
Table of Contents 
(This issue’s editors: Simon Parsons and Lachlan Cranswick) 

(Warning – unless you want to kill 166 pages worth of forest – DO NOT press the “print” button.  For hardcopies – you may 
like to only print out the articles of personal interest.) 

  
IUCr Commission on Crystallographic Computing 2 
 
Advert for the Seventh Canadian Powder Diffraction 
Workshop 3 
 
Understanding Crystal Structures : 
 

Multipurpose crystallochemical analysis with the 
program package TOPOS 4 
Vladislav A. Blatov 

 
The XPac Program for Comparing Molecular 
Packing 39 
Thomas Gelbrich 

 
The Pixel module of the OPiX computer program 
package: affordable calculation of intermolecular 
interaction energies for large organic molecules 
and crystals 45 
Angelo Gavezzotti  (updated 3rd March 2007) 

 
Quantifying the Similarity of Crystal Structures 59 
René de Gelder 

 
Topological analysis of crystal structures 70 
Oleg V. Dolomanov 

 
On the Detection of Solvent Accessible Voids in 
Crystal Structures with PLATON/SOLV 79 
Anthony (Ton) L. Spek 

 
Other Articles : 
 

The charge flipping algorithm: a powerful and 
universal tool for the a priori solution of crystal 
structures in any dimension 85 
Gervais Chapuis and Lukas Palatinus 

 
cctbx news 92 
Ralf W. Grosse-Kunstleve, Peter H. Zwart, Pavel V. 
Afonine, Thomas R. Ioerger and Paul D. Adams 

 
An integrated three-dimensional visualization 
system VESTA using wxWidgets 106 
Koichi Momma and Fujio Izumi 

 

 
Visual Graphic Library VGLIB5 for 
Crystallographic Programs on Windows PCs 120 
Kenji Okada, Ploenpit Boochatum, Keiichi Noguchi 
and Kenji Okuyama 

 
Notes on the calculation of the derivatives for 
least-squares crystal structure refinement 129 
Riccardo Spagna (updated 6th June 2008) 

 
Call for Contributions to the Next CompComm 
Newsletter 166 
 
 

Commission on Crystallographic Computing 
International Union of Crystallography 

http://www.iucr.org/iucr-top/comm/ccom/ 
Newsletter No. 7, November 2006 

(6th June 2008: updated least-squares article) 

This issue: 
"Understanding Crystal Structures" 

http://www.iucr.org/iucr-top/comm/ccom/newsletters/ 



THE IUCR COMMISSION ON CRYSTALLOGRAPHIC COMPUTING   - TRIENNIUM 2005-2008 
 

Chairman: Professor Dr. Anthony L. Spek 
Director of National Single Crystal Service Facility, 
Utrecht University, 
H.R. Kruytgebouw, N-801, 
Padualaan 8, 3584 CH Utrecht, 
the Netherlands. 
Tel: +31-30-2532538 
Fax: +31-30-2533940 
E-mail: a.l.spek@chem.uu.nl  
WWW: http://www.cryst.chem.uu.nl/spea.html 
WWW: http://www.cryst.chem.uu.nl/platon/ 
 
Lachlan M. D. Cranswick 
Canadian Neutron Beam Centre (CNBC), 
National Research Council of Canada (NRC), 
Building 459, Station 18, Chalk River Laboratories, 
Chalk River, Ontario, Canada, K0J 1J0 
Tel: (613) 584-8811 ext: 3719 
Fax: (613) 584-4040 
E-mail: lachlan.cranswick@nrc.gc.ca  
WWW: http://neutron.nrc-cnrc.gc.ca/peep_e.html#cranswick  
 
Dr Ralf W. Grosse-Kunstleve 
Lawrence Berkeley National Laboratory 
One Cyclotron Road, BLDG 64R0121, 
Berkeley, California, 94720-8118, USA. 
Tel: (510) 486-5929 
Fax: (510) 486-5909 
E-mail: RWGrosse-Kunstleve@lbl.gov  
WWW: http://cctbx.sourceforge.net/ 
WWW: http://www.phenix-online.org/ 
WWW: http://cci.lbl.gov/~rwgk/ 
 
Professor Alessandro Gualtieri 
Università di Modena e Reggio Emilia, 
Dipartimento di Scienze della Terra, 
Via S.Eufemia, 19, 
41100 Modena, Italy 
Tel: +39-059-2055810 
Fax: +39-059-2055887 
E-mail: alex@unimore.it  
WWW: http://www.terra.unimo.it/en/personaledettaglio.php?user=alex  
 
Professor Luhua Lai 
Institute of Physical Chemistry, 
Peking University,  
Beijing 100871, China.  
Fax: +86-10-62751725. 
E-mail: lhlai@pku.edu.cn 
WWW: http://mdl.ipc.pku.edu.cn/ 
 
Dr Airlie McCoy 
Structural Medicine, 
Cambridge Institute for Medical Research (CIMR) 
Wellcome Trust/MRC Building,  
Addenbrooke's Hospital,  
Hills Road, Cambridge CB2 2XY, UK 
Tel: +44 (0) 1223 217124 
Fax: +44 (0) 1223 217017 
E-mail: ajm201@cam.ac.uk  
WWW: http://www.haem.cam.ac.uk/ 
WWW: http://www-structmed.cimr.cam.ac.uk/ 
 

 

Professor Atsushi Nakagawa 
Research Center for Structural and Functional Proteomics, 
Institute for Protein Research, Osaka University,  
3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan 
Tel: +81-(0)6-6879-4313 
Fax: +81-(0)6-6879-4313 
E-mail: atsushi@protein.osaka-u.ac.jp 
WWW: http://www.protein.osaka-u.ac.jp/rcsfp/supracryst/ 
 
Dr. Simon Parsons 
School of Chemistry 
Joseph Black Building, 
West Mains Road, 
Edinburgh, Scotland, EH9 3JJ, UK 
Tel: +44 131 650 5804 
Fax: +44 131 650 4743 
E-mail: s.parsons@ed.ac.uk  
WWW: http://www.crystal.chem.ed.ac.uk/  
 
Dr Harry Powell 
MRC Laboratory of Molecular Biology, 
Hills Road, Cambridge, CB2 2QH, UK. 
Tel: +44 (0) 1223 248011 
Fax: +44 (0) 1223 213556 
E-mail: harry@mrc-lmb.cam.ac.uk 
WWW: http://www.mrc-lmb.cam.ac.uk/harry/ 
 
 
Consultants 
 
Professor I. David Brown 
Brockhouse Institute for Materials Research, 
McMaster University, 
Hamilton, Ontario, Canada 
Tel: 1-(905)-525-9140 ext 24710 
Fax: 1-(905)-521-2773 
E-mail: idbrown@mcmaster.ca 
WWW: 
http://www.physics.mcmaster.ca/display.php4?page=sw://lists/Minibio_2004.
php4?ID=4  
 
Professor Eleanor Dodson 
York Structural Biology Laboratory, 
Department Of Chemistry, 
University of York, Heslington, York, UK, YO10 5YW 
Tel: +44 (1904) 328253 
Fax: +44 1904 328266 
E-mail: e.dodson@ysbl.york.ac.uk 
WWW: http://www.ysbl.york.ac.uk/people/6.htm 
 
Dr David Watkin 
Chemical Crystallography, 
Oxford University, 
9 Parks Road, 
Oxford, OX1 3PD, UK. 
Tel: +44 (0) 1865 272600 
Fax: +44 (0) 1865 272699 
E-mail: david.watkin@chemistry.oxford.ac.uk  
WWW: http://www.chem.ox.ac.uk/researchguide/djwatkin.html  
 
 
 

Page 1

mailto:a.l.spek@chem.uu.nl�
http://www.cryst.chem.uu.nl/spea.html�
http://www.cryst.chem.uu.nl/platon/�
mailto:lachlan.cranswick@nrc.gc.ca�
http://neutron.nrc-cnrc.gc.ca/peep_e.html#cranswick�
mailto:RWGrosse-Kunstleve@lbl.gov�
http://cctbx.sourceforge.net/�
http://www.phenix-online.org/�
http://cci.lbl.gov/~rwgk/�
mailto:alex@unimore.it�
http://www.terra.unimo.it/en/personaledettaglio.php?user=alex�
mailto:lhlai@pku.edu.cn�
http://mdl.ipc.pku.edu.cn/�
mailto:ajm201@cam.ac.uk�
http://www.haem.cam.ac.uk/�
http://www-structmed.cimr.cam.ac.uk/�
mailto:atsushi@protein.osaka-u.ac.jp�
http://www.protein.osaka-u.ac.jp/rcsfp/supracryst/�
mailto:s.parsons@ed.ac.uk�
http://www.crystal.chem.ed.ac.uk/�
mailto:harry@mrc-lmb.cam.ac.uk�
http://www.mrc-lmb.cam.ac.uk/harry/�
mailto:idbrown@mcmaster.ca�
http://www.physics.mcmaster.ca/display.php4?page=sw://lists/Minibio_2004.php4?ID=4�
http://www.physics.mcmaster.ca/display.php4?page=sw://lists/Minibio_2004.php4?ID=4�
mailto:e.dodson@ysbl.york.ac.uk�
http://www.ysbl.york.ac.uk/people/6.htm�
mailto:david.watkin@chemistry.oxford.ac.uk�
http://www.chem.ox.ac.uk/researchguide/djwatkin.html�


 3

Du mercredi 16 au vendredi 18 mai 2007  - Wednesday 16th to Friday 18th of May 2007

Université du Québec à Trois-Rivières, Trois-Rivières, Québec

http://www.cins.ca/cpdw/

Lecture Titles Include:
• Introduction to Powder Diffraction and 

Powder Diffraction Hardware
• Introduction to the basics of 

crystallography
• Sample preparation, data collection 

and phase identification using 
powder X-ray diffraction

• Introduction to Powder Profile 
Refinement

• Synchrotron and Neutron Experiments
• Freely available powder diffraction 

software 
• Profile Refinement with GSAS
• Beyond the Bragg peaks or why do

we care about total scattering?
• What to do with your PDF: Modeling 

of disordered structures

(L’atelier se déroulera en anglais / Workshop will be in english)

À qui s’adresse l’atelier ?
Tous ceux qui s’intéressent ou qui utilisent 
la diffraction X et la diffraction neutronique 
sur poudre. Ouvert aux étudiants gradués, 

techniciens et chercheurs qui utilisent la 
diffraction X sur poudre et qui désirent se 

familiariser avec l’analyse Rietveld.

Who should attend ?
Anyone interested in or currently using 

powder X-ray or neutron diffraction.  Open 
to graduate students, technicians and 

researchers who use X-ray and neutron 
diffraction and who would like to learn 

Rietveld analysis.

Chair :
• Prof. Jacques Huot (UQTR)

Speakers :
• Dr Robert Von Dreele (ANL, USA)
• Dr Angus Wilkinson (Georgia Tech, USA)
• Dr Thomas Proffen (Los Alamos, USA)
• Dr Ian Swainson and Lachlan Cranswick 

(NRC-CNRC, Canada)

Détails / Details
Coûts d’inscription /

Registration costs
Universitaire / University 

based: 200 $ CAN
Régulier / Régular : 450 $ CAN

(Incluant les dîners et les taxes /
Including lunchs and taxes)

Hébergement / Housing
Forfait 2 nuits sur le campus: 90$ CAN
2 nights on campus package: 90$ CAN

Date limite d’inscription /
Registration deadline :

13 avril 2007 / April 13, 2007

Plus d’information sur le site web : 
Check out the following web site :

http://www.cins.ca/cpdw/

SeptiSeptièème me 
atelier deatelier de

diffraction surdiffraction sur
poudre poudre 

Seventh Canadian PowderSeventh Canadian Powder
Diffraction WorkshopDiffraction Workshop

 

Page 2



 4

Multipurpose crystallochemical analysis with the program package 
TOPOS 

 
Vladislav A. Blatov 
Samara State University, Ac.Pavlov Street. 1, Samara 443011, Russia. E-mail: blatov@ssu.samara.ru ; 
WWW: http://www.topos.ssu.samara.ru/blatov.html ; TOPOS website: http://www.topos.ssu.samara.ru/  
 
Abbreviation list 
 
CIF Crystallographic Information File 
CN Coordination number 
CS Coordination sequence 
CSD Cambridge Structural Database 
DBMS Database Management System 
EPINET Euclidean Patterns in Non-Euclidean Tilings 
ES Extended Schläfli symbol for circuits 
ICSD Inorganic Crystal Structure Database 
MCN Molecular coordination number 
MOF Metal-organic framework 
MPT Maximal proper tile 
PDB Protein Databank 
RCSR Reticular Chemistry Structure Resource 
SBU Secondary building unit 
TTD TOPOS Topological Database 
VDP Voronoi-Dirichlet polyhedron 
VS Vertex symbol 
 
1. Introduction 
 
At present, the data for more than 400,000 chemical compounds are collected in world-wide 
crystallographic databases CSD, ICSD, PDB and CrystMet. Processing of such a large amount of 
information is a great challenge for modern crystal chemistry. Traditional visual analysis of crystal 
structures becomes insufficient to reveal the common principles of the spatial organization of three-
dimensional nets and packings in long series of chemical compounds of various composition and 
stoichiometry. Rapidly developing interdisciplinary branches of science, such as crystal engineering and 
supramolecular chemistry, require the development of new computer methods to process and classify the 
crystallographic information, and to search for general crystallochemical regularities. 
 
When developing the program package TOPOS we pursued two main goals: 
• to create a computer system that would enable one to perform comprehensive crystallochemical 

analysis of any crystal structure irrespective of its chemical nature and complexity; 
• to implement new methods for crystallochemical analysis of large amounts of chemical compounds to 

find the regularities in their structure organization in an automated mode. 
 
TOPOS has been developed since 1989 and has several versions being exploited so far. The MS DOS 
versions 3.0, 3.1 and 3.2 were developed until 2003 and now are not supported. The current Windows-
based TOPOS 4.0 Professional started in 2001 and now is the main program product in the TOPOS 
family. Its periodically updated beta-version is available for free at the TOPOS website: 
http://www.topos.ssu.samara.ru/. It is the version that will be considered in detail and below it will be 
called TOPOS for short. 
 

Page 3

mailto:blatov@ssu.samara.ru�
http://www.topos.ssu.samara.ru/blatov.html�
http://www.topos.ssu.samara.ru/�
http://epinet.anu.edu.au/�
http://www.topos.ssu.samara.ru/�


 5

TOPOS is created using Borland Delphi 7.0 environment and works under Windows 
95/98/Me/NT/2000/XP operating systems. Its current size is less than 3 M (without topological databases) 
so it is easily distributed as a self-extracted zipped file. The system requirements are minimal; really 
TOPOS can work on any IBM PC computer under Windows. The main file topos40.exe is an 
integrated interactive multiwindow system (Fig. 1) that is based on DBMS intended to input, edit, search 
and retrieve the crystal structure information stored in TOPOS external databases. TOPOS includes a 
number of applied programs (Table 1), all of which (except StatPack) are integrated into TOPOS system. 
 
Table 1: A brief description of TOPOS applied programs 
 
Program name Destination 
ADS (Auto-
matic Descrip-
tion of Struc-
ture) 

Revealing structural groups, determining their composition, orientation, dimensionality 
and binding in various structure representations 

Calculating topological invariants (coordination sequences, Schläfli and vertex sym-
bols) and performing topological classification 

Constructing molecular VDPs and calculating their geometric characteristics 
Constructing tilings for 3D nets 
Searching for and classifying entanglements of 1D, 2D or 3D extended structures 

AutoCN Identifying and classifying interatomic contacts 
Determining coordination numbers of atoms 
Calculating and storing the adjacency matrix 

DiAn Calculating interatomic distances and bond angles 
Dirichlet Constructing VDPs for atoms and voids 

Calculating geometric characteristics of atom and void domains 
Searching for void positions and channel systems 

HSite Generating positions of hydrogens 
IsoCryst Visualizing crystal structure 

Calculating geometric parameters of crystal structure 
IsoTest Arranging crystal structures into topological and structure types 

Comparative analysis of atomic nets and packings 
StatPack Statistical processing of the data files generated by the programs Dirichlet and ADS 
 
All TOPOS constituents can exchange the data and should usually be applied in a certain sequence when 
performing a complicated crystallochemical analysis. Scheme 1 shows the logical interconnections within 
the TOPOS system when exchanging the data streams. The main data stream is directed from the top to 
the bottom of Scheme 1, since all TOPOS applied programs use the crystallographic information from 
DBMS. However, ADS, AutoCN, Dirichlet, HSite and IsoTest programs can produce new data that can be 
stored in TOPOS databases, so there is an inverse data stream. 
 
Crystal structure database in the TOPOS VER 2.02 format includes five files: 
File type  File destination 
*.adm  contains adjacent matrices of crystal structures (optional file) 
*.cmp  contains chemical formulae of compounds 
*.cd  contains other data on crystal structures 
*.its  contains the information on the topology of the graphs of crystal structures (optional file) 
*.itl  contains the information on the topology of atomic sublattices (optional file) 
 
DBMS identifies the database using the *.cmp file; it is the file that is loaded in the DBMS window. Any 
number of databases can be loaded at once. In addition a number of index files *.idx ('x' is a letter 
characterizing the content of the index file) can be created using the DBMS Distribution utility. 
 

Page 4



 6

 
 
Figure 1: General view of the program package TOPOS. 
 

 
 
Scheme 1: Interaction of constituents and main data stream paths within the TOPOS system. 
 

Page 5



 7

In addition TOPOS forms and supports the following auxiliary databases: 
 
• TTD collection that is a set of *.ttd files in a special binary format containing the information on 

topological types of simple 2D or 3D nets. The TTD collection is used for automatic determining crys-
tal structure topology with the ADS program. At present the TTD collection includes four databases: 

 
Database Number 

of records 
Description 

TOPOS&RCSR.ttd 1606 
Data on idealized nets from RCSR,1 framework zeolites,2 sphere 
packings (see, e.g. Sowa & Koch, 2005), and two-dimensional 
nets 

binary.ttd 1597 Data on binary framework compounds 

polytypes.ttd 694 Data on topologies of polytypic close packings, SiC, NiAs, and 
other layered polymorphs up to 12-layered 

epinet.ttd 14380 Data on all new topological types of the periodic nets generated 
within the EPINET project3 

 
• library of combinatorial-topological types of finite polyhedra containing the information on the edge 

nets of polyhedra in the files *.edg, *.pdt, *.vec. This library is used by the Dirichlet and ADS 
programs to identify the combinatorial topology of VDPs and tiles. 

 
The methods of inputting the information into the TOPOS databases are shown in Scheme 2. The main 
distinction of the content of the TOPOS databases in comparison with other crystallographic databanks is 
that the 3D graph of interatomic bonds is completely stored in the *.adm file. Using this information 
TOPOS can produce other important data on the crystal structure topology. Thus, the main TOPOS 
peculiarity is its orientation to topological characteristics that clarifies its name. 
 

 
 
Scheme 2: Methods to produce data in TOPOS databases. 
 
2. Topological information in TOPOS 

                                                           
1 http://okeeffe-ws1.la.asu.edu/RCSR/home.htm  
2 http://www.iza-structure.org/databases/  
3 http://epinet.anu.edu.au/  

Page 6

http://reticularchemistry.net/RCSR/�
http://www.iza-structure.org/databases/�


 8

 
2.1. Adjacency matrix 
 
TOPOS uses the concept of labelled quotient graph (Chung et al., 1984) to make the infinite 3D periodic 
graph of crystal structure suitable for computer storage. The adjacency matrix of the labelled quotient 
graph contained in the *.adm file carries all necessary information about the system of interatomic 
contacts. The format of data for each contact of the basic 'central' atom with a surrounding atom is given 
below.4 The CSym and translation fields contain encoded symmetry operation and translation 
vector, which transforms the jth basic atom into surrounding atom connected with the ith central one. This 
information is sufficient to describe the labelled quotient graph and the topology of the whole net. Other 
parameters characterize the kind and strength of the contact. 

 
record 

i,j:integer numbers of central and surrounding atom 
CSym:integer symmetry code 
translation:array[1..3]of integer translation vector 
m:integer type of the contact 
{m=0 - not a contact 
 m=1 - valence bond 
 m=2 - specific (secondary) interaction 
 m=3 - van der Waals bonding 
 m=4 - hydrogen bonding 
 m=5 - agostic bonding} 
R,SA:float contact parameters (interatomic distance, VDP solid 
angle, etc.) 

end; 
 

 
The program AutoCN is intended for automated computing and storing adjacency matrix. Since TOPOS 
can work with periodic nets of various nature, including idealized or artificial nets, AutoCN uses several 
algorithms to determine contacts between nodes of the net. 
 
Three main AutoCN algorithms, called Using Rsds, Sectors and Distances, are designed for crystal 
structures of real chemical compounds and based on constructing Voronoi-Dirichlet polyhedra,5 VDPs, 
for all atoms. For applications of VDPs in crystal chemistry see Blatov (2004). The VDP construction 
uses very effective 'gift wrapping' algorithm (Preparata & Shamos, 1985) of computing a convex hull for 
a set of image points with coordinates (2xi/Ri

2, 2yi/Ri
2, 2zi/Ri

2), where (xi, yi, zi) are the Cartesian 
coordinates of the surrounding atoms, and Ri is the distance from the VDP atom to the ith neighbouring 
atom. In this algorithm for each edge E of face F belonging to the convex hull, the point (Pk) 
corresponding to the third vertex of a face adjacent to F and joined to it at the same edge is determined 
from the maximum dihedral angle ϕ (Fig. 2a). Cotangents of ϕ angles are calculated with the formula 

2cotϕ ⋅
= − = −

⋅
k

k

UP v a
UV v n

, (1) 

where n is the unit normal vector to the face F in a half-space containing the VDP atom, and a is the unit 
vector normal to both E and n (Fig. 2b). 
 
As a result, VDP of an atom in the crystal space is a convex polyhedron whose faces are perpendicular to 
segments connecting the central atom of VDP and the other surrounding atoms (Fig. 3a). VDPs of all 
atoms form Voronoi-Dirichlet partition of crystal space (Fig. 3b). Each face divides the corresponding 
segment by half and ordinarily the face and segment intersect each other. Otherwise (Fig. 3c) the 
surrounding atom is called 'indirect neighbour' according to O’Keeffe (1979). All the three AutoCN 
                                                           
4 Hereafter a Pascal-like pseudocode is used to describe TOPOS algorithms and data structure. 
5 Hereafter all bold italic terms are explained in TOPOS Glossary (Appendix). 

Page 7



 9

algorithms consider only the contacts with direct VDP neighbours as potential bonds. The differences are 
in consequent arranging of the contacts. 
 

 
 
Figure 2: (a) Determination of a point forming the VDP face (P6) in the 'gift wrapping' algorithm. The 
P1P2P6 half-plane forms the maximum angle with the P1P2P3 (F) half-plane containing previously found 
points. (b) Calculation of cotϕ  according to formula (1). P1P2 (E) is the VDP edge. 

          
 a b c 
 
Figure 3: (a) Voronoi–Dirichlet polyhedron (VDP) and surrounding atoms, (b) Voronoi-Dirichlet 
partition for a body-centred cubic lattice; (c) VDP and surrounding atoms of an oxygen atom in the 
crystal structure of ice VIII. Valence, H bond, and non-valence interatomic contacts are coloured red, 
green, and black, respectively. Indirect contacts are dotted. 
 
The Using Rsds algorithm is rested upon the so-called method of intersecting spheres (Serezhkin et al., 
1997). In this method the interatomic contacts are determined as a result of calculating the number of 
overlapping pairs of internal and external spheres circumscribed around the centre of either atom of the 
pair (Fig. 4). Normally, the internal and external spheres have atomic Slater's radius, rs, and radius of 
spherical domain, Rsd, respectively. If more than one pair of such spheres intersect each other (overlaps 
Π2, Π3 or Π4) then the contact is assumed to be a chemical bond and is added to atomic CN. If only 
external spheres overlap, the contact is assumed to be specific, otherwise van der Waals. With additional 
geometrical criteria the algorithm can separate hydrogen or agostic bonding from specific contacts. In 
fact, the method of intersecting spheres assumes the shape of the atomic domain to be practically 
spherical in the crystal structure. This assumption works well for many inorganic compounds, but in the 
case of organic or coordination compounds it requires considering anisotropy of atomic domains. 

P5 

P7 P4 

P6 
P1 

E 

F 
P2 

P3 

a 

P1

V 

vk 

a
U 

n E

F

Pk

P2 

P3 

b 

ϕ 

Page 8



 10

 

Π0 Π1 Π2 Π3 Π4 

     

 
Figure 4: Schematic representation of basic types of overlaps (Πn) for atoms within the method of 
intersecting spheres. The radii of solid and dotted spheres are equal rs and Rsd, respectively. The 
intersections are shaded of the spheres that causes a given type of overlap. The n value is equal to the 
number of pair overlaps (Serezhkin et al., 1997). 
 
The Sectors algorithm uses an improved method of intersecting spheres designed by Peresypkina and 
Blatov (2000) for organic and metal-organic compounds and called method of spherical sectors. In this 
method sphere of Rsd radius is replaced with a set of spherical sectors corresponding to interatomic 
contacts (Fig. 5a). The radius (rsec) of the ith sector is determined by the formula 

1
3

sec
3 i

i

Vr
⎛ ⎞

= ⎜ ⎟Ω⎝ ⎠
, (2) 

 
where Vi and Ωi are volume and solid angle of a pyramid with basal VDP face corresponding to 
interatomic contacts and with the VDP atom in the vertex (Fig. 5b). The Sectors algorithm also allows 
user to reveal non-valence bonding. 

 
Figure 5: (a) An example of identification of interatomic contacts with the Sectors algorithm in a two-
dimensional lattice. Bold lines confine VDPs; dashed lines show boundaries of pyramids (triangles in 2D 
case) based on the VDP faces corresponding to the direct interatomic contacts. Dashed circles have rs 
radius; solid arcs of rsec radius confine spherical sectors and show atomic boundaries in a crystal field. 
The A and B atoms form a valence contact, to which the triple overlap rsec(A)–rs(B), rs(A)–rsec(B) and 
rsec(A)–rsec(B) corresponds; the contact between A and C atoms is non-valence because the only overlap 
rsec(A)–rs(B) corresponds to it. (b) VDP of an atom in a body-centred cubic lattice. The solid angle (Ω) of 
the VDP pyramid based on the shaded face is equal to the shaded segment of the unit sphere cut off by the 
pyramid with the VDP atom at the vertex and the face in the base. 
 
The Distance algorithm is an attempt to combine the Voronoi-Dirichlet approach and traditional methods 
that use atomic radii and interatomic distances. The contact between the VDP atom and surrounding atom 

A

B

C 

 a b 

Page 9



 11

is considered valence bonding if the distance between them is shorter that the sum of their Slater's radii 
increased by a shift to be specified by user (0.3 Å by default). 
 
With these algorithms (Sectors by default) user can compute adjacency matrices in an automated mode 
that is very important for the analysis of large numbers of crystal structures. Their main advantage is 
independence of the nature of bonding and of kind of interacting atoms; Slater's system of radii is used in 
all cases. They were tested for all compounds from CSD and ICSD, and showed a good agreement with 
chemical models. 
 
To work with artificial nets TOPOS has two additional algorithms, where no atomic radii and the concept 
of direct neighbour are used: 
 
Solid Angles, where Ωi value is the only criterion to select connected net nodes from surrounding ones; 
 
Ranges, where the nodes are considered connected if the distance between them falls into specified 
range(s); no VDPs are constructed in this case. 
 
The general AutoCN procedure with use of one of the VDP algorithms for a crystal structure with 
NAtoms atoms in asymmetric unit is given below. The procedure results in saving AdjMatr array 
containing adjacency matrix. 

 
procedure AutoCN(output AdjMatr) 
for i:=1 to NAtoms do 
 call VDPConstruction(i, output NVDPFaces) 
k:=0 
for i:=1 to NAtoms do for j:=1 to NVDPFaces[i] do 
begin 
 k:=k+1 
 call CalcContactParam(i, j, output Dist, Omega, Overlap, Direct, HBond, Agostic) 
 AdjMatr[k].i:=i 
 AdjMatr[k].j:=j 
 AdjMatr[k].R:=Dist 
 AdjMatr[k].SA:=Omega 
 if Omega>OmegaMin then 
 begin 
  if Method=Solid_Angles then AdjMatr[k].m:=1 else 
  if Direct then 
  begin 
   if (Method=Using_Rsds)or(Method=Sectors) then 
    if Overlap=0 then AdjMatr[k].m:=3 
    if Overlap=1 then  
     if HBond then AdjMatr[k].m:=4 else  
      if Agostic then AdjMatr[k].m:=5 else AdjMatr[k].m:=2 
    if Overlap>1 then AdjMatr[k].m:=1 
   if Method=Distances then 
    if Dist<r[i]+r[j]+Shift then AdjMatr[k].m:=1 else AdjMatr[k].m:=0 
  end else AdjMatr[k].m:=0 
 end else AdjMatr[k].m:=0 
end 
call StoreInDatabase(AdjMatr) 

 
Adjacency matrix is used by all TOPOS applied programs; ADS and IsoTest produce other data for the 
database derived from the adjacency matrix. 
 

Page 10



 12

2.2. Reference databases of topological types 
 
The ADS program produces textual *.nnt (New Net Topology) files that contain important topological 
invariants of nets and can be converted to binary TTD databases. The format of an *.nnt file entry is 
given below. For detailed information on coordination sequences, total and extended Schläfli symbols 
(ES) and vertex symbols (VS) see Delgado-Friedrichs & O’Keeffe (2005). The CS+ES+VS combination 
of topological invariants unambiguously determines the topology of any net found in real crystal 
structures; about additional invariants see part 3.2.1. The binary *.ttd equivalents of *.nnt files are 
used as libraries of standard reference nets (topological types) to be compared with the nets in real crystal 
structures. 
 
An *.nnt entry example 

 
'$sqc691', 
'{6^2;8}{6^4;8^2}{6^5;10}', 
'3 8 18 40 65 100 140 184 234 294', 
'[6(2).6(2).8(2)]', 
'[6(2).6(2).8(2)]', 
'4 10 24 44 74 104 144 190 240 296', 
'[6.6.6.6.6(2).10(8)]', 
'[6.6.6.6.6(2).10(6)]', 
'4 12 24 46 72 106 144 190 240 298', 
'[6(2).6(2).6(2).6(2).8(2).8(2)]', 
'[6(2).6(2).6(2).6(2).8(2).*]', 
 
Detailed description: 
 
'$sqc691', 
 
Name of the record with ‘$’ prefix  
 
'{6^2;8}{6^4;8^2}{6^5;10}', 
 
Total Schläfli symbol for the whole net: {628}{6482}{6510}. In this case the numbers of the three 
non-equivalent nodes are the same: 1:1:1. Otherwise,  indices will be given after each ‘}’ 
bracket. 
 
'3 8 18 40 65 100 140 184 234 294', 
 
Coordination sequence (CS) 
 
'[6(2).6(2).8(2)]', 
 
Extended Schläfli symbol for circuits (ES): [62.62.82] 
 
'[6(2).6(2).8(2)]', 
 
The same for rings (VS) 
 
Similar triples for other non-equivalent nodes 
 
'4 10 24 44 74 104 144 190 240 296', 
'[6.6.6.6.6(2).10(8)]', 
'[6.6.6.6.6(2).10(6)]', 
'4 12 24 46 72 106 144 190 240 298', 
'[6(2).6(2).6(2).6(2).8(2).8(2)]', 
'[6(2).6(2).6(2).6(2).8(2).*]', 

‘*’ means that there are no rings in this angle, it is equivalent to the ‘∞’ symbol: [62.62.62.62.82.∞] 
 

Page 11



 13

 
2.3. Topological information on crystal structure representations 
 
The IsoTest program forms two kinds of database files. The file *.its contains topological invariants 
(CS+ES+VS) for all possible net representations of a given crystal structure. A hierarchical sequence of 
the crystal structure representations is based on the complete representation, where all the contacts stored 
in the adjacency matrix are taken into account. Each contact (graph edge) has a colour corresponding to 
its type (the m field of adjacency matrix), and weight determining by interatomic distance (Dist field) or 
solid angle (SA field). All other representations may be deduced as the subsets of the complete 
representation by the following three-step algorithm. 
 
(i) Graph edges of the same colour are taken into account, other edges are either ignored or considered 
irrespective of their weights. In most cases, the chemical interactions of only one type are of interest; as a 
rule, those are strong bonds. If two or more types of bonds are to be analyzed, the bonds of only one type 
are to be considered at a given pass of the procedure. Then an array of the weights is formed for all the 
one-coloured edges.  
 
(ii) The entire array of weights is divided into several groups by a clustering algorithm. TOPOS have used 
a simple approach when two weights belong to the same group if their difference is smaller than a given 
value. Thus, n distinct coordination spheres are separated in the atomic environment. Then different to-
pologies are generated by successive rejecting the farthest coordination sphere. As a result, n–1 additional 
representations of the crystal structure are produced from the complete one. It is important that no 'best' 
representations are chosen at this step, but all levels of interatomic interaction are clearly distinguished 
for further analysis, depending on the matter in hand. 
 
(iii) Each of the n representations is used to generate a set of subrepresentations according to the scheme 
proposed by Blatov (2006). Every subrepresentation is unambiguously determined by an arrangement of 
the set {NAtoms} of all atoms from asymmetric unit into four subsets: origin {OA}, removed {RA}, 
contracted {CA}, and target {TA} atoms. The two operations are defined on the subsets to derive a graph 
of the subrepresentation from the graph of an initial ith representation: contracting an atom to other atoms 
keeping the local connectivity, when the atom is suppressed, but all graph paths passing through it are re-
tained (Figs. 6a,b), and removing an atom together with all its bonds (Figs. 6c,d). The four-subset ar-
rangement is determined by the role of atoms in those operations. Namely, origin atoms form a new net 
that characterizes the subrepresentation topology; removed atoms are eliminated from the initial net by 
the removing operation; contracted atoms merge with target atoms, passing the bonds to them. 
 
All the sets {OA}, {RA}, {CA}, and {TA} form a collection ({OA}, {RA}, {CA}, {TA}) that, together 
with the initial representation, unambiguously determines the subrepresentation topology (Figs. 6a-d). 
With the concept of collection, the successful enumeration of the significant subrepresentations becomes 
easily formalizable as a computer algorithm implemented into IsoTest. Firstly, any collection has a num-
ber of properties reflecting the crystal structure relations that can be formulated in terms of set theory.  
 
(i) {OA}∩{RA}=∅; {OA}∩{CA}=∅, {RA}∩{CA}=∅, because an atom cannot play more than one 
role in the crystal structure. 
(ii) {OA}∪{RA}∪{CA}={NAtoms}, i.e. every atom must have a crystallochemical role. 
(iii) {OA}≠∅, other sets may be empty. This property arises because only the origin atoms are nodes in 
the graph of the crystal structure subrepresentation; other atoms determine the graph topology. Obviously, 
the collection ({OA}, ∅, ∅, ∅) means that {OA}={NAtoms}; it describes the initial representation.  
(iv) {TA}⊆{OA}, because the target atoms are always selected from the origin atoms; unlike other origin 
atoms they are the centres of complex structural groups. 
(v) {TA}≠∅ ⇔ {CA}≠∅, because the target and contracted atoms together form the structural groups. 
 

Page 12



 14

Secondly, the collections, together with the topological operations, map onto all the crystal structure 
transformations applied in crystallochemical analysis. Namely, origin atoms correspond to the centres of 
structural groups in a given structure consideration. If a structural group has no distinct central atom, a 
pseudo-atom (PA) coinciding with group's centroid should be added to the {NAtoms} set; this case is 
typical to the analysis of molecular packings. Removed atoms are atoms to be ignored in the current 
crystal structure representation, as atoms of interstitial ions and molecules in porous substances or, say, 
alkali metals in framework coordination compounds. Contracted atoms, together with target atoms, form 
complex structural groups, but the contracted atoms are not directly considered; they merely provide the 
structure connectivity whereas the target atoms coincide with the groups' centroids. The difference 
between origin and target atoms is that the target atoms always correspond to polyatomic structural 
groups whereas the origin atoms symbolize all structural units, both mono- and polyatomic. 
 

 
 a b 

         
 
Figure 6: γ-CaSO4 crystal structure: (a) complete representation  ({Ca, S, O}, ∅, ∅, ∅), and its 
subrepresentations (b) ({Ca, S}, ∅, {O}, {S}) with origin Ca and S atoms, contracted oxygen atoms, and 
target sulfur atoms (the sma6 topology); (c) ({Ca, O}, {S}, ∅, ∅) with origin Ca and O atoms, and 
removed sulfur atoms; (d) ({Ca}, {S}, {O}, {Ca}) with origin and target Ca atoms, removed sulfur atoms, 
and contracted oxygen atoms (the qtz topology). 
 

                                                           
6 The bold three-letter codes indicate the net topology according to the RCSR nomenclature (http://okeeffe-

ws1.la.asu.edu/RCSR/home.htm ). 

Page 13



 15

If, say, there are two atoms of different colours, A and B, {A, B}={NAtoms}, the following four 
subrepresentations are possible for the initial representation ({A, B}, ∅, ∅, ∅): 
 
(i) ({A}, {B}, ∅, ∅), i.e. the subnet of A atoms; 
(ii) ({A}, ∅, {B}, {A}), i.e. the net of A atoms with the A–B–A bridges (B atoms are spacers); 
(iii) ({B}, {A}, ∅, ∅); (iv) ({B}, ∅, {A}, {B}) are the same nets of B atoms. 
 
IsoTest enumerates all possible collections and successively writes down them into *.its file in the 
following format: 

 
OA, RA, CA, TA: array of integer  
  atomic numbers for atoms in the {OA}, {RA}, {CA}, {TA} sets 
CS, ES, VS: array of integer topological invariants for all OA atoms 
... 

 
Another IsoTest algorithm enables user to compute topological invariants for sublattices of, generally 
speaking, non-bonded atoms, and to save them in the *.itl file. Actually, the *.itl file contains the 
topological information on all possible packings of atoms. There are two principal distinctions in this 
algorithm in comparison with the analysis of nets: 
 
(i) adjacency matrix is calculated using the Solid Angles algorithm because no real chemical bonds, but 
packing contacts, are analyzed; 
 
(ii) all atoms in the collection are considered origin or removed, no contraction is used because of the 
same reason. 
 
Thus, in the case of an AB compound three packing representations ({OA}, {RA}) will be considered: 
({A}, {B}), ({B}, {A}) and ({A, B}, ∅). The formats of *.its and *.itl files are similar, but there 
are no CA and TA arrays in the *.itl file. 
 
2.4. Library of combinatorial types of polyhedra 
 
Two TOPOS programs, Dirichlet and ADS, can store the data on polyhedral units in a library consisting 
of three files: *.pdt (polyhedron name and geometrical parameters); *.edg (data on polyhedron edges 
in the format: V1, V2: integer, where V1 and V2 are the numbers of polyhedron vertices); *.vec 
(Cartesian coordinates of vertices and face centroids). Using the polyhedron adjacency matrix from the 
*.edg file Dirichlet and ADS can unambiguously identify combinatorial topology of VDPs and tiles. A 
standard algorithm of searching for isomorphism of two finite ordinary graphs is used for this purpose. 
 
3. Basic algorithms of crystallochemical analysis in TOPOS 
 
In accordance to the content of databases there are two principal ways of crystallochemical analysis in 
TOPOS. They can be conditionally called geometrical and topological, because the former one rests upon 
the ordinal crystallographic data from *.cd file (cell dimensions, space group, atomic coordinates), 
whereas the latter one uses the topological information from *.adm, *.its, *.itl *.ttd, *.edg 
files. As is seen from the previous part these two ways are not completely independent, because all the 
topological data are initially produced from crystallographic information. However, these two methods 
depend on different algorithms, and we need to describe them separately. 
 

Page 14



 16

3.1. Geometrical analysis: general scheme 
 
Here we consider in detail only original TOPOS features that distinguish it from well known 
crystallochemical software such as Diamond, Platon, ICSD or CSD tools. In addition, the IsoCryst and 
DiAn programs let user compute all standard geometrical parameters (interatomic distances, bond and 
torsion angles, RMS lines and planes, etc.) with ordinal algorithms. The general scheme of geometrical 
analysis of a crystal structure is shown in Scheme 3. 
 
3.1.1. Computing atomic and molecular Voronoi-Dirichlet polyhedra 
 
Geometrical analysis in TOPOS is based on VDP as an image of an atomic domain in the crystal field 
and on Voronoi-Dirichlet partition as an image of crystal space that is a good approach even in the case of 
complex compounds (Blatov, 2004). The main advantage of this approach over the traditional model of a  
spherical atom is its independence of any system of atomic radii and validity for describing chemical 
compounds of different nature, from elementary substances to proteins. The programs Dirichlet and 
IsoCryst compute the following geometrical and topological VDP parameters, each of which has a clear 
physical meaning (Blatov, 2004; Table 2): 
 
• VDP volume (VVDP) and Rsd. 
• VDP dimensionless normalized second moment of inertia (G3), generally defined as: 

5
3

2

3
1
3

VDP
VDP

VDP

R dV
G

V
=

∫
, (3) 

however, Dirichlet uses a simpler formula for an arbitrary (not necessarily convex) solid that can be 
subjected to simplicial subdivision: 

3 5
3

1
3

j j
j

VDP

V I
G

V
=

∑
, (4) 

where summation is performed over all simplexes, Vj is the volume of the jth simplex, and Ij is the 
normalized second moment of inertia of a simplex with respect to the centre of the VDP: 

. (5) 
 

 
 
Scheme 3: Geometrical analysis of a crystal structure in TOPOS. 
 

Page 15



 17

In (5), summation is performed over all simplex vertices,  ║vk║ is the norm of the radius vector of the kth 
vertex of the simplex, and vP P is the norm of the radius vector of the simplex centroid in the coordinate 
system with the origin in the centre of the VDP. 
• Solid angles of VDP faces (Ωi) to be computed according to Fig. 5. 
• Displacement of an atom from the centroid of its VDP (DA). 
• Number of VDP faces (Nf). 
 
A number of parameters of Voronoi-Dirichlet partition to be computed with Dirichlet are crucial at 
crystallochemical analysis (Table 2): 
 
• Standard deviation for 3D lattice quantizer (Convay and Sloane, 1988): 

( )
( )

( )

5
3

21

1

3

1

1

1
3

NAtoms

NAtoms VDP i
i VDP i

NAtoms

NAtoms VDP i
i

R dV

G

V

=

=

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∫

∑
, (6) 

or, with (4) 

( )

5
3

1

1
3

1

1

1
3

NAtoms

j jNAtoms
i j

NAtoms

NAtoms VDP i
i

V I
G

V

=

=

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑

∑
, (7) 

i.e. <G3> is averaged over G3 values of all inequivalent atomic VDPs. 
• Coordinates of all VDP vertices and lengths of VDP edges. 
• Other geometrical parameters of VDP vertices and edges important at the analysis of voids and 

channels (see part 3.2.2). 
 
Table 2: Physical meaning of atomic VDP, molecular VDP and Voronoi-Dirichlet partition parameters 
Parameter Dimensionality Meaning 
Atomic VDP parameters 
VVDP  Å3 Relative size of atom in the crystal field 
Rsd Å Generalized crystallochemical atomic radius 
G3 Dimensionless Sphericity degree for nearest environment of the atom; the 

less G3, the closer the shape of coordination polyhedron to 
sphere 

Ωi Percentage of 4π steradian Strength of atomic interaction 
DA Å Distance between the centres of positive and negative 

charges in the atomic domain 
Nf Dimensionless Number of atoms in the nearest environment of the VDP 

atom 
Molecular VDP parameters 
VVDP(mol) Å3 Relative size of secondary building unit in the crystal field 
Rsd(mol) Å Effective radius of secondary building unit 
G3(mol) Dimensionless Sphericity degree of secondary building unit 
MCN, Number of faces of 
smoothed molecular VDP 

Dimensionless Number of SBUs contacting with a given one 

mol
iΩ  Percentage of sum of mol

iΩ  Strength of intermolecular interaction 

Number of faces of lattice 
molecular VDP 

Dimensionless Number of SBUs surrounding a given one in idealized pack-
ing of spherical molecules 

Voronoi-Dirichlet partition parameters 
<G3> Dimensionless Uniformity of crystal structure 
Coordinates of VDP verti-
ces 

Fractions of unit cell dimensions Coordinates of void centres 

Lengths of VDP edges Å Lengths of channels between the voids 
 

Page 16



 18

Uniting atomic VDPs TOPOS constructs secondary building units in the form of molecular VDP (Figs. 
7a-c). Molecular VDP is always non-convex, however, VDPs of all secondary building units (SBU) in the 
crystal structure still form the Voronoi-Dirichlet partition of the crystal space. The program IsoCryst 
visualizes molecular VDPs, and the program ADS determines the following parameters (Table 2): 
 
• Molecular VDP volume (as a sum of volumes of atomic VDPs), VVDP(mol) and Rsd(mol). 
• Normalized second moment of inertia of molecular VDP, G3(mol), to be computed according to (4), 

but the summation is provided over simplexes of all atomic VDPs composing the molecular VDP, and 
the centroid of the molecule is taken as origin. 

• Molecular coordination number (MCN) as a number of molecular VDP faces. 
• Solid angles of molecular VDP faces ( mol

iΩ ) to be computed by the formula (8) 

100%
ij

jmol
i

Σ

Ω
Ω = ⋅

Ω

∑
,  (8) 

where Ωij are solid angles of the molecular VDP facets composing the ith molecular VDP face; 
ij

i j
ΣΩ = Ω∑∑  is the sum of solid angles of all nonbonded contacts formed by atoms of the molecule. 

• Cumulative solid angles corresponding to different kinds of intermolecular contacts in MOFs: 
 
Valence solid angles of a ligand ( V

LΩ ) and a complex ( V
LΣΩ ) to be calculated as 

( )V
L i

i
M XΩ = Ω −∑ , (9) 

where valence contacts between the complexing M atom and donor Xi atoms of a ligand L were only 
taken into consideration, and 

( )V V
L L I

I
ΣΩ = Ω∑ , (10) 

where all ligands connected with the M atom are included in the sum. 
 
Total solid angles of a ligand ( T

LΩ ) and a complex ( T
LΣΩ ): 

( )T
L i

i
M XΩ = Ω −∑ , (11) 

( )T T
L L I

I
ΣΩ = Ω∑ , (12) 

where, unlike (9), the index i enumerates all (including non-valence) contacts VDP atom–ligand, even 
if the ligand is non-valence bonded with the complexing atom and only shields it, while the index I, as 
in (10), enumerates all the ligands in complex, which are valence bonded with the complexing atom.  
 
Agostic solid angles of a ligand ( ag

LΩ ) and a complex ( ag
LΣΩ ). These values are to be calculated by the 

formulae analogous to (11) and (12), but with merely the solid angles of atomic VDPs corresponding 
to agostic contacts M…H–X. 
 
Residual solid angles of a ligand (δ= T V

L L−Ω Ω ) and a complex (Δ= T
LΣΩ – V

LΣΩ ). 
 
In addition to molecular VDPs the ADS program constructs two types of VDPs for SBU centroids: 
 
(i) The Smoothed molecular VDP is constructed by flattening the boundary surfaces of a molecular VDP 
(Fig. 7d). Smoothed molecular VDPs characterize the local topology of molecular packing and 
occasionally do not form a partition of space. 
 
(ii) The Lattice molecular VDP is constructed by using molecular centroids only (Fig. 7e). Lattice 
molecular VDPs characterize the global topology of a packing as a whole and form a partition of space, 
but the number of faces of such a VDP is not always equal to MCN. 

Page 17



 19

 
In both cases the only VDP parameter, number of faces, has clear crystallochemical meaning (Table 2). 
 

 
 
Figure 7: (a) A molecule N4S4F4; (b) VDP of a nitrogen atom; (c) molecular VDP (dotted lines confine 
boundary surfaces); (d) smoothed and (e) lattice molecular VDPs. 
 
3.1.2. Generating hydrogen positions 
 
Parameters of atomic VDPs are used in the program HSite intended for the calculation of the coordinates 
of H atoms connected to X atoms (X = B, C, N, O, Si, P, S, Ge, As, Se) depending on their nature, 
hybridization type and arrangement of other atoms directly non-bonded with the X atoms. In comparison 
with known similar programs HSite has some additional features: 
 
(i) At the determination of the hybridization type of an atom X the Me…X contacts of different type (σ or 
π) between metal (Me) and X atoms are taken into account. 
 
(ii) During the generation of H atoms in groups with rotational degrees of freedom, the search for an 
optimal orientation of the group is fulfilled depending on the arrangement and size of the surrounding 
atoms. In turn, the sizes of these atoms are approximated by their Rsd values. In the determination of the 
optimal orientation the effects of repulsion in H…H contacts are considered and the possibility of the 
appearance of hydrogen bonds O(N)–H …O(N) is taken into account. 
 
The HSite algorithm includes the following steps: 
 
(i) Searching for X atoms, which can be potentially linked with hydrogen atoms. 
 
(ii) Determination of the hybridization (sp, sp2 or sp3) of these atoms in accordance with the following 
criteria: 
• B, Si and Ge atoms may have the sp3 hybridization only. 
• O, P, S, As and Se atoms may have the sp2 or sp3 hybridization only. 
• C and N atoms may have any type of hybridization. 

F

N

N

F

S
S

S

S

N

F

N

F

F

F

N
S

S

S

S

F

N

N

F

     e 

 

b 
c 

a 

      d 

Page 18



 20

• Bonds with metal atoms are taken into account at the determination of hybridization only if they form 
σ-bonds with X atoms. HSite automatically determines the type of Me–X bonds (σ or π) using the fol-
lowing criterion: a pair of X atoms is involved into a π bonding with a Me atom if they are also linked 

together, i.e. there is a triple 

X
Me

X

. 
• The types of hybridization are distinguished depending on the parameters of valence bonds formed by 

X atoms with other L atoms: 
 

Total number of X–L 
bonds  

Number of bonds with 
L=C, N, O, S, Se 

Numerical criterion Hybridization 

any 0 none sp3 
1 1 R(X-L)≤Rmax(sp) sp 
1 1 R(X-L)≤Rmax(sp2) sp2 
1 1 R(X-L >Rmax(sp2) sp3 
2 1, 2 ∠ L–X–L ≥ ∠min(sp) sp 
2 1, 2 R(X-L1)+R(X-L2)<RΣ(sp3) sp2 
2 1, 2 R(X-L1)+R(X-L2)≥RΣ(sp3) sp3 
3 1, 2, 3 ∠ L1–X–L2 + ∠ L1–X–L3 

+ ∠ L2–X–L3 > ∠Σ(sp2) 
sp2 

3 1, 2, 3 ∠ L1–X–L2 + ∠ L1–X–L3 
+ ∠ L2–X–L3 ≤ ∠Σ(sp2) 

sp3 

 
The criteria Rmax(sp), Rmax(sp2), RΣ(sp3) have the default values 1.30, 1.40 and 2.90 Å for X, L= C, N and 
O, respectively. If X or L atom is of the 3rd or the 4th period, then the Rmax(sp2) criterion is increased by 
0.4 or 0.5 Å, respectively, and RΣ(sp3) is increased by 0.8 or 1.0 Å. If a boron atom participates in the 
bond, all values increase by 0.11 Å. 
 
(iii) The site symmetry of X and L positions is taken into account. If necessary, the type of hybridization 
of X atom and the number of hydrogen atoms to be added are corrected. For example, if the above 
mentioned criteria show that a carbon atom is in sp3 hybridization and should form a methyl group, but its 
site symmetry is C2, then its true hybridization is assumed to be sp2 and it really forms a planar CH2 
group. 
 
