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What is the problem?
! SRM 660b peak shapes.  660b is 

LaB6, intrinsic peaks are extremely 
sharp due to large, unstrained 
crystallites. These are for the NIST 
DBD with an IBM. They are not 
sharp, and their shape shifts with 
angle."

! SRM 1979 ‘15 nm’ peak shapes.  
Peaks are very broadened by 
microstructure. Aberrations, as 
determined from, for example, SRM 
660x, must be accounted for to get 
microstructure. These are measured 
on the NIST DBD with an IBM.
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Why compute shapes?

• Analysis of powder diffraction patterns is carried out for 
numerous reasons:

• determination of lattice parameters
• determination of crystal structure
• determination of mixed material composition

• All of these are are most accurately done with either Rietveld or 
Pawley fitting of a complete pattern, which reduces the number 
of free parameters and can be robust against noise

• Such fits require accurate peak models.  Ad hoc parameterized 
models are commonly used, and work pretty well for structure 
and composition.  They do not work too well for lattice 
measurement. 
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What creates observed line shape?

! In a simple theory, a line profile is 
a convolution of e#ects from 
various uncorrelated sources. "

! WARNING: only true if sources do 
not have correlated contributions. 
This is  not strictly true, and full 
Monte Carlo ray tracing is useful 
to compare to convolution 
assumption.  
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[f ⊗ g] (t) =

+∞ˆ
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f(τ) g(t− τ) dτ

F (f(t)) (ω) =

+∞ˆ
−∞

f(t) e−iωt dt

F ([f ⊗ g] (t)) (ω) = F (f(t)) (ω)× F (g(t)) (ω)

or, in short,

F (f ⊗ g ⊗ h . . .) = F (f)× F (g)× F (h) . . .
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The convolution theorem

! ‘smearing’ of two functions 
together is convolution"

! for discretely sampled 
functions of length n 
computation time is n2"

! this is expensive for large 
values"

! Fourier convolutions need 
time n log(n): much faster"

! Beware periodicity!
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Linearity

For any complex numbers a and b, if h(x) = af (x) + bg(x), then !(") = a ! f #"(") + b ! $(").

Translation / time shifting

For any real number x0, if h(x) = f"(x # x0), then !(") = e#2$ix0" f #"(").

Modulation / frequency shifting

For any real number "0 if h(x) = e#2$ix"0 f"(x), then !(") = f #"(" # "0).

Time scaling

For a non-zero real number a, if h(x) = f"(ax), then

The case a = #1 leads to the time-reversal property, which states: if h(x) = f"(#x), then !(") = f #"(#").

Conjugation

If h(x) = f"(x), then

In particular, if f is real, then one has the reality condition

that is, f # is a Hermitian function. And if f is purely imaginary, then

Integration

Substituting " = 0 in the definition, we obtain

That is, the evaluation of the Fourier transform at the origin (" = 0) equals the integral of f over all its domain.

Invertibility and periodicity

Under suitable conditions on the function f, it can be recovered from its Fourier transform f #. Indeed, denoting the Fourier transform operator by F,
so F("f") := f #, then for suitable functions, applying the Fourier transform twice simply flips the function: F 2("f")(x) = f"(#x), which can be
interpreted as "reversing time". Since reversing time is two-periodic, applying this twice yields F 4("f") = f, so the Fourier transform operator is
four-periodic, and similarly the inverse Fourier transform can be obtained by applying the Fourier transform three times: F 3(" f #") = f. In particular
the Fourier transform is invertible (under suitable conditions).

More precisely, defining the parity operator P that inverts time, P["f"] : t ! f"(#t):

These equalities of operators require careful definition of the space of functions in question, defining equality of functions (equality at every point?
equality almost everywhere?) and defining equality of operators – that is, defining the topology on the function space and operator space in
question. These are not true for all functions, but are true under various conditions, which are the content of the various forms of the Fourier
inversion theorem.

Fourier transform properties
https://en.wikipedia.org/wiki/Fourier_transform
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Discrete Fourier Transforms

• Have a space of n bins separated by Δx.  Will transform into 
discrete ω bins

• ω bin width, Δω, is 2π / (n Δx). 
• ωmin is -(n/2 -1) Δω, 
• ωmax is (n/2) Δω

• DFT/FFT of a real function (intensity!) is entirely specified by the 
+ω part, since -ω is just complex conjugate.

• some real-function DFT/FFT packages put ωmax in imaginary part 
of zero-frequency bin, and return n/2 imaginary numbers. 
Others (numpy, scipy, e.g.) return n/2 + 1 bins, with ωmax in 
highest bin, where it naturally makes sense. This is very 
convenient.
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Features of Fourier Space

• Efficient convolutions, as seen in previous slide
• Many of the broadenings we will look at have exact Fourier 

representations, so !(f(x)) is generated directly, not by 
transforming f(x).

• Not (easily) true of axial divergence…
• The frequency scale of these transforms (λω/cosθ) (with ω in 

inverse radians) actually has units of physically interpretable 
length! This will provide direct information about crystallite 
microstructure (see Bertaut, Acta Cryst A, 1950, (3) 14)

• The same length scale information also can be used to directly 
understand the limits of the resolution of an instrument.
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widest component of the Lorentzian. This function is normalized to unit area. Then, the corrected shape is:

Fc

�−→
2θ −2θ0

�
= F

�−→
2θ −2θ0

�
−Aε

�−→
2θ −µ

�
(39)

where A is the area of F

�−→
2θ

�
. This makes a very good correction of the tails, assuming that the peak is not

so asymmetrical that it has quite different amplitudes at the boundaries of the 2θ window. An example of the

correction is shown in fig. 2.
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Figure 2: Correction due to periodic Fourier transform, shown at low angle where the peak is very asymmetrical,
and at mid-angle where it is nearly symmetrical. Note that for the left-hand case, the 2θ window is barely wide
enough, so the peak tails are still very asymmetrical.

3 Numerical Comparisons

The data in sections 3.1 and 3.2 are provided to allow one to compare implementations of the NIST FPAPC to the

results from Topas. Section 3.3, with comparisons to data, is provided as general validation of the FPA for some

important test cases. While the FPAPC is not a Rietveld code, in that it does not utilize a full structural mode,

it can utilize space group symmetry (of various SRM materials) to constrain peak positions to a single lattice

22

Periodic Boundary Conditions

! Fourier convolutions assume 
periodic functions"

! If the tails are fall rapidly to zero, 
no problem.  "

! Numerous components have 
Lorentzian tails, which fall very 
slowly. "

! Weird wrapping at tails, which is 
bad for peak computation"

! Can be removed in real space if 
tails are Lorentzian. from JRNIST, FPAPC
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What is the FPA?

• In the FPA, the goal is to compute the line shape from first 
principles as a convolution of contributions from known 
sources.

• need to know detailed instrument geometry
• need to know detailed source X-ray spectrum
• may have some well-known data on sample (density, 

composition)
• Remaining properties of line shape are probably interesting

• corrected line position, to get lattice parameters
• corrected line shape, to get microstructure
• corrected line intensity, to get composition
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Why isn’t it trivial to calculate?

• need to get convolutions in way that preserves moments at very 
high accuracy (much less than the sampling interval)

• have Lorentzian tails, which converge very slowly and violate the 
requirement in the central limit theorem of finite second 
moments

• have 1/√x divergences
• have some components that need to be integrated in real space 

before converting to Fourier space
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types of components of FPA

• Lorentzian broadening from intrinsic x-ray emission line shape, 
and from Lorentzian shape from size distribution and ad hoc 
Lorentzian microstrain

• Gaussian from ad hoc Gaussian size tails, from fitted estimates 
of spectrum as Gaussian, and ad hoc Gaussian microstrain

• 1/sqrt(x) mostly from Debye cone, and from flat specimen
• rectangular, from slits
• other, messier bits from, e.g. sum of erf in Fourier space from 

log-normal particle size distributions 
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JRNIST, VolH

! Divergent Beam Bragg-Brentano 
with point detector (typically 
scintillator with slit)"

! Divergent Beam Bragg-Brentano 
with linear Position Sensitive 
Detector (PSD)

Fully Modeled Instruments
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Well Modeled Instruments

• Divergent Beam Bragg-Brentano with Johansson optic and either 
point detector or PSD

JRNIST, VolH
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Beamline Layout 
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~ 50 meters 

collimating 

mirror 

vert. focus 

mirror 

x2 Si(111) 

mono tank 

Sagittally bent Si(111) crystal 

! horizontal focusing: ~ 50 mm ! 1 mm 

5 

X-ray beam 

=;:1>$?@512$AB;&3*(&+5')$?@512$

C$

Not-quite Modeled Instruments 

! Typical Synchrotron powder di#raction beamline$
http://11bm.xray.aps.anl.gov/documents/11BM_12SlideOverviewPresentation.pdf
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Axial Divergence

piece of Debye cone,  
rD=R tan !B

Slit scanned across peak

[f ⊗ g] (t) =

+∞ˆ
−∞

f(τ) g(t− τ) dτ

F (f(t)) (ω) =

+∞ˆ
−∞

f(t) e−iωt dt

[f ⊗ g] (t) =

+∞ˆ
−∞

f(τ) g(t− τ) dτ

F (f(t)) (ω) =

+∞ˆ
−∞

f(t) e−iωt dt

F ([f ⊗ g] (t)) (ω) = F (f(t)) (ω)× F (g(t)) (ω) or, in short,

F (f ⊗ g) = F (f)× F (g) (the Convolution Theorem!)
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geometry reminder:  
axial is out of plane

‘y’ measured from apex

! Refers to beam angles 
perpendicular to the di#raction 
plane."

! Primary contribution to FPA, 
and trickiest to compute. 
Especially important due to 
asymmetry. "

! Result of overlap of curved 
Debye cone and linear slits"

! arc length (intensity) in slit is: 
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Axial Divergence — 2
! Blue curve: ’s’ from previous slide"

! Green curve: di#erential intensity, 
goes to infinity at edge of Debye 
cone. Numerically very bad 1/sqrt(x)"

! Red curve: integrated intensity for 
detector with finite slit stepping 
across Debye cone. Numerically 
fine, if careful about partial bins."

! Cyan curve: steps not perfectly 
aligned to coincide with edge of 
Debye cone (real case…)"
! this binning handled very carefully in 

FPAPC ‘axial_helper()’ function.

Red curve Cyan curve
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Axial Divergence — 3
! Finite source width in axial 

direction, finite width of sample, and 
finite receiver slits result in Debye 
cone being cut o# in many ways."

! Table below shows complexity of 
this

Figure 1: Generation of a line profile via convolutions in the FPA

condition 1 and condition 2
rβ ↓ \ε → εa εb εc εd

Lr > Z
+
0 −Z

−
0 Z

+
0 ≤ Lr

2 and Z
−
0 ≥−Lr

2
1 ε+1 ε+2 ε−1 ε−2�

Z
+
0 > Lr

2 and Z
−
0 < Lr

2
�

or
�
Z
+
0 >−Lr

2 and Z
−
0 <−Lr

2
�

2 ε+2 ε+1 ε−1 ε−2
any other range of Z0

3 ε+2 ε+1 ε−1 ε−2
Lr < Z

+
0 −Z

−
0 Z

+
0 ≥ Lr

2 and Z
−
0 ≤−Lr

2
1 ε−1 ε+2 ε+1 ε−2�

Z
+
0 > Lr

2 and − Lr

2 < Z
−
0 < Lr

2
�

or
�
−Lr

2 < Z
+
0 < Lr

2 and Z
−
0 <−Lr

2
�

2 ε+2 ε−1 ε+1 ε−2
any other range of Z0

3 ε+2 ε−1 ε+1 ε−2

Table 1: Selection of computation boundaries and β ranges

9
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Axial Divergence — Soller slits
! Soller slit on detector trivially 

multiplies intensity from Debye cone 
by triangular transmission function. 
Reduces peak asymmetry (at cost of 
intensity)."

! Soller slit on source is more complex, 
changes distribution of o#-axis 
angles. Out-of-plane angle of beam 
from source is % in papers. Must 
integrate over correlated 
transmission of slit pair explicitly. This 
is the ‘I3’ function of Cheary & Coelho"

! Note that curvature (from 2 slides 
ago) depends on y/tan &B.  This 
vanishes at 90°. No axial broadening 
in mid-angle region.

Soller slit transmission
angle
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21.0 21.5 30.0 30.5 37.0 37.5 43.0 43.5 48.5 49.0

53.5 54.0 63.0 63.5 67.5 68.0 71.5 72.0 75.5 76.0

79.5 80.0 83.5 84.0 87.5 88.0 95.5 96.0 99.5 100.0

103.5 104.0 107.5 108.0 111.5 112.0 116.0 116.5 120.5 121.0

130.0 130.5 135.5 136.0 141.5 142.0 148.5 149.0

21.0 21.5 30.0 30.5 37.0 37.5 43.0 43.5 48.5 49.0

53.5 54.0 63.0 63.5 67.5 68.0 71.5 72.0 75.5 76.0

79.5 80.0 83.5 84.0 87.5 88.0 95.5 96.0 99.5 100.0

103.5 104.0 107.5 108.0 111.5 112.0 116.0 116.5 120.5 121.0

130.0 130.5 135.5 136.0 141.5 142.0 148.5 149.0

Soller slit illustration

! Soller slits at 2.5 degrees. Note 
low-angle peaks, especially, 
remain fairly sharp."

! Soller slits at 10 degrees (i.e. 
wide open).  The axial divergence 
function is extremely visible on 
the low-angle peaks.

JRNIST, FPAPC
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Axial Divergence — moments

! Precise peak position 
determination, for lattice 
measurement, requires conserving 
the first moment (centroid) of 
aberrations to sub-bin accuracy"

! The general form of the axial 
divergence correction is at the top. 
The exact first moment is obtained 
by the usual weighted integral."

! Need to use this in degenerate 
cases in which the axial correction 
is less than 2 bins wide, to balance 
two bins to keep this correct.

computed  
shape

bins filled to  
preserve moment
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! The X-ray source energy or 
wavelength spectrum can be 
decomposed often into Voigt 
functions (Lorentzian-Gaussian 
convolutions)."

! The Fourier transform of these is 
analytic."

! A sum of these transforms, 
weighted by the line intensities, is 
the convolver for the spectrum."

! Note:  if a monochromator is in 
use, there is no nice, exact 
expression.  Typically approximate 
as a sum of Gaussians.

[f ⊗ g] (t) =

+∞ˆ
−∞

f(τ) g(t− τ) dτ

F (f(t)) (ω) =

+∞ˆ
−∞
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Flat specimen and linear PSD

• in Mathematica notebook
• These two aberrations are best written down from a single set of 

ray traces, since they depend on reflecting off of a flat sample
• equations then get integrated over sample surface and detector 

face
• the integral over a rectangular sample surface yields the classical 

flat-specimen correction that has the same 1/sqrt(x) character 
as the axial divergence.  It is handled in the FPAPC code by the 
same axial_helper function.

• The integral over an LPSD face yields a new aberration, which is 
described in FPAPC.
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Understanding the IPF
! The Instrument Profile Function 

computed from the FPA can 
provide guidance about sources of 
uncertainty."

! Information about true peak shape 
requires, in one way or another, 
deconvolution of the IPF, which is 
division.  "

! In Fourier space, it is particularly 
easy to understand the impact. If 
the relative IPF is ≪ 1, information 
is highly attenuated, and sensitive 
to noise and instrumental e#ects."

! This sets the limits on crystallite 
size determination

magnitude of the Fourier transform of FPA 
profiles computed for di"erent instruments

length scale is ' ( / cos&,"
( in radians-1
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! In Bragg-Brentano, with a weakly 
absorbing sample, the ‘surface’ is 
actually a region of exponential 
attenuation of the beam.  This 
broadens and shifts peaks. "

! Side note: g(0) != 1, not area 
conserving if T < ) . x-rays lost out 
the back.

next
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exp �

δ

δ
�
1− exp �min

δ

� where �min < � < 0

�min =
−2T cos θ0

R

δ =
sin 2θ0
2µR

g (�ω) =
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1− exp (�min (i �ω + (1/δ)))

i �ω + (1/δ)

2
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Sample microstructure
• Defects in samples broaden peaks, with varying dependence on 

diffraction angle.  Crystallite (domain) boundaries also broaden 
peaks. Beware of possible huge difference in physical particle 
size and crystallite size as seen by diffraction. See Bertaut, 
Acta Cryst A, 1950, (3) 14 (in French)

• Simplest models contribute Lorentzian and Gaussian convolvers 
to the observed peak shape.  

• Scardi & Leoni (Acta Cryst.  (2001). A57, 604–613 ) worked out 
fairly detailed extension of Krill & Birringer (Phil Mag. A (1998). 
v77 no. 3, 621—640) log-normal crystallite size distribution 
peak shape for some crystallite shapes. Result is sum of error 
functions in Fourier space.

• Code for this is available as a plugin to FPAPC on request. It 
includes hexagonal prisms, not part of S&L. Hex also available 
as a Topas 4 or 5 include file.
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Comments on use of the FPA

• If we have correctly computed the intrinsic peak shape, we can 
synthesize peaks in 2θ or Fourier space

•  This only works if we have a really accurate FPA IPF.  It should 
be based on as many directly (or, at least, independently of the 
current experiment) measured parameters of the diffractometer 
as possible. 

• Use of a sample with very sharp peaks, such as SRM 660c (very 
high attenuation, ideal), or SRM 640d (lower attenuation, still 
sharp peaks) allows one to verify the FPA results without the 
real peak width being tangled up in the IPF.
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Using the FPA in 2θ space

• The FPA can be used to synthesize peak shapes, including the 
IPF and sample characteristics.  These can be fed into a least-
squares fitter either for 

• Pawley fits (position fixed by symmetry group & lattice, 
intensity is free parameter), or,

• Rietveld fits (intensities computed from structure)
• FPAPC has a simple interface for peak synthesis.  It does not 

incorporate the least-squares fitting or structure models. 
• Fitting is what packages like TOPAS* do.  Work is underway for 

this in GSAS-II.  Also, xrayutilities (a pure-python package) has 
incorporated the NIST FPAPC.

*Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply 
recommendation or endorsement by the U.S. government, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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Peak position accuracy in FPA

! Use of a full FPA-based Pawley fit 
can result in very high accuracy 
peak positions"

! Data at right from open-beam (no 
IBM) scans of SRM 660c (LaB6) 
and SRM 640e (Si)"

! These positions do not depend on 
interpolating peaks from a known 
standard material and using a 
parameterized asymmetry model.
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Using the FPA in Fourier space

• In Fourier space, by dividing out the transform of the IPF from the 
observed transform, what is left is exactly the function 
described in Bertaut. The second derivative of this function is 
the differential column length distribution.

• FPAPC can directly return the Fourier transform of the peak for 
this type of analysis.  This was used in the certification of SRM 
1979, an SRM with microstructure-broadened peaks. 

• see https://www-s.nist.gov/srmors/view_detail.cfm?srm=1979
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Figure 14: DBD-IBM-powder-20161230-084548 defocus (mm): 0.00 tilt (deg) 0.0025, total intensity=1.72×
106

a-distance-error 0 beam-hor 0.01 beam-vert 4×10−5

detector-angle 28.4 emax 8.08 emin 8
figure-radius-multiplier 1 hits 1.6×106 ibm-offset 0.0025
in-soller-full-angle-deg 2 intensity 1.72×106 intensity err 6.67×103

lattice-radius-multiplier 1 lazyfile Si-111.laz min-log-weight 1×1020

out-soller-full-angle-deg 3 sample-angle 14.2 slit-1-hor 0.01
slit-1-vert 0.004 slit-2-hor 0.02 slit-2-vert 0.0002
slit-3-hor 0.02 slit-3-vert 0.001 tails-integral 0
tails-width 0.002 take-off 6 use-flat-source 0
use-si-crystal 1

14

Comparison to Monte Carlo
! The gold standard for working out the behavior of a complex optical system 

is Monte Carlo ray tracing"

! Can be ‘exact’ with limits of underlying di#raction theory"

! Packages such as McXTrace allow one to set up fully detailed models, with 
all slits, collimators, optics, etc."

! here: simulation of DBD and IBM, as a function of focus error of IBM"

! will use to test validity limits of FPA
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Some FPAPC details
• FPAPC class represent a single peak with all instrument and 

material parameters
• FPAPC caches convolves that are unchanged, to allow efficient 

use with minimal recompilation in fitting or optimization 
procedures

• an add-on class makes a list-like object of peak classes which 
can be evaluated in parallel on multiprocessing architectures to 
improve speed

• FPAPC is extensible; it automatically looks for specially named 
functions to find new convolves which have been added via 
mixing classes

• FPAPC includes doxygen comments to allow generation of a 
user manual



equation of sample passing through origin at angle !

x1 ! "t Cos#$%, t Sin#$%&

!t Cos"#$, t Sin"#$%

equation of beam at angle " from centerline, starting at [-R, 0]

r1 ! "s Cos#'% ( R, s Sin#'%&

!&R ' s Cos"($, s Sin"($%

point where beam strikes sample

p1 ! x1 ). Solve#x1 * r1, "t&, "s&%+1,

!&))R Cos"#$ Sin"($* + )Cos"#$ Sin"($ & Cos"($ Sin"#$**, &))R Sin"($ Sin"#$* + )Cos"#$ Sin"($ & Cos"($ Sin"#$**%

outgoing ray starting from p1 at angle 2#+" where  2# is 2 $B 

r2 ! p1 - s "Cos#2 . - '%, Sin#2 . - '%&

!s Cos"( ' 2 ,$ & )R Cos"#$ Sin"($* + )Cos"#$ Sin"($ & Cos"($ Sin"#$*, s Sin"( ' 2 ,$ & )R Sin"($ Sin"#$* + )Cos"#$ Sin"($ & Cos"($ Sin"#$*%

detector plane is line through R {Cos[$ 2], Sin%$2]}, perpendicular so that

detline ! t "(Sin#/2%, Cos#/2%& - R "Cos#/2%, Sin#/2%&

!R Cos"-2$ & t Sin"-2$, t Cos"-2$ ' R Sin"-2$%

these lines intersect and the parameter t is the position on the detector face

dethit ! t ). Solve#r2 * detline, "t&, "s&%+1,

&))&Sin"( ' 2 ,$ )&R Cos"-2$ & )R Cos"#$ Sin"($* + )Cos"#$ Sin"($ & Cos"($ Sin"#$** '
Cos"( ' 2 ,$ )&R Sin"-2$ & )R Sin"($ Sin"#$* + )Cos"#$ Sin"($ & Cos"($ Sin"#$*** + )&Cos"-2$ Cos"( ' 2 ,$ & Sin"-2$ Sin"( ' 2 ,$**



hitoffset is the distance from the center of the detector at which the ray strikes, and & is the offset from the actual double diffraction angle and the detector position

hitoffset ! Simplify#TrigExpand#dethit ). /2 0 2 . - 1%%

&
1
2
R Csc"( & #$ Sec"( & .$ )Cos"2 ( & . & #$ & Cos". & #$ & 2 Sin"($ Sin"( ' 2 , & #$*

expand hit offset in ", &

ser ! Series#hitoffset, "', 0, 2&, "1, 0, 2&%

/&R . ' O".$30 ' )R & R Csc"#$ Sin"2 , & #$* ' R &
1
2
R Csc"#$ Sin"2 , & #$ .2 ' O".$3 ( '

)&R Cos"2 , & #$ Csc"#$ & R Cot"#$ Csc"#$ Sin"2 , & #$* ' )&R ' R Csc"#$ Sin"2 , & #$* . '

&
1
2
R Cos"2 , & #$ Csc"#$ &

1
2
R Cot"#$ Csc"#$ Sin"2 , & #$ .2 ' O".$3 (2 ' O"($3

the R& term is what the PSD software corrects for by sliding the spectrum, so the second term is the aberration.  Expressed as an angle by dividing by R

Collect#Normal#Simplify#ser ) R - 1%%, '%

(2 /&.2 Cos",$ Csc"#$2 Sin",$ & Csc"#$2 Sin"2 ,$ ' 2 . Cos",$ Csc"#$ Sin", & #$0 '

( &2 Cos",$ Csc"#$ Sin", & #$ ' .2 1 &
1
2
Csc"#$ Sin"2 , & #$

The ", &0 term is the classical defocusing if # is close to !, i.e. -2  " Sin[# - !]/Tan[#]

The "2, &0 term is the classical 'flat specimen( correection, since Csc"#$2 Sin"2 ,$ reduces to 1 + Tan",$ if # 1 ,

The (2, .2 term, if , 1 #, is ( .2 2 2 and, essentially, . 1 , & # so the aberration is ( /&2 . + Tan",$ ' .2 2 20

Note that for a detector which is 0.03 radians wide )7 mm at 217 mm*, the 2 . term hugely dominates the .2 term

2     psd_geometry.nb


