Why use a Bayesian approach?

- We often know how are measurements are related to our model...
- The Bayesian approach gives us the probability of our model once we have made a measurement
- It is useful for dealing with cases where there are errors (uncertainties) in the model specification (missing parts of model)
- It is a useful way to combine our prior knowledge with observations to update our model
- A Bayesian approach can be used in many different situations where parameters (values) are to be estimated from measurements or observations.
Simple version of Bayes' rule

Suppose we are interested in the value of “x”
We have some prior knowledge about x “p_o (x)”
We have some measurements of x “observations”

Then we can say...

\[p(x) \propto p_o (x) \ p(\text{observations} \mid x) \]

The probability that a particular value of x is correct is proportional to...

the probability of x from our prior knowledge

multiplied by...

the probability that we would have made our observations if x were correct
Rananathittu Bird Sanctuary
Open bill stork (less common in summer)

Painted stork (more common in summer)
From a distance

\[p(x) \propto p_0(x) \ p(\text{observations} \mid x) \]

Without observation of details \(p(\text{observations} \mid x) \) is the same for each

So... which are they?

Open bill stork (less common)

Painted stork (more common)

See:
https://www.youtube.com/watch?v=AJ4l78WWzJ4
From a distance

\[p(x) \propto p_o(x) \ p(\text{observations} \mid x) \]

Without observation of details \(p(\text{observations} \mid x) \) is the same for each

Painted stork is more common -\(> p_o(\text{Painted Stork}) > p_o(\text{Open bill Stork}) \)

Best guess: Painted Stork

See: http://www.youtube.com/watch?v=AJ4f78WWzJ4
Up close

\[p(x) \propto p_o(x) p(\text{observations} \mid x) \]

Now we can see if features expected for each stork are present

- **Painted stork** we expect side has **dark stripe**
- **Openbill** stork has **white side**

Which are they?
Up close

\[p(x) \propto p_o(x) \ p(\text{observations} \mid x) \]

Now we can see if features expected for each stork are present:
- **Painted stork** we expect side has **dark stripe**
- **Openbill** stork has **white side**

\[P(\text{observations} \mid \text{Painted Stork}) \text{ is very high} \]
\[P(\text{observations} \mid \text{Openbill stork}) \text{ is very low} \]

\[-\text{very confident these are Painted stork.} \]
Introduction to Bayesian methods in macromolecular crystallography

Basics of the Bayesian approach

- Working with probability distributions
- Prior probability distributions
- How do we go from distributions to the value of “x”?
- Bayesian view of making measurements
- Example: from “400 counts” to a probability distribution for the rate
- Bayes' rule
- Applying Bayes' rule
- Visualizing Bayes' rule

Marginalization: Nuisance variables and models for errors

- How marginalization works
- Repeated measurements with systematic error

Applying the Bayesian approach to any measurement problem
Basics of the Bayesian approach
Working with probability distributions

Representing what we know about x as a probability distribution

$p(x)$ tells us the relative probability of different values of x

$p(x)$ does not tell us what x is...
...just the relative probability of each value of x
Prior probability distributions
What we know before making measurements

I am sure x is at least 2.5
Prior probability distributions
What we know before making measurements

All values of x are equally probable
Prior probability distributions
What we know before making measurements

x is less than about 2 or 3
Working with probability distributions
What is the “value” of x?

We don’t know exactly what “x” is...

but we can calculate a weighted estimate:

$$\langle x \rangle = A \int x \ p(x) \ dx$$

Weight each value of x by its relative probability $p(x)$

$$A = \frac{1}{\int p(x) \ dx}$$

A is normalization factor
A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our detector in 1 second

What is the probability that the rate of photons hitting these pixels is actually less than 385 photons/sec?
Using Bayes' rule

\[p(x) \propto p_o(x) \ p(\text{observations} \mid x) \]

*The probability that a particular value of \(x \) is correct is proportional to...

 the probability of \(x \) from our prior knowledge

 multiplied by...

 the probability that we would have made our observations if \(x \) were correct
A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our detector
in 1 second: \(N_{\text{obs}} = 400 \)

A good guess for the actual rate \(k \) of photons hitting these pixels is 400:
\(k \sim 400 \)

What is the probability that \(k \) is actually < 385 photons/sec?