(iv) Positions of hydrogen atoms are determined with the following geometric criteria: 
• Bond angles ∠H-X-H depend only on the type of hybridization of the X atom and are equal to 180, 

120 and 109.47° for sp-, sp2 and sp3 hybridization, respectively. 
• For the sp2 hybridization in the group L2XH the condition ∠L1–X–H = ∠L2–X–H must hold. 
• For the sp3 hybridization in the group L2XH2 two additional hydrogen atoms must lie in the plane per-

pendicular to the plane passing through the L1, L2 and X atoms. In the case of the group L3XH the 
condition ∠L1-X-H = ∠L2-X-H = ∠L3-X-H must hold. 

• Lengths of the bonds O-H, N-H and C-H are equal 0.96, 1.01 and 1.09 Å by default and may be 
changed. If the X atom is of the 3rd or the 4th period the bond length will be additionally increased by 
0.4 or 0.5 Å, respectively. For example, the length of Se–H bond will be 1.46 Å. 

• If the atomic group has rotational degrees of freedom, its optimal orientation is searched in the follow-
ing way: the group rotates with a small step (5° by default), for each orientation the minimum distance 
(Rmin) is found from hydrogen atoms of the group to other atoms except of the atom X itself, normal-
ized by the Rsd values for these atoms. The orientation with maximum Rmin assumes to be optimal. For 
isolated groups (H2O, NH4

+, CH3
–, etc.) all possible orientations of the primary axis of inertia are ad-

ditionally verified by scanning an independent region of the spherical coordinate system; the spherical 
coordinates ϕ and θ vary also with the 5° step. If the H bonds are considered, they take priority at the 
determination of the orientation. The conditions R(H…X)≤Rmax(HBond) and ∠X–H…X > 

Page 19



 21

∠min(HBond) are used for distinguishing H bonds. A mandatory condition during searching for the 
orientation is that the distances between hydrogen atoms and other atoms, except the atoms participat-
ing in H bonds, must be more than 2 Å (by default). If this condition cannot be obeyed, the program 
error 'Atom X is invalid' is generated. The orientation of bridge groups XHn binding several metal at-
oms is a special case. At that the orientation of the primary axis of inertia of the group is considered 
passing through the centroid of the set of metal atoms and through the X atom itself. The exception is 
the planar CH3

+ cation whose orientation may be different taking into account the aforesaid criteria. 
• Boron atoms are assumed to be in the composition of carboran or borohydride ions. The generation of 

hydrogens is not provided for boranes. 
 
(v) If there are 'pseudo-bonds' Me–X the parameter Rmax(Me) (5 Å by default) may be useful which 
corresponds to maximum allowable length of the Me–X bonds to be considered at the determination of 
the geometry and orientation of the XHn group. To avoid the 'pseudo-bonds' the Rmax(Me) may be 
decreased. 
 
(vi) By default all groups assume to be electroneutral; the valence of the X atoms supposes to be standard 
and equal to 8 minus number of corresponding group of Periodic Table. If a group is an ion (for example, 
X-NH3

+ or OH–), it may be taken into account by setting corresponding HSite options 
('Hydroxide/amide-anions' or 'Hydroxonium/ammonium-cations'). 
 
3.2. Topological analysis: general scheme 
 
Topological analysis is the main TOPOS destination; many modern methods have recently been 
implemented, and new features appear every year. Below the general scheme of the analysis (Scheme 4) 
and basic algorithms are considered. 
 

 
 
Scheme 4: Topological analysis of a crystal structure in TOPOS. 
 
As follows from Scheme 4 there are three representations of crystal structure in TOPOS: as an atomic net, 
as a net of voids and channels, and as an atomic packing. The main branch of the scheme begins with 
generating atomic net as a labelled quotient graph (part 2.1). The subsequent analysis should be 
performed with program ADS. 
 
3.2.1. Analysis of atomic and molecular nets 
 
To analyze the adjacency matrix of the labelled quotient graph ADS uses the sets of origin {OA}, 
removed {RA}, contracted {CA}, and target {TA} atoms (part 2.3) to be specified by user. There are two 
modes of the analysis: Atomic net ({OA}≠∅) and Molecular net ({OA}=∅). The algorithm of the first 
mode consists of the following steps: 
 
(i) All {RA} are removed from the adjacency matrix. 

Page 20



 22

 
procedure Remove_RA(output AdjMatr) 
for i:=1 to NAtoms do 
begin 
 if Atoms[i] ∈ {RA} then atom must be removed 
  repeat 
   looking for AdjMatr[k1].i=i or AdjMatr[k1].j=i 
   AdjMatr[k1].m:=0 'not a contact' flag 
  until no AdjMatr[k1].i=AdjMatr[k].j or AdjMatr[k1].j=i 
end 

 
 
(ii) All {CA} form ligands. 

 
procedure Form_Ligands(output Ligands) 
for i:=1 to NAtoms do 
begin 
 if Atoms[i]∈{CA} and Atoms[i]∉{Ligands} then atom forms new ligand 
 begin  
  new Ligands[j] 
  add Atoms[i] to Ligands[j] 
  for Atoms[k] ∈ Ligands[j] do 
  repeat 
   looking for AdjMatr[k1].i=k 
   if Atoms[AdjMatr[k1].j]∈{CA} then add Atoms[AdjMatr[k1].j] to Ligands[j] 
  until no AdjMatr[k1].i=k 
 end 
end 

 
 
(iii) All {CA} are contracted to {TA}. A simplified net is obtained as a result. 

 
procedure Contract_CA_to_TA(output AdjMatr) 
for i:=1 to NAtoms do 
begin 
 if Atoms[i] ∈ {TA} then target atom is found 
  repeat 
   looking for AdjMatr[k].i=i, i.e. the record corresponding to Atoms[i] 
   if Atoms[AdjMatr[k].j] ∈ {CA} then surrounding atom must be contracted 
    repeat 
     looking for AdjMatr[k1].i=AdjMatr[k].j 
     AdjMatr[k1].i:=AdjMatr[k].i 
     looking for AdjMatr[k2].j=AdjMatr[k].j 
     AdjMatr[k2].j:=AdjMatr[k].i 
    until no AdjMatr[k1].i=AdjMatr[k].j 
   delete AdjMatr[k] 
  until no AdjMatr[k].i=i 
end 

 
 
The second mode differs from the first one by additional procedure of determining molecular units to be 
fulfilled after the first step. In this case initially {OA}={CA}={TA}=∅, but there should be at least two 
different kinds of bond in adjacency matrix: intramolecular and intermolecular. A typical situation is 
when the intramolecular bonds are valence (AdjMatr[k].i=1) and intermolecular bonds are 
hydrogen, specific or/and van der Waals (AdjMatr[k].i=2,3,4). As a result of the additional (ia) 
step, all atoms fall into {CA} set, and molecular centroids ('pseudo-atoms', PA) are input into {OA} and 
{TA} sets. Subsequent passing the steps (ii) and (iii) results in the connected net of molecular centroids. 
 
(ia) Searching for molecular units (Molecular net mode). 

 
procedure Form_Molecules(output Molecules, AdjMatr) 
for i:=1 to NAtoms do 

Page 21



 23

begin 
 if Atoms[i]∉{CA} and Atoms[i]∉{Molecules} then atom forms new molecule 
 begin  
  new Molecules[j] 
  add Atoms[i] to Molecules[j] 
  add Atoms[i] to {CA} 
  for Atoms[k] ∈ Molecules[j] do 
  repeat 
   looking for AdjMatr[k1].i=k 
   if AdjMatr[k1].m=1 then  
   begin 
    add Atoms[AdjMatr[k1].j] to Molecules[j] 
    add Atoms[AdjMatr[k1].j] to {CA} 
   end 
  until no AdjMatr[k1].m=1 
  call Calc_Centroid(Molecules[j], output PA[j]) 
  add PA[j] to {OA} 
  add PA[j] to {TA} 
  NAtoms:=NAtoms + 1 
  Atoms[NAtoms]:=PA[j] 
  for Atoms[k] ∈ Molecules[j] do 
  begin 
   new AdjMatr[k1] 
   AdjMatr[k1].i:=NAtoms 
   AdjMatr[k1].j:=k 
   AdjMatr[k1].m:=1 
   looking for AdjMatr[k2].i=k 
   AdjMatr[k2].j:=NAtoms 
  end 
 end 
end 

 
 
Both modes result in a simplified network array corresponding to the structural motif at a given crystal 
structure representation encoded by the collection ({OA}, {RA}, {CA}, {TA}) (cf. part 2.3). The net 
nodes are formed by the {OA} set; the resulted and initial nets are the same if {RA}={CA}={TA}=∅ in 
the Atomic net mode. 
 
The network array may consist of several nets of the same or different dimensionality (0D–3D). Before 
topological classification ADS distinguishes all molecular (0D) groups, chain (1D), layer (2D) and 
framework (3D) nets in the array as is shown in the output for ODAHEG7. 
 
For each net ADS computes basic topological indices CS+ES+VS and several additional ones using 
original algorithms based on successful analysis of coordination shells. The algorithms have a number of 
advantages over described in the literature (Goetzke & Klein, 1991; O’Keeffe & Brese, 1992; Yuan & 
Cormack, 2002; Treacy et al., 2006): 
 
• No distance matrix D×D is used, so the calculation is not memory-limited. 
• There are no limits to the node degree (CN). 
• Smallest circuits are computed along with smallest rings. 
• All rings, not only smallest, can be found within a specified ring size. 
• Strong rings can be computed. 
 
An example of TOPOS output with dimensionalities of structural groups in ODAHEG 

 
######################################################################################## 
5;RefCode:ODAHEG:(C48 H60 CU1 N8 O6)N, 2N(C32 H42 CU1 N5 O4 +), 2N(N1 O3 -), N(C2 H6 O1)  
Author(s): PLATER M.J.,FOREMAN M.R.ST.J.,GELBRICH T.,HURSTHOUSE M.B. 
Journal: CRYSTAL ENGINEERING Year: 2001 Volume: 4 Number:  Pages: 319 

                                                           
7 The CSD Reference Code. 

Page 22



 24

######################################################################################### 
------------------------- 
Structural group analysis 
------------------------- 
 
------------------------- 
Structural group No 1 
------------------------- 
Structure consists of chains [ 0 1 0] with CuO6N8C48H56 
2-c net 
 
------------------------- 
Structural group No 2 
------------------------- 
Structure consists of chains [ 0 0 1] with CuO4N5C32H42 
2-c net 
Elapsed time: 6.36 sec. 

 
 
By computing all rings user can distinguish topologically different nets with the same CS+ES+VS 
combination. At present such examples are revealed only among artificial nets. The output has the 
following format: 
 
An example of TOPOS output with all-ring Vertex symbols for rutile 

 
Vertex symbols for selected sublattice 
-------------------------------------- 
O1 Schlafli symbol:{4;6^2} 
With circuits:[4.6(2).6(2)] 
Rings coincide with circuits 
All rings (up to 10): [(4,6(2)).(6(2),8(6)).(6(2),8(6))] 
-------------------------------------- 
Ti1 Schlafli symbol:{4^2;6^10;8^3} 
With circuits:[4.4.6.6.6.6.6.6.6.6.6(2).6(2).8(2).8(4).8(4)] 
With rings:   [4.4.6.6.6.6.6.6.6.6.6(2).6(2).*.*.*] 
All rings (up to 10): 
[4.4.(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).6(2).6(2).*.*.*] 
ATTENTION! Some rings * are bigger than 10, so likely no rings are contained in that angle 
-------------------------------------- 
Total Schlafli symbol: {4;6^2}2{4^2;6^10;8^3} 
 

In this case all rings were constructed up to 10-ring. So possibly larger rings exist - TOPOS 
does not know this! 
 
The notation 
 
All rings (up to 10): [(4,6(2)).(6(2),8(6)).(6(2),8(6))] 
 
means that not only 4- (or 6-) rings, but also longer 8-rings meet at the same angle of the first 
non-equivalent node (oxygen atom, cf. ES or VS). There is still no conventional notation; it might 
look as: [(4,62).(62,86).(62,86)]. 

 
 
Resting upon the CS+ES+VS combination ADS searches for the net topological type in the TTD 
collection (part 2.2). Besides these basic indices, all rings and strong rings can be used for more detailed 
description of the net topology. A fragment of ADS output with the computed indices and the conclusion 
about the net topology is given below. 

 
################## 
63;RefCode:nbo:nbo 
Author(s): Bowman A L,Wallace T C,Yarnell J L,Wenzel R G 
Journal: Acta Crystallographica (1,1948-23,1967) Year: 1966 Volume: 21 Number:  Pages: 843 
################## 
 
Topology for C1 
-------------------- 
Atom C1 links by bridge ligands and has 
Common vertex with                                R(A-A) 
C  1    0.0000    0.5000    0.0000   (-1 0 0)     1.000A        1 
C  1    0.0000    0.5000    1.0000   (-1 0 1)     1.000A        1 

Page 23



 25

C  1    0.0000    0.0000    0.5000   ( 0-1 0)     1.000A        1 
C  1    0.0000    1.0000    0.5000   ( 0 0 0)     1.000A        1 
 
Coordination sequences 
---------------------- 
C1:  1  2  3  4   5   6   7   8   9   10 
Num  4 12 28 50  76 110 148 194 244  302 
Cum  5 17 45 95 171 281 429 623 867 1169 
---------------------- 
TD10=1169 
 
Vertex symbols for selected sublattice 
-------------------------------------- 
C1 Schlafli symbol:{6^4;8^2} 
With circuits:[6(2).6(2).6(2).6(2).8(6).8(6)] 
With rings:   [6(2).6(2).6(2).6(2).8(2).8(2)] 
All rings (up to 10): [(6(2),8).(6(2),8).(6(2),8).(6(2),8).8(2).8(2)] 
All rings with types: [(6(2),8).(6(2),8).(6(2),8).(6(2),8).8(2).8(2)] 
-------------------------------------- 
Total Schlafli symbol: {6^4;8^2} 
4-c net; uninodal net 
 
Topological type: nbo NbO; 4/6/c2 {6^4;8^2} - VS [6(2).6(2).6(2).6(2).8(2).8(2)]  (18802 types in 6 data-
bases) 
 
Strong rings (MaxSum=6): 6 
Non-strong ring: 8=6+6+6+6 
Elapsed time: 1.00 sec. 

 
 
 

     
 a b c d 
Figure 8: (a) Intersecting 8-rings (Hopf link) in self-catenating coesite; one of the rings is triangulated. 
(b) Two orientations (positive and negative) of the same 4-ring in body-centred cubic lattice determined 
as cross-products A×B and B×A. The black ball is the ring centroid. The direction of the ring tracing 
(1234) coincides with the A direction. (c) Non-Hopf link between 6- and 10-ring in self-catenating ice II. 
(d) Double link between 8-rings in interpenetrating array of two quartz-like nets. 
 
If there are more than one nets in the array ADS determines the type of their mutual entanglement 
(polythreading, polycatenation, interpenetration and self-catenation) according to principles described by 
Carlucci et al. (2003), Blatov et al. (2004). Analysis of 0D–2D (low-dimensional) entanglements is based 
on searching for the intersections of rings by bonds not belonging to these rings. Since, generally 
speaking, the rings are not flat, they are represented as a facet surface by a barycentric subdivision 
(triangulation, Fig. 8a). The ring surface has two opposite orientations (positive and negative), and the 
ring boundary has a distinct direction of tracing (Fig. 8b). Let us call the ring intersection positive if the 
bond making an intersection within the boundary of the ring is directed to the same half-space as the 
vector of positive ring orientation, and negative otherwise. If there is the single ring intersection (positive 
or negative) the link between rings is always true (Hopf, Fig. 8a). If the numbers of positive and negative 
intersections are the same, the link can be unweaved (it is false, non-Hopf link, Fig. 8c), if the difference 
between the numbers is more than a unity, the link is multiple (Fig. 8d). ADS determines the link types; 
the real entanglement exists if there is at least one true (Hopf or multiple) link. Then ADS outputs the type 
of the entanglement (see Example 1). A special case is the entanglement of several 3D nets (3D 
interpenetration), when the information is output about Class of interpenetration (Blatov et al., 2004) and 
symmetry operations relating different 3D nets (Example 2). 
 
Example 1. 2D+2D, inclined polycatenation (Fig. 9a) 
######################################## 
6;RefCode:LETWAI:C24 H24 Cu4 F12 N12 Si2 

A 

B 
1 

2 

3 

4 

Page 24



 26

Author(s): Macgillivray L.R.,Subramanian S.,Zaworotko M.J. 
Journal: CHEM.COMMUN. Year: 1994 Volume:  Number:  Pages: 1325 
######################################## 
 
Topology for Cu1 
-------------------- 
Atom Cu1 links by bridge ligands and has 
Common vertex with                                R(A-A)        f 
Cu 1    0.7063   -0.2063    0.0000   ( 1 0 0)     6.937A        1 
Cu 1    0.2063    0.2937   -0.5000   ( 0 0-1)     6.685A        1 
Cu 1    0.2063    0.2937    0.5000   ( 0 0 0)     6.685A        1 
------------------------- 
Structural group analysis 
------------------------- 
------------------------- 
Structural group No 1 
------------------------- 
Structure consists of layers ( 1 1 0); ( 1-1 0) with CuN3C6H6 
 
Vertex symbols for selected sublattice 
-------------------------------------- 
Cu1 Schlafli symbol:{6^3} 
With circuits:[6.6.6] 
-------------------------------------- 
Total Schlafli symbol: {6^3} 
3-c net 
----------------------- 
Non-equivalent circuits 
----------------------- 
Circuit No 1; Type=6; Centroid: (0.500,0.000,0.500) 
------------------------------ 
Atom       x       y       z 
------------------------------ 
Cu1      0.2937  0.2063  1.0000 
Cu1      0.7063 -0.2063  1.0000 
Cu1      0.7937 -0.2937  0.5000 
Cu1      0.7063 -0.2063  0.0000 
Cu1      0.2937  0.2063  0.0000 
Cu1      0.2063  0.2937  0.5000 
Crossed with bonds 
------------------------------------------------------------------------------------------------ 
  No | Atom       x       y       z     | Atom       x       y       z     |   Dist.  | N Cycles 
------------------------------------------------------------------------------------------------ 
   1 | Cu1       0.2937 -0.2063  0.5000 | Cu1       0.7063  0.2063  0.5000 |    6.937 | 6/inf 6/inf  
------------------------------------------------------------------------------------------------ 
Ring links 
------------------------------------------------------ 
Cycle 1 | Cycle 2 | Chain | Cross | Link | Hopf | Mult 
------------------------------------------------------ 
      6 |       6 |  inf. |     1 |    1 |   *  |    2 
------------------------------------------------------ 
Polycatenation 
-------------- 
Groups 
1: 2D, CuN3C6H6 (Zt=1); (1,1,0); (1,-1,0) 
Types 
---------------------------------------------------- 
Group 1 | Orient. | Group 2 | Orient. | Type 
---------------------------------------------------- 
      1 |   1,1,0 |       1 |  1,-1,0 | 2D+2D, inclined 
---------------------------------------------------- 
Elapsed time: 2.14 sec. 

 

                      

Page 25



 27

 
Figure 9: (a) Entangled 2D layers in the crystal structure of LETWAI. The nets are simplified at 
{OA}={TA}={Cu}. (b) Interpenetrating 3D nets in the cuprite (Cu2O) crystal structure. 
 
Example 2. Interpenetration of two 3D nets in cuprite, Cu2O (Fig. 9b) 

 
#################### 
7;RefCode:63281:Cu2O 
Author(s): Restori R,Schwarzenbach D 
Journal: Acta Crystallographica B (39,1983-) Year: 1986 Volume: 42 Number:  Pages: 201-208 
#################### 
 
------------------------- 
Structural group analysis 
------------------------- 
 
------------------------- 
Structural group No 1 
------------------------- 
Structure consists of 3D framework with Cu2O 
There are 2 interpenetrated nets 
FIV: Full interpenetration vectors 
---------------------------------- 
[0,1,0] (4.27A) 
[0,0,1] (4.27A) 
[1,0,0] (4.27A) 
---------------------------------- 
PIC: [0,2,0][0,1,1][1,1,0] (PICVR=2) 
 
Zt=2; Zn=1 
 
Class Ia  Z=2 
 
Vertex symbols for selected sublattice 
-------------------------------------- 
O1 Schlafli symbol:{12^6} 
With circuits:[12(2).12(2).12(2).12(2).12(2).12(2)] 
-------------------------------------- 
Cu1 Schlafli symbol:{12} 
With circuits:[12(6)] 
-------------------------------------- 
Total Schlafli symbol: {12^6}{12}2 
2,4-c net with stoichiometry (2-c)2(4-c) 
 
----------------------- 
Non-equivalent circuits 
----------------------- 
Circuit No 1; Type=12; Centroid: (0.000,0.500,0.500) 
------------------------------ 
Atom       x       y       z 
------------------------------ 
O1       0.2500  0.2500  1.2500 
Cu1      0.5000  0.5000  1.0000 
O1       0.7500  0.7500  0.7500 
Cu1      0.5000  1.0000  0.5000 
O1       0.2500  1.2500  0.2500 
Cu1      0.0000  1.0000  0.0000 
O1      -0.2500  0.7500 -0.2500 
Cu1     -0.5000  0.5000  0.0000 
O1      -0.7500  0.2500  0.2500 
Cu1     -0.5000  0.0000  0.5000 
O1      -0.2500 -0.2500  0.7500 
Cu1      0.0000  0.0000  1.0000 
Crossed with bonds 
------------------------------------------------------------------------------------------------ 
  No | Atom       x       y       z     | Atom       x       y       z     |   Dist.  | N Cycles 
------------------------------------------------------------------------------------------------ 
   1 | O1       -0.2500  0.7500  0.7500 | Cu1       0.0000  0.5000  0.5000 |    1.848 | 12/inf 12/inf 
12/inf 12/inf 12/inf 12/inf  
   1 | O1        0.2500  0.2500  0.2500 | Cu1       0.0000  0.5000  0.5000 |    1.848 | 12/inf 12/inf 
12/inf 12/inf 12/inf 12/inf  
------------------------------------------------------------------------------------------------ 
 
Ring links 
------------------------------------------------------ 
Cycle 1 | Cycle 2 | Chain | Cross | Link | Hopf | Mult 
------------------------------------------------------ 
     12 |      12 |  inf. |     1 |    1 |   *  |    6 
------------------------------------------------------ 
 

Page 26



 28

Elapsed time: 5.75 sec. 
 

 
ADS uses the information about ring intersections to construct natural tiling (Delgado-Friedrichs & 
O’Keeffe, 2005) that carries the net. Although the definition for natural tiling has been well known, there 
was no strict algorithm of its construction. The main problem is that not all strong rings (Fig. 10a) are 
necessary the faces of the tiles, but only essential ones (Delgado-Friedrichs & O’Keeffe, 2005; Fig. 10b). 
At the same time no criteria were reported to distinguish essential strong rings, so they can be determined 
only after constructing the natural tiling. 
 

                
 a b c 
 
Figure 10: (a) Closed sum of strong 5,6-rings (magenta) and non-strong 18-ring (yellow) in fullerene. (b) 
Two tiles, essential (green) and inessential (red) strong rings in the natural tiling of body-centred cubic 
net. (c) Two intersecting equivalent inessential rings (red and yellow) in the tile. 
 
ADS uses the following definition of essential strong ring: this is strong ring that intersects no other 
essential strong rings. There are two types of such intersections: homocrossing and heterocrossing, when 
the intersecting rings are equivalent (Fig. 10c) or inequivalent. The rings participating in a homocrossing 
are always inessential, the rings participating in only heterocrossings can be essential in an appropriate 
ring set, otherwise the ring is always essential. Thus, the algorithm of searching for essential rings 
consists of the following steps: 
 
(i) Compute all rings within a given range. Because even the rings of the same size are not always 
symmetrically equivalent, TOPOS can distinguish them by assigning types. The types are designated by 
one or more letters: a-z, aa-az, ba-bz, etc., for example, 4a, 12ab, 20xaz. As a result a typed all-ring 
Vertex symbol is calculated: 
 

Page 27



 29

An example of TOPOS output with typed all-ring Vertex symbols for rutile 
 

Vertex symbols for selected sublattice 
-------------------------------------- 
O1 Schlafli symbol:{4;6^2} 
With circuits:[4.6(2).6(2)] 
Rings coincide with circuits 
All rings (up to 10): [(4,6(2)).(6(2),8(6)).(6(2),8(6))] 
All rings with types: [(4,6(2)).(6(2),8a(4),8b(2)).(6(2),8a(4),8b(2))] 
-------------------------------------- 
Ti1 Schlafli symbol:{4^2;6^10;8^3} 
With circuits:[4.4.6.6.6.6.6.6.6.6.6(2).6(2).8(2).8(4).8(4)] 
With rings:   [4.4.6.6.6.6.6.6.6.6.6(2).6(2).*.*.*] 
All rings (up to 10): 
[4.4.(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).(6,8(3)).6(2).6(2).*.*.*] 
All rings with types: 
[4.4.(6,8a(2),8b).(6,8a(2),8b).(6,8a(2),8b).(6,8a(2),8b).(6,8a(2),8b).(6,8a(2),8b).(6,8a(2),8b).(6,8a(2), 
 8b).6(2).6(2).*.*.*] 
ATTENTION! Some rings * are bigger than 10, so likely no rings are contained in that angle 
-------------------------------------- 
Total Schlafli symbol: {4;6^2}2{4^2;6^10;8^3} 
 

For example, the first angle for the first node (oxygen atom) contains two non-equivalent 8-
rings. There is no conventional notation for typed all-ring Vertex symbol. We propose the 
following one: [(4,62).(62,8a4,8b2).(62,8a4,8b2)]. 

 
 
(ii) Select strong rings. All non-strong rings are output as sums of smaller rings: 
 
An example of TOPOS output with strong and non-strong rings for zeolite MTF 

 
Strong rings (MaxSum=8): 4,5a,5b,5c,5d,6a,6b,6c,6d,8a,8b 
Non-strong ring: 7=5d+6c+6d 
Non-strong ring: 12=4+5a+5a+5b+5b+6a+8a+8b 

 
 
(iii) Find all rings intersected by bonds (in entangled structures) and reject them. This condition is 
required because tile interior must be empty.  
 
(iv) For all remaining rings find their intersections. 
 
(v) Reject all rings participating in homocrossings. 
 
(vi) Arrange all remaining rings into the sets, where no intersecting rings exist. The sets are maximal, i.e. 
no other ring can be added to the set to avoid heterocrossings. 
 
Each of the sets obtained is then checked to produce a natural tiling. Starting from the first ring of the set 
and taking one of two possible ring orientations (Fig. 8b) ADS adds another ring to an edge of the initial 
ring to get a ring sum. For instance, three pentagonal and three hexagonal rings can be added to the 
central hexagonal ring in Fig. 10a. In 3D nets several (at least three) rings are adjacent to any edge, so 
there is an ambiguity at this step. To get over this problem and to speed up the calculation the dihedral 
angles are computed between each of the trial rings and the initial ring. Really these are the angles 
between normals to ring facets (triangles) based on the edge of the initial ring (Fig. 11a). Since the facets 
are oriented, the angles vary in the range 0-360°. Let us consider two facets of two trial rings 1 and 2 
(candidates to be the tile face) with different angles ϕ1 and ϕ2; ϕ2>ϕ1. Obviously, if we choose the ring 2, 
this means that the tile intersects another tile to which the ring 1 belongs. So, the target ring for natural 
tile can be unambiguously chosen at each step as the ring with minimal dihedral angle ϕmin. Then the next 
ring is added to any of free, i.e. belonging to only one ring, edge of the sum. The procedure repeats until 
no free edges remain, i.e. sum becomes closed (Fig. 10a). The closed ring sum is one of the natural tiles. 
Then the procedure starts again for the opposite orientation of the initial ring. As a result the initial ring 
becomes shared between two natural tiles (Fig. 11b). Then ADS considers all other inequivalent rings in 
the same way. Thus, all tiles forming the natural tiling are obtained with the following algorithm. 

Page 28



 30

 
procedure Natural_Tiling(output Tiles) 
NumTiles:=0 
for i:=1 to NStrongRings do 
begin 
 NumTiles:=NumTiles + 1 
 add StrongRings[i] to Tiles[NumTiles] initialize new tile 
 for j:=1 to 2 do j is an orientation number for the first ring of the tile 
 begin 
  repeat 
   call AddRing(j, output Tiles[NumTiles]) add new ring to the tile 
  until no new ring is added to Tiles[NumTiles] 
 end 
end 

 
 

   
 
Figure 11: (a) Some 4-rings sharing the same (red) edge in body-centred cubic net. The grey facet is the 
facet of the initial ring; the yellow one has smaller ϕ than the green one. The black balls are the rings 
centroids. (b) 4-ring (red) shared between two natural tiles. (c) Two natural tiles shared by red face in an 
MPT of the idealized net bcw. 
 
Then ADS determines a number of geometrical and topological characteristics of tiles and tiling 
(Delgado-Friedrichs & O’Keeffe, 2005). The resulted output looks as shown below (the sodalite net 
example). 
 
The physical meaning of the tiles is that they correspond to minimal cages in the net. Using these ‘bricks’ 
ADS can construct larger tiles by summarizing natural tiles (merging them by faces). In this way, maximal 
proper tiles (MPT) and tiling can be obtained representing maximal cages allowed by a given net 
symmetry (Fig. 11c). 
 
Resting upon the tiling ADS can construct dual net, whose nodes, edges, rings and tiles map onto tiles, 
rings, edges and nodes of the initial net (Delgado-Friedrichs & O’Keeffe, 2005). In particular, nodes and 
edges of the dual net describe the topology of the system of cages and channels in the initial net (Fig. 12). 
The data on the dual net are stored in a TOPOS database, so the dual net can be studied as an ordinal net 
including generation of dual net (‘dual dual net’). 
 

 
 

Figure 12: Initial net (cyan balls) and dual net (yellow sticks) in sodalite. 
 

Page 29



 31

An example of TOPOS output for natural tiling in sodalite net 
 

################# 
3;RefCode:sod:sod 
################# 
 
Topology for C1 
-------------------- 
Atom C1 links by bridge ligands and has 
Common vertex with                                R(A-A) 
C  1    0.5000    0.0000    0.2500   ( 1 0 0)     0.707A        1 
C  1    0.5000    0.0000    0.7500   ( 1 0 1)     0.707A        1 
C  1    0.0000    0.2500    0.5000   ( 0 0 1)     0.707A        1 
C  1    0.0000   -0.2500    0.5000   ( 0 0 1)     0.707A        1 
 
Vertex symbols for selected sublattice 
-------------------------------------- 
C1 Schlafli symbol:{4^2;6^4} 
With circuits:[4.4.6.6.6.6] 
Rings coincide with circuits 
Rings with types: [4.4.6.6.6.6] 
-------------------------------------- 
Total Schlafli symbol: {4^2;6^4} 
4-c net 
 
Essential rings by homocrossing: 4,6 
Inessential rings by homocrossing: none 
----------------------------- 
Primitive proper tiling No 1 
----------------------------- 
 
Essential rings by heterocrossing: 4,6 
Inessential rings by heterocrossing: none 
 
Natural tiling 
24/14:[4^6.6^8]; Centroid:(0.500,0.500,0.500); Volume=4.000; G3=0.078543 
------------------------------- 
Atom       x       y       z 
------------------------------- 
C1       0.5000  0.2500  0.0000 
C1       0.5000  0.0000  0.2500 
C1       0.7500  0.0000  0.5000 
C1       0.2500  0.0000  0.5000 
C1       0.5000  0.0000  0.7500 
C1       0.5000  0.2500  1.0000 
C1       0.0000  0.2500  0.5000 
C1       0.2500  0.5000  0.0000 
C1       0.0000  0.5000  0.2500 
C1       0.7500  0.5000  0.0000 
C1       0.5000  0.7500  0.0000 
C1       1.0000  0.2500  0.5000 
C1       1.0000  0.5000  0.2500 
C1       0.7500  0.5000  1.0000 
C1       1.0000  0.5000  0.7500 
C1       1.0000  0.7500  0.5000 
C1       0.0000  0.7500  0.5000 
C1       0.0000  0.5000  0.7500 
C1       0.2500  0.5000  1.0000 
C1       0.5000  0.7500  1.0000 
C1       0.5000  1.0000  0.2500 
C1       0.7500  1.0000  0.5000 
C1       0.5000  1.0000  0.7500 
C1       0.2500  1.0000  0.5000 
 
Tiling: [4^6.6^8] 
Transitivity: [1121] 
Simple tiling 
 
All proper tilings (S=simple; I=isohedral) 
------------------------------------------------------------ 
Tiling   | Essential rings | Transitivity | Comments | Tiles 
------------------------------------------------------------ 
PPT 1/NT | 4,6             | [1121]       | MPT SI   | [4^6.6^8] 
------------------------------------------------------------ 
 
Elapsed time: 2.55 sec. 

 
 

Page 30



 32

3.2.2. Analysis of systems of cavities and channels 
 
Quite another way to get the system of cages and channels is to consider Voronoi-Dirichlet partition (part 
2.1) and to analyze the net of VDP vertices and edges, Voronoi-Dirichlet graph (Fischer, 1986). The 
principal difference between tiling and Voronoi-Dirichlet approaches is that the former approach is purely 
topological and derives the cages and channels from the topological properties of the initial net, whereas 
the latter one treats the geometrical properties of crystal space for the same purpose. Here the geometrical 
and topological parts of TOPOS are combined with each other. 
 
The main notions of the Voronoi-Dirichlet approach are elementary void and elementary channel. Some 
their important properties to be used in TOPOS algorithms follow from the properties of Voronoi-
Dirichlet partition. 
 
Elementary void properties 
 
(i) The elementary void is equidistant to at least four noncoplanar atoms (tetrahedral void) since no less 
than four VDPs meet in the same vertex (Fig.13a). There are two types of elementary voids: major, if its 
centre is allocated inside the polyhedron, whose vertices coincide with the atoms forming the elementary 
void (for instance, inside the tetrahedron for a tetrahedral void, Fig.13a); and minor, if its centre lies 
outside or on the boundary of the polyhedron (Fig.13b). 
 
(ii) There are additional atoms at longer distances than the atoms of elementary void that can strongly in-
fluence the geometrical parameters of the elementary void. To find these parameters, one should construct 
the void VDP taking into account all atoms and other equivalent elementary voids (Fig.13c). Let us call 
the atoms and voids participating in the VDP formation environmental. Obviously, the atoms forming the 
elementary void are always environmental.  
 
(iii) Radius of elementary void (Rsd) is the radius of a sphere, whose volume is equal to the volume of the 
void VDP constructed with consideration of all environmental atoms and voids.  
 
(iv) Shape of elementary void is estimated by G3 value for the void VDP constructed with all 
environmental atoms and voids (Fig.13c). 
 

            
 a b c 
 
Figure 13: (a) Four VDPs meeting in the same vertex (red ball) in the body-centred cubic lattice. (b) A 
minor void (ZC2) allocated outside the tetrahedron of the three yellow oxygen atoms and zirconium atom 
forming this void in the crystal structure of NASICON, Na4Zr2(SiO4)3. All distances from ZC2 to the 
oxygen and zirconium atoms are equal 1.722 Å. (c) The form of an elementary void in the NaCl crystal 
structure. All environmental atoms and one void are yellow; Rsd =1.38 Å, G3=0.07854.  
 

Page 31



 33

Elementary channel properties 
 
(i) The elementary channel is formed by at least three noncollinear atoms since in the Voronoi-Dirichlet 
partition each VDP edge is shared by no less than three VDPs. The plane passing through these atoms is 
perpendicular to the line of the elementary channel (Fig. 14a).  
(ii) Section of the elementary channel is a polygon whose vertices are the atoms forming the channel; the 
section always corresponds to the narrowest part of the channel. The line of the elementary channel is 
always perpendicular to its section; ordinarily, the channel section and channel itself are triangular (Figs. 
14a, b). The elementary channel can be of two types: major, if its line intersects its section (Fig. 14a), and 
minor, if the line and section have no common points, or one of the line ends lies on the section (Fig. 
14b). 
 
(iii) Radius of the elementary channel section is estimated as a geometric mean for the distances from the 
inertia centre of the elementary channel section to the atoms forming the channel. The atom can freely 
pass through the channel if the sum of its radius and an averaged radius of the atoms forming the channel 
does not exceed the channel radius. 
 
(iv) Length of elementary channel is a distance between the elementary voids connected by the channel, 
i.e. is the length of corresponding VDP edge. 
 

        
 a b 
 
Figure 14: (a) Section of a triangular major elementary channel in the crystal structure of α-AgI. The 
channel line is red. The atoms forming the channel are in the vertices of the triangular section intersecting 
the channel line in the black ball. (b) A fragment of the channel system in the crystal structure of 
NASICON. The line of a minor elementary channel is red, the oxygen atoms forming this channel are 
yellow. Other minor elementary channels are shown by dotted lines. 
 
The Voronoi-Dirichlet approach is implemented into the program Dirichlet as the following general 
algorithm:  
 
(i) constructing VDPs for all independent framework atoms, i.e. a Voronoi-Dirichlet partition of the 
crystal space (interstitial particles including mobile ions or solvate molecules are ignored); 
 
(ii) determining the coordinates for all independent vertices of atomic VDPs, and, as a result, the 
coordinates of all elementary voids; 
 
(iii) determining all independent VDP edges, and, hence, all elementary channels; 
 
(iv) calculating the numerical parameters of elementary voids and channels. 

Page 32



 34

 
The information on the resulted conduction pattern is stored as a three-level adjacency matrix of the 
Voronoi-Dirichlet graph (Fig. 15). 
 
The first level contains the information on a (central) elementary void. A major elementary void is 
designated as ZA, a minor one is marked as ZB or ZC if it lies respectively on the boundary or outside the 
polyhedron of the atoms forming the void. The void radius (Rsd, Å) and second moment of inertia of its 
VDP (G3) are also shown. 
 
The second level includes the information on other elementary voids connected with a given (central) one 
by channels, and on the atoms of its near environment. Every elementary void is characterized by the 
length (R, Å) of the elementary channel connecting it with the central one, by the number of channel 
atoms (Chan), and by the channel radius (Rad, Å). If a channel is major, the text is marked bold, 
otherwise a normal font is applied. Every environmental atom of the central void is characterized by the 
distance to the void centre (R, Å), and by the solid angle of corresponding VDP face (SA, in percentage 
of 4π steradian); the greater SA, the more significant the contact atom–void. 
 
The third level contains the information on the atoms forming the channel; the distances between the 
atoms and the centre of the channel section are also given. 
 

 
 
Figure 15: A TOPOS window containing the information on the adjacency matrix of the 
Voronoi-Dirichlet graph for α-AgI. 
 
In contrast to the tiling approach, resting upon the adjacency matrix of Voronoi-Dirichlet graph TOPOS 
can compute a number of geometrical parameters of cages and channels to be important to predict some 
physical properties of the substance, in particular, ionic conductivity and ion-exchange capacity. Note 
that, in general, the Voronoi-Dirichlet graph does not coincide with the dual net. The dual net has always 
the same topology for any spatial embedding of the initial net, whereas the topology of the Voronoi-
Dirichlet graph depends on the geometrical properties of the crystal space. The physical meanings of the 
Voronoi-Dirichlet graph parameters are summarized in Table 3; recall that the graph nodes and edges 
correspond to elementary voids and channels. 

Page 33



 35

Table 3: Physical meaning of Voronoi-Dirichlet graph parameters 
 
Parameter Meaning 
Rsd of node The radius of an atom that can be allocated in the void under the influence 

of the crystal field distorting the spherical shape of the atom 
G3 of node Sphericity degree for the nearest environment of the void; the less G3, the 

closer the void shape to a sphere 
Radius of edge Effective radius of the channel between two voids 
Length of edge Length of the channel between two voids 
Connected subgraph Migration path, a set of the elementary voids and channels available for 

mobile particles 
A set of all connected 
subgraphs 

Conduction pattern of the substance. The dimensionality of the conduction 
pattern determines the dimensionality of conductivity (1D, 2D, or 3D) 

 
3.2.3. Analysis of packings 
 
Besides the model of atomic net, TOPOS can use the structure representation as a packing of atoms or 
atomic groups. In this case the adjacency matrix of the crystal structure contains interatomic contacts, not 
bonds. This representation can be obtained running AutoCN in the Solid Angles mode (part 2.1). The 
program IsoTest internally uses this mode to enumerate all possible atom packings to be selected in the 
crystal structure. IsoTest forms all subsets of the {NAtoms} set of all kinds of atom and generates the 
packing net (cf. part 2.3) by considering all faces of atomic VDPs constructed within a given subset. For 
instance, for NaCl, there will be considered three ion packings corresponding to the subsets {Na}, {Cl} 
and {Na, Cl}. For each of them IsoTest computes topological indices and performs topological analysis 
according to Scheme 4. 
 
3.2.4. Hierarchical topological analysis 
 
At the highest level of the topological analysis (Scheme 4) IsoTest analyzes all graph representations with 
the algorithm described in part 2.3. Simultaneously, IsoTest arranges the compounds by structure types 
using the definition of Lima-de-Faria et al. (1990). The results are output into a textual *.it2 file as 
shown below for comparing simple sulfates with binary compounds. 

 
------------------ 
Isotypic compounds 
----------------------------- 
Topological type of 1:Li2(SO4) 
----------------------------- 
(SO4)+Li 
 3:CaF2: F+Ca 
----------------------------- 
Topological type of 6:CaSO4 
----------------------------- 
(SO4)+Ca 
 1:NaCl: Na+Cl 
----------------------------- 
Topological type of 7:ZnSO4 
----------------------------- 
   Structure Type of 34:SiO2 S+Zn<->Si O<->O 
Zn+(SO4) 
 5:ZnS: Zn+S 
----------------------------- 
Topological type of 17:MgSO4 
----------------------------- 
(SO4)+Mg 
 2:NiAs: Ni+As 

 

Page 34



 36

In particular, the results show that Li2SO4 relates to the fluorite, CaF2, if sulfate ion is considered as a 
whole, with the oxygen atoms contracted to the sulfur atom. The similar relations are observed for the 
pairs CaSO4↔NaCl; ZnSO4↔ZnS; MgSO4↔NiAs. However, ZnSO4 has one more relation to 
cristobalite, SiO2, if Zn and S atoms correspond to Si atoms. 
 
Thus, the general scheme starts with the analysis of a single net or packing consisting of atoms, ions, 
molecules, voids, and finishes by the consideration of all possible topological motifs. 
 
4. Processing large amounts of crystal structure data 
 
Most of TOPOS procedures and applied programs can work in two modes, Manual or Continuous, 
corresponding to handling the single compound or large groups of crystal structures, respectively. The 
only exception is IsoCryst, where the Continuous mode is not available. The Continuous mode is not 
restricted to the number of entries; the largest world-wide databases, CSD, ICSD, CrystMet, may be 
processed at one computational cycle using the CIF interface. The data obtained in the Continuous mode 
are output to external files to be handled with TOPOS or other programs. The main Continuous 
operations available in TOPOS are listed below. 
 
Operation Output file format 
DBMS  
Copying, moving, deleting, undeleting, searching, retrieving, exporting, 
importing database entries 

TOPOS database, textual 
files 

Determining chemical composition, searching for errors in data and disor-
dering, transforming adjacency matrix, generating crystal structure repre-
sentations 

TOPOS database 

ADS  
Simplifying atomic net TOPOS database 
Computing CS, ES, VS, determining net topology textual *.nnt, Micro-

soft Excel-oriented 
*.txt 

Determining net entanglements and structure group dimensionality Microsoft Excel-oriented 
*.txt 

Selecting molecular crystal structure groups, constructing molecular VDPs, 
determining methods of ligand coordination 

binary StatPack *.bin 

Constructing tiles, computing parameters of natural tiling textual *.cgd 
Determining combinatorial types of tile binary *.edg, *.pdt, 

*.vec 
Constructing dual net TOPOS database 
AutoCN   
Computing adjacency matrix TOPOS database 
DiAn  
Computing interatomic distances and bond angles textual *.dia, *.ang 
Dirichlet  
Computing atomic VDP parameters binary StatPack *.bin 
Determining combinatorial types of VDP binary *.edg, *.pdt, 

*.vec 
Constructing Voronoi-Dirichlet graph TOPOS database 
HSite  
Determining positions of hydrogen atoms TOPOS database 
IsoTest  
Generating crystal structure representations, computing CS, ES, VS TOPOS database 
Comparing atomic and packing net topologies textual *.it2 
Determining structure types textual *.ist 

Page 35



 37

 
5. Outlook 
 
Crystallochemical analysis is still mainly based on the analysis of local geometrical properties of crystal 
structures, such as interatomic distances and bond angles. In this manner, crystal chemistry remains to be 
stereochemistry to a great extent. Discovering genuine crystallochemical regularities that manage global 
properties of crystal structures, such as atomic and molecular net topologies, types of atomic and 
molecular packings, sizes and architecture of cages and channels, require new theoretical approaches, 
computer algorithms and programs. To find these regularities crystal chemists need first to systematize 
huge amounts of crystal data collected in the world-wide electronic databases. This job can be done only 
by using automated computer methods, and TOPOS is intended to actualize them. The transformation of 
crystal chemistry into crystal chemistry notably began 15-20 years ago, but has already given rise to novel 
scientific branches, such as supramolecular chemistry, reticular chemistry, crystal engineering and crystal 
design. TOPOS program package evolves together with crystal chemistry; new algorithms and procedures 
are implemented every year. In this way, the current TOPOS state described above should not be 
considered as something completed, but as a foundation for further development. 
 
Acknowledgements 
 
The TOPOS applied programs Dirichlet, IsoCryst and StatPack were mainly written by Dr. A.P. 
Shevchenko. I am indebted to my former scientific advisor Prof. V.N. Serezhkin, who initialized the 
TOPOS project at the end of 1980s and stimulated its development for a long time. I am grateful to Prof. 
D.M. Proserpio, who opened my eyes to a lot of crystallochemical problems to apply TOPOS. 
Discussions with Prof. M. O'Keeffe, Dr. S.T. Hyde, Dr. O. Delgado-Friedrichs have highly promoted the 
development of TOPOS topological algorithms. My PhD students I.A. Baburin, E.V. Peresypkina, M.V. 
Peskov spent a lot of time testing novel TOPOS features; their painstaking work enabled me to fix many 
bugs and provided high TOPOS stability. 
 
References 
 
Blatov, V. A. (2004). Cryst. Rev. 10, 249-318. 
Blatov, V. A. (2006). Acta Cryst. A62, 356-364. 
Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377–395. 
Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289. 
Chung, S. J., Hahn, Th. & Klee, W. E. (1984). Acta Cryst. A40, 42-50. 
Conway, J.H. & Sloane, N.J.A. (1988). Sphere Packings, Lattices and Groups, New York: Springer Ver-

lag. 
Delgado-Friedrichs, O. & O’Keeffe, M. (2005). J. Solid State Chem. 178, 2480-2485. 
Fischer, W. (1986). Cryst. Res. Technol. 21, 499-503. 
Goetzke, K. & Klein, H.-J. (1991). J. Non-Cryst. Solids. 127, 215-220. 
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1-11. 
O’Keeffe, M. (1979) Acta Cryst. A35, 772-775. 
O’Keeffe, M. & Brese, N.E. (1992). Acta Cryst. A48, 663-669. 
Peresypkina, E.V. & Blatov, V.A. (2000). Acta Cryst. B56, 1035-1045. 
Preparata, F. P. & Shamos, M. I. (1985). Computational Geometry. New York: Springer-Verlag. 
Serezhkin, V. N., Mikhailov, Yu. N. & Buslaev, Yu. A. (1997). Russ. J. Inorg. Chem. 42, 1871-1910. 
Sowa, H. & Koch, E. (2005). Acta Cryst. A61, 331-342. 
Treacy, M.M.J., Foster, M.D. & Randall, K.H. (2006). Microp, Mes. Mater. 87, 255–260. 
Yuan, X. & Cormack, A.N. (2002). Comput. Mater. Sci. 24, 343-360. 
 

Page 36



 38

Appendix - TOPOS Glossary 
 

Atomic domain is a region, which 'belongs' to an atom in crystal space. The notion 'belongs' may be understood 
differently, depending on the task to be solved. 
 
Atomic Voronoi-Dirichlet polyhedron (VDP, Voronoi polyhedron, Dirichlet domain) is a convex polyhedron 
whose faces are perpendicular to segments connecting the central atom of VDP (VDP atom) and other 
(surrounding) atoms; each face divides corresponding segment by half. VDPs of all atoms form normal (face-to-
face) Voronoi-Dirichlet partition of crystal space. 
 
Circuit (cycle) is a closed chain of connected atoms. 
 
Coordination sequence (CS) {Nk} is a set of sequential numbers N1, N2, … of atoms in 1st, 2nd, etc. coordination 
spheres of an atom in the net. The first ten coordination spheres are usually considered at the topological 
classification. The coordination number is equal to N1, and the graph node is called N1-connected or N1-
coordinated. 
 
Elementary channel is a free space connecting a couple of elementary voids; the channel corresponds to a VDP 
edge for the atom forming either of the voids. Such an edge is called line of the elementary channel. Accordingly, 
the atoms forming the elementary channel are the atoms whose VDPs have common edge coinciding with the 
channel line. 
 
Elementary void is a region of crystal space with the centre in a vertex of an atomic VDP. The atoms, whose VDPs 
meet in the centre of a given elementary void, are referred to as atoms forming the elementary void. 
 
Extended Schläfli symbol (ES) contains a detailed description of all shortest circuits for each angle at each non-
equivalent atom. Total Schläfli symbol summarizes all the Schläfli symbols for the non-equivalent atoms with 
stoichiometric coefficients. 
 
Indirect neighbours are contacting atoms, the segment between which does not intersect the VDP face separating 
these atoms (minor VDP face). Otherwise atoms are called direct neighbours and the corresponding VDP face is 
called major. 
 
Lattice quantizer is a multilattice embedded into space in such a way that any point of the space is rounded to the 
nearest node of the quantizer. 
 
Molecular Voronoi-Dirichlet polyhedron is a union of VDPs of atoms composing a molecular (0D) structural 
group. Facet is a face of the VDP of an atom belonging to a molecular structure group. All facets corresponding to 
contacts between two molecules form faces (boundary surfaces) of adjacent molecular VDPs. Smoothed molecular 
VDP is a convex polyhedron derived from the molecular VDP by flattening their faces. 
 
Natural tiling is such subdivision of space by tiles that (i) preserves the symmetry of the net, (ii) has strong rings as 
tile faces, (iii) contains the tiles as small as possible. 
 
Radius of spherical domain (Rsd) is the radius of a sphere of VDP volume. 
 
Ring is the circuit without shortcuts, i.e. chains between two ring nodes that are shorter than any chain between the 
nodes that belongs to the circuit. 
 
Strong ring is the ring that is not a sum of smaller rings. 
 
Tile is a 3D solid (generalized polyhedron) bounded by rings (faces) in such a way that any ring edge is shared 
between two rings. 
 
Vertex symbol (VS) gives similar information as extended Schläfli symbol, but for rings. 
 
Voronoi-Dirichlet graph is the graph consisting of all vertices and edges of all VDPs in the Voronoi-Dirichlet 
partition. 

Page 37



 39

 

The XPac Program for Comparing Molecular Packing 
 
Thomas Gelbrich 
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. E-mail: 
gelbrich@soton.ac.uk ; WWW: http://www.ncs.chem.soton.ac.uk/thomas.htm  
 
Introduction 
 
The lack of suitable automated procedures has been a major obstacle in investigations of packing 
relationships in molecular crystals. Potential applications are not only the study of polymorphic forms, 
multiple-component crystals and close analogues of a given molecule, but also the comparison of sets of 
predicted structures. In a recent publication,1 we have reported a method for the identification of similar 
packing components which is implemented in the program XPac. Its effectiveness was demonstrated in a 
number of case studies.1 More recently, we have reported another application involving a larger series of 
25 structures based on the carbamazepine molecule,2 and more examples have been published 
elsewhere.3−6 We found that packing similarities are commonplace across a wide range of structures. In 
the present paper, we will take a closer look at the techniques employed by XPac. We will begin with a 
brief summary of the basic ideas.  
 
