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What is the problem?

* SRM 660b peak shapes. 660b is /\ /\ j\ A ]\
LaBs, intrinsic peaks are extremely B R Frr Ty
sharp due to large, unstrained /\/\ AAA
CryStaIIiteS- These are for the NIST 53.5 54.0 63.0 635 670 67.5 715 72.0 75.5 76.0
DBD with an IBM. They are not j\ j\ A A & A
sharp, and their shape shifts with j\ A A
angle. 1035J\1\040 1A0:]\1Tj0 MA/N\T ‘116.0 11‘65 ‘1‘20151112110
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 SRM 1979 ‘15 nm’ peak shapes. 150" T ress
Peaks are very broadened by = ool
microstructure. Aberrations, as E
determined from, for example, SRM  ° so}-
660x, must be accounted for to get i ]
microstructure. These are measured R A
on the NIST DBD with an IBM. 40 Ooerdegee %
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Why compute shapes?

e Analysis of powder diffraction patterns is carried out for
numerous reasons:

e determination of lattice parameters
e determination of crystal structure
e determination of mixed material composition

e All of these are are most accurately done with either Rietveld or

Pawley fitting of a complete pattern, which reduces the number
of free parameters and can be robust against noise

e Such fits require accurate peak models. Ad hoc parameterized
models are commonly used, and work pretty well for structure

and composition. They do not work too well for lattice
measurement.
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The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and
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Sample code available at: http://dx.doi.org/10.6028/jres.120.014.c
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What creates observed line shape?

e |n a simple theory, a line profile is . .
a convolution of effects from
various uncorrelated sources.

Geometric Emission Specimen Observed X-ray
Profile Spectrum Broadening Function Diffraction Line Profile
— N
v from JRNIST, C, C & C

Inctriiment Prafile

e WARNING: only true if sources do
not have correlated contributions.
This is not strictly true, and full
Monte Carlo ray tracing is useful
to compare to convolution GeMonochomator
assumption. N

{4 s Slit

from JRNIST, C, C & C, fig. 3
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The convolution theorem

e ‘smearing’ of two functions

together is convolution F® gl t)
* for discretely sampled F D) (w)
functions of length n
computation time is n?
F(f@gl®)) (w)

* this is expensive for large
values

e Fourier convolutionsneed F(f®g®h...)
time n log(n): much faster

* Beware periodicity!
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or, in short,

= F(f)yx F(g)xF(h)...
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Fourier transform properties

Translation / time shifting

https://en.wikipedia.org/wiki/Fourier_transform

For any real number X, if h(x) = f(x — x0), then A(&) = & 2¥%0s (&),
Modulation / frequency shifting
For any real number & if A(x) = ¢ 2™%<0 £(x), then A(&) = f(& — &)).
Time scaling
For a non-zero real number &, if #(x) = f(ax), then
- 1 .,/¢
h()=—Ff—).
©-=i (%)
The case @ = —1 leads to the time-reversal property, which states: if /(x) = f(—x), then /(&) = f(—&).
Conjugation
If A(x) = f(x), then
h(€) = £ (=)
In particular, if f is real, then one has the reality condition
F(=9=171(9),
that is, f is a Hermitian function. And if f’is purely imaginary, then
F (=8 =-71(9).
Integration

Substituting & = 0 in the definition, we obtain

fo = s

That is, the evaluation of the Fourier transform at the origin (¢ = 0) equals the integral of fover all its domain.
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Discrete Fourier Transforms

e Have a space of n bins separated by Ax. Will transform into
discrete w bins

w bin width, Aw, is 21t/ (n Ax).
® Wmin IS -(n/2 '1) A(.l),

* Wmax IS (n/2) Aw

DFT/FFT of a real function (intensity!) is entirely specified by the
+w part, since -w is just complex conjugate.