What is \(p(k<385 \mid N_{\text{obs}} = 400) \)
A Bayesian view of making measurements

Start with prior knowledge about which values of k are probable: $p_o(k)$

Make measurement N_{obs}

For each possible value of parameter k ($385...400...$)

Calculate probability of observing N_{obs} if k were correct:

$p(N_{\text{obs}} \mid k)$

Use Bayes’ rule to get $p(k)$ from $p_o(k)$, N_{obs} and $p(N_{\text{obs}} \mid k)$:

$$p(k) \propto p_o(k) \cdot p(N_{\text{obs}} \mid k)$$
A Bayesian view of making measurements

What is the probability that we would measure N_{obs} counts if the true rate were k?

$p(N_{obs}|k)$

$k=385 \quad k=400$
Bayes' rule

\[p(k) \propto p_0(k) p(N_{\text{obs}}|k) \]

The probability that \(k \) is correct is proportional to...

the probability of \(k \) from our prior knowledge

multiplied by...

the probability that we would measure \(N_{\text{obs}} \) counts if the true rate were \(k \)
Bayes' rule

\[p(k) \propto p_{o}(k) p(N_{\text{obs}}|k) \]

The probability that \(k \) is correct is proportional to...

the probability of \(k \) from our prior knowledge (prior)

multiplied by...

the probability that we would measure \(N_{\text{obs}} \) counts if the true rate were \(k \) (likelihood)
Application of Bayes' rule

\[p(k) \propto p_o(k) p(N_{\text{obs}} | k) \]

No prior knowledge:
\[p_o(k) = 1 \]

Poisson dist. for \(N_{\text{obs}} \) (large \(k \))
\[p(N_{\text{obs}} | k) \propto e^{-\left[\frac{N_{\text{obs}} - k}{2k} \right]^2} \]

![Graph showing Poisson distribution for different values of k.](image)
Application of Bayes' rule

Probability distribution for \(k \) given our measurement \(N_{\text{obs}} = 400 \):

\[
p(k) \propto e^{-\left[N_{\text{obs}} - k \right]^2 / (2k)}
\]

Probability that \(k < 385 \):

\[
p(k < 385) = A \int_{-\infty}^{385} p(k) \, dk
\]

\[
A = 1 / \int_{-\infty}^{\infty} p(k) \, dk
\]

\[
p = 22\%
\]
Visualizing Bayes' rule

\[p(x \mid y_{obs}) \propto p_o(x) p(y_{obs} \mid x) \]

Where does Bayes' rule come from?

Using a graphical view to show how \(p(x \mid y) \) is related to \(p(y \mid x) \)
Visualizing Bayes' rule: \(p(x) \) and \(p(y) \)

\[
p(x \mid y_{obs}) \propto p_o(x) p(y_{obs} \mid x)
\]

- \(p(x) \, dx \) is the fraction of all drops from \(x \) to \(x+dx \)
- \(p(y) \, dy = C \)
- \(A \) is all the drops in the box
- \(B \) is the drops in the vertical strip
- \(C \) is drops in horizontal strip
- \(D \) is the intersection of \(B \) and \(C \)
Visualizing Bayes' rule: $p(y|x)$ and $p(x|y)$

Considering only drops from x to $x+dx$, $p(y|x)dy$ is the fraction of drops from y to $y+dy$.

$p(x)dx = B$

$p(y)dy = C$

$p(y|x)dy = D/B$
Visualizing Bayes' rule: $p(x,y)$

$p(x,y)\,dx\,dy$ is the fraction of all drops inside the box from x to $x+dx$ and y to $y+dy$.
Visualizing Bayes' rule: $p(x,y)$

$p(x)dx = B$

$[D] = [D/C] [C]$

$p(x,y)dydx = p(x|y)dx$
$p(y)dy$

$p(x,y)dydx$ is the fraction of all drops inside the box from x to $x+dx$ and y to $y+dy$
Visualizing Bayes' rule

\[D = D/B \times B \]
\[D = D/C \times C \]

\[p(x)dx = B \]
\[p(x,y)dx\,dy = p(y|x) \, p(x)dx\,dy \]
\[p(x,y)dx\,dy = p(x|y) \, p(y)dx\,dy \]

\[p(y|x)\,dy = D/B \]

\[p(y)\,dy = C \]
An identity we will need now and later....

\[p(y) = \int p(y|x) p(x) \, dx \]
Visualizing Bayes' rule

$p(x,y)$ written two ways

$p(x|y)p(y) = p(y|x)p(x)$

Rearrangement...

$p(x|y) = p(y|x)p(x)/p(y)$

An identity

$p(y) = \int p(y|x)p(x)\,dx$

Substitution...Bayes' rule:

$p(x|y) = p(y|x)p(x)/\int p(y|x)p(x)\,dx$
Bayes' rule as a systematic way to evaluate truth-tables

\[p(x) \, dx \]

\[p(y) \, dy \]

\[p(x) \, dx \text{ is the fraction of all drops from } x \text{ to } x+dx \]
Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”. What is the probability that the first toss was a “head?”