Concept 
 
The unit cell parameters, the space group and a list of atomic coordinates provide data for a concise 
description of the arrangement of molecules in a crystal structure. Another, more  expansive, possibility is 
the construction of the first coordination environment around each independent molecule. We call such an 
assembly of molecules a representative cluster of the crystal structure. It consists of a central molecule or 
kernel surrounded by m molecules forming a shell. The spatial arrangement of molecules in a given 
cluster can be described with internal coordinates. Thus, the clusters of two crystal structures containing 
molecules of a similar shape and size are immediately comparable. This applies regardless of the crystal 
systems, space groups and Z' parameters (number of crystallographically independent molecules)  
involved. 
 
Furthermore, a systematic comparison of the sub-units of two clusters will ultimately reveal if the 
underlying structures have any packing component in common. Such a component, termed a 
supramolecular construct (SC), is either extended in one, two or three dimensions or it is a discrete 
building block, and its representation in a cluster is called a seed. Hence, we compare two crystal 
structures by comparing their representative clusters, enabling us to identify an SC via its seed.   
 
Representative cluster  
 
After obtaining the crystal structure parameters from a cif-file, all Z' representative clusters of a structure 
are computed by investigation of a block of 3 × 3 × 3 unit cells. A shell molecule contains at least one 
atom for which the condition  

( )drrd sksk ++<,          
is satisfied (dk,s = distance between this atom and one atom belonging to the kernel molecule; rk, rs= van 
der Waals radii of these two atoms; d = cut-off parameter). The parameter d is adjustable and has a 
default value of 1.5 Å. The possible inclusion of unnecessary molecules does not compromise subsequent 
calculations. A structure with Z' = 2 contains two overlapping clusters. The following demonstration will 
be restricted to two crystal structures A and B with Z' = 1. The same rules apply also to Z' > 1 cases, 
though the treatment becomes more complex. 
 

Page 38

mailto:gelbrich@soton.ac.uk�
http://www.ncs.chem.soton.ac.uk/thomas.htm�


 40

Corresponding Sets of Points  
 
A set of points, derived from atomic positions, is assigned to the molecules of A and B, respectively. It 
will be used later for the generation of internal parameters. The positions chosen here will therefore 
determine the character of this investigation. Normally, one would aim to represent the shape of the 
molecule and avoid, if possible, arrangements that are coplanar or even collinear. However, for some 
investigations it is necessary to choose points that define just a particular region of the molecule.1a   
 
The application of XPac is only sensible if it is possible to establish corresponding ordered sets of points 
(COSP) for the molecules of structures A and B. This means, each molecule is represented by an ordered 
set of N points (OSP), say K = {P1, P2,...PN} for structure A and K = {P1, P2, ....PN} for structure B and 
there is a relation or correspondence, between each point Pi and each point Pi  where 1 ≤ i ≤ N. 
 
Figure 1a shows a typical choice of six non-hydrogen positions. Note that this arrangement is not affected 
by rotation of the benzene rings about the N−C and the S−C bond, respectively. This makes it more likely 
that a geometrically consistent COSP will be generated. All subsequent test procedures rely on 
differences in corresponding internal parameters computed from the COSP. These arise from two main 
sources: from the actual difference in molecular packing, which is the desired information, and from any 
inconsistencies in the COSP, which should be minimised. We can obtain a rough measure for the 
consistency of a COSP by calculating the mean absolute difference between all corresponding angles 
∠(Pi, Pj, Pk) and ∠(Pi, Pj, Pk) with 1 ≤ i, j, k ≤ N and i ≠ j, i ≠ k, j ≠ k.      
 

 
Fig. 1: Corresponding points for two crystal structures. a) Scheme showing the order of points. b) 
Generation of two corresponding sets of points from the differently ordered atom list of structures A (left) 
and B (right). c) The resulting corresponding sets of points.   
 
Sub-units of Clusters  
 
The clusters of structures A and B contain m and n shell molecules, respectively. The two cluster kernels are 
represented by sets of points, K and K, as defined in the previous step. Now we compute the shell for the first 
structure by applying the appropriate symmetry  operations on K so that m new OSP, S1, S2, ...Sm are obtained. The 
shell S1, S2, ...Sn of the cluster of B is computed in the same fashion. We have now obtained a representation for 
each complete cluster, 
 
  C = {K, S1, S2, ...Sm} and C = {K, S1, S2, ...Sn}. 
 
Next we consider subsets of C and C that are composed of the kernel and at least one shell molecule. We have 
argued earlier that the presence of a similar packing arrangement leads to similar cluster fragments, i.e. two cluster 
subsets E and E of C and C, respectively, containing a similar spatial arrangement of points (molecules). We use 
the "~" sign to indicate  geometrical similarity, E ~ E. 
 

Page 39



 41

E is then the seed of a sub-cluster (SC) in cluster C, and E is its counterpart in C. Both contain x shell molecules 
(and the kernel) and each element of E corresponds to one particular element of E and vice versa. Furthermore, 
seeds that contain more than one shell molecule, i.e. 
 
E = {K, S1, S2….Sx} and E = {K, S1,  S2….Sx}  where 1 < x ≤ min (m, n), 
 
can be divided into x2 − x / 2 overlapping triple sub-units (composed of two shell molecules and the kernel), and all 
these corresponding triple sub-units must be similar,     
 
{K, Si, Sj} ~ { K, Si, Sj }   for all i, j with 1 ≤ i, j ≤ x and i ≠j . 
 
Furthermore, we base our strategy on the assumption that, in order to show that E ~ E, it is sufficient to show that 
this condition is satisfied for all pairs of corresponding constituent triple sub-units. Thus, we will first establish 
whether C and C contain any similar double sub-units, {K, S} ~ {K, S}. Then, the SC will be built gradually from 
such pairs of double sub-units via triple sub-units and the seed.  
 
First, we divide C and C into m and n double sub-units, {K, S} and {K, S}, respectively, each consisting of the 
kernel and one shell molecule, as illustrated in Fig. 2b. These are also the smallest packing fragments that two 
structures can have in common. We use three different types of parameter for the parameterisation of the spatial 
arrangement in {K, S}. The first type, ang,  is the angle ∠(A, B, C) where either (A, B ∈ K; C ∈ S) or (A ∈ K; B, 
C ∈ S). The second type, dhd, is computed from five points A, B, C, D, E. It is the angle between the normal 
directions of the two planes defined by points (A, B, C) and (C, D, E), respectively, where (A, B, C ∈ K and D, E 
∈ S) or (A, B ∈ K and C, D, E ∈ S). The third type, tor, is the torsion angle obtained from four points A, B, C, D. 
It is the complement of the angle between two planes defined by (A, B, C) and (B, C, D) where (A, B, C ∈ K and D 
∈ S) or (A, B ∈ K and C, D ∈ S) or (A ∈ K and B, C, D ∈ S). The use of other parameters or combinations of 
parameters is possible, distance parameters are not employed in the current version of the program.  
 
A list of parameters, which is divided into three sections (ang, dhd and tor) and has a sufficiently large number of 
entries is compiled in exactly the same fashion for each {K, S} and each {K, S} sub-unit. Thus, all list entries with 
the same index correspond to one another. 
 

 
 

Fig. 2: a) Representation of the clusters of two structures. The cluster C of structure A consists of the 
kernel molecule and 14 shell molecules. The cluster C of structure B contains 13 shell molecules. b) 
Generation of double sub-units {K, D} and {K, S}. c) 14 × 13 = 182 pairings of double sub-units are 
investigated, and d) six of these actually exhibit geometrical similarity.  
 
In order to establish whether any of the m double sub-units of the first structure is similar to any of the m 
double sub-units of the second structure, we generate all m × n possible pairs, as illustrated in Fig. 2c. 

Page 40



 42

Each pair are tested by computing all absolute difference between corresponding entries xi and xi in their 
parameter lists. A schematic representation of this procedure is shown in Fig. 3. The sign of a torsion 
angle changes when the fragment is inverted. Thus, in order to account for the accidental choice of the 
molecule in structures with centres of inversion and/or mirror planes, we also calculate the absolute sum 
of corresponding entries in the tor lists. 
 
These four lists of differences are then used to compute mean values δang, δdhd, δtor/δtor*  which as a whole 
give an impression of the dissimilarity of the two double sub-units {K, S} and {K, S}. The general 
formula is 
 

∑
=

−=
M

i
ii xxM

1
/1δ  , 

where xi and xi are the i-th entries of the parameter lists for {K, S} and {K, S}, respectively, and M is the 
total number of list entries. The δ values are compared against adjustable cut-off parameters ∆ang, ∆dhd and 
∆tor, and we consider two double sub-units to be similar if  
 

(δang < ∆ang)  ∧  (δdhd < ∆dhd)  ∧  [(δtor  < ∆tor) ∨ (δtor* < ∆tor)] ⇒ {K, S} ~ {K, S}. 
 

 
 

Fig. 3: Comparison of the cluster sub-units {K, S} and {K, S}. a) List A with angles, dihedral and torsion 
angles representing {K, S}. b) The corresponding list B for {K, S}. c) The absolute difference for each 
pair of corresponding entries of lists A and B is computed. d) The mean values δ for each part of the list 
are computed and e) compared with cutoff parameters.  
 
The three panels in Fig. 4 show a typical distribution of δ values.1b Each data point corresponds to one of 
196 sub-unit combinations (m, n = 14). The green points near 0° derived from six combinations that 
satisfy condition (2), all other combinations are represented by blue or red points. 
 
In general, either of the following three cases will occur at this stage:  
 

1. no similar double sub-units found ⇒ the two structures exhibit no packing similarity ⇒ the 
comparison is finished 
2. a single similar double sub-unit found ⇒ this sub-unit is identical with the SC itself ⇒ the 
comparison is also finished  
3. a set of similar double sub-units found ⇒ we need to establish whether they are actually parts 
of a larger seed  

 
We continue in the next section with the treatment of case 3. 
 

Page 41



 43

 
 
Fig. 4: Distribution of δ values calculated for 196 combinations of double sub-units.1b The green data 
points near 0° belong to six pairs with a {K, S} ~ {K, S} relationship, data points for all other pairs are 
coloured blue and red. Note that a wide gaps separates the green points from the rest.  
 
Assembly of the supramolecular construct 
We have now a certain number (at least two) of pairs of the type {K, S} ~ {K, S} and want to find out 
whether it is possible to join any of them so that pairs of larger cluster subunits with similar geometry are 
obtained. Merging two pairs of double sub-units gives a pair triple sub-units, {K, S1, S2} and {K, S1, S2}. 
From x pairs of double sub-units, we obtain x2 − x  / 2 triple pairs. This is illustrated in Fig, 5a. For each 
pair we will test whether  
 
{K, S1, S2} ~  {K, S1, S2} 
 
is true a statement (Fig. 5b). The test procedure is very similar to that outlined above for double sub-units. 
Again, we generate parameter lists. However, each parameter is now defined by points originating from 
three rather than two molecules. Again, we calculate the mean differences of corresponding list entries. A 
set of dissimilarity parameters δang, δdhd and δtor / δtor* is computed and compared against the respective 
cut-off parameter ∆, and  
 

(δang < ∆ang)  ∧  (δdhd < ∆dhd)  ∧  [(δtor  < ∆tor) ∨ (δtor* < ∆tor)] ⇒ {K, S1, S2} ~  {K, S1, S2}. 
 

Page 42



 44

 

Fig. 5: Continued from Fig. 2. a) A − F, the six {K, S} ~ {K, S} pairs from Fig. 2d. b) 15 triple sub-units 
obtained by pairing of A − F. c) and d) Two possible results of the subsequent comparison of these triple 
subunits. Left: All corresponding subunits are similar, i.e. A − F coexist in one seed. Right: ACD and 
BEF can only coexist in two distinct groups, leading to two seeds.    
 
We determine all pairs of similar triple clusters and use this information to assemble larger cluster sub-
units, the seed of the SC. The left panel of Figs. 5c and 5d shows a case where all double subunits coexist 
in a single seed. By contrast, the right panel shows a case where certain combinations lead to dissimilar 
triple subunits. As a consequence, we obtain two distinct seeds, each containing three shell molecules.  
 
This separation could well be genuine, but it could also be the result of cut-off parameters being set too 
low or to high. Then either too few or too many relationships are recognised as similar. Any such 
problems can be resolved by repeating the procedure with a different set of ∆-parameters. Finally, the 
seed can be expanded into the SC using its symmetry operations. At this point, information about the 
dimensionality and the corresponding base vectors of the SC can be obtained easily. The investigation of 
a series of N crystal structures consists of N2− N / 2 individual cycles of this kind, and the same COSP are 
used throughout the investigation.  
 
Summary 
 
The representation of crystal structures as clusters of molecules enables us to design powerful tools that 
permit a comparison even if the underlying structures crystallise in different space groups and with 
different Z'. This is useful for the analysis of polymorphic forms and predicted structures and provides a 
starting point for more complex investigations of large series of related structures.   
 
References 

1 T. Gelbrich, M. B. Hursthouse, Cryst. Eng. Comm. 2005, 7, 324. a) Case study 4. b) Case study 1. 
2 T. Gelbrich, M. B. Hursthouse, Cryst. Eng. Comm. 2006, 8, 448. 
3 R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Cryst. Growth Des. 2003, 3, 1027. 
4 S. Gerber, H. Krautscheid, T. Gelbrich, H. Vollmer, Z. Anorg. Allg. Chem. 2004, 630, 1427. 
5 T. Gelbrich, T. L. Threlfall, S. Huth, E. Seeger, M. B. Hursthouse, Z. Anorg. Allg. Chem. 2004, 630, 1451. 
6 B. Murphy, M. Aljabri, A. M. Ahmed, G. Murphy, B. J. Hathaway, M. E. Light, T. Gelbrich, M. B. Hursthouse, 

Dalton Trans. 2006, 357.   

Page 43



 45

 

The Pixel module of the OPiX computer program package: affordable 
calculation of intermolecular interaction energies for large organic 

molecules and crystals 
 
Angelo Gavezzotti 
Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via Venezian 21, 
20133 Milano (Italy), E-mail: angelo.gavezzotti@unimi.it , WWW: http://users.unimi.it/gavezzot/  
 
Introduction 
 
The Pixel method is a recently introduced procedure for the calculation of intermolecular interaction 
energies.  The method is based on a semi-empirical computational procedure in which all the charge 
density of a molecule is taken into account rather than just a few nuclei and point charges. Electrostatic 
and repulsion terms are included in the calculations, but dispersion and polarization terms are also 
included because the methodology is mainly intended for the study of organic molecular assemblies 
rather than minerals or ionic solids.  
 
Theoretical chemistry cannot continue to be based on calculations on just  formic acid and urea, and a 
second characteristic of the Pixel method is its ready applicability to molecular systems of genuine 
chemical interest, say, a 50-atom molecule. The method is computationally demanding: in applying it to 
naphthalene, for example, one switches from an 18-site description of the molecule in the atom-atom 
potential scheme to a 20,000-site description. This is only possible now that computer-speeds have 
reached the level of teraflops per second 
 
Pixel calculations are carried out with a submodule of the OPiX package, which can also perform a 
number of other tasks, including packing analysis and packing structure prediction. Use of the standard 
files in OPiX format greatly facilitates also the use of the Pixel module. A scheme and a brief description 
of the OPiX package follow. 
 

   
 
Fig 1: a) calculate the full interaction profile for this dimer in 3 minutes... or b) ..or the lattice energy of 
aspirin in 10 minutes! 
 
Pixel calculations are carried out with a submodule of the OPiX package, which can also perform a 
number of other tasks, including packing analysis and packing structure prediction. Use of the standard 
files in OPiX format greatly facilitates also the use of the Pixel module. A scheme and a brief description 
of the OPiX package follow. 
 

Page 44

mailto:angelo.gavezzotti@unimi.it�
http://users.unimi.it/gavezzot/�


 46

 
 
Fig 2: OVERVIEW OF THE OPiX SYSTEM, blue: main input file ; red: the Pixel modules; View more 
detail at, and download files from: http://users.unimi.it/gavezzot/  
 
2. OPiX: General description 
 
OPiX is a program package for the calculation of molecular and intermolecular properties. It is written in 
featureless Fortran and it has been compiled and used on all types of computers. OPiX uses file-to file 
input options, and there are no windows or menus. 
 
3. Format of main input structural file 
 
Molecular and crystal information can be given in one of the following file formats: 
 
format 1 (filename extension  .oih): atomic coordinates and crystal data (if any), implicit hydrogen atom 
positions. The positions of non-hydrogen nuclei are given as coordinates, while the positions of hydrogen 

 

 

Page 45

http://users.unimi.it/gavezzot/�


 47

nuclei are given as a series of commands for the calculation of explicit coordinates for each hydrogen, 
using standard geometrical criteria from the position of non-hydrogen nuclei. Given the importance of H-
atom positions in crystal energy calculations, this renormalization of hydrogen atom positions is essential 
when X-ray crystal atomic coordinates are used. Pixel has been calibrated using renormalized C-H 
distances of 1.08 Å or O-H and N-H distances of 1.0 Å.  
 
format 2 (filename extension  .oeh): atomic coordinates and crystal data (if any), explicit hydrogen atom 
positions. The positions of all nuclei are given as explicit coordinates. The COOR module converts .oih 
into .oeh files, i.e. calculates H-atom coordinates from the codes in the .oih file. 
 
A .oeh file may contain atomic coordinates of one or more gas-phase molecule(s), or, if it is being used 
for a calculation on a crystal structure, the atomic coordinates of one reference molecular unit, plus cell 
dimensions and space group information. In the latter case, a cluster of molecules representing the crystal 
may be generated (this will not be possible when the structure is polymeric and the cell contents are 
covalently bound to surrounding cells). A .oih or .oeh file must contain coordinates for a full molecule, so 
for those crystals in which the asymmetric unit is a fraction of the molecule, the entire molecule must be 
reconstructed and the appropriate space subgroup must be used. 
 
More detail, and a description of the PROM module (polymorph generator/predictor) and OPROP module 
(crystal packing properties and statistics) can be found in the documentation on the author's website (docs 
subdirectory of the opix directory): http://users.unimi.it/gavezzot/ . 
 
 
4. The PIXEL module: Calculation of intermolecular energies by the semi-
classical density sums (SCDS-pixel) method 
 
The Pixel modules (PIXELC or PIXELD, see below) calculate the Coulombic, polarization, dispersion 
and repulsion energies between separate, rigid molecules. The interacting molecules in these calculations 
are represented by charge density distributions, usually calculated using the program GAUSSIAN 
(employing the CUBE option). Each elementary density volume with its charge is called a pixel. The 
original reference coordinate frame for position of the atomic nuclei and of the electron density pixels is 
the same one used in the GAUSSIAN calculation. No intramolecular energies are calculated.  An 
additional module, MAT2 is used for the preparation of input files.  
 
The electron density output by GAUSSIAN is encoded in an array containing a million or more pixels, 
and in order to reduce the run-time of subsequent calculations these are ‘condensed’ into larger pixels, 
yielding an array containing around 10-to-20000 values.  The condensation level can be controlled by the 
user.  A model of the set of interacting molecules also needs to be constructed: this might be a simple 
dimer or a larger array of molecules generated using crystallographic information.  Within the set of 
interacting molecules there will be contact and overlap between undeformed densities, and interaction 
energies are obtained pixel-by-pixel summations of Coulombic, linear polarization, and dispersion 
(London-type) terms; repulsion is proportional to the overall integral between charge densities. The total 
energy is the sum of these four terms.  The equations used to calculate the individual energy terms are 
given in refs. 5 and 13 in the Bibliography. Four parameters are needed in the calculation of the 
dispersion, polarization and repulsion energies; optimized values for these are given in the references; 
they have been hard-coded into the program as defaults, though these can be over-ridden by the user. 
 
The Pixel method shares with calculations based on atom-atom potential calculations the advantage that 
explicit values are obtained for Coulombic, polarization, dispersion and repulsion terms.  While it is not 
possible to calculate intramolecular (conformational) energies, treat dynamics or change or polarize the 
charge distribution, the PIXEL method has a number of important advantages over more conventional 
procedures.  A molecule is treated as a 10,000-site object rather than a N(atom)-site object, and the 
method might be regarded as equivalent to an infinitely large multipolar expansion. In calculations using 

Page 46

http://users.unimi.it/gavezzot/�


 48

atom-atom potentials each atom must be assigned a charge, whereas in the PIXEL method the Coulombic 
energy is parameter-less and so the Pixel Coulombic energy can be regarded as exact as the wavefunction 
used to calculate it. Penetration energies can also be calculated. 
 
Two modules make up the facilities for carrying out PIXEL calculation. These are named PIXELD and 
PIXELC, and which is used depends on the type of problem being analysed: 
 
PIXELD is used for clusters made of any number of molecules of up to two molecular species, the first 
species is referred to as the solute, the second species as the solvent. The position of each molecule in the 
cluster is obtained by transforming the original coordinates for nuclei and pixels by an orientation matrix 
constructed from three Euler angles, and by a displacement vector. These are expressed in the in the same 
coordinate frame as used in the GAUSSIAN calculation, and must be derived by the user.  
 
PIXELC is used for calculations on a crystal made of only one molecular species, one molecule per 
asymmetric unit. The matrix operation that transforms from the molecular reference frame to coordinates 
in the crystal structure is obtained by use of a separate module MAT2; the positions of molecules in the 
cluster that represents the crystal structure are generated automatically using cell parameters, space group 
matrices, and a cutoff threshold for the distance between centers of mass of the central and surrounding 
molecules. Note that it is not possible to treat crystals containing more than one molecule per asymmetric 
unit. 
  
In both cases, it is convenient to start with a .oeh data file which contains the molecular (and, if needed, 
the crystal) information. The minimization of the cluster energy or of the lattice energy can be carried out 
with a steepest-descent or a Symplex algorithm.  
 
4.1 Program inputs and outputs 
 
The input to Pixel consists of: 
 
1) an electron density file for the solute (and one for the solvent molecule if any), extension .den  
2) a file with the molecular specifications, extension .inp. 
3) a file with the input parameters of the calculation, pixel.pmt 
 
Besides, a .gjf file is needed for input to GAUSSIAN. Both .inp and .gjf file are prepared by submodule 
MAT2 from a .oeh file.  
 
The program outputs are: 
 
1) a listing-file with the results of the calculation; extension .oxp; 
2) for the cluster calculation with PIXELD, a file with atomic coordinates; extension .dat  
3) when a lattice energy optimization is carried out, a file (.oeh format) with the final crystal data; 
extension .pxm. 
 
4.2 How to run a pixel calculation 
 
1) Prepare a molecular model for the solute molecule (x,y,z coordinates) and set up a .oeh file. Cif files in 
the format output by the Cambridge Database can be converted into .oeh files using the module RETCIF-
COOR, see scheme 1;  
 
2) Run the MAT2 module. MAT2 prepares the Pixel input file .inp and the GAUSSIAN input file .gjf. 
MAT2 also calculates the transformation between original  coordinates and a coordinate frame whose 
origin is the molecular center of charges with axes directed along the principal charge moments. MAT2 
will also calculate automatically the limits of the electron density box and, for the crystal case, also the 

Page 47



 49

matrix transformation that correlates the molecular coordinate frame and the crystal coordinate frame. 
MAT2 will also recognize atoms and assign atomic polarizabilities.  
 
3) Run GAUSSIAN for the electron density calculation. The standard use requires a valence only density 
(option 'frozencore' in GAUSSIAN). If a MO package different from GAUSSIAN is used, the input data 
and the output electron density file must be converted accordingly.  The parameters used in Pixel have 
been optimized using densities from MP2 6-31G** calculations. 
 
4) Repeat steps 1 to 3 for the solvent molecule (the second molecular species), if there is one.  
 
5) Prepare the parameter file and then run Pixel. The parameter file contains the parameters of the theory 
and a few indicators for condensing the molecular charge density  
 
 
4.3 Options 
 
4.3.1 Case a), a cluster of molecules, PIXELD module 
 
4.3.1.1 Option i) calculate the energy for each set of positional parameters, three center of mass 
coordinates and three orientation angles for each molecule, specified from input one after the other. The 
values for the translational and the rotational displacements must be found by geometrical considerations; 
refer to the atomic coordinates in the GAUSSIAN output file. The first molecule is usually the 
undisplaced reference molecule, others are translated and rotated as needed.  
 
4.3.1.2 Option ii) calculate the energy for a simultaneous variation of up to 5 parameters in a given range;   
 
4.3.1.3 Option iii) Optimize the cluster energy by some cycles of steepest descent and some cycles of 
symplex. As expected, the optimization procedure is efficient very far from the minimum, but becomes 
critical if an energy valley is very shallow. Use automatic minimization far from the minimum, followed 
by a scan of the energy surface using option ii in the neighbourhood of shallow minima. 
 
4.3.1.4 Option iv) PIXELD can be used also to calculate the energy of dimers or oligomers extracted 
from a crystal structure. In this case the input is exactly as for the crystal case (see below), but only the 
symmetry operations corresponding to the molecules in the oligomer must be given.  
 
4.3.2 Case b), a crystal, PIXELC module 
Molecules whose distance from the central one is in a prescribed range are automatically included in 
crystal model. Typically, one has 100-150 molecules in the cluster for which the Coulombic, polarization, 
dispersion and repulsion energies are calculated.  
 
4.4 A brief description of the Pixel output files 
 
While the program is running, some output appears on the screen (formal unit 6). The file output is 
directed to file pixel.oxp. This has a title, some echo of input parameters, and detail on the screenout and 
condensation procedures carried out on the original electron density, as well as of the subdivision of 
pixels among atomic basins. Then the output has the polarization energy at each molecule, and finally the 
Pixel energies: ec, electrostatic; ep, polarization; ed, dispersion; er, repulsion; et, total. The next line has 
the 6-exp force field (FF) energies: repulsion, attraction, total, point-charge energy, total+point charge 
energy. When this printout carries the 'lattice' tag, the Coulomb, dispersion, and repulsion energies are 
divided by two so the total is the computational equivalent of the enthalpy of sublimation.  
 
 

Page 48



 50

5. What you can do with Pixel: Worked examples and output explanations  
 
5.1 Calculation of electron densities and parameter file 
 
A sample input file for GAUSSIAN for acetylene is: 
 
 
#MP2/6-31G** guess=core nosym density=MP2 pop=esp cube=cards cube=frozencore 
 acetylene                 
 0 1 
 C    0.000000    0.000000   -0.600000 
 C    0.000000    0.000000    0.600000 
 H    0.000000    0.000000   -1.660000 
 H    0.000000    0.000000    1.660000 
c:\opix\dens\acetylen.den 
    0 -3.800000   -3.800000   -4.280000 
   96  0.080000    0.000000    0.000000 
   96  0.000000    0.080000    0.000000 
  108  0.000000    0.000000    0.080000 

 

 
 
Fig 3: Axis orientation of acetylene and water 
 
The Pixel parameter file: if the default version of the theory is desired, all these inputs are zero 
 
0.00 3.00 150.0 4800.0 1200.0 0      the four parameters of the theory    
   3 0 0.000001 99.0                electron density trimmers, solute 
   3 0 0.000001 99.0                electron density trimmers, solvent 

 
5.2 Example 1: Parallel acetylene dimer  
 
The first example concerns an acetylene dimer with two molecules stacked along axis x, at distances of  
3.35 and 4.0 Å (see 4.3.1.1). The input file is: 
 
  acetylene dimer parallel         title        
   2   0   4   0                   guide integers 
   0.000   0.000 
   1   3 -0.2000  0.0000           atomic information: atom number, atom type  
   2   3 -0.2000  0.0000           (3=C, 1=H), charge and polarisability. The 
   3   1  0.2000  0.0000           zeros given for polarizabiltiy that 
   4   1  0.2000  0.0000           defaults should be used. 
   0.000  0.000  0.000 0.000   0.000   0.000   1. position of 1st molecule 
   3.350  0.000  0.000 0.000   0.000   0.000   1. position of 2nd molecule 
    0  0  
   0.000  0.000  0.000 0.000   0.000   0.000   1. 

   4.000  0.000  0.000 0.000   0.000   0.000   1. 
   99 99  

 

Page 49



 51

The energy is calculated for only two distances and the output file is: 
 

 Welcome to Pixel DIMER version 
   acetylene dimer parallel                
 Variable Krep,parameters Edisp,Epol,Erep 
                    3.000   150.00   4800.00  1200.000 
  Using damp.atomic ionization potent. for Edisp 
   First molecule (solute) data 
 ionization potential and charge    0.0000    0.00 
 Atoms 
   type, Z, x,y,z, point charge, polarizability, vdW R 
     3    4.00     0.00000   0.00000  -0.59999 -0.2000   1.35    1.77 
     3    4.00     0.00000   0.00000   0.59999 -0.2000   1.35    1.77 
     1    1.00     0.00000   0.00000  -1.65998  0.2000   0.39    1.10 
     1    1.00     0.00000   0.00000   1.65998  0.2000   0.39    1.10 
 
 Density file title  acetylene                                
  min and max original density  0.0000E+00  0.8025E+01      atomic basins 
 atom   1 basin and real charge     4.207     4.000 
 atom   2 basin and real charge     4.207     4.000 
 atom   3 basin and real charge     0.792     1.000 
 atom   4 basin and real charge     0.792     1.000 
   Condensation level    3 
   Density steps,original   96   96  108 and condensed   32   32   36 
 steps and pixel vol(A)     0.2400   0.2400   0.2400   0.01382 
 original electron number   9.99817  remaining-pixels     9.99652   9940 
 q min and max  0.1000E-05     99.00 
 screening: electrons out low and high  0.1652E-02  0.0000E+00 
 atom   1 condens.basin and real charge    -4.236     4.000 
 atom   2 condens.basin and real charge    -4.236     4.000 
 atom   3 condens.basin and real charge    -0.764     1.000 
 atom   4 condens.basin and real charge    -0.764     1.000 
 polarizability,raw, tot, renorm  0.35546E+01  0.34800E+01  0.34800E+01 
 renormalized total charges     10.000000  -10.000000 
 no. of charge points per atom 
    1 3882  2 3882  3 1088  4 1088 
 
 ===== Start energy calculations ===== 
  collision parameter     0.120 
 Molecular cluster, positions, c.o.m. and euler angles 
  solute     1   0.0000   0.0000   0.0000    0.00    0.00    0.00   1.0 
  solute     2   3.3500   0.0000   0.0000    0.00    0.00    0.00   1.0 
 A...A  A...B  B...B total energies 
 coul       3.1     0.0     0.0     3.1 
 disp      -5.3     0.0     0.0    -5.3 
 rep        9.2     0.0     0.0     9.2 
 total polarization    -1.4 total energy     5.6         total Pixel energy 
  FF cluster e6r eqq etot    -1.0     2.9   1.8  atom-atom force field energy 
 
 Molecular cluster, positions, c.o.m. and euler angles 
  solute     1   0.0000   0.0000   0.0000    0.00    0.00    0.00   1.0 
  solute     2   4.0000   0.0000   0.0000    0.00    0.00    0.00   1.0 
 A...A  A...B  B...B total energies 
 coul       2.5     0.0     0.0     2.5        the first three columns are 
 disp      -1.8     0.0     0.0    -1.8    solute-solute, solvent-solute and 
 rep        0.6     0.0     0.0     0.6      solvent -solvent energies 
 total polarization    -0.2 total energy     1.1 
  FF cluster e6r eqq etot    -2.1     1.5    -0.6 

 

Page 50



 52

5.3 Example 2: acetylene-(H2O)2 trimer  
 
The hydrogen atoms of the acetylene molecule point at the oxygen atom of two water molecules along the 
bisector of the HOH angle: 
 

 
 
Fig 4: acetylene-(H2O)2 trimer ; z-axis→ 
 
The first water molecule is just displaced along +z, while the second one is inverted and displaced along -
z. The H...O distances are varied by having the z-coordinates of the water molecules vary from 3.66 to 
4.06 and from -4.06 to -3.66 in steps of 0.2 Å . See in 4.3.1.2. The input file is: 
 
 acetylene-water(2) trimer                 
   1   2   4   3 
   0.000   0.000 
   1   3 -0.2000  0.0000                 acetylene atomic info 
   2   3 -0.2000  0.0000 
   3   1  0.2000  0.0000 
   4   1  0.2000  0.0000 
   0.000   0.000 
   1  16 -0.8000  0.0000                 water atomic info 
   2  25  0.4000  0.0000 
   3  25  0.4000  0.0000 
 0.000   0.000   0.000    0.00   0.00   0.00   1.0     starting positions 
 0.000   0.000   3.6600   0.00   0.00   0.00   1.0 
 0.000   0.000  -4.0600   0.00   0.00   0.00  -1.0 
   -1  0 
 0.  0.  0.     0.  0.  0.                 final positions 
 0.  0.  4.06   0.  0.  0. 
 0.  0. -3.66   0.  0.  0. 
 0.  0.  0.     0.  0.  0.                  steps 
 0.  0.  0.2    0.  0.  0. 
 0.  0.  0.2    0.  0.  0. 
 

The last part of the output file has the interaction energies 
 
    1 variable parameters   3.660  -4.060 
   cluster ec ep ed er et   -37.1   -10.2    -9.2    30.9   -25.7 
  FF cluster e6r eqq etot    12.2   -20.7    -8.5 
    2 variable parameters   3.660  -3.860 
   cluster ec ep ed er et   -42.2   -12.1   -10.5    38.1   -26.7 
  FF cluster e6r eqq etot    15.5   -22.7    -7.2 
    3 variable parameters   3.660  -3.660 
   cluster ec ep ed er et   -51.1   -15.9   -12.2    52.1   -27.1 
  FF cluster e6r eqq etot    25.8   -25.5     0.2 
    4 variable parameters   3.860  -4.060 
   cluster ec ep ed er et   -28.2    -6.3    -7.6    16.9   -25.2 
  FF cluster e6r eqq etot     2.0   -17.9   -15.9 
    5 variable parameters   3.860  -3.860 
   cluster ec ep ed er et   -33.3    -8.3    -8.8    24.2   -26.2 
  FF cluster e6r eqq etot     5.3   -19.9   -14.6 
    6 variable parameters   3.860  -3.660 
   cluster ec ep ed er et   -42.2   -12.1   -10.5    38.1   -26.7 
  FF cluster e6r eqq etot    15.5   -22.7    -7.2 
    7 variable parameters   4.060  -4.060 
   cluster ec ep ed er et   -23.1    -4.4    -6.3     9.6   -24.2 
  FF cluster e6r eqq etot    -1.3   -15.8   -17.1 

 

Page 51



 53

5.4 Example 3: optimization of the acetylene-water π-dimer 
 

 

   
 
 
Fig 4: acetylene-water π-dimer 
 
See in 4.3.1.3. The input file is: 
 
  acetylene-water O..pi dimer                 
   1   1   4   3 
   0.000   0.000 
   1   3 -0.2000  0.0000 
   2   3 -0.2000  0.0000 
   3   1  0.2000  0.0000 
   4   1  0.2000  0.0000 
   0.000   0.000 
   1  16 -0.8000  0.0000 
   2  25  0.4000  0.0000 
   3  25  0.4000  0.0000 
 0.000   0.000   0.000    0.00   0.00   0.00   1.0 
 0.000   2.600   0.000   90.00   0.00   0.00   1.0 
    2 10                     two cycles st.descent, 10 cycles Symplex 
 0 0 0 0 0 0  0 1 0 1 0 0    optimization tags: acetylene molecule fixed, 
 0.1 1. 2. 20.0 0.001        water molecule: vary only y-coordinate 
                             and in-plane rotation angle 

 
The starting configuration is is obtained by rotating the water molecule 90° around x and displacing by 
2.6 Å along y, as shown on the left. These two parameters are then optimized and the final  configuration 
is seen on the right. Steepest descent works well far from the minimum, Symplex is more performing 
close to the minimum. Pixel reasonably predicts that the π-system of acetylene will be approached by the 
H-atom of the water molecule.  The last part of the output shows the progress of the Symplex 
optimization: 
 
current parameters 
       0.000     0.000     0.000     0.000     0.000     0.000 
       0.000     3.435     0.000   100.095     0.000     0.000 
   cluster ec ep ed er et    -4.0    -2.1    -4.3     5.0    -5.4 
 current parameters 
       0.000     0.000     0.000     0.000     0.000     0.000 
       0.000     3.425     0.000   102.157     0.000     0.000 
   cluster ec ep ed er et    -4.3    -2.3    -4.4     5.3    -5.7 
 current parameters 
       0.000     0.000     0.000     0.000     0.000     0.000 
       0.000     3.356     0.000   101.282     0.000     0.000 
   cluster ec ep ed er et    -4.7    -2.8    -4.9     7.2    -5.3 
 current parameters 
       0.000     0.000     0.000     0.000     0.000     0.000 
       0.000     3.372     0.000   105.845     0.000     0.000 
   cluster ec ep ed er et    -5.3    -3.0    -4.8     7.4    -5.7 
 current parameters 
       0.000     0.000     0.000     0.000     0.000     0.000 
       0.000     3.353     0.000   109.970     0.000     0.000 
   cluster ec ep ed er et    -6.3    -3.7    -5.1     8.7    -6.3 
  max iteration number exceeded     10 
 writing coord file for last parameters 
      1     0.000     0.000     0.000       0.0       0.0       0.0 
      1     0.000     3.353     0.000     110.0       0.0       0.0 

Page 52



 54

 energy for last parameters 
 A...A  A...B  B...B total energies 
 coul       0.0    -6.3     0.0    -6.3  note:only solute-solvent energies are nonzero 
 disp       0.0    -5.1     0.0    -5.1 
 rep        0.0     8.7     0.0     8.7 
 total polarization    -3.7 total energy    -6.3 
  FF cluster e6r eqq etot     0.5    -4.1    -3.6 

 
5.5 Example 4: Crystal lattice energy calculations 
 
See in 4.3.2. The example is for the formic acid crystal. Files formac.oeh and formac.gjf are: 
 
#FORMAC01****                           
   1    .000  0 
 10.2410   3.5440   5.3560   90.00   90.00   90.00    crystal cell 
     0 
     5 
   1    .1584    .3109    .1655  1  3    .0000       fractional 
   2    .0834    .1423    .0023  1 18    .0000       atomic coords    
   3    .2766    .3424    .1430  1 17    .0000 
   4    .1410    .0393   -.1322  1 26    .0000 
   5    .1131    .4292    .3300  1  1    .0000 
     0 
     4   4                      space group symmetry information 
  1.00    .00    .00    .00   1.00    .00    .00    .00   1.00 
   .00000    .00000    .00000 
 -1.00    .00    .00    .00   1.00    .00    .00    .00   1.00 
   .50000    .50000    .50000 
  1.00    .00    .00    .00  -1.00    .00    .00    .00   1.00 
   .50000    .50000    .00000 
 -1.00    .00    .00    .00  -1.00    .00    .00    .00   1.00 
   .00000    .00000    .50000 
   3    0    0    0 
   0 
 
 
#MP2/6-31G** guess=core nosym density=MP2 pop=esp cube=cards cube=frozencore 
FORMAC01****                             
 0 1 
 C   -0.002289    0.409174    0.108307     atomic coords. in molecular  
 O    0.005214   -0.084918   -1.102822     reference frame 
 O    0.002073   -0.272312    1.122122 
 H   -0.031114   -1.081109   -1.022557 
 H   -0.013451    1.483901    0.218310 
 
c:\opix\dens\FORMAC01.den 
    0   -3.960000   -3.800000   -3.960000      electron density box 
  100    0.080000    0.000000    0.000000 
  100    0.000000    0.080000    0.000000 
  100    0.000000    0.000000    0.080000 
  

 
In this calculation, a rather small box radius (7.0 Å) is considered for a quick example, and the crystal 
cluster contains only 31 near-neighbor molecules. Usually, the radius may be of the order of 15-18 Å, and 
the crystal cluster may contain 100-150 molecules. The calculation with condensation level 5 lasts about 
one minute. The formac.inp Pixel input file is: 
 
 FORMAC01****                             
   0  -1   5   0 
   0.000   0.000 
   1   3  0.0000  1.0500   atomic species, charge and polarizability 
   2  18  0.0000  0.0000 
   3  17  0.0000  0.0000 
   4  26  0.0000  0.0000 
   5   1  0.0000  0.0000 
    0.0000   7.0000   35.0000  crystal box radius  
   10.2410    3.5440    5.3560   90.0000   90.0000   90.0000   cell 
  1.000  0.000  0.000            orientation matrices 

Page 53



 55

  0.000  1.000  0.000   
  0.000  0.000  1.000 
  0.000  0.000  0.000 
   -0.124704 -0.519479  0.845335  relates molecular to crystal 
    0.863259  0.363191  0.350538  coordinates  
   -0.489115  0.773456  0.403154 
    1.742890   0.917232   0.525156    
   4      space group symmetry 

   1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.000000 
  -1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.500000  0.500000  0.500000 
   1.00   0.00   0.00   0.00  -1.00   0.00   0.00   0.00   1.00 
  0.500000  0.500000  0.000000 
  -1.00   0.00   0.00   0.00  -1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.500000 
  99 
 
The output file is: 
 
  FORMAC01****                           
 Variable Krep,parameters Edisp,Epol,Erep 
                    3.000   150.00   4800.00  1200.000 
  Using damp.atomic ionization potent. for Edisp 
   molecular data 
 ionization potential and charge    0.0000    0.00 
 Atoms 
   type, Z, x,y,z, point charge, polarizability, vdW R 
     3    4.00    -0.00229   0.40917   0.10831  0.0000   1.05    1.77 
    18    6.00     0.00521  -0.08492  -1.10281  0.0000   0.75    1.58 
    17    6.00     0.00207  -0.27231   1.12211  0.0000   0.75    1.58 
    26    1.00    -0.03111  -1.08109  -1.02254  0.0000   0.39    1.10 
     1    1.00    -0.01345   1.48388   0.21831  0.0000   0.39    1.10 
 Density file title  FORMAC01****                             
  min and max original density  0.0000E+00  0.1833E+02 
   Condensation level    5 
   Density steps,original  100  100  100 and condensed   20   20   20 
 steps and pixel vol(A)     0.4000   0.4000   0.4000   0.06400 
 original electron number  17.99138  remaining-pixels    17.99105   2622 
                                  (molecule is described by 2622 e-Pixels) 
 q min and max  0.1000E-05     99.00 
 screening: electrons out low and high  0.3369E-03  0.0000E+00 
 polarizability,raw, tot, renorm  0.34447E+01  0.33300E+01  0.33300E+01 
 renormalized total charges     18.000000  -18.000000 
 
 ===== Start energy calculations ===== 
  collision parameter     0.200 
  CRYSTAL; between   0.00   7.00  top cutoff  35.00 
  cell parameters  10.241   3.544   5.356   90.00   90.00   90.00 
 Space group matrices 
   1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.000  0.000  0.000 
  -1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.500  0.500  0.500 
   1.0  0.0  0.0  0.0 -1.0  0.0  0.0  0.0  1.0    0.500  0.500  0.000 
  -1.0  0.0  0.0  0.0 -1.0  0.0  0.0  0.0  1.0    0.000  0.000  0.500 
 euler angles and c.o.m.   62.5   29.3   98.2   1.7429   0.9172   0.5252 
       31 molecules within crystal cutoff shell 
 overlap by atom types    1    3      0.000021 
 overlap by atom types    1   17      0.001296      atom-atom overlap integrals 
 overlap by atom types    1   18      0.000757      between charge densities 
 overlap by atom types    1   26      0.000006 
 overlap by atom types    3    1      0.000021      atom types: 1 hydrogen,  
 overlap by atom types    3    3      0.000319      3 carbon, 17 carbonyl O, 18 O, 
 overlap by atom types    3   17      0.001680      26 OH hydrogen  
 overlap by atom types    3   18      0.000927 
 overlap by atom types    3   26      0.000427 
 overlap by atom types   17    1      0.001296 
 overlap by atom types   17    3      0.001681 
 overlap by atom types   17   17      0.000234 
 overlap by atom types   17   18      0.000751 
 overlap by atom types   17   26      0.026061      (O)-H...O= overlap 
 overlap by atom types   18    1      0.000757 
 overlap by atom types   18    3      0.000927 

Page 54



 56

 overlap by atom types   18   17      0.000753 
 overlap by atom types   18   18      0.000283 
 overlap by atom types   18   26      0.000023 
 overlap by atom types   26    1      0.000006 
 overlap by atom types   26    3      0.000427 
 overlap by atom types   26   17      0.026050 
 overlap by atom types   26   18      0.000023 
   Epol,damp,no-damp  -43.91 -658.93 
  FORMAC01****   lattice ec ep ed er et  -86.5  -43.9  -33.4  104.7   -59.1   Pixel energies 
  FF lattice e6 er e6r eqq etot  -105.8    60.8   -45.0     0.0   -45.0 atom-atom energies 

 
Note that energies are qualified as 'lattice': that means that the Coulombic, dispersion and repulsion 
energies have been divided by two to avoid double counting as usual in pairwise additive lattice 
summations. The polarization energy has not, since it is not counted twice. The auxiliary output file 
formac.mlc has detail of the molecule-molecule interactions, first the symmetry operations, and then a 
list of Coulombic, dispersion and repulsion molecule-molecule energies. This output can be used to spot 
the most important intermolecular interactions in the crystal structure.  
 
5.6 Example 5: dimers from a crystal structure  
 
See in 4.3.1.4. This example calculates the energies, including total polarization, for several dimers 
extracted from the formic acid crystal. There are only the two symmetry operations for each pair of 
molecules; the symmetry operation for the desired dimers can be obtained from a survey of file 
formac.mlc.  
 
   The last part of the input file is: 
 
   2 
   1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.000000 
  -1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.500000  0.500000  0.500000 
   2 
   1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.000000 
   1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.00000  1.00000  0.00000 
      99 
 
 
 
 
 
OUTPUT (LAST PART) 
 
.................... as above for full crystal 
 
  cell parameters  10.241   3.544   5.356   90.00   90.00   90.00 
 euler angles and c.o.m.   62.5   29.3   98.2   1.7429   0.9172   0.5252 
 Space group matrices 
   1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.000  0.000  0.000 
  -1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.500  0.500  0.500 
        2 molecules within crystal cutoff shell 
 A...A  A...B  B...B total energies 
 coul     -77.0     0.0     0.0   -77.0 
 disp     -13.3     0.0     0.0   -13.3 
 rep       91.6     0.0     0.0    91.6 
 total polarization   -37.4 total energy   -36.0 
  FF cluster e6r eqq etot   -22.0     0.0   -22.0 
 Space group matrices 
   1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.000  0.000  0.000 
   1.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  1.0    0.000  1.000  0.000 
        2 molecules within crystal cutoff shell 
 A...A  A...B  B...B total energies 
 coul       3.4     0.0     0.0     3.4 
 disp      -5.4     0.0     0.0    -5.4 
 rep        3.8     0.0     0.0     3.8 

Page 55



 57

 total polarization    -1.0 total energy     0.9 
  FF cluster e6r eqq etot    -5.3     0.0    -5.3 
 
 
5.7 Example 6: Optimization of a crystal structure 
 
Optimization of a crystal structure is done by optimizing the cell parameters and the rigid-body 
molecular position, i.e. three coordinates for the center of mass and three Euler angles for orientation.  
Steepest descent: very efficient far from minima, inefficient for fine optimization; Symplex: more 
efficient but requires a very high number of cycles, typically 300-500. This is a very time-consuming 
calculation. 
 
INPUT (LAST PART): 
 
...............as formac.inp above 
 
4 
   1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.000000 
  -1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00   1.00 
  0.500000  0.500000  0.500000 
   1.00   0.00   0.00   0.00  -1.00   0.00   0.00   0.00   1.00 
  0.500000  0.500000  0.000000 
  -1.00   0.00   0.00   0.00  -1.00   0.00   0.00   0.00   1.00 
  0.000000  0.000000  0.500000 
   2 
  30   1  1  1   0  0  0   1  1  0   1  1  1    number of symplex cycles 
                                                optimization tags: optimize a,b,c 
                                                cell parameters, do not vary cell 
                                                angles (orthorhombic), do not optimize 
                                                z coordinate of center of mass 
                                                (space group polar along z) 
 

 
Note the request of only 30 cycles of Simplex optimization (typical values are around 500). Note that 
positions along floating origin directions should not be optimised’.  
 
6. Final comments 
 
Running times are short: on a normal PC running under MS-DOS the calculation of the lattice energy of 
a 30-atom molecule may take some 30 minutes at condensation 4, and 10 minutes at condensation 5 
(good enough for a reasonable estimate of the lattice energy). One point on the energy profile for a dimer 
of two 15-atom molecules is a matter of seconds. On a really fast or parallel machine, computing times 
become as comparable to the computing times for the atom-atom potential method were twenty years 
ago.  
 
OPiX-Pixel is easy to use once you invest a minimum amount of time learning requirements for file 
formats etc.  A number of examples are provided with the program package, and these should be 
carefully worked through. Do not be discouraged if the first attempts seem complicated. However, OPiX 
is by no means a black-box, push-button system, so you are in charge of the calculation, not the package.   
 

Page 56



 58

The OPiX package is distributed free of charge to academic institutions and non-profit organizations. 
Redistribution of the software requires permission of the author. Use for Companies and other profit 
organizations is subject to conditions. 
 
The program can be obtained from the web-site http://users.unimi.it/gavezzot/  
 
The following literature citation should be used when publishing results obtained using the package: 
A.Gavezzotti (2005) OPiX, A computer program package for the calculation of intermolecular 
interactions and crystal energies, University of Milano, together with the first two items of the following 
list. 
 
Bibliography 
 
The following papers contain a description of the method: 
1. A. Gavezzotti, J.Phys.Chem. (2002) B106, 4145. 
2. A. Gavezzotti, J.Phys.Chem. (2003) B107, 2344.  
3. A. Gavezzotti, CrystEngComm, (2003) 5, 429 and  2003, 5, 439. 
4. A.Gavezzotti,  Z. Krist. (2005) 220, 499. 
 
The following papers describe applications of the method: 
5. A. Gavezzotti, J.Chem.Theor.Comput. (2005) 1,834.  
6. J. D. Dunitz and A. Gavezzotti, Angew. Chem. Int. Ed. (2005) 44, 2.  
7. R.Boese, T.Clark and A.Gavezzotti, Helv.Chim.Acta (2003) 86, 1085.  
8. J.D.Dunitz, A.Gavezzotti, Helv. Chim. Acta (2003) 86, 4073.  
9. F. Demartin, G. Filippini, A. Gavezzotti, S. Rizzato.  Acta Cryst.(2004) B60, 609. 
10. L.Carlucci, A.Gavezzotti, Chem. Eur. J. (2005) 11, 271.  
11. A.Gavezzotti, Structural Chemistry, (2005) 16, 177.  
12. J.D.Dunitz, A.Gavezzotti, Cryst.Growth Des.(2005) 5, 2180. 
13. S. Bacchi, M. Benaglia, F. Cozzi, F. Demartin, G.Filippini, A. Gavezzotti, Chem.Eur.J. (2006) 12, 
3538;  
14. J.Dunitz, B.Schweizer, J.Chem.Theor.Comp. (2006) 2, 288. see also: Y.Ma, P.Politzer, J.Chem.Phys. 
(2004) 120, 3152.  
 
For extensive discussions of the Pixel method see also A.Gavezzotti, Molecular aggregation, Structure 
analysis and molecular simulation of crystals and liquids, Oxford University Press, Oxford 2006: 
http://www.oup.com/uk/catalogue/?ci=9780198570806. 
 
