 40,000 parameters which are defined
by refining against about 100,000 diffraction intensities.
The four-fold joint model, however, contains only about
10,000 parameters.  One might expect the R-values to rise
for this reason alone.  Of course the R-value may be rising
because of a failure to model the nonisomophism.  If this
is the case the model should be updated.

The only way to be sure which possibility is the
cause is to examine the joint model against the difference
maps and compare the individual models.  One expects an
atom in the joint model will lie in the center of the
distribution formed by the corresponding atoms from the
individual models.  The significance of the breadth of the
distribution is judged based on the size of the difference
map features.

Such an examination shows a number of regions
where it appears that strands of polypeptide chain are
displaced relative to one another.  Apparently there are
small changes in the location and orientation of each do-
main.  To model this motion, it was decided to allow the
two domains to move as rigid bodies from one inhibitor to
another.

The thermolysin molecule consists of two do-
mains.  Residues 1 through 125 form the N-terminal do-
main and 126 to 316 form the C-terminal domain. The
water molecules and metal ions were each associated with

the domain they lay closest to.  The rigid-body shifts of
these domains were determined by comparing the ori-
entation of the domains in the “native” model with each
individually refined protein:inhibitor model.

Table 2 lists the R-values for each model, refined
with allowance for domain motion.  The increase in R-
value upon imposing a two-fold joint refinement is slightly
less than before but the table shows great improvement for
the four-fold joint refinement.  Where before the R-values
increased by 1.1 to 1.8%, the increase is now only ranges
from 0.5 to 0.8%.

This result implies that there is a significant rigid-
body shift of the two domains of thermolysin upon binding
of some inhibitors.  Although the shift does occur and is
present in the previously refined models, it was never rec-
ognized because of its small size.  These shifts were sim-
ply considered part of the “background” shifts of the in-
dividual atoms in the model.

When these models are examined, it is apparent
that some bulk shifts of regions of each domain are still
unmodeled.  Since these regions appear to be near the
crystal contacts the possibility that the cell constants of
each crystal differ was investigated.

4 Cell Constant Precision

The oscillation film data reduction software
[9][10] is not considered a reliable source of cell constant
information.  Because the diffraction data sets for most
high-resolution thermolysin:inhibitor complexes were
processed using this software, it was decided to refine all
inhibitors of thermolysin using the cell constants of the
“native” crystal as determined from precession photo-
graphs.  While it is believed that the cell constants of the
crystals do change upon inhibitor replacement, test calcu-

TLN:ZGPLL 15.2 15.4 16.7

TLN:ZGPoLL 15.2 15.5 16.5

TLN:ZFPLA 15.3 15.7 16.4

TLN:ZFPoLA 16.2 16.5 18.0

Table 1  R-values for Joint Refinements with
Simple NCS.  In the first column each inhibitor was

refined as a separate entity.  The other columns
show the resulting R-values when the inhibitors are
first joined pairwise and then all four together.  No
attempt was made to model changes in the protein

region far from the active site.

TLN:ZGPLL 15.2 15.4 16.7

TLN:ZGPoLL 15.2 15.5 16.5

TLN:ZFPLA 15.3 15.7 16.4

TLN:ZFPoLA 16.2 16.5 18.0

Table 1  R-values for Joint Refinements with
Simple NCS.  In the first column each inhibitor was

refined as a separate entity.  The other columns
show the resulting R-values when the inhibitors are
first joined pairwise and then all four together.  No
attempt was made to model changes in the protein

region far from the active site.

TLN:ZGPLL 15.2 15.3 15.9

TLN:ZGPoLL 15.2 15.4 16.0

TLN:ZFPLA 15.3 15.6 15.8

TLN:ZFPoLA 16.2 16.4 17.0

Table 2  R-values for Joint Refinements with
Rigid-Body NCS.  In the first column each inhibitor

was refined as a separate entity.  The other
columns show the resulting R-values when the

inhibitors are refined with the allowance that the two
domains of the enzyme move from one inhibitor to

another.



lations showed that the quality of the refined model is
insensitive to errors in cell constants.  The cell lengths can
be varied by 2% and not significantly degrade the
agreement of the model with the diffraction intensities and
the stereochemical restraints.

Joint refinement should be sensitive to differ-
ences in cell length from one inhibitor to another.  If the
cell lengths are defined to be equal for all crystals, one
will observe that the contents of one crystal might shrink
and other swell.  These changes cannot be accommodated
using the rigid-body motions of the refinements reported
in Table 2.

 To test for this possibility, a more generalized
noncrystallographic symmetry transformation was devel-
oped.  Instead of insisting that the matrix applied to the
coordinates be a rotation matrix, a general matrix was
allowed.  Such a matrix introduces a resizing of the do-
main as well as a rotation.  While this model can accom-
modate cell constant changes, it is much more general and
will correct for other types of differences between the two
models.  If this model of nonisomorphism fails to improve
the fit of the joint model, cell constant errors are not
significant, but if this model is successful, the cause might
not be due to the modeling of cell constant errors.

The refinement programs were modified to relax
the constraints on the noncrystallographic symmetry op-
erators.  The transformations were again derived by com-
paring the “native” model with the individually refined
models of the protein:inhibitor complexes, and the joint
refinements were processed again.  The changes in the
final R-values, relative to those in Table 2, are listed in
Table 3.

As seen in the table, the R-values did not drop
significantly.  This implies that errors in the measurement
of the cell constants are not important determinants of the
results of this joint refinement.

5 Quadratic Transformations

Since a visual comparison of the four-fold joint
refinement models and the individually refined models
show bulk displacements of certain regions of each do-
main, some form of mapping of the “prototypical” domain
onto each crystal’s instance more general than a rotation
and translation is required.  A transformation which allows
for differing rotations for different portions of the domains
is required.  The next logical step is to attempt quadratic
transformations [11] (simple rotations are linear
transformations).

Quadratic transformations are third-order tensors
which are vector-multiplied by the position vector of an
atom to generate a rotation matrix which is again multi-
plied by the position vector to generate the new location of

the atom.  They are difficult to express in vector-matrix
notation – I will use a boldface capital letter with a dot
over it to represent  these quantities.

The expression for a quadratic transformation is

x t Rx x Dx'= + +
•1

2
T .

D
•

 is a 3x3x3 symmetric tensor and therefore contains 18
unique elements.  A model for nonisomorphism such as
this will require 24 parameters for each domain.

The implementation of this model is being con-
structed.

6 Summary

The mathematical basis for joint refinement has been
developed, and several models for the small nonisomor-
phisms between members of a set of protein:inhibitor
complexes  have been tested.  It has been demonstrated
that the data from four crystals can be modeled with nearly
¼ the usual number of parameters with no more than 0.8%
increase in the R-value

With a suitable model for the nonisomorphism,
the quality of the fit should improve.  It does not appear
unreasonable to expect that one could construct a joint
model which agrees with the observations from each
crystal as well as a model constructed specifically for that
crystal.

TLN:ZGPLL ---- 0.0 - 0.1

TLN:ZGPoLL ---- 0.0 - 0.1

TLN:ZFPLA ---- 0.0 0.0

TLN:ZFPoLA ---- 0.0 0.0

Table 3  Decrease in R-Value Caused by Allow-
ing Proteins to Rescale in Size.   The

noncrystallographic symmetry transformation was
generalized to allow for a change in scale as well

as a rotation and translation and the joint
refinements repeated.  Each entry shows the

change in R-value between the resulting models
and the R-values in Table 2.  Very little

improvement resulted.
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