<table>
<thead>
<tr>
<th>First toss</th>
<th>Second toss</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>HH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>HT</td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>TH</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>TT</td>
</tr>
</tbody>
</table>
Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”. What is the probability that the first toss was a “head”?

\[
\begin{array}{c|c|c}
\text{Second toss} & H & T \\
\hline
H & H & T \\
T & H & T \\
\end{array}
\]

FS=\text{head on first or second toss}

H=\text{heads first toss} \quad T=\text{tails first toss}

Bayes' rule:

\[
p(H)=A \ p_o(H) \ p(FS|H)
\]

\[
A = \frac{1}{[p_o(H) \ p(FS|H) + p_o(T) \ p(FS|T)]}
\]

\[
p_o(H)=1/2
\]

\[
p(FS|H)=1
\]

\[
p(FS|T)=1/2
\]

\[
A = \frac{1}{[1/2 + 1/2 * 1/2]} = 4/3
\]

\[
p(H) = 4/3 \times 1/2 = 2/3
\]
Quick Review of Bayes' rule

\[p(x | y_{obs}) \propto p_o(x) p(y_{obs} | x) \]

- \(p(x | y_{obs}) \): Probability of x given our observations
- \(p_o(x) \): What we knew beforehand about x
- \(p(y_{obs} | x) \): Probability of measuring these observations if x were the correct value
Marginalization

What if the observations depend on z as well as x? (Maybe z is model error)

\[p(y_{obs} | x) \]

What we want to use in Bayes' rule

\[p(y_{obs} | x) = \int p(y_{obs} | x, z) p(z) \, dz \]

“Integrate over the nuisance variable z, weighting by $p(z)$”
Marginalization

\[p(y_{obs}) = \int p(y_{obs} | z) p(z) \, dz \]
Identity we saw earlier

\[p(y_{obs} | x) = \int p(y_{obs} | z, x) p(z | x) \, dz \]
The whole equation can be for a particular value of x

\[p(y_{obs} | x) = \int p(y_{obs} | z, x) p(z) \, dz \]
If \(z \) does not depend on \(x \), \(p(z) = p(z | x) \)

“Integrate over the nuisance variable \(z \), weighting by \(p(z) \)”
Marginalization with Bayes' rule

We want to get $p(x)$ using $p(y_{obs} | x)$ in Bayes' rule...

y_{obs} is an experimental measurement of y

$$p(y_{obs} | y) \propto e^{-(y_{obs} - y)^2 / 2 \sigma^2}$$

y depends on x and z (perhaps z is model error)

$$y = y(z, x)$$

...then we can integrate over z to get $p(y_{obs} | x)$:

$$p(y_{obs} | x) = \int p(y_{obs} | y(z, x)) p(z) \, dz$$
Repeated measurements with systematic error

We want to know on average how many drops D_{avg} of rain hit a surface per 100 cm2 per minute.

The rain does not fall uniformly: $D(x) = D_{\text{avg}} + E(x)$ where the SD of $E(x)$ is e. However we only sample one place.

We count the drops N falling in 1 minute into a fixed bucket with top area of 100 cm2 m times ($N_1, N_2...$) with a mean of n.

What is the weighted mean estimate $<D_{\text{avg}}>$? What is the uncertainty in $<D_{\text{avg}}>$?
How to apply a Bayesian analysis to any measurement problem

1. Write down what you really want to know: \(p(D_{\text{avg}}) \)

2. Write down prior knowledge: \(p_o(D_{\text{avg}})=1 \)

3. Write down how the true value of the thing you are measuring depends on what you really want to know and any other variables: \(D=D_{\text{avg}}+E \)

4. Write down probability distributions for errors in measurement and for the variables you don't know: \(p(N_{\text{obs}}|D) \) and \(p(E) \)
How to apply a Bayesian analysis of any measurement problem

5. Use 3&4 to write probability distribution for measurements given values of what you want to know and of nuisance variables: \(p(N_1, N_2|D_{avg}, E) \)

6. Integrate over the nuisance variables \(E \), weighted by their probability distributions \(p(E) \) to get probability of measurements given what you want to know: \(p(N_1, N_2|D_{avg}) \)

7. Apply Bayes' rule to get the probability distribution for what you want to know, given the measurements: \(p(D_{avg}|N_1, N_2...) = p_o(D_{avg}) p(N_1, N_2|D_{avg}) \)
Repeated measurements with systematic error