 

Page 57

http://users.unimi.it/gavezzot/�
http://www.oup.com/uk/catalogue/?ci=9780198570806�


 59

Quantifying the Similarity of Crystal Structures 
 
René de Gelder 
Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Ni-
jmegen, The Netherlands. - Email: R.deGelder@science.ru.nl  ; WWW: http://www.crystallography.nl/  
 
Introduction 
 
Comparison of crystal structures and the quantification of structural similarity is far from trivial. A unique 
and practical representation of a crystal structure is not easy to define and sophisticated methods are 
needed to assess structural similarity, especially when structures are compared in a more global sense, e.g. 
in terms of packing principles. Comparing hundreds of thousands of structures, as present in the CSD 
database1, needs clever automation, despite the speed of today's computers. On the other hand, with the 
increasing speed and data storage capacity of today's computers the time seems ripe for implementing 
automated procedures that look for hidden structural relations and principles that cannot be found by the 
usual search procedures in current database software.  
 
The intention of this article is not to review all existing crystal structure comparison approaches and 
methods described in literature. Instead, a method for crystal structure comparison based on powder 
diffraction patterns is described, together with the source code to get the actual figure for the structural 
similarity. This method can easily be implemented as part of the usual software present in crystallography 
laboratories.  
 
It is also discussed and demonstrated what automation of crystal structure comparison can do for the daily 
practice of a crystallographer and for crystal engineering research. 
 
Why crystal structure comparison? 
 
After solving a crystal structure the question is always whether the new structure is unique compared to 
the collection of structures already recorded in literature and databases. Although today's database 
software is very user-friendly one can easily miss closely related structures that might be of considerable 
interest to your research. This is not directly a shortcoming of the database software or the user but is a 
result of chemical interpretation and chemical variety that cannot be anticipated easily (see Fig. 1). 
Therefore, robust and objective search methods are still very welcome, also for answering the seemingly 
trivial question of structural uniqueness. 
 

     
 
Fig 1: Two isostructural compounds with a subtle difference in chemistry (CSD refcodes NAMKUH and 
BETXAZ) 
 
Comparing crystal structures is not only relevant to crystallographers who solved a new crystal structure. 
One can also be interested in the phenomena of polymorphism and/or isostructurality. Are there specific 
non-trivial families of structures in the CSD or in my in-house structural database? What atoms and 
groups can I replace in my molecule without disturbing the crystal packing? Replacing metals, as is well 

Page 58

mailto:R.deGelder@science.ru.nl�
http://www.crystallography.nl/�


 60

known, often results in isomorphous compounds. Cl can often be replaced by F, I, Br or methyl. 
However, can replacement of other functional groups still lead to isostructurality? At least we would like 
to know about such cases (see Fig. 2).  
 

           
 
Fig 2: Different molecules, the same crystal packing (CSD refcodes WOMXOL and XAYCIJ) 
 
In crystal engineering a correct classification of a set of structures can be essential for the understanding 
of the relation between physical properties and the underlying structure of materials. In the clustering 
stage of ab initio crystal structure prediction representative subsets have to be generated for which 
analysis and geometry optimization is feasible. The conclusion is that there are a lot of situations in which 
methods are needed that objectively quantify the similarity of crystal structures in a fast and reliable way. 
 
The problem: unique descriptors of crystal structures 
 
The usual procedure for finding related crystal structures in literature is defining a suitable query in 
crystallographic databases like the CSD, ICSD or PDB. Such a query can be based on the chemical 
composition, the unit cell, the space group, a chemical fragment, etc. Searches based on chemical 
composition are often too strict. Reduced unit-cell parameters can vary significantly with minor lattice 
distortions. On the other hand, searches on unit cells with a "safe" tolerance often give very long lists of 
hits. In Fig. 3a an example is given of a structure that initially was not recognized as a redetermination as 
a result of a difference in chemical interpretation (tetramer versus polymer) and a large anisotropic 
contraction of the unit cell going from room to low temperature. 
 

      
 
Fig 3: a) structure initially (1996) interpreted as a tetramer (CSD refcode MEACCU01), later (2003) as 
a polymer (CSD refcode MEACCU02, initially TUTNOL) b) PXRD patterns for structure 
MEACCU01/02, measured at different temperatures 
 
Using the space group is risky when you have phase transitions or symmetry breaking as a result of a 
change in temperature or slight chemical modifications. Atoms, substituents or bonds in a chemical 
search fragment can be replaced by others to give compounds that show similar molecular structures 
and/or crystal packings. The problem, which is general for crystal structure comparison, is that you would 
like to have a descriptor for your structure that is not too strict in the chemical sense, is unique for the 
packing of the molecules and doesn't require a choice of origin or some other setting (which is the case 
for the combination of unit cell parameters and fractional coordinates).  

Page 59



 61

 
The powder diffraction pattern as a global descriptor 
 
There are global descriptors for crystal structures, like the radial distribution function or modifications of 
this function2, that fulfill the requirements as outlined above. A powder diffraction pattern is also a global 
descriptor of a crystal structure, more precisely of the periodic electron density in a crystal. Such a 
descriptor can easily be calculated with many public domain programs (like Mercury3) and is therefore 
available to the crystallographer. Although invariable for the choice of origin or setting, in the case of 
powder diffraction patterns the positions of the peaks are very sensitive to small deviations in unit cell 
parameters. This means that strongly related structures may give (calculated) powder diffraction patterns 
that look similar from an overall point of view but differ significantly on a more local scale (see Fig. 3b). 
The same situation may occur for isomorphous compounds that differ only slightly in unit cell volume or 
unit cell shape. These compounds give calculated powder patterns that by visual inspection are definitely 
related and recognizable as isostructural compounds. In all those cases the calculation of a reliable and 
objective measure for the similarity or dissimilarity of the powder patterns is the essential and crucial 
step. With a pattern matching approach based on correlation functions4, crystal structures can reliably be 
compared and classified on the basis of their PXRD patterns. In this article we discuss the relation 
between the WCC (Weighted Cross Correlation) criterion, for which the Fortran code will be given, and 
the well known RMS and Rwp criteria. 
 
The comparison of powder diffraction patterns 
 
The RMS (Root Mean Square) criterion is a well known criterion that is based on the sum of the squared 
differences between n observed and n calculated data values, respectively yi(obs) and yi(calc): 
 
   RMS  = ( ∑i=1, n (yi(obs)-yi(calc))2 )1/2    [I] 

In principle, with the RMS criterion one measures the length of the difference vector d, |d|, spanned by the 
observed data vector y(obs) and calculated data vector y(calc).  
 
The RMS criterion becomes the sine of the angle between the vectors y(obs) and y(calc) (in n-dimensional 
space) if scaling is done correctly and when its value is normalized by the length of the scaled observed 
data vector  y'(obs), | y'(obs)| = ( ∑i=1, n y'i(obs)2 )1/2.  
 
In that case the RMS value ranges from 0 to 1 (0 meaning perfect agreement). The normalized version of 
expression [I] is given by: 
 
RMSnorm = ( ∑i=1, n (y'i(obs)-yi(calc))2 )1/2 / ( ∑i=1, n y'i(obs)2 )1/2   [II] 

Scaling of  y(obs) with s(obs) must be done according to the least squares protocol:  
   
 y'i(obs) = s(obs)yi(obs)       [III] 
 s(obs) = ∑i=1, n yi(obs) yi(calc) / ∑i=1, n yi(obs)2     [IV] 
 
As stated above, RMS is the length of the difference vector spanned by the observed and calculated data 
vectors but, due to scaling and normalization, this becomes the sine of the angle spanned by the observed 
and calculated data vectors y(obs) and y(calc): the difference vector is placed at an angle of 90 degrees 
onto the calculated data vector by scaling according to the L.S. protocol. Many times scaling is done 
incorrectly, e.g. on the basis of the total number of counts in the patterns. In that case the value of RMS is 
influenced not only by the angle between the n-dimensional vectors but also by scaling errors. Note that 
the order of the data points is unimportant for the calculation of RMS. 
 

Page 60



 62

A well known criterion for powder pattern similarity is Rwp (R-weighted pattern). This criterion is used for 
the refinement of crystal structures on PXRD data and for structure solution from PXRD data. Rwp is simi-
lar to RMS but the squared differences are weighted according to the standard deviations in the observed 
intensities.  
 
 Rwp =( ∑i=1, n wi (yi(obs)-yi(calc))2)1/2 / ( ∑i=1, n wi yi(obs)2 )1/2   [V] 
 
  wi = 1/yi(obs)        [VI] 
 
This weighting of the individual contributions comes from least squares theory. It can easily be shown 
that Rwp can be seen as a plain RMS criterion applied to modified powder patterns.  
 
 Rwp =( ∑i=1, n (yi(obs)1/2-yi(calc)/yi(obs)1/2)2 )1/2/ ( ∑i=1, n yi(obs))1/2  [VII] 

For this modification the pattern values in both the observed and calculated patterns should be divided by 
the standard deviations in the observed intensities: 
 
 ymod

i(obs) = yi(obs)1/2        [VIII] 
 ymod

i(calc) = yi(calc)/yi(obs)1/2       [IX] 
 
 Rwp =( ∑i=1, n (ymod

i(obs)-ymod
i(calc))2)1/2 / ( ∑i=1, n ymod

i(obs)2 )1/2  [X] 

As a result, also the scaling of the patterns is different from the one used for application of the RMS 
criterion.  
 

s(obs) = ( ∑i=1, n yi(calc)2 /yi(obs) / ∑i=1, n yi(obs))1/2   [XI] 
 
The weighting used in Rwp is, however, only meaningful when the peak positions in the observed and 
calculated patterns are the same. The use of Rwp for the comparison of powder patterns corresponding to 
structures with (significantly) different unit cells is therefore incorrect. 
 
The WCC (Weighted Cross Correlation) criterion4 is based on correlation functions applied to unmodified 
patterns.  
 
WCC = ∫ wfg(r)cfg (r)dr / (∫ wff (r)cff (r)dr ∫ wgg(r)cgg (r)dr) 1/2    [XII] 

 
cfg (r) =∫ f(x)g(x+r)dx       [XIII] 

 
The weighting function, which extracts information from the correlation functions, can be adapted to 
influence the sensitivity for shifts in peak positions, in XRD as a results of lattice parameter variations. 
This is done by changing the value of l (values of l between 0.6 and 3.0 lead to stable and comparable 
results4; the IsoQuest program5 uses 2.0): 
 

wfg(r) = 1 - | r | / l  if | r | < l   [XIV] 
   wfg(r) = 0   if | r | ≥ l   [XV] 

wff (r) = wgg(r) = wfg(r)      [XVI] 
 

The WCC criterion is equal to the cosine of the angle between two vectors in n-dimensional space when 
you only look at r = 0 (pointwise). In that case 
 
   WCCr=0 = (1 - RMS2)1/2      [XVIII] 
 
For r > 0 the comparison no longer holds. 

Page 61



 63

The WCC criterion is always normalized and scaling is unnecessary since this is done implicitly. 
Comparison of deformed patterns, caused by unit cell variations, is possible with the WCC criterion since 
it recognizes shifted peaks. It is more sensitive to intensity variations since you look at unmodified 
patterns. However, this can easily be changed by mimicking the Rwp dampening of the intensities by 
taking the square root of the patterns (this is done in the program IsoQuest, which is discussed below). 
When we modify the patterns according to [VIII] and [IX] and calculate WCC at r = 0, we obtain the 
relation between WCC and Rwp, a relation between a sine and cosine function: 
 
   WCCmod

r=0 = (1 - Rwp
2)1/2      [XIX] 

 
So, for r = 0 there is a direct and clear relation between RMS, Rwp and WCC. 
 
From powder diffraction patterns to structural similarity 
 
The Fortran code for calculating the match between two powder diffraction patterns, using weighted cross 
correlation functions, is remarkably simple. With NX being the number of data points, XS the step size in 
2theta, WI the value for the width of the weighting function, and C1 and C2 arrays containing the 
intensity values for pattern 1 and 2, the similarity SI (ranging from 0 to 1, 1 meaning perfect agreement) 
can be calculated with the two subroutines MATCH and CORREL, given below.  
 
In Appendix 1 additional code and data (Table 4 and 5) is given for test purposes. The necessary powder 
diffraction patterns and also the Fortran code can be obtained from http://www.crystallography.nl/xmatch/  
.  
. 
      SUBROUTINE MATCH(C1,C2,NX,XS,WI,SI) 
      DOUBLE PRECISION SI,A1,A2,CC 
      INTEGER NX 
      DIMENSION C1(NX),C2(NX) 
      NW=NINT(WI/XS) 
      RW=1./FLOAT(NW) 
      CALL CORREL(C1,C1,NX,NW,RW,A1) 
      CALL CORREL(C2,C2,NX,NW,RW,A2) 
      CALL CORREL(C1,C2,NX,NW,RW,CC) 
      SI=CC/SQRT(A1*A2) 
      RETURN 
      END 
C 
      SUBROUTINE CORREL(C1,C2,NX,NW,RW,CC) 
      DIMENSION C1(NX),C2(NX) 
      DOUBLE PRECISION T,CC 
      CC=0.0 
      DO 1 N=-NW+1,NW-1 
        T=0.0                
        DO 2 I=1,NX 
          J=I+N 
          IF(J.LT.1.OR.J.GT.NX) GOTO 2 
          T=T+C1(I)*C2(J) 
    2   CONTINUE   
      CC=CC+T*(1.-RW*ABS(N))     
    1 CONTINUE 
      RETURN 
      END 
 

Page 62

http://www.crystallography.nl/xmatch/�


 64

IsoQuest: application of crystal structure comparison to the CSD database 
 

 
Fig 4: Snapshot of the IsoQuest program showing that the structures TUTNOL and   MEACCU01, 
initially seen as different structures, are redeterminations 
 
On the basis of the method described above we developed the program IsoQuest5 for exploring the 
Cambridge Structural Database1. IsoQuest tells you whether there are structures that are identical or 
similar to your structure (see Fig. 4). Hits from IsoQuest can be further analyzed with IsoBase, a database 
containing the complete analysis of all (50 billion) structural relations in the CSD on the basis of the 
IsoQuest principle. 
 
An in-house powder diffraction database was derived from CSD entries for which 3D-coordinates are 
available (2theta range from 0 to 40 degrees). For this purpose a program was written  that can convert 
the complete CSD to a powder diffraction pattern database. The calculation of the PXRD patterns from 
the CSD entries is not straightforward. A lot of entries show disorder, contradictions in symmetry, non-
existing elements, etc. Many of these problems can, however, be ‘repaired’. The resulting powder pattern 
database can be searched by the IsoQuest program, using a structural model or reflection data as input.  
 
With the IsoQuest program complete and often surprising lists of identical or related structures can be 
found in the CSD, in less than half a minute on a modern PC. Similar structures can be further explored 
with IsoBase, a database which contains all isostructurality relations in the CSD. IsoBase was generated 
by comparing all entries with all other entries in the CSD. The advantage of this database is that an 
IsoQuest search for a new structure can be further analyzed in a fast way. Why a further analysis? 
Structures found by IsoQuest can be related to other structures, initially not found during the first search, 
and this can be checked using IsoBase (see examples below) by taking automatically all IsoQuest hits as 
(secondary) search structures. 
 
Example 1: analyzing compound "ALACAC01"  
 
An IsoQuest search for compound ALACAC01 (an arbitrary entry from the CSD) gives the following 
result: 
 

Table 1  IsoQuest result for compound ALACAC01 
 
REFCODE spacegroup  a     b     c  alpha  beta gamma volume Z nref S1   S2 scale 
-------------------------------------------------------------------------------- 
ALACAC01 P21/C    14.1   7.6  16.4  90.0  99.0  90.0  1722  4  69 1000 1000 1000 
ALACAC03 P21/C    14.0   7.5  16.3  90.0  98.8  90.0  1699  4  68  997  982 1005 
ALACAC02 P21/C    14.0   7.5  16.3  90.0  98.9  90.0  1694  4  69  997  978 1005 
ALACAC12 P21/C    14.0   7.5  16.3  90.0  98.8  90.0  1702  4  67  992  980 1005 
ALACAC11 P21/C    14.0   7.5  16.3  90.0  98.8  90.0  1702  4  69  992  980 1005 
ACACCR   P21/C    14.0   7.6  16.4  90.0  99.1  90.0  1714  4  69  988  987 1000 
ACACCR02 P21/C    14.0   7.5  16.4  90.0  99.0  90.0  1709  4  69  986  984 1005 
ACACMN02 P21/C    14.0   7.6  16.4  90.0  99.3  90.0  1721  4  68  985  985 1000 
COACAC03 P21/C    13.9   7.5  16.2  90.0  98.4  90.0  1665  4  66  981  944 1010 
QAMCAI   P21/C    14.2   7.6  16.6  90.0  99.3  90.0  1758  4  71  981  966  995 
ACACMN   P21/C    13.9   7.5  16.2  90.0  98.4  90.0  1661  4  65  980  939 1010 
COACAC02 P21/C    14.0   7.5  16.2  90.0  98.5  90.0  1672  4  65  975  945 1010 
ACACGA   P21/C    14.0   7.6  16.5  90.0  99.0  90.0  1731  4  70  974  973 1000 
ACACRU03 P21/C    14.0   7.5  16.3  90.0  99.0  90.0  1702  4  69  966  952 1005 
ACACRU04 P21/C    13.8   7.4  16.1  90.0  99.3  90.0  1619  4  63  965  878 1020 
ACACRH10 P21/C    13.9   7.5  16.4  90.0  98.6  90.0  1689  4  68  952  935 1010 
KABMIJ   P21/C    14.1   7.5  16.5  90.0  99.0  90.0  1717  4  70  950  950 1000 
ACACRU   P21/C    13.9   7.5  16.0  90.0  99.1  90.0  1650  4  63  949  913 1015 

Page 63



 65

 
Using the result from IsoQuest and consulting IsoBase leads to five additional hits: NIRLAB, 
QQQCXJ01, QQQCXJ02, ACACRU05 and ACACRU06. 
 
Table 2  IsoBase results for compound ALACAC01 
 
REFCODE spacegroup  a     b     c  alpha  beta gamma volume Z nref S1   S2 scale 
-------------------------------------------------------------------------------- 
NIRLAB   P21/C    14.0   7.5  16.5  90.0  98.9  90.0  1707  4  69  963  961 1000 
QQQCXJ02 P1121/B  13.9  16.4   7.5  90.0  90.0  98.6  1693  4  68  959  948 1005 
QQQCXJ01 P1121/B  13.9  16.4   7.5  90.0  90.0  98.6  1693  4  68  959  948 1005 
ACACRU06 P21/C    14.1   7.5  16.4  90.0  99.1  90.0  1713  4  69  951  949 1000 
ACACRU05 P21/C    13.8   7.4  16.1  90.0  99.3  90.0  1638  4  63  949  879 1015 
 
Refcodes which only differ in number (e.g. ALALAC01 and ALALAC03) correspond to the same 
compound. Therefore, the result of the combined use of IsoQuest and IsoBase yields 23 related entries, of 
which eleven entries are unique isostructural compounds. 
 
Using the ligand system of entry ALACAC01 (attached to an "any"-atom) as a search fragment for the 
Conquest6 program of the CCDC leads to only 14 of the 23 IsoQuest hits, of which 5 hits are unique 
isostructural compounds. This illustrates that entries can easily be missed and that IsoQuest and IsoBase 
generate additional information. 
 
Example 2: analyzing compound "BARNUD"  
 
A compound consisting of three phenyl rings and one Cl-atom attached to a 
central Si-atom, space group P21/c (see picture7 on the right) was used as input. 
With IsoQuest 16 related structures are found for this compound. The results 
for this search are given in Table 3. 
 
Table 3. Results of a CSD-search for BARNUD using IsoQuest 
 
CSD refcode Chemical and Crystallographic similarity to BARNUD
WAKHOF Cl replaced by SH 
MTPHEP01 Cl replaced by (double bonded) CH2 
MTPHEP10 = MTPHEP01 but measured at a different temperature 
TPPOSS Cl replaced by double bonded S 
TPPOSS02 = TPPOSS but measured at a different temperature 
TPPOSS03 triclinic polymorph of TPPOSS (P-1) 
TPGEBR Si replaced by Ge, Cl replaced by Br 
TPPHSE Si replaced by P, Cl replaced by Se 
TPPHSE01 triclinic polymorph of TPPHSE 
TPASNS Si replaced by As, Cl replaced by double bonded S 
TPASNS01 same as TPASNS 
BONLEV Si replaced by P, Cl replaced by BH3, spacegroup P-1 
BRTPSN Si replaced by Sn, Cl replaced by Br 
TPSNCL01 Si replaced by Sn 
TPSNCL02 = TPSNCL01 but measured at a different temperature 
QUQCUA Si replaced by Ge 
 

Page 64



 66

In this set you find all kinds of replacements. Moreover, the unit cell or space group is not always the 
same. Different authors and journals are found for the same or similar compounds. Specifying a fragment 
in Conquest, consisting of three phenyl rings attached to an "any"-atom, and combining this fragment-
search with a search on unit cell (standard tolerance of 1.5%) gives you 23 hits: BURNAD, BUFFAJ, 
CUTYAR, FONLAV, FXFPRP, GELCEF, HAFSIQ, HELYUS, JOZVUP, PZGACU, TPASNS, 
TPASNS01, TPGEBR, TPPHSE, TPSNCL02, WAKHOF, BAFLUQ, QUQCUA, NAKJUF, NAKJUF01, 
OGONIH, NAXFIC and WAWHOS. This set of 23 compounds contains 7 of the 16 isostructural 
compounds found by IsoQuest and 16 compounds that are not related to BARNUD in terms of 
isostructurality, showing again that IsoQuest generates additional information. 
 
Example 4: analyzing an in-house crystal structure 
 
Are there structures in the CSD that have similar packings as one of the structures published by our 
crystallography department in Nijmegen? A remarkable result is found for compound DEQGUB. The 
published crystal structures with CSD-refcodes WARDUO and NESDAQ are isomorphous although the 
cations in these structures are quite different (see Fig. 5). Apparently, the tetraphenylborate counterion 
(not shown) is dominating the crystal structures of these compounds. 

      5a            5b         5c 
 
Fig 5: Cations present in 3 isostructural compounds. a: DEQGUB, b: WARDUO, c: NESDAQ 

 
Example 5: large sets of isostructural compounds 
 
IsoBase contains all isostructurality relations in the CSD and it can show for every entry the related 
compounds. There are many large sets of isostructural compounds visible in this database. An example is 
the set containing compound ECARAB. An amazing number of 42 isostructural compounds can be found 
for this cholic acid clathrate: ZUZDON, GUNKOP, GUNMUX, GUNLUW, BIFQAI01, LAFCEA, 
TEMWOX, GUNLOQ, ERIPUQ01, VABSOG, ERIPUQ, ZUZDUT, WEYNUJ, GUNNIM, GUNLAC, 
UMABAL, RABKEG, YUNYOV01, LAFCAW, PUWREE, ZUZFAB, YUNYOV, PIWKUB, 
LAFCAW01, GUNMAD, GOVRAK, MIWTIV, PIWKOV, PIWKOV01, LAHPOA, ZUPKIE, 
HURPEP, GUXFEK, HURNUD, ZEJFEZ, GUXFOU, GUXGAH, GUNMEH, GUXFAG, GOVQOX, 
VUTWAI and JOLFIZ.  
 
Three of them (ECARAB, GOVRAK and HURPEP) are shown in Fig. 6. GOVRAK is a cholamide p-
toluidine clathrate and consists of different host and guest molecules compared to ECARAB. HURPEP is 
also isostructural to ECARAB but has twice the unit cell volume. 

Page 65



 67

 

 
 

 
 

 
 
Fig 6:  top: ECARAB ;  middle: GOVRAK ; bottom: HURPEP 
 
This last example demonstrates again that the method described in this article is able to trace related 
compounds with differences in chemistry and/or symmetry and can collect sets of structures from the 
CSD database that can be used for studying the phenomenon of isostructurality or 
(pseudo)polymorphism. 
 
Conclusions 
 
The method for crystal structure comparison presented in this article is a powerful tool for 
crystallographers to check the uniqueness of newly determined structures, to look for related structures 
and to classify sets of structures. Moreover, applied to structural databases it is a way to generate new 
information on packing principles and crystal engineering rules. 
 
References 
 
1) The Cambridge Structural Database: a quarter of a million crystal structures and rising.  
F. H. Allen, Acta Crystallogr., B58, 380-388, 2002. 
2) Method for the computational comparison of crystal structures. E.L. Willighagen, R. Wehrens, P. Verwer, R. de Gelder, 
L.M.C. Buydens, Acta Crystallogr., B61, 29-36, 2005. 
3) Mercury: visualization and analysis of crystal structures. 
C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. 
Cryst., 39, 453-457, 2006. 
4) A Generalized Expression for the Similarity of Spectra: Application to Powder Diffraction Pattern Classification.  
R. de Gelder, R. Wehrens and J.A. Hageman. J. Comp. Chem., 22, 273-289, 2006. 
5) SYSTER and ISOQUEST: How good and unique are your data and structure?  
R. de Gelder and J.M.M. Smits. Acta Crystallogr., A60, s78, 2004. 
6) New software for searching the Cambridge Structural Database and visualising crystal structures. I. J. Bruno, J. C. Cole, P. 
R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., B58, 389-397, 2002.  
7) PLATON, A Multipurpose Crystallographic Tool. A.L. Spek, Utrecht University, Utrecht, The Netherlands, 2005.  

Page 66



 68

Appendix 1:  
 
      PROGRAM XMATCH 
C 
C  Last update: 191006 RdG 
C 
C  Calculates the match between powder diffraction patterns. 
C  Returns a value between 0.0 and 1.0 for the similarity (SI). 
C  1.0 means perfect agreement, 0.0 means completely different. 
C 
C  NP: number of powder patterns 
C  NX: number of data points  
C  XS: step size in 2theta                  
C  WI: single precision value for the width of the weighting function 
C  SI: a single double precision value for the similarity  
C  CO: intensity values for each pattern 
C  CM: similarity matrix 
C 
      DOUBLE PRECISION SI 
      DIMENSION CO(3001,20),CM(20,20) 
      NP=20 
      NX=3001 
      XS=0.02 
      WI=0.62 
      OPEN (UNIT=2, FILE='wcc.out', STATUS='UNKNOWN') 
      CALL READPR(CO,NP,NX) 
      DO 1 I=1,NP 
        DO 2 J=I,NP 
          CALL MATCH(CO(1,I),CO(1,J),NX,XS,WI,SI) 
          CM(I,J)=SI 
          CM(J,I)=SI 
    2   CONTINUE 
    1 CONTINUE 
      WRITE(2,4) WI 
      WRITE(2,5) (I,I=1,NP) 
      DO 3 I=1,NP 
        WRITE(2,6) I, (CM(I,J),J=1,NP) 
    3 CONTINUE 
    4 FORMAT(' Width of the weighting function = ',F5.2) 
    5 FORMAT(7X,1X,20(I5,1X)) 
    6 FORMAT(I7,1X,20(F5.2,1X)) 
      STOP 
      END 
C 
      SUBROUTINE READPR(CO,NP,NX) 
      DIMENSION CO(3001,20) 
      CHARACTER*12 FN(20) 
      DATA FN /'cefraa.dat','cefrab.dat','cefrna.dat','cefraq.dat', 
     1         'cf2acn.dat','cfbipi.dat','ceflx2.dat','ceflan.dat', 
     2         'cecloa.dat','second.dat','cfrob3.dat','copabe.dat', 
     3         'codi26.dat','codi27.dat','cfpabe.dat','cef2ff.dat', 
     4         'cfhchn.dat','cf4maf.dat','cfdmfs.dat','cfm3hb.dat'/ 
      WRITE(2,*)'******************************************************' 
      WRITE(2,*)'Test : 20 powder patterns of cephalosporin complexes .' 
      WRITE(2,*)'See: J. Comp. Chem. (2001), 22, 3, 273-289.' 
      WRITE(2,*)'Results must agree with data in Table 5.' 
      WRITE(2,*)'******************************************************' 
      DO 1 I=1,NP 
        OPEN (UNIT=1, FILE=FN(I), STATUS='OLD') 
        DO 2 J=1,NX  
          READ(1,*,END=3) X,CO(J,I)   
    2   CONTINUE 
    3   CLOSE (1) 
        WRITE(2,4) I,FN(I) 
    1 CONTINUE 
    4 FORMAT(' Pattern ',I2,': ',A12,' read') 
      WRITE(2,*)'******************************************************' 
      RETURN 
      END 

Page 67



 69

Table 4  Crystal data corresponding to the test powder diffraction patterns 
 
 
Compound name 

 
a 

 
b 

 
c 

 
α 

 
β 

 
γ 

Space 
group 

 
Type 

Cefradine/alpha-naphthol              23.47079 7.12154 14.93036 90.0 108.26834 90.0 C2 A1 
Cefradine/beta-naphthol               23.42119 6.97147 15.00473 90.0 110.40521 90.0 C2 A2 
Cefradine/naphthalene                 23.45837 7.11788 14.89216 90.0 108.57098 90.0 C2 A3 
Cefradine/quinoline                   23.41265 7.10910 14.80598 90.0 108.14590 90.0 C2 A4 
Cefradine/2-hydroxy acetonaphthone    23.38549 7.19649 14.75882 90.0 108.57974 90.0 C2 A5 
Cefradine/bipyridine                  23.02269 7.14670 14.55443 90.0 104.64385 90.0 C2 A6 
Cephalexine/beta-naphthol             23.39759 7.06229 14.91757 90.0 109.79842 90.0 C2 A7 
Cephalexine/alpha-naphthol            23.43432 7.10804 14.87538 90.0 108.19072 90.0 C2 A8 
Cefaclor/alpha-naphthol               23.48840 7.07855 14.84551 90.0 108.94678 90.0 C2 A9 
Cefaclor/beta-naphthol                23.44692 7.02619 14.84134 90.0 110.55009 90.0 C2 A10 
Cephadroxil/beta-naphthol             7.11174 21.71704 30.95857 90.0 90.0 90.0 P212121 B11 
Cephadroxil/4-hydroxy-benzoezuur      6.99921 20.99127 30.69011 90.0 90.0 90.0 P212121 B12 
Cephadroxil/2,6-dihydroxy-naphthalene 7.10786 21.86340 32.30589 90.0 90.0 90.0 P212121 B13 
Cephadroxil/2,7-dihydroxy-naphthalene 7.09018 21.27323 31.00436 90.0 90.0 90.0 P212121 B14 
Cefradine/4-hydroxy-benzoezuur        14.91661 7.38199 20.50296 90.0 105.77318 90.0 P21 C15 
Cefradine/2-phenylphenol              23.56421 7.13203 18.68928 90.0 109.37986 90.0 C2 D16 
Cefradine/hydroquinone                7.07185 10.70306 14.23422 87.15449 78.99942 89.74252 P1 E17 
Cefradine/4-methylacetophenone        15.40382 7.29832 23.57355 90.0 99.35406 90.0 P21 F18 
Cefradine/DMF                         10.87473 9.51140 12.39035 90.0 98.70461 90.0 P21 N19 
Cefradine/methyl 3-hydroxybenzoate    10.90731 9.40654 12.19924 90.0 98.53256 90.0 P21 N20 
 
 
Table 5  Pattern similarity values  for the test powder diffraction patterns 
 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B11 B12 B13 B14 C15 D16 E17 F18 N19 N20 
A1 1.00 0.80 0.99 0.96 0.93 0.88 0.93 0.99 0.92 0.82 0.78 0.60 0.78 0.72 0.75 0.80 0.63 0.66 0.34 0.41 
A2  1.00 0.82 0.82 0.78 0.78 0.93 0.83 0.87 0.95 0.80 0.75 0.75 0.80 0.76 0.77 0.68 0.69 0.34 0.41 
A3   1.00 0.98 0.92 0.90 0.94 0.99 0.93 0.83 0.81 0.63 0.79 0.75 0.76 0.82 0.66 0.67 0.35 0.41 
A4    1.00 0.90 0.90 0.93 0.97 0.91 0.81 0.79 0.63 0.76 0.74 0.76 0.78 0.71 0.67 0.34 0.39 
A5     1.00 0.82 0.86 0.91 0.85 0.79 0.72 0.61 0.75 0.69 0.81 0.75 0.58 0.73 0.31 0.40 
A6      1.00 0.85 0.89 0.85 0.79 0.85 0.69 0.75 0.77 0.74 0.75 0.63 0.68 0.33 0.38 
A7       1.00 0.95 0.96 0.94 0.81 0.66 0.77 0.78 0.75 0.81 0.66 0.66 0.35 0.40 
A8        1.00 0.95 0.85 0.80 0.61 0.77 0.74 0.75 0.80 0.65 0.65 0.34 0.41 
A9         1.00 0.93 0.79 0.66 0.75 0.77 0.71 0.78 0.63 0.64 0.34 0.39 

A10          1.00 0.78 0.71 0.73 0.78 0.73 0.77 0.60 0.66 0.32 0.37 
B11           1.00 0.84 0.87 0.96 0.73 0.83 0.66 0.69 0.41 0.42 
B12            1.00 0.78 0.89 0.70 0.67 0.67 0.74 0.42 0.41 
B13             1.00 0.87 0.77 0.83 0.66 0.75 0.42 0.44 
B14              1.00 0.73 0.78 0.70 0.70 0.44 0.43 
C15               1.00 0.67 0.70 0.75 0.43 0.44 
D16                1.00 0.55 0.63 0.36 0.35 
E17                 1.00 0.60 0.37 0.45 
F18                  1.00 0.42 0.53 
N19                   1.00 0.80 
N20                    1.00 
 

Page 68



 70

Topological analysis of crystal structures 
 
Oleg V. Dolomanov 
Department of Chemistry, The University of Durham, South Road, Durham, DH1 3LE, UK. Correspon-
dence e-mail: pcxod@nottingham.ac.uk ; WWW: http://www.ccp14.ac.uk/ccp/web-mirrors/lcells/ 
 

Introduction 
 
Extended structural networks are present in a wide range of chemical compounds. The importance of 
analysis of these networks stems from the need to classify the materials in terms of their three-
dimensional structure and the construction of different structure-property correlations. The classification 
assumes the existence of an invariant which consistently describes the framework of these materials. A 
number of invariants have been introduced for the description of extended frameworks, such as 
 

• Schläfli symbols, vertex symbols or topological terms [1] 
• Coordination sequences and topological density [2-4] 
• Cycle sequences [5, 6] 

 
These invariants have been mainly used for zeolitic frameworks, which consist only of tetrahedral nodes. 
However, Schläfli symbols in particular are finding increasing application in structural networks of 
different connectivity.  
 
The easiest invariant to interpret is the Schläfli symbol, which describe the environment of a selected 
node within an extended network. Coordination sequences are not as easily interpreted as they describe 
summarised growth of nodes in coordination shells; being periodic, they can have a very long period, 
which can make them hard to use. The cycle sequences represent a combined approach, which does not 
make them as comprehensive as vertex symbols or more practical than coordination sequences. However, 
in some cases it is necessary to use a combination of these invariants to describe networks, in particular it 
is necessary for polymorphs (e.g. diamond and lonsdalite), because a single invariant may be not unique 
for highly related systems. 
 
Evaluation of these characteristics for structural networks is straightforward in the case of 2D structures, 
but may be very complicated in case of 3D structures. This article focuses on the algorithms for the 
construction of topological networks and evaluation of vertex symbols, which are implemented in the 
crystal structure visualisation and analysis program “Olex” [7].  
 
Definitions 
 
A topological network is the mathematical abstraction of the connectivity of an extended structural 
network. Such a network can be mono- or multi-component. The transformation of a chemical network 
into its topological representation proceeds as follows: if one of these entities (e.g. metal cation, ligand, 
coordinating solvent or counteranion) is connected to only one another, then it is removed; if it is 
connected to two others, it is replaced with a bond between the neighbouring entities; if it is linked to 
more than two others it is considered as a node. In this representation the network appears as a 
mathematical graph where each node is associated with a list of at least three other nodes. The length of 
the pathway between any two nodes is given by the number of nodes along it, including the first and the 
last nodes. 
 
The definition of a ring which is used in this discussion is consistent with the definition of the primitive 
ring by Marians [8] and represents a circuit, which cannot be split into two smaller ones. Alternatively, it 
can be defined as a circuit, where all the shortest paths between any two nodes belong to the ring. These 
rings are also called minimal rings [9]. 

Page 69

mailto:pcxod@nottingham.ac.uk�
http://www.ccp14.ac.uk/ccp/web-mirrors/lcells/�


 71

Term “coordination shell” is closely related to the term coordination sequence [2-4], and describe nodes 
topologically equidistant8 from a selected one. Thus, the first coordination shell represents the immediate 
environment of a central node, whereas the second consists of nodes directly connected to the nodes of 
the first shell, but excluding the central atom. Coordination sequences and shells are related so that the kth 
member of the coordination sequence represents the number of atoms in the kth coordination shell.  
 
An example 
 
One of the simplest examples of extended network can be a square grid (Fig 1). To evaluate the vertex 
symbol for central node, unique circuits based on outgoing bonds have to be counted. The four four-
membered circuits can be easily seen. These circuits also comply with the definition of ring. However, for 
a four- connected network 6 circuits is expected.9 The other two six-membered circuits to be found are 
illustrated in Fig 1.  

4
6

6

 
 
Figure 1: View of an element of a square grid. The red node is central, blue nodes – the first coordina-
tion shell, green nodes – second coordination shell. 
 
These circuits are not rings, as they consist of two smaller four-membered rings and therefore do not 
comply with the ring definition. The composition of the vertex symbols will be discussed later. However, 
from this example it is seen that in order to evaluate vertex symbols the construction of topological net-
work is required and an algorithm to find circuits formed by two bonds outgoing from chosen atom is 
needed as well.   
 
Construction of topological networks 
 
Extended structural networks can be very complicated due to the presence of a variety of chemical com-
ponents and in this way differ from networks of inorganic zeolites, where structural and topological net-
works are almost identical. There are two approaches to the construction of topological networks: one is 
based on the application of the definition of a topological node (mathematical abstraction, Fig 2), while 
the other uses information about building blocks of the structure. The first algorithm does not require any 
user input, whereas the second one needs the user to define components of the structure. Despite being 
generic, the first algorithm may lead to topological networks with no chemical sense, and further inter-
vention by the user is needed to interpret  the resulting topological network in terms of the chemical spe-
cies present (e.g. to identify which nodes belong to the ligand). 

                                                           
8 Topological distance is counted in number links between nodes and therefore length of the pathway from these nodes to the 

selected one is equal. 
9 For an n-connected node the number of circuits to be found is n*(n-1)/2 

Page 70



 72

N

N

N

N

N
N

N

N

N

N
non reducible

N
H

NH

N
H

NH N

N

N

N
null-dimensional

 
Fig 2: View of the mathematical abstraction of a chemical structure. According to the described algo-
rithm hydrogen atoms are removed and atoms connected to only two others are replaced with a bond. 
 
The mathematical abstraction algorithm for the construction of topological networks can be illustrated by 
the following code snippet: 
 
Construction of topological network using mathematical abstraction approach snippet 
The first approximation is that all atoms of the structure are nodes. Upon return, only nodes by definition will be left 
nodesRemoved = 1 
while (nodeRemoved) 
{ 
  nodesRemoved=0; 
  for (i=0; i<nodeCount; i++) 
  { 
    if (Node[i].NeighbourCount < 2) 
    {   
      Node[i].Remove();   
      i- -; 
      nodesRemoved++;   
      continue;   
    } 
    if( Node[i].NeighbourCount == 2)   
    { 
      Node[i].Neighbour[0].LinkTo( Node[i].Neightbour[1] ); 
      Node[i].Remove();   
      i--;   
      nodesRemoved++;   
      continue; 
    } 
  } 
} 

 
 
 
 
 
 
-node connected to one other 
 
-remove the node 
 
 
 
 
-linking node 
 
-link the neighbouring nodes, remove current 
 
 
 
 
 
 
 

 

Ring statistics in chemistry 
 
Evaluation of vertex symbols requires counting the number of rings in the environment of a particular 
topological node.  This is closely related to the concept of ring statistics, which has a very important role 
in chemistry. The ring system of a molecule is a key feature in determining its shape and properties. Ring 
statistics are also used for the interpretation of chemical structure, design of organic synthesis and storage 
of chemical information [10, 11]. Many computer algorithms have been developed to obtain specific 
information from chemical structures in terms of their ring interconnectivity for either discrete or 
polymeric structures. These algorithms, which were reviewed by Downs [12], can be divided into 
following groups: 

• Graph theory 
general, spanning tree, edge combination, incidents matrix, connection table, adjacency matrix, 
half-ring tracing, breadth-first growth of spanning tree, maximal adjacency matrix 

• Planar projection 
• Walk through the connectivity table 

 
There is a large choice of algorithms. Each was designed to perform a specific role, and many of the 24 
algorithms, reviewed by Downs fail for complex ring systems. However, the description of topological 
networks using vertex symbols converges to a relatively simple task – the algorithm does not have to 

Page 71



 73

evaluate all rings in the system; instead the rings have to be found in the environment of a selected node, 
which simplifies the job significantly. 
 
Circuit perception 
 
Yuan and Cormack [13] describe a convenient algorithm for primitive ring statistics in compounds with 
topological networks with intermediate connectivity (e.g. 4-connected), but without translational 
symmetry such as silicate glasses. The algorithm has several good points: 
 

(1) absence of upper limit on ring size, (2) low memory usage, (3) speed 
 
The algorithm consists of three subroutines: shortest path search, shortest path identification, and 
identification of primitive rings. Additionally the algorithm is optimised for the shortest-path search by 
specifying the search direction (“four-point directing single-pair search”), which gives it some advantages 
in calculation speed.  
 
The algorithm, described here, has similar characteristics to the one above, but with emphasis on the 
evaluation of vertex symbols. It intensively utilises the modified breadth-first algorithm [14], which is 
used for rings perception as well as to find shortest path length between any two nodes of the network.10 
It was modified in order to find a circuit or a path between nodes; normally two nodes are used instead of 
a single node in the original algorithm. This modification gives good improvement in performance 
leading to about fourfold increase in speed as the volume of a sphere grows as its radius cubed (Fig 3).  
 

Node Node1

Frontier

 
 
Fig 3: An illustration of the modified breadth-first algorithm. The dotted line shows the volume of nodes 
which have to be processed when the algorithm is initiated from one node and the solid lines show the 
volume of nodes when the algorithm is initiated from both nodes simultaneously. 
 
It was found that simple breadth-first algorithm is not applicable to find all possible rings in the network 
due to the algorithm’s anisotropic nature (Fig 4b,c), which appears in different node numbering in 
dependence on the starting node. Also it is almost impossible to use the down-walk11 approach to find all 
possible rings around central node as illustrated in Fig 4a. 

                                                           
10 Originally, this algorithm is used to build spanning trees for a graph; here it is used to assign atoms coordination shell num-

bers (tags), which further can be processed to retrieve necessary information. 
11 A walk between linked nodes from the one with higher tag to a smaller one; the difference between the tags must be 1.  

Page 72



 74

3

1

2

4

5

5

2 3

4

0
0

1

2 2

3

3

4

4

3

0

1

2

3

4

4

3

2

4

a b c  
Fig 4: (a) An illustration of a situation where the breadth-first algorithm fails - the longer 8-membered 
ring is not found. (b, c) An illustration of the anisotropic nature of the down-walk algorithm. The 
algorithm produces different numbering in dependence on the starting node. 
 
To eliminate these features of the algorithm, it was modified so that the numbering starts from both nodes 
simultaneously using different tags. Nodes, where the numbering conflict occurs (one tag is assigned a 
value and the other tag is about to be assigned) are remembered and the tag-assignment is halted. This 
modification is referred to as the frontier search algorithm. When the numbering stopped, the network 
consists of two hemispheres, where nodes have only one tag initialized out of two. Following 
completeness of the initialization from each conflicting node allows acquiring of all possible circuits 
using the down-walk approach.  
 
The frontier search algorithm is illustrated in Fig 5. In Fig 5a the hemispheres are constructed and in Fig 
5b the completeness of the initialization from the conflict nodes, shown in black, is illustrated. After the 
tags of nodes are initialised completely, the graph is ready for down-walk search of circuits (4a down to 
1a in Fig 5b and 7a down to 1a in Fig 5c). 

2a

7a

0

6a

5a

2b2a

1a

3a

4a

2a

4a

0

2b

3b

3a2a

1a

3a

4b

1b

0

2b

3b

2b2a

1a

2a

3a

4b

a b c  
Fig 5: An illustration of the frontier search algorithm. (a) View of tags after the execution of frontier 
search algorithm; nodes 4b and 2b are remembered. (b, c)  Following completing initialisation of the “a” 
tags from the conflicting nodes allows finding either ring. 
 
The number of the conflict nodes is not very large in comparison with whole network (a plane in 3D), but 
the number of operations increases dramatically. To improve the performance, the conflict nodes have to 
be sorted by their tags in ascending order and the search for a primitive ring should be performed for each 
conflict node. If such a ring is found, the procedure has to be performed for the remaining of conflict 
nodes having the same number. This allows finding of all alternative equally-sized rings, as required for 
the evaluation of long vertex symbols. 

Page 73



 75

 
The frontier search algorithm snippet. 
This algorithm assumes that a node has two tags (can be implemented with two arrays for exiting code) and these tags are initialised with 
negative values (e.g. -1). NodeA and nodeB are the two nodes in the environment of the central node for which the frontier is to be found.  
List shellA, shellB, frontier; 
shellA.add( nodeA ); 
shellB.add( nodeB ); 
nodeB.Tag2 = 1; 
centraNode.Tag1 = centralNode.Tag2 = 0; 
while (true) 
{ 
  length = shellA.length; 
  for (i=0; i<length; i++) 
  { 
    for (j=0; j<shellA[i].NeighbourCount; j++) 
    { 
      if ( shellA[i].Neighbour[j].Tag1 < 0 ) 
      { 
        if (shellA[i].Neighbour[j].Tag2 > 0 )   
          frontier.Add( shellA[i].Neightbour[j] ); 
        shellA[i].Neightbour[j].Tag 1= shellA[i].Tag1 + 1; 
      } 
      shellA.Remove(0); 
      i--; 
    }      
  } 
  length = shellB.length; 
  for (i=0; i< length; i++) 
  { 
    for (j=0; j<shellB[i].NeighbourCount; j++) 
    { 
      if (shellB[i].Neighbour[j].Tag1 < 0  &&  shellB[i].Neighbour[j].Tag2 < 0 
) 
        shellB[i].Neightbour[j].Tag2 = shellB[i].Tag2 + 1; 
    } 
    shellB.Remove(0); 
    i--; 
  } 
  if( shellA.Empty && shellB.Empty )  break;     
} 

 
-initialise the first step 
 
-this is used to tackle three-membered rings 
-this eliminates the central node from counting 
-infinite loop over all nodes 
 
-make sure that only one coordination shell is 
processed a time 
 
 
 
-remember the node – numbering “collision” oc-
curred 
 
 
-assign next coordination number 
 
-get rid of the processed nodes; different methods 
to improve performance can be implemented 
 
 
-make sure that only one coordination shell is 
processed a time 
 
 
 
-do not have to search for the frontier here – the 
previous piece of code does it 
 
 
 
 
all nodes processed – may quit now; different 
conditions can be used to stop the process (e.g. 
maximum circuit length) 

 
The circuit perception algorithm snippet for two nodes in the immediate environment of the given node. 
The algorithm assumes that node tags have been initialised as above. Circuits are evaluated for the central node. To evaluate all circuits 
n*(n-1)/2 iterations have to be done for all nodes in the environment of the central one.  
List FoundCycles; 
ringLevel = 0; 
ringFound = false; 
SortFrontiedByTag1(); 
RememberTags(); 
for (i=0; i<frontier.length; i++) 
{ 
  if( ringFound && frontier[i].Tag1 != ringLevel )  break; 
  frontier[i].CompleteTag1Initialisation(); 
  List circuits = frontier[i].WalkDownExpandCircuits(); 
  for (j=0; j<circuits.length; j++) 
  { 
    if (circuit[i][ circuit.length-1] != nodeA ) 
    {  
      circuits.Delete(j); 
      j--; 
      continue; 
    } 
    if( !ShortcutExists( circuits[j] ) ) 
    { 
      ringFound = true;  
      ringLevel = frontier[i].Tag1; 
    } 
  } 
  FoundCycles.AddUnique( circuits ); 
  RestoreTags(); 
} 

-this will be returned 
  
 
-sort all where numbering collision occurred by Tag1 
-have to remember the tags as they get changed later 
 
 
-condition when all circuits of the same size are processed 
-complete initialisation of Tag1 for all nodes where it -1 
-get the list of all circuits using down-walk approach 
 
 
-check that the circuit leads to nodeA 
 
 
 
 
 
-check if current circuit is a ring; this will be one of conditions 
to break further iterations 
 
 
 
 
-add only unique circuits only (with different nodes in the 
middle) 
-restore tags for the next iteration 

 
CompleteTag1Initialisation function snippet 

Page 74



 76

The function assumes that node tags have been initialised by the frontier search algorithm  
for (i=0; i<this.NeigbourCount; i++) 
{ 
  if( this.Neightbour[i].Tag1 < 0 ) 
  { 
    if( this.Tag2 < this.Neighbour[i].Tag2 ) 
    { 
      this.Neighbour[i].Tag1 = this.Tag1 + 1; 
      this.Neghbour[i].CompleteTag1Initialisation(); 
    } 
  } 
} 

-iterate through all connected nodes 
 
-check if Tag1 is initialised 
 
-the down-walk condition 
 
 
-recursive call 

 
The down-walk algorithm snippet 
These two function are used to list all circuits of a given node 
List WalkDownExpandCirrcuits() 
{ 
  List circuits, circuit; 
  this.WalkDown( circuit, circuits ); 
  return circuits; 
} 
WalkDown( List curerrentCircuit, List circuits ) 
{ 
  for (i=0; i<this.NeighbourCount; i++) 
  { 
    if( (node.Tag1 – node.Neighbour[i]) == 1 ) 
    { 
      List newCircuit; 
      newCircuit.Assign( currentCurcuit ); 
      circuitCurcuit.Add( node ); 
      node.Neighbour[i].WalkDown( newCircuit ); 
      circuits.Add( newCircuit ); 
    } 
  } 
} 

-a convenience function 
 
 
 
 
 
 
 
 
 
-walk down condition – the tags difference is 1 
 
 
-copy values from previous circuit segment so that the circuits 
consist of all nodes  
-recursive call  
 
 
 

 

Circuits Analysis  
 
We have tried different methods for the analysis of circuits, but no easily-implemented or reliable 
algorithms were found, and so full circuit analysis is performed. The full analysis is done by trying to find 
a shorter path between any two nodes of a circuit than the ones, which belong to the circuit. As mentioned 
above the shortest path length is evaluated using modified breadth-first algorithm.  
 
Shortcut search algorithm snippet 
The algorithm assumes that content of the circuit is ordered sequentially, so that node index represent its distance from nodeA or nodeB 
boolean ShortcutExists( circuit )  { 
  for (i=0; i<circuit.length; i++) 
  { 
    for (j=i+2; j<circuit.length; j++) 
    { 
      length = circuit.Node[i].DistanceTo( circuit.Node[j] ); 
      if ( (length < (j-i))  &&  
           (length < (circuit.length +1 – (j-i))) ) 
        return true; 
    } 
  } 
  return false; 
} 

 
-go through all nodes of the circuit 
 
i+2: nodes must be separated by at least two others for 
shortcut to exist 
 
-compare with one side of the circuit 
-compare with other side of the curcuit 
-shortcut found in this case 
 
 
-no shortcut found 
 

 

Page 75



 77

Publishing symbols 
 
The circuit search algorithm has to be applied to all unique pairs of bonds outgoing from the central atom. 
After this is done, vertex symbols can be easily evaluated. To evaluate the short vertex symbol, rings of 
different sizes formed by all distinct angles (an angle is formed by two bonds outgoing from the central 
node) are counted. If a ring does not exist, then a shortest circuit is taken according to Smith [15]; 
according to Wells [1] the shortest circuit is taken in any case. Then the rings are sorted in ascending size 
and the ring number is used as a superscript. It is noteworthy that some authors prefer to omit a circuit if 
the ring cannot be found. Thus for the network discussed in the example (Fig. 1) the short vertex symbol 
is 4462

 (some authors prefer to refer to it as to the 44 grid). 
 