* some real-function DFT/FFT packages put wmax in imaginary part
of zero-frequency bin, and return »n/2 imaginary numbers.
Others (numpy, scipy, e.qg.) return n/2 + 1 bins, with Wmax in
highest bin, where it naturally makes sense. This is very
convenient.
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Features of Fourier Space

o Efficient convolutions, as seen in previous slide

Many of the broadenings we will look at have exact Fourier

representations, so A f(x)) is generated directly, not by
transforming f(x).

* Not (easily) true of axial divergence...

* The frequency scale of these transforms (Aw/cos0) (with w in
inverse radians) actually has units of physically interpretable
length! This will provide direct information about crystallite
microstructure (see Bertaut, Acta Cryst A, 1950, (3) 14)

* The same length scale information also can be used to directly
understand the limits of the resolution of an instrument.
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Periodic Boundary Conditions

e Fourier convolutions assume
periodic functions

* If the tails are fall rapidly to zero, 00
no problem.

— corrected |3
— — uncorrected |

—
o
T

* Numerous components have
Lorentzian tails, which fall very
slowly.

amplitude
T Ilﬁk

* Weird wrapping at tails, which is
bad for peak computation

0.1

Il I Il Il Il I Il Il Il I Il Il I Il Il Il Il Il Il
19.8 20 20.2 79.8 80 80.2

e Can be removed in real space if 20 (degree)
tails are Lorentzian. rom JANIST. FPAPG
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What is the FPA?

e Inthe FPA, the goal is to compute the line shape from first
principles as a convolution of contributions from known
sources.

e need to know detailed instrument geometry
e need to know detailed source X-ray spectrum

e may have some well-known data on sample (density,
composition)

e Remaining properties of line shape are probably interesting
e corrected line position, to get lattice parameters
e corrected line shape, to get microstructure
e corrected line intensity, to get composition
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Why isn’t it trivial to calculate?

e need to get convolutions in way that preserves moments at very
high accuracy (much less than the sampling interval)

e have Lorentzian tails, which converge very slowly and violate the
requirement in the central limit theorem of finite second
moments

have 1//x divergences

e have some components that need to be integrated in real space
before converting to Fourier space
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types of components of FPA

e Lorentzian broadening from intrinsic x-ray emission line shape,
and from Lorentzian shape from size distribution and ad hoc
Lorentzian microstrain

e Gaussian from ad hoc Gaussian size tails, from fitted estimates
of spectrum as Gaussian, and ad hoc Gaussian microstrain

e 1/sqgrt(x) mostly from Debye cone, and from flat specimen
e rectangular, from slits

e other, messier bits from, e.g. sum of erf in Fourier space from
log-normal particle size distributions
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Fully Modeled Instruments

20

X-ray Detector

“

Receiving Slit

'/— X-ray Line Source

Equatorial Divergence Slit

e Divergent Beam Bragg-Brentano
with point detector (typically
scintillator with slit)

Goniometer Rotation Axes

— Powder Sample
|

0 N ¥

20 Position Sensitive
X-ray Detector

<

Soller Slits

/— X-ray Line Source

Equatorial Divergence Slit

e Divergent Beam Bragg-Brentano
with linear Position Sensitive
Detector (PSD)

— Powder Sample

0 N ¥ JRNIST, VolH
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Well Modeled Instruments

/ Goniometer Radius

Focal Line
Of Optic : Divergence Slit

|

| X &y

| X directions for
“ alignment of

anti-scatter
X-ray Line 4

hkl Planes, radius 2R slit; see text JRNIST, VolH
Source ’

* Divergent Beam Bragg-Brentano with Johansson optic and either
point detector or PSD
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Not-quite Modeled Instruments

€&——— X-ray beam

Vatshiniten T PN
Optics Hutch
— o
'
vert. focus X2 Si111) - coflimating [
mirror mono tank / mirro x,
i ':‘ = "

Sagittally bent Si(111) crystal
- horizontal focusing: ~ 50 mm 2> 1 mm

e Typical Synchrotron powder diffraction beamline
http://11bm.xray.aps.anl.gov/documents/11BM_12SlideOverviewPresentation.pdf
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Axial Divergence

e Refers to beam angles
perpendicular to the diffraction
plane.

e Primary contribution to FPA,
and trickiest to compute.

Especially important due to
asymmetry.

e Result of overlap of curved
Debye cone and linear slits

e arc length (intensity) in slit is:

V2rp [vr = Vil

geometry reminder:
axial is out of plane

Slit scanned across peak

increasing 6s

piece of Debye cone,
ro=R tan 65

2rp |sin™ (/2 ) —sint (/L s
D 27D 270 y’ measured from apex

small angle approx, usually good
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Axial Divergence — 2

e Blue curve: ’s’ from previous slide
Red curve Cyan curve

e Green curve: differential intensity,
goes to infinity at edge of Debye /\

cone. Numerically very bad 1/sqgrt(x)

10 |

* Red curve: integrated intensity for — arclength
detector with finite slit stepping sl — tiny slit
across Debye cone. Numerically — real slit
fine, if careful about partial bins. > 6 — shited |

D
C

e Cyan curve: steps not perfectly *qé 4 _
aligned to coincide with edge of
Debye cone (real case...) 2l .
* this binning handled very carefully in 0 | | | |

FPAPC ‘axial_helper()’ function. 0.0 0.2 0.4 0.6 0.8 1.0

y/TD
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Axial Divergence — 3

e Finite source width in axial

direction, finite width of sample, and
finite receiver slits result in Debye m
cone being cut off in many ways.

e Table below shows complexity of

condition 1 and condition 2
L rple— | & | & | & | & |
L>Zf -7y zf <%andz; >-%
| 1 | & | & | & | & |
(z5 > %andzy < %) or (z5 > -%andz; < %)
| 2 & & & & |
any other range of Z, /
| 3 & & & & |
L <Zf -2y zZy >%andzy <-4
| ! & &g & & |
(zg >%and - <zy <B)or (-5 <zf <Landzy < -%)
| 2 & & & & |
any other range of Z,
| 3 L & g & |
Table 1: Selection of computation boundaries and 3 ranges JRNIST, FPAPC
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Axial Divergence — Soller slits

e Soller slit on detector trivially
multiplies intensity from Debye cone
by triangular transmission function.
Reduces peak asymmetry (at cost of
intensity).

Soller slit on source is more complex,
changes distribution of off-axis
angles. Out-of-plane angle of beam
from source is 3 in papers. Must
integrate over correlated
transmission of slit pair explicitly. This

is the ‘I3’ function of Cheary & Coelho angle—>

Soller slit transmission
Note that curvature (from 2 slides

ago) depends on y/tan Bg. This
vanishes at 90°. No axial broadening
in mid-angle region.



Soller slit illustration

e Soller slits at 2.5 degrees. Note
low-angle peaks, especially,
remain fairly sharp.

e Soller slits at 10 degrees (i.e.
wide open). The axial divergence
function is extremely visible on
the low-angle peaks.

Marcus H. Mendenhall, NIST, IUCr 2017 Crystallographic Computing School

j\ 300 AA305 37]\‘ 375 430 A‘ 485 j\490
535 /\5 630j\‘ 63.5 ]\ 680 j\720 755]\ 76.0
795/\800 835 /\840 875 ]ESO 95]\ 96.0 99‘5/\ 1000
1035]\1‘040 1075/\1080 1117{20 117\1:65 1205 1210
1300 130.5 135,56 136.0 1415 1420 148.5 149.0
J Aj\ j\\ L j\‘ I
30. 5 37 0 37.5 43 O 48.5 49.0
j\ ‘j\ ‘ //\4 | J\L [
535 . 635 A 680 720 755 76.0
/J\ ]\ J\ 1 JA P
79 5 80. O 83 5 84. O 87 5 88 O 95.5 96 O 99.5 100.0
Aj\ j\ J\ J\ I l/\ [
1035 1040 1075 1080 1115 112.0 1160 1165 1205 1210
/\ A /\ /\ JRNIST, FPAPC
1300 130.5 1355 1360 1415 1420 1485 1490
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Axial Divergence — moments

k

Yy = Yo+ ﬁ

* Precise peak position [™ 2 y(z) da

determination, for lattice (x) = j%l () da

measurement, requires conserving wo ¥

the first moment (centroid) of 4k (azi’/ - xf;/ 2) + 3o (x% — :cg)

aberrations to sub-bin accuracy (z) = s 1/

12k (xl — g ) + 690 (ml — xo)

* The general form of the axial computed

divergence correction is at the top. shape

The exact first moment is obtained
by the usual weighted integral.

* Need to use this in degenerate bins filled to
cases in which the axial correction preserve moment
is less than 2 bins wide, to balance l

two bins to keep this correct.
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* The X-ray source energy or
wavelength spectrum can be
decomposed often into Voigt
functions (Lorentzian-Gaussian

. +o0 _t2/2 o2

convolutions). Via,orx) = / (xe_t)2+a2 o
* The Fourier transform of these is -

analytic.

02w2
FV(a,0;2 —x0)] = exp [— —a|w| — iw:z:()]

e A sum of these transforms, 2

weighted by the line intensities, is

the convolver for the spectrum.
* Note: if a monochromator is in 2,2

fw =Y Tl oy ] — i
use, there is no nice, exact w) = 2 ap €XP 5 oy |w| — iwx,

expression. Typically approximate
as a sum of Gaussians.
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Flat specimen and linear PSD

e in Mathematica notebook

e These two aberrations are best written down from a single set of
ray traces, since they depend on reflecting off of a flat sample

e equations then get integrated over sample surface and detector
face

e the integral over a rectangular sample surface yields the classical
flat-specimen correction that has the same 1/sqrt(x) character
as the axial divergence. ltis handled in the FPAPC code by the
same axial_helper function.

 The integral over an LPSD face yields a new aberration, which is
described in FPAPC.
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Understanding the IPF

e The Instrument Profile Function
computed from the FPA can
provide guidance about sources of

uncertainty.
magnitude of the Fourier transform of FPA

 Information about true peak shape Pprofiles computed for different instruments
requires, in one way or another, r
deconvolution of the IPF, which is
division.

o
o
T T T

o
o))
T

e |n Fourier space, it is particularly
easy to understand the impact. If
the relative IPF is « 1, information

is highly attenuated, and sensitive

I i 0 | 50 | 100 | 150 | 200 250 3_00
to noise and instrumental effects. Fourier length scale / nm

relative transform magnitude

length scale is A w / cosB,

* This sets the limits on crystallite , ,
w in radians™

size determination
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Sample Transparency

e |n Bragg-Brentano, with a weakly
absorbing sample, the ‘surface’ is
actually a region of exponential
attenuation of the beam. This
broadens and shifts peaks.

e Side note: g(0) !=1, not area
conserving if T < o . X-rays lost out
the back.

intensity

o0—0—-oO0 O0—°O

-6 -4 -2 0 2

angle offset (au)
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W

exp <
Ju(e) = 5 (1 — exgemﬁ) where e, <€ <0
—2T cos b
€min —
R
5 sin 26
2uR
(@) = 11— exp (€min (16 + (1/9)))
I =5 i@+ (1/6)

3=
o
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Sample microstructure

e Defects in samples broaden peaks, with varying dependence on
diffraction angle. Crystallite (domain) boundaries also broaden
peaks. Beware of possible huge difference in physical particle
size and crystallite size as seen by diffraction. See Bertaut,
Acta Cryst A, 1950, (3) 14 (in French)

Simplest models contribute Lorentzian and Gaussian convolvers
to the observed peak shape.

Scardi & Leoni (Acta Cryst. (2001). A57, 604—613 ) worked out
fairly detailed extension of Krill & Birringer (Phil Mag. A (1998).
v77 no. 3, 621—640) log-normal crystallite size distribution
peak shape for some crystallite shapes. Result is sum of error
functions in Fourier space.

Code for this is available as a plugin to FPAPC on request. It
includes hexagonal prisms, not part of S&L. Hex also available
as a Topas 4 or 5 include file.
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Comments on use of the FPA

e |f we have correctly computed the intrinsic peak shape, we can
synthesize peaks in 20 or Fourier space

e This only works if we have a really accurate FPA IPF. It should
be based on as many directly (or, at least, independently of the
current experiment) measured parameters of the diffractometer
as possible.

e Use of a sample with very sharp peaks, such as SRM 660c (very
high attenuation, ideal), or SRM 640d (lower attenuation, still
sharp peaks) allows one to verify the FPA results without the
real peak width being tangled up in the IPF.

National Institute of
Marcus H. Mendenhall, NIST, IUCr 2017 Crystallographic Computing School NISI- e e e



Using the FPA in 20 space

e The FPA can be used to synthesize peak shapes, including the
IPF and sample characteristics. These can be fed into a least-
squares fitter either for

e Pawley fits (position fixed by symmetry group & lattice,
intensity is free parameter), or,

e Rietveld fits (intensities computed from structure)

e FPAPC has a simple interface for peak synthesis. It does not
incorporate the least-squares fitting or structure models.

e Fitting is what packages like TOPAS* do. Work is underway for

this in GSAS-II. Also, xrayutilities (a pure-python package) has
incorporated the NIST FPAPC.

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the U.S. government, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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Peak position accuracy in FPA

e Use of a full FPA-based Pawley fit
can result in very high accuracy
peak positions

e Data at right from open-beam (no
IBM) scans of SRM 660c (LaBe)
and SRM 640e (Si)

e These positions do not depend on
interpolating peaks from a known
standard material and using a
parameterized asymmetry model.
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Using the FPA in Fourier space

e In Fourier space, by dividing out the transform of the IPF from the
observed transform, what is left is exactly the function
described in Bertaut. The second derivative of this function is
the differential column length distribution.

e FPAPC can directly return the Fourier transform of the peak for
this type of analysis. This was used in the certification of SRM
1979, an SRM with microstructure-broadened peaks.

e see https://www-s.nist.gov/srmors/view_detail.cfm?srm=1979
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Comparison to Monte Carlo

* The gold standard for working out the behavior of a complex optical system
is Monte Carlo ray tracing

e Can be ‘exact’ with limits of underlying diffraction theory

* Packages such as McXTrace allow one to set up fully detailed models, with
all slits, collimators, optics, etc.

e here: simulation of DBD and IBM, as a function of focus error of IBM

* will use to test validity limits of FPA

[LOG] final _monitor [final monitor.dat] [LOG] lynxeye [lynxeye.dat]
X0=9.46112e—06; dX=0.00457879; YO=—3.30616e—05; dY=6.71572e—05; PSD_monitor
1=2,47235e+406, Err=7716.06 N=2.61246e+06 1=1.71834e+06 Err=6674.54 N=1.59612e+06 ; X0=-3.8918B8e—05; dX=7.47182¢-05;
T T T T T T
e} ]
o
2
X
n
] s ©
g i
go g
8 E
g g
> 0
0 i
o
=
X
n
|
L L L L L L L L L L L L L
_0.02 001 0 0.01 0.02 —6x107%  —4x107®  —2x107® 0 2x1072 4x107° 6x1073
X position [m] Position[m]
mhm 30-Dee-2018 0317
N g National Institute of
A A Si lards and Tech gy
Marcus H. Mendenhall, NIST, IUCr 2017 Crystallographic Computing School U'S. Department of Commeres



Some FPAPC details

FPAPC class represent a single peak with all instrument and
material parameters

FPAPC caches convolves that are unchanged, to allow efficient
use with minimal recompilation in fitting or optimization
procedures

e an add-on class makes a list-like object of peak classes which
can be evaluated in parallel on multiprocessing architectures to
improve speed

FPAPC is extensible; it automatically looks for specially named
functions to find new convolves which have been added via
mixing classes

FPAPC includes doxygen comments to allow generation of a
user manual
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equation of sample passing through origin at angle w

x1 = {tCos[w], tSin[w]}
{tCos[w], tSin[w]}

cquation of beam at angle @ from centerline, starting at [-R, 0]

rl= {sCos[a] -R, sSin[a]}
{-R+sCos[a], sSin[a]}

point where beam strikes sample

pl=x1/. Solve[xl=rl1, {t}, {s}]I1]
{- ((RCos[w] Sin[a]) / (Cos[w] Sin[a] - Cos[a] Sinfw])), - ((RSin[a] Sin[w]) / (Cos[w] Sin[a] - Cos[a] Sinfw]))}

outgoing ray starting from p; at angle 2¢+a where 2¢ is 2 g

r2=pl+s {Cos[2¢+a], Sin[2¢ + a]}
{sCos[a+2¢] - (RCos[w] Sin[a]) / (Cos[w] Sin[a] - Cos[a] Sin[w]), sSin[a+ 2 ¢] - (RSin[a] Sin[w]) / (Cos[w] Sin[a] - Cos[a] Sin[w]) }

detector plane is line through R {Cos[6 9], Sin[6s]}, perpendicular so that

detline =t {-Sin[62], Cos[62]} + R {Cos[62], Sin[62]}
{RCos[62] -t Sin[62], tCos[62] +RSin[62]}

these lines intersect and the parameter t is the position on the detector face

dethit =t /. Solve[r2 == detline, {t}, {s}][1]
-((-Sin[a+ 2 ¢] (-RCos[62] - (RCos[w] Sin[a]) / (Cos[w] Sin[a] - Cos[a] Sin[w])) +
Cos[a+2¢] (-RSin[62] - (RSin[a] Sin[w]) / (Cos[w] Sin[a] - Cos[a] Sin[w]))) / (-Cos[62] Cos[a + 2 ¢] - Sin[O2] Sin[a+2 ¢]))



2 | psd_geometry.nb

hitoffset is the distance from the center of the detector at which the ray strikes, and € is the offset from the actual double diffraction angle and the detector position

hitoffset = Simplify[TrigExpand[dethit /. 62 » 2¢ + €]]

1
—Z—RCsc[a—wJ Sec[a-€] (Cos[2a-€ -w] -Cos[e -w] -28in[a] Sin[a+2 ¢ - w])

expand hit offset in @, €

ser = Series[hitoffset, {a, 0, 2}, {e, 0, 2}]

<—R€+O[6]3>+((R—RCsc[w] Sinf[2 ¢ - w]) + R—;—RCsc[(u] Sin[2¢-w]|e2+0[e]3|a~+

((—RCos[Zcb—w] Csc[w] -RCot[w] Csc[w] Sin[2¢ -w]) + (-R+RCscw] Sin[2¢ -w]) € +

1 1
(—Z—RCos[2¢>—w] Csclw] - 2—RCot[w] Csc[w] Sin[2¢ -w] | €2 +0[e]3| a? +0[a]?3

the Re term is what the PSD software corrects for by sliding the spectrum, so the second term is the aberration. Expressed as an angle by dividing by R
Collect[Normal [Simplify[ser /R + €]], a]
a? (—ez Cos[¢] Csclw]?8in[¢] - Csclw]?8in[2¢] + 2 € Cos[¢] Csclw] Sin[¢ - w] ) +

a (—2 Cos[¢] Csclw] Sin[¢ - w] +€? |1 - %Csc[w] Sin[2¢)—w])

The a, € term is the classical defocusing if ¢ is close to w, i.e. -2 @ Sin[¢ - w]/Tan[¢]
The a?, € term is the classical ‘flat specimen’ correection, since Csc[w]? Sin[2 ¢] reduces to 1/ Tan[¢] if w = ¢
The o?, €?term, if¢p=w, is a 62/2 and, essentially, € =¢ - wso the aberration is o (—2 e/ Tan[¢] + 62/2)

Note that for a detector which is 0.03 radians wide (7mmat 217 mm), the 2 € termhugely dominates the €? term