We want to get $p(D_{\text{avg}})$ using $p(N_{\text{obs}} \mid D_{\text{avg}})$ in Bayes' rule...but the rate into our bucket D depends on D_{avg} and E:

$$D = D_{\text{avg}} + E$$

$$p(E) \propto e^{-E^2/2 \sigma^2}$$

N_{obs} is the number of drops we count with SD of $n^{1/2}$:

$$p(N_{\text{obs}} \mid D_{\text{avg}}, E) \propto e^{-(N_{\text{obs}} - (D_{\text{avg}} + E))^2 / 2s^2}$$

Including all m measurements $N_1, N_2...$

$$p(N_1, N_2... \mid D_{\text{avg}}, E) \propto e^{-\sum_i(N_i - (D_{\text{avg}} + E))^2 / 2s^2}$$
From previous slide

\[
p(N_1, N_2 \ldots | D_{\text{avg}}, E) \propto e^{-\sum_i (N_i - (D_{\text{avg}} + E))^2 / 2s^2}
\]

\[
p(E) \propto e^{-E^2 / 2e^2}
\]

We have \(p(N_1, N_2 \ldots | D_{\text{avg}}, E) \). We want \(p(N_1, N_2 \ldots | D_{\text{avg}}) \). Integrate over the nuisance variable \(E \):

\[
p(N_1, N_2 \ldots | D_{\text{avg}}) = \int p(N_1, N_2 \ldots | D_{\text{avg}}, E) \ p(E) \ dE
\]

Yielding (where \(n \) is the mean value of \(N \): \(\langle N_1, N_2 \ldots \rangle \))

\[
p(N_1, N_2 \ldots | D_{\text{avg}}) \propto e^{-(D_{\text{avg}} - n)^2 / 2(e^2 + s^2 / m)}
\]

Now we have \(p(N_1, N_2 \ldots | D_{\text{avg}}) \) and we are ready to apply Bayes' rule
We have the probability of the observations given D_{avg}:

$$p(N_1, N_2... \mid D_{\text{avg}}) \propto e^{-(D_{\text{avg}}-n)^2/2(e^2+s^2/m)}$$

Bayes' rule gives us the probability of D_{avg} given the observations:

$$p(D_{\text{avg}} \mid N_1, N_2...) \propto p_o(D_{\text{avg}}) e^{-(D_{\text{avg}}-n)^2/2(e^2+s^2/m)}$$

If the prior $p_o(D_{\text{avg}})$ is uniform:

$$p(D_{\text{avg}} \mid N_1, N_2...) \propto e^{-(D_{\text{avg}}-n)^2/2(e^2+s^2/m)}$$

$$\langle D_{\text{avg}} \rangle = n = \langle N \rangle \quad \sigma^2 = e^2 + s^2/m$$
How to apply a Bayesian analysis to any measurement problem

1. Write down what you really want to know: $p(D_{\text{avg}})$

2. Write down prior knowledge: $p_0(D_{\text{avg}})=1$

3. Write down how the true value of the thing you are measuring depends on what you really want to know and any other variables: $D=D_{\text{avg}}+E$

4. Write down probability distributions for errors in measurement and for the variables you don't know: $p(N_{\text{obs}} \mid D)$ and $p(E)$
5. Use 3&4 to write probability distribution for measurements given values of what you want to know and of nuisance variables: $p(N_1, N_2...|D_{\text{avg}}, E)$

6. Integrate over the nuisance variables (E), weighted by their probability distributions $p(E)$ to get probability of measurements given what you want to know: $p(N_1, N_2...|D_{\text{avg}})$

7. Apply Bayes' rule to get the probability distribution for what you want to know, given the measurements: $p(D_{\text{avg}}|N_1, N_2...) = p_o(D_{\text{avg}})$

$p(N_1, N_2...|D_{\text{avg}})$
Tutorial Discussions

- Discussion of Bayesian applications in crystallography
- Working through simple Bayesian exercises from handout in a group
- Density modification and Bayesian statistics
- Discussion of individual challenging examples and questions from students
Some things to think about ...

.1. Are you sure you have included all plausible hypotheses? If you don’t have correct answer in your list your Bayesian analysis will never work...

.2. The data has to discriminate among the plausible hypotheses to be useful.

.3. A plausible hypothesis is one for which the prior is not zero
Applications of Bayesian methods in crystallography

- Molecular replacement with likelihood targets
- Likelihood-based refinement
- Statistical density modification
- Matching of sequence to density in a map
- Evaluation of map quality

...