Long vertex symbols are used for four-connected networks and can be composed by the following 
procedure described by O’Keeffe [16, 17]: 
 

1. evaluate all rings (including alternative of the same size) for all six angles; if no rings can be 
found, the infinity sign (∞) is used 

2. group symbols for opposing angles together 
3. indicate the number of rings of the same size by a subscript, omitting one 
4. order the rings in ascending order, considering point 2 

 
Performing this procedure for the network in Fig 1 gives 4.4.4.4. ∞.∞. 
 
Implementation 
 
Algorithms described above are implemented in the Olex [7] program, which is freely available at the 
CCP14 website. Users can use Olex to open SHELX files, grow the structure using symmetry operations, 
construct a topological network and evaluate short/long vertex symbols for the structure. An interface is 
provided for the analysis of networks with short interactions (e.g. hydrogen bonds) and for assigning 
nodes of the automatically generated topological network to distinct chemical components of the network 
(e.g. ligand, counteranion, etc), 
 

S
N N

NN

Ag+
Ag+

Ag+Ag+

Ag Ag

Ag Ag

Q

AgAg

Ag Ag

 
 
Figure 6: An illustration of the topological network construction. The first step is the mathematical 
abstraction of the chemical network, the second step is to give the network a chemical sense. 
 
The program works with networks based upon covalent bonds and to analyse networks with short 
interactions the user can transform a list of selected short interactions into “covalent” bonds and can 
perform the analysis in the same way as for any other covalent network. The tool for making chemically 
sensible topological networks allows on to choose some topological nodes/bonds and to replace them 
with a new topological node (Fig 6, [18]). 
 

Page 76



 78

Conclusions 
 
Algorithms for topological analysis of extended structural networks and evaluation of vertex symbols are 
discussed and implementation is provided in code snippets. The algorithms were implemented in the 
“Olex” software and were tested on a variety of zeolitic and metalloorganic networks and had shown 
results consistent with previously published data. 
 
Acknowledgements 
 
I thank Dr Simon Parsons for help in preparation of this article. 
 
References 
 
1. A. F. Wells, 'Three-Dimensional Nets and Polyhedra', John Wiley & Sons, 1977 
2. W. M. Meier and H. J. Möck, J. Solid State Chem., 1979, 27, 349-355 
3. G. O. Brunner, J. Solid State Chem., 1979, 29, 41-45 
4. R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Acta Cryst., 1996, A52, 879-889 
5. A. Beukemann and W. E. Klee, Z. Kristallogr., 1994, 209, 709 
6. G. Thimm and W. E. Klee, Zeolites, 1997, 19, 422-424 
7. O. V. Dolomanov, A. J. Blake, N. R. Champness, C. Wilson and M. Schröder, J. Appl. Cryst., 

2003, 36, 1283-1284 
8. C. S. Marians and L. W. Hobbs, J. Non-Cryst. Solids, 1990, 124, 242-253 
9. L. Guttman, J. Non-Cryst. Solids, 1990, 116, 145-147 
10. Y. Takahashi, J. Chem. Inf. Comput. Sci., 1994, 34, 167-170 
11. B. Schmidt and J. Fleischhauer, J. Chem. Inf. Comput. Sci., 1978, 18, 204-206 
12. G. M. Downs, V. J. Gillet, J. D. Holiday and M. F. Lynch, J. Chem. Inf. Comput. Sci., 1989, 29, 

172-187 
13. X. Yuan and A. N. Cormack, Computational Materials Sciences, 2002, 24, 343-360 
14. T. H. Cormen, C. E. Leiserson and R. L. Rivest, 'Introduction to Algorithms', MIT Press, 1990 
15. J. V. Smith, American Mineralogist, 1978, 63, 960-969 
16. M. O'Keeffe and B. G. Hyde, 'Crystal Structures I: Patterns and Symmetry', Mineralogical Society 

of America Monograph, 1996 
17. M. O'Keeffe and S. T. Hyde, Zeolites, 1997, 19, 370-374 
18. O. V. Dolomanov, D. B. Cordes, N. R. Champness, A. J. Blake, L. R. Hanton, G. B. Jameson, M. 

Schröder and C. Wilson, Chemical Communications, 2004, 642-643 
 
 

Page 77



 79

 

On the Detection of Solvent Accessible Voids in Crystal Structures with 
PLATON/SOLV 

 
Anthony (Ton) L. Spek 
Crystal & Structural Chemistry, Bijvoet Centre for Biomolecular Research, Science Faculty, Padualaan 
8, Utrecht University, 3584 CH Utrecht, The Netherlands. Email: a.l.spek@chem.uu.nl ; WWW: 
http://www.cryst.chem.uu.nl/  
 

1. Abstract 
 
A technique is described, as implemented in the program PLATON, for the determination of solvent 
accessible voids in a crystal structure. Current applications of this utility include the SQUEEZE method 
for the handling of disordered solvents in crystal structure refinement, crystal structure validation with 
CHECKCIF to report on possibly missed voids in a structure model and the classification of pores in 
framework structures. 
 

2. Introduction 
 
Our interest in solvent accessible voids in a crystal structure stems from a problem that we encountered 
with the refinement of the crystal structure of the drug Salozopyrin that appeared to include continuous 
solvent channels [1]. The residual electron density in those channels (shown in Fig. 1) could not be 
modeled satisfactorily with a disorder model. The difference Fourier map (Fig. 2) showed no isolated 
peaks but rather a continuous density tube filled with unknown solvent. After having surmounted the 
problems to obtain suitable crystals for data collection we got subsequently stuck with an unsatisfactorily 
high and un-publishable R-value due to the unaccounted for solvent contribution. This problem was the 
start of the development of a technique now named SQUEEZE and available in the program package 
PLATON [2]. A description of a prototype implementation of the current method, at that time named 
BYPASS and interfaced with SHELX76, can be found in reference [3]. The underlying concept of 
SQUEEZE is to split the total scattering factor FH(calc) into two contributions: the contribution of the 
ordered part FH(Model) and the contribution of the disordered solvent FH(solvent). The latter contribution 
is obtained by back-Fourier transformation of the electron density that is found in the solvent region in the 
difference Fourier map. This recovery procedure is repeated until conversion is reached. SQUEEZE 
interfaces with SHELXL97 [Göttingen] and CRYSTALS [Oxford]. 
 
Judging from the number of structures that are flagged in the CSD for the fact that SQUEEZE was used, 
it can be estimated that this procedure was used at least 1000 times and probably many times more. 
 
This contribution will address only the algorithm that is used to establish the solvent accessible volumes 
in a crystal structure. 
 

Page 78

mailto:a.l.spek@chem.uu.nl�
http://www.cryst.chem.uu.nl/�


 80

 

 
 

 
Figure 1: Views down and perpendicular to the solvent accessible channels (green) in the crystal 
structure of the drug Salazopyrin. 
 

 
 
Figure 2: Section through the difference Fourier map showing the content of the channels. 
 
Alternative approaches for the determination of voids have been reported by Richards [4], Ho & Marshall 
[5], Mugnoli [6], Watkin [7] and Wigderson & Meyer [8]. 
 
3. The Algorithm 
 
All crystal structures contain void space in small regions and cusps between atoms. In the order of 35% of 
the space in a crystal structure lies outside the van der Waals volume of the atoms in the structure. In the 
current context, we are not interested in those voids but rather in voids that can at least accommodate a 
sphere with minimum radius R(min). A good default choice for R(min) = 1.2 Å, being the van der Waals 
radius of a hydrogen atom. Most structures exhibit no voids in the last sense.  

Page 79



 81

 
In this section, we will first give an ‘analog’ graphical introduction to the concept of ‘solvent accessible 
volume’ and then more details on its numerical implementation of the concept. 
 
3.1 The analog model 
Solvent accessible voids are determined in three steps as illustrated in fig. 3. 
 
Step #1: A van der Waals radius is assigned to all atoms in the unit cell. In this way, we have divided the 
total volume V into two parts: V(inside) and V(outside). Note that as a byproduct, we can determine the 
so called Kitajkorodskij packing index [9]: 
Packing Index = V(inside) / V. 
 
Step #2: Define the volume within which all points are at least 1.2 Å away from the nearest van der Waals 
surface. This volume is obtained in a way similar to that in step #1 but now with atom radii being the van 
der Waals radii increased by 1.2 Å. 
 
Step #3: Extend the volume obtained in step #2 with all points that are within 1.2 Å from its bounding 
surface. 
 

STEP #1 – EXCLUDE VOLUME INSIDE THE 
VAN DER WAALS SPHERE

 
 

STEP # 2 – EXCLUDE AN ACCESS RADIAL VOLUME
TO FIND THE LOCATION OF ATOMS WITH THEIR

CENTRE AT LEAST 1.2 ANGSTROM AWAY
 

 

STEP # 3 – EXTEND INNER VOLUME WITH POINTS WITHIN
1.2 ANGSTROM FROM ITS OUTER BOUNDS

 
 
Figure 3: Cartoons illustrating the three stages of the identification of the solvent accessible volume. 
 

Page 80



 82

3.2 The Numerical Implementation 
The numerical implementation of the model described in section 3.1 is relatively compute intense. We 
give here only a sketchy description. The actual implementation involves significant bookkeeping and is 
best gleaned from the Fortran source. The calculations are based on a grid with a distance between 
gridpoints in the order of 0.2 Å. The exact value depends on the need to have an integral number of grid 
steps in each of the three dimensions. 
 
Step #1: Each gridpoint is marked as either (I) inside the van der Waals volume, (II) at least 1.2 Å away 
from the nearest van der Waals surface or (III) neither (I) or (II). Note: for the SQUEEZE application, a 
faster shortcut is used but this will not be discussed here. 
 
Step #2: Connected sets of gridpoints of type (II) are assembled into void objects (either as isolated 
entities or 1, 2 or 3 dimensional channels or networks. 
 
Step #3: Each void object is extended with the gridpoints that are within 1.2 Å of the bounding surface. 
 
For each void object, the volume and center of gravity is calculated (see Fig. 4). In addition a second 
moment of the distribution of the gridpoints is calculated and analysed in terms of main axes and 
variances. The latter gives some idea about the shape of the voids. In addition, the distance from the 
center of gravity to the nearest atoms is listed. This can be helpful in the interpretation of the type of void 
at hand. I.e. a void with a volume of in the order of 40 Å3 with nearby acceptor atoms such as O or N can 
likely host a water molecule. 
 
The complete void map can be inspected in printed sections or graphically (either in mono or stereo). Fig. 
5 gives an example in mono style. 
 
4. Applications 
 
A major application of the algorithm as implemented in PLATON is its use as part of the SQUEEZE pro-
cedure. It is used as a mask on a difference Fourier map to extract relevant information on its contents  
such as the integrated number of electrons in the masked volume.  
 
The example (Fig. 4) below concerns a void containing a THF molecule disordered over the two-fold axis 
in space group C2/c. The reported volume of 156 Å3 is typical for such small molecules. The number in [] 
behind this value represents the type (II) volume. 
 

 
 
Figure 4: Numerical display of the voids in the unitcell.  
 

Page 81



 83

 
 
Figure 5: Graphical display (in mono style) of the of the voids in the unitcell. 
 
The VOID algorithm in PLATON was also used for the description of pore types in framework structures 
such as Zeolites [10]. 
 
5. Alternative VOID Display 
 
PLATON also implements an alternative way to visualize voids in a crystal structure.  The version in 
PLATON is inspired by a program by Mugnoli [6]. With this method spheres touching the van der Waals 
surfaces are introduced and displayed. 
 

 
 
Figure 6: Wireframe model of the ordered contents of the unitcell. The yellow spheres represent the voids 
in the structure. The Povray input was generated with the PLUTON link in PLATON. 
 

Page 82



 84

 
 
Figure 7: Van der Waals radii presentation of the ordered part of the structure. The yellow spheres 
represent the voids in the structure.  
 
6. Concluding Remarks 
 
Voids containing disordered solvents are often located at special positions. The solvents that occupy those 
sites generally have the volume needed to fill the space between the main molecules of interest but not the 
pointgroup symmetry compatible with the site symmetry (e.g. a THF in a 3-bar site). ‘Popular’ disorder 
sites are centres of inversion and 3, 4 and 6 fold axes. 
 
Checking for solvent accessible voids is also done as part of the IUCr CHECKCIF structure validation 
procedures [2]. In practice it is found that voids and their contents are not always clear and thus can be 
missed. Density plateaus might evade peak search algorithms. The ultimate tool to inspect void regions is 
the calculation of contoured difference maps, either in terms of 2D sections or rotate able 3D maps [11]. 
 
More details can be found at http://www.cryst.chem.uu.nl/platon/  
 
7. References 
 
[1] P. van der Sluis & A.L.Spek (1990). Acta Cryst. C46, 883-886. 
[2] A.L. Spek (2003). J. Appl. Cryst. 36, 7-13. 
[3] P. van der Sluis. & A.L. Spek (1990). Acta Cryst. A46, 194-201.    
[4] F.M. Richards (1985). In Methods of Enzymology, 115, 440-464. 
[5] C.M.W. Ho & G.R. Marshall (1990). J. of Computer-Aided Molecular Design 4, 337-354. 
[6] A. Mugnoli (1992). ECM14, Abstract 530. 
[7] D.J. Watkin (1972). Acta Cryst. A28, 33-35. 
[8] E. Wigderson & A.Y. Meyer (1988). Comput. Chem. 12, 237-244. 
[9] A.I. Kitajgorodskij. ‘Molecular Crystals and Molecules’. New York, Academic Press, 1973. 
[10] H. Kuppers, F. Liebau & A.L.Spek (2006). J. Appl. Cryst. 39, 338-346. 
[11] D.M. Tooke & A.L. Spek (2005) J. Appl. Cryst. 38, 572-573. 

Page 83

http://www.cryst.chem.uu.nl/platon/�


 85

The charge flipping algorithm: a powerful and universal tool for the a 
priori solution of crystal structures in any dimension 

 
Gervais Chapuis and Lukas Palatinus 
Laboratoire de cristallographie, Ecole Polytechnique Fédérale de Lausanne, Cubotron, 1015 Lausanne, 
Switzerland, email: gervais.chapuis@epfl.ch and lukas.palatinus@epfl.ch  WWW: http://lcr.epfl.ch/   
 

Abstract 
 
The charge flipping algorithm which was recently published appears to be a very powerful tool for the 
solution of the phase problem in crystallography. The algorithm solves the phase problem iteratively from 
a full set of intensities by switching between direct and Fourier space. No a priori information is required 
and only one free parameter has to be adjusted. This algorithm is remarkable owing to its universality. It 
has been successfully applied to solve periodic and aperiodic structures including quasicrystals and 
incommensurate structures, from single crystal and powder diffraction and from X-ray and neutron 
measurements. 
 
Introduction 
 
In 2004, Oszlányi and Sütő published a very interesting paper proposing a new algorithm to solve the 
phase problem in structural crystallography. The fact that the algorithm was very simple to describe and 
that it did not require any a priori information other than a full set of intensities was very appealing. 
Shortly afterwards, the same authors published an improved algorithm (2005) proposing a special 
treatment for the weak intensities. The simplicity of the algorithm and the ease to program it was 
immediately exploited and applied to aperiodic crystals (Palatinus, 2004). In this article, the author 
successfully applied the charge flipping algorithm to solve a number of incommensurate structures from 
experimental data. Later the method was also shown to work well for decagonal and icosahedral 
quasicrystals. 
 
In the last decade, the search of new algorithms to solve quasi-crystalline structures has been particularly 
active and has generated a bright spectrum of new methods. The method proposed by Elser (1999) is 
looking for the set of phases that maximizes the value of the global minimum in the density. Starting from 
random phases, the method uses techniques of linear programming to reproduce the correct phases. The 
method closest to charge flipping is the low density elimination (LDE) technique. This method has been 
described in two successive papers by Shiono &Woolfson (1992) and Refaat & Woolfson (1993) and was 
initially used for removing negative peaks and sharpening peaks in the E map. This is an iterative method 
where positive densities are kept unchanged or slightly modified and negative densities are set to zero. In 
earlier publications, the method was used for phase extension and refinement of macromolecules. The 
method is effective when high-resolution data are available but slow in converging. Later, the method was 
successfully extended (see for example Matsugaki and Shiono, 2001) for the ab initio solution of small 
molecule and protein structures. Recently the method is successfully applied for the structure solution of 
quasicrystals (Yamamoto & Takakura, 2006). 
 
In the next chapters of this article, we shall first present the specificities of the charge flipping (CF) 
algorithm and illustrate the power of the algorithm with a few examples. This algorithm is unique and 
distinguishes itself by its universality: it has been successful in solving any type of structures ranging 
from periodic to aperiodic, from powders to single crystals and from X-ray to neutron data. 
 

Page 84

mailto:gervais.chapuis@epfl.ch�
mailto:lukas.palatinus@epfl.ch�
http://lcr.epfl.ch/�


 86

The charge flipping algorithm 
 
The charge flipping algorithm is an iterative process starting with a complete set of diffraction intensities 
with atomic resolution. The algorithm does not require any a priori information on the symmetry of the 
structure or on the chemical composition of the structure. These properties can be included in the model 
after the application of charge flipping and can be even to a large extent, derived directly from the result 
of charge flipping. The iterative process is illustrated in the following diagram: 
 

 
First, a set of random phases are assigned to all the structure factors, which can be deduced, up to a scale 
factor, from the intensities. The inverse Fourier transform can be calculated yielding a density function. 
Of course, this density function ρ(x) exhibits positive as well as negative extrema due to the inadequate 
set of phases. The second step is to create a new density function g(x) which can be constructed from ρ(x) 
by inverting the sign of all densities falling below a certain positive threshold δ  (charge flipping). The 
new density g(x) can be Fourier-transformed to obtain the complex magnitudes G(H) with phases ϕ(H) 
and amplitudes |G(H)|. In the last step of the cycle, new structure factors F(H) are obtained with the 
experimental magnitudes |F(H)| and phases ϕ(H). These structure factors are entered in the next iteration 
cycle. 
 
One may wonder when the iterative process can be considered as converged. In the CF process, we 
distinguish in general four different phases, which are illustrated below. The first phase is shortly 
followed by the second phase which can be interpreted as a search in phase space. It is followed by a third 
phase with a sharp decrease of the residual R-value indicating that a solution of the structure has probably 
been found. The last phase is essentially a stabilising process. 
 
The whole algorithm has only one free parameter, namely the flipping threshold δ. In practice, this 
threshold can be easily determined. Many tests on various structures show, that the process is converging 
rapidly within seconds or minutes on recent desktops. 
 

 
 

Page 85



 87

One should first remark that this algorithm is dimension independent. This means that periodic as well as 
aperiodic structures can be solved by this process. The second remark is that the CF method is not an 
optimisation process in the mathematical sense, i.e. the algorithm is not attempting to optimise a 
functional of the density or phases. The third remark is that no rigorous mathematical theory is currently 
known that could explain the surprising efficiency of the CF algorithm. 
 
The last remark has however not refrained the interested users to apply the CF algorithm. Within a short 
period of time, the method has already been applied very successfully to solve a number of structures 
from many different fields. In the next chapter, we shall illustrate only a few examples owing to space 
limitation. 
 
Examples of solutions 
 

i. Quininium (R) mandelate (QRM) 
 
QRM is an organic incommensurate structure, with 35 non-H atoms per formula units. The representation 
below is a commensurate approximant with 3x6 cells. The solution of the structure (Schönleber & 
Chapuis, 2001) either as an approximant or in the superspace approach from single crystal diffraction data 
was a real challenge with the standard structure-solution methods. The displacive modulation affects 
essentially the quinoline moiety (two cyclohexan rings sharing a common bond) and the phenyl ring. The 
interested reader can observe the modulation by carefully observing the 18 QRM molecules. 
 
The CF method could solve the structure in (3+1)d superspace practically in automatic mode. 
 

 
 

ii. Decagonal-Quasicrystal (d-QC) 
 
The structure of the decagonal phase Al70 Ni15 Co15 which has been published earlier (Steurer et al. 1993). 
The structure was solved with the software Superflip (Palatinus & Chapuis 2006) in five-dimensional 
space from the X-ray dataset kindly provided to us by the authors. The illustration given below represents 
a portion of the structure of 22.7 x 22.7 Å2 which can be directly compared with fig. 7a of the original 
article of the authors. The x1 -x2 plane is perpendicular to the tenfold screw axis. The similarity between 
the two figures is striking and it is difficult to find any meaningful differences. Even the pairs of split 
atoms which are marked in the original publication can be found in the density map resulting from the 
charge flipping algorithm. The transition metals can be clearly distinguished from the aluminium atoms. 
With current desktop computers, solution convergence is reached within minutes.  

Page 86



 88

 
 
The charge flipping algorithm was also successful in solving a new and unknown decagonal QC phase in 
the system Al-Ir-Os (Katrych et al. 2006). All the 6782 unique reflections measured experimentally were 
used to solve the structure on a 5- dimensional grid of 24 x 24 x 24 x 24 x 64 points. The charge flipping 
calculation converged  after less than 100 cycles. This procedure yields clearly the heavy atoms but in 
order to improve the resolution of the light atoms by suppressing the noise and amplify the weak 
structural features, the procedure consisting of summing up many individual maps was used in the final 
stages of the analysis.  
 

iii. Icosahedral-QC 
 
Following the above examples, it is thus clear that the charge flipping algorithm is a powerful method to 
solve aperiodic structures based on experimental X-ray diffraction data. What about solving any structure 
including aperiodic structures from neutron diffraction data? With neutron diffraction, we are facing the 
problem of negative scattering lengths of some atom types (H, Mn, etc.) and one may wonder if this 
property is compatible with the charge inversion, which is introduced during each cycle. Surprisingly, it 
appears that a simple modification suffices to generalize the charge flipping algorithm also for densities 
with negative regions.  It is sufficient to modify the flipping step from flipping all density below δ to 
flipping the density only in the interval between -δ and +δ  (Oszlányi & Sütő 2006). This is illustrated 
with the example of the i-Al68Pd23Mn9 structure based on single crystal neutron diffraction data 
(unpublished data kindly provided by Marc de Boisieu).   
 

Page 87



 89

 
 
The figure above represents the electron density of a portion of the structure, more specifically a slab of 
2.15 Å thickness perpendicular to a five fold axis.  Three types of atoms can be clearly identified. The Mn 
atoms exhibit a negative density whereas the Pd and Al atoms exhibit a positive density, which is 
proportional to their scattering lengths.  
 

iv. Layered silicate from powder diffraction data 
 
The structure solution from powder diffraction data faces, in addition to all problems common with the 
single-crystal data, the intrinsic problem of reflection overlap. As a result, not all reflection intensities are 
individually known and the structure solution is more complicated. Charge flipping is relatively robust to 
random errors in the data and thus can solve simple structures from powder diffraction data directly. 
However, for more complex structures an improved method is needed that would allow for repartitioning 
of the intensities of overlapping reflections. A method that proved particularly useful was a combination 
of charge flipping with histogram matching (Baerlocher et al. 2006). During the CF iteration the density 
is modified so that it matches an expected density histogram. This modified density is then used to 
repartition the intensities of overlapping reflections. Using this method, several complex crystal structures 
were solved form powder diffraction data. As an example, the figure below shows the solution of a 
structure of a layered silicate E-401 with 23 non-hydrogen atoms in the asymmetric unit (140 in the unit 
cell) with symmetry I2mb. The structure is superimposed as a stick model on the isosurface 
representation of the electron density. The difficulties in determining the correct symmetry hindered the 
solution of this structure by direct methods. Charge flipping does not need any information about the 
symmetry and thus the structure could be immediately solved and the correct symmetry inferred from the 
result. 

Page 88



 90

 
 
Superflip 
 
In order to provide a general tool for application of charge flipping algorithm for crystal-structure 
solution, a program named Superflip (Palatinus & Chapuis, 2006) has been developed. This program can 
reconstruct scattering densities from diffraction data at arbitrary dimensions, including, but not limited to, 
three for the standard structures, four to six for modulated structures and quasicrystals, and two, for 
example for the purposes of surface scattering experiments. The program allows for structure solution 
with x-ray and neutron scattering data both from single crystal and powder. It determines automatically 
the optimal value of the threshold δ, so that the user does not need to intervene and the structure solution 
proceeds completely automatically. After the charge flipping iteration the program can search for the 
position of the symmetry operations in the resulting density and average the density so that it corresponds 
to the symmetry expected by the user. Subsequently the resulting electron density can be analysed by the 
program EDMA (Smaalen et al. 2003) that can extract the position of the atoms from the reconstructed 
density and export it to the formats of Jana2000, SHELX, or to CIF. Both Superflip and EDMA can be 
downloaded free of charge at http:/superspace.epfl.ch/superflip/.  
 
Thanks to the simplicity and usefulness of the algorithm several other implementations have been created. 
The most notable one is probably the "Flipper" option in the Platon package, but many other programs 
that are used mainly by their authors only have been written, too. We have not extensively tested any of 
these programs and thus we do not feel competent to comment on them. 
 
Conclusion 
 
Since the discovery of X-ray diffraction, the solution of the phase problem has forced generations of 
specialists to develop new methods to circumvent the shortcomings of diffraction, i.e. the loss of the 
phases of the structure factors in diffraction experiments. The Patterson method followed by direct 
methods and all its variants both contributed to sudden increases in determining new structures. We hope 
that the charge flipping method and its improved variants will also contribute to the next impulse in this 
field. The important point here is that contrary to previous methods, the CF method and the related 

Page 89

http:/superspace.epfl.ch/superflip/�


 91

density-modification methods are a priori methods which do not require any assumptions on the 
atomicity of the structure or the knowledge of its symmetry and chemical composition. The unique 
property of the CF algorithm is its ability to solve within the same formalism not only periodic but also 
aperiodic structures. Although our experience is still limited, all the attempts to solve incommensurate 
structures, dodecahedral or icosahedral quasicrystals with experimental data were successful. Neutron 
diffraction data with negatively scattering elements is not a limitation either. We have also seen some 
successful examples of CF solutions from powder diffraction experiments. The next challenge of the 
method will then be the solution of the diffraction from single objects. 
 
References 
 
Baerlocher Ch., McCusker, L. B. and Palatinus, L. "Charge flipping combined with histogram matching to solve complex 

crystal structures from powder diffraction data", Zeitschrift für Kristallographie, in press (2006) 
 
Elser, V. "X-ray phase determination by the principle of minimum charge." Acta Crystallographica Section A 55: pp. 489-499 

(1999). 
 
Katrych, S., Weber, T., Kobas, M., Massüger, L., Palatinus, L., Chapuis, G. and Steurer, W. "New stable decagonal 

quaiscrystal in the system Al-Ir-Os. To be published in "Journal of Alloys and Compounds” (2006). 
 
Matsugaki, N. and Shiono, M. "Ab initio structure determinations by direct-space methods: tests of low-density elimination." 

Acta Crystallographica Section D 57: pp. 95-100 (2001). 
 
Oszlányi, G. and Sütő, A. "Ab initio structure solution by charge flipping." Acta Crystallographica Section A 60: pp. 134-141 

(2004). 
 
Oszlányi, G. and Sütő, A. "Ab initio structure solution by charge flipping. II. Use of weak reflections." Acta Crystallographica 

Section A 61: pp. 147-152 (2005). 
 
Oszlányi, G. and Sütő, A. "How can we cope with negative scattering density?" ECM23 Leuven, Book of Abstracts (2006). 
 
Palatinus, L. "Ab initio determination of incommensurately modulated structures by charge flipping in superspace." Acta 

Crystallographica Section A 60: pp. 604-610 (2004). 
 
Palatinus, L. and Chapuis, G. "Superflip - a computer program for solution of crystal structures by charge flipping in arbitrary 

dimensions", http:/superspace.epfl.ch/superflip (2006) 
 
Refaat, L. S. and Woolfson, M. M. "Direct-space methods in phase extension and phase determination. II. Developments of 

low-density elimination." Acta Crystallographica Section D 49: pp. 367-371 (1993). 
 
Schönleber, A. and Chapuis, G.. "Quininium (R)-mandelate, a structure with large Z' described as an incommensurately 

modulated structure in (3+1)-dimensional superspace." Acta Crystallographica Section B 60(1): pp.  (2004). 
 
Shiono, M. and Woolfson, M. M. "Direct-space methods in phase extension and phase determination. I. Low-density 

elimination." Acta Crystallographica Section A 48: pp. 451-456 (1992). 
 
Steurer, W., Haibach, T., Zhang, B., Kek, S. and Luck, R. "The structure of decagonal Al70Ni15Co15." Acta Crystallographica 

Section B 49: pp. 661-675 (1993). 
 
van Smaalen, S., Palatinus, L., and Schneider, M. "The Maximum Entropy Method in superspace", Acta Crystallographica 

Section A 59: pp. 459-469 (2003) 
 
Yamamoto, A. and Takakura, H. "Recent development in structure determinations for quasicrystals." Philosophical Magazine 

86(3-5): pp. 405-411 (2006). 
 

Page 90



 92

cctbx news 
 
Ralf W. Grosse-Kunstlevea, Peter H. Zwarta, Pavel V. Afoninea, Thomas R. Ioergerb, 
Paul D. Adamsa 
aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and bTexas A&M University, 
College Station, TX 77843, USA. E-mail: rwgk@cci.lbl.gov  ; WWW: http://cci.lbl.gov/  
 
Abstract 
We describe recent developments of the Computational Crystallography Toolbox. 

 

Preamble 
In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit 
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting 
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64 
Unix). All example scripts shown below were tested with cctbx build 2006_11_22_0037. 

In the following we refer to our articles in the previous editions of this newsletter as "Newsletter No. 1", 
"Newsletter No. 2", etc. to improve readability. The full citations are included in the reference section. 

 

1   Introduction 
The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source 
component of the Phenix project (http://www.phenix-online.org/). Most recent cctbx developments are 
geared towards supporting new features of the phenix.refine application. Thus, the open-source mmtbx 
(macromolecular toolbox) module is currently being most rapidly developed. In this article we give an 
overview of some of the recent developments. However, the main theme of this article is the presentation 
of a light-weight example command-line application that was specifically developed for this newsletter: 
sequence alignment and superposition of two molecules read from files in PDB format. This involves 
parameter input based on the Phil module presented in Newsletter No. 5, fast reading of the PDB files 
with the new iotbx.pdb.input class, simple sequence alignment using the new mmtbx.alignment 
module, and use of the Kearsley (1989) superposition algorithm to find the least-squares solution for 
superposing C-alpha positions. The major steps are introduced individually, followed by a presentation of 
the complete application. 

The example application is deliberately limited in functionality to make it concise enough for this article. 
The main goal is to show how the open-source components are typically combined into an application. 
Even though the example is quite specific to macromolecular crystallography, we believe it will also be 
useful for a small-molecule audience interested in utilizing the large open-source library of general 
crystallographic algorithms (see our previous articles in this newsletter series) to build an application. 

 

2   iotbx.pdb 
The PDB format is the predominant working format for atomic parameters (coordinates, occupancies, 
displacement parameters, etc.) in macromolecular crystallography, but many small-molecule programs 
also support this format. phenix.refine also utilized the PDB format, mainly to facilitate easy 
communication with other programs, most notably graphics programs for visualization. 

Page 91

mailto:rwgk@cci.lbl.gov�
http://cci.lbl.gov/�
http://cci.lbl.gov/cctbx_build/�
http://cctbx.sourceforge.net/�
http://www.phenix-online.org/�


 93

2.1   iotbx.pdb.input 
The PDB format specifications are available at http://www.pdb.org/ . Technically, the format is very 
simple, therefore a vast number of parsers exist in scientific packages. The cctbx is no exception. A parser 
implemented in Python has been available for several years. In many cases Python's runtime performance 
is sufficient for interactive processing of PDB files, but can be limiting for large files, or for traversing the 
entire PDB database (currently 40731 files, about 25 GB total). This has prompted us to implement a fast 
parser in C++, complete with Python bindings in the same style as all other cctbx C++ classes, 
comprehensive error reporting, and fully automatic memory life-time management (no manual new/delete 
or malloc/free). Reading a PDB file from Python is simple: 

 
import iotbx.pdb 
pdb_inp = iotbx.pdb.input(file_name="pdb1htq.ent") 

With a size of 76 MB this is the largest file in the PDB, but full processing takes only 3.8 s on a 2.6 GHz 
Opteron, of which about 0.5 s are for simply transferring the data from disk into memory. In contrast, the 
older Python implementation needs 89 s for processing the file into data structures of similar complexity. 
In the future all our cctbx-based applications will make use of the new, faster parser. Interestingly, when 
processing the PDB database with iotbx.pdb.input using multiple CPUs, disk-I/O is the rate limiting 
step. Using 8 CPUs, we can process all 25 GB in less than five minutes. Using more CPUs does not 
reduce this time. 

The pdb_inp object holds the information from the PDB file in a structured way. The "sections" of the 
file according to the PDB format specifications at http://www.pdb.org/ are available as, e.g.: 

 
pdb_inp.title_section() 
pdb_inp.remark_section() 
pdb_inp.crystallographic_section() 
... 

In Python these sections appear as simple lists of strings. The full power of Python and the cctbx libraries 
is available for post-processing this information. Since most sections are never very large, there is no 
point in writing specialized C++ processing code, which is typically significantly more labor intensive 
compared to writing equivalent Python code, and much more difficult to adjust for new developments. 

The only section of PDB files that is sometimes found to be very large is the "coordinate section" with the 
ATOM and HETATM records. This section is fully processed in the iotbx.pdb.input constructor 
shown above. The corresponding information is available via the methods: 

 
labels_list = pdb_inp.input_atom_labels_list() 
atoms = pdb_inp.atoms() 

which return arrays of the same length, each with one data object per atom. The information for one atom 
is again accessible from Python, e.g.: 

 
for labels,atom in zip(labels_list, atoms): 
  print labels.chain(), labels.resname(), labels.name(), atom.xyz, atom.b 

 
2.2   iotbx.pdb.hierarchy 
The input_atom_labels objects in the pdb_inp.input_atom_labels_list() above store the name, 
resname, chain, icode (insertion code), segid (segment identifier), and altloc (alternate location 
indicator) for each atom. This information defines a hierarchical organization of the macromolecules, but 
in a highly redundant way which complicates further processing steps, such as the assignment of 
geometry restraints (see Newsletter No. 4). iotbx.pdb.input supports building an 
iotbx.pdb.hierarchy object. The redundant atom labels are analyzed to build a non-redundant six-deep 
hierarchy object, e.g.: 

Page 92

http://www.pdb.org/�
http://www.pdb.org/�


 94

 
hierarchy = pdb_inp.construct_hierarchy() 

The six-deep data structure consists of: 
 
hierarchy 
  model 
    chain 
      conformer 
        residue 
          atom 

which can be concisely traversed from Python: 
 
for model in hierarchy.models(): 
  for chain in model.chains(): 
    for conformer in chain.conformers(): 
      for residue in conformer.residues(): 
        for atom in residue.atoms(): 
          # ... 

The time for building the hierarchy object given pdb1htq.ent is about 0.7 s. Traversing the hierarchy 
with the five-deep loop above takes only about 0.6 s, i.e. is unlikely to be a rate-limiting step even for 
very large structures. Therefore the few lines of example code given in this section are probably one of 
the most convenient and efficent ways of quickly processing a PDB file from a scripting language. 

For general information on how to learn more about Python objects, look under the "Tutorials Siena 
2005" link at cctbx.sf.net. For example, the command: 

 
libtbx.help iotbx.pdb.residue 

will show the complete interface of the residue object. 

hierarchy objects can be manipulated or constructed from scratch from both Python and C++. However, 
high-level functionality like inserting or deleting residues or chains, or formatting output is currently not 
available. We will add such high-level manipulations as the need arises. The typical development process 
is to implement a required high-level operation given the currently available interfaces, then add it as a 
new method to the most suitable existing class to make it easily accessible for other purposes. We expect 
the hierarchy objects to continuously grow in this way for some time to come. 

 

2.3   pdb_inp.xray_structure_simple 
The xray_structure_simple simple method of iotbx.pdb.input is an efficient implementation 
converting the information stored in the pdb_inp object above to a list of cctbx.xray.scatterer 
objects, managed by the cctbx.xray.structure class. See our previous newsletter articles and the Siena 
2005 tutorials for various examples on how to work with these objects. 

Fundamentally, the conversion is trivial. Each input atom is converted to exactly one xray.scatterer. 
However, as always, the devil is in the details. The PDB CRYST1 and SCALE cards have to be evaluated to 
obtain the correct fractionalization matrix (PDB coordinates are with respect to a Cartesian basis). The 
trickest problem is the determination of the scattering type for each atom, for which three PDB columns 
have to be considered (atom name, element symbol, charge). Following the PDB format specifications 
strictly, the scattering type is clearly defined, but unfortunately deviations from the strict specifications 
are quite common. For example, the element symbol may be missing or mis-aligned, or the charge 
symbol is sometimes found to be given as "+2" instead of "2+". The xray_structure_simple method 
allows for some deviations from the strict PDB specifications as long as the error is highly obvious. More 
serious errors are communicated via exceptions with carefully formatted, informative error messages. 

Page 93



 95

The xray_structure_simple method is relatively expensive in terms of runtime, partially because the 
site symmetry is determined for each atom, which involves looping over the symmetry elements and 
distance calculations. The runtime for the pdb1htq.ent structure (978720 atoms) is about 9.9 s. 
However, this step is typically performed only once at the start of a program. To put this further into 
context, a structure factor calculation up to a resolution of 3 A, using the FFT method, takes about 26 s. 
This underlines that the time for I/O using the new pdb.input class is generally neglible in the context of 
a whole application. 

For completeness, the code for building the xray.structure and computing the structure factors is: 
 
xray_structure = pdb_inp.xray_structure_simple() 
xray_structure.structure_factors(d_min=3, algorithm="fft") 

 
3    mmtbx.alignment 
mmtbx.alignment provides algorithms for aligning two protein sequences, where each sequence is 
represented as a string of one-letter amino-acid codes. The implementation is based on the ideas of Gotoh 
(1982) and runs in quadratic time O(M*N), where M and N are the sequence lengths. It does both global 
(Needleman & Wunsch, 1970) and local (Smith & Waterman, 1981) alignments, assuming affine (linear) 
gap penalties (for which default gap-cost parameters may be changed by the user). Alignments are based 
on maximizing similarity. Similarity scores between amino acids are specified via symmetric matrices. 
Similarity matrices of Dayhoff (1978) and BLOSUM50 (Henikoff & Henikoff (1992), 
http://en.wikipedia.org/wiki/BLOSUM) are provided. User-supplied matrices are also supported (this 
feature also enables alignment of non-amino-acid sequences). 

To show a short example of aligning two sequences: 
 
from mmtbx.alignment import align 
align_obj = align( 
  seq_a="AESSADKFKRQHMDTEGPSKSSPTYCNQMM", 
  seq_b="DNSRYTHFLTQHYDAKPQGRDDRYCESIMR") 

The align_obj holds matrices used in the dynamic-programming 
(http://en.wikipedia.org/wiki/Dynamic_programming) alignment algorithm. Methods are available to get 
the alignment score and to extract the actual sequence alignment: 

 
print "score: %.1f" % align_obj.score() 
 
alignment = align_obj.extract_alignment() 
print alignment.match_codes 
print alignment.a 
print alignment.matches(is_similar_threshold=0) 
print alignment.b 

The output is: 
 
score: 6.0 
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
AESSADKFKRQHMDTEGPSKSSPTYCNQMM 
  |    |  || |              | 
DNSRYTHFLTQHYDAKPQGRDDRYCESIMR 

match_codes is a string of the characters m, i, and d, for match, insertion, and deletion, respectively. The 
alignment above is based on identity matches only. Alternatively, the similarity matrices of "dayhoff" or 
"blosum50" can be used, e.g.: 

 
align_obj = align( 
  seq_a="AESSADKFKRQHMDTEGPSKSSPTYCNQMM", 
  seq_b="DNSRYTHFLTQHYDAKPQGRDDRYCESIMR", 

Page 94

http://en.wikipedia.org/wiki/BLOSUM�
http://en.wikipedia.org/wiki/Dynamic_programming�


 96

  style="global", 
  gap_opening_penalty=10, 
  gap_extension_penalty=2, 
  similarity_function="blosum50") 

The output of the same print statements as above is in this case: 
 
mmmmmmmmmmmmmmmmdmmmmmmmmmmmmmi 
AESSADKFKRQHMDTEGPSKSSPTYCNQMM- 
  |    |  || | * |      ||  *| 
DNSRYTHFLTQHYDAK-PQGRDDRYCESIMR 

Here the * indicate residues that are similar above the is_similar_threshold, using the blosum50 
similarity matrix. 

Alignment of sequences of typical lengths is fast enough for interactive work (300 residues: about 1 s), 
but can take minutes given thousands of residues (2200 residues: about 40 s). Also, for very long 
sequences the memory consumption can be significant since four M*N alignment matrices are stored as 
pure Python objects. In the future we may reimplement the core of the alignment algorithm in C++ to 
increase runtime performance (by a factor 30-50) and to significantly reduce memory consumption. 
However, the Python interface presented here is expected to stay the same. 

 

4   scitbx.math.superpose 
The scitbx.math.superpose module implements the quaternion method of Kearsley (1989) for 
superpositioning two related vector sets. In comparison to the related method of Kabsch (1976), this 
method has the advantage of gracefully handling degenerate situations (e.g. if all atoms are on a straight 
line) without the need for handling special cases (Kabsch, 1978). For all non-degenerate situations, the 
results of the Kabsch and Kearsley methods are identical within floating point precision. 

We will give a self-contained example, using the iotbx.pdb.input class discussed above. First, we 
define a few atoms to be aligned: 

 
  # residues in PDB entry 1AON 
  gly1 = """\ 
ATOM     55  N   GLY A   9      47.072 -70.250  -4.389  1.00 27.28 
ATOM     56  CA  GLY A   9      45.971 -69.823  -3.545  1.00 22.53 
ATOM     57  C   GLY A   9      45.946 -68.397  -3.056  1.00 25.45 
ATOM     58  O   GLY A   9      46.350 -67.467  -3.764  1.00 28.17 
""".splitlines() 
  gly2 = """\ 
ATOM    134  N   GLY A  19      46.795 -55.602  -6.961  1.00 15.66 
ATOM    135  CA  GLY A  19      47.081 -55.164  -8.320  1.00 11.86 
ATOM    136  C   GLY A  19      45.844 -54.551  -8.936  1.00  7.75 
ATOM    137  O   GLY A  19      45.851 -53.398  -9.384  1.00 10.45 
""".splitlines() 

This code produces two Python lists of Python strings. To be compatible with the iotbx.pdb.input 
constructor, these have to be converted to C++ arrays ("flex arrays", see Newsletter No. 1): 

 
from cctbx.array_family import flex 
gly1 = flex.std_string(gly1) 
gly2 = flex.std_string(gly2) 

Now we are ready to instantiate two iotbx.pdb.input objects. Instead of reading directly from a file as 
shown before, we read the PDB lines from the C++ array of strings: 

 
import iotbx.pdb 
pdb1 = iotbx.pdb.input(source_info=None, lines=gly1) 
pdb2 = iotbx.pdb.input(source_info=None, lines=gly2) 

Page 95



 97

Next, we extract two C++ flex arrays with the coordinates: 
 
sites1 = pdb1.extract_atom_xyz() 
sites2 = pdb2.extract_atom_xyz() 

These arrays can be used directly to instantiate the least_squares_fit class which computes the 
rotation and translation for the best fit using the algorithm of Kearsley (1989) (which is the default): 

 
from scitbx.math import superpose 
superposition = superpose.least_squares_fit( 
  reference_sites=sites1, 
  other_sites=sites2) 

The r and t attributes are scitbx.matrix instances which provide mathematica_form() methods which 
we use here for pretty-printing: 

 
print superposition.r.mathematica_form( 
  label="r", one_row_per_line=True, format="%8.5f") 
print superposition.t.mathematica_form( 
  label="t", format="%8.5f") 

The output is: 
 
r={{-0.72436, -0.03369,  0.68860}, 
   {-0.43741,  0.79448, -0.42127}, 
   {-0.53289, -0.60635, -0.59023}} 
t={{83.88229}, {-8.78874}, {-17.07881}} 

To compute the RMS difference of the superposed sites: 
 
sites2_fit = superposition.other_sites_best_fit() 
print "rms difference: %.4f" % sites1.rms_difference(sites2_fit) 

Output: 
 
rms difference: 0.3671 

The following code produces a listing of distances for each atom: 
 
from scitbx import matrix 
lbls1 = pdb1.input_atom_labels_list() 
lbls2 = pdb2.input_atom_labels_list() 
for l1,s1,l2,s2f,d in zip(lbls1, sites1, 
                          lbls2, sites2_fit, 
                          sites2_fit-sites1): 
  print l1.pdb_format(), "%8.4f, %8.4f, %8.4f" % s1 
  print l2.pdb_format(), "%8.4f, %8.4f, %8.4f" % s2f 
  print "      difference: %8.4f, %8.4f, %8.4f" % d, \ 
        "|d| = %6.4f" % abs(matrix.col(d)) 
  print 

The input atom labels are obtained from the iotbx.pdb.input objects using the pdb_format() method 
which returns the atom labels in the same arrangement as found in the PDB file; this output is useful for 
locating an atom in the original file. sites2_fit-sites1 uses flex array algebra to compute the 
difference vectors, and the scitbx.matrix class is used to compute the length of the vector. The output 
starts with: 

 
" N   GLY A   9 "  47.0720, -70.2500,  -4.3890 
" N   GLY A  19 "  47.0655, -70.5000,  -4.1925 
      difference:  -0.0065,  -0.2500,   0.1965 |d| = 0.3180 
... 

Page 96



 98

It is easy to verify that the Kabsch method gives identical results for this non-degenerate configuration of 
atoms: 

superposition_kabsch = superpose.least_squares_fit( 
  reference_sites=sites1, 
  other_sites=sites2, 
  method="kabsch") 

In this case the rotation matrix and the translation vector are exactly identical to the Kearsley results 
shown above. However, method="kabsch" should not be used in applications since we didn't spent the 
effort of writing code for special cases. Therefore the Kearsly method is the default. 

 

5   Putting the pieces together: mmtbx.super 
The large variety of tools in the cctbx enables quick develop of small scripts (a.k.a. jiffies) that perform 
non-trivial tasks with relative ease. 

In a typical jiffy, most work goes into building a user interface that facilitates the communication between 
program and user. The actual computational work that needs to be done is often not very laborious, and 
can be as trivial as a simple call of a library function. 

The following paragraphs will illustrate the rapid development of a lightweight structure superposition 
command line tool using a variety of recent additions to the cctbx. The full code can be found in 
cctbx_sources/mmtbx/mmtbx/command_line/super.py. This script is also available from the 
command line under the name mmtbx.super. 

 
5.1   Design 
The goal is to develop a simple tool that carries out the following tasks: 

1. Determine input file names and alignment parameters (user interface). 

2. Read in two related PDB files. 

3. Determine corresponding residues between the two PDB files. 

4. Compute a least-squares superposition of C-alpha atoms. 

5. Write out the superposed coordinates to a new PDB file. 

 
5.2   User interface 
A basic, yet versatile, user interface can be implemented in a very straightforward manner using Phil. 
Since Phil has been discussed at length in Newsletter No. 5, we limit ourselves to a brief overview of the 
implementation. 

The Phil "master parameters" definition embedded in super.py is: 
 
import libtbx.phil 
master_params = libtbx.phil.parse("""\ 
super { 
  fixed = None 
    .type = str 
  moving = None 
    .type = str 
  moved = "moved.pdb" 
    .type = str 
  alignment_style = *local global 
    .type = choice 

Page 97



 99

  gap_opening_penalty = 20 
    .type = float 
  gap_extension_penalty = 2 
    .type = float 
  similarity_matrix = *blosum50 dayhoff 
    .type = choice 
} 
""") 

master_params is a Phil scope instance with a super sub-scope (for clarity) that defines the parameters 
we need. fixed and moving are input files names, moved is an output file name. The other parameters are 
for mmtbx.alignment.align. 

All parameters can be modified from the command line, e.g.: 
 
mmtbx.super fixed=first.pdb moving=second.pdb similarity_matrix=dayhoff 

This is enabled with the following code fragments in super.py: 
 
import libtbx.phil.command_line 
phil_objects = [] 
argument_interpreter = libtbx.phil.command_line.argument_interpreter( 
  master_params=master_params, home_scope="super") 
 
... 
 
    try: command_line_params = argument_interpreter.process(arg=arg) 
    except: raise Sorry("Unknown file or keyword: %s" % arg) 
    else: phil_objects.append(command_line_params) 

As an added convenience, bare file names are also recognized, e.g. this is an alternative to the command 
above: 

 
mmtbx.super first.pdb second.pdb similarity_matrix=dayhoff 

The complete code (including the fragments above) for supporting this generality is: 
 
def run(args): 
  phil_objects = [] 
  argument_interpreter = libtbx.phil.command_line.argument_interpreter( 
    master_params=master_params, home_scope="super") 
  fixed_pdb_file_name = None 
  moving_pdb_file_name = None 
  for arg in args: 
    if (os.path.isfile(arg)): 
      if (fixed_pdb_file_name is None): fixed_pdb_file_name = arg 
      elif (moving_pdb_file_name is None): moving_pdb_file_name = arg 
      else: raise Sorry("Too many file names.") 
    else: 
      try: command_line_params = argument_interpreter.process(arg=arg) 
      except: raise Sorry("Unknown file or keyword: %s" % arg) 
      else: phil_objects.append(command_line_params) 

At this point we have to consolidate the two possible sources of information: bare file names (stored 
under fixed_pdb_file_name and moving_pdb_file_name) and assignments via fixed=... or 
moving=.... First, we combine all the Phil assignments (stored under phil_objects) into one 
working_params object and use the extract() method to get easy access to the definitions (see 
Newsletter No. 5): 

 
working_params = master_params.fetch(sources=phil_objects) 
params = working_params.extract() 

Now we override the Phil assignments with the bare file names if available, or generate an error message 
if a file name is missing: 

Page 98



 100

 
if (fixed_pdb_file_name is None): 
  if (params.super.fixed is None): raise_missing("fixed") 
else: 
  params.super.fixed = fixed_pdb_file_name 
if (moving_pdb_file_name is None): 
  if (params.super.moving is None): raise_missing("moving") 
else: 
  params.super.moving = moving_pdb_file_name 

raise_missing() is a simple function raising an informative exception (see super.py), e.g.: 
 
Sorry: Missing file name for moving structure: 
  Please add 
    moving=file_name 
  to the command line to specify the moving structure. 

 
5.3   Processing of PDB input files 
With all the input parameters consolidated in the params object above, reading in the PDB files is simple: 

 
fixed_pdb = iotbx.pdb.input(file_name=params.super.fixed) 
moving_pdb = iotbx.pdb.input(file_name=params.super.moving) 

For both files we have to extract the sequence of residue names and corresponding C-alpha coordinates. 
This is implemented as a function that we call twice: 

 
fixed_seq, fixed_sites, fixed_site_flags = extract_sequence_and_sites( 
  pdb_input=fixed_pdb) 
moving_seq, moving_sites, moving_site_flags = extract_sequence_and_sites( 
  pdb_input=moving_pdb) 

For the complete implementation of extract_sequence_and_sites() please refer to super.py. For 
simplicity, the function only considers the first MODEL in the pdb file, and for each chain only the first 
conformer (as derived from the altloc symbols): 

 
model = pdb_input.construct_hierarchy().models()[0] 
for chain in model.chains(): 
  selected_residues = chain.conformers()[0].residue_class_selection( 
    class_name="common_amino_acid") 
  residues = chain.conformers()[0].residues() 
  for ires in selected_residues: 
    ... 

Another simplification is the selection of "common_amino_acid" residues only. For these, the residue 
names are translated to one-letter codes which are collected in a seq list: 

 
import mmtbx.amino_acid_codes 
... 
  seq = [] 
  ... 
      resi = residues[ires] 
      resn = resi.name[0:3] 
      single = mmtbx.amino_acid_codes.one_letter_given_three_letter[resn] 
      seq.append(single) 

Page 99



 101

The rest of the body of the loop over the selected residues extracts the C-alpha coordinates if available: 
 
from cctbx.array_family import flex 
... 
  sites = flex.vec3_double() 
  use_sites = flex.bool() 
  ... 
      use = False 
      xyz = (0,0,0) 
      for atom in resi.atoms(): 
        if (atom.name == " CA "): 
          xyz = atom.xyz 
          use = True 
          break 
      sites.append(xyz) 
      use_sites.append(use) 

The coordinates are stored under sites. A corresponding use_sites array of bools (False or True) stores 
if a C-alpha atom was found or not. Finally the collected sequence, coordinates and use flags are returned 
with: 

 
return "".join(seq), sites, use_sites 

The list of one-letter codes is converted to a plain string on the fly. The plain string is more convenient to 
work with in the following steps. 

 

5.4   Sequence alignment 
Sequence alignment is now a simple call of mmtbx.alignment.align as discussed before. The function 
call parameters are taken directly from the Phil params object: 

 
align_obj = mmtbx.alignment.align( 
  seq_a=fixed_seq, 
  seq_b=moving_seq, 
  gap_opening_penalty=params.super.gap_opening_penalty, 
  gap_extension_penalty=params.super.gap_extension_penalty, 
  similarity_function=params.super.similarity_matrix, 
  style=params.super.alignment_style) 

From the align_obj we extract the alignment as shown before, but we spend a little more effort to 
produce nice output: 

 
alignment = align_obj.extract_alignment() 
matches = alignment.matches() 
equal = matches.count("|") 
similar = matches.count("*") 
total = len(alignment.a) - alignment.a.count("-") 
alignment.pretty_print( 
  matches=matches, 
  block_size=50, 
  n_block=1, 
  top_name="fixed", 
  bottom_name="moving", 
  comment="""... see super.py ... """) 

This code produces, e.g.: 
 
The alignment used in the superposition is shown below. 
 
The sequence identity (fraction of | symbols) is 55.1% 
of the aligned length of the fixed molecule sequence. 
 

Page 100



 102

The sequence similarity (fraction of | and * symbols) is 75.5% 
of the aligned length of the fixed molecule sequence. 
 
              12345678901234567890123456789012345678901234567890 
 
fixed         VTDNIMKHSKNPIIIVVSNPLDIMTHVAWVRSGLPKERVIGMAGVLDAA 
              *  ||*||| * ||*|||||*|**|*|||  ||||  |*||    ||*| 
moving        IIPNIVKHSPDCIILVVSNPVDVLTYVAWKLSGLPMHRIIGSGCNLDSA 

 
5.5   Least-squares superposition 
To keep this example simple, in the least-squares superposition we want to use only the C-alpha 
coordinates of matching residues, i.e. residues with a | or * symbol in the output above. This information 
is stored under matches as obtained above. We also have to check if the C-alpha coordinates are available 
for both of the matching residues. This information is stored under fixed_site_flags and 
moving_site_flags. The matching + available C-alpha coordinates are obtained with this code: 

 
fixed_sites_sel = flex.vec3_double() 
moving_sites_sel = flex.vec3_double() 
for ia,ib,m in zip(alignment.i_seqs_a, alignment.i_seqs_b, matches): 
  if (m not in ["|", "*"]): continue 
  if (fixed_site_flags[ia] and moving_site_flags[ib]): 
    fixed_sites_sel.append(fixed_sites[ia]) 
    moving_sites_sel.append(moving_sites[ib]) 

Computing the superposition and printing out the RMSD between the aligned, superposed C-alpha atoms 
is now very simple: 

 
lsq_fit = superpose.least_squares_fit( 
  reference_sites=fixed_sites_sel, 
  other_sites=moving_sites_sel) 
rmsd = fixed_sites_sel.rms_difference(lsq_fit.other_sites_best_fit()) 
print "  RSMD between the aligned C-alpha atoms: %.3f" % rmsd 

 
5.6   Export of moved coordinates 
As the final step, mmtbx.super applies the rotation and translation obtained in the least squares fit to all 
original coordinates in moving_pdb and writes out the modified atom records: 

 
print "Writing moved pdb to file: %s" % params.super.moved 
out = open(params.super.moved, "w") 
for serial, label, atom in zip(moving_pdb.atom_serial_number_strings(), 
                               moving_pdb.input_atom_labels_list(), 
                               moving_pdb.atoms()): 
  print >> out, iotbx.pdb.format_atom_record( 
    record_name={False: "ATOM", True: "HETATM"}[atom.hetero], 
    serial=int(serial), 
    name=label.name(), 
    altLoc=label.altloc(), 
    resName=label.resname(), 
    resSeq=label.resseq, 
    chainID=label.chain(), 
    iCode=label.icode(), 
    site=lsq_fit.r * matrix.col(atom.xyz) + lsq_fit.t, 
    occupancy=atom.occ, 
    tempFactor=atom.b, 
    segID=atom.segid, 
    element=atom.element, 
    charge=atom.charge) 

All of the information on the input ATOM or HETATM records is passed through as-is, except for the 
coordinates. We make use of the scitbx.matrix facilities again to apply lsq_fit.r and lsq_fit.t to 

Page 101



 103

atom.xyz. format_atom_record() is a very simple function, essentially just a Python string formatting 
statement which could also be spelled out inline. However, the assignment of the data items to function 
parameters is easier to read and understand than the raw formatting statement, and the function handles 
some subtleties (e.g. overflowing serial and resSeq) that are easily overlooked. Using a central function 
ensures that subtle and rare problems like this are fixed everywhere once they are discovered. 

 

6   Overview of refinement development 
In the crystallographic context structure refinement means optimization of certain target functions by 
modifying various model parameters. Depending on several factors (e.g. available data, model quality and 
size) the model can be parameterized in different ways, as grouped or individual atomic parameters. 
Individual atomic parameters are coordinates, isotropic or anisotropic ADPs (atomic displacement 
parameters), and occupancy factors. Grouped parameterizations are rigid body, group ADP, TLS, group 
occupancy, and overall anisotropic scale factor. All of these except group occupancy refinement are 
currently implemented in phenix.refine. 

The most recent version of phenix.refine allows automatic refinement of any combination of 
parameters for any part or combination of parts of the model. To the best of our knowledge this is a 
unique feature among existing crystallographic software. 

To give an example, for a molecule with three chains A, B, and C, the command: 
 
phenix.refine model.pdb data.mtz \ 
  strategy=rigid_body+individual_sites+individual_adp+tls \ 
  sites.rigid_body="chain A" \ 
  sites.individual="chain B" \ 
  adp.tls="chain A" \ 
  adp.tls="chain C" 

will perform refinement of: 

• chain A as a rigid body 

• individual isotropic ADPs for the whole molecule 

• individual coordinates for chain B 

• TLS parameters for chain A and chain C 

More information about phenix.refine is available at http://phenix-online.org/download/cci_apps/ . 

In the following we will highlight a few selected open-source modules supporting phenix.refine. 

 

6.1   Rigid body refinement 
The core machinery for rigid body refinement is located in 
cctbx_sources/mmtbx/mmtbx/refinement/rigid_body.py. A typical call is: 

 
rigid_body_manager = mmtbx.refinement.rigid_body.manager( 
  fmodel                  = fmodel, 
  selections              = rigid_body_selections, 
  refine_r                = True, 
  refine_t                = True, 
  convergence_test        = True, 
  nref_min                = 1000, 
  max_iterations          = 25, 
  use_only_low_resolution = False, 
  high_resolution         = 2.0, 

Page 102

http://phenix-online.org/download/cci_apps/�


 104

  low_high_res_limit      = 6.0, 
  max_low_high_res_limit  = 8.0, 
  bulk_solvent_and_scale  = True, 
  bss                     = bulk_solvent_and_scale_parameters, 
  euler_angle_convention  = "xyz", 
  log                     = log) 
rotations    = rigid_body_manager.total_rotation, 
translations = rigid_body_manager.total_translation 

This performs L-BFGS minimization of a crystallographic target w.r.t. 6*len(rigid_body_selections) 
parameters. The model (xray_structure), crystallographic data (Fobs, ...), and target definition are held 
by fmodel. The selections can cover either the whole molecule or selected parts. Atoms that are not 
selected are fixed during refinement. Depending on the parameters, it can perform either conventional 
rigid body refinement in a selected resolution range or use more sophisticated multi-zone protocol where 
the refinement starts in low resolution zone (defined by nref_min) and proceeds with the whole set of 
reflections. Bulk solvent parameters and scale parameters are updated automatically if the model is 
shifted more than a certain threshold. 

 
6.2   Grouped isotropic ADP refinement 
The code for grouped isotropic ADP refinement resides in 
cctbx_sources/mmtbx/mmtbx/refinement/group_b.py. A typical call is: 

 
mmtbx.refinement.group_b.manager( 
  fmodel                      = fmodel, 
  selections                  = group_adp_selections, 
  convergence_test            = True, 
  max_number_of_iterations    = 25, 
  number_of_macro_cycles      = 3, 
  run_finite_differences_test = False, 
  log                         = log) 

This performs refinement of one isotropic ADP per selected group. Non-specific input parameters are 
similar to those in rigid body refinement module. The refinable parameters are a shift in isotropic ADP 
for each group, which are added to the original ADPs. The group-specific shifts are applied to both 
isotropic and anisotropic atoms. For the latter the shift is added to the three diagonal elements of the ADP 
tensor. In particular this is important for TLS refinement where the atoms in TLS groups are anisotropic 
and the group ADP refinement is used. ADPs of non-selected atoms are unchanged. 

 

6.3   TLS refinement 
This is the most complex code mentioned here and is located in the directories 
cctbx_sources/mmtbx/mmtbx/tls and cctbx_sources/mmtbx/tls (Python and C++ code, 
respectively). The file cctbx_sources/mmtbx/mmtbx/tls/tools.py contains the class: 

 
class tls_refinement(object): 
   def __init__(self, fmodel, 
                      model, 
                      selections, 
                      refine_T, 
                      refine_L, 
                      refine_S, 
                      number_of_macro_cycles, 
                      max_number_of_iterations, 
                      start_tls_value = None, 
                      run_finite_differences_test = False, 
                      eps = 1.e-6, 
                      out = None, 
                      macro_cycle = None): 

Page 103



 105

which performs all principal steps in its constructor, including extraction of start TLS parameters from the 
current ADPs (extracted from fmodel.xray_structure) and the current TLS parameters (zero in the 
first macro-cycle), L-BFGS minimization of a crystallographic target w.r.t. the TLS parameters, split of 
total ADPs into local and TLS components, and enforcement of positive-definiteness of the final ADP 
tensors for each individual atom. These operations are exposed as helper functions in tools.py which 
can also be called individually. 

 

6.4   Individual coordinates, ADP and occupancies 
The file cctbx_sources/mmtbx/mmtbx/refinement/minimization.py is one of the most matrue files 
in the mmtbx and is the main driver for restrained refinement of individual coordinates, ADPs (isotropic 
or anisotropic) and occupancies for selected atoms using X-ray and/or neutron data. E.g. to perform 
coordinate refinement: 

 
mmtbx.refinement.minimization.lbfgs( 
  restraints_manager       = restraints_manager, 
  fmodel                   = fmodel, 
  model                    = model, 
  refine_xyz               = True, 
  lbfgs_termination_params = lbfgs_termination_params, 
  wx                       = xray_term_weight, 
  wc                       = geometry_term_weight, 
  verbose                  = 0) 

The model object contains selection information to determine which atoms are refined and which are 
fixed. 

 

7   Acknowledgments 
We gratefully acknowledge the financial support of NIH/NIGMS under grant number P01GM063210. 
Our work was supported in part by the US Department of Energy under Contract No. DE-AC02-
05CH11231. 

 

8   References 
Dayhoff, M.O. (1978). Atlas of Protein Sequence and Structure, Vol. 5 suppl. 3, 345-352. 
Gotoh, O. (1982). J. Mol. Biol. 162, 705-708. 
Grosse-Kunstleve, R.W., Adams, P.D. (2003). Newsletter of the IUCr Commission on Crystallographic 
Computing, 1, 28-38. 
Grosse-Kunstleve, R.W., Afonine, P.V., Adams, P.D. (2004). Newsletter of the IUCr Commission on 
Crystallographic Computing, 4, 19-36. 
Grosse-Kunstleve, R.W., Afonine, P.V., Sauter, N.K., Adams, P.D. (2005). Newsletter of the IUCr 
Commission on Crystallographic Computing, 5, 69-91. 
Henikoff & Henikoff (1992). PNAS 89, 10915-10919 
Kabsch, W. (1976). Acta Cryst. A32, 922-923. 
Kabsch, W. (1978). Acta Cryst. A34, 827-828. 
Kearsley, S.K. (1989). Acta Cryst. A45, 208-210. 
Needleman, S. & Wunsch, C. (1970). J. Mol. Biol. 48(3), 443-53. 
Smith, T.F. & Waterman M.S. (1981). J. Mol. Biol. 147, 195-197. 

Page 104



 106

An integrated three-dimensional visualization system VESTA using 
wxWidgets 

 
Koichi Momma1 and Fujio Izumi2 
1 Institute of Mineralogy, Petrology, and Economic Geology, Tohoku University, Aoba, Sendai, Miyagi 
980-8578, Japan; 2 Quantum Beam Center, National Institute for Materials Science, 1-1 Namiki, Tsu-
kuba, Ibaraki 305-0044, Japan. 
E-mail: monmakou@ganko.tohoku.ac.jp - WWW: http://www.geocities.jp/kmo_mma/ 
 
1. Introduction 
 
Progress in modern structure-refinement techniques of the maximum-entropy method (MEM) and MEM-
based pattern fitting (MPF) [1], has made it easier and more popular to determine three-dimensional (3D) 
distribution of electron densities from X-ray diffraction data and densities of coherent-scattering lengths 
(nuclear densities), bc, from neutron diffraction data. On the other hand, rapid developments of computer 
hardware and software have accelerated and facilitated electronic-structure calculations affording 
physical quantities including electron densities, wave functions, and electrostatic potentials.  
 
Such technological advances in recent years bring demands for integrated 3D visualization systems to 
deal with both structural models and 3D pixel data such as electron and nuclear densities. The crystal 
structures and spatial distribution of various physical quantities obtained experimentally and by computer 
simulation should be understood three-dimensionally. Despite the availability of many structure-drawing 
programs, cross-platform free software capable of visualizing both crystal and electronic structures in 
three dimensions is very few; if any, they are not very suitable for displaying those of inorganic and 
metallic compounds. 
 
To improve such a situation, we have recently developed a new integrated system VESTA (Visualization 
for Electronic and STructural Analysis) for 3D visualization of crystal structures and pixel data on 
personal computers. This article at first gives a brief overview of VESTA, which is followed by more 
detailed descriptions of features and algorithm that have been newly implemented in it. 
 
2. Circumstances behind the development of VESTA 
 
VESTA is a successor to two 3D visualization programs, VICS and VEND, in the VENUS (Visualization 
of Electron/NUclear densities and Structures) software package [1-4]. VENUS, which was developed by 
Dilanian, Izumi, and Kawamura with help from Ohki and Momma during 2001–2006, comprises the 
following five programs: 
 

1. VICS (VIsualization of Crystal Structures) for displaying and manipulating crystal structures, 
2. VEND (Visualization of Electron/Nuclear Densities) for displaying and manipulating 3D pixel 

data, 
3. PRIMA (PRactice Iterative MEM Analyses) for MEM analysis from X-ray and neutron 

diffraction data, 
4. ALBA (After Le Bail Analysis) for the maximum-entropy Patterson method, 
5. Alchemy: a file converter to make it possible to analyze observed structure factors, which result 

from Rietveld analysis using GSAS and FullProf, by MEM with PRIMA. 
 
VICS and VEND are GLUT- and GLUI-based applications written in the C language with full use of 
OpenGL technology. They saw the light of day at the end of 2002 and, since then, continued their growth 
to be used widely in a variety of studies.  
 

Page 105

mailto:monmakou@ganko.tohoku.ac.jp�
http://www.geocities.jp/kmo_mma/index-en.html�


 107

However, we never get full satisfaction from their usability and performance for the following four 
reasons. First, the combined use of them to visualize both crystal and electronic structures via text files is 
rather troublesome; on-the-fly visualization of these two kinds of images is highly desired. Second, their 
graphical user interface (GUI) is not very user-friendly because they are based on the old-fashioned 
toolkits, GLUT and GLUI, which have been no longer upgraded. GLUT and GLUI offer only a limited 
number of widgets. For example, they do not support pull-down menus and tabs for windows, which are, 
at present, very popular in applications with GUI. One of the most serious troubles in VICS and VEND is 
that they terminate suddenly without any warning messages whenever the close button at the upper right 
corner of the title bar in each window/bar has been clicked. This problem results from a bug in the 
toolkits. Third, VICS and VEND can deal with only a limited number of objects such as atoms, bonds, 
polyhedra, and polygons on isosurfaces. Fourth, they require large system resources owing to unrefined 
programming. 
 
To overcome the above faults in VICS and VEND, we at first upgraded VICS to VICS-II employing a 
modern C++ GUI framework wxWidgets [5,6] to build a new state-of-art GUI and further integrated 
VICS-II and VEND into the next-generation 3D visualization system VESTA, adding new capabilities. 
 
3. Overview 
 
VESTA is a 3D graphic application written in the C++ language on the basis of OpenGL technology. It 
runs fast on personal computers equipped with video cards accelerating OpenGL. Windows, Mac OS X, 
and Linux versions are available. For each platform, both 32- and 64-bit applications will be distributed 
on the Web.  
 
Thanks to wxWidgets, we can open multiple files using tabbed graphic windows; pull-down menus and 
tabbed dialog boxes are also supported. Needless to say, the annoying bug related to the close button 
described above has now been fixed. VESTA allows us to deal with a practically unlimited number of 
objects as far as memory size goes. It requires much less system resources than VICS and VEND. 
 
VESTA represents crystal structures as ball-and-stick, space-filling, polyhedral, wireframe, stick, and 
thermal-ellipsoid models. Ball-and-stick, wireframe, and stick models can be overlapped with dotted 
surfaces corresponding to van der Waals radii. Polyhedra may be made translucent so as to make inside 
atoms and bonds visible. We can insert a movable lattice plane with variable opacities into a structural 
model. Drawing boundaries can be defined by ranges along x, y, and z axes as well as lattice planes. 
 
Electron/nuclear densities, wave functions, and electrostatic potentials are visualized as isosurfaces, 
bird’s-eye views, and two-dimensional (2D) maps. VESTA has a feature of surface colorization to show 
another kind of a physical quantity at each point on isosurfaces. Translucent isosurfaces can be 
overlapped with a structural model. 
 
VESTA can read in files with 36 kinds of formats such as CIF, ICSD, and PDB and output files with 11 
kinds of formats such as CIF and PDB. Users of RIETAN-FP [7,8] must be pleased to learn that standard 
input files, *.ins, can be both input and output by VESTA. The entire crystal data and graphic settings can 
be saved in a small text file, *.vesta, without duplicating huge 3D pixel data. File *.vesta with the VESTA 
format contains relative paths to 3D data files and optionally a crystal-data file that are read in 
automatically when *.vesta is reopened. VESTA also makes it possible to export graphic files with 14 
image formats including 4 vector-graphic ones. 
 
4. Programming models 
 
4.1 GUI parts 
wxWidgets [5,6], which was formerly referred to as wxWindows, is one of the best toolkits for cross-
platform GUI programming. It provides us with a look-and-feel inherent in each operating system. The 

Page 106



 108

license agreement of wxWidgets, an LGPL-like license with some exceptions allowing binary distribution 
without source code and copyright, is flexible enough to permit us to develop any types of applications 
incorporating wxWidgets 
 
During the course of GUI reconstruction, we carefully separated the source code of GUI parts from that 
of other core parts to make it easier to reuse the latter in combination with other GUI toolkits. The core 
parts are basically controlled from the GUI ones. However, there are exceptions where functions provided 
by wxWidgets are called in some core parts. In such a case, the function is wrapped by another function 
to make the core parts quite independent of GUI toolkits and to show which functions depend on external 
libraries. 
 
VESTA supports multiple windows, each of which may contain multiple tabs corresponding to files. 
Various kinds of information is output to the bottom area, where comments can also be input after 
clicking the comment tab. 
 
Figure 1 shows the main window of VESTA running on Windows XP. A brief hierarchy of widget 
classes to build it is illustrated in Fig. 2. An OpenGL canvas is placed on a wxNotebook widget giving 
the ‘tab’ interface. Notebook widgets are usually designed to handle multiple-window components in the 
same window area. However, we used some tricks to minimize system resources. VESTA was designed 
in such a way that all the notebook pages have the same kind of a child, i.e., a wxGLCanvas widget. 
Because the notebook widget ensures that no multiple pages are simultaneously displayed, we actually 
need no multiple OpenGL canvases. Hence, VESTA assigns a single wxGLCanvas recursively to every 
notebook page. 
 

 
 
Fig 1: A screenshot of the VESTA main window. 
 

wxPanel
wxGLCanvas

wxTextCtrl

wxFrame
wxNotebook

wxNotebook  
 
Fig 2: Schematic image of widgets-class hierarchy on the main window. 
 

Page 107



 109

To maximize graphic performance, VESTA uses a cache mechanism of OpenGL display command lists 
that increase in size with increasing number of drawing objects in the canvas; a command list for only one 
canvas is always created. If each tab had its own canvas, the total size of memory consumed for the 
command lists of all the OpenGL canvases would become huge. The layout of widgets in VESTA, 
therefore, reduces memory usage dramatically. For the Linux and Mac OS X ports, some additional 
tweaks are required to reuse the same OpenGL canvas in different tabs. 
 
4.2 Core parts 
In contrast to the GUI framework, we tried to reuse other parts of the source code as much as possible. 
All the global variables related to crystal data and graphic settings are capsulated into a Scene class to 
allow object-oriented programming. An instance of the Scene class is dynamically generated whenever 
new data are created or read in from files so that multiple windows and tabs may work simultaneously. 
The previous programs, VICS and VEND, can deal with only a limited number of objects and consume a 
large amount of memory even when handling a relatively small number of data because both of them use 
native ANCI C arrays. To eliminate this limitation with minimum effort and without any appreciable 
overhead, C arrays were replaced with a small wrapper class of std::vector. The main part of the 
wrapper class is coded as follows: 
 

template<typename T> class objVector 
{ 
public: 
 ~objVector(){ 
  clear(); 
 } 
 inline T& operator[](size_t i) { 
  return (T&)*(T*)v[i]; 
 } 
 inline void add(T* item){ 
  v.push_back( item ); 
 } 
 void clear(){ 
  for(size_t i=0; i<v.size(); i++) delete (T*)v[i]; 
  v.clear(); 
 } 
 void remove(size_t i){ 
  delete (T*)v[i]; 
  v.erase(v.begin()+i); 
 } 
 std::vector<void*> v; 
}; 

 
We also prepared the same kind of a wrapper class, aryVector, for pointers to arrays. This class 
permits type-safe programming without unnesessary code duplication of the std::vector template 
class. Further, it can be accessed by a [] operator in exactly the same way as with C arrays on a source-
code level despite great differences in real operations on a binary level. We should only note that all the 
objects must be deletable; that is, they should be generated by a new operator. Because they are 
automatically deleted by a destructor when wasting an array, we need not concern about memory leaks. 
We have another genuine reason why the std::vector class is indirectly used in nearly all cases. 
Instances of objects can be shared by two or more arrays of the same form. Elements in an array can be 
quickly sorted only by manipulating pointers without copying a large amount of data for real objects. 
 
5. Dealing with structural models 
 
5.1 Searching for bonds 
Bond-search algorithm was much improved in VESTA. The most primitive way to search for bonds is to 
examine the entire pairs of atoms within drawing boundaries. We adopted a similar approach with some 
improvements in VICS. Although this algorithm is very simple, the calculation time increases drastically 

Page 108



 110

with increasing number of atoms, N, in the drawing region. The calculation cost is proportional to the 
square of N, which is expressed as O(N2) with big O notation.12 
 
On the other hand, the calculation time is linearly proportional to N, O(N), in VESTA as a result of 
checking only atom pairs where distances between them are smaller than a certain value. To minimize the 
number of atoms to be examined, a variant of the cell index method by Quentrec and Brot [9,10] was 
adopted in VESTA. This approach is widely used in programs for molecular dynamics simulation that 
needs to deal with a large number of atoms [11]. The basic idea of the cell index method is to divide a 
large box into subboxes (subcells in the present case) and make up a list of atoms in each subcell. When 
drawing a crystal structure, the large box corresponds to drawing boundaries, and sizes of a subcell along 
x, y, and z directions are chosen so as to be slightly larger than the largest bond length. This manner 
ensures that all the bonds for an atom can be found within the same cell plus neighboring 26 subcells, 
each of which typically contains only a few atoms. 
 
VESTA can search for bonds in three modes. In the first mode, both A1 and A2 atoms bonded to each 
other are specified. The second mode is used to search for all the atoms located between minimum and 
maximum distances from an A1 atom. In the third “Search molecule” mode, a set of atoms within a 
specified bond length is reiteratively found. Atoms A1 and A2 may be specified by entering either 
symbols for elements or site names. 
 
5.2 Changes in drawing boundaries 
Drawing boundaries for structural models can be changed in sophisticated ways similar to convoluting 
and reiterative-convoluting spheres in ORTEP-III [12]. For example, we usually prefer that coordination 
polyhedra are not omitted but drawn when their central atoms are situated within the drawing boundaries. 
For this purpose, all the atoms bonded to these central atoms are added with option “Beyond the 
boundary” (Fig. 3). To draw Fig. 3, bonds were searched in two different ways. One was to use the 
“Search A2 bonded to A1” mode with A1 = Al and A2 = O and check “Show polyhedra” and “Search 
beyond the boundary” options. The minimum and maximum limitations of bond lengths were 0 Å and 2.1 
Å, respectively. The other was to use the “Search molecules” mode and apply the “Search beyond the 
boundary” option to O–H bonds. Bond lengths were set between 0 Å and 1.0 Å, and drawing boundaries 
between (0, 0, 0) and (1, 1.5, 1). 
 

 
 
Fig 3: Crystal structure of δ–AlOOH, a high pressure modification of aluminum oxide hydroxide, with 
thermal-displacement ellipsoids at a 99 % probability level [13]. H atoms are represented by spheres of 
an arbitrary radius. 
 

                                                           
12 The big O notation is a mathematical one to describe the behavior of a function for a very large (or a very small) number of 

input data, in this case, N atoms. More precisely, “f(n) is O(g(n))” means that there exists a certain constant m and a posi-
tive constant c such that f(n) ≤ c*g(n) for n > m. 

Page 109



 111

In organic compounds including metal complexes, the combination of the “Search molecule” mode and 
option “Beyond the boundary” is used to search for the entire atoms of molecules with at lease one atom 
lying within drawing boundaries. 
 
5.3 Information about objects 
Selection of objects (atoms, bonds, and coordination polyhedra) by clicking with a mouse provides us 
with a variety of crystallographic information in the output window at the bottom: 

 1) fractional coordinates, 
 2) symmetry operations and translation vectors, 
 3) site multiplicities plus Wyckoff letters derived by STRUCTURE TIDY [14] embedded in 

RIETAN-FP (for files of some formats) 
 4) interatomic distances, bond angles, and torsion angles, 
 5) information about coordination polyhedra including volumes, Baur’s distortion indices [15], 

quadratic elongations [16], bond angle variances [16], bond valence sums [17] of central 
metals, and bond lengths expected from bond valence parameters [17]. 

 
5.4 Lattice transformation 
VESTA has a feature to convert general equivalent positions in a conventional setting into those in a non-
conventional one with a transformation matrix, which is also used for (primitive lattice)–(complex lattice) 
conversions and for creating superstructures. 

The ( )44×  transformation matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
pP

 consists of the ( )33×  rotation matrix P and the ( )13×  

translation vector p. Primitive translation vectors a, b, c are transformed by P as 
 

( ) ( )

( )

( ).,, 332313322212312111

333231

232221

131211

cbacbacba

cba

Pcbacba

PPPPPPPPP
PPP
PPP
PPP

,,

,,'',',

++++++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=

 

 
The shift of the origin is defined with the shift vector 
 

( ) ( ) cbacbapcba 321

3

2

1

,,,, ppp
p
p
p

++=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==p . 

 
The symmetry operation  is transformed by 

’ = ,
 

where Q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1010

11 pPPqQ -- - = –1. 

 

The lattice vector  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1
z
y
x

 is transformed by 

 
’ = .

Page 110



 112

 
If the determinant of P, det(P), is negative, the crystal-coordinate system is transformed from right-
handed to left-handed, and vice versa. If det(P) is not 1, the unit-cell volume, V, changes on the lattice 
transformation. When det(P) is larger than 1, VESTA allows us to create a superstructure by examining 
the following equation to find additional sites lying in between (0,0,0) and (1,1,1).  
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
'
'
'

x
y
x

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+
+

1
z

y

x

nz
ny
nx

                                 ...),2,1,0,,( ±±=zyx nnn . 

 
Note that VESTA adds no new equivalent positions but new sites when creating superstructures. That is, 
the space group of the new structure should be a subgroup of the original space group. When det(P) is 
smaller than 1, the same position may result from two or more sites. In such a case, the redundant sites 
can be removed by clicking a “Remove duplicate atoms” button. 
 
6. Dealing with 3D pixel data 
 
6.1 Three kinds of representation 
Isosurfaces are represented as smooth-shaded polygons, wireframes, and dot surfaces. Physical quantities, 
e.g., wave functions and nuclear densities, having both positive and negative values are expressed by 
isosurfaces with two different colors. 
 
6.2 Surface colorization 
Another attractive feature is surface colorization, whose typical application is to colorize isosurfaces of 
electron densities according to electrostatic potentials.  Figure 4 exemplifies an application of this 
feature to results of an electronic-state calculation for the [Cd{S4Mo3(Hnta)3}2]4– ion (H3nta: 
nitrilotriacetic acid) [18] by a discrete variational Xα method with DVSCAT [19]. The isosurface level 
was set at 0.03a0

–3, and electrostatic potentials on the isosurface range from –0.814 Ry (blue) to 0.174 Ry 
(red). Opacity parameters, C1 and C2, for the isosurface (see 6.4) were 80 % and 100 %, respectively. 
 

 
 
Fig 4: A composite image of an electron-density isosurface colorized on the basis of electrostatic 
potentials and a ball-and-stick model for the [Cd{S4Mo3(Hnta)3}2]4– ion [18]. 

Page 111



 113

6.3 Two-dimensional distribution on lattice planes and boundary sections 
Lattice planes (slices) can be inserted to display 2D distribution of a physical quantity in addition to its 
isosurfaces. Both boundary sections and lattice planes are colorized on the basis of numerical values on 
them. The saturation level of color is specified as (a) a value normalized between 0 and 100 
corresponding minimum and maximum values, respectively, and (b) a value corresponding to raw data. 
The color index, T, for a data point with a value of d is calculated from two saturation levels, Smin and 
Smax, in the unit of the raw data: 

minmax

min

SS
SdT
−

−
= . 

Data points with values larger than Smax and smaller than Smin are given the same colors as those assigned 
to Smax and Smin, respectively. The color of each point is determined from T, depending on color modes: 
B-G-R, R-G-B, C-M-Y, Y-M-C, gray scale (from black to white), and inversed gray scale. For example, 
blue is assigned to 0, green to 0.5, and red to 1 in the B-G-R mode. 
 
6.4 How to calculate opacities of polygons 
With VESTA, the visibility of both outlines of isosurfaces and an internal structural model was 
surprisingly improved in comparison with that with VEND. The opacity, C(p), for polygon p with a 
normal vector of (x, y, z) is calculated with a linear combination of two opacity parameters, C1 and C2, for 
polygons parallel and perpendicular to the screen, respectively: 
 ).1()( 21 zCzCpC −+=  
 
6.5 Order of drawing polygons 
When drawing translucent objects with the OpenGL API, polygons should be usually drawn from behind. 
VESTA sorts a set of polygons before drawing them, making it possible to render images properly 
regardless of orientation of the objects. The sequence of drawing polygons can optionally be reversed. 
The use of this option may sometimes improve the visibility of complex isosurfaces because neither back 
surfaces nor internal ones are drawn; otherwise, they heavily overlap each other to give an improper 
image. 
 
6.6 Pixel operations 
VESTA supports pixel operations between more than two 3D data sets. For example, this feature enables 
us (a) to subtract calculated electron densities from observed ones obtained by MEM analysis to detect 
atoms missing in a structural model and (b) to subtract down-spin electron densities from up-spin ones to 
visualize effective spin densities (Fig. 5). 
 

A

B

C

 
 
Fig 5: Distributions of electron densities and effective spin densities calculated with DVSCAT for the O2 
molecule. A: up-spin electron density; B: down-spin electron density; C: effective spin density (A – B) 
calculated with VESTA. Isosurface levels were set at 0.01a0

–3 (A and B) and 0.001a0
–3 (C), respectively. 

 

Page 112



 114

6.7 Improvements in rendering quality 
The quality of rendering objects such as isosurfaces, boundary sections, and lattice planes in VESTA is 
much higher than that in VEND, even when dealing with a relatively small number of pixels. 
 
6.7.1 Smooth-shading model 
A flat-shading model to draw isosurfaces was used in VEND. It assigns a normal vector to each polygon, 
which causes the discontinuity of reflection colors near vertices and edges shared with neighboring 
polygons. To settle this problem, we adopted a smooth-shading model, which assigns a normal vector to 
each vertex of a polygon, in VESTA. The normal vector at each point on the polygon is calculated with a 
shading model, ‘GL_SMOOTH’, provided by the OpenGL API using a linear combination of the normal 
vectors at the vertices. 
 
6.7.2 Colors for boundary sections and lattice planes 
VEND assigns RGB values to vertices of polygons on boundary sections and lattice planes. However, 
these ‘colored polygons’ are problematic when data values mainly change in a narrow region. Suppose a 
situation where blue is assigned to 0, green to 0.5, and red to 1. If the three vertices of a triangular 
polygon have values of 0, 0.5, and 1, the color for the center of the polygon becomes a mixture of the 
three colors:  

3/13/)100( =++=R  
3/13/)010( =++=G  
3/13/)001( =++=B . 

The resultant color is gray that does not represent any physical quantities. To avoid the appearance of 
such a meaningless color, VESTA prepares a rainbow-colored one-dimensional texture, glTexImage1D, 
and assigns coordinates in the texture to vertices. For RGB texture, 0 is assigned to blue texture positions, 
0.5 to green ones, and 1 to red ones. Then, for any sets of three physical quantities at vertices and for any 
positions of polygons, texture coordinates represent values at those positions. In the above case, the 
texture coordinate (= color index), T, at the center of the polygon is: 

5.03/)15.00( =++=T . 
 
The internal unit of saturation levels for colors is changed from a normalized one to a raw-data one so that 
saturation levels close to 0 or 1 (in a normalized unit) can work correctly. Assume that we specify 
saturation levels normalized between 0 and 1 corresponding to minimum and maximum values in a data 
set, respectively. Then, a problem arises from floating-point arithmetic errors if 3D data have extremely 
large (or small negative) values as in the case of electrostatic potentials. For instance, suppose a case 
where minimum and maximum data values are respectively –1020 and 0 with saturation levels from –10 to 
0 in the raw-data unit. The normalized value for –10 is (–10 + 1020)/(0 + 1020) ≈ 1 while that for 0 is (0 + 
1020)/(0 + 1020) = 1. Thus, with the normalized representation, values between –10 and 0 cannot be 
distinguished within the precision of floating-point arithmetic. This problem does not occur in VESTA 
because the internal representation of saturation levels, –10 and 0 in the above case, has the same 
precision as with raw data. Thus, VESTA generates no factitious lines on colored isosurfaces. 
 
6.7.3 Surface colorization 
For colorization of isosurfaces, unrefined code was written in VEND. That is, data values at vertices on 
the isosurfaces are approximated at those of the nearest pixels while different values are assigned to those 
vertices of neighboring polygons which have just the same coordinates. We thoroughly redesigned the 
surface-colorization feature in VESTA. With VESTA, the data value, U(v), for vertex v between two 
pixels, p1 and p2, is evaluated using a linear combination of U(p1) and U(p2): 

21

1221 )()()(
ll

lpUlpUvU
+
+

=  

where l1 and l2 are the distance between v and p1, and that between v and p2, respectively; l1 + l2 is equal 
to the distance between p1 and p2. Thus, VESTA shows much smoother isosurfaces without interpolation 
of pixel data than VEND. 
 

Page 113



 115

6.8 Algorithm for geometry calculations 
The calculation of isosurface geometry has been appreciably accelerated in VESTA compared with that in 
VEND. 
 
Figure 6 shows a 2D projection of 3D pixel data and ‘grids’ defined by pixel rows along x, y, and z axes. 
Vertices and polygons on isosurfaces are calculated for all the subgrids with eight pixels per grid. For 
each subgrid, its twelve edges are checked whether they intersect the isosurfaces or not. For example, if a 
pixel data, p(i,j,k), is larger than the isosurface level whereas p(i-1,j,k) is smaller than it, a vertex between 
p(i,j,k) and p(i-1,j,k) for a polygon is generated. Every polygon on the isosurface generated in this way 
has its own three vertices. However, all the pixels except those on drawing boundaries are shared with 
neighboring eight subgrids, which means that values at most pixels are evaluated as many as eight times. 
Furthermore, this method generates many duplicate vertices with the same coordinates because most 
vertices on the isosurface are common among neighboring six polygons. The sluggish speed of 
calculating isosurface geometry with VEND is explained in terms of these facts. The simple but 
inefficient approach to calculate isosurface geometry is given below: 
 

p(0,0,k) p(1,0,k) p(i,0,k).  .  .  .  .  .

g(1,1,k) g(2,1,k) g(i,1,k)

g(1,2,k)

g(1,j,k)

g(2,2,k)

p(0,1,k)

p(0,j,k)

. .
 . 

. .
 .

p(i-1,0,k)

p(0,j-1,k)

 
 
Fig 6: The relation between 3D pixel data p and grid g defined by nearest eight pixels. Polygons for the 
isosurface are calculated for each grid. 
 

calculate_isosurface_geometry_old( 
 float *rho,    // 3D pixel data 
 float isolevel  // isosurface level 
 int   bbox[6], // Drawing boundaries 
 int   NPIX[3], // Number of pixels along x, y, z in unit cell 
 ){ 
 int   i, j, k, m; 
 int   r[8][3]; 
 float grid[8][4]; 
 float *vertlist[12]; 
 objVector<Polygon> poly; // list of polygons on isosurface 
 unsigned char cubeindex; // bit flags for a grid recording which pixels are outside/inside of 
      // isosurface 
 ... 
 
 r[0][0] = 0; r[0][1] = 0; r[0][2] = 0; 
 r[1][0] = 1; r[1][1] = 0; r[1][2] = 0; 
 r[2][0] = 1; r[2][1] = 1; r[2][2] = 0; 
 r[3][0] = 0; r[3][1] = 1; r[3][2] = 0; 
 r[4][0] = 0; r[4][1] = 0; r[4][2] = 1; 
 r[5][0] = 1; r[5][1] = 0; r[5][2] = 1; 
 r[6][0] = 1; r[6][1] = 1; r[6][2] = 1; 
 r[7][0] = 0; r[7][1] = 1; r[7][2] = 1; 
 
 for (k=bbox[4]; k<bbox[5]; k++){ 
  for (j=bbox[2]; j<bbox[3]; j++){ 
   for (i=bbox[0]; i<bbox[1]; i++){ 

Page 114



 116

    for (m=0; m<8; m++){ 
     int id = pos(i, j, k); // pos(i, j, k) reterns integer index of pixel(i, j, k) 
     grid[m][0] = i + r[m][0]; 
     grid[m][1] = j + r[m][1]; 
     grid[m][2] = k + r[m][2]; 
     grid[m][3] = rho[id]; 
     if (rho[id] < isolevel) cubeindex |= 1 << m; 
    } 
    // All the eight pixels are evaluated. Now calculate vertices for tweleve edges. 
    // ‘edgeTable’ is a list of IDs used to judge wether the edge intersects the 
isosurface or not. 
    // calc_vtx() returns coordinates of a vertex. 
    if(edgeTable[cubeindex] & 1)    vertlist[0]  = calc_vtx(isolevel, grid[0], grid[1]); 
    ... 
    if(edgeTable[cubeindex] & 1024) vertlist[10] = calc_vtx(isolevel, grid[2], grid[6]); 
    if(edgeTable[cubeindex] & 2048) vertlist[11] = calc_vtx(isolevel, grid[3], grid[7]); 
 
    // Build polygons using vertices stored in vertlist. 
    ... 
   } // end loop(i) 
  } // end loop(j) 
 } // end loop(k) 
} 

 
What is worse, if we try to render an isosurface with the smooth-shading model, redundant vertices of the 
isosurface should be reduced to a single vertex to calculate a normal vector. Such a situation should be 
avoided because of the following three reasons: pixel values are evaluated as many as eight times per 
pixel; vertices on the isosurface are generated six times greater than needed; a large number of vertices 
generated in this way are compared with each other to check duplication. 
 
Our new algorithm introduced into VESTA eliminates all of these redundant calculations by a refinement 
of the order of loops, as can be appreciated from Fig. 6. 
 

calculate_isosurface_geometry_new( 
 float *rho,       // 3D pixel data 
 float  isolevel   // isosurface level 
 int  bbox[6],    // Drawing boundaries 
 int  NPIX[3],    // Number of pixels along x, y, z in unit cell 
 ){ 
 int i, j, k; 
 aryVector<float*> vtx;     // list of vertices on isosurface 
 unsigned char *cubeindex; // bit flags for each grid recording which pixels are outside/inside of 
      // isosurface 
 long *edgeList;           // edge tables recording integer identifier of vertices on the edges 
 ... 
 cubeindex = new unsigned char[2*(bbox[1]-bbox[0] +1)* (bbox[3]-bbox[2]+1)]; 
 edgeList = new long[6*(bbox[1]-bbox[0] )* (bbox[3]-bbox[2])] 
 
 for (k=bbox[4]; k<=bbox[5]; k++){ 
  ... // copy cubeindex(i,j,k) to cubeindex(i,j,k-1), reset cubeindex(i,j,k). 
   // copy edgeList(i,j,k) to edgeList(i,j,k-1). 
  for (j=bbox[2]; j<=bbox[3]; j++){ 
   for (i=bbox[0]; i<=bbox[1]; i++){ 
    int M = pos(i, j, k); // pos(i, j, k) reterns integer index of pixel(i, j, k) 
    if (rho[M] > isolevel){ 
     ... 
     // register bit flags to 8 grids around this pixel that this pixel is inside 
     // of isosurface 
    } 
    if(i > bbox[0]){ 
     ... 
     // Calculate vertices between p(i-1, j, k) and p(i, j, k),  
     // add to vtx and register it to edgeList. 

Page 115



 117

    } 
    if(j > bbox[2]){ 
     ...  
     // Calculate vertices between p(i, j-1, k) and p(i, j, k),  
     // add to vtx and register it to edgeList. 
    } 
    if(k > bbox[4]){ 
     ... 
     // Calculate vertices between p(i, j, k-1) and p(i, j, k),  
     // add to vtx and register it to edgeList. 
    } 
 
    if(i > bbox[0] && j > bbox[2] && k > bbox[4]){ 
     ... 
     // Generate polygons for grid(i, j, k) using the bit flag cubeindex(i, j, k) 
     // and edgeList. 
    } 
   } // end loop(i) 
  } // end loop(j) 
 } // end loop(k) 
} 

 
Note that cubeindex is now changed to an array of indices for two sheets with k=k-1 and k=k in grids 
arranged three-dimensionally. Instead of carrying out a loop for grids to check pixel values, our new 
algorithm directly carries out loops for pixels and updates the indices of eight grids around the pixel in 
every cycle. In the same cycle, the coordinates of vertices on the three edges of grid g(i,j,k) are calculated 
and stored in an array vtx. For example, in cycle (i=2, j=2, k=k), the coordinates of vertices between 
p(1,2,k) and p(2,2,k), p(2,1,k) and p(2,2,k) (bold lines in Fig. 6), and p(2,2,k-1) and p(2,2,k) are calculated. 
Other vertices of grid g(2,2,k) have already been calculated in other cycles, (i=1,j=2,k=k), (i=2,j=1,k=k), 
etc. Then, in the same cycle, polygons for grid g(2,2,k) are generated using a list of vertices stored in 
vtx. 
 
This algorithm has another advantage that the memory size for data at vertices is significantly reduced 
owing to the reuse of data at vertices among neighboring polygons. 
 
7. Other new features 
 
7.1 Cutoff planes 
Drawing boundaries are fundamentally specified by inputting ranges along x, y, and z axes in the 
“Boundary” dialog box, where we can further specify “Cutoff planes”. Each cutoff plane is specified with 
Miller indices h, k, and l, and a central distance from the origin (0,0,0). After atoms, bonds, and 
isosurfaces within the x, y, and z ranges have been generated, those lying outside of the cutoff planes are 
excluded. Therefore, this feature is particularly useful to visualize distribution of 3D pixel data on lattice 
planes in addition to isosurfaces. The central distance of a cutoff plane may be specified in the unit of 
either its lattice-plane spacing, d, or Å. 
 
7.2 Hiding objects efficiently 
Two or more atoms, bonds, and polyhedra can now be selected with mouse dragging and hidden by 
pressing the Delete key. Pressing the Esc key resumes the hidden objects. 
 
7.3 Improvement in depth-cueing 
Depth-cueing was revised to allow more flexible settings. An OpenGL API, glFog, with a 
‘GL_LINEAR’ mode is used to enable depth-cueing. It blends a ‘fog’ color with the original color of 
each object using the blending factor f. Both of the starting depth, start, and the ending depth, end, are 
defined by users. The factor f at depth z is computed by 

startend
zendf

−
−

= . 

Page 116



 118

VESTA automatically assigns the background of the canvas to the fog color Cf. Then, the color, Cr, of a 
rendering object is replaced by 

CffCrfCr *)1(*' −+= . 
When VESTA displays objects on the OpenGL canvas, the depth of each object, z, is normalized in such 
a way that the radius of a bounding sphere for the scene becomes 0.9. Then, start = 0.0 and end = 1.0, for 
example, clearly render the half of the scene closer than z = 0.0 without any depth-cueing whereas the 
farthest objects (z = 0.9) are completely invisible. 
 
8. Collaboration with external programs 
 
8.1 ORFFE 
ORFFE [20] calculates geometrical parameters from data in file *.xyz created by RIETAN-FP, outputting 
them in file *.ffe. When reading in *.lst and/or *.ins, VESTA also inputs *.ffe automatically provided that 
*.ffe shares the same folder with *.lst and/or *.ins. Otherwise, *.ffe can be input by pressing the “Read 
*.ffe” button in the “Geometrical Parameters” dialog box. This dialog box lists interatomic distances and 
bond angles recorded in *.ffe.  
 
VESTA allows us to locate the bonds and bond angles displayed in the “Geometrical Parameters” dialog 
box on a graphic window. On selection of a bond (2 atoms) or a bond angle (3 atoms) in this dialog box, 
the corresponding object in a ball-and-stick model is highlighted, and vice versa (Fig. 7). Thus, atom pairs 
and triplets associated with geometrical parameters on which restraints are imposed in Rietveld analysis 
with RIETAN-FP are easily recognized in the ball and stick model. 
 

 
 
Fig 7: "Geometrical Parameters" dialog box showing a list of bond angles recorded for fluorapatite in 
*.ffe. An O3–P–O2 angle is highlighted in the graphic window. 
 
Because ORFFE calculates estimated standard deviations (e.s.d.’s) of geometrical parameters with both 
diagonal and off-diagonal terms in the variance-covariance matrix, the resulting values of e.s.d.’s are 
improved compared with those given by VESTA using only diagonal terms. 
 

Page 117



 119

8.2 RIETAN-FP 
wxWidgets provides us with function wxExecute and class wxProcess to call external programs 
easily from existing processes. Therefore, we can virtually extend VESTA by running other applications 
as a child process, yet keeping its core code simple and small. VESTA utilizes this framework to simulate 
powder diffraction patterns with RIETAN-FP. On selection of the “Powder Diffraction Pattern…” item 
under the “Utilities” menu, a series of procedures, i.e., generation of an input file, *.ins, for RIETAN-FP, 
execution of RIETAN-FP, and graphic representation of the resulting data in file, *.itx, with a graphing 
program such as Igor Pro and gnuplot, is executed by VESTA as if they were implemented in VESTA. 
 
9. Summary 
 
With all the advanced features and high performance described above, VESTA is expected to contribute 
many investigations of crystal and electronic structures. It will act as a ‘mediator’ between structure 
analyses and electronic-structure calculations. We will polish it up further to make it more useful and 
more powerful. 
 

References 
 
[1]  F. Izumi and R. A. Dilanian, in: Recent Research Developments in Physics, vol. 3, part II, 

Transworld Research Network, Trivandrum (2002) pp. 699–726,. 
[2]  F. Izumi: Rigaku J., 36, No. 1 (2005) 18. 
[3]  F. Izumi and R. A. Dilanian: Commission on Powder Diffr., IUCr Newslett., No. 32 (2005) 59. 
[4]  F. Izumi and Y. Kawamura: Bunseki Kagaku, 55 (2006) 391. 
[5]  Information obtainable from http://www.wxwidgets.org/  
[6]  J. Smart, K. Hock, and S. Csomor: Cross-Platform GUI Programming with wxWidgets, Prentice 

Hall (2005).  
[7]  F. Izumi and T. Ikeda: Mater. Sci. Forum, 321–324 (2000) 198. 
[8]  F. Izumi and K. Momma: Proc. XX Conf. Appl. Crystallogr., Solid State Phenom., in press. 
[9]  B. Quentrec and C. Brot: J. Comp. Phys., 13 (1975) 430. 
[10]  M. P. Allen and D. J. Tildesley: Computer simulation of liquids, Clarendon Press, Oxford (1987) p. 

149. 
[11]  K. Refson: Computer Phys. Commun., 126 (2000) 310. 
[12] M. N. Burnett and C. K. Johnson: Report ORNL-6895, Oak Ridge National Laboratory (1996). 
[13] K. Komatsu, T. Kuribayashi, A. Sano, E. Ohtani, and Y. Kudoh: Acta Crystallogr., Sect. E, 62 

(2006) 216 
[14] L. M. Gelato and E. Parthé: J. Appl. Crystallogr., 20 (1987) 139. 
[15] W. H. Baur: Acta Crystallogr., Sect. B, 30 (1974) 1195. 
[16] K. Robinson, G. V. Gibbs, and P. H. Ribbe: Science,172 (1971) 567. 
[17] I. D. Brown and D. Altermatt: Acta Crystallogr., Sect. B, 41 (1985) 244. 
[18] G. Sakane, H. Kawasaki, T. Oomori, M. Yamasaki, H. Adachi, and T. Shibahara: J. Cluster Sci., 13 

(2002) 75. 
[19] H. Adachi, M. Tsukada, and C. Satoko: J. Phys. Soc. Jpn., 45 (1978) 875. 
[20] W. R. Busing, K. O. Martin, and H. A. Levy: Report ORNL-TM-306, Oak Ridge National 

Laboratory (1964). 
 

Page 118

http://www.wxwidgets.org/�


 120

Visual Graphic Library VGLIB5 for Crystallographic Programs on 
Windows PCs 

 
Kenji Okada*a, Ploenpit Boochatuma, Keiichi Noguchib and Kenji Okuyamac 
aFaculty of Science, King Mongkut's University of Technology Thonburi, Bangmod, Tungkru, Bangkok 
10140, Thailand, bInstrumentation Analysis Center, Tokyo University of Agriculture and Technology, Ko-
ganei, Tokyo 184-8588, Japan, and cDepartment of Macromolecular Science, Graduate School of Sci-
ence, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Email: 
*kokada@kmutt.ac.th, ploenpit.boo@kmutt.ac.th, knoguchi@cc.tuat.ac.jp, okuyamak@chem.sci.osaka-
u.ac.jp ; WWW: http://www.ccp14.ac.uk/ccp/web-mirrors/okada/, http://www.chem.sci.osaka-
u.ac.jp/lab/tashiro/index.html  
 

Abstract 
 
VGLIB5 (Visual Graphic Library version 5) is a graphic library for scientific simulation program. The 
capabilities of the VGLIB5 are: 1) Fortran callable routines (CALCOMP and/or Basic like), 2) Display on 
MS-Windows (PCs) or X-Windows (HP/IBM/SGI/SUN), 3) Prepare HP-GL 758X plotter files, 4) 
Prepare Postscript files, and 5) Prepare a VTR tape using IMAGE memory. And the basic concept is a 
very simple. This library 1) does not depend on hardware (from super-computer to PCs) and OS, 2) is 
callable from Fortran and/or C languages, 3) can accept the input controls from keyboard and mouse, and 
output the results to color display, VTR, HP-GL plotter and Postscript printers, and 4) has adopted the 
layered structure for easy maintenance. 
 
1 Introduction 
 
Several crystallographic subroutine libraries [1] and several graphics user interfaces (GUI) [2] for cross-
platform are also reported on IUCr Computing Commission newsletters in detail. Applications of 
computer graphics are allpied covering polysemy such as Film, Game, Animation, Scientific/ 
Visualization simulation, Web graphs, Artitecture/Product design and Print/Publishing. These 
applications are developed and distributed as a software package or a handmade software. To develope a 
new graphical software in scientific simulation, firstly we must examine the target platforms (mainframes, 
Workstations, Personal Computers, and graphic terminals) with operating system. Secondary the new 
software adapts an exsisting and widely used graphic library that has a graphic application programming 
interface (API). Most graphic libraries are dependent on the platform, and like a graphics processing unit, 
do not exhibit the interface specification, and have not become open source. Thirdly this software should 
be implemented widely using programming languages such as Fortran, C/C++ or Visual Basic.  
 
Adopting the graphic library having interface to Fortran and/or C/C++ languages, we once more examine 
the input/output functions. In scientific simulation, input devices mostly used are digital camera, scanner, 
OCR (Image/Text), keyboard and mouse, and output devices are display, printer/plotter, video tape 
recorder (VTR) and/or files. After ACM-SIGGRAPH [3] was established in 1969, there are many graphic 
software libraries as standards that have ‘de-facto’ standards for the portability of graphic programs such 
as Graphical Kernel System (GKS, GKS-3D) [4], Programmers Hierarchical Interactive Graphics System 
(PHIGS, PEX) [5], PostScript [6], or X Window System (X) [7]. Recently windows based graphic 
libraries such as OpenGL [8], PGPLOT [9], Gnuplot [10], Alias [11] and AVS [12] are used in MS-
Windows and X-Windows of Unix/Linux computers. Several libraries are free of charge. 
 
If the new planned program in scientific simulation is very simple as like as crystallographic computation 
and uses limited input/output devices such as no input and three outputs (display, plotter/postscript file 
and VTR), these graphic libraries appeared on the market in the world are very heavy to execute our new 
program. The essential functions of the graphics library in these simulations are draw/display colored 

Page 119

mailto:*kokada@kmutt.ac.th�
mailto:ploenpit.boo@kmutt.ac.th�
mailto:knoguchi@cc.tuat.ac.jp�
mailto:okuyamak@chem.sci.osaka-u.ac.jp�
mailto:okuyamak@chem.sci.osaka-u.ac.jp�
http://www.ccp14.ac.uk/ccp/web-mirrors/okada/�
http://www.chem.sci.osaka-u.ac.jp/lab/tashiro/index.html�
http://www.chem.sci.osaka-u.ac.jp/lab/tashiro/index.html�


 121

points, lines, planes, fill area, texts, view-port, and etc. If these functions are callable from Fortran and/or 
C/C++ languages, it is the very graphic library that we desire.  
 
In 1991, the first version of a graphic library GRLIB (Graphic Library) was proposed for the scientific 
simulation program using Fortran language [13]. This GRLIB did not depend on any platform such as 
super-computer (Cray/COS), mainframe (CDC6600/SCOPE) and 32 bits PCs (MS-DOS), and was able to 
treat most popular plotter devices that time having Calcomp/PLOT10 protocols. The GRLIB2 (version 2) 
was developed in 1996 [14] adding VTR features using image memory for IBM 5080 display of 
mainframe (IBM3090/ MVS), workstation (HP900/HP-UX) and PCs (MS-DOS). The VGLIB3 (Visual 
Graphic Library, version 3) as an implemented version of GRLIB2 was developed in 1997 [15] adding 
the features of CRT display and HP-GL protocol under MS-Windows PCs (NT 3.x/95). The VGLIB4 
(version 4) adopted layer approach and added the Postscript protocol on MS-Windows PCs 
(NT3.x/4.0/95/98) [16]. In 2005, the VGLIB5 (version 5) was implemented as a unified graphic library 
for scientific simulation from the VGLIB4. This VGLIB5 written in Fortran90/95 is used in DS5 
(DIRECT-SEARCHER Automatic System version 5) for structure analysis of small molecules running on 
PCs [17], and works on X-Windows (Unix/ Linux). In this paper we focus on the layered structural design 
and features of DSLIB5. 
 
2 Description 
 
2.1 Basic Concept 
The basic concept in the VGLIB5 for scientific simulation is very simple. This visual graphic library 1) 
does not depend on hardware (from super-computer to PCs) and operating system (OS), 2) is callable 
from Fortran and/or C languages, 3) can accept the input controls from keyboard and mouse, and output 
the results to color display, VTR, HP-GL plotter and Postscript printers, and 4) has the layered structure 
for easy maintenance. 
 
2.2 Capabilities of VGLIB5 (MS-Windows and Unix/Linux): 
There are five capabilities: 1) Fortran callable routines (CALCOMP and/or Basic like), 2) Display on 
MS-Windows (PCs) or X-Windows (HP/IBM/SGI/SUN), 3) Prepare HP-GL 758X plotter file, 4) Prepare 
Postscript file, and 5) Prepare VTR tape using IMAGE memory. 
 
2.3 Layered Structure 
The VGLIB5 has the layered approach (Fig. 1). The bottom layer is the driver groups depending on each 
device (8 drivers), the second one is common routines of basic primitives and functions, and the third one 
is application routines according to each purpose. Each routine of three layers can be called directly from 
the user program.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1:  Layered structure of VGLIB5 
 

drivers (D-, G-, I-, M-, P-, Ps-, T-, X-)

common (C-)

applications (A-)

user program (Fortran) 

First layer

Second layer

Third layer

Draw Arrow
Draw Contour line
Free Mesh draw and Contour Z(i,j) value
Fill Area with Cell Edge Values

D- M506 graphic adapter           
G- PC-CRT (Windows NT4.0/95/98)   
I- IBM5080 graphic adapter        
M- PC-Mouse (Windows NT4.0/95/98) 
P- HP-GL plotters (CALCPMP like)  
Ps- PostScript printer             
T- IMAGE Memory                   
X- HP, IBM, SGI, SUN X-window (UNIX, C)

VGLIB5.lib
VGLIB5.a

buffer  circle   clear    close     color
cursor  factor  font      hardcopy 
image  line      mouse  open    paint
paper   pen      pixel     rotate  scale
text      unit     view     VTR     window

drivers (D-, G-, I-, M-, P-, Ps-, T-, X-)

common (C-)

applications (A-)

user program (Fortran) 

First layer

Second layer

Third layer

Draw Arrow
Draw Contour line
Free Mesh draw and Contour Z(i,j) value
Fill Area with Cell Edge Values

D- M506 graphic adapter           
G- PC-CRT (Windows NT4.0/95/98)   
I- IBM5080 graphic adapter        
M- PC-Mouse (Windows NT4.0/95/98) 
P- HP-GL plotters (CALCPMP like)  
Ps- PostScript printer             
T- IMAGE Memory                   
X- HP, IBM, SGI, SUN X-window (UNIX, C)

VGLIB5.lib
VGLIB5.a

buffer  circle   clear    close     color
cursor  factor  font      hardcopy 
image  line      mouse  open    paint
paper   pen      pixel     rotate  scale
text      unit     view     VTR     window

 

Page 120



 122

The driver layer consists of eight series as follows. The routines in X-series equal ones in G-series. (just 
differ the platform) 
 
  Series File   Comment                        No. of routines          
 D-  VGLIBD.for  for M506 graphic adapter            M506, 9 
  G-  VGLIBG.for  for PC-CRT (Windows)   PCs, 36 
  I-    VGLIBI.for  for IBM5080 graphic adapter          IBM5080, 2 
  M-  VGLIBM.for  for PC-Mouse (Windows)  Mouse, 4 
  P-   VGLIBP.for   for CALCPMP Plotter                 Plotter, 13 
  PS-  VGLIBPS.for  for PostScript printer                  Postscript, 10 
  T-   VGLIBT.for   for IMAGE Memory                IMAGE memory, 10 
  X-   VGLIBXI.c    for HP, IBM X-window of UNIX Fortran  X-window, ANSI C, 36 
             VGLIBXS.c    for SGI, SUN X-window of UNIX Fortran X-window, ANSI C, 36 
 
The common layer has three series used in commonly such as text, for the display and paper handling. 

 

 Series File   Comment      No. of routines                           
 C-  VGLIBC1.for Text data    alphabetic, numeric, symbols, 1 
          VGLIBC2.for VGxxx routines    display control, 20 
          VGLIBC3.for set CRT/Paper view port, paper size, etc., 4 
 
The application layer has the collection of the routines with a certain purpose. 
 Series File   Comment      No. of routines                        
 A-  VGLIBA.for application    arrow, contour, grading, etc., 4 
 
2.4 Colors and Fonts 
Actual colors and color codes of MS- and X-Windows are quite different. The VGLIB5 unified these 
color codes from 0 to 16 as follows in MS-Windows: 0(black), 1(light blue), 2(light red), 3(light 
magenta), 4(light green), 5(light cyan), 6(yellow), 7(bright white), 8(gray), 9(blue), 10(red), 11(magenta), 
12(green), 13(cyan), 14(brown), 15(white), and 16(gray). When user want use more than sixteen colors, 
user must select one within these 16 colors. Fonts used in MS-Windows are restricted to eight kinds: 
1(Curie), 2(Helv.), 3(tms rms), 4(modern), 5(script), 6(roman), 7(system), and 8(preview). In X-windows, 
color codes are: 0(black), 1(blue), 2(red), 3(magenta), 4(green), 5(cyan), 6(yellow), 7(white), 8(light 
gray), 9(coral), 10(slate blue), 11(orange), 12(spring green), 13(blue violet), 14(khaki), 15(lime green), 
16(gray). And fonts are: 1(variable, courie), 2(12X24, Helv), 3(variable, tms rms), 4(variable, Modern), 
5(variable, Script), 6(variable, Roman), 7(variable, System), 8(variable, Preview). 
 
2.5 Cartesian Coordinates and Viewports 
The VGLIB5 adapts the right-hand Cartesian coordinate system as both papers and displays that have 
normally left-hand and physical dot resolution (VGA, SVGA, VGA) coordinate system. User must 
specify a view port based on the system. 
 
2.6 Device Selection 
One integer IDBG(1) at the time of opening is the specific indicator of the target devices. 
IDBG(1)=IGRPS*1000+IGRVTR*100+IGRPLT*10+IGRCRT, where IGRPS is for PS printer, IGRVTR 
is for VRT, IGRPLT is for HP-GL Plot, and IGRCRT is for display, respectively. In the VGLIB5, IGRPS 
=0 (No write for PS), =1 (PS printer), IGRVTR=0 (No output for VTR), =1 (Image Memory --> VTR 
server), =2 (Image Memory --> IBM/506 --> VTR), =3 (IBM/506-direct --> VTR), IGRPLT =0 (No write 
for plot tape), =1 (HP-GL Plot), IGRCRT =0 (No display), =1 (PC-CRT), =2 (X-Window), =3 
(IBM/M506-direct), =4 (IBM/5080 file), =5 (Image Memory), =6 (Image Memory --> PC-CRT), =7 
(Image Memory --> IBM/M506, for IGRVTR=2). 
 

Page 121



 123

2.7 Calling Sequences 
All calling sequences look like the routines of Basic language. Typical examples are: 
 C-series subroutine  VGCIRCLE2(X,Y,R,ICOLI) 
       subroutine  VGCLEAR 
       subroutine  VGCLOSE 
       subroutine  VGCOLOR4(ICOLI) 
       subroutine  VGDISPLAY(IXPOS,IYPOS) 
       subroutine  VGFACTOR(XF,YF)             
       subroutine  VGFILLA(N,XX,YY,ICOLI)      
       subroutine  VGLINE3(X1,Y1,X2,Y2,ICOLI)  
       subroutine  VGLINE4(N,XX,YY,ICOLI)      
       subroutine  VGNUMBER(X,Y,SIZE,FPN,THETA,M) 
       subroutine  VGOPEN(I16,IDBG,CSIZE,PENW)   
       subroutine  VGPASIZE(CSIZE)                
       subroutine  VGPENTYPE(I,ILIMIT,LNT)        
       subroutine  VGPENW(PENW)                   
       subroutine  VGROTATE(THETA,ITRX,ITRY,ITRXPS,ITRYPS,TRAXCRT,TRAYCRT) 
       subroutine  VGREC(ISW)                     !VTR 
       subroutine  VGSTBY(NFRAME)                 !VTR 
       subroutine  VGSIMBOL(X,Y,SIZE,NBCD,THETA,N 
       subroutine  VGTEXT(X,Y,HEIGHT,CHARA,THETA,NCHARA,SPACE,ICOLI) 
       subroutine  VGUNIT(C)                      
       subroutine  VGWINDOW(X1,Y1,X2,Y2)          
       subroutine  CRTSIZE(IXMAX,IYMAX,IXCRTSIZE,IYCRTSIZE) !CRT 
       subroutine  CRTA4A3(IX0,IY0,IX1,IY1)                 !CRT 
       subroutine  CRTXYSET                                 !CRT 
       subroutine  PAPERFRAME(XMINCR,YMINCR,XMAXCR,YMAXCR,ICOLI) !Paper 
 G-series subroutine  GCOLOR1(ITEXT,ICOL1,ICOL2)  
       subroutine  GCOLOR2(ICOL1,IBGR)         
       subroutine  GCOPY(IFUNC)                
       subroutine  GCRLOCATE(IX,IY,MODE1)      
       subroutine  GCRSOL(MODE1)               
       subroutine  GGET(X1,Y1,X2,Y2,IMAGE,LENGTH) 
       subroutine  GCRPOS(IX,IY)                  
       subroutine  GLINE(X1,Y1,X2,Y2,ICOL1,MODE,ICOL2,IFILMASK) 
       subroutine  GPAINT(N,XX,YY,ICOL1) 
       subroutine  GPAINT2(X,Y,ICOL1,IFILMASK,ICOL2) 
       subroutine  GPRESET(X,Y)          
       subroutine  GPSET(X,Y,ICOL1)      
       INTEGER*4 FUNCTION  GPOINT(X,Y)  
       subroutine  GPUT(X1,Y1,X2,Y2,IMAGE,LENGTH,MODE,ICOL1,ICOL2) 
       subroutine  GPUTG3(X,Y,NCHAR,CBUF,IDEG10,ICOL1) 
       subroutine  GPUTT3(X,Y,NCHAR,CBUF,ICOL1) 
       subroutine  GRFLUSH                                 !X-series only 
       subroutine  GRFONTS(IFONT,IHEIGHT,IWIDE)    
       subroutine  GSVIEW(IX1,IY1,IX2,IY2,NCHAR,CBUF) 
       subroutine  GWINDOW(X1,Y1,X2,Y2)            
       subroutine  GWTAPE(IWD)                     
 M-series subroutine  Mouse_LR(KEYSTATE,X,Y)   !check mouse click 
       subroutine  Mouse_M(KEYSTATE,X,Y)   !check mouse move     
       subroutine  Mouse_P(X,Y)               !get mouse position   
       subroutine  Mouse_R(KEYSTATE,X,Y)   !check mouse (right)  
 P-series subroutine  DASHP(X,Y,W) 
       subroutine  NEWPEN(I)    
       subroutine  NUMBER(X,Y,SIZE,FPN,THETA,M) 
       subroutine  PLOT(X,Y,I) 
       subroutine  PLOTS(CBUF,N,LN,I16,IDBG)   
       subroutine  PLTAPE(LN) 
       subroutine  SYMBOL(X,Y,SIZE,NBCD,THETA,N) 
 PS-series subroutine  PSFILLA(N,XX,YY,ICOLI) 
       subroutine  PSPENW(PENW) 
       subroutine  PSPLOT(X,Y,IPEN) 

 

Page 122



 124

3 Application 
 
The VGLIB5 is used for all graphical subroutines of DS5 [17]. This DS5 (Direct-Searcher automatic 
system version 5) is an integrated crystallographic program for the crystal structure analysis of organic 
compounds running on PCs. Each subprogram (ORTEP3, PLUTO, ROTEN, ROTENP, Shake, etc.) in the 
DS5 is chosen out eighteen programs from the DS*SYSTEM4 [18]. The ROTEN calculates the difference 
molecular potential energy using a function of the type ( )ijijijijijij rCBrAE −+−= − exp6  after rotations of 
one or two molecular fragments about given direction. And the ROTENP draws calculated difference 
potential-energy profiles (1D) of the EΔ  and contour lines (2D) for the rotation of two molecular 
fragments. Figure 2 shows the subroutine ROTENP source code. Several definitions and calculation parts 
are omitted for easy understanding.  
 

C****************************************************************************** 
      SUBROUTINE ROTENP(ISWRP,CAT1,DCONT,PRSCALE,PRFACT)                ROTENP 
      ...                                                               ROTENP 
C***  Calculation                                                       ROTENP 
      ...                                                               ROTENP 
C***  QuickWin Windows='VGLIB 5.0 Graphic'                              ROTENP 
      IDBG(1)=1011       !l.u. is 55=PS, 44=PLT, 33=PC-CRT              ROTENP 
                                                                        ROTENP 
C***  Open VGLIB5.lib                                                   ROTENP 
      CALL VGOPEN('A4R',5.0)                         !PENW=5.0          ROTENP 
                                                                        ROTENP 
C***  Set CRT Window                                                    ROTENP 
C**   Get CRT Size, Paper A4R-size                                      ROTENP 
      CALL CRTSIZE(MAXPX,MAXPY,IXCRTSIZE,IYCRTSIZE)  !get current CRT   ROTENP 
      CALL CRTA4A3(MX0,MY0,MX1,MY1)                  !get paper MinMax  ROTENP 
      CALL GSVIEW(MX0,MY0,MX1,MY1,5,'VGLIB')         !set View      dot ROTENP 
      CALL CRTXYSET                                  !get XMINCRT,.. cm ROTENP 
      CALL GWINDOW(XMINCRT,YMINCRT,XMAXCRT,YMAXCRT)  !cm, Window, cm    ROTENP 
                                                                        ROTENP 
C**   Set Color code and Draw Paper Frame                               ROTENP 
      ICOLI=7                                                           ROTENP 
      CALL VGCOLOR4(ICOLI)                                              ROTENP 
      CALL PAPERFRAME(XMINCRT,YMINCRT,XMAXCRT,YMAXCRT,ICOLI)            ROTENP 
                                                                        ROTENP 
C***  Display One A4R Image                                             ROTENP 
      CALL MOJIWK_ROTP                               !X,Y axes          ROTENP 
                                                                        ROTENP 
C***  Display Profile or Contour lines                                  ROTENP 
      IF(NFR.EQ.1) THEN                              !1D profile        ROTENP 
        CALL GRAPH_ROTP                                                 ROTENP 
      ELSE                                           !2D contour        ROTENP 
        CALL CONTR_ROTP(1,361,TH1,1,LOOP1,1,361,TH2,1,LOOP2,            ROTENP 
     *                  ENRGP,DCONT,ICOLI)                              ROTENP 
      ENDIF                                                             ROTENP 
                                                                        ROTENP 
C***  Close PS, Plot and CRT                                            ROTENP 
      CALL VGCLOSE                                   !Graphics          ROTENP 
      RETURN                                                            ROTENP 
      END                                                               ROTENP 

 
Fig 2: The source code of ROTENP subprogram 
 
 

Page 123



 125

The HP-GL/Postscript files and display image on PCs from the ROTENP are shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          (a) HP-GL/Postscript files                     (b) Display on PCs 
 
Fig 3:  The output from ROTENP subprogram in DS5.  
 
 
Figures 4 and 5 are the output of subroutine Shake, ORTEP3 and PLUTO in the DS5. The Shake (former 
ShakePSD [19]) is an automatic general phase solver being able to handle both heavy-atom methods and 
direct methods within one program, and finds out with certainty molecule fragments by a single computer 
execution. This Shake checks for a heavy atom in the input chemical formula. If the molecule includes a 
sulphur or a heavier atom, heavy-atom methods are processed to solve the Patterson function (PSL) and 
search for all remaining atoms (SEARCHER). Otherwise, the Shake executes in direct methods, calculates 
normalized structure factors )(hoE  (NORMAL) and refines the phase angles )(hφ  using the tangent 
formula (TANGENT) or the minimal function (MINIMAL). The outputs of the Shake are 2D projection 
diagrams of the molecules in the unit cell with the final R-factor and the bond distances  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4:  The output from Shake subprogram in DS5.  
 
 

 

Page 124



 126

 
 
 
 
 
 
 
 
 
Fig 5:  The output from ORTEP3 and PLUTO subprograms in DS5.  
 
 
Another examples shown in Figs. 6 and 7 are the use of mouse in interactive execution of PreLALS 
workbench [20] for helical polymers. The PreLALS workbench is designed to aid users in the task of 
visualizing chemical structures using three-dimensional models, editing and the data manipulation for 
WinLALS program [21] that refines the internal coordinates based on linked-atom least-squares (LALS) 
method for helical polymers. It combines the views of model building (MB), analyses, and data 
preparation tools with easy-to-use graphical user interfaces. User can specify an already-defined atom to 
which it is attached, denoted its precursor, and giving its position in terms of its relation to its precursor in 
the polymer chain by clicking the displayed atom position. Eight green atoms are the polymer tree 
sequence that is clicked in order. If user clicks a certain range (ix=0-33 and iy=0-20 dots), the program 
displays EXIT characters and returns to main program. When other ranges are clicked, the program 
requests the Re-entry click once more. 
 

C************************************************************************************** 
      SUBROUTINE MB_Tree(Lchecked)                                              MB_Tree 
      ...                                                                       MB_Tree 
C                                                                               MB_Tree 
      CHARACTER  CATMKIND*1                                                     MB_Tree 
      LOGICAL    Lchecked                                                       MB_Tree 
      ...                                                                       MB_Tree 
C                                                                               MB_Tree 
C***  Exit or Retry                                                             MB_Tree 
200   CALL Filled_Rectangle(0,0,123,22,6,0)       !6=yellow                     MB_Tree 
      CALL GTEXTOUT(1,1,'EXIT or RETRY ?',0,4)    !0=blk,4=couri,h20w16         MB_Tree 
      CALL Mouse_LR(KEYSTATE,IXP,IYP)                                           MB_Tree 
C                                                                               MB_Tree 
C**   EXIT                                                                      MB_Tree 
      IF(IXP.LT.33.AND.IYP.LT.20) THEN                                          MB_Tree 
        ITRY=0                                                                  MB_Tree 
        CALL Clear_Graphic                        !clear display                MB_Tree 
        CALL XDraw_Mol                            !display molecule             MB_Tree 
        ...                                                                     MB_Tree 
        RETURN                                                                  MB_Tree 
C                                                                               MB_Tree 
C**   Retry                                                                     MB_Tree 
      ELSEIF(IXP.GT.65.AND.IXP.LT.105.AND.IYP.LT.15) THEN                       MB_Tree 
        ITRY=1                                                                  MB_Tree 
        CALL Filled_Rectangle(0,0,35,22,6,0)      !6=yellow                     MB_Tree 
        CALL GTEXTOUT(1,1,'EXIT',0,4)             !0=blk,4=couri,h20w16         MB_Tree 
        CALL Tree                                 !display tree                 MB_Tree 
      ENDIF                                                                     MB_Tree 
      GO TO 200                                                                 MB_Tree 
      END                                                                       MB_Tree 

 
Fig 6: Mouse clicks the tree atoms in PreLALS.  
 

Page 125



 127

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7: The tree output from Figure routine of PreLALS.  

 
4 Conclusion 
 
It is very important for the chemists or researchers that the graphic library which is able to display and 
draw the graphical results of molecular structure easily exists. If a developer can develop a new graphic 
software without the dependency on hardware and OS, it is very desirable since the futility of time and 
the restriction on use will be eased. New developed visual graphic library VGLIB5 can help the software 
developer who want to use Fortran and/or C languages, to display the scientific results on graphic 
terminals, to prepare drawing files for HP-GL plotters or postscript files, and to prepare the VTR tape of 
scientific animation. 
 

Page 126



 128

References 
 
[1] CCSL, http://www.ill.fr/dif/ccsl/html/ccsldoc.html; CCTBX, http://cci.lbl.gov/; CrysFML, 

http://www-llb.cea.fr/fullweb/powder.htm; Clipper C++, http://www.yorvic.york.ac.uk/~cowtan/ 
[2] CRYSTALS and Cameron in C++ with wxWindows, http://www.xtl.ox.ac.uk/; Jana2000 in Fortran 

95, http://www-xray.fzu.cz/jana/jana.html; WinGX in Clearwin, 
http://www.chem.gla.ac.uk/~louis/software/wingx/, OpenGL in C/C++, 
http://www.ccp14.ac.uk/ccp/web-mirrors/marchingcubefourierviewer/; Maud in Java, 
http://www.ing.unitn.it/~luttero/; Java applets, http://www.univ-
lemans.fr/enseignements/physique/02/; Tcl/Tk in Fortran, http://www.ncnr.nist.gov/xtal; 
ISAW in Java, http://www.pns.anl.gov/computing/isaw/; CCP4i, 
http://www.ccp4.ac.uk/martyn/martyn.html; Others (Qt, FOX, etc.), 
http://www.atai.org/guitool/ 

[3] ACA-SIGGRAPH, http://www.siggraph.org/ 
[4] GKS, GKS-3D, a) International Organization for Standardization. The Graphical Kernel System 

(GKS). Technical Report ISO 7942, ISO Geneva, 1985. b) International Organization for Stan-
dardization. The Graphical Kernel System for Three Dimensions (GKS-3D). Technical Report ISO 
8805, ISO Geneva, 1987. c) International Organization for Standardization. The Graphical Kernel 
System (GKS) language bindings -- Part 1: Fortran. Technical Report ISO 8651-1, ISO Geneva, 
1988. d) International Organization for Standardization. The Graphical Kernel System for Three 
Dimensions (GKS-3D) language bindings -- Part 1: Fortran. Technical Report ISO 8806-1, ISO 
Geneva, 1988.  

[5] PHIGS, PEX, a) Getting Started with SunPHIGS- PHIGS Overview, Sun related notes, October 4, 
1991. b) http://www.itl.nist.gov/iaui/vvrg/cugini/pvt/hy-std.html c) 
http://www.faqs.org/faqs/graphics/pex-faq/ 

[6] Postscript, http://www.adobe.com/products/postscript/main.html 
[7] X-Windows, http://www.x.org/ 
[8] OpenGL http://www.opengl.org/ and http://www.sgi.com/products/software/opengl/ 
[9] PGPLOT, http://www.astro.caltech.edu/~tjp/pgplot/ 
[10] Gnuplot, http://www.gnuplot.info/ 
[11] Alias, http://www.alias.com/eng/index.shtml 
[12] AVS, http://www.avs.com/index_wf.html 
[13]  Okada, K. & Koyama, H., (1991). J. Appl. Cryst., 24(6), 1067-1070. 
[14] Okada, S. & Okada, K. (1996). Comput. Chem., 20(2), 267-270. 
[15] Okada, K. & Okada, S. (1997). J. Chem. Inf. Comput. Sci., 37(3), 522-528. 
[16] Okada, S. & Okada, K. (2000). Z. Kristallogr., 215, 131-143.  
[17] Okada, K. & Boochathum, P. (2005). J. Appl. Cryst., 38, 842-846. 
[18] Okada, S. & Okada, K., (2000). Z. Kristallogr., 215, 131-143. 
[19] Okada, S. & Okada, K., (2000). J. Appl. Cryst., 33(2), 406-414. 
[20] Okada, K., Boochathum, P., Noguchi, K., Okuyama, K. & Katsube, Y. (2005) J. Comput. Aided 

Chem., 6, 12-22. 
[21] Okada, K., Noguchi, K., Okuyama, K. & Arnott, S., (2003). Comput. Biol. Chem., 27(3), 265-285. 

Page 127

http://www.ill.fr/dif/ccsl/html/ccsldoc.html�
http://cci.lbl.gov/�
http://www-llb.cea.fr/fullweb/powder.htm�
http://www.yorvic.york.ac.uk/~cowtan/�
http://www.xtl.ox.ac.uk/�
http://www-xray.fzu.cz/jana/jana.html�
http://www.chem.gla.ac.uk/~louis/software/wingx/�
http://www.ccp14.ac.uk/ccp/web-mirrors/marchingcubefourierviewer/�
http://www.ing.unitn.it/~luttero/�
http://www.univ-lemans.fr/enseignements/physique/02/�
http://www.univ-lemans.fr/enseignements/physique/02/�
http://www.ncnr.nist.gov/xtal�
http://www.pns.anl.gov/computing/isaw/�
http://www.ccp4.ac.uk/martyn/martyn.html�
http://www.atai.org/guitool/�
http://www.siggraph.org/�
http://www.itl.nist.gov/iaui/vvrg/cugini/pvt/hy-std.html�
http://www.faqs.org/faqs/graphics/pex-faq/�
http://www.adobe.com/products/postscript/main.html�
http://www.x.org/�
http://www.opengl.org/�
http://www.sgi.com/products/software/opengl/�
http://www.astro.caltech.edu/~tjp/pgplot/�
http://www.gnuplot.info/�
http://www.alias.com/eng/index.shtml�
http://www.avs.com/index_wf.html�


 129

Notes on the calculation of the derivatives for least-squares crystal 
structure refinement 
(updated 6th June 2008) 

Riccardo Spagna 
Istituto di Cristallografia - CNR, Sede di Monterotondo, Area della Ricerca di Roma 1, Via Salaria Km. 
29, 00016 Monterotondo Stazione (Roma), Italy, E-mail: riccardo.spagna@ic.cnr.it ; WWW: 
http://www.ic.cnr.it/spagna.php 
 

I. Introduction 
 

This is not an original paper on least squares methods. This is only a contribution to the crystallographic 
community on well established algorithms to calculate derivatives useful for crystal structure refinement 
using the least squares methods. Almost all of the equations collected here can be found in the literature. 
The aim of this work is to help the next generation of crystallographers who wants to face with computing 
problems by least squares methods: they can find here many of the things they need.  
 
All the algorithms described here are implemented in the SIR package (Burla, et al., 2005) 
 
 

II. Background 
 
 

The least-squares method is the refinement method most used for small-medium size molecules. In the 
following, we recall briefly the procedure commonly used (see also Giacovazzo, 2002). 
 
The structure factor may be written as: 
 

( )jrh ⋅⋅= ∑ ifF
j

jh π2exp   

where fj  is the scattering factor of the j-th atom in the unit cell at the sinθh value of h (=hkl), including the 
exponential term for the atomic thermal motion; rj are the positional parameters (x,y,z) of the j-th atom. 
To find the best atomic parameters describing the structure, the function being minimized by the least-
squares method is the residual: 
 

( ) ( )∑∑ Δ=−=
h

hh
h

calchosshh FwFKFwM 222222  

 
where |Fh|2oss

 is the observed intensity and  wh  is weights to be assigned to each of them. 
The theory of least squares suggests for wh the relationships: 
 

2

1

h
hw

σ
≈  

 
Many authors have studied the problem concerning the choice of the weights and considered functions 
based on the observations or on a mix of these with the estimated standard uncertainty σh . Examples of 
these weighting schemes were suggested by Cruickshank (1965), i.e. 
 

( )2
1

hh
h FcFba

w
++

=   , 

Page 128

mailto:riccardo.spagna@ic.cnr.it�
http://www.ic.cnr.it/spagna.php�


 130

and by Sheldrick, used in the program SHELX: 

( )22
1

cPbP
w

h
h ++

=
σ

  , 

where  
( )

3
2 22

calcoss FFP +=  

 
See also Spagna & Camalli, (1999) for an extensive analysis of weighting schemes. 
 
Because the |Fh|2calc values are not linear functions of the m atomic parameters rj, approximate values are 
obtained by expanding in a Taylor series around rj, and truncating after the first term: 

2

22

2

222

2

2

∑ ∑

∑ ∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ
∂

∂
+−=

h j
j

j

calch
calchhh

h j
j

j

calch
calchcalchosshh

r
r

F
FKFw

r
r

F
FFKFwM

 

M is a minimum with respect to the Δri if the derivates irM Δ∂∂ are zero: 

022 222 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ=

Δ∂
∂ ∑ ∑

i

calch
calch

h j
j

j

calch
calchhh

i r
F

FKr
r

F
FKFw

r
M             for i=1,…,m 

and the normal equations are obtained: 

i

calch
calch

h
hhi

i

calch
calch

h j j

calch
calchh r

F
FKFwr

r
F

FK
r

F
FKw

∂

∂
Δ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
∑∑ ∑ 222 2222  

Solving these equations, the shifts Δri are obtained and applied to the parameters ri . Several cycles of re-
finement are required to achieve convergence. 
 
Statistical descriptors (Schwarzenbach et al, 1989) have to be considered for evaluating the refinement, as 
the classical R factor 

( )

∑
∑ −

=

h
ossh

h
calchossh

F

FKF
R , 

the weighted wR  factor 
 

( )( )
( )∑

∑ −
=

h
osshh

h
calchosshh

Fw

FKFw
wR 22

222

, 

the goodness of fit (where n-m is the number of degrees of freedom, n = number of observations and m = 
number of variables of the model) 

( )( )
( )mn

FKFw
S h

calchosshh

−

−
=

∑
222

 

 
In some case (for example when the data are bad or not enough), we can introduce some restraints (this 
technique increases the number of observations). The function being minimized becomes: 

( ) ( )22222 ∑∑ −+−=
q

qoqq
h

calchosshh ggwFKFwM , 

where gqo is the function of the q-th restraint, gq is its optimal value and wq is the weight.  
The approximate values are obtained expanding the gq’s in Taylor series. 

Page 129



 131

22

22

22

222

2

2

∑ ∑∑ ∑

∑ ∑∑ ∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ
∂

∂
+−=

q j
j

j

qo
q

h j
j

j

calch
calchhh

q j
j

j

qo
qoqq

h j
j

j

calch
calchcalchosshh

r
r

g
gwr

r
F

FKFw

r
r

g
ggwr

r
F

FFKFwM

 

 
Setting to zero the derivates of M with respect to the Δri , 

022 222 =
∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

∂

∂
−Δ ∑ ∑∑ ∑

i

qo

q j
j

j

qo
q

i

calch
calch

h j
j

j

calch
calchhh r

g
r

r
g

gw
r

F
FKr

r
F

FKFw  

the normal equations are obtained: 

i

qo

q
q

i

calch
calch

h
hh

i
i

qo

q j j

qo
q

h i

calch

calch
j j

calch

calchh

r
g

gw
r

F
FKFw

r
r

g
r

g
w

r
F

FK
r

F
FKw

∂

∂
Δ+

∂

∂
Δ=

=Δ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

∑∑

∑ ∑∑ ∑

2

22

22

22

 

 
The system of normal equations can be written  

brM =Δ   , 
where M is the n2 symmetric normal matrix, Δr is the unknown shift and b is the know term. Δr and b are 
vectors of order n. The solution Δr is obtained by inverting the normal matrix and by multiplying it by the 
b vector: 

1−=Δ bMr   
The diagonal terms M-1

ii  provide an approximate value of the standard uncertainties of the variables ri: 
such variables ri can be normalized by dividing them by the quantity Mii

1/2  .  
The corresponding normalized matrix is obtained by replacing the Mij  elements by: 

jjii

ij
ij MM

M
M ='  

The normalized M’ij value corresponds to the correlation coefficient between the parameters ri and rj and 
values less than unity are normally obtained. Values greater than unity show evidence of strong correla-
tion between the i and j parameters. 
 
 
 

III. Structure factor derivatives 
 
 

For a crystal structure with s symmetry operators of the space group and m symmetry-independent atoms, 
a generalized form of the structure factor (the subscript calc is omitted) is: 
 
1) for isotropic thermal motion: 

( ) ( )∑ ∑
= = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

sn
i

hi
i

mi
ih occifF

,1

2

,1

sin2
4

B
-exp2exp

λ
ϑ

π rh , 

2) for anisotropic thermal motion: 

( ) ( )∑ ∑∑∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−⋅⋅=

sn
i

i j
jiiji

mi
ih occhhifF

,1 ,1
exp2exp βπ rh  

Page 130



 132

The first sum is over the s symmetry operators and the inner sum is over the m atoms; occi is the site oc-
cupation of i-th atom (normally = 1.0, different values are related to possible vacancies in the crystal, or 
to special positions of the atom); 

228B ii uπ=  , 

is the isotropic T.F (thermal factor) (where <ui
2> is the mean squares amplitude of the thermal vibration 

of the atom). 
 
Writing the reciprocal of the interplanar spacing dh: 

*cos**2*cos**2*cos**2***1sin2 222222
22

αβγ
λ

ϑ
cklbchlabhkaclbkah

dh

h +++++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ we 

can represent the T.F. in the general temperature factor expression  
( )[ ]klhlhklkhFT 231312

2
33

2
22

2
11exp.. ββββββ +++++−=  , 

where βij  are the six independent components of the anisotropic thermal motion described as an ellipsoid. 
 
The anisotropic thermal parameter can be written also as function on Uij (parameters expressed in terms 
of mean-squares amplitudes of vibration in Å) or on Bij (in the same units as the conventional isotropic 
thermal parameter B): 

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑∑

i j
jijiij hhUFT **2exp.. 2 aaπ , 

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑∑

i j
jijiij hhBFT **

4
1exp.. aa  

In the following, we consider the βij parameters. 
 
The Fh. may be written as: 

( )φiFiBAF hhhh exp=+=         

φφ sincos hhh BAF +=          (3,1) 
22

hhh BAF +=           (3,2) 

 
Hence, if pj  is a parameter of the j-th atom, deriving the equation (3,1), gives 

( )
j

hh
j

h

j

h

j

h

p
BA

p
B

p
A

p
F

∂
∂

+−+
∂
∂

+
∂
∂

=
∂

∂ φφφφφ cossinsincos  

It is easy to see that 
( ) 0cossin =+− φφ hh BA  

Page 131



 133

 
 
Thus,  

φφ sincos
j

h

j

h

j

h

p
B

p
A

p
F

∂
∂

+
∂
∂

=
∂

∂
        (3,3) 

Of course, we can arrive to the same result by deriving the equation (3,2). We obtain 

j

h

h

h

j

h

h

h

j

h

h

h

j

h

h

h

j

h
h

j

h
h

hj

h

p
B

F
B

p
A

F
A

p
B

F
B

p
A

F
A

p
B

B
p
A

A
Fp

F
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂

∂

2
2

2
2

22
2

1  

Replacing 

φ

φ

sin

cos

=

=

h

h

h

h

F
B
F
A

 

gives the previous relationship (3,3). 
Accordingly 

j

h
h

j

h
h

j

h

j

h
h

j

h
h

j

h

p
B

B
p
A

A
p
B

p
A

F
p
F

F
p
F

∂
∂

+
∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂

∂
=

∂

∂
22sincos22

2

φφ    (3,4) 

We may obtain (3,4) directly from the relationship: 
( )222

hhh BAF +=  
 
We calculate the explicit expressions of the Fh derivatives with respect to the unknown variables xj , yj, zj, 
Bj, β(11)j β(12)j  β(13)j.., occj and overall parameters K and B(overall), considering isotropic T.F. and for sake 
of simplicity omitting the explicit indication of the loop on symmetry operators 

( ) ( )

( ) ( ) ∑∑

∑∑

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

j
jj

h

j
jh

j
jj

h

j
jh

BoccfB

AoccfA

2

j

2

j

sin
B-exp2sin

sin
B-exp2cos

λ
ϑ

π

λ
ϑ

π

j

j

rh

rh

 

 
Atomic coordinates xj : 

( ) ( ) ( )

( ) ( ) ( ) jj
h

j
j

j

jj
h

j
j

j

hAoccfh
x
B

hBoccfh
x
A

π
λ
ϑ

ππ

π
λ
ϑ

ππ

2
sin

B-exp2cos2

2
sin

B-exp2sin2

2

j

2

j

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

∂

∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−=

∂

∂

j

j

rh

rh

 

Page 132



 134

( ) ( )j
h

h
j

h

h

j

j

h

h

j

j

h

h

j

h

h

h

j

h

h

h

j

h

j

h

j

h hA
F
B

hB
F
A

x
B

F
B

x
A

F
A

x
B

F
B

x
A

F
A

x
B

x
A

x
F

ππφφ 22sincos +−=
∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
∂

∂
 

( ) ( ) ( )

( ) ( ) ( ) jj
h

j
j

j

jj
h

j
j

j

kAoccfk
y
B

kBoccfk
y
A

π
λ
ϑ

ππ

π
λ
ϑ

ππ

2
sin

B-exp2cos2

2
sin

B-exp2sin2

2

j

2

j

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

∂

∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−=

∂

∂

j

j

rh

rh

 

( ) ( )j
h

h
j

h

h

j

h

j

h

j

h kA
F
B

kB
F
A

y
B

y
A

y
F

ππφφ 22sincos +−=
∂
∂

+
∂
∂

=
∂

∂
 

 

( ) ( ) ( )

( ) ( ) ( ) jj
h

j
j

j

jj
h

j
j

j

lAoccfl
z
B

lBoccfl
z
A

π
λ
ϑ

ππ

π
λ
ϑ

ππ

2
sin

B-exp2cos2

2
sin

B-exp2sin2

2

j

2

j

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

∂

∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−=

∂

∂

j

j

rh

rh

 

( ) ( )j
h

h
j

h

h

j

h

j

h

j

h lA
F
B

lB
F
A

z
B

z
A

z
F

ππφφ 22sincos +−=
∂
∂

+
∂
∂

=
∂

∂
 

 
Atomic isotropic thermal parameters Bj : 

( ) ( )

( ) ( ) j
h

j
h

j
hj

j
h

j
h

j
hj

Boccf
B

Aoccf
A

22

j

2

j

22

j

2

j

sinsin
B-exp2sin

sin
B

sinsin
B-exp2cos

sin
B

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⎟

⎠
⎞

⎜
⎝
⎛−=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⎟

⎠
⎞

⎜
⎝
⎛−=

∂

∂

λ
ϑ

λ
ϑ

π
λ
ϑ

λ
ϑ

λ
ϑ

π
λ
ϑ

j

j

rh

rh

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

+
∂
∂

=
∂

∂
j

h

h

h
j

h

h

hhhh B
F
B

A
F
ABAF 22

jjj

sinsin
sin

B
cos

BB λ
ϑ

λ
ϑ

φφ  

 
Atomic anisotropic thermal parameters βij  : 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bhoccβfh
B

Ahoccβfh
A

22

11

22

11

--exp2sin-

--exp2cos-

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bh
F
B

Ah
F
ABAF 22

111111

--sincos +=
∂
∂

+
∂

∂
=

∂

∂
φ

β
φ

ββ
 

 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bhkoccβfhk
B

Ahkoccβfhk
A

-exp2sin-

--exp2cos-

12

12

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bhk
F
B

Ahk
F
ABAF

--sincos
121212

+=
∂

∂
+

∂
∂

=
∂

∂
φ

β
φ

ββ
 

 

Page 133



 135

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bhloccβfhl
B

Ahloccβfhl
A

--exp2sin-

--exp2cos-

13

13

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bhl
F
B

Ahl
F
ABAF

--sincos
131313

+=
∂

∂
+

∂
∂

=
∂

∂
φ

β
φ

ββ
 

 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bkoccβfk
B

Akoccβfk
A

22

22

22

22

--exp2sin-

--exp2cos-

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bk
F
B

Ak
F
ABAF 22

222222

--sincos +=
∂

∂
+

∂
∂

=
∂

∂
φ

β
φ

ββ
 

 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bkloccβfkl
B

Akloccβfkl
A

--exp2sin-

--exp2cos-

23

23

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bkl
F
B

Akl
F
ABAF

--sincos
232323

+=
∂

∂
+

∂
∂

=
∂

∂
φ

β
φ

ββ
 

 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jjijj

j

j

jjijj
j

j

Bloccβfl
B

Aloccβfl
A

22

33

22

33

--exp2sin-

--exp2cos-

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

hhrh

hhrh

j

j

π
β

π
β

 

( ) ( ) ( )
( )[ ] ( )[ ]j

h

h
j

h

h

j

h

j

h

j

h Bl
F
B

Al
F
ABAF 22

333333

--sincos +=
∂

∂
+

∂
∂

=
∂

∂
φ

β
φ

ββ
 

 
Site occupation factors occj : 

j

j

j

j

occ
A

occ
A

=
∂

∂
 

j

j

j

j

occ
B

occ
B

=
∂

∂
 

j

j

h

h

j

j

h

h

j

h

j

h

j

h

occ
B

F
B

occ
A

F
A

occ
B

occ
A

occ
F

+=
∂
∂

+
∂
∂

=
∂

∂
φφ sincos  

 
Overall isotropic vibrations B(overall): 

h
hh F

overallB
F 2sin

-
)(

⎟
⎠
⎞

⎜
⎝
⎛=

∂

∂

λ
ϑ

 

 

Page 134



 136

All the previous derivatives have to be multiplied by (wh K2), where K is the factor to put Fcalc on the 
same scale as Fobs , and wh  are the weights. 
 
Overall scale factor K: 

hh
h

h Fw
K
F

w =
∂

∂
 

and  
2

22

2 hh
h

h FKw
K
FK

w =
∂

∂
 

 
IV. Effect of anomalous scattering 

 
 

Under particular conditions, the atomic scattering factor f0, value defined away from the absorption edge, 
is modified by introducing two quantities, one real ∆f’ (with the same direction of f0) and one imaginary 
∆f” with a phase angle of 90° respect to the real component, called real and imaginary dispersion correc-
tion respectively. In these case the scattering is called anomalous: 

'''0 fifff Δ+Δ+=  

 

 
 
Therefore, the real correction is added to the normal scattering factor: 
 

( ) ( )

( ) ( ) ∑∑

∑∑

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅Δ+=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅Δ+=

j
jj

h

j
jh

j
jj

h

j
jh

BoccffB

AoccffA

2

j0

2

j0

sin
B-exp2sin)'(

sin
B-exp2cos)'(

λ
ϑ

π

λ
ϑ

π

j

j

rh

rh

 

while for the imaginary correction i∆f” we define the structure factor contributions: 
 

 

( ) ( )

( ) ( ) j
jj

jj
h

j
jh

j
jj

jj
h

j
jh

B
ff

fDoccfD

A
ff

fCoccfC

∑∑∑

∑∑∑

Δ+
Δ

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅Δ=

Δ+
Δ

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅Δ=

)'(
''sin

B-exp2sin''

)'(
''sin

B-exp2cos''

0

2

j

0

2

j

λ
ϑ

π

λ
ϑ

π

j

j

rh

rh

Page 135



 137

Under this condition, the Fh. may be written as: 
 

( ) ( )
( )
( )hh

hh
h

hhhhh

DA
CB

CBiDAF

−
+

=

++−=

φtan
 

( ) ( ) hj
j

hhj
j

hhhhhhhh A
ff

fBB
ff

fACBDAF φφφφ sin
)'(

''cos
)'(

''sincos
00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Δ
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

Δ
−=++−= ∑∑  

φφ sincos ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂
∂

=
∂

∂

j

h

j

h

j

h

j

h

j

h

p
C

p
B

p
D

p
A

p
F

 

 
and F–h: 
 

( ) ( )
( )
( )

( ) ( ) hhhhhhh

hh

hh
h

hhhhh

CBDAF
DA
CB

CBiDAF

−−−

−

−

+−++=

+
+−

=

−−+=

φφ

φ

sincos

tan  

 
The derivatives of Fh and F-h are calculated respect to pj considering the general equations: 

φφ sincos ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂
∂

=
∂

∂

j

h

j

h

j

h

j

h

j

h

p
C

p
B

p
D

p
A

p
F

 

 
For h:                                                                              For –h:______________________________ 
 
Atomic coordinates xj : 

j

j
j

j

j

j

j

j
j

j

j

j

j
j

j

j
j

j

C

A
ff

fB
ff

fD

D

B
ff

fA
ff

fC

A
B

B
A

h

h
xx

h

h
xx

h
x

h
x

π

π

π

π

π

π

2
)'(

''2
)'(

''

2
)'(

''2
)'(

''

2

2

00

00

=

=
Δ+

Δ
=

∂

∂

Δ+
Δ

=
∂

∂

−=

=
Δ+

Δ
−=

∂

∂

Δ+
Δ

=
∂

∂

=
∂

∂

−=
∂

∂

 

jj
j

j

jj
j

j

j
j

j

j
j

j

CA
ff

fD

DB
ff

fC

A
B

B
A

hh
x

hh
x

h
x

h
x

ππ

ππ

π

π

2
)'(

''2

2
)'(

''2

2

2

0

0

=
Δ+

Δ
=

∂

∂

=
Δ+

Δ
=

∂

∂

=
∂

∂

=
∂

∂

 

 
 

 

( ) ( ) hjjhjj
j

h DACB
F

φπφπ sin2cos2 −+−−=
∂

∂
hh

x
 

          ( ) ( ) hjjhjj
j

h DACB
F

−−
− ++−=

∂

∂
φπφπ sin2cos2 hh

x
 

Page 136



 138

 
Atomic isotropic thermal parameters Bj  

j
hj

j
hj

j
hj

j
hj

D
D

C
C

B
B

A
A

2

j

2

j

2

j

2

j

sin
B

sin
B

sin
B

sin
B

⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

λ
ϑ

λ
ϑ

λ
ϑ

λ
ϑ

 

 

j
hj

j
hj

j
hj

j
hj

D
D

C
C

B
B

A
A

2

j

2

j

2

j

2

j

sin
B

sin
B

sin
B

sin
B

⎟
⎠
⎞

⎜
⎝
⎛+=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛+=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

λ
ϑ

λ
ϑ

λ
ϑ

λ
ϑ

 

 
 

( ) ( ){ }hjjhjj
hh CBDA

F
φφ

λ
ϑ

sincos
sin

B

2

j

++−⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂
 

 ( ) ( ){ }hjjhjj
hh CBDA

F
−−

− +−++⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂
φφ

λ
ϑ

sincos
sin

B

2

j

 

Atomic anisotropic thermal parameters βij  : 

( )
( )

( )
( )

( )
( )

( )
( ) j

j

j
j

j
j

j

j
j

j

Dh
D

Ch
C

Bh
B

Ah
A

2

j11

2

j11

2

11

2

11

-

-

-

-

=
∂

∂

=
∂

∂

=
∂

∂

=
∂

∂

β

β

β

β

 

 

( )
( )

( )
( )

( )
( )

( )
( ) j

j

j
j

j
j

j

j
j

j

Dh
D

Ch
C

Bh
B

Ah
A

2

j11

2

j11

2

11

2

11

-

-

=
∂

∂

=
∂

∂

=
∂

∂

=
∂

∂

β

β

β

β

 

 
 

( )
( ) ( ) ( ){ }hjjhjj

j

h CBDAh
F

φφ
β

sincos- 2

11

++−=
∂

∂
 

        
( )

( ) ( ) ( ){ }hjjhjj
j

h CBDAh
F

−−
− +−++=

∂

∂
φφ

β
sincos- 2

11

 

 
and so on for the other parameters βij 

Page 137



 139

 
Site occupation factors occj : 

j

j

j

j

occ
A

occ
A

=
∂

∂
 

j

j

j

j

occ
B

occ
B

=
∂

∂
 

j

j

j

j

occ
C

occ
C

=
∂

∂
 

j

j

j

j

occ
D

occ
D

=
∂

∂
 

 

j

j

j

j

occ
A

occ
A

=
∂

∂
 

j

j

j

j

occ
B

occ
B

−=
∂

∂
 

j

j

j

j

occ
C

occ
C

=
∂

∂
 

j

j

j

j

occ
D

occ
D

−=
∂

∂
 

 
 

( ) ( ){ }hjjhjj
jj

h CBDA
occocc

F
φφ sincos1

++−=
∂

∂
 

         ( ) ( ){ }hjjhjj
jj

h CBDA
occocc

F
−−

− +−++=
∂

∂
φφ sincos1  

 
 
 
 

Page 138



 

V. Inclusion of secondary extinction correction 
 
 

The integrated intensity of a diffracted beam in the kinematical approximation is given by: 
2

210 hh FLPTYKKII =  
Where: 
I0 e’ l’intensità del fascio incidente 

2

2

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

mc
eK takes into account the universal constants in the Thomson equation ; 

3
22 λ

V
V

K x=  (Vx is the volume of the crystal and V is the volume of the unit cell). 

θ2sin
1

=L  is the Lorentz coefficient 

P is the polarization correction 
T is the absorption correction  

2
1

0
1

221
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= X

p
pY  is the extinction coefficient (where θ2cos1 2n

np +=  is the polarization correc-

tion).  
|Fh | is the structure factor. 
 
We may write the the integrated intensity: 
 

2
2

1

0
1

2
22

42
3

2

2

2

2

0
21

2cos2cos
2cos2cos

2sin
1

h
M

Mx
h FX

p
pT

V
V

mc
eII

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

θθ
θθ

θ
λ  

 
We report the procedure to refine the extinction parameter following A.C. Larson (1969) . 
The structure factor corrected for extinction factor is defined as: 

( ) 4
12

4
1

1

2
0 *21*21*

−
−

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= δcccc FrF

p
pTQrFF  

Where r* is a function of the extinction factor and δ is:  
 

θθ
θθ

θ
λδ

2cos2cos
2cos2cos

2sin
1

22

42_
2

2

2

2

3

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M

Mt
mc
e

V
 

Page 139



 

The Thompson differential cross section σ for the charged particles (area/solid angle) is 

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

mc
qσ  

where q is the charge per particle, and m is the mass per particle. Note that this is the square of the 
classical radius of a point particle of mass m and charge q. For an electron, the differential cross section is 
then: 

sr
cmx

22610...94079.7 −=σ  

and set 0.1
_

=t  (
_
t  takes into account of the transmission factor and of the Vx volume of the crystal), δ may 

be written: 

θθ
θθ

θ
λδ

2cos2cos
2cos2cos

2sin
10794.0 22

42

2

3

+
+

=
M

M

V
 

 
Now, rewrite the relationship for the structure factor and considering the scale factor K, we can write: 

( ) 4
1

2

4

2

3
24

12

2cos1
2cos1

2sin
10794.0*21*21*

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+=+=
θ
θ

θ
λδ

pol
pol

V
FrFKFrFKF ccccc  

In SHELX programs this expression is approximated by: 
4

1
32

2sin
1*001.01*

−

⎟
⎠
⎞

⎜
⎝
⎛ +=

θ
λccc FrFKF  

 
Now, we calculate the derivative of |Fc*| respect to |Fc|: 

( ) ( )

( )
( )

( ) 4
52

2

4
52

2

*21

*1

*21

*4
4
1*21*

δ

δ

δ

δδ

c

c

c

ccc

c

c

Fr

Fr
K

Fr

FrFFr
K

F
F

+

+
=

+

−+
=

∂

∂
 

 
The partial derivatives become: 
 
Atomic parameters: 
 

( )
( ) i

c

c

c

i

c

c

c

i

c

p
F

Fr

Fr
K

p
F

F
F

p
F

∂

∂

+

+
=

∂

∂

∂

∂
=

∂

∂

4
52

2

*21

*1**

δ

δ
 

 
Overall scale factor K: 
 

( ) 4
12*21

* −

+=
∂

∂
δcc

c FrF
K

F
 

 
Extiction parameter: 
 

( ) 4
523 *21

2
1

*
* −

+−=
∂

∂
δδ cc

c FrFK
r
F

 

 

Page 140

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Classical+electron+radius&gwp=8&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Electron&gwp=8&curtab=2222_1�


 

VI. Refinement of Twinned Structures 
 
 

Here we consider only twins by hemihedry (a particular case of merohedry) defined as regular aggregates 
consisting of only two microscopic domains of the same species whose lattices differ in orientation. In 
this case, we need an orientation matrix, R (the twinning law) and the fractional contribution, x ,of the 
smaller domain. Yeates (1997) described a method to estimate the twinning fraction. For more informa-
tion on twinned structures please see Giacovazzo, (1992) and also visit the web site: 
http://www.lcm3b.uhp-nancy.fr/mathcryst/twins.htm 
For the refinement of twinned structures, see also Herbest-Irmer & Sheldrick, (1998). 
We follow the procedure as described by H D Flack,(1983), considering the enantiomorph-polarity pa-
rameter x a special case of twinned crystal. 
 

222
, )1( Rhhxh FxFxF +−=  

Rewrite the relationships of the structure factors: 
( )

φφ

φ

sincos

exp

hhh

hhhh

BAF

iFiBAF

+=

=+=
 

and 
( )

φφ

φ

sincos

exp

RhRhRh

RhRhRhRh

BAF

iFiBAF

+=

=+=
 

The function being minimized by the least-squares method becomes: ( ) [ ]( )2222222
,

22 )1(∑∑ +−−=−=
h

Rhhosshh
h

xhosshh FxFxKFwFKFwM  

[ ]
2

2
,

2

2

22222

22)1(

22)1()1(

∑ ∑

∑ ∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−Δ=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−+−−=

h j
j

j

Rh
Rh

j

h
hxhh

h j
j

j

Rh
Rh

j

h
hRhhosshh

r
r

F
Fx

r
F

FxKFw

r
r

F
Fx

r
F

FxKFxFxKFwM

 

Setting to zero the derivates of M with respect to the Δri . 

022)1(

22)1(

2

2
,

2

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−Δ=

Δ∂
∂ ∑ ∑

i

Rh
Rh

i

h
h

h j
j

j

Rh
Rh

j

h
hxhh

i

r
F

Fx
r
F

FxK

r
r

F
Fx

r
F

FxKFw
r

M

 

the normal equations are obtained: 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−Δ=

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−

∑

∑ ∑

i

Rh
Rh

i

h
h

h
xhh

i

Rh
Rh

i

h
h

h j
j

j

Rh
Rh

j

h
hh

r
F

Fx
r
F

FxKFw

r
F

Fx
r
F

FxKr
r

F
Fx

r
F

FxKw

22)1(

22)1(22)1(

2
,

2

22

 

 
Considering: 

( ) ( )222
, sincossincos)1( RhRhRhRhhhhhxh BAxBAxF φφφφ +++−=  

we have: 

Page 141

http://www.lcm3b.uhp-nancy.fr/mathcryst/twins.htm�


 

Rh
j

Rh
Rh

j

Rh

j

Rh

h
j

h
h

j

h

j

h

j

Rh
Rh

j

h
h

j

xh

p
B

p
A

p
F

p
B

p
A

p
F

p
F

Fx
p
F

Fx
p

F

φφ

φφ

sincos

sincos

22)1(
2

,

∂
∂

+
∂
∂

=
∂

∂

∂
∂

+
∂
∂

=
∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−=

∂

∂

 

 
Atomic coordinates rj : 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) jRhj
h

j
jRh

jhj
h

j
jh

jRhj
h

j
jRh

jhj
h

j
jh

Aoccf
B

Aoccf
B

Boccf
A

Boccf
A

,

2

j
,

,

2

j
,

,

2

j
,

,

2

j
,

2
sin

B-exp2cos2

2
sin

B-exp2cos2

2
sin

B-exp2sin2

2
sin

B-exp2sin2

RhrRhRh
r

hrhh
r

RhrRhRh
r

hrhh
r

j
j

j
j

j
j

j
j

π
λ
ϑ

ππ

π
λ
ϑ

ππ

π
λ
ϑ

ππ

π
λ
ϑ

ππ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

∂

∂

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

∂

∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−=

∂

∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−=

∂

∂

 

 
Atomic isotropic thermal parameters Bj : 

jRh
hjRh

jh
hjh

jRh
hjRh

jh
hjh

B
B

B
B

A
A

A
A

,

2

j

,

,

2

j

,

,

2

j

,

,

2

j

,

sin
B

sin
B

sin
B

sin
B

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂

∂

λ
ϑ

λ
ϑ

λ
ϑ

λ
ϑ

 

 
Atomic anisotropic thermal parameters βij  : 

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( )

( )
( ) ( ) [ ]( ) ( ) jRhjjijjj

jij

jRh

jhjjijjj

jij

jh

jRhjjijjj

jij

jRh

jhjjijjj

jij

jh

BRhRhoccβfRhRh
B

Bhhoccβfhh
B

ARhRhoccβfRhRh
A

Ahhoccβfhh
A

,ii
,

,ii
,

,ii
,

,ii
,

-exp2sin-

--exp2sin-

--exp2cos-

--exp2cos-

−=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

=⋅⋅=
∂

∂

RhRhrRh

hhrh

RhRhrRh

hhrh

j

j

j

j

π
β

π
β

π
β

π
β

 

Page 142



 

 
Site occupation factors occj : 

j

jRh

j

jRh

j

jh

j

jh

occ
A

occ
A

occ
A

occ
A

,,

,,

=
∂

∂

=
∂

∂

 

j

jh

j

jh

occ
B

occ
B ,, =

∂

∂
 

j

jRh

j

jRh

occ
B

occ
B ,, =

∂

∂
 

 
Twin fractional parameter x: 

22
2

,
Rhh

xh FF
x

F
+−=

∂

∂
 

 
all the previous derivatives have to be multiplied by (wh K2). 
 
 
 

VII. Enantiomorph-polarity parameter 
 
 

The enantiomorph-polarity parameter x for the observed intensity of the reflection h (as defined by H D 
Flack, 1983) is: 

222
, )1( hhxh FxFxF −+−=  

where |Fh|2 and |F-h|2 are the intensity of the two enantiomers. 
 
The function being minimized by the least-squares method becomes: 

( ) [ ]( )2222222
,

22 )1(∑∑ −+−−=−=
h

hhosshh
h

xhosshh FxFxKFwFKFwM  

[ ]
2

2
,

2

2

22222

22)1(

22)1()1(

∑ ∑

∑ ∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−Δ=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−+−−=

−
−

−
−−

h j
j

j

h
h

j

h
hxhh

h j
j

j

h
h

j

h
hhhosshh

r
r

F
Fx

r
F

FxKFw

r
r

F
Fx

r
F

FxKFxFxKFwM

 

Setting to zero the derivates of M with respect to the Δri . 

022)1(

22)1(

2

2
,

2

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−−Δ=

Δ∂
∂

−
−

−
−∑ ∑

i

h
h

i

h
h

h j
j

j

h
h

j

h
hxhh

i

r
F

Fx
r
F

FxK

r
r
F

Fx
r
F

FxKFw
r

M

 

the normal equations are obtained: 

Page 143



 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−Δ=

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−

−
−

−
−

−
−

∑

∑ ∑

i

h
h

i

h
h

h
xhh

i

h
h

i

h
h

h j
j

j

h
h

j

h
hh

r
F

Fx
r
F

FxKFw

r
F

Fx
r
F

FxKr
r

F
Fx

r
F

FxKw

22)1(

22)1(22)1(

2
,

2

22

 

We consider now the anomalous scattering effect, and as we have seen before we have: 
 
for h: 

( ) ( )
( )
( )

( ) ( ) hhhhhhh

hh

hh
h

hhhhh

CBDAF
DA
CB

CBiDAF

φφ

φ

sincos

tan

++−=

−
+

=

++−=

 

 
and for –h: 

( ) ( )
( )
( )

( ) ( ) hhhhhhh

hh

hh
h

hhhhh

CBDAF
DA
CB

CBiDAF

−−−

−

−

+−++=

+
+−

=

−−+=

φφ

φ

sincos

tan  

 
The structure factor now is: 

( ) ( )[ ] ( ) ( )[ ]222
, sincossincos)1( hhhhhhhhhhhhxh CBDAxCBDAxF −− +−+++++−−= φφφφ  

we have: 

h
j

h

j

h
h

j

h

j

h

j

h

h
j

h

j

h
h

j

h

j

h

j

h

j

h
h

j

h
h

j

xh

p
C

p
B

p
D

p
A

p
F

p
C

p
B

p
D

p
A

p
F

p
F

Fx
p
F

Fx
p

F

−−
−

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂
∂

=
∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−=

∂

∂

φφ

φφ

sincos

sincos

22)1(
2

,

 

 
Flack parameter x: 
 

22
2

,
hh

xh FF
x

F
−+−=

∂

∂
 

 

Page 144



 

 
VIII. Metric and vector notation 

 
 

We assumed the tensor notation according to the Levi-Civita notation. A crystallographic cell in the real 
space (a,b,c,α,β,γ) with volume V is written as ia , while the reciprocal cell is ia  and the metric tensors 

ijG  and ijG  , direct and reciprocal metric tensors respectively, are defined as following: 
 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
3332

31

232221

131211

2

2

2

**cos***cos**
*cos****cos**
*cos***cos***

ggg
ggg

ggg

ccbca
cbbba
cabaa

ij

αβ
αγ
βγ

G  

 
With respect to the ia base, vectors are written as ( )zyxi rrr ,,=r  , and with respect to the ia  base, vec-
tors are written as ( )zyxi rrr ,,=r , i.e. a vector r can be represented by the ir  or ir  , contravariant and co-
variant components respectively: 
 

 
 

The squared length of r can be expressed in terms of his components taking into account the metric tensor 
with Einstein’s summation convention as follows: 

ji
ijji

ijr rrGrrG ==2  

and it easy to show that j
iji rGr =  and if we perform the inverse operation, we have j

iji rGr =  with 

( ) 1−
= ij

ij GG  and then we obtain 
j

ir rr=2  

If the coordinate system is a orthogonal monometric base ( IGG == ij
ij ), the contravariant and covariant 

components are identical: 
i

j rr =  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

333231

232221

131211

2

2

2

coscos
coscos
coscos

ggg
ggg
ggg

cbcac
bcbab
acaba

ij

αβ
αγ
βγ

G

Page 145



 

 
IX. Rigid body constraint 

 
 

A rigid body is formed by a number of atoms having known fixed geometry. Our approach follows the 
traditional refinement of the centroid and of three Eulerian angles. In fact, the position and the orientation 
of a rigid body may be described by three positional and three rotational parameters. Therefore, for each 
rigid body of n atoms the number of independent positional parameters reduces from 3n to 6. 
 
The calculations could be performed according to the following scheme. 
 

1) Define a rigid body in a Z-matrix representation. In the Z-matrix approach used to define connec-
tivity between atoms in a molecule the position of each atom (except the first three) is defined 
with respect to three previously defined atoms. The parameters one needs are distances (d), angles 
(α) and dihedral angles (γ).  
In this example  

 
 

• a Carbon atom  
• is connected to atom number 5 with a Bond Distance of 1.4 Angstroms,  

• The vector from the Carbon atom to atom number 5 and the vector from atom number 5 
to atom number 4 make a Bond Angle of 120.0 degrees.  

• The two planes constituted by atoms (Carbon-5-4) and (5-4-3) make an Dihedral/torsion 
angle of 0.0 degrees.  

The first atom in the Z-matrix has no previously defined atoms to refer to and is the origin, the 
second atom is always connected to the first atom by just a bond distance, and the third atom is 
connected to the first two by just a bond distance and a bond angle. The vector (2-1) defines the x 
axis , the plane which contains (1-2-3) define where the y axis lies, and then the z axis is obtained 
as vector perpendicular to that plane. 
A fine Z-matrix editor can be found at  
http://www.cmbi.ru.nl/molden/zmat/zmat.html 
 

Page 146

http://www.cmbi.ru.nl/molden/zmat/zmat.html�


 

For a benzene group, the Z-matrix representation is: 
 

Atom  
Name  

Atom 
Connect 

Bond 
Distance 

Angle
Connect 

Bond 
Angle 

Dihedral
Connect 

Dihedral 
Angle  

C1        

C2  1  1.38     

C3  2  1.38 1 120.0   

C4  3  1.38 2 120.0 1 0.00  
C5  4  1.38 3 120.0 2 0.00  
C6  5  1.38 4 120.0 3 0.00  

 
2) Transform the coordinates in Z-matrix representation in its local Cartesian frame x (in Ång-

stroms). In this case, the base ai is orthogonal and the metric tensor IG =ij , therefore we do not 
considered the metric tensor in the calculation. The general algorithm is the following: 

)0,0,(
)0,0,0(

22

1

d=
=

r
r

 

For the atom r3: 
Calculate the versor pi along x-axis as follows: 

12 rru −=i  

2

2

uu

u ii

=

•= uu
 

u

i
i up =  

Calculate the versor qi along z-axis: 
)0,1,0(∧= ii pv  

v

i
i vq =  

Calculate the versor si along y-axis: 
iii pqs ∧=  

then we can calculate the position for the atom r3 
333323 sincos αα dd ii sprr +−=  

For the next atom i (atom connect j, bond distance di, angle connect k, bond angle αi, dihedral 
connect l, dihedral angle ψi): 
Calculate the versor pi along k-j direction to establish the local x-axis: 

kj
i rru −=  

u

i
i up =  

Calculate the vector along l-k direction: 
kl

i rrw −=  
Calculate the cross product of wi and pi to establish the versor qi  along the local z-axis: 

iii wpv ∧=  

v

i
i vq =  

Page 147



 

Calculate the cross product of pi and qi  to establish the versor si along the local y-axis: 
iii pqs ∧=  

iii
i

iii
i

ii
i

ji ddd ψαψαα sinsincossincos qsprr ++−=  
 

3) If the matrix G=U-1R connects the local Cartesian system to the crystallographic system, where U 
is the orthogonalization matrix of the crystallographic cell and R is orientation matrix (the product 
of  three rotation matrix), we have: 

GXxx += 0  
where x are the coordinates of atoms and x0 are the coordinates of the origin of the group in the 
crystallographic cell, X are the coordinates of atoms in the local Cartesian system of the group. 

4) The contribution Fh
G to the structure factors is given by: 

( ) ( )

( )( ) ( )∑

∑

=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⋅⋅=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

n

j
j

h
j

n

j
j

h
j

G
h

occif

occifF

1

2

j
0

1

2

j

sin
B-exp2exp

sin
B-exp2exp

λ
ϑ

π

λ
ϑ

π

j

j

GXxh

xh

  

5) Define the derivatives with respect to the rigid body parameters (x0,y0,z0,θ,ψ,φ): 

φφ sincos
j

G
h

j

G
h

j

G
h

p
B

p
A

p

F

∂
∂

+
∂

∂
=

∂

∂
 

 
Atomic coordinates shift x0 : 

∑

∑

=

=

∂

∂
=

∂

∂

∂

∂
=

∂

∂

n

j j

j
G

h

n

j j

j
G

h

BB

AA

1

1

xx

xx

o

o  

 
Rotational parameters θ,ψ,φ: 

ij

n

j i ji

j
n

j

ji

i ji

j
G

h

ij

n

j i ji

j
n

j

ij

i ji

j
n

j

ji

i ji

j
G

h

BBB

AAAA

XRU
x

x
x

XRU
x

GX
x

x
x

1

1

∑∑∑∑

∑∑∑∑∑∑

=

−

== =

=

−

== == =

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

1

3

11

3

1

1

3

11

3

11

3

1

θθθ

θθθθ
 

 

∑ ∑∑∑

∑∑∑∑

= =

−

==

=

−

== =

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

n

j
ij

n

j i ji

jji

i ji

j
G

h

ij

n

j i ji

j
n

j

ji

i ji

j
G

h

BBB

AAA

1 1

3

1

3

1

1

3

11

3

1

XRU
x

x
x

XRU
x

x
x

1

1

ψψψ

ψψψ
 

 

ij

n

j i ji

j
n

j

ji

i ji

j
G

h

n

j
ij

n

j i ji

jji

i ji

j
G

h

BBB

AAA

XRU
x

x
x

XRU
x

x
x

1

1

∑∑∑∑

∑ ∑∑∑

=

−

== =

= =

−

==

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

∂
∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂

1

3

11

3

1

1 1

3

1

3

1

ϕϕϕ

ϕϕϕ
 

Page 148



 

 
6) To calculate the derivative respect the rotational parameters, we have to define the orientation ma-

trix (Andreev et al.,1997): 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−−−
+−

=
θϕθϕθ

θψψϕθϕψψϕθϕψ
ψθψϕθϕψψϕθϕψ

coscossinsinsin
sincoscoscoscossinsincossincoscossin
sinsinsincoscossincossinsincoscoscos

R  

 
and the orthogonalization matrix from the cell parameters a,b,c,α,β,γ: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

cba
b
ba

αβ
γα
γαβ

coscos
0*sinsin0
0*cossinsin

U  

 
Then, we calculate an approximate G matrix from the relationship 

GXxx += 0  
where x, x0 and X are known and we obtain the R matrix from:  

UGR =  
and values of the Eulerian angles can be readily calculated as follows: 

( )

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

=

2
33

32

2
33

31

33

1
cos

1
sin

acos

R

R

R

R

R

ϕ

ϕ

θ

 

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

2
33

23

2
33

13

1
cos

1
sin

R

R

R

R

ψ

ψ

 

 
giving the initial value of θ,φ and ψ . 
Now we can update the x coordinates of the atoms of the group, respect to the coordinates X of the 
model, knowing the Eulerian angles: 

GXxx
RUG

0 +=

= −1

 

 
Calculate the derivatives of the R matrix for the Eulerian angles: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

=
∂
∂

θϕθϕθ
θψψϕθψϕθ

ψθψϕθψϕθ

θ
sincoscossincos

coscoscoscossincossinsin
sincossincossinsinsinsin

R  

 

Page 149



 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−
−−−

=
∂
∂

0sinsincossin
0cossincoscossincoscoscossinsin
0sinsincoscoscossincoscossincos

ϕθϕθ
ψϕθϕψψϕθϕψ

ψϕθϕψψϕθϕψ

ϕ
R  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−+−

+−−−
=

∂
∂

000
sinsinsincoscossincossinsincoscoscos

cossincoscoscossinsincossincoscossin
θψψϕθϕψψϕθϕψ

ψθψϕθϕψψϕθϕψ

ψ
R  

 
obtaining: 

XRUx 1

θθ ∂
∂

=
∂
∂ −  

XRUx 1

ϕϕ ∂
∂

=
∂
∂ −  

XRUx 1

ψψ ∂
∂

=
∂
∂ −  

 
 

A good collection of useful routines for this argument can be found at the DYNAMO site: 
 
http://www.ibs.fr/ext/labos/LDM/projet6/Main.html 
 
DYNAMO is a library of Fortran 90 modules that has been designed for the simulation of molecular sys-
tems using molecular mechanical (MM) and hybrid quantum mechanical (QM)/MM potential energy 
functions.  

Page 150

http://www.ibs.fr/ext/labos/LDM/projet6/Main.html�


 

 
X. Bond distance restraint 

 
 

The bond distance is the calculated distance between the atom A and the atom B . The positions of the 
atoms (A, B) are represented by rn =(xn,yn,zn) (n = 1,2)  
 

 
and the inter-atomic vectors is: 
 

( ) ( ) ( ) ( )[ ]212121
321 ,,,, zzyyxxuuui −−−=→−= 21 rru  

 
The interatomic distance is obtained by: 
 

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

2

2
2133212132212131

212123
2

2122212121

212113212112
2

2111
2

uu

zzgyyzzgxxzzg
zzyygyygxxyyg
zzxxgyyxxgxxg

u j
ij

i

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−−+−−+
−−+−+−−+
−−+−−+−

=•= uGu
 

 
The derivatives of u with respect to r is : 
 

( ) j
ij

j
ij

j
ij

i uG
u

uG
uur

u 12
2
1)(

2
1

=⋅=•∂⋅=
∂
∂ uGu  

 
Then we can calculate the derivatives of u with respect to the coordinates x,y,z of the two atoms. 
 
Atom 1 
Parameter x1 

( ) ( )[ ])(1
211321122111

1

zzgyygxxg
ux

u
−+−+−⋅=

∂
∂  

Parameter y1 

( ) ( )[ ])(1
212321222121

1

zzgyygxxg
uy

u
−+−+−⋅=

∂
∂  

Parameter z1 

( ) ( )[ ])(1
213321322131

1

zzgyygxxg
uz

u
−+−+−⋅=

∂
∂  

 
Atom 2 
Parameter x2 

( ) ( )[ ]
1

211321122111
2

)(1
x
uzzgyygxxg

ux
u

∂
∂

−=−+−+−⋅−=
∂
∂  

Page 151



 

Parameter y2 

( ) ( )[ ]
1

212321222121
2

)(1
y
uzzgyygxxg

uy
u

∂
∂

−=−+−+−⋅−=
∂
∂  

Parameter z2 

( ) ( )[ ]
1

213321322131
2

)(1
z
uzzgyygxxg

uz
u

∂
∂

−=−+−+−⋅−=
∂
∂  

 
 
 

XI. Bond angle restraint 
 
 

The bond angle τ at the atom B is the angle between the bond A—B and the bond B—C. The positions of 
the atoms (A, B,C) are represented by rn =(xn,yn,zn) (n = 1,2,3)  

 
and the inter-atomic vectors are: 
 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]313131
321

232323
321

212121
321

,,,,

,,,,

,,,,

zzyyxxwww

zzyyxxvvv

zzyyxxuuu

ii

i

i

−−−=→−==−

−−−=→−=

−−−=→−=

31

23

21

rrwvu

rrv

rru
 

 
We have the relationships : 
 

τvuvuwvu 222 cos22 −+==−  

vu
wvu

τ
222

2
cos

−+
=  

and the angle τ between the two vectors u and v is obtained: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
=

vu
wvu

τ
222

2
acos  

 
The interatomic distances are: 
 

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

2

2
2133212132212131

212123
2

2122212121

212113212112
2

2111
2

uu

zzgyyzzgxxzzg
zzyygyygxxyyg
zzxxgyyxxgxxg

u j
ij

i

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−−+−−+
−−+−+−−+
−−+−−+−

=•= uGu
 

 

Page 152



 

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

2

2
3133313132313131

313123
2

3122313121

313113313112
2

3111
2

2

2
2333232332232331

232323
2

2322232321

232313232312
2

2311
2

ww

zzgyyzzgxxzzg
zzyygyygxxyyg
zzxxgyyxxgxxg

w

vv

zzgyyzzgxxzzg
zzyygyygxxyyg
zzxxgyyxxgxxg

v

j
ij

i

j
ij

i

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−−+−−+
−−+−+−−+
−−+−−+−

=•=

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−−+−−+
−−+−+−−+
−−+−−+−

=•=

wGw

vGv

 

 
It is useful to rewrite the relationship to obtain the angle in the form: 

( )T
uv

w
u
v

v
u

uv
wvu acos

222
acos

2
acos

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
=

222

τ  

Then using the chain rule, the derivatives of the function with respect to an atomic position r and a ge-
neric distance involved d are: 

∑ ∂
∂

∂
∂

−=
∂
∂

r
d

d
T

r τsin
1τ  

 
Considering the distance u, the derivatives are: 

vu
wvu

vu
w

u
v

vu
T

2

222

2

2

2 2222
1 +−

=+−=
∂
∂  

j
ij

j
ij

i uG
uur

u 1)(
2
1

=•∂⋅=
∂
∂ uGu  

We obtain: 
j

ijuG
uvu

wvu
r

1
2sin

1
2

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
−=

∂
∂

τ
τ  

 
Considering the distance v: 

2

222

2

2

2 222
1

2 uv
wvu

uv
w

uv
u

v
T ++−

=++−=
∂
∂  

j
ij

j
ij

i vG
vvr

v 1)(
2
1

=•∂⋅=
∂
∂ vGv  

We obtain: 
j

ij vG
vuv

wvu
r

1
2sin

1
2

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++−
−=

∂
∂

τ
τ  

 
Considering the distance w: 

uv
w

w
T

2
2

−=
∂
∂  

j
ij

j
ij

i wG
wwr

w 1)(
2
1

=•∂⋅=
∂
∂ wGw  

We obtain: 
j

ij
j

ij wG
uv

wG
wuv

w
r

1
sin

11
2
2

sin
1

ττ
=⎟

⎠
⎞

⎜
⎝
⎛=

∂
∂τ  

 

Page 153



 

Now , we are able to calculate the derivatives with respect to the coordinates x,y,z of the three atoms in-
volved. 

⎭
⎬
⎫

⎩
⎨
⎧

⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+−
=

∂
∂ j

ij
j

ij
j

ij wG
uv

vG
uv

wvu
v

uG
vu

wvu
ur

1
2

1
2

1
sin

1
2

222

2

222

τ
τ  

 
Atom 1 
Parameter x1 

( ) ( )[ ]

( ) ( ) ( )[ ]
⎭
⎬
⎫−+−+−+

+
⎩
⎨
⎧

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
=

∂
∂

311331123111

2113211221112

222

1

1

)(
2

1
sin

1

zzgyygxxg
uv

zzgyygxxg
vu

wvu
ux τ

τ

 

Parameter y1 

( ) ( )[ ]

( ) ( ) ( )[ ]
⎭
⎬
⎫−+−+−+

+
⎩
⎨
⎧

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
=

∂
∂

312331223121

2123212221212

222

1

1

)(
2

1
sin

1

zzgyygxxg
uv

zzgyygxxg
vu

wvu
uy τ

τ

 

Parameter z1 

( ) ( )[ ]

( ) ( ) ( )[ ]
⎭
⎬
⎫−+−+−+

+
⎩
⎨
⎧

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
=

∂
∂

313331323131

2133213221312

222

1

1

)(
2

1
sin

1

zzgyygxxg
uv

zzgyygxxg
vu

wvu
uz τ

τ

 

 
Atom 2 
Parameter x2 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
−=

∂
∂

)(
2

1

)(
2

1
sin

1

2313231223112

222

2113211221112

222

2

zzgyygxxg
uv

wvu
v

zzgyygxxg
vu

wvu
ux τ

τ

 

Parameter y2 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
−=

∂
∂

)(
2

1

)(
2

1
sin

1

2323232223212

222

2123212221212

222

2

zzgyygxxg
uv

wvu
v

zzgyygxxg
vu

wvu
uy τ

τ

 

Parameter z2 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫

−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
−=

∂
∂

)(
2

1

)(
2

1
sin

1

2333233223312

222

2133213221312

222

2

zzgyygxxg
uv

wvu
v

zzgyygxxg
vu

wvu
uz τ

τ

 

 
Atom 3 
Parameter x3 

Page 154



 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫−+−+−−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

∂
∂

)(1

)(
2

1
sin

1

311331123111

2313231223112

222

3

zzgyygxxg
uv

zzgyygxxg
uv

wvu
vx τ

τ

 

Parameter y3 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫−+−+−−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

∂
∂

)(1

)(
2

1
sin

1

312331223121

2323232223212

222

3

zzgyygxxg
uv

zzgyygxxg
uv

wvu
vy τ

τ

 

Parameter z3 

( ) ( )[ ]

( ) ( )[ ]
⎭
⎬
⎫−+−+−−

⎩
⎨
⎧

+−+−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

∂
∂

)(1

)(
2

1
sin

1

313331323131

2333233223312

222

3

zzgyygxxg
uv

zzgyygxxg
uv

wvu
vz τ

τ

 

 
XII. Torsion angle restraint 

 
 

The torsion (or twist) angle τ about the line between atoms B--C of the sequence of four atoms A--B--C--
D is defined as the rotation angle required to correspond the projection of the line B--A to the projection 
of the line C--D, seen along the direction of the line B--C. The sign of the angle is positive if the rotation 
is clockwise.  

 
 
The positions of the atoms (A,B,C,D) are represented by rn=(xn,yn,zn) (n=1,2,3,4) and the interatomic vec-
tors are: 

 

Page 155



 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]232323

321
343434

321
212121

321

,,,,

,,,,
,,,,

zzyyxxwww

zzyyxxvvv
zzyyxxuuu

i

i

i

−−−=→−=

−−−=→−=

−−−=→−=

23

34

21

rrw

rrv
rru

 

 
We calculate the cross product pi of vectors ui and wi (pi is a vector normal to the plane defined by the 
vectors ui and wi) and the cross product qi of the vectors  vi and wi (qi is a vector normal to the plane de-
fined by the vectors vi and wi). Furthermore, we calculate the vectors pi and qi

  and the magnitude of the 
vector wi. 
 

( ) ( ) ( ) ( )[ ]122131132332
321 ,,,, wuwuwuwuwuwuVpppVji

iji −−−=→∧= wuGp  

j
iji pGp =  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )1221333113322332313

1221233113222332212

1221133113122332111

wuwuVgwuwuVgwuwuVgp
wuwuVgwuwuVgwuwuVgp
wuwuVgwuwuVgwuwuVgp

−+−+−=
−+−+−=
−+−+−=

 

2

2

pp

p j
i

=

•= pp
 

 
( ) ( ) ( ) ( )[ ]122131132332

321 ,,,, wvwvwvwvwvwvVqqqVji
iji −−−=→∧= wvGq  

j
iji qGq =  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )1221333113322332313

1221233113222332212

1221133113122332111

wvwvVgwvwvVgwvwvVgq
wvwvVgwvwvVgwvwvVgq
wvwvVgwvwvVgwvwvVgq

−+−+−=
−+−+−=
−+−+−=

 

2

2

qq

q j
i

=

•= qq
 

 

2

2

ww

w j
ij

i

=

•= wGw
 

 
We have the following relationships, the scalar product: 

( )
pqw

wj
i

j
i

j
i

qp
qp
qp

τ

τqpqp

•
=

•
=

=•

cos

cos

 

and the cross and triple products: 

( )
( )

pqw

jji

jji

ji

wqpτ

τwqpwqp

τqpqp

•∧
=

=•∧

=∧

sin

sin

sin

 

Then we can calculate the tan τ : 

Page 156



 

( )

( )
( )

( )
( )

( ) T
S

qp
wqp

qp
wqp

qp

wqp

τ
ττ =

•
•∧

=
•

⋅
•∧

=
•

•∧

==
ww

pqw
pqw

pqw
w

pqw

j
i

jji

j
i

jji

j
i

jji

cos
sintan  

and obtain the angle τ : 

⎟
⎠
⎞

⎜
⎝
⎛==

T
Sττ arctanarctan  

The differential equation has the following form: 

( )

( )TSST
ST

1

T
S

T
1

ST
T

T
S

ST
T

T
S

T
ST

Sτ

22

222

2

22

2

d.d.

dddd
1

1arctandd 2

−
+

=

=⎟
⎠
⎞

⎜
⎝
⎛ −

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= TS

 

 
Using the chain rule, we write the derivative of τ with respect to the atomic coordinates x,y,z of the four 
atoms involved. 

In the above equation, we have to calculate the derivatives 
jr∂

∂S  e 
jr∂

∂T  (rj , j=1,4) to obtain ( )
jr∂

∂ τ . 

Rewrite S e T: 

( )

( ) ( ) ( ) wwwqpqpqpw

VV
www
qqq
ppp

V

jj
ij

j
i

i
j

ij
j

ij

jji

T'qpGqpT

S'
w

qG
pG

wqpS

=•=++=•=

===•∧=

3
3

2
2

1
1

321

321

321

 

where: 
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

[ ]
=−−−

−−−
=

3,2,1

122131132332

122131132332

,,
,,

www
wvwvwvwvwvwvV
wuwuwuwuwuwuV

ij

ij

G
G

S'  

( )( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]{ }
( )( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]{ }

( ) ( )( ){ }232323

233423342334233423342334

232123212321232123212321

,
,,
,,

zzyyxx
xxyyyyxxzzxxxxzzyyzzzzyyV

xxyyyyxxzzxxxxzzyyzzzzyyV
ij

ij

−−−
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
= G

G

and 
( )( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]{ }

( )( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]{ }233423342334233423342334

232123212321232123212321

,,
,,

xxyyyyxxzzxxxxzzyyzzzzyyV
xxyyyyxxzzxxxxzzyyzzzzyyVij

−−−−−−−−−−−−−−−
•−−−−−−−−−−−−−−−= GT'  

 
For the vector pi, we have: 

( )
rrrrr

jij
ij

j
jijj

iji

∂

∂
=

∂
∂

+
∂

∂
=

∂

∂
=

∂
∂ p

GGp
p

G
pGp  

being null the term 
r

ij

j ∂
∂Gp , and likewise for qi : 

rr
jij

i

∂

∂
=

∂
∂ q

Gq  

Then we have to calculate: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

=
∂
∂

=
∂
∂

rrr
V

r
V

r

i

i
jij

i
jij

i

w
w
S'q

G
q
S'p

G
p
S'SS '   

Page 157



 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂

∂

∂
∂

=
∂
∂

=
∂
∂

rr
w

r
w

r
i

i

jij
i

q
q
Tp

G
p
TTT '''  

 
The derivatives of S’ e T’ with respect to r1 (x1,y1,z1) , r2 (x2,y2,z2) , r3 (x3,y3,z3) , r4 (x4,y4,z4) are the fol-
lowing. 
 
Atom 1 
 
Parameter x1 

=
∂

∂

∂
∂

1

'
x

jij
i

p
G

p
S

( ) ( ){ }

i

i

ij
yyzzV

w
q

G 2323 ,,0 −−−
 

0'

0

1

1

=
∂
∂

⋅
∂
∂

=
∂

∂

∂
∂

x

x
i

i

jij
i

w
w
S

q
G

q
S'

 

( ) ( ){ }

0

,,0'

1

2323
1

=
∂
∂

⋅
∂
∂

•−−−=
∂

∂

∂
∂

x

yyzzV
x

i

i

i

ijjij
i

q
q
T'

qG
p

G
p
T

 

 
Parameter y1 

=
∂

∂

∂
∂

1

'
y

jij
i

p
G

p
S

( ) ( ){ }

i

i

ij
xxzzV

w
q

G 2323 ,0, −−−
 

0'

0

1

1

=
∂
∂

⋅
∂
∂

=
∂

∂

∂
∂

y

y
i

i

jij
i

w
w
S

q
G

q
S'

 

1

'
y

jij
i ∂

∂

∂
∂ p

G
p
T ( ) ( ){ } i

ij
xxzzV qG •−−−= 2323 ,0,  

0
1

=
∂
∂

⋅
∂
∂

y
i

i

q
q
T'  

 
Parameter z1 

=
∂

∂

∂
∂

1

'
z

jij
i

p
G

p
S

( ) ( ){ }

i

i

ij
xxyyV

w
q

G 0,, 2323 −−−
 

Page 158



 

0'

0

1

1

=
∂
∂

⋅
∂
∂

=
∂

∂

∂
∂

z

z
i

i

jij
i

w
w
S

q
G

q
S'

 

=
∂

∂

∂
∂

1

'
z

jij
i

p
G

p
T ( ) ( ){ } i

ij
xxyyV qG •−−− 0,, 2323  

0
1

=
∂
∂

⋅
∂
∂

z
i

i

q
q
T'  

 
Atom 2 
 
Parameter x2 

=
∂

∂

∂
∂

2

'
x

jij
i

p
G

p
S

( ) ( )[ ] ( ) ( )[ ]{ }

i

i

ij
yyyyzzzzV

w
q

G 21232123 ,,0 −+−−−−−
 

=
∂

∂

∂
∂

2x
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

yyzzV
w

G
p

3434 ,,0 −−−  

=
∂
∂

⋅
∂
∂

2

'
x

i

i

w
w
S

001

321

321

−
qqq
ppp

 

=
∂

∂

∂
∂

2

'
x

jij
i

p
G

p
T ( ) ( )[ ] ( ) ( )[ ]{ } i

ij
yyyyzzzzV qG •−+−−−−− 21232123 ,,0  

=
∂
∂

⋅
∂
∂

2x
i

i

q
q
T' ( ) ( ){ }3434 ,,0 yyzzVi −−−•p  

 
Parameter y2 

=
∂

∂

∂
∂

2

'
y

jij
i

p
G

p
S

( ) ( )[ ] ( ) ( )[ ]{ }

i

i

ij
xxxxzzzzV

w
q

G 21232123 ,0, −−−−+−−
 

=
∂

∂

∂
∂

2y
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

xxzzV
w

G
p

3434 ,0, −−−  

=
∂
∂

⋅
∂
∂

2

'
y

i

i

w
w
S

010

321

321

−
qqq
ppp

 

=
∂

∂

∂
∂

2

'
y

jij
i

p
G

p
T ( ) ( )[ ] ( ) ( )[ ]{ } i

ij
xxxxzzzzV qG •−−−−+−− 21232123 ,0,  

=
∂
∂

⋅
∂
∂

2y
i

i

q
q
T' ( ) ( ){ }3434 ,0, xxzzVi −−−•p  

Page 159



 

 
Parameter z2 

=
∂

∂

∂
∂

2

'
z

jij
i

p
G

p
S

( ) ( )[ ] ( ) ( )[ ]{ }

i

i

ij
xxxxyyyyV

w
q

G 0,, 21232123 −+−−−−−
 

=
∂

∂

∂
∂

2z
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

xxyyV
w

G
p

0,, 3434 −−−  

=
∂
∂

⋅
∂
∂

2

'
z

i

i

w
w
S

100

321

321

−
qqq
ppp

 

=
∂

∂

∂
∂

2

'
z

jij
i

p
G

p
T ( ) ( )[ ] ( ) ( )[ ]{ } i

ij
xxxxyyyyV qG •−+−−−−− 0,, 21232123  

=
∂
∂

⋅
∂
∂

2z
i

i

q
q
T' ( ) ( ){ }0,, 3434 xxyyVi −−−•p  

 
Atom 3 
 
Parameter x3 
 

=
∂

∂

∂
∂

3

'
x

jij
i

p
G

p
S

( ) ( )[ ]{ }

i

i

ij
yyzzV

w
q

G 2121 ,,0 −−−
 

=
∂

∂

∂
∂

3x
jij

i

q
G

q
S' ( ) ( )[ ] ( ) ( )[ ]{ }

i

ij

i

yyyyzzzzV
w

G
p

34232334 ,,0 −−−−−+−  

=
∂
∂

⋅
∂
∂

3

'
x

i

i

w
w
S

001

321

321

qqq
ppp

 

=
∂

∂

∂
∂

3

'
x

jij
i

p
G

p
T ( ) ( )[ ]{ } i

ij
yyzzV qG •−−− 2121 ,,0  

=
∂
∂

⋅
∂
∂

3x
i

i

q
q
T' ( ) ( )[ ] ( ) ( )[ ]{ }34232334 ,,0 yyyyzzzzVi −−−−−+−•p  

 
Parameter y3 

=
∂

∂

∂
∂

3

'
y

jij
i

p
G

p
S

( ) ( ){ }

i

i

ij
xxzzV

w
q

G 2121 ,0, −−−
 

Page 160



 

=
∂

∂

∂
∂

3y
jij

i

q
G

q
S' ( ) ( )[ ] ( ) ( )[ ]{ }

i

ij

i

xxxxzzzzV
w

G
p

23343423 ,0, −+−−−−−  

=
∂
∂

⋅
∂
∂

3

'
y

i

i

w
w
S

010

321

321

qqq
ppp

 

=
∂

∂

∂
∂

3

'
y

jij
i

p
G

p
T ( ) ( ){ } i

ij
xxzzV qG •−−− 2121 ,0,  

=
∂
∂

⋅
∂
∂

3y
i

i

q
q
T' ( ) ( )[ ] ( ) ( )[ ]{ }23343423 ,0, xxxxzzzzVi −+−−−−−•p  

 
Parameter z3 

=
∂

∂

∂
∂

3

'
z

jij
i

p
G

p
S

( ) ( ){ }

i

i

ij
xxyyV

w
q

G 0,, 2121 −−−
 

=
∂

∂

∂
∂

3z
jij

i

q
G

q
S' ( ) ( )[ ] ( ) ( )[ ]{ }

i

ij

i

xxxxyyyyV
w

G
p

0,, 34232334 −−−−−+−  

=
∂
∂

⋅
∂
∂

3

'
z

i

i

w
w
S

100

321

321

qqq
ppp

 

=
∂

∂

∂
∂

3

'
z

jij
i

p
G

p
T ( ) ( ){ } i

ij
xxyyV qG •−−− 0,, 2121  

=
∂
∂

⋅
∂
∂

3z
i

i

q
q
T' ( ) ( )[ ] ( ) ( )[ ]{ }0,, 34232334 xxxxyyyyVi −−−−−+−•p  

 
Atom 4 
 
Parameter x4 

0'

4

=
∂

∂

∂
∂

x
jij

i

p
G

p
S  

=
∂

∂

∂
∂

4x
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

yyzzV
w

G
p

2323 ,,0 −−−  

0'

4

=
∂
∂

⋅
∂
∂

x

i

i

w
w
S  

0'

4

=
∂

∂

∂
∂

x
jij

i

p
G

p
T  

=
∂
∂

⋅
∂
∂

4x
i

i

q
q
T' ( ) ( ){ }2323 ,,0 yyzzVi −−−•p  

 

Page 161



 

Parameter y4 

0'

4

=
∂

∂

∂
∂

y
jij

i

p
G

p
S  

=
∂

∂

∂
∂

4y
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

xxzzV
w

G
p

2323 ,0, −−−  

0'

4

=
∂
∂

⋅
∂
∂

y

i

i

w
w
S  

0'

4

=
∂

∂

∂
∂

y
jij

i

p
G

p
T  

=
∂
∂

⋅
∂
∂

4y
i

i

q
q
T' ( ) ( ){ }2323 ,0, xxzzVi −−−•p  

 
Parameter z4 

0'

4

=
∂

∂

∂
∂

z
jij

i

p
G

p
S  

=
∂

∂

∂
∂

4z
jij

i

q
G

q
S' ( ) ( ){ }

i

ij

i

xxyyV
w

G
p

0,, 2323 −−−  

0'

4

=
∂
∂

⋅
∂
∂

z

i

i

w
w
S  

0'

4

=
∂

∂

∂
∂

z
jij

i

p
G

p
T  

=
∂
∂

⋅
∂
∂

4z
i

i

q
q
T' ( ) ( ){ }0,, 2323 xxyyVi −−−•p  

 
 

XIII. Planarity restraint 
 
 

We define the least-squares plane the best plane through a group of atoms A, B, C,….The positions of the 
atoms (A, B,C,…) are represented by rn =(xn,yn,zn) (n = 1,2,3,…) and we want minimize the sum of the 
distances to the best plane.  
 

 

Page 162



 

( )
( )
( )

( )nnnn zyx

zyx
zyx

zyx

,,
...........

,,
,,

,,

3333

222

111

=

=
=
=

r

r
r
r

2

1

 

The equation of the best fitting plane is: 
0=+++ dczbyax  

The distances of the atoms by the plane are: 

nnnn ddczbyax

ddczbyax
ddczbyax

ddczbyax

=+++

=+++
=+++

=+++

...........
3333

2222

1111

 

We calculate the derivative of dj with respect to rj .  
( )

j

jjj

j

j

r
dczbyax

r
d

∂

+++∂
=

∂

∂
 

 
The derivatives with respect to the coordinates x,y,z of the atoms are:  
Atomo j 

c
z
d

b
y
d

a
x
d

j

j

j

j

j

j

=
∂

∂

=
∂

∂

=
∂

∂

 

 

Page 163



 

 
XIV. Sum restraint 

 
 

We want to keep constant the sum of the values of a parameter of some atoms. For example, in the space 
groups with floating origin along z-axis we keep constant the sum of the z coordinates of all the atoms.  

Kzzzz n =++++ ...321  
 
The derivative of K with respect to zj is:  
 

( )
1

...321 =
∂

++++∂
=

∂
∂

j

n

j z
zzzz

z
K  

 
 

XV. Excessive shifts restraint 
 
 

We want to impose limits against excessive shifts increasing the diagonal element of the normal matrix 
for the atomic parameter p. If σ is the maximum permissible breadth for the shift from the current value 
for this parameter, we can write: 

( )
2

2
0

σ
pp

M
−

=  

where p0 is the former value of the parameter. The derivative of M with respect to p is: 
 

2

1
σ

=
∂
∂

p
M  

 
XVI. References 

 
Andreev, Y.G., Lightfoot, P. & Bruce, P.G. J. Appl. Cryst. (1997), 30, 294-305. 

Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., 
Polidori, G. & Spagna, R. J. Appl. Cryst. (2005), 38, 381-388. 

Cruickshank, D.W. J. (1965), Computing Methods in Crystallography, pp. 112-116. Oxford: Pergamon 
Press. 

Flack, H. D. Acta Cryst. (1983), A39, 876-881. 

Giacovazzo, C. (2002), Fundamentals of Crystallography, 2nd edn. Oxford: Oxford University Press. 

Herbest-Irmer, R. & Sheldrick, G. M. Acta Cryst.(1998), B54, 443-449. 

Larson, A.C. (1969) Crystallographic Computing, pp. 291-294. Copenhagen: Munksgaard. 

Schwarzenbach, D., Abrahams, S. C., Flack, H.D., Gonshorek, W., Hahn, T., Huml, K., Marsh, R., E., 
Prince, E., Robertson, B. E., Rollett, J.S. & Wilson, A.J.C. Acta Cryst. (1989), A45, 63-75. 

Sheldrick, G.M. (1997), SHELXL97. Program for the Refinement of Crystal Structures. University of 
Goettingen, Germany. 

Spagna, R. & Camalli, M. J. Appl. Cryst. (1999), 32, 934-942. 

Yeates, T. O. Methods in Enzymology (1997), 276, 344-358. 

Page 164



 

 
 

Call for Contributions to the Next CompComm Newsletter 
 

The eigth issue of the Compcomm Newsletter is expected to appear around November of 2007 with the 
primary theme to be determined.  If no-one is else is co-opted, the newsletter will be edited by Lachlan 
Cranswick. 
 
Contributions would be also greatly appreciated on matters of general interest to the crystallographic 
computing community, e.g. meeting reports, future meetings, developments in software, algorithms, 
coding, historical articles, programming languages, techniques and other news.  
 
Please send articles and suggestions directly to the editor. 
 
Lachlan M. D. Cranswick 
Canadian Neutron Beam Centre (CNBC), 
National Research Council of Canada (NRC), 
Building 459, Station 18, Chalk River Laboratories, 
Chalk River, Ontario, Canada, K0J 1J0 
Tel: (613) 584-8811 ext: 3719 
Fax: (613) 584-4040 
E-mail: lachlan.cranswick@nrc.gc.ca  
WWW: http://neutron.nrc-cnrc.gc.ca/peep_e.html#cranswick  
 

Page 165

mailto:lachlan.cranswick@nrc.gc.ca�
http://neutron.nrc-cnrc.gc.ca/peep_e.html#cranswick�



