
Table of Contents (page 1 of 2)
(Notes collated by Lachlan Cranswick)

(Warning – unless you want to kill 323 pages worth of forest – DO NOT press the “print” button. For hardcopies – you may
like to only print out the articles of personal interest.)

CompComm chairman’s message, Ton Spek 3

Newsletter No. 6, Lachlan Cranswick 3

IUCr Commission on Crystallographic Computing 4

Participants of the IUCr Computing School, Certosa
di Pontignano, University of Siena, Tuscany, Italy,
Thursday 18th - Tuesday 23rd August 2005. 5

Siena 2005 IUCr Computing School Talk Notes :

Introductory talk 6
Ton Spek

Porting between Operating Systems 12
Harry Powell

Modern approaches to programming 18
Ralf Grosse-Kunstleve

Using available tools 23
Louis Farrugia

Scripting languages / Spectrum of languages 30
Ralf Grosse-Kunstleve

Legacy Codes. Do They Have Any Value? 32
David Watkin

Complete rewrites. When, why, and how? 47
James W. Pflugrath

Coordinate systems, operators, and
transformations 52
Kevin Cowtan

"New" algorithms 60
Tom Terwilliger

Connecting programs together 67
Louis Farrugia

Program Suites 71
Harry Powell

GUI Design 76
Brian H. Toby

Automated data collection and integration 82
Rob Hooft

Operating Hardware 95
Rob Hooft

Integration of 2D diffraction images 100
James W. Pflugrath

Atomic pair distribution function (PDF)
analysis: What, When, Why, How? 107
Simon J.L. Billinge

Dealing with overlapped data 116
Bill David

Programming the Science of Crystallography 122
Ton Spek

Simple algorithms for macromolecular phasing 129
George M. Sheldrick

Automation of structure determination 133
Tom Terwilliger

Crystallographic Symmetry in Real and
Reciprocal Space 140
Kevin Cowtan

Profile refinement Least-squares analysis and
beyond 147
Bill David

Fourier Transforms in Crystallography 156
Lynn ten Eyck

Maximum Likelihood in X-ray Crystallography 160
Kevin Cowtan

Overview of Crystallographic Structure
Refinement 166
Lynn ten Eyck

Commission on Crystallographic Computing
International Union of Crystallography

http://www.iucr.org/iucr-top/comm/ccom/
Newsletter No. 6, September 2005

This issue:
"Talk notes from the IUCr Computing School,

Siena, Italy, 18th to 23rd August 2005"
http://www.iucr.org/iucr-top/comm/ccom/newsletters/

Refinement II - Modern Developments 168
Dale E. Tronrud

CCP14 workshop Notes: On Minimization
Targets and Algorithms 171
Dale E. Tronrud

Computational aspects of the Rietveld Method 176
Juan Rodríguez-Carvajal

Statistical Treatment of Uncertainties 183
Dale E. Tronrud

Programming pdCIF and Rietveld 187
Brian H. Toby

Structure Comparison, Analysis and Validation 194
Ton Spek

Testing software 202
Harry Powell

The future of direct methods 206
George M. Sheldrick

Siena 2005 IUCr Computing School Tutorials :

Using the Clipper libraries 210
Kevin Cowtan

Exercises in map manipulation 220
Kevin Cowtan

Reciprocal Space Tutorial (RST) 224
George M. Sheldrick

Fortran 77 solution to GMS RST 229
George M. Sheldrick

C++ solution to GMS RST 232
Tim Gruene

C++ solution to GMS RST 239
Michel Fodje

Fortran 95 solution to GMS RST 247
Juan Rodríguez-Carvajal

Java solution to GMS RST 252
Bradley Smith

Fortran solution to GMS RST 258
Stephan Ruehl

Initial Python solution to GMS RST 269
Ralf W. Grosse-Kunstleve

Slightly Enhanced Python solution to GMS RST 270
Ralf W. Grosse-Kunstleve

CrysFML: A crystallographic library in modern
Fortran 271
Juan Rodríguez-Carvajal

Connecting to hardware 280
Rob Hooft

Tcl/Tk demo 286
Brian Toby

CCTBX Unit Cell Refinement Tutorial 292
Ralf W. Grosse-Kunstleve

CCTBX Direct Methods Tutorial 303
Ralf W. Grosse-Kunstleve

CCTBX Central Types 317
Ralf W. Grosse-Kunstleve

Tutorial on scoring methods for evaluation of
electron density maps 318
Tom Terwilliger

Calls for contributions to Newsletter No. 7 323

Page 2

CompComm Chairman’s Message
This newsletter makes the presentations available to a wider audience of the lectures given at the IUCr
Crystallographic Computing School 2005 in Siena, prior to the Florence 2005 IUCr congress. This
breaks with a tradition of the past where, based on the material presented, a very expensive book was
produced with rather limited distribution. We hope that the current approach that we have choosen for
the distribution of the lecture material fits more in our 'Google-age', where a lot of information is now
looked for on the WEB.

One of the implicit themes during this meeting was the software language to be used for future software
development. Traditionally, Fortran in its various incarnations was the default language. A large number
of programs that are in use today are written in that language (e.g. the SHELX suite). Fortran could still
be the language of choice today for scientific computing in view of its simplicity and efficiency.
However, computing science has now moved to C-type and scripting languages, of which C++ and
Python are currently the most popular respectively. A large number of libraries for graphical user
interfaces are currently available for those languages. C++ will be the de-facto language of the future,
notwithstanding its sharp learning curve. Interestingly, George Sheldrick (one of the lecturers and a
longstanding Fortran addict like me) has now taught himself C++ as an outcome of this very successfull
school.

I would like to thank the speakers again for all the work they did to prepare their presentations, the
sponsors for their financial support, my co-organisers, the University of Siena for making available an
excellent meeting site and Prof. Marcello Mellini for making it all work locally.

Ton Spek, Chairman of the IUCR computing school and IUCr Computing Commission,
(a.l.spek@chem.uu.nl)

Newsletter No. 6
This newsletter collates the notes from the Siena 2005 IUCr Crystallographic Computing School. The
individual files are located on the school webpage at:

http://www.iucr.org/iucr-top/comm/ccom/siena2005/notes.html

The next edition of the newsletter is expected to get back to the usual format with an intended theme
involving “Minimisation” algorithms for indexing, structure solution and refinement. It should hopefully
appear around April 2006.

Lachlan Cranswick,
(lachlan.cranswick@nrc.gc.ca)

Page 3

THE IUCR COMMISSION ON CRYSTALLOGRAPHIC COMPUTING - TRIENNIUM 2005-2008

Chairman: Professor Dr. Anthony L. Spek
Director of National Single Crystal Service Facility,
Utrecht University,
H.R. Kruytgebouw, N-801,
Padualaan 8, 3584 CH Utrecht,
the Netherlands.
Tel: +31-30-2532538
Fax: +31-30-2533940
E-mail: a.l.spek@chem.uu.nl
WWW: http://www.cryst.chem.uu.nl/spea.html

Lachlan M. D. Cranswick
Canadian Neutron Beam Centre (CNBC),
National Research Council (NRC),
Building 459, Station 18, Chalk River Laboratories,
Chalk River, Ontario, Canada, K0J 1J0
Tel: (613) 584-8811 ext: 3719
Fax: (613) 584-4040
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

Dr Ralf W. Grosse-Kunstleve
Lawrence Berkeley National Laboratory
One Cyclotron Road, BLDG 64R0121,
Berkeley, California, 94720-8118, USA.
Tel: (510) 486-5929
Fax: (510) 486-5909
E-mail: RWGrosse-Kunstleve@lbl.gov
WWW: http://cci.lbl.gov/

Professor Alessandro Gualtieri
Università di Modena e Reggio Emilia,
Dipartimento di Scienze della Terra,
Via S.Eufemia, 19,
41100 Modena, Italy
Tel: +39-059-2055810
Fax: +39-059-2055887
E-mail: alex@unimore.it
WWW: http://www.terra.unimo.it/mineralogia/gualtieri.html

Professor Luhua Lai
Institute of Physical Chemistry,
Peking University,
Beijing 100871,
China.
Fax: +86-10-62751725.
E-mail: lhlai@pku.edu.cn
WWW: http://mdl.ipc.pku.edu.cn/

Dr Airlie McCoy
Structural Medicine,
Cambridge Institute for Medical Research (CIMR),
Wellcome Trust/MRC Building,
Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
Tel: +44 (0) 1223 217124
Fax: +44 (0) 1223 217017
E-mail: ajm201@cam.ac.uk
WWW: http://www-structmed.cimr.cam.ac.uk/

Professor Atsushi Nakagawa
Research Center for Structural and Functional Proteomics,
Institute for Protein Research,
Osaka University,
3-2 Yamadaoka, Suita,
Osaka, 565-0871, Japan
Tel: +81-(0)6-6879-4313
Fax: +81-(0)6-6879-4313
E-mail: atsushi@protein.osaka-u.ac.jp
WWW: http://www.protein.osaka-u.ac.jp/

Dr. Simon Parsons
School of Chemistry, University of Edinburgh
Joseph Black Building, West Mains Road,
Edinburgh, Scotland EH9 3JJ, UK
Tel: +44 131 650 5804
Fax: +44 131 650 4743
E-mail: s.parsons@ed.ac.uk
WWW: http://www.chem.ed.ac.uk/staff/parsons.html

Dr Harry Powell
MRC Laboratory of Molecular Biology,
Hills Road, Cambridge, CB2 2QH, UK.
Tel: +44 (0) 1223 248011
Fax: +44 (0) 1223 213556
E-mail: harry@mrc-lmb.cam.ac.uk
WWW: http://www.mrc-lmb.cam.ac.uk/harry/

Consultants

Professor I. David Brown
Brockhouse Institute for Materials Research,
McMaster University, Hamilton, Ontario, Canada
Tel: 1-(905)-525-9140 ext 24710
Fax: 1-(905)-521-2773
E-mail: idbrown@mcmaster.ca
WWW: http://www.physics.mcmaster.ca/people/faculty/Brown_ID_h.html

Professor Eleanor Dodson
York Structural Biology Laboratory,
Department Of Chemistry,
University of York, Heslington,
York, YO10 5YW, UK
Tel: +44 (1904) 328253
Fax: +44 1904 328266
E-mail: e.dodson@ysbl.york.ac.uk
WWW: http://www.ysbl.york.ac.uk/people/6.htm

Dr David Watkin
Chemical Crystallography, Department of Chemistry,
University of Oxford, Chemistry Research Laboratory,
Mansfield Road,
Oxford, OX1 3TA, UK
Tel: +44 (0) 1865 285019
Fax: +44 (0) 1865 285021
E-mail: david.watkin@chemistry.oxford.ac.uk
WWW: http://www.chem.ox.ac.uk/researchguide/djwatkin.html

Page 4

Participants of the IUCr Computing School, Certosa di Pontignano,
University of Siena, Tuscany, Italy, Thursday 18th - Tuesday 23rd August

2005.

Organisers: Ton Spek, Marcello Mellini, Alessandro Gualtieri, Harry Powell, Lachlan Cranswick
Consultants: Simon Parsons, David Watkin

IUCr Representative: Davide Viterbo

Lecturers: Simon Billinge, Kevin Cowtan, Bill David, Louis Farrugia, Ralf Grosse-Kunstleve, Rob
Hooft, James Pfugrath, Harry Powell, Juan Rodríguez-Carvajal, George Sheldrick, Ton Spek, Lynn ten
Eyck, Tom Terwilliger, Brian Toby, Dale Tronrud, David Watkin

Registrants: Priyamvada Acharya, Sandor Brockhauser, Jeppe Christensen, Jeremy Cockcroft, Fabio
Dall'Antonia, Paul Emsley, ZhenJie Feng, Laura Roces Fernández, Laura Torre Fernández, Marc
Fleurant, Michel Fodje, Frantisek Frantisek, Nicholas Furnham, Roni Gordon, Tim Gruene, Carmen
Guguta, Ilia Guzei, Svetlana Ivashevskaya, Soorya N Kabekkodu, Huub Kooijman, Gert J. Kruger,
Maciej Kubicki, Martin Lutz, Yvonne P. Mascarenhas, Ernesto Mesto, Alexander Nazarenko, Steven
Ness, Aritra Pal, Pryank Patel, Simon Parsons, Mike Probert, Cristy Leonor Azanza Ricardo, Stephan
Ruehl, Irakli Sikharulidze, Pavol Skubak, Alexander B. Smith, Bradley Smith, Margareta Sorenson,
Richard Stephenson, Gudrun Stranzl, Pavel Teslenko, Michael Turner, Peter Turner, Marco Voltolini,
Marcin Wojdyr, Pete Wood, Jon Wright, Xinyi Xian,

Accompanying Persons: Linda ten Eyck, Aviva Pelt, Katherine Sheldrick

Sponsors:
Università di Siena

MAX-INF2
Merck & Co., Inc. - USA

Bruker AXS
Cambridge Crystallographic Data Centre (CCDC)

CCP4 - Collaborative Computing Project Number 4 in Protein Crystallography
Oxford Diffraction

Rigaku/MSC
International Union of Crystallography (IUCr)

Page 5

INTRODUCTORY TALK

Ton Spek
National Single Crystal Service

Facility
Utrecht University

Some History
• On crystallographic computing from the perspective of a

small-molecule crystallographer who started to work in
crystallography in the mid 60’s at Utrecht University, The
Netherlands.

• Many of the older software developers, like me, have a
background in Direct Methods. Mine started as follows:

• As a student, I was given a colorless crystal of unknown
composition with the assignment to determine its structure
using X-ray techniques only. It took me more than ½ a
year to determine that it was methoxyglutaconic acid.

• Today, 40 years later, a problem like this is solved in a
matter of seconds on my notebook, but not in those days.

Not so 40 Years ago
• The crystallography group in Utrecht already had a tradition in Direct

Methods (Paul Beurskens, one of the first authors implementing the
Symbolic Addition Method). However, none of the locally available
programs gave an interpretable hand-contoured map.

• So I ended up with developing my own Symbolic Addition program,
AUDICE, for centro-symmetric structures.

• AUDICE was locally rather successful since it also solved all other
notoriously ‘unsolvable structures’ hanging around in the lab.

• Major calculations and program testing were done once a week during
the ‘nightshift’, not ‘overnight’, on the Utrecht University mainframe.
(A major social event in those days in view of the presence of most
group members between 6PM and 8 AM the next morning)

~1966, Electrologica X8 ALGOL60 ‘Mainframe’ (<1MHz)

16kW

Flexowriter for the creation and editing of programs and data

Times and Mainframe Changed

• MULTAN (FORTRAN/PUNCHCARD) came and
replaced my Direct Methods program AUDICE
(ALGOL60/Papertape) in the early 70’s, when the single
user university computer was replaced by a real multiuser
mainframe (CDC6400).

• MULTAN was superseded in the 80’s by the even more
powerful SHELXS, SIR & DIRDIF software.

• No big improvements in small molecule DM since then ?
• In the 90’s S&B, SHELXD entered the field, coming down

from Macro-crystallography.

Page 6

Direct Methods Meetings
• Many past meetings and schools were organized with

Direct Methods (software and theory) as a major subject.
• Important one’s were the CECAM workshops on Direct

Methods (5 weeks!, bringing together people working in
the field to work on current issues) in the early 70’s in
Orsay around a big IBM-360 with lectures by Hauptman.

• Launch of MULTAN, many personal contacts – Viterbo
• NATO schools on Direct Methods in Parma and York in

the 70’s.
• Direct Methods schools in Erice in 1974 & 1978.
• Photo of the participants of the 1978 Erice School next :

Direct Methods Now

• Direct Methods appear to be currently no longer a major
topic at meetings.

• Some years ago there was a morning lecture by Herbert
Hauptman with the message that the tangent formula was
what really mattered. That afternoon there was as lecture
by Carmello Giacovazzo with the message that there was
no need for the tangent formula…

• George Sheldrick will give us his perspective on ‘The
Future of Direct Methods’ at the end of this meeting.

IUCr Computing Schools
• ….. Mostly held jointly with IUCr Assemblies – Examples
• 1963 – Rollett, Algorithms (black book)
• 1969 - Least-Squares & Absorption Correction (SHELX76 - code)
• 1978 - Program systems (SHELX, XTAL, NRCVAX etc.)
• 1996 - Macro-crystallography
• 1999 - Macro-crystallography
• 2002 – (None)
• 2005 - Siena (again: Small, Macro, Powder)

• Photo 1978 school in Enschede (Netherlands)

Motivations for this Crystallographic
Computing School

• A general feeling within at least the small-molecule community:
‘The current generation of software developers is phasing out, where is
the new generation to keep things running in the future’

• There exists a growing community of push-button users
(What is not behind a button can not be done…)

• Major funding and software development is currently in macro
crystallography
(possible useful spin-off to the small-molecule world)

• It is sensed that things well known in the small-molecule world are
reinvented in the macro world and presented as new.

• Black Box and Proprietary Software as opposed to Open Source.
(lack of info about the algorithms used and options to modify)

Page 7

Hardware Platforms

• MS-Windows:
Small-Molecule Crystallography
Powder crystallography

• UNIX/LINUX/(OSX):
Macro Crystallography
(Small-Molecule Crystallography)

Software Languages
• Crystallographic software has been written in machine language,

assembly language, algol60, (turbo)basic, (turbo)pascal, Fortran, C,
C++ and various scripting languages such as python

• ‘Stone-age’ Fortran based software is still ubiquitous in the small-
molecule world (ORTEP, SHELX, CRYSTALS, PLATON etc.)

• New (commercial) software development mainly in C++ and scripting
languages.

• A project just started in the UK to Rethink & Rewrite old Fortran
based software to C++ (Durham, Oxford project).

• Old software saved in ‘The Crystallographic Source Code Museum’ by
Armal LeBail, supposedly interesting to look for useful algorithms.

SHELX76-STYLE FORTRAN

Alternative Algorithms for the
Implementation of the same Task

• Tasks can usually be programmed in a variety of ways
with widely ranging claims on memory and CPU
resources.

• It is important to know the actual application to make the
relevant decisions.

• Following is a simple, though somewhat extreme, example
from the 1960’s where a theoretical idea in Direct Methods
was given to a professional programmer to implement.

• The final program was nicely written and documented.
• However, the calculation didn’t terminate within hours

even for a trivial application ….(my mystery structure)

Page 8

H
K

H+K

L

Problem from Symbolic Addition Method

P+ for triple H,K,H+K depends on

|E(H)E(K)E(H+K)|

‘Correlation Method’ Improved P+

on the basis of P+ of three adjacent triples

|E(H)E(L)E(H+L)|

|E(K)E(L-K)E(L)|

|E(H+K)E(L-K)E(H+L)|

I.e. Strengthening of P+(|E(H)E(K)E(H+K)|

when in addition E(H+L),E(L-K),E(L) strong

(Note: Theoretically formalized in terms of
neighbourhoods, Hauptman)

Two Implementations

• Implementation I: (Professional Programmer)
1 - Search and store all triple products found with E >
E(min)
2 - Find from this list quartets of triples forming a
tetrahedron
Problem with 1: The number of triplets explodes with
increasing size of the structure at hand and so memory
requirements (limited to 16kW in those days)
Problem with 2: Multiple nested loops with large range

H
K

H+K

L

Implementation II (by Young Student)

Generate ‘correlations’ on the fly during
triple relation search by looping with L
with E(L) > E(min) and testing for large
E(L-K) and E(H+L).

Result: Completion of the search in
minutes rather than hours.

Numerical Recipes

• An excellent and rich source of numerical
routines for sorting, optimisation, FFT etc.
with associated background is the book
Numerical Recipes by W.H. Press et al.,
that has separate Fortran and C versions

Numerical Recipe Example

• A very nice routine from NR is code with
the name ‘FOURN.FOR’.

• Forward and Backward FFT in N
dimensions.

• In our crystallographic application: N = 3
• Code = 69 Fortran lines ! Next ….

Page 9

Application of FOURN.FOR

• Ab Initio structure solution by charge flipping
• See G.Oszlanyi & A. Suto, (2004) Acta Cryst A60,134.
• Procedure: cycle between reciprocal space to direct space

and back after modification of the density map until
convergence using forward and backward FFT.

So, No More D.M. ?

• Preliminary results on real structures,
including incommensurate structures look
interesting.

• There will be a lecture on this in Florence
(MS20).

• Faster FFT: (Free C-library) FFTW
However, with greater implementation and
portability complexities.

Other Computing Areas

• Powder (indexing, solution, refinement)
• RDF (Billinge)
• Macro Xtal (Phasing, Building,

Refinement)
• Charge Density Studies (XD)
• Least Squares and other optimisation

techniques.

Other Computing Areas

• Incommensurate Structures (solution,
refinement) (Keynote lecture by Petricek in
Florence).

• Graphics (GUI’s and presentation)
• Data collection and data reduction.
• Databases, Structure analysis and

Validation

The Program of the School

• There has been some discussion in the program
commission on whether there should be two
largely parallel sessions in view of a perceived
growing diversion of interest.

• Eventually this path was not pursued, resulting in
the current program that involves a mix of small-
molecule, macro-molecule and powder interests.

• This format should provide a fruitful platform to
pick up and discuss ideas from each others field.

The Program of the School

• Lecturers were asked to focus on software development
and internals rather than presenting the latest science or
user instruction to their software.

• Not a school to learn basic programming.
• An introduction to current software development

techniques (scripting languages, toolboxes etc.)
• Hands-on projects and workshops on personal notebooks.
• Bringing together representatives of the older and a next

generation interested in software development.

Page 10

Thanks to our Sponsors !

• Bruker-Nonius AXS
• Cambridge Crystallographic Data Center
• CCP4
• IUCr
• Max-Inf2
• Merck & Co., Inc, USA
• Oxford Diffraction
• Rigaku/MSC
• Universita degli Studi di Siena

Page 11

Porting between Operating Systems

or

how to increase your customer base

Harry Powell MRC-LMB

Why bother to port (doesn’t everyone use MS-Windows)?

- support a wider community (some people use other
platforms) - more people will use your software

- future proofing (remember DEC VAX or PDP-11? or IBM
370/168?)

- leads to more standard code (which should be more
maintainable)

Which platforms/operating systems to port to? This depends
on:

- who you want to use your software (most important)
- what hardware you have available for building/testing

Serious developers will usually have access to:
• PC / Linux (no excuse for not having it!)
• PC / MS-Windows (probably)
• Mac / OS X (becoming more popular)
• SGI / Irix (historically important)
• Alpha / Tru64 (historically important)
• Sun /Solaris or SunOS (niche product in crystallography)
• HP-UX (niche product in crystallography)

Three basic types of porting;

1. existing software
2. new graphical interfaces
3. functionality

Porting existing software

Porting Existing Software

Assumption that a complete re-write is not
necessary/appropriate/desired

Reasons include:
this program is
• mature;
• does its job;
• will not be developed much further;
• enormous (any re-write will take many man-years &

introduce many bugs)
• obsolescent (i.e. it will be rewritten when time permits)

Page 12

Porting Existing Software

Used to be expensive/difficult - only readily available compilers
were commercial and tied to a platform, had useful platform
dependent features (e.g. VAX FORTRAN)

Now platforms exist which have a “free” development
environment (e.g. Linux, Mac OS X, Cygwin/MinGW)

“Free” compilers which adhere to the standards now exist
(gcc/g77 for most platforms, Salford FTN77 for MS-
Windows, icc/ifc for Intel Linux)

Porting Existing Software

Why use a commercial compiler?
• “You get what you pay for”

• user support
• often better optimization (for specific platforms)
• good development environments (e.g. Visual Studio)
• your institution/company may already have paid for and

own a licence

Porting Existing Software

Why use a “free” compiler?
• low initial cost
• modern ones often produce executables about as fast as

commercial ones
• same compiler across multiple platforms
• readily available cross compilers (build on Linux, run on

Windows - or vice versa)
• good development environments (e.g. XEmacs)

but - you get what you pay for, so it can be buggy - e.g. gcc 2.96
distributed with Red Hat Linux should never have been
released

Porting from MS-Windows to other systems

• need a system to build on
• need a system to test on

Possible to cross-develop on MS-Windows but the target
windowing system will be different.

Two easy routes -
1. install Linux and dual boot (best environment)
2. install Cygwin (easiest since you can run MS-Windows

simultaneously)

Each of these provides a fully-featured windowed environment
via X11 windows, but Cygwin will produce MS-Windows
executables unless you cross-compile!

Page 13

Porting from any UNIX to other systems

• “easy” if the other system is UNIX-based
• can be an opportunity to modularize functionality
• for MS-Windows need a system (probably not a problem for

most people):

Choices:
• MinGW (Minimalist GNU for Windows), provides

compilation tools under Windows
• Cygwin; easy to migrate a UNIX build (essentially

identical to Linux on PC)
• Cross-compilers; build under system A, run on system

B.

Problems with porting (1):

It will probably identify bugs in your code (some “strict”
compilers are stricter than others):

WRITE(*,*),’hello world’

compiles as expected with f77 on Tru64 UNIX, g77 on Linux &
MacOS, but not with xlf on MacOS.

WRITE(*,*)’hello world’;

compiles as expected with f77 on Tru64 UNIX, g77 on Linux &
MacOS, xlf on MacOS, but not on Irix with f77 (because it's
actually f90).

Problems with porting (2):

May identify bugs in compilers - e.g. file “break.f” contains the
following:

CHARACTER*2 TEST(2)
CHARACTER*1 JUNK
JUNK = 'O'
WRITE(TEST,FMT=1000)JUNK

1000 FORMAT(A)
END

[g4-15:~/programs] harry% gfortran -c break.f
break.f: In function 'MAIN__':
break.f:3: internal compiler error: Bus error
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://gcc.gnu.org/bugs.html> for instructions.

This can lead to a new career in compiler development!

Problems with porting (3):

If you can't distribute static binaries, your customer's computers
are probably missing vital libraries, shared objects, and
other bits and pieces necessary to run your code which you

(a) didn't think were necessary
(b) assumed were ubiquitous
(c) hadn't even thought about

They might be there, but are from an older/newer version of the
operating system and are therefore incompatible.

Problems with porting (4):

You may feel that months of work may be wasted when a
manufacturer makes a major change to its hardware or
operating system, e.g.

Apple - OS X made all previous Apple software obsolete

Apple - change of processor from PowerPC to Intel makes
xlc/xlf compiler specific work obsolete.

Problems with porting (5):

Porting to (and from) MS-Windows is probably the most
difficult step because of its unique environment; all other
popular platforms share a similar operating system and have
available a similar windowing system.

For example, identical code for Mosflm* (150,000 lines of
Fortran, 100,000 lines of C, + 80,000 lines of graphics
library) builds using the same commands on all UNIX
boxes, but without tools like Cygwin requires a major
restructuring for MS-Windows.

* a popular data integration program

Page 14

new graphical interfaces

Command-line interfaces - old-fashioned but generally
straightforward; however, MS-Windows users won't like it!

Graphical interfaces - need to distinguish between

• windowing environment - most platform dependent
• MS-Windows - tied to Windows PCs
• Aqua - tied to Macintosh
• X11 - can be used on anything it’s been ported to

• interface utilities -
• Tk (Tcl/Tk, Tkinter, ...)
• wxWidgets (was wxWindows), Qt, Clearwin...
• browser applets

For portability we need the utility to have been ported to the
environment (or the environment to have been ported to the
platform)

The current Mosflm approach to a GUI -

1. uses a custom-built (obsolete) X11 widget set - xdl_view
2. compile to create a monolithic program

Pros:
• distribution of the executable is easy (no need for extra libraries

for the GUI)
• familiar widget set (for the programmer, anyway)

Cons:
• development of both Mosflm and the GUI are intimately linked
• “hard” to port to OS’s without an X-server
• xdl_view can behave subtly differently on different OS’s -

relied on some benign features of compilers

The new Mosflm approach to a GUI;

1. core crystallographic functions (controlled by command line
instructions)

2. A Tcl/Tk GUI which reads XML and writes native Mosflm
commands

3. the two parts communicate via TCP/IP sockets

Pros:
• Mosflm can be run on any platform independently of the

GUI
• development of both Mosflm and the GUI can proceed

semi-independently

Portable interface utilities 1 - Tcl/Tk

mature but losing popularity; development in some important
modules is almost non-existent (e.g. incrTcl).

Installation of Tcl/Tk based programs may require additional
packages to be installed (e.g. TkImg), but some are not
available for all platforms (e.g. BLT is not available for
Aqua).

Tkinter is Python's de facto standard GUI package. It is a thin
object-oriented layer on top of Tcl/Tk.

can interface with compiled code via 4 basic routes -

1. embed compiled code into Tcl/Tk script
2. run external programs directly from the script
3. read from & write to a file
4. read from & write to a TCP/IP socket

Page 15

Portable interface utilities 2 - wxWidgets

Set of C++ class libraries
Main differences from Tcl/Tk:
• encourages an object oriented approach
• the GUI can be compiled so that the programming details

can be hidden from the user; also this can give a
performance advantage, especially for interactive graphics.

Gives a native look and feel on different platforms, usable with
any common C++

wxPython is “a blending of wxWidgets with Python” - used in
PHENIX

A popular small molecule
program running on Windows and
Linux

Porting functionality

Could be viewed as a new project - coding from scratch -
probably best to use new languages (C++, Python, Java)
rather than established languages.

What you use depends on the application to some extent, e.g.
web applications - Java
heavyweight applications - C++
prototyping - Python

If you have a free choice at this point, development can be faster
and portable features can be designed in.

Why not just use FORTRAN?

- fast executables with little effort
- many applications/libraries available
- well-established amongst senior scientists
- F90, 95, 200x have modern programming constructs

Why shouldn’t you use FORTRAN?

- can quickly lead to spaghetti code
- possible lack of long-term maintainability
- little support from “real” programmers (it isn’t taught in CS

departments!)
- modern languages make development faster
- good OOP imposes modularity

Page 16

Don’t re-invent the wheel unnecessarily - there is a whole host
of functionality which has already been coded (software
libraries for underlying crystallographic operations) - but
there may be licensing issues.

Code can be cribbed from books (e.g. “Numerical Recipes”) but
be aware of copyright issues.

Other developers may be willing to "give" you their code for
inclusion (e.g. both autoindexing routines in Mosflm)

Finally -

Design in portability -
• don’t use platform specific features if possible
• use standard programming contructs
• gcc/g77/g++ is available for virtually every platform -

essentially the same build can be used (some compiler flags
and libraries may differ)

Page 17

Modern approaches to programming

Ralf W. Grosse-Kunstleve

Computational Crystallography Initiative
Lawrence Berkeley National Laboratory

Siena Computational Crystallography School 2005 Disclosure

• Experience
– Basic
– 6502 machine language
– Pascal
– Fortran 77
– csh, sh
– C
– Perl
– Python
– C++

• Last five years
– Python & C++ -> cctbx, phenix

• Development focus
– phenix.refine, phenix.hyss

• No experience
– TCL/TK
– Java

Computational Crystallography Toolbox
• Open-source component of phenix

– Automation of macromolecular crystallography

• mmtbx – macromolecular toolbox
• cctbx – general crystallography
• scitbx – general scientific computing
• libtbx – self-contained cross-platform build system

• SCons – make replacement
• Python scripting layer (written in C)
• Boost C++ libraries

• Exactly two external dependencies:
– OS & C/C++ compiler

Object-oriented programming

The whole is more than the sum of its parts.

Syntax is secondary.

Purpose of modern concepts

• Consider
– You could write everything yourself
– You could write everything in machine language

• Design of Modern Languages
– Support large-scale projects <-> Support collaboration
– Maximize code reuse <-> Minimize redundancy
– Software miracle: improves the more it is shared

Main concepts behind modern languages

• Namespaces
• A special namespace: class
• Polymorphism
• Automatic memory management
• Exception handling
• Concurrent development

– Developer communication

• Secondary details
– friend, public, protected, private

Page 18

Evolution of programming languages

Namespaces
• Emulation

MtzSomething (CCP4 CMTZ library)
http://www.ccp4.ac.uk/dist/html/C_library/cmtzlib_8h.html

QSomething (Qt GUI toolkit)
http://doc.trolltech.com/4.0/classes.html

PySomething (Python)
http://docs.python.org/api/genindex.html

glSomething (OpenGL library)
http://www.rush3d.com/reference/opengl-bluebook-1.0/

A00, A01, C02, C05, C06 (NAG library)
http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp

• Advantages
– Does not require support from the language

• Disadvantages
– Have to write XXXSomething all the time
– Nesting is impractical

Evolution of programming languages

Namespaces
• Formalization

similar to:
transition from flat file systems to files and directories

namespace MTZ {
Something

}

• Disadvantages
– Does require support from the language

• Advantages
– Inside a namespace it is sufficient to write Something

• as opposed to XXXSomething
– Nesting “just works”

• If you know how to work with a directories you know how to
work with namespaces

Evolution of programming languages

A special namespace: class

• Emulation
– COMMON block with associated functions

double precision a, b, c, alpha, beta, gamma
COMMON /unit_cell/ a, b, c, alpha, beta, gamma
subroutine ucinit(a, b, c, alpha, beta, gamma)
double precision function ucvol()
double precision function stol(h, k, l)

• Disadvantage
– The associations are implicit

• difficult for others to see the connections

Evolution of programming languages

A special namespace: class

• Formalization
class unit_cell:

def __init__(self, a, b, c, alpha, beta, gamma)
def vol(self)
def stol(self, h, k, l)

• What’s in the name?
– class, struct, type, user-defined type

• Advantage
– The associations are explicit

• easier for others to see the connections

Evolution of programming languages

A special namespace: class

• Formalization
class unit_cell:

def __init__(self, a, b, c, alpha, beta, gamma)
def vol(self)
def stol(self, h, k, l)

• What’s in the name?
– class, struct, type, user-defined type

• Advantage
– The associations are explicit

• easier for others to see the connections

Evolution of programming languages
A namespace with life-time: self, this

• COMMON block = only one instance
• class = blueprint for creating arbitrarily many instances

• Example
hex = unit_cell(10, 10, 15, 90, 90, 120)
rho = unit_cell(7.64, 7.64, 7.64, 81.79, 81.79, 81.79)

• hex is one instance, rho another of the same class
• Inside the class definition hex and rho are both called self

• What's in the name?
– self, this, instance, object

• hex and rho live at the same time

• the memory for hex and rho is allocated when the object is
constructed

Page 19

Life time: a true story
A true story about my cars, told in the Python language:

class car:
def __init__(self, name, color, year):
self.name = name
self.color = color
self.year = year

car1 = car(name="Toby", color="gold", year=1988)
car2 = car(name="Emma", color="blue", year=1986)
car3 = car(name="Jamson", color="gray", year=1990)
del car1 # donated to charity
del car2 # it was stolen!
car4 = car(name="Jessica", color="red", year=1995)

Alternative view of class
• Function returning only one value

real function stol(x)
...
s = stol(x)

• Function returning multiple values

class wilson_scaling:
def __init__(self, f_obs):
self.k = ...
self.b = ...

wilson = wilson_scaling(f_obs)
print wilson.k
print wilson.b

• Class is a generalization of a function

Evolution of programming languages

A special namespace: class
• Summary

– A class is a namespace
– A class is a blueprint for object

construction and deletion
– In the blueprint the object is called self or this
– Outside the object is just another variable

• When to use classes?
– Only for “big things”?
– Is it expensive?

• Advice
– If you think about a group of data as one entity

-> use a class to formalize the grouping
– If you have an algorithm with 2 or more result values

-> implement as class

Evolution of programming languages

Polymorphism
• The same source code works for different types
• Runtime polymorphism

– “Default” in dynamically typed languages (scripting
languages)

– Very complex in statically typed languages (C++)

• Compile-time polymorphism
– C++ templates

Evolution of programming languages

Compile-time polymorphism
• Emulation

– General idea
S subroutine seigensystem(matrix, values, vectors)
D subroutine deigensystem(matrix, values, vectors)
S real matrix(...)
D double precision matrix(...)
S real values(...)
D double precision values(...)
S real vectors(...)
D double precision vectors(...)

Use grep or some other command to generate the single and
double precision versions

– Real example
• http://www.netlib.org/lapack/individualroutines.html

Evolution of programming languages

Compile-time polymorphism
• Formalization

template <typename FloatType>
class eigensystem
{

eigensystem(FloatType* matrix)
{

// ...
}

};

eigensystem<float> es(matrix);

eigensystem<double> es(matrix);

• The C++ template machinery automatically
generates the type-specific code as needed

Page 20

Automatic memory management

• Context
– Fortran: no dynamic memory management

• Common symptom
– Please increase MAXA and recompile

– C: manual dynamic memory management via malloc & free
• Common symptons

– Memory leaks
– Segmentation faults
– Buffer overruns (vector for virus attacks)
– Industry for debugging tools (e.g. purify)

Automatic memory management

• Emulation: Axel Brunger’s ingenious approach
– Insight: stack does automatic memory management!

subroutine action(args)
allocate resources
call action2(args, resources)
deallocate resources

subroutine action2(args, resources)
do work

– Disadvantage
• Cumbersome (boiler plate)

Automatic memory management

• Formalization
– Combination

• Formalization of object construction and deletion (class)
• Polymorphism

– Result = fully automatic memory management
– “Default” in scripting languages

• garbage collection, reference counting

– C++ Standard Template Library (STL) container types
• std::vector<T>
• std::set<T>
• std::list<T>

• Advice
– Use the STL container types
– Never use new and delete

• Except in combination with smart pointers
– std::auto_ptr<T>, boost::shared_ptr<T>

Evolution of programming languages

Exception handling
• Emulation

subroutine matrix_inversion(a, ierr)

...

matrix_inversion(a, ierr)
if (ierr .ne. 0) stop 'matrix not invertible‘

• Disadvantage
– ierr has to be propagated and checked throughout the

call hierarchy -> serious clutter
– to side-step the clutter: stop

• not suitable as library

Emulation of exception handling
program top
call high_level(args, ierr)
if (ierr .ne. 0) then

write(6, *) 'there was an error', ierr
endif
end
subroutine high_level(args, ierr)
call medium_level(args, ierr)
if (ierr .ne. 0) return
do something useful
end
subroutine medium_level(args, ierr)
call low_level(args, ierr)
if (ierr .ne. 0) return
do something useful
end
subroutine low_level(args, ierr)
if (args are not good) then

ierr = 1
return

endif
do something useful
end

Evolution of programming languages
Exception handling

• Formalization
def top():
try:

high_level(args)
except RuntimeError, details:

print details
def high_level(args):
medium_level(args)
do something useful

def medium_level(args):
low_level(args)
do something useful

def low_level(args):
if (args are not good):

raise RuntimeError("useful error message")
do something useful

Page 21

cvs commitcvs update

Collaboration via SourceForge

cvs import

cvs checkout

cvs updatecvs commit

Conclusion concepts

• Advantages
– Modern languages are the result of an evolution

• Superset of more traditional languages
• A real programmer can write Fortran in any language

– Designed to support large collaborative development
• However, once the concepts are familiar even small projects are easier

– Solve common problems of the past
• memory leaks
• error propagation from deep call hierarchies

– Designed to reduce redundancy (boiler plate)
– If the modern facilities are used carefully the boundary between

"code" and documentation begins to blur
• Especially if runtime introspection is used as a learning tool

– Readily available and mature
• C and C++ compilers are at least as accessible as Fortran compilers

– Rapidly growing body of object-oriented libraries

Conclusion concepts

• Disadvantages
– It can be difficult to predict runtime behavior

• Tempting to use high-level constructs as black boxes
– You have to absorb the concepts

• syntax is secondary!
– However: Python is a fantastic learning tool that embodies all

concepts outlined in this talk
• except for compile-time polymorphism

Acknowledgements

• Organizers of this meeting
• Paul Adams
• Pavel Afonine
• Peter Zwart
• Nick Sauter
• Nigel Moriarty
• Erik McKee
• Kevin Cowtan
• David Abrahams
• Open source community

http://www.phenix-online.org/ http://cctbx.sourceforge.net/

Page 22

Louis Farrugia

Lecture-1

Using available
tools

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

1. Types of software tools available

2. How to use them in your software ?

3. Where to get them from ?

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

From the Computing School website ...

School History

First the earth cooled, then there were dinosaurs..

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

FORTRANOSAURUS – a real dinosaur ?

1. FORTRAN is an ancient language from 1950’s – extinction long predicted,
but still being maintained and modernised – FORTRAN95 in current use.
FORTRAN 2003 is latest standard (but as yet no compilers !)

2. FORTRAN is an efficient language and well suited to scientific computing

3. There exist vast libraries of FORTRAN sources for scientific computing

4. It is possible to write modern software in FORTRAN.

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Types of software tools currently available

• programming languages & compilers/interpreters
• GUI (graphical user interfaces)
• ‘scientific’ libraries
• pre-built ‘scientific’ applications
• utility applications

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Programming languages used in crystallographic
programs and libraries

• FORTRAN
• C
• C++
• Java, Python
• other scripting & GUI languages

Modern applications may be multi-language

Page 23

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GUI’s – Graphical User Interfaces

GUI’s are now ubiquitous and seemingly necessary

Advantages of the GUI approach
•easy to use and learn programs - commonality of interface
•scientific programs - programmer regulates numerical input
•options/possible pathways made obvious - less need for extensive
reference manuals

Disadvantages of the GUI approach
• too easy to use and learn programs - no understanding of
underlying methodologies
•scientific programs - too restrictive for complex problems
•reluctance to read extensive reference manuals

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GUI’s – Graphical User Interfaces

Makes full use of VDU screen with a
pointing device -mouse (patented
1964)

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GUI’s – Graphical User Interfaces

Disadvantages of the GUI approach
• too easy to use and learn programs

I have question about WinGX software.
when I launched DATA - - > Cad4 - - > XCad4 , the program displays :

5464 reflections processed, of which 56 were standards (5408 netto)
593 reflection(s) with zero or negative intensity

0 reflection(s) rejected with intensity less than -9999.00
1 reflection(s) deviated from scan centre by more than DANG
0 reflection(s) not measured because collision predicted
0 reflection(s) not measured because chie > 100 deg

999 reflection(s) measured on pre-scan only
0 reflection(s) with a count loss > 1%
0 reflection(s) with too strong intensities
0 reflection(s) with bad backgrounds

My question is : what are standards ?

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Ways of producing GUI’s for applications

• Do it yourself
• Use GUI libraries

JANA2000 PLATON

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

SIRWARE Programs SIR92 / SIR97
http://www.ic.cnr.it/

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GUI libraries – many commercial but some free. Many
are cross-platform. A small sample ...

• Java
• Python - http://python.org/
• wxWidgets - http://www.wxwidgets.org/
• wxPython - http://www.wxpython.org/
• Tcl/tk - http://tcl.activestate.com/
• Qt - http://www.trolltech.com/tp
• VGUI - http://vgui.sourceforge.net/
• GTK+ (Gimp tool kit)- http://www.gtk.org/
• Fast Light Toolkit - http://www.fltk.org/
• FOX - http://www.fox-toolkit.org/

Many are written in C/C++, so interfacing to languages like
FORTRAN is difficult - Steep learning curve to use.

Page 24

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

“Scientific” libraries – mathematical and crystallographic
Some examples ...

• NAG – Numerical Algorithms Group
• CCSL - Cambridge Crystallographic Subroutine Library
• CCTBX – Computational Crystallographic Toolbox – Ralf Grosse-
Kunstleve
• CLIPPER – OO crystallographic libraries – Kevin Cowtan
• CrysFML - Crystallographic Fortran 95 Modules Library - Juan
Rodríguez- Carvajal – LLB (Fullprof suite)
• CIFTBX – tools for reading/writing CIF’s (also CIFLIB for mmCIF)
• GETSPEC – tools for space group symmetry
• FPRIME – tool for X-ray dispersion corrections

• crystallography source code archives & “museums”
• graphics libraries

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Numerical algorithms
group
http://www.nag.co.uk

languages
FORTRAN & C

BLAS - http://www.netlib.org/blas/
LAPACK - http://www.netlib.org/lapack/

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

William H. Press
Brian P. Flannery
Saul A. Teukolsky
William T. Vetterling

languages

FORTRAN 77/90/95

C, C++

http://www.numerical-recipes.com

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Crystallographic library tools

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Jane Brown - http://www.ill.fr/dif/ccsl/html/ccsldoc.html
language - FORTRAN

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

http://www.iucr.org/iucr-top/index.html

FORTRAN API - Designed
to be incorporated into a
program

memory containing CIF is
shared between library and
application

later versions offer XML
output

Page 25

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Modifications as used in WinGX – as a dynamically linked library

•memory associated with library functions & CIF is isolated
•public functions used to place data into library memory, to extract
data from memory
• variables initialised dynamically using ciftbx_init() rather than
statically through DATA statements

Used as engine to read CIF files in WinGX and Ortep for Windows

• advantages – easy to read CIF and write out structured CIF’s
• disadvantages – will not read a CIF with syntax error(s)

only loads one CIF

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

program main
include 'ciftbx.cmn'
logical f1
character*10 buf1,buf2,buf3,buf4,buf5,buf6,bufa

call getarg(1,bufa)
if(bufa == ' ') stop
f1 = init_(10,11,12,5)
f1 = ocif_('bvparm.cif')
if(.not. f1) stop 'CIF not found'
f1 = data_('bond_valence_parameters')
if(.not. f1) stop 'Block not found'
n = 0
do
f1 = char_('_valence_param_atom_1',buf1)
if(.not. loop_) exit
if(buf1 /= bufa) cycle
f1 = char_('_valence_param_atom_2',buf2)
if(buf2 /= bufb) cycle
f1 = char_('_valence_param_atom_1_valence',buf3)
f1 = char_('_valence_param_atom_2_valence',buf4)
f1 = char_('_valence_param_Ro',buf5)
f1 = char_('_valence_param_B',buf6)
if(buf3 == '9') buf3 = '?'
if(buf4 == '9') buf4 = '?'
n = n + 1
write(*,*) buf1,buf3,buf2,buf4,buf5,buf6

enddo
write(*,*) n
end

program main
include 'ciftbx.h'
logical f1
character*10 uf1,buf2,buf3,buf4,buf5,buf6,bufa

call getarg(1,bufa)
if(bufa == ' ') stop
call ciftbx_init()
f1 = init_(10,11,12,5)
f1 = ocif_('bvparm.cif')
if(.not. f1) stop 'CIF not found'
f1 = data_('bond_valence_parameters')
if(.not. f1) stop 'Block not found'
n = 0
do
f1 = char_('_valence_param_atom_1',buf1)
if(.not. loop_()) exit
if(buf1 /= bufa) cycle
f1 = char_('_valence_param_atom_2',buf2)
if(buf2 /= bufb) cycle
f1 = char_('_valence_param_atom_1_valence',buf3)
f1 = char_('_valence_param_atom_2_valence',buf4)
f1 = char_('_valence_param_Ro',buf5)
f1 = char_('_valence_param_B',buf6)
if(buf3 == '9') buf3 = '?'
if(buf4 == '9') buf4 = '?'
n = n + 1
write(*,*) buf1,buf3,buf2,buf4,buf5,buf6

enddo
write(*,*) n
end

462,336 bytes 12,288 bytes

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Other CIF parsing libraries

James Hester – ANU implemented in Python
http://www.ansto.gov.au/natfac/ANBF/CIF/

C Class Library – Rutgers
J. Appl. Cryst. (1997) 30, 79-83.

designed for mmCIF

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GETSPEC
• written by I David Brown, McMaster
• incorporated into WinGX
• incorporated into LMPG software of Jean Laugier
• FORTRAN source code deposited at CCP14

This program calculates the symmetry operators
(general positions) and special positions for any
setting of any space group based on the Hall
space group symbol

SGINFO (C code) – Ralf Grosse-Kunstleve CCTBX

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GETSPEC

incorporated into WinGX as a DLL

public functions load data (Hall symbol) and retrieve
space group information

integer function gspHall(Hall_symbol)
interprets Hall symbol and loads Seitz matrices in memory

integer function gspNsym()
returns number of independent symmetry operations

integer function gspNLatt()
returns number of lattice translations

subroutine gspSymXYZ(n,string)
returns xyz notation for symmetry operations into character array

string(n)

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

GETSPEC

Read Hermann-Mauguin symbol

Look-up table -> Hall symbol

Load Hall symbol into DLL

Public functions query SG

Page 26

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

FPRIME

Code by Bob von Dreele
Los Alamos N’tnl Lab

Also by Sean Brennan

Both implemented in
WinGX

Calculates f and f and
abs cross-section

FORTRAN sources

ftp://ftp.lanl.gov/public/gsas/windows
ftp://apollo.apsl.anl.gov/pub/cross-section_codes/

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

http://www-phys.llnl.gov/Research/scattering/asf.html

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Crystallographic Webservers

Bilbao Crystallographic
Server

http://www.cryst.ehu.es/

[A Web Site with
Crystallographic Tools
Using the International

Tables for
Crystallography]

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Crystallography source code archives & “museums”

•http://www.ccp14.ac.uk/ - mirror sites for much software

•http://sdpd.univ-lemans.fr/museum/ - Armel le Bail
•http://www.chem.gla.ac.uk/~paul/GX/ - GX source code
•http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/larryfinger

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Application tools

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Data plotting- DPLOT - http://www.dplot.com

Dplot is
commercial
software –
scientific data
plotting

a large number
of formats

very flexible
presentation

Page 27

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

CCDC programs - http://www.ccdc.cam.ac.uk/

Mercury features include:
•Input of hit-lists from
ConQuest, or other
format files such as
CIF, PDB, MOL2 and
MOLfile
•Location and display of
intermolecular and/or
intramolecular
hydrogen bonds, short
nonbonded contacts,
and user-specified
types of contacts
•The ability to build
and visualise a network
of intermolecular
contacts

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

CCDC programs - http://www.ccdc.cam.ac.uk/

enCIFer - CIF checking,
editing and visualisation
software from the CCDC

CIF (Crystallographic
Information File) is now a
standard means of
information exchange in
crystallography.

It is also the recommended
way of submitting data to
the CSD.

enCIFer provides an
intuitive, user-friendly
interface to add information
safely to the resultant CIF
without corrupting the strict
syntax.

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Ray traced graphics - http://www.povray.org

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Ray traced graphics - http://www.povray.org
#version 3.6 ;
#include "colors.inc"
#include "textures.inc"
#include "metals.inc"
#declare Surface_Texture = texture {

pigment {color Copper }
finish { Shiny } }

#declare Atom_Texture = texture {
pigment {color SteelBlue }
finish { Shiny } }

#declare Bond_Texture = texture {
pigment {color SteelBlue }
finish { Shiny } }

#declare Atom_Radius = 0.150;
#declare Bond_Radius = 0.020;
#declare View_Distance = 37.597;

global_settings { assumed_gamma 2.2 ambient_light rgb < 1, 1, 1 > }
camera {

location < 0.0 , 0.0 , View_Distance >
angle 20.0
up < 0.0 , 1.0 , 0.0 >
right <-1.33, 0.0 , 0.0 >
look_at < 0.0 , 0.0 , 0.0 >

}
background { color White }
light_source { < 0.0, 0.0, 100.0 >

color red 2.0 green 2.0 blue 2.0 }
light_source { < 0.0, 100.0, 0.0 >

color red 2.0 green 2.0 blue 2.0 }

union {
cylinder {< 0.0000, 0.0000, 0.0000 >

< 1.2166, -0.3406, 1.6317 > Bond_Radius
texture { Bond_Texture } }

object {
sphere { < 0.0, 0.0, 0.0 >, Atom_Radius }

texture { Atom_Texture }
scale < 1.0000, 1.0000, 1.0000 >
translate < 0.0000, 0.0000, 0.0000 >

}

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Ray traced graphics - http://www.povray.org

The adp's of Rh4(CO)12 shown as the RMSD surface (PEANUT plot)

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Debugging tools

Page 28

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Static code analysers

•FTNCHEK http://www.dsm.fordham.edu/~ftnchek/
for FORTRAN code

•SPLINT http://www.splint.org/ for C & C++ code

Splint is a tool for statically checking C programs for security
vulnerabilities and coding mistakes.

ftnchek is a static analyzer for Fortran 77 programs. Its
purpose is to assist the user in finding semantic errors.
Semantic errors are legal in the Fortran language but are
wasteful or may cause incorrect operation.

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

SPAG – plusFORT – http://www.polyhedron.co.uk

Converts legacy FORTRAN-66 code into F77 or
F95 compliant code – cures the “rats-nest”
problem.

148 IF(VIEW)152,150,152
150 W(12,1)=1.

W(12,2)=1.
IF(W(6,1)-W(6,2))165,175,175

152 DO 160 I=1,2
DO 155 J=10,12

155 W(J,I)=-W(J-6,I)
W(12,I)=W(12,I)+VIEW

160 W(13,I)=VV(W(10,I),W(10,I))
IF(W(13,2)-W(13,1))165,175,175

100 if (view/=0) then
do i = 1,2

do j = 10,12
w(j,i) = -w(j-6,i)

enddo
w(12,i) = w(12,i) + view
w(13,i) = vv(w(10,i),w(10,i))

enddo
if (w(13,2)>=w(13,1)) goto 200

else
w(12,1) = 1.
w(12,2) = 1.
if (w(6,1)>=w(6,2)) goto 200

endif

before after

Louis Farrugia – IUCr Computing School - Siena 2005 – Using Available Tools

Where to get software tools ?

• Web search engines
• CCP14 - http://www.ccp14.ac.uk/ a web-site with vast number of
downloads and links
• SINCRIS - http://www-ext.lmcp.jussieu.fr/sincris-top/logiciel/

Page 29

1

Spectrum of languages

Ralf W. Grosse-Kunstleve

Computational Crystallography Initiative
Lawrence Berkeley National Laboratory

Siena Computational Crystallography School 2005 Spectrum of implementation languages

• Python
– Interpreted, Object Oriented, Exception handling

• C++
– Compiled, Object Oriented, Exception handling

• C
– Compiled, User defined data types, Dynamic memory management

• Fortran
– Compiled, Some high-level data types (N-dim arrays, complex numbers)

• Assembler
– Computer program is needed to translate to machine code

• Machine code
– Directly executed by the CPU

Matrix of language properties

C++PsycoCompiled to
machine code
-> speed

JavaPythonInterpreted
-> convenience

Statically
typed
-> speed

Dynamically
typed
-> convenience

Programmer Efficiency & Performance

• Maintainability

• Reusability

• Modularity

Performance

Pr
og

ra
m

m
er

 E
ffi

ci
en

cy Python
C++

C

Fortran
Assembler

Machine code

Choice of implementation languages

• Python
+ Very high-level programming
+ Easy to use (dynamic typing)
+ Fast development cycle (no compilation required)
– Too slow for certain tasks

• C++
+ High-level or medium-level programming
– Many arcane details (strong static typing)
+ Largely automatic dynamic memory management (templates)
+ Much faster than Python
+ With enough attention, performance even rivals that of FORTRAN

Happy marriage: Python and C++

• Syntactic differences put aside, Python and C++ objects and
functions are very similar.

• Flexibility (interpreted, dynamically typed) and
Efficiency (compiled, statically typed) are complementary.

• Boost.Python (C++ library) provides the link:
– Non-intrusive on the C++ design
– Pseudo-automatic wrapping using C++ template techniques
– No external tools needed
– Creates sub-classable Python types
– Python bindings are very maintainable
– Tutorial and reference documentation

class_<unit_cell>("unit_cell")

.def("volume", &unit_cell::volume)

.def("fractionalize", &unit_cell::fractionalize)

;

Page 30

2

Vector operations

• Computer Science wisdom:
– Typically 90% of the time is spent in 10% of the code

• Similar to idea behind vector computers:
– Python = Scalar Unit
– C++ = Vector Unit

• Loading the vector unit: (8.7 seconds)
miller_indices = flex.miller_index()
for h in xrange(100):

for k in xrange(100):
for l in xrange(100):

miller_indices.append((h,k,l))

• Go! (0.65 seconds)
space_group = sgtbx.space_group_info("P 41 21 2").group()
epsilons = space_group.epsilon(miller_indices)

Computing 1 million epsilons takes only 0.65 seconds!

Compiled vs. Interpreted

• Compiler
– generates fast machine code

• Interpreter (Python, Perl, TCL/TK, Java)
– may generate byte-code but not machine code

Compiled vs. Interpreted

• Compiler
– generates fast machine code
– needs arcane compilation commands
– needs arcane link commands
– generates object files (where?)
– may generate a template repository (where?)
– generates libraries (where?)
– generates executables (where?)
– needs a build tool (make, SCons)
– all this is platform dependent

• Interpreter (Python, Perl, TCL/TK, Java)
– may generate byte-code but not machine code

Conclusion languages

• It is important to know the modern concepts
– Especially for ambitious projects

• Syntax is secondary
– Anything that does the job is acceptable

• Python, C++, csh, sh, bat, Perl, Java

• There is no one size fits all solution
– But Python & C++ covers the entire spectrum

• Carefully weigh programmer efficiency vs. runtime
efficiency
– Prefer a scripting language unless runtime efficiency is

essential

Acknowledgements

• Organizers of this meeting
• Paul Adams
• Pavel Afonine
• Peter Zwart
• Nick Sauter
• Nigel Moriarty
• Erik McKee
• Kevin Cowtan
• David Abrahams
• Open source community

http://www.phenix-online.org/ http://cctbx.sourceforge.net/

Page 31

07/09/05 DJW 19_04_watkin_legacy_code01.doc

Legacy Codes
Do They Have Any Value?

David Watkin, Chemical Crystallography Laboratory
OXFORD

Siena, 2005

Legacy code can loosely be defined as any code written at ‘some time in the past’, and can be divided
into two categories – Obsolescent and Obsolete code.

Obsolescent code includes programs which clearly have a limited future dynamic life span and will
include almost all programs in current use in small molecule crystallography. Their development and
maintenance is endangered because they are the product either of a single author, or of a small localised
group of authors. In addition, most current small molecule programs are written in FORTRAN, a
language which itself will either die out, or transform beyond recognition.

Obsolete code includes program which are no longer in active use, and includes forerunners of current
programs, programs which are unsupported, and programs addressing issues which have gone away.

Because of the decline in do-it-your-self programming in most crystallography laboratories, legacy code
now interests a very limited audience. Outside of the LINUX community, a decreasing number of
crystallographers are able to compile old codes. This means that legacy code really only has a value to
those small groups of crystallographers still actively developing new programs.

Potential uses for old codes include:

1. Ability to perform computations not in current active codes. Acta Cryst regularly publishes notes
or full papers about programs which contain algorithms useful for special purposes, yet which fail
to gain common use. If the original author can be contacted, it is sometimes possible to obtain
copies of the code. If it is available and can be compiled, the problem is solved.

2. If part of a computation being carried out by a new program is available in an old program, it may
be possible to use the old program to validate the new one.

3. As a source of information at a more detailed level than that found in published papers. An
example of this is the ability to model electron density distributed throughout some shape other
than the usual sphere or ellipsoid. In 1950 King and Lipscomb reported the mathematics for
some simple shapes. In 1975 Bennett, Hutcheon and Foxman reported use of a program they
had written to carry out these computations, and similar code was again reported in the 1990’s.
Sadly, the sources of neither the Hutcheon nor the 1990’s programs were available by the late
1990’s, so that problems which those programmers had at one time already solved had to be
solved again. Legacy code would have been helpful.

4. To help in the design of new programs. The more issues that can be foreseen at the design
stage, the less re-designing that will be needed later. For example, many structure analysts will
be very pleased to be able to input space group information simply be giving the standard
symbol, but occasionally users may wish either to use non-standard settings of space groups, or
even invent space groups for which there is no symbol. Old programs may help broaden the
horizons of new programmers.

5. Data representations. While the external representation for, say, the unit cell parameters is fairly
uncontroversial, there is plenty of scope for innovation in the representation of the ‘Matrix of
Constraint’. A flexible program will probably offer the user a GUI for more routine tasks, and
some kind of command–line alternative for more special purposes. Reviewing old programs may
suggest alternative representations.

Page 32

07/09/05 DJW 19_04_watkin_legacy_code01.doc

6. Finding solutions to singularities and instabilities. Careful analysis of the mathematics before the
coding begins should reveal latent singularities, and it may be evident how to deal with them.
Instabilities in the face of unusual data or problems are more difficult to predict, and old codes
may highlight otherwise unforeseen issues.

7. Sources of efficient algorithms. While over-optimisation can hinder future development of a
program, over-generalisation through lack of a proper understanding of a problem can lead to
very inefficient programs. If a procedure is run frequently, a speed increase of a factor of two in
what would otherwise be a 60 minute job is useful, and will still be useful even if processors
themselves speed up by a factor of ten.

8. Uncovering the users real needs. Programs are generally written either for the authors own
special needs, or in response to a need expressed by the community. In either case it is
important to understand the real need, which may go beyond the immediately perceived
problems.

9. Determining the scope of a new program. Writing code costs time/money. Examining similar
legacy codes may help in the definition of the scope of a new program, and perhaps help with
the prioritisation of the implementation of features. Leaving ‘hooks’ for features on a wish-list will
simplify future development.

10. Assessing the cost of funding the maintenance of legacy code. Procedures such as COCOMO
may help in working out the cost of producing new code to replace older codes, but they are
probably not very useful for assessing the cost of maintenance and development. In these cases
the design quality and documentation of the old code are probably the major influencing factors.

Finding Legacy Code.

 Armel Le Bail has set up a Crystallography Source Code Museum in which he has simply
archived FORTRAN and C programs, with their documentation if this exists in machine readable form.
This is a good first-stop for software archaeology.

 Yves Epelboin looks after the SinCris site, which lists alphabetically over 600 software sources.
Some of these are to old codes. Unfortunately, since this is only a website of pointers to other sites, it is
not uncommon for URLs to be changed without notification.

Page 33

Legacy Codes.

Do They Have Any Value?

David Watkin
Chemical Crystallography

OXFORD

Siena, 2005

Software Archaeology
Legacy Codes

This talk will look at:

• The evolution of legacy codes
• Their scientific value.
• Problems with maintaining them.

Legacy Code
Legacy Code is a generic term for software

written at ‘some time’ in the past and falling
into one of two broad categories:

Obsolescent.
Code currently in active use, but clearly with a

limited future.
Obsolete.

Code no longer in active use.

Current Code

Although there are still substantial bodies of
legacy FORTRAN code still in use in the
domains of both powder crystallography and
macromolecular crystallography, these two
fields are also active in developing modern
programs.
Small molecule crystallographers seem to
worry less about using ageing software.

Obsolescent Legacy Code
In small molecule crystallography, this includes

almost all the programs currently in use.
These codes will have limited future life spans

for several reasons:
1. They were written by a single author, or

small group of authors.
2. They were written in languages (usually

FORTRAN) which are themselves becoming
obsolete.

Obsolescent Legacy Code
Examples of obsolescent code include:
SHELX* - based almost entirely upon the effort

of one author.
SIR200* - Designed and maintained by a non-

dispersed group, and thus vulnerable to the
fate of that group.

DIRDIF – The principal programmers are now
retired.

CRYSTALS – The internal data structure is at
the limit of adaptability.

Page 34

Obsolete Legacy Code

Obsolete legacy codes include:
• Ancestors of current obsolescent codes (e.g.

SHELX-76).
• Code that the author is unable or unwilling to

support.
• Codes addressing problems which have gone

away (e.g. DIFABS).

Re-inventing the Wheel

Most wheels are round

But not all wheels are equal

www.bedrock.deadsquid.com www.concordesst.com

Should one try to keep old codes working, or

should one use old codes as background to new, better, codes?

Uses of Legacy Code

Very likely, the absolute number of
crystallographers able to modify and compile
programs has declined since the 1970’s

The number of potential users of legacy code
is probably also declining.

Uses of Legacy Code
For the few people who are able to
understand and compile legacy code,
potential uses are:

• Ability to perform computations not in current
codes.

• Possibility of validating new codes against old
codes.

• A source of information at a more detailed
level than that found in published papers.

Uses of Legacy Code - Novel Computations

Ability to perform a computations not in
current codes.

Example:
Some formulas for the X-ray scattering
from atoms in various spatial probability
distributions.

Murray Vernon King, and William N. Lipscomb
Acta Cryst. (1950). 3, 318

Uses of Legacy Code - Novel Computations

Example: The replacement of a disordered
group of atoms by electron density distributed

over a geometrical shape.

Page 35

Uses of Legacy Code - Novel Computations

Ability to perform a computations not in
current codes.

Example: The replacement of a disordered group of atoms by electron density
distributed over a geometrical shape.

• King, M.V. and Lipscomb, W.N., (1950) Acta Cryst. 3, 155-158
• Bennett, M.J., Hutcheon, W. L. and Foxman B. M. (1975) Acta Cryst.

A31, 488-494
• Chernyshev,V.V., Fetisov,G.V., Laktionov,A.V., Markov,V.T,

Nesterenko,A.P. & Zhukov,S.G.(1992) J. Appl. Cryst. 25, 451 – 454
• Zlokazov,V.B. & Chernyshev,V.V. (1992) J. Appl. Cryst. 25, 447 - 451
• Chernyshev,V.V., Zhukov,S.G., Yatsenko,A.V., Aslanov,L.A. & Schenk,H.

(1994)Acta Cryst. A50, 601 – 605

Uses of Legacy Code - Novel Computations

Example: The replacement of a disordered group of atoms by electron density
distributed over a geometrical shape.

By 1997 the 1975 code and the 1990’s codes
were unavailable for use or inspection.

Non of the published descriptions of the
procedure made any mention of the latent
problems in refining the parameters for these
shapes.

The wheel was re-invented.

Uses of Legacy Code - Validation
It is extremely difficult to prove that a program

will work correctly for any valid data input.

It is difficult to demonstrate that a program will
work correctly over a wide range of unusual
or marginal data inputs.

A wide user-community over a long period of
time tends to uncover unstable coding.

Uses of Legacy Code – Design
Careful examination of codes that have
evolved over a long period may help in the
effective design of new programs. Potential
issues are:

1. Practical user requirements.
2. Data representations.
3. Singularities and instabilities.
4. Exceptions and error recovery.
5. Algorithmic efficiency.

Uses of Legacy Code - Design
Practical user requirements.

A programmer from a non-crystallographic
background will require a very detailed
specification of what the code must do.

A programmer with a crystallographic
background is likely to have experience
restricted to certain fields.

Old codes, or their manuals, may reveal wider
requirements.

Uses of Legacy Code - Design
Wider user requirements.

In small-molecule crystallography it is now
fashionable to input space group information
in the form of the short or long symbols.

What if the user wants a non-standard
setting – e.g. A -1?

What if the user wants something which
cannot be represented by a conventional
symbol?

Page 36

Uses of Legacy Code - Design
Wider user requirements.

Why should the user wants a non-
standard setting – e.g. A-1?
A common reason is to simplify the
visualisation of related structures – e.g.
host lattices with different guests.

Space Group operators can be generated
from a look-up table, or a set of rules.

Non-Standard Settings
The layered aluminium phosphates form
extended lattices able to accommodate
organic guest molecules.

Pyridine complex, P -1:
a=6.99 b=7.22 c=12.11 =105.1 =104.9 =90.3

Imidazole complex, C 2/c:
a=21.9 b=7.18 c=6.99 =90 =104.2 =90

Non-Standard Settings
Using a C centred triclinic cell reveals the
structural similarities:

Pyridine complex, C -1:
a=23.4 b=7.22 c=6.99 =90.4 =105.7 =88.1

Imidazole complex, C 2/c:
a=21.9 b=7.18 c=6.99 =90 =104.2 =90

Non-Standard Settings
Using a C centred triclinic cell reveals the
structural similarities:

Uses of Legacy Code - Design
Wider user requirements.

The user wants something which cannot be
represented by conventional symbols.

In this case, if the program will not accept
symmetry matrices or operators, the need
cannot be fulfilled.

Uses of Legacy Code - Design
Wider user requirements.

Why should the user wants something which
cannot be represented by conventional
symbols?

A common reason is to simplify the
visualisation of related structures – e.g.
structures before and after a phase
transition.

Page 37

Uses of Legacy Code - Design
Wider user requirements.

Visualisation of related structures.
At 293K this sugar azide has one molecule in the asymmetric unit

Uses of Legacy Code - Design
Wider user requirements.

Visualisation of related structures.
At 100K the sugar azide has three molecules in the asymmetric unit

Uses of Legacy Code - Design
Tripling the unit cell for the Z’=1 cell and introducing more SG

operators makes comparison of the structures simpler.

Un-named Space Group
The true SG for both the 100K and 290K cells is
P 21. For the tripled cell, the operators are:

SYMMETRY x, y, z
SYMMETRY 1/3+x, y, 1/3+z
SYMMETRY 2/3+x, y, 2/3+z
SYMMETRY -x, 1/2+y, -z
SYMMETRY 2/3-x, 1/2+y, 2/3-z
SYMMETRY 1/3-x, 1/2+y, 1/3-z

Uses of Legacy Code - Design
Tripling the unit cell and introducing more SG operators makes

comparison of the structures simpler.

Uses of Legacy Code
Data Representations

At the design stage, attention too closely focussed
on solving a particular problem may lead to
restrictive data representations, and hence limited
novel applications.

However, good initial design both reduces the
need for future changes, and also makes the task
easier if changes become inevitable.

Modern languages make it easier to change data
structures as a program evolves.

Page 38

Uses of Legacy Code
Data Representations
Evolution of CRYSTALS

‘EDITION 1’ (Plain text data base definition) (Cruickshank, Freeman,
Rollet, Truter, Sime, Smith and Wells, 1964)

‘NOVTAPE’ (In AUTOCODE) (Hodder, Rollet, Prout and Stonebridge,
Oxford, 1964),

‘FAXWF’ (In ALGOL) (Ford and Rollett, Oxford, 1967),

‘CRYSTALS’ (In FORTRAN) (Carruthers and Spagna, Rome, 1970)
‘CRYSTALS’ (In FORTRAN, major re-write) (Carruthers, Prout, Rollet and

Spagna, Oxford, 1975)
‘CRYSTALS’ Issue 2 (In FORTRAN, major re-write) (Carruthers, Prout,

Rollet and Watkin, Oxford 1979)
‘CRYSTALS’ Issue 7 (in FORTRAN, VAX SMG user interface)

(Betteridge, Prout and Watkin Oxford, 1983)
‘CRYSTALS’ Issue 11 (in FORTRAN with C++ GUI) (Watkin, Prout,

Carruthers, Betteridge, Cooper, 1997)

Uses of Legacy Code
Data Representations

Evolution of CRYSTALS - Matrix of Constraint
Autocode, 1965

Uses of Legacy Code
Data Representations

Evolution of CRYSTALS - Matrix of Constraint
FORTRAN, 1975

#LIST 12

FULL C(3,X,U[ISO])

EQUIVALENCE C(1,U[ISO]) C(2,U[ISO])

Uses of Legacy Code
Data Representations

Other Solutions - SHELXL

FVAR osf uiso

At1 1 10+x 10+y 10+z 11 21

At2 1 10+x 10+y 10+z 11 21

At3 2 x 10+y 10+z 11 uiso

Uses of Legacy Code
Data Representations

Other Solutions – XTAL CRYLSQ

NOREF (X,Y,Z)(At1,At2)

NOREF (Y,Z)(At3)

CONSTR U(At1) = 1.0*U(At2)

CONSTR ps(Ats) = Q + m1p1(At1) + m2p2(At2) +

Uses of Legacy Code
Data Representations

Other Solutions – GSAS
GSAS has a coded command-line input mode

l a l

k (Konstraint)

I (Insert)

1 uiso 1 1 (phase, param, atom, mult)

1 usio 2 1

Page 39

Uses of Legacy Code
Data Representations

A GUI
overlay,
EXPGUI,
simplifies
some
input.

Other Solutions - GSAS

Uses of Legacy Code

Evolution of CRYSTALS
Matrix of Constraint

C++, 1999

Uses of Legacy Code
Data Representations
The Z’ 1 & 3 structures re-visited

An alternative, less computationally efficient,
method is to triple the contents of the asymmetric
unit, and use the matrix of constraint to reduce the
number of variables

FULL
LINK C(101,X'S) UNTIL H(1293) AND
CONT C(201,X'S) UNTIL H(2393) AND
CONT C(301,X'S) UNTIL H(3493)

LINK C(101,U'S) UNTIL N(123) AND
CONT C(201,U'S) UNTIL N(223) AND
CONT C(301,U'S) UNTIL N(323)
END

Uses of Legacy Code - Design
With the 100 and 293K structures referred to a common cell and origin,

the consequences of the phase change become evident

Integral & Bolt-on GUIs
Bolt-on GUIs are generally restricted to
passing normal user-commands to the
program, and parsing output files.
The opportunity for real interaction is
restricted.

In CRYSTALS, because we both maintain the
underlying FORTRAN and designed the GUI,
we can give the GUI access to anything
available in the FORTRAN.

Uses of Legacy Code - Design
Singularities and instabilities.

Careful analysis of the mathematics before coding
begins should reveal latent singularities.

e.g. standard uncertainty in a torsion angle.

Page 40

Uses of Legacy Code - Design
Singularities and instabilities.

Instabilities and their cure may need
ad hoc solutions.

e.g. Solution of Simultaneous Equations.

The NAG subroutine library contains 37 different
routines for this purpose.
Experience with old codes may indicate which
methods are most appropriate for different
crystallographic tasks.

Uses of Legacy Code - Design
Singularities and instabilities.

Instabilities and their cure may need ad hoc solutions.
e.g. Least Squares Parameter Refinement.

Over-shifting of ill-defined parameters can be
controlled by the use of:

1. Marquardt-type augmentation of the normal
matrix.

2. A matrix of partial shift (damping) factors.
3. Boundary conditions on parameter values.

Uses of Legacy Code - Design
Algorithmic Efficiency.

Abstraction of a procedure into structured layers
helps in the design, building and de-bugging of
code.

However, over-generalisation may have serious
impacts on performance.

Equally, over-optimisation can hinder future
development of the code.

Choosing the Right Wheel

Sometimes the programmer must make choices at the design stage, but
often a better strategy is to offer a range of alternatives to the user

www.bedrock.deadsquid.com www.concordesst.com

User Choice
Example:
Fixing the origin in polar space groups.
e.g. y in P 1 21 1
1. Do not refine the y coordinate of one atom
2. Augment the normal matrix by using

Lagrange multipliers
3. Use eigenvalue filtering of the normal matrix
4. Use a matrix of constraint
5. Use supplementary equations of restraint

User Choice
Example: Fixing the origin in polar space

groups, e.g. y in P1 21 1
1. Do not refine the y coordinate of one atom.

This technique is available in any program
which permits the user to decide which
parameters to include in the refinement.
The method, once popular, is now largely
obsolete.
Inversion of the normal matrix by Cholesky
decomposition can automatically apply the
technique if the user or program fails to do
anything better.

Page 41

User Choice
Example: Fixing the origin in polar space

groups, e.g. y in P 1 21 1

2. Augment the normal matrix by using
Lagrange multipliers.

This is the classical method for applying
constraints to least squares, but is uncommon in
widely distributed crystallographic programs.

User Choice
Example: Fixing the origin in polar space

groups, e.g. y in P 1 21 1

3. Use eigenvalue filtering on the normal
matrix.

Eigenvalue filtering removes singularities from
the normal matrix by removing degenerate
parameter combinations.
It is an expensive way to fix floating origins, but
the method may have other uses.

User Choice
Example: Fixing the origin in polar space

groups, e.g. y in P1 21 1

4. Use a matrix of constraint.
Constraints are fundamental to refinement (for
example, in dealing with atoms on special
positions).
A generalised implementation gives the
program user a powerful tool.

Matrix of Constraint

The physical (‘real’) parameters are related to a
smaller set of least squares parameters together with
some additional, unconditional, knowledge.

parametersLSknowledgeparametersphysical .

Matrix of constraint

v
u

z
x

x
.

10
01
01

Atom on special position (x,-x,z) requires only 2 LS
parameters

Matrix of constraint

Atom on special position (x,2x,z) requires only 2
LS parameters.

v
u

z
x

x
.

10
02
01

2

Page 42

Matrix of Constraint
‘Riding’ a hydrogen atom on a carbon atom is
done via the matrix of constraint.

z
y
x

zH
yH
xH
zC
yC
xC

.

100
010
001
100
010
001

Matrix of Constraint

A floating origin can be fixed via the matrix of constraint.

5

4

3

2

1

6

5

4

3

2

1

.

11111
10000
01000
00100
00010
00001

p
p
p
p
p

yC
yC
yC
yC
yC
yC

User Choice
Example: Fixing the origin in polar space

groups, e.g. y in P 1 21 1

5. Use supplementary Equations of Restraint
‘Restraints’ have become a popular method for adding
knowledge into the normal matrix.
In this case the knowledge is that the scattering power
weighted centre of gravity of the structure should not
change during refinement.

n

i
ii yw

1
0.0

User Choice
1. User-choice of parameters for refinement.
2. Augment the normal matrix by using Lagrange

multipliers.
3. Eigenvalue filtering on the normal matrix.
4. Matrix of constraint.
5. Supplementary equations of restraint.

A problem-independent implementation of
these techniques will address the floating
origin issue, but also provide tools for
solving other problems.

Funding Legacy Code

Software exists to help work out the cost of software projects

Funding New Code
The commercial cost (including overheads,
pension, insurance, salary etc) of one
programmer is of the order of $200,000 p.a.

If a program contains a decent amount of
informative comment and is supported by
both programming and user documentation, a
rule of thumb costing over the whole project
is:

$20 per executable line

Page 43

The Investment in Legacy Code
The FORTRAN source of PLATON is 79,908 lines.

The commercial cost of PLATON is about $1.6 Million

The FORTRAN source of the 2005 release of CRYSTALS
(excluding C++ GUI and SCRIPTS) is 155,000 lines.

The commercial cost of CRYSTALS is about $3.1 Million

The FORTRAN source of SHELXL is 17,134 lines

The cost of SHELXL is $1/3 Million??

Legacy Code Development Costs

The cost per line of extending old code
may be much higher if:

1. The code is poorly documented.
2. The code has un-structured data

management.
3. The code has an inflexible data structure.
4. Procedures are monolithic.
5. The code was optimised for speed rather

than flexibility.

Modifying Existing Programs -Effort

The cost of extending old code must include the
cost of understanding it.

Much of the standard legacy software is
‘economically’ commented.

PLATON-01 2%
SHELXL 10%
ORFLS 11%
CRYSTALS SFLS 24%
ORION-74 33%

Documentation
Documentation is crucial for the maintenance or recycling of old codes.

‘It is expected that the Fortran listing and the glossary of symbols which
are provided will serve as a complete description of the program.’
ORFLS, August, 1962

C START LOOP TO STORE MATRIX AND VECTOR.
C SEE GLOSSARY FOR STORAGE SCHEME

DO 3010 J=1,NV
3010 DV(J)=DV(J)*SQRTW

JK=NM
DO 05001 J=1,NV

04301 IF(DV(J))04501,04401,04501
C BY-PASS IF DERIVATIVE IS ZERO
04401 JK=JK-NV+J-1

GO TO 05001
04501 DO 04801 K=J,NV

AM(JK)=AM(JK)+DV(J)*DV(K)
JK=JK-1

Sadly, the Le Bail Museum does not hold a copy of the Glossary.

Funding Legacy Code
Funding formulae are difficult to apply to development.
Factors influencing re-implementation costs include:
• Complexity of user interface.

• SHELX76 – file in – file out. 1 person-day p.o.s.

• Main Frame CRYSTALS - with multiple I/O files and
binary data base. 1 person-week p.o.s.

• CRYSTALS 2005 – with full GUI. Unknown person-week
p.o.s.

p.o.s = per operating system

Supporting Legacy Code

Is it worth the cost and effort?

Sometimes.

People tend to like what they know.

Often, people don’t know what they don’t know.

Page 44

Learning from the Past
Minimise the cost of developing new code.

1. Evaluate consumer’s needs
2. Evaluating existing products
3. Product specification
4. Detailed design
5. Coding
6. Validation
7. Maintenance
8. Development

Learning from the Past

Consumer’s
needs

Learning from the Past
Existing products – Background Research

Precursors to CAMERON, 1990

Re-use
of

Good
Code

NORMAL80
&

SIR92

NB=8.0*ALOG10(0.05*FLOAT(MAX0(NREF,100))+0.5)
C MAXIMUM OF 30 POINTS ON WILSON PLOT

IF(NB.GT.30) NB=30
WRITE(NCWU,440) NREF,RHOMAX,NB

440 FORMAT(23H NUMBER OF REFLEXIONS =,I6,8X,
1 32HMAXIMUM (SIN(THETA)/LAMBDA)**2 =,F7.4,8X,
2 33HNUMBER OF POINTS ON WILSON PLOT =,I3)

C OBTAIN SUMS FOR WILSON PLOT AND FIT LEAST SQUARES STRAIGHT LINE
CALL WILSUM(PTS,ISTATP,IL28FL)

C PLOT WILSON CURVE AND LEAST SQUARES STRAIGHT LINE
CALL GRAPH80(0,IPLOTW)

450 BT=2.0*BT

C CALCULATE SCALE FACTORS FOR APPROPRIATE REFLEXION GROUPS

nb=8.0*alog10(0.05*float(max0(nref,100))+0.5)
c maximum of 30 points on wilson plot

if(nb.gt.30) nb=30
if (iprin.gt.0.and.jump.lt.0) write(lo,442) nb

442 format(34h number of points on wilson plot =,i3)
if(jump.ge.0) go to 450

c obtain sums for wilson plot and fit least squares straight line
call sir_sum(pts,ier)

if (ier.lt.0) return
c plot wilson and debye curves and least squares straight line

call plotw
450 bt=2.0*bt

c calculate scale factors for appropriate reflexion groups

Finding Legacy Code

Software
Museum.

Le Bail.

http://sdpd.univ-lemans.fr/museum/

Finding Legacy Code

SinCris.

Y Epelboin.

This resource
contains the
URL of over

600
crystallography
software sites.

Page 45

Finding Legacy Code
SinCris.

Some of the sites pointed to have closed down

Legacy Code - Conclusions
If it is well-liked and much-used, someone will

maintain it.
Command-line I/O is most easily maintained.
If it has complicated I/O or a proprietary GUI, it

will probably die.

Good code can supplement published work.
Code without manuals is almost valueless.
Code with good commenting is valuable.

Don’t re-invent the wheel.
Build better ones.

Page 46

Complete rewritesComplete rewrites
When, why, and how?When, why, and how?

James W. Pflugrath1

Rigaku/MSC, Inc., The Woodlands,
Texas, USA

OutlineOutline

•• Previous software packagesPrevious software packages
•• Current software packagesCurrent software packages
•• When & WhyWhen & Why

Whenever you get a benefit and the money to do it
Hardware requirements
Software requirements

•• HowHow
Modern software engineering practices in scientific
programming

•• ExampleExample
•• Future software packagesFuture software packages
•• Bottom lineBottom line

Whenever you get a benefit
Code maintenance
Ego

Previous software packagesPrevious software packages

•• FRODO,FRODO, AlwynAlwyn Jones, 1970’sJones, 1970’s
Evans & Sutherland PS300 version 1983

Previous software packagesPrevious software packages

•• MADNES, w/ A. MADNES, w/ A. MesserschmidtMesserschmidt, 1984, 1984
FORTRAN77, structured (no GOTOs)
VAX/VMS, IRIX, Sun4, Linux, OSF1
Device-independent

Enraf-Nonius FAST, ADSC multiwire, Xentronics
EEC-workshops, 1980’s

Vectorial description & algorithms, David Thomas
Department of Energy, Beamline X8C, E. Westbrook
early 1990s

Current software packagesCurrent software packages

•• JWP moves to Molecular Structure Corporation, JWP moves to Molecular Structure Corporation,
19941994

•• d*TREK: deviced*TREK: device--independent diffraction image independent diffraction image
processingprocessing

DOE subcontract, 1994, E. Westbrook
Simple re-write or adaptation not possible

•• C++C++
Object-oriented programming language
No standard template library

When & why?When & why?

•• 19941994

•• Anytime! (2005)Anytime! (2005)

•• Whenever a benefit or advantage arises from Whenever a benefit or advantage arises from
the rethe re--writewrite

This is always the case, you would not make a worse
piece of software would you?

Page 47

When and why?When and why?

•• New programming toolsNew programming tools
New languages and libraries
OpenGL, X Windows, OSF/Motif, Tcl/Tk
C++, Python

•• New featuresNew features
•• New hardwareNew hardware
•• New peopleNew people

What skills do they have?
•• Maintenance issuesMaintenance issues
•• User issuesUser issues
•• Legal issuesLegal issues
•• Who pays the bills?Who pays the bills?

How?How?

•• Write a grant Write a grant
•• Start a company or go to work for a companyStart a company or go to work for a company
•• Start a consortiumStart a consortium
•• Make your users payMake your users pay
•• In other words … sell it and get moneyIn other words … sell it and get money

How?How?

•• Build infrastructureBuild infrastructure
•• Get computersGet computers
•• Get software toolsGet software tools
•• Get peopleGet people
•• Read booksRead books
•• Get helpGet help

Software engineering Software engineering
practicespractices

•• Nuts & boltsNuts & bolts
•• Design beforehandDesign beforehand
•• User requirementsUser requirements
•• Hardware requirementsHardware requirements
•• Data structuresData structures
•• AlgorithmsAlgorithms
•• Code management, version managementCode management, version management

make, SourceSafe, cvs, bugzilla, backups
•• Book:Book: Code CompleteCode Complete

In the trenches: How-to
Variable naming, Hungarian notation

Example: d*TREKExample: d*TREK

•• Design submitted to DOE in late 1994Design submitted to DOE in late 1994
Data objects

Devices
Source, Shutter, Goniometer, Detector, Crystal
Images, Reflns, Headers
Interprocess communication

Methods
Single objs: Goniometer move, Image write, etc.
Multiple objs: Find, Index, Predict, Refine,
Integrate, Scale/Average
Reflnlist: merging, editing, sorting

Devices and ObjectsDevices and Objects

19121912 20052005

Page 48

Example: d*TREKExample: d*TREK

•• User interfaceUser interface
Simple: command line arguments
Scripts
Graphical user interface helps build
command lines

1994: X-Windows/Motif

ScriptingScripting

•• User defaultsUser defaults
•• High throughputHigh throughput
•• No need for GUINo need for GUI

no button processing

•• CustomizationCustomization
Beamline
Detector
Crystal

#!/bin/csh -f

set IMAGE_NAME = ../lyso12001.osc
set FIRST_IMAGE = 1
set LAST_IMAGE = 99

dtextractheader $IMAGE_NAME 1.head
dtfind 1.head -seq $FIRST_IMAGE $FIRST_IMAGE -out
dtindex dtfind.head dtfind.ref
dtrefine dtindex.head dtfind.ref +All -go -go
dtrefine dtrefine.head -seq $FIRST_IMAGE +All -go
dtrefine dtrefine.head -seq $FIRST_IMAGE +All -go
dtintegrate dtrefine.head -seq $FIRST_IMAGE $LAST_

-profit -window 0 0 -batch 1 4
dtscaleaverage dtintegrate.head dtprofit.ref -sigm

-errormodel -reject .0075 \
-batchscale \
-reqab spherical 4 4 \
dtscale.ref

dtprocessdtprocess

•• GUI to control GUI to control
subprocessessubprocesses

•• Master scripterMaster scripter
•• Flow chartFlow chart

Manual
Auto strategy

one button screening
Auto processing

one button processing

dtprocessdtprocess

Flow chart
Command line

Setup dialogCurrent info in .headImages list.

dtdisplaydtdisplay Main window

Beam center

Resolution rings

Profiles

Color scale
Zoom window

Cursors.

Image
info

Classes and objects of the Classes and objects of the
d*TREK toolkitd*TREK toolkit

•• ClassClass CimageCimage
Data and methods for a 2D diffraction image
Several constructors
nRead(), nWrite(), fGetPixel(), nSetPixel(),
nGetRect(), etc.

•• ClassClass CdetectorCdetector
Cspatial, Cnonunf, Cgoniometer
Cspatial::nPxToMM(), ::nMMToPX()

•• ClassClass CreflnCrefln
nGetHKL(), nGetH(), nGetK(), nGetL(), …

•• ……

Page 49

Classes and objects of the Classes and objects of the
d*TREK toolkitd*TREK toolkit

•• ClassClass CreflnlistCreflnlist
Constructor Creflnlist() (like Ralf’s __init__)

::nRead()
::nReduce() (needs Ccrystal object)
::nSort()
::nInsert(), nDelete(), nSelect()
::nWrite()

Hungarian notationHungarian notation

•• Used at MicrosoftUsed at Microsoft
•• Invented by a Hungarian employee of MSFTInvented by a Hungarian employee of MSFT
•• Examples as used in d*TREK:Examples as used in d*TREK:

int nH;
Int *pnH;
double dH;
int anHKL[3];
Int a3x3dMatrix[3][3];
Ccrystal *poCrystal;
Cspacegroup *m_poSpacegroup;

Hungarian notationHungarian notation

poReflnpoRefln == poGetReflnpoGetRefln((nRefNextnRefNext++);++);
nCentPhasenCentPhase == oSpacegroupoSpacegroup..nReduceHKLnReduceHKL((poReflnpoRefln, ,

a3nReducedHKL,a3nReducedHKL,

&&nFplusminusnFplusminus););
nPackedHKLnPackedHKL == poReflnpoRefln-->nPackHKL(a3nReducedHKL);>nPackHKL(a3nReducedHKL);

This is controversial. But don’t forget what Ralf showed us: This is controversial. But don’t forget what Ralf showed us:
templatetemplate

can be used with float, double, can be used with float, double, intint, unsigned short , unsigned short intint, etc, so use a , etc, so use a
differentdifferent

Future softwareFuture software

•• Current problemsCurrent problems
Code maintenance in multi-platform environment
Lots of Windows users

CrystalClear – MFC-based (native Windows GUI)
Team of programmers know MFC

Lots of Linux users (X Windows is native to Linux)
One person knows OSF/Motif

Lots of Mac/OSX users
Installation problems
Users know less than before

•• SolutionSolution
Java?
Python?
wxWidgets?

Bottom line: When, why, and Bottom line: When, why, and
how?how?

•• There is no such thing as free softwareThere is no such thing as free software
At a minimum no one in this room works for
free
“You get what you pay for.” – Harry Powell August 2005

•• Whenever there is a clear benefitWhenever there is a clear benefit
New hardware, operating systems
New users
New programmers
New methods

•• ……

Bottom line: When, why, and Bottom line: When, why, and
how?how?

•• Whenever you can get money to do itWhenever you can get money to do it
Consortiums
Beamlines
Charge for-profit companies

•• How:How:
Get serious about software engineering
practices
Read books
Take classes
Hire staff – give them a stake in it

Page 50

“Remember, software is just like paper: “Remember, software is just like paper:
It’s the result of research.”It’s the result of research.”

------ WladekWladek Minor, May 29, 2005Minor, May 29, 2005

One last thing … One last thing …

“Software is just like toilet paper: Users “Software is just like toilet paper: Users
want to use the softest available, then want to use the softest available, then
throw it away.”throw it away.”

------ Jim Jim PflugrathPflugrath, June 1, 2005, June 1, 2005

AcknowledgementsAcknowledgements

•• Rigaku/MSCRigaku/MSC
Thad Niemeyer
Robert Bolotovsky
Cheng Yang
Kris Tesh
Tom Hendrixson
Joe Ferrara

•• Ed WestbrookEd Westbrook
•• R. JacobsonR. Jacobson
•• US Dept of EnergyUS Dept of Energy

Contract 943072401

•• Gerard Gerard BricogneBricogne
EEC Workshops

•• Clemens Clemens VonrheinVonrhein

Page 51

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems

Coordinate systems, operators, and
transformations.

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate systems
� We have to deal with many coordinate systems in

crystallographic software. The book-keeping is not
exciting, but it is vital. Simplifications (e.g.
assuming orthogonal grids) must usually be paid for
later.

� Examples:

� Orthogonal Ångstrom coordinates.

� Fractional coordinates.

� Reciprocal orthogonal coordinates.

� Reflection (Miller) indices, i.e. HKLs.

� Grid coordinates.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems
� In addition, we need to handle:

� Transformations between these coordinate systems.

� Transformations within a coordinate system
(i.e. rotation and translation operators).

� Rotation representations.

� Derivatives of functions with respect to different
coordinate systems.

� This lecture will give a basic overview of the issues.
Implementations of all these data types and
transformations are a part of both the CCTBX and
Clipper crystallographic libraries.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems
� Conventions for this lecture:

� scalars are italic, lower case, e.g. s, r

� vectors are italic, lower case and underlined, e.g. v, x, h

� matrices are italic, uppercase and bold, e.g. O, F, M

� In addition to matrix notation, most equations are
also given as explicit sums of terms.

� The elements of a vector or matrix are given by the same
symbol in italic lower case with an appropriate number of
subscripts. e.g. xi , Oi,j .

� All vectors and matrices are of rank 3.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems

Coordinate systems:

� Coordinate are used to describe the positions of
elements within the crystal system. e.g. the position
of a particular atom within a unit cell, or a particular
grid point within a grid.

� 3 dimensions -> rank 3.

� Coordinates represented by a vector of 3 numbers.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Orthogonal Ångstrom Coordinates:

� 3 orthogonal distances in Ångstroms along
directions x, y, z. (Formally: basis vectors)

x

z

y

x

z

y

Note: there is no reference to
the unit cell at this point.

Page 52

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Fractional coordinates:

� Position in the unit cell described as a fractional
position along each cell edge:

a

c

b

u

w

v Note: since the cell repeats,
u,v,w repeat on the range 0...1.
We often standardize on the
range 0...1 (or -1/2...1/2), but
this may split a molecule.

0

1

1

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Relating orthogonal and fractional coordinates:

� We can orient and position one coordinate system
however we want with respect to the other, but...

� It is convenient to adopt some convenient
convention.

� The most common convention in the PDB (also the
CCP4 default) is:

� Align the a axis along x

� Align the b axis in the x-y plane

� Or equivalently align z axis perpendicular to a and b

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Relating orthogonal and fractional coordinates:

a

c

b

u

w

v

x

z

y

x

z

y

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Relating orthogonal and fractional coordinates:

� An orthogonal coordinate may be determined from
a fractional coordinate by:

x = O u
i.e.

xi = Σj Oij uj

Where O is the orthogonalization matrix. For the
common convention,

x uO=

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Relating orthogonal and fractional coordinates:

� A fractional coordinate may be determined from an
orthogonal coordinate by:

u = F x
i.e.

ui = Σj Fij xj

Where F is the fractionalization matrix.
Clearly F = O-1

� Note:

� a,b,c,α,β,γ are the cell constants.

� a*,b*,c*,α*,β*,γ* are the reciprocal cell constants.

u xF=

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Measuring distances:

� We do this all the time, e.g. inter-atomic distances.

� In orthogonal coordinates, the squared distance
between two points is given by r2 = Δx2+Δy2+Δz2

i.e: Δx = x2 - x1

r2 = ΔxTΔx
or:

r2 = Σi Δxi
2

r2 x= xT

Page 53

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Measuring distances:

� For the distance between two fractional
coordinates, convert to orthogonal first:

r2 = ΔuTOTOΔu
or:

r2 = Σi Σj Σk Oij Oik Δuj Δuk

� Simplify by pre-calculating the central product:
M = OTO
Mjk = Σi Oij Oik

� M is a symmetric matrix, called the
“real-space metric tensor”.

r2 uOT= uT O

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Measuring distances:

� Simplified form using the metric tensor:
r2 = M11 Δu1

2 + M22 Δu2
2 + M33 Δu3

2

+ 2 M12 Δu1 Δu2 + 2 M13 Δu1 Δu3 + 2 M23 Δu2 Δu3

(since the matrix is symmetric, we just use the
upper triangle and double the off-diagonal terms).

� (This is often a performance critical task).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Other coordinate types:

� Grid coordinates: Electron density maps are usually
calculated on a grid which samples the unit cell.

a

c

b

4

6

7

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Other coordinate types:

� Grid coordinates: g

� Each grid point is indexed using 3 integer indices, gi,

usually starting from 0.

� The sampling usually involves a grid in which each cell
edge is divided into a set number of equal divisions, with
the number of divisions roughly proportional to the cell
edge.

� Symmetry and FFT requirements may constrain these
values (e.g. multiple of 2, 3, 4, no large prime factors).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Other coordinate types:

� Grid coordinates:

� Convert to grid coordinates by scaling the fractional
coordinates by the samplings, and taking nearest integer:

� For orthogonal coordinates , convert to/from fractional
first. As an optimization, the two steps can be combined.

� Grid coordinates repeat every ni along the i'th axis.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Other coordinate types:

� Grid coordinates: Additional complications:

� M. Rowicka, A. Kudlicki and Z. Otwinowski, [Acta Cryst.
(2002). A58, 574-579] use grids which do not intersect
the origin to improve symmetry handling in the FFT

� Hexagonal close packed grids give a more efficient
sampling of real space. How are they best indexed?

Page 54

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Other coordinate types:

� Map coordinates: (Cowtan)

� Non-integer grid coordinates.
� For crystallographic maps, fractional coordinates do the job just

fine

� For non-crystallographic maps, fractional coordinates are
undefined.

� Used for interpolation in non-crystallographic maps.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Real space

Implementation issues:

� It is very easy when programming to make
mistakes over coordinate types.

� When using strongly typed languages (e.g. C++),
implement each coordinate type as a different class
to prevent such errors.

� (Use inheritance for common behaviors)

� Coordinate types or cell and sampling classes may
then implement all the required conversions.

See CCTBX or Clipper.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

In reciprocal space we mainly deal with reflections,
indexed by integer h,k,l:

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

In reciprocal space we mainly deal with reflections,
indexed by integer h,k,l:

� h,k,l are coordinates on a non-orthogonal grid, like
grid coordinates.

� h,k,l do not repeat. They are centered (+/-) about
the origin h=k=l=0.

� May be referred to as Miller indices (by
correspondence with the indexing of crystal cell
faces).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

We frequently need to determine the (reciprocal)
distance from a reflection to the origin (resolution).

We may also need to
determine a reciprocal
orthogonal coordinate
e.g. to make this picture.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

Relating reciprocal orthogonal and fractional
coordinates:

� An reciprocal orthogonal coordinate may be
determined from an HKL by:

� As in real space, O* is determined by the
orthogonalization convention. A convenient choice
is to use the transpose of the real space
fractionalizing matrix: O* = FT

� i.e. z parallel to c*, y in the b*-c* plane

s hO*=

Page 55

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

Relating reciprocal orthogonal and fractional
coordinates:

� For display purposes, the “Cambridge Convention”
is more common:

� x parallel to a*

� y in the a*-b* plane

� In this case O* is calculated using the equivalent
formula to O.

� Don't mix conventions between real and
reciprocal space – it will only end in tears.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

Measuring distances in reciprocal space:

� As before, to calculate squared distances (in
inverse squared Ångstroms), we first need
reciprocal orthogonal coordinates, or a reciprocal
metric tensor:

s2 = hTO*TO*h
or:

s2 = Σi Σj Σk O*ij O*ik hj hk

� Simplify by pre-calculating the central product:
M* = O*TO*
M*jk = Σi O*ij O*ik

s2 hO*T= hT O*

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Reciprocal space

Measuring distances:

� Simplified form using the metric tensor:
s2 = M*11 h 2 + M*22 k 2 + M*33 l 2

+ 2 M*12 h k + 2 M*13 h l + 2 M*23 k l

� Resolution in Ångstroms is 1/s, i.e. 1/s� 2

� s 2 = 4 sin2θ/λ2

� Some developers use the symbol s instead of s2.

� Clipper and CCP4 refer to s2 as inverse resolution

squared: “invresolsq”.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Interlude
The Structure Factor Equation:

� From Scattering Theory:

F(s) = Σj fj(s) exp(2πi sTx)

� Structure Factor Equation:
F(h) = Σj fj(s) exp(2πi hTu)

� Because:
sTx = (F T h)T (O u)

= hT F O u
= hT u

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Operators transform coordinates in such a way that a
rigid body will moved to a new position within the
coordinate system. We consider three types:

� Translation operators:

� Move an object without rotating it.

� Rotation operators:

� Rotate an object about the origin of the coordinate
system.

� Rotation-translation (RT) operators:

� Rotate and translate an object, or equivalently, rotate an
object about a point other than the origin.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Translation operators:

� Add the translation vector to the existing coordinate
to get the new coordinate (in the same system).

x2 = x1 + Tx

u2 = u1 + Tu

� Translation vectors transform like coordinates,
i.e. if x1 = O u1 and x2 = O u2 then:

Tx = O Tu

Tu = F Tx

� The inverse of T is -T .

Page 56

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Rotation operators:

� A rotation is described by a matrix R which is
orthonormal (i.e. R -1 = R T)

x2 = Rx x1

x1

z1

y1

x 2

z 2

y 2

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Rotation operators:

� We can represent the rotation in fractional coords:
x2 = Rx x1

u2 = Ru u1

Since x1 = O u1 and x2 = O u2 , O u2 = Rx O u1

therefore:
Ru = O -1 Rx O

and:
Rx = O Ru O -1

� Note: Ru is not a rotation matrix. (Ru
-1 ≠ Ru

T)

Rx=Ru O

Ru O -1=Rx O

O -1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Rotation-translation (RT) operators:

� A rotation-translation operator is described by a
rotation matrix R followed by a translation T.

x2 = Rx x1 + Tx

� We can represent this as a single vector operator:
x2 = Rx(x1)

� Its inverse is given by the rotation Rx
-1 and the

translation -Rx
-1Tx :

x1 = Rx
-1 (x2 – Tx) = Rx

-1x2 – Rx
-1Tx

� To convert to fractional, convert R and T as before.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Operators

Rotation-translation (RT) operators:

� Implementation:

� Use a class to hold the rotation matrix and translation
vector, and provide methods to transform a vector, invert,
and convert the operator to other coordinate systems.

� Historical: Fortran 77 does not support classes, so
developers often grouped the rotation and translation in a
3x4 or 4x4 matrix. Mathematically, vectors must be
augmented to length 4 by appending a '1'.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Rotations

Rotations have many representations:

� Matrix:

� use directly to manipulate vectors

� uniquely defined, 9 numbers (mij).

� Quaternions:

� uniquely defined, 4 numbers (x,y,z,w).

� Euler angles:

� multiple conventions, 3 numbers (α,β,γ).

� Polar angles:

� multiple conventions, 3 numbers (φ,ψ,κ).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Rotations

Quaternions:

� 4 numbers: (x,y,z,w)

� x,y,z are the direction cosines of the rotation axis, scaled
by sin(κ/2)

� w gives the angle of rotation, as cos(κ/2).

� No ambiguity in definition.

� Easy to convert to Matrix, Euler, Polar

� good as an interchange format. See Clipper,
rotation.cpp

Page 57

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Rotations

Euler angles:

� 3 numbers: (α,β,γ).

� α is rotation about z,

� β is rotation about new y,

� γ is rotation about new z.

� 24 conventions (which axis to rotate about,
stationary or moving axes), but crystallographers all
uses ZYZr, so well standardised.

� Convenient for rotation function search limits.

� Convenient for program input.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Rotations

Polar angles:

� 3 numbers: (φ,ψ,κ) or (ω,φ,κ)

� (φ,ψ) define the direction of the axis, κ is the angle
of rotation about it.

� Easy to understand.

� Inconsistent conventions.

� Use for program output only. φ

ψ

κ

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Derivatives

Many calculations require that we calculate
derivatives of some function with respect to some
coordinate. e.g.

� Refinement:

� Refinement of individual atomic coordinates and B-
factors: (xi , Bi)

� Molecular replacement:

� Rigid body refinement of search model against density:
(Rx , Tx).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Derivatives
� Refinement, MR both depend on calculation of

density gradients and curvatures – these are
calculated along grid/cell directions, i.e. fractional
coordinates.

� Rigid body rotations, and refinement restraints (e.g.
bond lengths/angles), are calculated using
orthogonal coordinates.

� Need to convert derivatives between fractional and
orthogonal.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Derivatives
� e.g. for density gradients,

f = ρ

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems: Derivatives
� Gradients transform using the transpose of the

inverse matrix (because the coordinate is in the
denominator):

gu = O T gx

gx = F T gu

gu,j = Σi Oij gx,i gx,j = Σi Fij gu,i

� Curvatures:
Cu = O T Cx O
Cx = F T Cu F

Cu,kl = Σi Σj Oik Ojl Cx,ij Cx,kl = Σi Σj Fik Fjl Cu,ij

Page 58

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Coordinate Systems

Coordinate Systems

Summary:

� In crystallographic calculations, we need to use a
range of coordinate systems:

� real and reciprocal space

� orthogonal, fractional, and grid.

� We also use operators in each space.

� rotations, translations, and RT.

� Coordinates and operators are related by
orthogonalising and fractionalising matrices and
their transposes in various combinations.

Page 59

The PHENIX project
Crystallographic software for automated structure determination

Computational Crystallography Initiative (LBNL)
-Paul Adams, Ralf Grosse-Kunstleve, Peter Zwart,
Nigel Moriarty, Nicholas Sauter, Pavel Afonine

Los Alamos National Lab (LANL)
-Tom Terwilliger, Li-Wei Hung,Thiru Radhakannan

Cambridge University
-Randy Read, Airlie McCoy, Laurent Storoni,
-Hamsapriye

Texas A&M University
-Tom Ioerger, Jim Sacchettini, Kreshna Gopal, Lalji Kanbi,
-Erik McKee, Tod Romo, Reetal Pai, Kevin Childs, Vinod Reddy

Heavy-atom coordinates

Non-crystallographic symmetry

Electron-density map

Atomic model

Structure Determination by MAD/SAD/MIR in PHENIX

Data files (H K L Fobs Sigma)
Crystal information (Space group,

Cell)
Scattering factors (for MAD)

Data are strong, accurate, < 3 Å
Strong anomalous signal

Little decay
Space group is correct

Scattering factors close (for MAD data)
You are willing to wait a little while…

(10 minutes to hours, depending on size)

Model is 50-95% complete
(depending on resolution)

Model is (mostly) compatible with
the data…but is not completely

correct

Model requires manual rebuilding

Model requires validation and error
analysis

PROVIDED THAT:

Molecular Replacement

Use of distant models

Preventing model bias

Major needs in automated structure solution

MAD/SAD/MIR

Robust structure determination procedures
Best possible electron density maps to build most complete model

Decision-making about best path for structure solution

All structures

Model completion/Ligand fitting

Error analysis

Decision-making for what data to
use and what path to follow

How to incorporate vast
experience of crystallographic

community

Best possible electron density maps to build the
most complete model

Statistical density modification
Local patterns of density

ID of fragments
Iterative model-building and refinement

FULL-OMIT density modification and model-building

Why we need good measures of the quality of an electron-
density map:

Which solution is best?

Are we on the right track?

If map is good:
It is easy

Statistical density modification
(A framework that separates map information from experimental information and builds

on density modification procedures developed by Wang, Bricogne and others)

•Principle: phase probability information from
probability of the map and from experiment:

•P()= Pmap probability() Pexperiment()

•“Phases that lead to a believable map are
more probable than those that do not”

•A believable map is a map that has…
•a relatively flat solvent region
•NCS (if appropriate)
•A distribution of densities like those of model
proteins

•Calculating map probability () :
•calculate how map probability varies with electron
density
•Use chain rule to deduce how map probability
varies with phase (equations of Bricogne, 1992).

Page 60

Map probability phasing:
Getting a new probability distribution for a single phase given estimates of all

others
1. Identify expected features of

map (flat far from center)
2. Calculate map with current

estimates of all structure
factors except one (k)

3. Test all possible phases for
structure factor k (for each phase,
calculate new map including k)

4. Probability of phase estimated
from agreement of maps with
expectations

A function that is (relatively) flat
far from the origin

Function calculated from
estimates of all structure factors

but one (k)

Test each possible
phase of structure factor
k. P() is high for phase
that leads to flat region

A map-probability function

A map with a
flat (blank)
solvent
region is a
likely map

Log-probability of the map is sum over
all points in map of local log-probability

Local log-probability is
believability of the value
of electron density ((x))
found at this point

If the point is in the
PROTEIN region, most
values of electron density
((x)) are believable

If the point is in the
SOLVENT region, only
values of electron density
near zero are believable

Statistical density modification features and
applications

Features:

•Can make use of any expectations about
the map.
•A separate probability distribution for
electron density can be calculated for every
point in the map

Applications:

•Solvent flattening
•Non-crystallographic symmetry averaging
•Template matching
•Partial model phasing
•Prime-and-switch phasing
•General phase recovery
•Iterative model-building

Reference: Terwilliger, T. C. (2000). Maximum-
likelihood density modification. Acta
Crystallographica, D55, 1863-1871.

SOLVE map (52 Se)

RESOLVE map
(data courtesy of Ward Smith & Cheryl Janson)

Composite omit map with statistical density modification

Statistical density modification allows a separate probability distribution for electron
density at each point in the map: can specify that “missing” density is within

molecular boundary

S
Molecular
boundary

Model density
Omit region
(no model density)

Solvent
flattening

Histogram
Matching

Solvent

Can be used with or without experimental phases…with or without omit

Image enhancement using local feature recognition

Electron density maps of proteins have many features in common

•Connected density
•Preferred distances for spacing between regions of high density
•Preferred shapes of density

Starting image in red
Image improved using

expectations about local features

Image enhancement using local feature recognition

Approach:

•Use the pattern of density near a point x to estimate the value of density at x

•Combine new estimate of density with previous one to improve the overall image

“Local NCS averaging”

Starting image in red
Image improved using

expectations about local features

Page 61

Image enhancement using local feature recognition

Approach:

•Create N templates of local density using model data

•Examine density near each point x in image (within 2 Å)
•Exclude region very close to x (about 1 Å)
•Cluster and average local patterns of density (after rotation to maximize CC)

•Identify relationship between finding pattern k of density near x, and density
at x

•Find all locations in the image where template k best matches the local density
near x
•Calculate average value of density at x for these cases = mean(k)

•Identify pattern near each point in actual map and use it to estimate density
at that point

•For each point x in the image, identify which template k best matches the local
density near x
•Use mean(k) as estimate of density at x

Image enhancement using local feature recognition

Remove all information about density at x from (x+ x)
-> g(x+ x), unbiased estimate of local pattern at x

Select most similar template k from library of unbiased patterns
Generate new estimate of density at x from average value at center of template k

A template associated with positive density…

current(x+ x)

Local density in current
map

g(x+ x)

Bias-removed local
density…subtract current(x)
convoluted with origin of
Patterson from all nearby

points

t(x)

Closest template in library
(after testing 168 rotations)
< > for this template :

0.8 +/- 0.9

Image enhancement using local feature recognition

Templates associated with low density (top rows) and high density (bottom rows)
RED=positive contours BLUE=negative contours for the same template

=-0.3 -.3 -.2 -.2 -.2 -.2 -.1 -.1

= 0.4 0.5 0.5 0.5 0.5 0.6 0.7 0.8

Image enhancement using local feature recognition

RESOLVE map gene 5
protein at 2.6 A

CC to perfect map = 0.8

Recovered image
derived from RESOLVE map

CC to perfect map = 0.36

Map phased using only
using information from
recovered image

CC to perfect map = 0.64

CC of errors with errors in
RESOLVE map = 0.11

Image recovery from a good map…

•gives an image that has (mostly) correct features
•errors are (almost) uncorrelated with original errors

Image enhancement using local feature recognition

Random map at 2.6 A Recovered image
derived from random map

CC to original
random map=-0.01

Map phased using only
recovered image

CC to original
random map=-0.04

Image recovery from a random map…gives an uncorrelated image

Iterative procedure for image enhancement using local feature
recognition

pcurrent() Combined phases

pdm() Density-modified phases

dm(x) Density-modified map

image(x) Recovered image

pimage() Image-based phases

pobs() Experimental phases

Page 62

Image enhancement using local feature recognition (nusA protein structure)

Starting
map
CC=0.65

Cycle 1

CC=0.75

Cycle 5

CC=0.85
Cycle 3

CC=0.84

Removing model bias with prime-and-switch phasing

Blue: model used to calculate phases Yellow: correct model,

The problem:

Atomic model used to calculate phases -> map looks like the model

Best current solution: A-weighted phases

A-weighted map,
dehalogenase (J. Newman)

Prime-and-switch phasing

Blue: model used to calculate phases Yellow: correct model,

A solution:

Start with A-weighted map
Identify solvent region (or other features of map)
Adjust the phases to maximize the probability of the map – without
biasing towards the model phases

Prime-and-switch map

Prime-and-switch phasing

Why it should work…

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100
Cycle number

N
or

m
al

iz
ed

 e
le

ct
ro

n
de

ns
ity

Signal

Bias

Priming: Starting phases are
close to correct ones…but

have bias towards misplaced
atoms

Switching: Map-probability
phase information comes from

a different source…which
reinforces just the correct

phase information

Signal: peak height at correct atomic positions
Bias: peak height at incorrect atoms in starting model

Prime-and-switch
example

(IF5A, T. Peat)

Blue: model
used to
calculate
phases

Orange:
correct model

Prime-and-
switch

example
(Gene V protein, Matt

Skinner)

Bottom:

Prime-and-switch
phases starting
from incorrect
model

<= LEFT
2GN5
(incorrect model)

RIGHT=>
1VQB

(correct model)

Top:
SigmaA phases
from incorrect
model

Page 63

PHENIX AutoBuild wizard standard sequence
(Following ideas from Lamzin & Perrakis)

Fp, phases, HL coefficients

Density modify (with NCS, density
histograms, solvent flattening, fragment ID, local

pattern ID)

Density modify including model information

Evaluate final model

Build and score models
Refine with phenix.refine

SAD data at 2.6 A
gene 5 protein

SOLVE SAD map

SAD data at 2.6 A
gene 5 protein

Density-modified SAD
map

SAD data at 2.6 A
gene 5 protein

Cycle 50 of iterative
model-building, density
modification and
refinement

SAD data at 2.6 A
gene 5 protein

Cycle 50 of iterative
model-building, density
modification and
refinement

(with model built from
this map)

Why iterative model building, density modification, and refinement can improve a
map (following ideas of Perrakis & Lamzin):

1. New information is introduced: flat solvent, density distributions,
stereochemically reasonable geometry and atomic shapes

2. Model rebuilding removes correlations of errors in atomic positions
introduced by refinement

3. Improvement of density in one part of map improves density everywhere.

Iterative model-building mapDensity-modified map

Page 64

Iterative model-building and refinement is very powerful but isn’t perfect…

Model-based information is introduced in exactly the same place that we will want to
look for details of electron density

How can we be sure that the density is not biased due to our model information?
(Will density be higher just because we put an atom there?)

(Will solvent region be flatter than it really is because we flattened it?)
(Will we underestimate errors in electron density from a density-modified map?)
(Are we losing some types of information by requiring the map to match partially

incorrect prior knowledge?)

Iterative model-building mapDensity-modified map

A FULL-OMIT iterative-model-building map: everywhere improved, everywhere unbiased

Use prior knowledge about one part of a map to improve density in another

Related methods: “Omit map”, “SA-composite omit map”, density-modification OMIT methods, “Ping-
pong refinement”

Principal new feature:
The benefits of iterative model-building are obtained yet the entire map is unbiased

Requires:
Statistical density modification so that separate probability distributions can be specified for omit regions

(allow anything) and modified regions (apply prior knowledge)

Outside OMIT region – full density
modification

OMIT region –no model, no NCS, solvent flattening
optional

Including all regions in density modification comparison with FULL-OMIT

FULL-OMITAll included

Density-modified --------------Iterative model-building-----------------

FULL-OMIT iterative-model-building maps
Molecular Replacement:

(Mtb superoxide dismutase, 1IDS, Cooper et al, 1994)

FULL-OMIT iterative-model-building maps
Molecular Replacement:

(Mtb superoxide dismutase, 1IDS, Cooper et al, 1994)
FULL-OMIT iterative-model-building maps

Uses:

Unbiased high-quality electron density from experimental phases
High-quality molecular replacement maps with no model bias

Model evaluation

Computation required:
~24 x the computation for standard iterative model-building

Page 65

FULL-OMIT iterative-model-building maps

Requirement for preventing bias:

Density information must have no long-range correlated errors
(the position of one atom must not have been adjusted to compensate for errors in

another)

Starting model (if MR) must be unrefined in this cell

Molecular Replacement

Use of distant models

Preventing model bias

Major needs in automated structure solution

MAD/SAD/MIR

Robust structure determination procedures
Best possible electron density maps to build most complete model

All structures

Model completion/Ligand fitting

Error analysis

Decision-making for what data to
use and what path to follow

How to incorporate vast
experience of crystallographic

community

Acknowledgements

PHENIX: www.phenix-online.org

Computational Crystallography Initiative (LBNL):
Paul Adams, Ralf Grosse-Kunstleve, Nigel
Moriarty, Nick Sauter, Pavel Afonine, Peter Zwart

Randy Read, Airlie McCoy, Laurent Storoni,
Hamsaprie (Cambridge)

Tom Ioerger, Jim Sacchettini, Kresna Gopal, Lalji
Kanbi, Erik McKee Tod Romo, Reetal Pai, Kevin
Childs, Vinod Reddy (Texas A&M)

Li-wei Hung,Thiru Radhakannan (Los Alamos)

Generous support for PHENIX from the NIGMS Protein
Structure Initiative

PHENIX web site:
http://phenixonline.org

SOLVE/RESOLVE web site:
http://solve.LANL.gov

SOLVE/RESOLVE user’s group:
solve@LANL.gov

Page 66

Louis Farrugia

Lecture-2

Connecting
programs
together

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Some crystallographic programs have complex
functionality – program systems

• PLATON, CRYSTALS
• DIRDIF, WinGX, GSAS, SHELXTL ...
• CCP4, XtalView, X-Plor, Phenix
• public SHELX suite

• monolithic program (single executable)
• separate executables connected together
• simply separate executables

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Advantages of connected program systems

• file formats/data interconversions automatically
handled
• monitor program(s) controls flow of processing by
application programs
• changes easier to make - GUI/Monitor/applications
can be updated separately
• coding errors may be less easily propogated - adding
new code to monolithic programs may introduce
unwanted side-effects

Disadvantages
• program interconnection can be dependent on operating
system

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI

Monitor program

Appl A Appl B Appl C

Simple program system architecture

libraries

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI

Monitor program

do
if (menu1_selected) do X
if (menu2_selected) do Y
if (buttonA_pressed) do Z
.
.

enddo

Event loop

In WinGX system, executable wingx32.exe is both

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI design

GUI design is more an art than a science

• keep it simple – limit the number of choices on
an individual dialog box
• keep operations as standard as possible
• lay out controls neatly

• keep to the “look and feel” appropriate to your
platform – use native windowing tools

Page 67

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI design

Symbols very cryptic

Need a very good
understanding of the
program to use GUI

Windows pop up with
no obvious way of
dismissing them

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI design

Don’t include features which irritate users !

• pointless dialog boxes
• use all system resources
• no useful text output

The purpose of a well-designed
GUI is to make it easier for
the user.

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Libraries

All large program systems make use of libraries.

library code has general functionality and is used in
several subprograms.
a = matmul(b,c) – a,b,c are arrays

library routines have well-designed interfaces -
reuseability is emphasised in OO programming.

why use libraries ? efficiency in programming – no
need to reinvent the wheel

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Libraries

WinGX has 6 libraries implemented as DLL’s

• wgxlib00.dll – mathematical functions – matrix
inversion, eigenvalue, cell transformations, general
routine, sorting, free-format parsing etc
• wgxlib01.dll – encapsulation of Salford routines
• wgxlib02.dll – PGPLOT graphics libraries
• wgxlib03.dll – GETSPEC space group routines
• wgxlib04.dll – encapsulated Salford GUI routines
• ciftbx26.dll – CITtbx version 2.6.2

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Libraries

Why use dynamically linked libraries ?
(<name>.dll Windows <name>.so Linux)

• saves space – only one version needed – many
executables can be linked simultaneously to same DLL

• makes correcting/updating large program systems
easier

• code is linked at compile-time with library – changes
can be made, but interface must remain the same

Limitation - must be self-contained set of routines - no
calls to external routines.

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Libraries

CIFtbx (modified version 2.6.2) implemented in library
ciftbx26.dll

Public functions passing information to DLL
ciftbx_init() initialise all CIFtbx variables (initially in

undefined state)
ocif_(<cif name>) load contents of existing CIF into CIFTBX

memory
pcif_(<cif name>) creates new CIF in CIFTBX memory
dict_(<dic-name>) loads a CIF dictionary in CIFTBX memory for

data validation
pchar_(<string>,<value>) puts value of CIF data item contained in

<string> into new CIF

Public functions returning information from DLL
char_(<string>,<value>) gets value of CIF data item contained in

<string>, in this case character value

Page 68

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Main program
library

public function (out)

public function (in)

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Libraries

CIFtbx version 2.6.2 implemented in ciftbx26.dll

In WinGX, the library is used to :
• import CIF’s and convert to SHELX files
• validate CIF’s (IUCRVAL)
• write archive.cif, the summary file of structure
determination

last functionality involves ...
1. concatenating all CIF’s into one file (data_ blocks)
2. reading request list of data items for archive.cif
3. sequentially finding all requested data items from

concatenated CIF, and placing in archive.cif

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

GUI

Monitor program

Appl A Appl B Appl C

Simple program system architecture

libraries

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Application programs

These are separate executables – capable of being
run outside program system.

How does one executable program start another ?

Highly specific to compiler/language
• Unix Fortran – call system(<string>)
• Salford Fortran – start_process@(<string1>,<string2>)
• C language – fork/exec

Scripting languages offer better solution for portability

Ousterhout’s Tcl/tk scripting language is an example

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Application programs

How do programs communicate with one another ?

• files – the most portable method
• operating system specific messaging

Timing of events needs to be considered

Monitor program
.......
launch program(<progname>)
read results(<filename>)
.....

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

Application programs

How do programs communicate with one another ?

• files – the most portable method
• operating system specific messaging

Timing of events needs to be considered

Monitor program
.....
launch program(<progname>) – does control return?
read results(<filename>)
.....

Page 69

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

WinGX – a connected set of programs

Main program is WinGX32.exe – GUI + monitor program
+ file-handlers +....

/bin/ ~ 70 separate executables
/files/ ~ 50 system files
/manuals/ ~ 25 pdf files

Interfaces to external programs – SirWare, CCDC
programs, POV-Ray, CRYSTALS, JANA2000

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

WinGX – a connected set of programs

When WinGX main program is started ...

• initialises system variables and checks Windows
state
• reads INI file -> current project name & location
• loads the current structural model into memory
from SHELX files.
• executes code for GUI main Window, which enters
event loop

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

WinGX – a connected set of programs

call wgxWindowCaptionW(MenuCaption)
call wgxWindowSizeW(MenuWindowDepth,MenuWindowHeight)
call wgxSetPositionW(0,0)
.
.
call wgxAddMenuItemW(1,'&Refine[SHELXL-97]',1,fmenu6,0)
call wgxAddMenuItemW(2,'Set HKL File',1,fmenu6,0)
.
.
call wgxDefineClassNameW('WINGXMAIN')
call wgxDefineMessageCallbackW(message_proc)
call wgxCloseControlW(exit_proc)
.
call wgxCloseDialogBoxW(0,i,0)
end

Louis Farrugia – IUCr Computing School - Siena 2005 – Connecting Programs Together

WinGX – a connected set of programs

call wgxAddMenuItemW(1,'&Refine[SHELXL-97]',1,fmenu6,0)
call wgxAddMenuItemW(2,'Set HKL File',1,fmenu6,0)
call wgxAddMenuItemW(2,'|,Open SHELXL.LST',1,fmenu6,0)
call wgxAddMenuItemW(2,'Open INS File',1,fmenu6,0)
call wgxAddMenuItemW(2,'Open RES File',1,fmenu6,0)
if(SysExec(14) /= ' ') then

call wgxAddMenuItemW(2,'|,CRYSTALS',1,fmenu6,0)
endif

Page 70

Program Suites

Harry Powell MRC-LMB

1 general introduction to suites

2 a quick look the differences between a small
molecule/powder suite and one for proteins

3 a more detailed look at CCP4 and and example of
using its built in tools

A definition of a program suite:

A set of complementary programs designed for use
within a common domain

The programs may have a common "look and feel" or
might be tied together through some external binding
(e.g. a GUI or a similar command-line syntax).

Why contribute to a suite rather than develop your own
packages?

• infrastructure pre-exists & is already tested
• someone else has already looked at porting
• often a large and established user base
• plenty of help in using underlying structure
• licensing should have been worked out
• someone else can take care of distribution (and, to

some extent, users & their problems)

Why not contribute to a suite and develop your own
packages instead?

• you may prefer another licence (GPL, LGPL, etc)
• it can be more restrictive & harder to develop in your

own style
• your software may pre-exist and would need major

changes to fit in with the suite
• you may want to maintain independence
• you may want to compete with the status quo

Macromolecular Crystallography
• CCP4
• Phenix

Chemical Crystallography
• Crystals
• Platon/System S
• WinGX
• CCP14

Big differences:
• MX suites tend to be looked after by multiple developers,

CX by a single person (or a tiny group).
• MX suites tend to be better developed for Unix systems,

CX for MS-Windows.

Page 71

CCP4 model vs CCP14 model

Both are principally funded by grants from UK Research
Councils.

CCP4 is a single set of programs which use a common
input/output & data storage model; the software is ported
and curated by a funded group of people, and licences are
sold to commercial companies. Core funding currently by 5-
year grant from BBSRC.

CCP14 is a collection of software which uses many file formats
for i/o; no attempt is made to bring the various component
programs into a common model. Funding currently by a 5-
year grant by EPSRC.

(1) Chemical Crystallography

CCP14 - proposed in 1994, funded since 1995 - gathers
together several complete small molecule and powder
crystallography tools e.g.

Crystals, WinGX, ORTEX, Platon/System S, GSAS

and loads of software for individual tasks e.g.

SHELX*, SIR*, etc, etc

These are all developed independently and made available by
their authors. Essentially there is a single member of staff
who does not develop the software.

(2) Protein Crystallography

CCP4 then and now

1979 - various groups in PX in the UK set up a
collaboration to produce a common framework for
the essential software for protein structure solution
(SERC funded).

2005 - 17 funded developers (supported by BBSRC +
income from sales) + 7 other main
contributors/developers. Executive committee of 7
people. Contributions from other groups.

Software distribution then and now

1979 - Relatively easy to share software produced in an
academic environment (employers were happier to
allow it with few restrictions).

2005 - Can be much harder to release software to the
wider world; even public sector employers put
stringent requirements on licensing & release of
software, patent offices seem happy to ignore prior art
in issuing patents. This can lead to problems for
software developers (google for “erroneous software
patents”) both in protecting their genuine innovations
and in infringing spuriously granted patents.

CCP4 contains

• ~175 programs (mostly Fortran) which cover most
aspects of macromolecular crystallography
• diffraction image processing
• reflection dataset analysis
• structure solution (MIR, MR, Direct Methods...)
• model building
• structure refinement
• analysis of results
• validation
• etc...

CCP4 contains

• comprehensive software libraries for use by
applications -
• Crystallographic functions, e.g.

• symmetry
• unit cell manipulations
• FFT calculations (© Lynn ten Eyck)

• general operations, e.g.
• smart file opening/closing for many OS’s
• reading/writing reflection files
• reading/writing coordinate files
• keyword parsing

Page 72

CCP4 runs on all commonly used platforms (Linux, Mac
OS X, Irix, Tru64, Solaris, MS-Windows...)

• the hard work of porting has already been done
• CCP4 staff can give help in porting your application
• contact via ccp4@dl.ac.uk

Q If there are already 175 applications how can I
contribute?

A(i) Some functions aren’t covered (recent additions
include molecular graphics (ccp4mg) and model
building (COOT), but there is still room for more).

A(ii) Who said they’re perfect? Some programs are
decades old, and your ideas may be an improvement

A(iii) Contribute to part of the project but not to the core,
e.g. SHELXS, ARP/wARP & Phaser have ccp4i
interfaces but are not part of CCP4.

In CCP4, reflections are stored in an MTZ file which has a
binary (i.e. not ASCII) format. In practice, this does not
present problems in reading from or writing to the file - you
just need to use the appropriate CCP4 tools (or you could
try Ralf Grosse-Kunstleve's alternatives).

"The MTZ reflection file format ... [was] renamed from LCF for
three of its progenitors, Sandra McLaughlin, Howard Terry,
and Jan Zelinka"

An MTZ file is more than just a reflection file; it is a container
for a data structure with experimental information, e.g.

• unit cell information (dimensions & symmetry)
• reflection data (h,k,l,F, (F),I, (I), coordinates on image, etc)
• for multiple crystals

Can be viewed and manipulated using standard CCP4
programs, e.g.

• mtzdump - for viewing the contents
• mtz2various - for writing to other programs' formats (e.g.

SHELX, TNT, X-PLOR/CNS/CIF...)
• mtzutils - to change the information contained

Examples of code to manipulate MTZ files;

http://www.ccp4.ac.uk/dev/templates/templates.php

* Title:
.
* Base dataset:

0 HKL_base
HKL_base
HKL_base

* Number of Datasets = 1
* Dataset ID, project/crystal/dataset names, cell dimensions, wavelength:

2 sorted
hg
camillo

58.4479 58.4479 156.0206 90.0000 90.0000 120.0000
0.99970

* Number of Columns = 9
* Number of Reflections = 4925
* Missing value set to NaN in input mtz file
* HISTORY for current MTZ file :
From SCALA: run at 12:04:08 on 3/ 7/05
From SORTMTZ 3/ 7/2005 11:25:14 using keys: H K L M/ISYM BATCH
From MOSFLM run on 3/ 7/05

* Column Labels :
H K L IMEAN SIGIMEAN I(+) SIGI(+) I(-) SIGI(-)

* Column Types :
H H H J Q K M K M

* Associated datasets :
0 0 0 2 2 2 2 2 2

* Cell Dimensions : (obsolete - use crystal cells)
58.4479 58.4479 156.0206 90.0000 90.0000 120.0000

* Resolution Range :
0.00117 0.19363 (29.223 - 2.273 A)

* Sort Order :
0 0 0 0 0

* Space group = 'H32' (number 155)
OVERALL FILE STATISTICS for resolution range 0.001 - 0.194
=======================
Col Sort Min Max Num % Mean Mean Resolution Type Column
num order Missing complete abs. Low High

labe
l

1 ASC 0 22 0 100.00 10.6 10.6 29.22 2.27 H H
2 NONE 0 12 0 100.00 3.6 3.6 29.22 2.27 H K
3 NONE -68 68 0 100.00 1.2 25.9 29.22 2.27 H L
4 NONE -78.8 36533.5 0 100.00 820.07 820.28 29.22 2.27 J IMEAN
5 NONE 8.5 2066.7 0 100.00 62.64 62.64 29.22 2.27 Q SIGIMEAN
6 NONE -98.0 36399.4 0 100.00 775.22 776.09 29.22 2.27 K I(+)
7 NONE 0.0 3171.7 0 100.00 65.21 65.21 29.22 2.27 M SIGI(+)
8 NONE -85.1 36632.4 0 100.00 782.03 782.57 29.22 2.27 K I(-)
9 NONE 0.0 2724.5 0 100.00 65.29 65.29 29.22 2.27 M SIGI(-)

No. of reflections used in FILE STATISTICS 4925

LIST OF REFLECTIONS
===================

0 0 51 5487.92 424.86 0.00 0.00 5487.92 424.86

0 0 54 146.24 38.18 0.00 0.00 146.24 38.18

0 0 57 2737.31 209.20 0.00 0.00 2737.31 209.20

0 0 60 542.89 66.86 0.00 0.00 542.89 66.86

0 0 63 1148.36 129.10 0.00 0.00 1148.36 129.10

0 0 66 67.84 53.68 0.00 0.00 67.84 53.68

1 0 -68 1095.55 64.61 1095.55 64.61 0.00 0.00

1 0 -65 51.30 27.21 51.30 27.21 0.00 0.00

1 0 -62 489.80 46.13 489.80 46.13 0.00 0.00

1 0 -59 101.72 33.04 101.72 33.04 0.00 0.00
h k l IMEAN SIGIMEAN I(+) SIGI(+) I(-) SIGI(+)

Page 73

Access the information with low level tools (written in C) for
reading from MTZ structure with FORTRAN

e.g.
LROPEN - opens mtz file & does some checks
LRINFO - numbers of reflections, data columns, ranges
LRTITL - title from file
LRCELL - cell dimensions of 1st crystal in the data

structure
LRRSOL - overall resolution limits
LRSYMI - symmetry information (names & numbers, point &

space groups, etc)
LRCLOS - close MTZ file

etc., etc...

http://www.ccp4.ac.uk/dist/html/ccplib.html

contains details on low-level ccp4 routines which deal with
(among many other things) potentially machine dependent
behaviour, e.g.

CCPFYP - sets up environment & parses command line
arguments

CCPDPN - opens files, forces program to address error issues

CCPONL - tests to see if program is being run interactively

LITEND - determined endedness of current architecture

CCP4 example - FORTRAN opening an MTZ reflection file & printing
the header

PROGRAM MTZOPEN
IMPLICIT NONE
INTEGER MTZIN,MTZPRT,MTZERR

C CCP4 initialisations
CALL CCPFYP

C MTZ-specific initialisations
CALL MTZINI
MTZIN = 1
CALL LROPEN(MTZIN,'HKLIN',MTZPRT,MTZERR)
IF (MTZERR.EQ.-1) THEN

CALL CCPERR(1,' LROPEN no such file for HKLIN')
STOP

ENDIF
CALL LRCLOS(MTZIN)
END

CCP4 example - C opening an MTZ reflection file & printing the
header

#include "/Users/harry/ccp4-5.0.2/include/ccp4/cmtzlib.h"
int main(int argc, char **argv) {

int *iprint;
MTZ *file1=NULL;
if (argc != 2) {
puts("Usage: mtzopen <file>");
exit(1);

}
file1 = MtzGet(argv[1],1); /* opens MTZ file and reads header */
if (!file1) {
printf("FATAL: failed to read file \"%s\"\n",argv[1]);
exit(1);

}
MtzAssignHKLtoBase(file1); /* assigns base dataset */
if (*iprint > 0) ccp4_lhprt(file1, *iprint); /* prints header */
MtzFree(file1); /* closes MTZ file */
printf("Done: closed file \"%s\"\n",argv[1]);

}

Build Fortran example:

f77 -o fmtzopen mtzopen.f $CLIB/libccp4f.a $CLIB/libccp4c.a

run:

cmtzopen HKLIN <filename>

Build C example:

cc -o cmtzopen mtzopen.c $CLIB/libccp4c.a

run:

cmtzopen <filename>

CCP4 development environment (UNIX)

1. download from www.ccp4.ac.uk
2. install by non-root user -
• set up local environment by editing “ccp4.setup-inst” (for

csh/tcsh) or “ccp4.setup-bash” and source-ing it to create a
set of environment variables (logicals) defining the basic
CCP4 directory structure, containing (among others);

$CCP4 - top-level directory
$CLIB - directory containing link libraries
$CPROG - executables
$CINCL - run-time include files, e.g. for symmetry, extra
logicals, ccp4.setup-#### files

Page 74

$CCP4_MASTER

$CCP4

$CDOC$CBIN =
$CCP4_BIN $CETC $CEXAM $CINCL$CHTML$CLIB =

$CCP4_LIB

$CLIBD $CLIBS

Basic CCP4 directory hierarchy

Further online help -

http://www.ccp4.ac.uk/dev/templates/templates.php

basics for MTZ, maps, pdb files and symmetry lookup using
CCP4.

http://www.ccp4.ac.uk/dist/html/symlib.html

general CCP4 programming tips:

http://www.ccp4.ac.uk/dist/html/ccplib.html

To summarize:

There are definite advantages to developing software within the
context of a coherent suite such as CCP4 or PHENIX, since
many of the issues regarding e.g. basic crystallography or
file handling will have already been implemented as ready-
to-use tools. This is at the cost of some personal
programming flexibility, since someone else will have
decided the rules!

Page 75

GUI Design

Brian H. Toby
NIST Center for Neutron Research

Outline

• Background
• Script languages for GUIs
• GUI design do’s & don’ts

Why use a GUI?

GUI = Graphical User Inferface
• A well-designed GUI speeds learning

– Opens software to occasional users &
novices

• Scaleable: offers power tools to experts

Portable GUIs

Windows only?
Support for Linux & Mac offers wider

range of users & growth into parallel
processing

Portable GUI tools

• Compiled (usually C++) packages
– FLTK (www.fltk.org)
– wxWidgets [nee wxWindows]

(www.wxwidgets.org)
• Virtual Machine

– Java
• Script languages

– Python + Tk, +wxWidgets, +GTK
• GUI Builders: wiki.python.org/moin/GuiProgramming

– Tcl/Tk (www.tcl.tk & comp.lang.tcl)

1st vs 2nd Generation GUIs

Page 76

Pros & cons of scripting

Pros
• Easy to code
• Test small routines
• Extensible when

speed is needed
• Highly portable
• Add code at run time

Cons
• Slower than

compiled code
• Debugging can be

non-trivial

IMHO 1: GUIs do not need
tremendous speed

• GUIs interact with people, who cannot
tell the difference between a 10 μsec
vs a 50 millisec screen paint

IMHO 2: Where possible don’t
incorporate code into script

language, use external programs
When more extensive computations are

needed, one can pass information to
an external program, run it & read back
results
– More portable
– Easier to debug
– More than fast enough: overhead of write,

fork & read is usually trivial

Example: Calling an external
program

CMPR EditCell replaced SGI GL program
MANDEX: animate powder diffraction line
positions

• 1st draft: run FORTRAN program each time
slider is moved
– Fast enough

• Final version: modify FORTRAN output for
direct parsing by interpreter
– Even faster!

1st vs. 2nd gen. output
ICD H K L MULT
11 0 0 1 2 -- 1 17.7176 5.00000
11 0 1 1 2 -- 2 28.5434 3.12348
11 1 0 0 2 -- 3 29.7447 3.00000
11 1 0 1 2 -- 4 34.8338 2.57248
11 -1 0 1 2 -- 5 34.8338 2.57248
11 0 0 2 2 -- 6 35.8775 2.50000
11 1 1 1 2 -- 7 41.6947 2.16366
11 -1 1 1 2 -- 8 41.6947 2.16366
11 0 1 2 2 -- 9 42.5947 2.12000
11 1 0 2 2 -- 10 47.2722 1.92055
11 -1 0 2 2 -- 11 47.2722 1.92055
11 0 2 1 2 -- 12 48.9955 1.85695
11 1 1 2 2 -- 13 52.8140 1.73133

set dgen1(x) {
17.7129707 22.191597 28.5358257 29.7368317
34.8244629 35.8678513 37.4165802 41.6833496
42.5831184 45.2750664 47.2591591 48.9819603

}
set dgen1(h) {

0 0 1 1 -1 0 1 -1 0 1 -1 0
}
set dgen1(k) {

0 1 0 0 0 0 1 1 1 0 0 2
}
set dgen1(l) {

1 1 0 1 1 2 1 1 2 2 2 1
}

Thoughts on GUI design

Page 77

2nd Generation GUIs depend
on a visual short-hand

• Analogy to physical things
– Push Buttons/Toggle buttons
– Notebook tabs

• Last operation in bottom corner
– MS: Save/Cancel
– Motif: Apply/Accept/Cancel

• GUIs often follow visual conventions

• Geographic proximity
helps connect GUI
components

• Separators (boxes,
lines) keep sets of
items distinct

Other Design Goals
• Screen space is valuable - don’t waste it
• A little bit of color helps guide the eye
• Too much color is confusing

– Keep contrast levels high (have pity on the
color blind)

• Try to use color consistently

GUI design:
Hall of Fame & Shame

CIFEDIT: not simple but easy

Another of my “greatest hits”
EXPGUI

Page 78

Multi-step processes are
tough with GUIs

Multi-step processes are
tough with GUIs

Multi-step processes are
tough with GUIs

Multi-step processes are
tough with GUIs

Multi-step processes are
tough with GUIs

Multi-step processes are
tough with GUIs

Page 79

I don’t know how to make this
more intuitive

I don’t know how to make this
more intuitive

I don’t know how to make this
more intuitive

I don’t know how to make this
more intuitive

I don’t know how to make this
more intuitive Even worse

Page 80

Even worse Even worse

Even worse Conclusions

• Script languages are great for portable GUI
design

• Intuitive GUIs take considerable thought
• Use conventional designs where possible
• Multi-step procedures are tough to make

intuitive
– Tutorials help

• Users really like GUIs

Page 81

1

Page.1
© 2005 Bruker AXS BV. All Rights Reserved

Automated data collection and integration
Rob Hooft, Bruker AXS BV, Delft

rob.hooft@bruker-axs.nl

In this talk I will be jumping between IT background
for crystallographers, and real crystallographic coding.
I will show no direct crystallographic algorithms, but
will focus on how they can be programmed in a
future-directed way.

2

Page.2
© 2005 Bruker AXS BV. All Rights Reserved

Early History

An instrument manufacturer builds the instrument...

...The crystallographer makes the software

A long time ago, there was an instrument
manufacturer which was basically a mechanics
workshop. There was some firmware in the
instruments, but all pplication software was written by
the crystallographers that were using the equipment.

3

Page.3
© 2005 Bruker AXS BV. All Rights Reserved

History

Since then, basic crystallography has
progressed from Art, via Science, to

Technology

The instruments as shown in the previous slide were
used when crystallography was mainly a goal. More
and more crystallography is moving from goal
towards a means, a method, to reach other goals like
the explanation of a reaction mechanism for an
enzyme. It is used as a technology.

4

Page.4
© 2005 Bruker AXS BV. All Rights Reserved

Recent History

An instrument manufacturer builds the instrument...

...with the software

More recently, the instruments have become a lot
more complex, and a lot more accurate. The added
complexity and accuracy requires a lot more
instrument-specific programming. Also, because much
of the application software is now no longer subject of
the research being performed with the instrument, it is
supplied by the manufacturer of the instrument.

Page 82

5

Page.5
© 2005 Bruker AXS BV. All Rights Reserved

What software (for SCD) ?

Mount and center crystal

Check whether it diffracts

Determine a unit cell

Check whether there is unexplained diffraction

Make a data collection strategy

Collect data

Integrate data

Correct data

Solve structure

Refine structure

More and more aspects of the software are integrated
into the standard program tools, and more and more
different crystallographic techniques progress from
the research stage into something that can be routinely
perfomed. Vertical as well as horizontally the
software becomes more and more integrated.

Structure determination of twins and incommensurate
structures is now commonplace, integration of
quasicrystals not yet.

6

Page.6
© 2005 Bruker AXS BV. All Rights Reserved

More Progress

As more progress is made in the field,
more and more applications are delivered

with the instrument.

Roughly half of the development of a new instrument
now is invested in software.

7

Page.7
© 2005 Bruker AXS BV. All Rights Reserved

Hardware dependence?

A large fraction of the data collection
software can be made independent of the

exact instrument

For this to work, the easiest would be if there would
be no assumptions about the hardware in the
application software.

This is impossible: the software that once was used to
integrate point detector data in small molecule SCD
could not have foreseen the changeover to area
detectors.

Many vendors have made a change from one-axis
goniostats to 4-axis goniostats with accompanying
changes in the code

But: if the design of the software is well thought out,
it is possible to minimize the problems keeping the
software running

8

Page.8
© 2005 Bruker AXS BV. All Rights Reserved

Motto of industrial software design

You can not predict the future.

What will a machine look like in 5 years?

What will it be able to do?

Will the software be able to handle those changes?

If the future would be known, we could perfectly plan
the software such that it could accommodate “future”
changes. But even if we can not foresee the future it
will be possible to structure the software such that it
will accommodate changes in instrument design and
experiment design with minimal efforts.

It is that structure that I would like to focus on in this
class.

Page 83

9

Page.9
© 2005 Bruker AXS BV. All Rights Reserved

Motto of industrial software design

You can not predict the future.

Instead you must try to foresee all possible
different futures

The lack of possibility to predict the future is a nice
parallel between software design for crystallography
and politics.

A recent paper in Scientific American that describes
the importance of future developments in political
decision making gave a nice alternative to predicting
the future as the basis of a decision: predict a wide
range of different futures, and make sure that the
decision is performing well in as-wide a range of
futures as possible.

This trick is valid as well for crystallographic software
development.

10

Page.10
© 2005 Bruker AXS BV. All Rights Reserved

Application

What determines our adaptability?

So what does determine how adaptable we are towards
future developments? To find out, we will have a look
at some data from a diffraction machine.

11

Page.11
© 2005 Bruker AXS BV. All Rights Reserved

What are Data?

This is a diffraction image from a CCD instrument.

Is this “data”?

12

Page.12
© 2005 Bruker AXS BV. All Rights Reserved

What are Data?

This is a part of the previously shown diffraction
image, representing the exact numbers underlying the
image. It represents the area around a single
reflection.

•Can we integrate this reflection?

•How would it look in a HKL file?

•Which reflection is this?

•Is this “data”?

Page 84

13

Page.13
© 2005 Bruker AXS BV. All Rights Reserved

Is that all?

Where is the logbook?

I indeed think that the answer to the question asked in
the previous two images is “yes”: the diffraction
image is the data. But the next question is “is data all
we need”?

What we are missing is HOW this data was obtained.
The logbook of the experimenter.

14

Page.14
© 2005 Bruker AXS BV. All Rights Reserved

The Logbook

...A colorless crystal of 0.2x0.1x0.1 mm was
mounted on a goniometer head and flash-cooled
to 120K. The X-ray source used is a rotating anode
generator with a 100 micron focus and focusing
optics focusing a beam of CuKα radiation with a
divergence of 5 mrad on the sample....

..the cell was determined...

...data collection strategy was...

What I mean by the logbook is basically what all
crystallographers write or at least used to write in an
“experimental” section of a paper about how the
structure determination was performed.

Given here are just a few examples.

This information is essential: not just to be able to
repeat the experiment (i.e. for scientific reasons), but
plain and easy because without additional information
we do not know what reflections are visible on each
diffraction image, and structure determination is
impossible. All of the additional surrounding
information should be present in a logbook.

15

Page.15
© 2005 Bruker AXS BV. All Rights Reserved

Metadata

In information technology, the name for the
information surrounding the data, the information that
describes what data we have is metadata.

Not only the logbook of the experimenter, but also the
logbook of the instrument itself provides metadata.
For a 2D diffraction image, this information is often
stored in the image header.

16

Page.16
© 2005 Bruker AXS BV. All Rights Reserved

Metadata Quality

The quality of the metadata can be different depending on
circumstances

Automatically measured by the instrument

Carefully measured calibration data

Measured and noted in a notebook

Measured and remembered

Measured and noted in a notebook that was subsequently lost

Measured and remembered and forgotten 3 months later

Not measured because it was not considered important

Not measured because there was no time

Measured or notedwrongly

Metadata comes in different qualities. Some metadata
is better than others. Lets go through a list of metadata
from good through bad.

Even though the later items in this list may come
across as humor please be assured that I mean this
very seriously!

•Sometimes after performing experiments at a
synchrotron people come back to the lab with a data
set, but they do not remember the orientation of the
phi axis of the goniostat.

•More involved: if the primary beam position is given
somewhere in the metadata, this needs metametadata
to be interpretable: x,y or y,x; mm or pixels, up/left or
down/right as positive axes? And the values can be
there from a previous determination three days ago...

Page 85

17

Page.17
© 2005 Bruker AXS BV. All Rights Reserved

Distribute the responsabilities

ApplicationSystem

Server Client

Time
Beam properties
Goniometer setup
Goniometer position(s)
Detector properties
Sample conditions

Unit cell
Diffraction limit
Measurement strategy

Another way to classify the metadata is to see who
should be responsible for its determination. A
diffraction experiment can be separated into two parts.
In fact this is how we have written software where
these two parts are written as a client connecting to a
server program.

Responsabilities of the server include everything that
is part of the instrument, and responsibility of the
client is everything that is part of the experiment.

Not all is so clear:

•where is the crystal shape stored?

•The data-collection strategy depends on the hardware
configuration.

19

Page.19
© 2005 Bruker AXS BV. All Rights Reserved

Manual beam stop

Beam stop is movable and exchangeable. But: No sensors.

Which beam stop and where it is positioned is entered into
the program by the user.

On the server side, the information is used for collision
avoidance

On the client side, the information is used to calculate which
parts of the detector can not be trusted (obscuration).

Does every user always set these parameters?

The beamstop could be exchanged and moved by the
user, but there was no sensor (except for a “beamstop
present and in place”).

The user is supposed to note the change of beamstop
identity and/or position to the program, but this is
often forgotten.

If it is, the metadata registered in the image header
regarding the beam stop is incorrect, and the
unexpected position of the beam stop can cause an
annoying collision with the detector.

20

Page.20
© 2005 Bruker AXS BV. All Rights Reserved

The best quality metadata

The best quality metadata....

....comes from the most automated and
integrated system

An important conclusion can be drawn from this: The
best logbook is one that has been kept by the
instrument computer itself!

Metadata that has human involvement is by nature
more unreliable than 100% instrument-determined
metadata.

Of course, to have instrument-determined metadata
one needs the instrument to measure as much as
possible by itself. Many, but not all of the parameters
stored as metadata are also suited for automation. As
the MAR dtb system shows, a beam stop position can
be motorized as well, and the size of the beam (the
collimator is another thing that is not automated in a
KappaCCD) can be determined by motorized slits.

Page 86

21

Page.21
© 2005 Bruker AXS BV. All Rights Reserved

Prepared for the future

How to be prepared?

We make sure that we have appropriate metadata.
We keep the metadata at the appropriate location

Is that sufficient?

We also have to make sure that the actual software will survive
the years.

OK. So, a necessary condition for making future-proof
software is to keep appropriate meta-data, and to keep
that meta-data at the appropriate location.

This, however, is not a guarantee for future success of
our current software. We need to make sure that the
software is written in a future-proof manner itself too.

22

Page.22
© 2005 Bruker AXS BV. All Rights Reserved

Software design

As few assumptions about the environment as possible

Run on different platforms

Use a productive programming language
Performance is less important than you think

Do not spend any time optimizing rarely executed code

Use the right programming techniques
Readable code
Portable code

Documented code
Object oriented/modular code

Group-development: code reviews, coding standards, sharing modules.

Often, software written at a lab for internal usage
contains, at least initially, a lot of hidden
dependencies on the lab environment, like the location
of other software package on the system. For future-
proof software this is not a good idea.

Relying on a single hardware platform is also a bad
idea. e.g. look at the history of DEC's VAX
computers, and the history of bus architectures.
Anything that was critically dependent on one of the
dead technologies has died with it.

Optimize the time spent programming vs, the
computer time saved: assembly language routines may
be fast, but programmer time may be more expensive!

These parts of the design are everyones own
responsibility. In the following part,we will discuss
some examples of programming techniques.

23

Page.23
© 2005 Bruker AXS BV. All Rights Reserved

Intermezzo

Is hand-coded assembly really the fastest code?
Is an assembly coder likely to use the fastest existing algorithm?
Did you ever use bubble-sort?

Is python code slow?
Or is 99% of the execution time in a single loop that can be optimized?

Did you ever profile your software?

Using existing libraries gains you speed and
flexibility that was coded by experts.

Someone writing low-level code is likely to choose
algorithms he knows, and spending large amounts of
time optimizing the execution speed. Simply using
another algorithm unknown to the user may gain an
order of magnitude in speed.

24

Page.24
© 2005 Bruker AXS BV. All Rights Reserved

Example of future-proof coding (1)

“Count the total number of 'a' characters in all descriptions in
a dictionary that contain at least one 'z' character.”

def counta(dictionaryfile):
totala = 0

for line in dictionaryfile:
if line.startswith('description:'):

if 'z' in line[12:]:
totala += line[12:].count('a')

return totala

This is an example of a simple programming exercise
that has been solved exactly as stated.

The subprogram is written in pseudo code, any
resemblance to existing programming languages is
purely coincidental.

The hidden assumption of the programmer is that
none of the conditions set will ever change.

Page 87

25

Page.25
© 2005 Bruker AXS BV. All Rights Reserved

Example of future-proof coding (2)

This subroutine needs changes if:
The dictionary is no longer on a file
The dictionary is stored in a set of files

The dictionary file is no longer in a line-by-line format
The record structure of the dictionary changes

The character encoding of the dictionary changes from ASCII to UTF16
The conditions placed on the counting are changed

Something else than counting would take place

We would need to count 'c' characters

A lot of imaginary future developments will require
changes to this code.

In fact, the differenced can be grouped into five
different groups:

•The location of the data

•The format of the data

•Data filtering

•Data analysis

•Parameters of the analysis

Does this suggest how the initial code example can be
improved?

26

Page.26
© 2005 Bruker AXS BV. All Rights Reserved

We need to split responsabilities

Four components:
Data source
Data decoder
Data filter
Data processor with parameters

Yes! The software should be split into independent
components that work together to perform the given
task. A change in the enviroment will then require
only a change in one of the modules.

27

Page.27
© 2005 Bruker AXS BV. All Rights Reserved

Advantages of the modular approach

Multiply instead of add up; re-use instead of copy code.
4 sources, 4 decoders, 4 filters and 4 analyzers make 256 different
combinations, not 16 (or 4)

Algorithm abstraction
While writing a filter, it is not important to know the source of the data

Parallel development
Once the interfaces have been defined, different people can work on the
code in parallel without discussing the implementations all the time.

Expert developers
Let a database manager write good database access code, and an
dictionary specialist write good filters.

Several advantages are gained by this modular
approach.

28

Page.28
© 2005 Bruker AXS BV. All Rights Reserved

Lets apply factoring to crystallography

goniometer positions

goniometer motions

other instrument operations

low-level communication protocols

high-level instrument protocol drivers

crystallographic data format decoders/writers

data collection strategies

diffraction calculations and X-ray tracers

...

•Goniometer positions:get from and set to hardware,
ask whether hardware can reach a position, convert
between different types.

•Operations on the hardware: scans, setting generator
or cryostat. These can be combined into an experiment
through a common application programmers interface.

•Communication protocol at a low level: connection
protocol to the hardware, high-level is command
interpretation.

•Data file formats: Program interpretation of different
reflection file formats or diffraction image formats
such that they can be used interchangeably.

The actual implementation of each module is
completely hidden behind a common interface. It is
therefore possible to use external programs as well as
internal implementations in a completely transparent
fashion

Page 88

29

Page.29
© 2005 Bruker AXS BV. All Rights Reserved

Apply factoring to diffraction images

Image transfer protocols

Image file formats (read/write)

Image sources

Calibration filters

Image processors

Image display

Image filters for display

Image transformations

We will use diffraction images as a more involved
example of how we can factor code into different
modules that can be made responsible for their own
part of the work and to see what kind of gain we will
have when we do that.

Listed here are a number of different tasks that can be
performed on diffraction images.

30

Page.30
© 2005 Bruker AXS BV. All Rights Reserved

Structure

Source

Filter

Sink

Sink

Source

Now, instead of performing all operations that need to
be performed on a diffraction image in a program in a
simple succession of calls, we can see the program
structured as modules that pass copies of the data and
metadata around.

We can see three different kinds of modules on an
abstract level: sources, filters and sinks. Since a filter
can be seen as a both a sink and a source, the protocol
that is used for communication of an image from one
to the other module (indicated with the arrows) is
always the same

31

Page.31
© 2005 Bruker AXS BV. All Rights Reserved

Structure

Image file
reader

Correct ADC0

Display

Here is a simple example of such a train of three.

32

Page.32
© 2005 Bruker AXS BV. All Rights Reserved

The “ImageSink” interface

Begin()

BeginSeries(metadata)

BeginImage(metadata)

Header(metadata)

Frame(data)

EndImage()

EndSeries()

End()

The communications protocol consists of a begin and
an end message with zero or more series of zero or
more diffraction images in between.

An imagesink is an object that can accept these
messages (has these methods). An imagesource is an
object that can emit these messages (call these
methods).

Page 89

33

Page.33
© 2005 Bruker AXS BV. All Rights Reserved

Sources

File readers for different file formats

Network reader

Database reader

Hardware system connections for different architectures

Traditionally, application software always reads data
from a diffraction image file. But if we have the
flexibility in our software, we can think of several
kinds of sources to be implemented. By the
modularity magic, any program can use any source!

34

Page.34
© 2005 Bruker AXS BV. All Rights Reserved

Filters

Byte swap

ADC0 correction

Dark current correction

Air absorption

Sensitivity correction

Distortion correction

Many filters are traditionally implemented in a
monolithic way. Separating each filter operation into
its own module makes it possible to compose filters
easily in ways that were not imagined before.

One example here is the way a sensitivity correction is
measured for a CCD detector. This is normally done
with a flood-field image. Obviously, the calibration
image should not be corrected for detector sensitivity,
but it should be corrected for other effects like the
dark current of the detector.

35

Page.35
© 2005 Bruker AXS BV. All Rights Reserved

Sinks

Display

Write to file

Write to a database

Peak search

Peak integration

Image sinks are normally the operations that an
application is written for.

In the modular case the actual procedure will use
object or module composition to build an application.

Note how easy it is now in theory to make a program
that converts between any two different image file
formats! One just needs to plug an image file reader
source to an image file writer sink....

Different applications will use different compositions
of sources and sinks. There is no forced code
duplication anywhere.

36

Page.36
© 2005 Bruker AXS BV. All Rights Reserved

Special sources/sinks

Forking
Send the same image to multiple sinks

Accumulation
Accumulate multiple images to create one (correlation, averaging)

Protocol logging or verification

For house-keeping, we can make some special sources
and sinks that make the composition of these objects
even more flexible.

Protocol logging and verification sinks make it
possible to make debugging the communication
between sources and sinks a breeze.

Page 90

37

Page.37
© 2005 Bruker AXS BV. All Rights Reserved

Traditional data collection software

Disk file

Hardware

Display

What do we gain by the source/sink approach?

This is a simple diagram that shows how traditional
data collection software works. There are two separate
program threads: one is connecting to the hardware
and is writing all the measured data and metadata to a
disk file, and a second one is reading the disk file to
display it on the fly.

38

Page.38
© 2005 Bruker AXS BV. All Rights Reserved

Software using ImageSinks

Hardware

Disk file

HardwareSource

Fork

Display

FileSink

Verify

The same software written with the image sink
paradigm could look like this.

Red arrows are the image sink protocol.

Fork is a house-keeping module,

Verify is a debugging module.

39

Page.39
© 2005 Bruker AXS BV. All Rights Reserved

Analyze data on-line

Hardware HardwareSource

Fork

Analyze

Verify

However, thanks to the imagesink protocol, it is now
also possible to compose a completely different
application that analyses data on-line without ever
storing the information on disc.

Gluing the objects together in an object-oriented
programming language is as simple as drawing the
arrows in a powerpoint slide!

40

Page.40
© 2005 Bruker AXS BV. All Rights Reserved

On-line analysis in pseudo code

hw = hardware.connect()

analyzer = AnalyzerSink()

verify = VerifySink()

fork = SinkFork([verify, analyzer])

source = hw.Source(fork)

hw.go()

or

hw = hardware.connect()

hw.Source(SinkFork([VerifySink(), AnalyzerSink()]))

hw.go()

This is the diagram of the previous slide written in
pseudo-code, both in a a way that each of the objects
stays available to the program, and in a more compact
way that hides more of the internal structure of the
sinks.

Page 91

41

Page.41
© 2005 Bruker AXS BV. All Rights Reserved

And now....

Now that we have all this beautiful code, we
make it accessible through the buttons of a

GUI

...or...

42

Page.42
© 2005 Bruker AXS BV. All Rights Reserved

When is a GUI really handy? (1)

An operation you perform three or thirty
times in a row screams for a programming

interface.

A GUI is really handy for operations that you
perform manually once a month

An operation you need to perform
automatically can not have a GUI

43

Page.43
© 2005 Bruker AXS BV. All Rights Reserved

When is a GUI really handy? (2)

A GUI that supports every possible
operation that might be useful to someone
someday is a nightmare for casual users

A GUI is really handy if it can help you
perform basic operations

Typical examples of GUI's: word processor or
spreadsheet.

Windows itself, with 500-page books with
“Everything you ever wanted to know”, and
magazines full of “tips and tricks for using Windows”
is a good example of why it is not advisable to use a
GUI for every operation.

Scripting is good!

44

Page.44
© 2005 Bruker AXS BV. All Rights Reserved

When is a GUI really handy? (3)

A GUI can be annoying in cases where the
flow is decided by the program, such as in

case of automation

A GUI is really handy if the control flow is in
the hands of the human controller

If scripting does the work, the demand for a GUI
becomes minimal. One will still need to look at the
data, but that is not really a GUI.

The real power of a GUI program is unleashed when
all operations of the program can be performed in any
order, depending on what the user wants to do next.

Use intelligent defaults: Make sure that if the
program has a good idea on what the user would want
to do, that the default parameters are properly filled
in!

Page 92

45

Page.45
© 2005 Bruker AXS BV. All Rights Reserved

Extension language?

We do not want a GUI that supports every possible
operation.

We do want to be able to perform the same operation many
times in a row in an automated fashion.

We want to be able to automate decisions and control flow.

Is the solution an extension language?

Will we write our own extension language?

In an earlier stage we have seen that we need to be
more careful with programmer time than with
execution time.

Making an extension language has been very popular
for a while (e.g. in the Enraf-Nonius CAD4 software)
but it is not very efficient, and it is very difficult to
write a good and complete extension language.

46

Page.46
© 2005 Bruker AXS BV. All Rights Reserved

A programming library!

We choose a programming language

We make a crystallographic library accessible
from that language

We write command line tools that use the library

We write GUI's that use the library

Using a GUI designer from the beginning is a
dead end!

There are very nice developer tools available now,
where the development consists of

•Designing a GUI

•Adding subprograms under the buttons

Programs written in such a way are terminally
attached to the GUI: it will never be possible to run
the programs from a script, and extremely difficult to
change the GUI toolkit at a later stage.

If a GUI developer is used, it should be made as a
very thin layer over the top of existing code.

47

Page.47
© 2005 Bruker AXS BV. All Rights Reserved

A users point of view

For normal weekly usage:

GUI access

For routine daily or hourly usage:

Command line tools

For advanced special-purpose usage:

Command line tools

For very advanced usage:

Write a special application

Special applications can be used for routine operations
as well if required.

Special applications could be either command line, or,
if really needed, a GUI.

48

Page.48
© 2005 Bruker AXS BV. All Rights Reserved

Questions the day after....

I know I changed something yesterday, what was it again?

Why does it ask me to save? I didn't change anything?

How come I can't reproduce these numbers now?

Did I integrate all the data?

Who the @#$% did touch that parameter?

Page 93

49

Page.49
© 2005 Bruker AXS BV. All Rights Reserved

And their answers...

Logging

Access control

Auditing

50

Page.50
© 2005 Bruker AXS BV. All Rights Reserved

Formally

Good Laboratory Practice (GLP, GxP)

Keep a proper action log

A step further: CFR21/11

Requires logging in to the control software

Requires an unmodifyable audit trail

Requires digital signatures on all data

Requires that programmers know about CFR21/11

In its formality CFR21/11 adds annoyance to the
process.

Pharmaceutical companies are bound to CFR21/11,
especially in their process control, and a little less in
their R&D.

51

Page.51
© 2005 Bruker AXS BV. All Rights Reserved

Conclusions

Try to predict the future

Describe all things that could change in metadata

Avoid hidden dependencies and assumptions

Modularize, and hide implementations

Do not make only a GUI

Hidden assumptions are the goal of a programming
exercise in the workshop.

Page 94

1

Page.1
© 2005 Bruker AXS BV. All Rights Reserved

Operating Hardware
Rob Hooft, Bruker AXS BV, Delft

rob.hooft@bruker-axs.nl

2

Page.2
© 2005 Bruker AXS BV. All Rights Reserved

Distribute the responsabilities

ApplicationSystem

Server Client

Time
Beam properties
Goniometer setup
Goniometer position(s)
Collision avoidance
Detector properties
Sample conditions

Unit cell
Diffraction limit
Measurement strategy

We have seen this image earlier, there with the
intention of making clear that the application should
not deal with instrument parameters, but be able to
deal with any set of relevant instrument parameters.
Now we look at it from the other side: the server
system will need to take care of all of the hardware-
dependent issues of a crystallographic experiment.

3

Page.3
© 2005 Bruker AXS BV. All Rights Reserved

Distribute the responsabilities

ApplicationSystem

Server Client

Responsible for how the
system is built
Responsible for how the
system can be used
Responsible for system
integration

Responsible for how the
experiment is performed

4

Page.4
© 2005 Bruker AXS BV. All Rights Reserved

Instrument

Instrument

CryostatGoniostat

Detector

Monochromator
Sample robot

Generator

Shutters

A crystallographic instrument consists of many parts that should
collaborate. Having all of it integrated into one instrument is not
strictly necessary, but it does allow experiments that would
otherwise be absolutely impossible.

The minimum integrated system consists of a shutter, a goniostat
and a detector (if the detector has an electronic shutter, the
shutter can even be left out, but CCD dectectors do not have that
possibility.

Integrating the cryostat will allow one to do measurements at
different temperatures in an automated fashion, and also to find
out afterwards at what actual temperature a measurement was
performed.

Integrating the generator will allow one to do measurements at
different generator settings in an automated fashiom, and also to
find out afterwards at what actual settings an experiment was
performed.

Integrating a sample robot will allow one to do measurements on
a series of samples in an automated fashion, and also to find out
afterwards for which sample an experiment was performed.Page 95

5

Page.5
© 2005 Bruker AXS BV. All Rights Reserved

We all speak different languages...

Instrument

CANRS232

Digital I/O

A/D + D/A
SCSI

I2O

USB

The big challenge for the integration of all of the parts
into a properly configured instrument is that all the
protocols differ, and different systems use other
protocols. Tomorrows shutter may not use the same
protocol as the one used today.

It becomes even more complicated if some
components share one (RS232) connection like a
generator that must be addressed via a goniostat, or a
shutter that must be controlled via a generator.

6

Page.6
© 2005 Bruker AXS BV. All Rights Reserved

Differences between crystallographic machines
are as big as those between a DVD player and a

toaster...

7

Page.7
© 2005 Bruker AXS BV. All Rights Reserved

The crystallographic application software that
controls the experiment should not know about

these differences

8

Page.8
© 2005 Bruker AXS BV. All Rights Reserved

Drivers

Independent drivers
No changes needed in modules that control an unchanged component

Use driver chains to uncouple responsibilities
Communication protocol and command protocol are often separate

Multiple drivers for each component
Determine an “abstract” component interface

Implementation hiding

Software engineers are often consulted only after
the hardware has been built or bought.

Page 96

9

Page.9
© 2005 Bruker AXS BV. All Rights Reserved

Responsabilities of the server

Time and timing
Beam properties
Goniometer setup
Goniometer position(s)
Collision avoidance
Detector properties
Sample conditions

We have already listed some responsabilities of the
server software. We will now go briefly into each of
the listed issues.

10

Page.10
© 2005 Bruker AXS BV. All Rights Reserved

Time and Timing issues

Motor speed

Angular position

Shutter closeShutter open
Detector enable Detector readout

Timing issues are critical to the accuracy of the measurement. In a typical single
crystal diffraction experiment the crystal is rotated with a constant speed during
the measurement. Because the motors can not accellerate infinitely fast they are
actually spun back from the starting position to ramp up their speed, and when
they reach the starting position at the programmed rotation speed, the shutter will
be opened. When the end position of the rotation has been reached, the shutter
will be closed, the motors will be ramped down, and the CCD detector will be
read out.

11

Page.11
© 2005 Bruker AXS BV. All Rights Reserved

Beam properties

The properties of the X-ray beam depend on the X-ray tube
(RAG/Sealed, type), optic (monochromator/multilayer
optic), and collimator holes.

The application program should not be concerned by the
exact hardware; instead the beam must be described in the
form of some reusable parameters that can be used to
describe any future and past beam

Wavelength

Polarization

Convergence/Divergence

Slits

Pinholes

12

Page.12
© 2005 Bruker AXS BV. All Rights Reserved

Goniometer setup

Cascade of axes

Alignment issues

Zero-point calibration

Maximum/minimum reliable speed

Maximal acceleration

Which axes, and connected how

Alignment

How fast/slow can the axes move

How accurate is each axis

Page 97

13

Page.13
© 2005 Bruker AXS BV. All Rights Reserved

Goniometer positions

Conversions between different formalisms

Where are you, where can you go

Virtual goniostats: rotate around non-existing axes

If any conversion is done by the system, this may mean problems later.

Simple example: a rotation from phi=0 to phi=90, was that a positive rotation
around 90 degrees? or 450 degrees? or -270 degrees?

Interpolation is a different issue:

•Kappa <-> Chi conversion

•Virtual goniostat

We assume that a rotation is linear in speed in the given axes!

Where are you, where can you go: -140 to -90 and +60 to +140 in omega, So: we
can not scan from -130 to +130!

14

Page.14
© 2005 Bruker AXS BV. All Rights Reserved

Collision avoidance

Where can we go

How do we get there: efficient, safe

Margins
Inaccuracies in description and in the mechanics

High-speed scans

Escape from a collision

Different sample stages

Objects in the way

The more complicated the system, the more areas
there are that can not actually be reached.

To calculate where one can go and where not is a very
simple calculation in principle, it just requires an
accurate description of how the machine looks. The
accuracy is limited by mechanical tolerances and by
how much time one wants to spend calculating.

It is much more difficult to calculate an efficient route
from one to another point if not all points on the
intermediate straight track are accessible.

15

Page.15
© 2005 Bruker AXS BV. All Rights Reserved

Detector properties

Dark current

Bad pixels

Distortion and alignment

Sensitivity

Accuracy

Point spread

Some corrections applied at the application level?

16

Page.16
© 2005 Bruker AXS BV. All Rights Reserved

Distortion correction

pixel coordinate system is 2-dimensional

mm coordinate system is 3-dimensional

Use of other coordinate systems does not make sense.

Distortion and alignment of the detector are “inseparable”

Transformation for the distortion uses
spline
Normalized polynomials

Chebychev polynomials

We had a talk about crystallographic coordinate
systems, but the instrument has coordinate systems as
well. The goniometer position is one, another is the
detector that can be seen as an array of pixels, or as an
array of 3D diffracted rays.

The transformation between these two consists of
distortion correction and alignment of the detector.

Page 98

17

Page.17
© 2005 Bruker AXS BV. All Rights Reserved

Application writer's dream

The detector should be ideal:
Perfectly aligned
No point spread

No distortion
Same sensitivity everywhere

No dark current
Counting statistics

Not sensitive for anything but the X-rays from the sample.

Based on the image of an imperfect detector, one can
correct for all effects in order. But is that really the
way to go? Some of the corrections will really
deteriorate the data: e.g. correcting for image
distortion will make the pixel size larger than it really
is (adding noise!)

Counting statistics is lost by corrections.

Furthermore it is possible during the integration to be
“intelligent” about what is happening. Correcting for
an unreliable pixel inside a peak can use a different
algorithm than in the background.

Also, one should make an important distinction
between how the image looks to the naked eye, and
the quality of the integrated data. The eye is sensitive
(and extremely sensitive) only to nuances in the
background, and not at all to peak height!

18

Page.18
© 2005 Bruker AXS BV. All Rights Reserved

Sample conditioning

Temperature

Humidity

Pressure

Magnetic field

...

Sample conditioning may look a trivial requirement
for most people, as the instrument may be operated at
the same condition 99% of the time, but integration
will give a proper reporting in the metadata, and is
very useful in an inaccessible synchrotron system. It
also allows for automation.

19

Page.19
© 2005 Bruker AXS BV. All Rights Reserved

Not all responsibilities are easily appointed to the
instrument or to the application!

We discussed a lot of the responsabilities of the
server, but it is not always obvious where to place
features.

An example are human interpretations of crystal
looks. Another is the data collection strategy that
depends on the detail of the instrumental buildup.

20

Page.20
© 2005 Bruker AXS BV. All Rights Reserved

Conclusions

Hardware development is as unpredictable as application
requirements

Keep a clear eye on whether the instrument or the
application is responsible for an issue

Modularizing allows for expert written code and
maintainability

Page 99

IntegrationIntegration
of 2D diffraction imagesof 2D diffraction images

James W. Pflugrath1

Rigaku/MSC, Inc., The Woodlands,
Texas, USA

A diffraction imageA diffraction image

a*

Beam

Oc OR

d*s

s0

Ewald
sphere

Detector

x

y

Ob

|s0| = |s| = 1/
s0 + s = d*= RGCBh
s = f(Px,y, , Detector position)

ts

Px,y

Diffraction mathDiffraction math

s0 + s = d* = RGCBh
h Miller index (h,k,l)
B Crystal orth. matrix (a,b,c,)
C Crystal orientation matrix
G Crystal goniometer matrix
R Rotation axis matrix
d* Reciprocal lattice vector
s0 Direct beam wavevector
s Scattered beam wavevector

What you doWhat you do

•• Pick up crystal in loop, plunge into LNPick up crystal in loop, plunge into LN22

•• Put crystal on magnet on Put crystal on magnet on goniometergoniometer headhead
and optical alignand optical align

•• Take a diffraction image or twoTake a diffraction image or two
•• Look at image(s) and decide whether to Look at image(s) and decide whether to

proceedproceed
•• Collect images, index, integrate, scaleCollect images, index, integrate, scale

Page 100

Detector Detector -- CalibrationCalibration

Stanton, et al. (1992) Stanton, et al. (1992) J.J.
ApplAppl.. CrystCryst.. 2525, 549, 549--558.558.

Dark currentDark current
NonNon--uniformity of responseuniformity of response
Spatial distortionSpatial distortion
Bad pixelsBad pixels
ZingersZingers

Reflections Reflections (from images)(from images)

•• FindFind
X,Y,

•• IndexIndex
Unit cell
Orientation

•• RefineRefine
Crystal
Detector
Source

•• Predict / StrategyPredict / Strategy
Rot start, end
Completeness

•• IntegrateIntegrate
hkl, Intensity, I

Profile fitting

•• ScaleScale
Rmerge
| 2|

IntegrateIntegrate

•• Predict reflection positionPredict reflection position
•• Put box around reflectionPut box around reflection
•• Assign pixels to Peak and BackgroundAssign pixels to Peak and Background
•• Sum Peak, subtract BackgroundSum Peak, subtract Background
•• ProfileProfile--fitfit
•• Apply correction factorsApply correction factors

Direct beam positionDirect beam position

•• Direct beam shotDirect beam shot
•• Powder ringsPowder rings
•• Ice ringsIce rings
•• SymmetrySymmetry

dtdisplaydtdisplay overlayoverlay

Beam center off (00l off by one) Beam center correct

Detail of 454 Angstrom axis Systematic absences and 2-fold

RefineRefine

•• ssoo ++ ssii == RGCBhRGCBh == dd**
ii

•• MinMin 22 == wwii ((ssii,,obsobs -- ssi,calci,calc))22

== wwii[[ssii,,obsobs -- ((RGCBhRGCBh -- ssoo)])]22

•• Crystal (Crystal (BB,, CC):): a, b, c, a, b, c, ,, ,, Rot1, Rot2, Rot3Rot1, Rot2, Rot3

•• Detector (Detector (ssii,,obsobs == f(f(DetDet, X, X,,YY,, ,, RR
Beam center, Distance, Rotations (2

•• Source (Source (ssoo):):Direction, wavelengthDirection, wavelength

Page 101

IntegrateIntegrate

•• Predict reflection positionPredict reflection position
•• Put box around reflectionPut box around reflection
•• Assign pixels to Peak and BackgroundAssign pixels to Peak and Background
•• Sum Peak, subtract BackgroundSum Peak, subtract Background
•• ProfileProfile--fitfit
•• Apply correction factorsApply correction factors

IntegrateIntegrate -- PredictPredict

d* = xr = RGCBh xr - s0 = s P(x,y)
Rocking curve

Ri = 2L[d*cos + (/)d*sin]
Lorentz factor

L = | 1.0 / (xr (r1 s0)) |
Polarization factor

p = 1 - [Pn * (s sn)2 + (1- Pn) * (s np)2]
Oblique incidence correction factors

O1 = (1 - exp(fobl)) / (1 - exp(fobl/ cos)
O2 = exp(fobl)) / exp(fobl/ cos)

KabschKabsch (1988) (1988) J. J. ApplAppl.. CrystCryst.. 2121, 916, 916--924.924.
Zaleski, Wu & Coppens (1998) J. Appl. Cryst. 31, 302-304.

IntegrateIntegrate -- Put box aroundPut box around IntegrateIntegrate -- Put box aroundPut box around

A fully-recorded spot
is entirely recorded
on one image

Partials are
recorded on two or
more images

“Fine-sliced” data has spots
sampled in 3-dimensions

Perhaps best processed with a 3D
program (eg d*TREK, XDS)

Elspeth Garman, Oxford

IntegrateIntegrate -- BackgroundBackground

Background: LeastBackground: Least--squares fit to a planesquares fit to a plane

Page 102

Refine (crystal mosaicity)Refine (crystal mosaicity)

FWHM

FW baseline

Rocking curve
Ri = 2L[d*cos + (/)d*sin]

FWHM

FW baseline

Refine (crystal mosaicity)Refine (crystal mosaicity)

Image width

Mosaicity
just right:

Found spots
predicted

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Image width

Mosaicity too
narrow:

Some spots
not predicted

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Image width

Mosaicity
just right:

Found spots
predicted

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Image width

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Mosaicity too
large:

Too many
spots
predicted

Page 103

Image width

Mosaicity
just right:

Found spots
predicted

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Image width

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Refinement
wrong:

Spots shifted
in

Image width

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

Refinement wrong:

Spots shifted in

Increase mosaicity
to get found spots
predicted

Image width

Mosaicity just right:

Found spots predicted

No excess predicted

Mosaicity at a minimum

Not in image,
not predicted

Not in image,
predicted

Found in image,
predicted

Found in image,
not predicted

ImagesImages -- ExpectationsExpectations

•• Poisson countingPoisson counting
Quantity Q, var(Q) = Q, (Q) = Q1/2

•• Simple integrationSimple integration
Intensity = (Peak - Background)
var(Int) = var(Peak)

+ var(Background)

1 image

2 images

3 images

Phi rotation

C
o

un
ts

Peak

Back-
ground

IntegrateIntegrate -- Profile fittingProfile fitting

Two major assumptionsTwo major assumptions
1. Reflections have the same 1. Reflections have the same

profile:profile:
Same shapeSame shape
Same distributionSame distribution

2. Reflections are predicted 2. Reflections are predicted
accuratelyaccurately

Diamond (1969) Diamond (1969) ActaActa CrystCryst A25A25, 43, 43--55.55.
Ford (1974) Ford (1974) JJ ApplAppl CrystCryst 77, 555, 555--564.564.
RossmannRossmann (1979)(1979) JJ ApplAppl CrystCryst 1212, 225, 225--238.238.
KabschKabsch (1988) (1988) JJ ApplAppl CrystCryst 2121, 916, 916--924.924.

Page 104

IntegrateIntegrate -- Profile fittingProfile fitting IntegrateIntegrate -- Profile fittingProfile fitting

IntegrateIntegrate -- Profile fittingProfile fitting IntegrateIntegrate -- Profile fittingProfile fitting

Reference profile = Reference profile = SuperpositionSuperposition of pixel valuesof pixel values

Poor predictions Poor predictions

= Poor superposition= Poor superposition
Good predictions Good predictions

= Good superposition= Good superposition

IntegrateIntegrate -- Profile fittingProfile fitting IntegrateIntegrate -- Profile fittingProfile fitting

Two major assumptionsTwo major assumptions
1. Reflections have the 1. Reflections have the

same profile:same profile:
Same shapeSame shape
Same distributionSame distribution

2. Reflections are 2. Reflections are
predicted accuratelypredicted accurately

Page 105

IntegrateIntegrate -- Profile fitting IIProfile fitting II

Bad predictions = Bad reference profileBad predictions = Bad reference profile

BAD! GOOD!

IntegrateIntegrate -- Profile fitting IIIProfile fitting III

f =
i vIc

p
i

ii
2)(

i v
p

i v
cp

I
i

i

i

ii

prof 2

VariationsVariations

Integrate in 2D, later postIntegrate in 2D, later post--refine and sum partialsrefine and sum partials
MOSFLM, MOSFLM, denzodenzo, HKL2000, HKL2000

Integrate in 3D, refine as you go alongIntegrate in 3D, refine as you go along
XDS, MADNES, d*TREKXDS, MADNES, d*TREK

Box & spot size Box & spot size –– user input or automatic; fixed or user input or automatic; fixed or
plasticplastic

More detailsMore details

How much are Bragg peaks How much are Bragg peaks rasterizedrasterized??
What about powder rings such as from ice?What about powder rings such as from ice?
Wide slice 5 degree images? Wide slice 5 degree images?

Or fine slice 0.3 degree images? Or fine slice 0.3 degree images?
Or 0.5 degree images?Or 0.5 degree images?

What about systematic and erratic errors? What about systematic and erratic errors?
Bad pixels, shadows, moving shadows Bad pixels, shadows, moving shadows –– mask them outmask them out
ZingersZingers

KK 11/K/K 22 at high 2at high 2 -- shift vectors are calculated and appliedshift vectors are calculated and applied
Scale and get statistics as you go alongScale and get statistics as you go along
Update refinement continuallyUpdate refinement continually
Detector gainDetector gain
Spot overlapSpot overlap

Which bottle has Which bottle has naturalenaturale water and which has sparkling?water and which has sparkling?

ScalingScaling

•• Correction of systematic errorsCorrection of systematic errors

•• Outlier rejectionOutlier rejection

•• Validation of sigmasValidation of sigmas

222
addinmulinadj EIE

ScalingScaling

Correction of systematic errorsCorrection of systematic errors
different crystal volumes
different exposure times
different detectors
radiation damage
wavelength dependent factors
different or fluctuating source intensities
different absorption due to different paths
through the crystal and other matter

Page 106

http://nirt.pa.msu.edu/

Atomic pair distribution function (PDF) analysis:
What, When, Why, How?

S.J.L. Billinge
Department of Physics and Astronomy,

Michigan State University

http://nirt.pa.msu.edu/

Goals of the Talk

• PDF: what, when, why, how

• Software Projects and Software Engineering

– DANSE project

• Some provocative remarks

http://nirt.pa.msu.edu/

PDF: why?

• When your crystals have defects that you care about
– “Crystals are like people, it is their defects that make them interesting”

(attributed to F. C. Franck)
– Defects can be static, dynamic (phonons), chemical disorder, displacive

disorder…

• When your crystals aren’t crystals at all
– Short-range order only (glasses, liquids)
– Intermediate range order (nanoparticles, nanocrystallinity)

• Extracting this information is
– Important
– Difficult
– Not crystallography (by definition, defects break periodicity), though

MANY crystallographic concepts are fundamentally useful
– “The nanostructure problem”

http://nirt.pa.msu.edu/

PDF: what

Cross section of 50x50x50 unit cell model crystal with 70% black atoms and 30% vacancies !
Thanks to Thomas Proffen for the simulations!

http://nirt.pa.msu.edu/

Bragg peaks are blind ..

Bragg scattering: Information about the average structure,
e.g. average positions, displacement parameters and

occupancies.

http://nirt.pa.msu.edu/

Page 107

http://nirt.pa.msu.edu/

Obtaining the PDF

Raw data

Structure function

QrdQQSQrG sin]1)([2)(
0

PDF

http://nirt.pa.msu.edu/

Observing Domains in the PDF

r1 <<

r2 ~ r1

r2

Intra-domain structure Inter-domain structure

http://nirt.pa.msu.edu/

What is the PDF?

•Sit on an atom and
look at your
neighborhood

•G(r) gives the
probability of finding a
neighbor at a distance r

•PDF is experimentally
accessible

http://nirt.pa.msu.edu/

Quantitative modeling

• Refinement of local structure using least-squares methods
• Excellent quantitative agreement for intra- and inter- particle order
• Quantitative fits by Ming Lei and Mike Thorpe

0 10 20 30 40
r(Å)

G(r)

http://nirt.pa.msu.edu/

PDF: when?
Defects in crystals

In0.17 In0.33

In0.50 In0.83

In1-xGaxAs semiconductor alloy:
What is the “real” structure around dopant
atoms?

Behaves like: local structure
average structure

r = 0.014 nm

Petkov et al., Phys. Rev. Lett. 83, 4089
(1999);
Jeong et al. Phys. Rev. B 63, 205202
(2001)

http://nirt.pa.msu.edu/

Charge localization in the lattice: polarons
in La1-xCaxMnO3

Paramagnetic Insulator

Ferromagnetic
Metal

CMR

Phase diagram: S-K.Cheong
et al.

Page 108

http://nirt.pa.msu.edu/

MI(T) transition is polaronic localization-
delocalization transition

• PDF peaks are broad and low when
polarons are present

• PDF peaks are narrow and sharp when
polarons are absent

• SJLB et al, Phys. Rev. Lett. 77, 715
(1996).

http://nirt.pa.msu.edu/

What do the polarons look like?

• How does the local structure
change on going through the
MI transition?

http://nirt.pa.msu.edu/

What do the polarons look like?

• How does the local structure
change on going through the MI
transition?

• Software for Data Transformations:
corollary to Kevin Cowtan’s talk
yesterday

http://nirt.pa.msu.edu/

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

0

1 0

2 0

3 0

4 0

5 0

6 0

Q (Å -1)

(b)

In
te

ns
ity

 (a
.u

.)

W a v e v e c to r Q (Å -1)

1 0

2 0

3 0

4 0

5 0

6 0 (a)

Q (Å -1)
1 0 1 1 1 2 1 3

1 .5

1 0 1 1 1 2 1 3
1 .0

1 .5

2 .0

PDF when?
When your chemistry colleagues give you muck

like this:

• Nanocrystalline materials:

Nanocrystalline
V2O5.nH2O xerogel

Crystalline V2O5

• Samples from the group of Mercouri Kanatzidis, MSU Chemistry

http://nirt.pa.msu.edu/

Structure of xerogel

• Xerogel has bilayers of edge-shared VO6 octahedra separated by water
molecules

• Notice loss in peak amplitude above 11.5 Å => turbostratic disorder

0 2 4 6 8 10 12 14 16 18 20

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

r (�)

(b)R
ed

uc
ed

 P
D

F
G

(r
)

r (�)

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

r (�)

(a)

0 10 20 30 40 50
-0.5
0.0
0.5

0 10 20 30 40 50

0.0

0.5

http://nirt.pa.msu.edu/

“Nanostructure” in the xerogel

• Turbostratic disorder seen in the PDF consistent with
bent and tangle fibres V. Petkov, et. al., J. Am. Chem. Soc. 121,

10157 (2002).

Page 109

http://nirt.pa.msu.edu/

Structure of intercalants: inorganic
electride

• With Valeri Petkov, Tom Vogt
and Dye group

• Zeolite ITQ-4 has 1D channels
of ~7Å diameter

• Cs is intercalated
• X-ray data from NSLS-X7A

0 2 4 6 8 10 12 14 16 18 20

-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C s4.6S i32O 64

Cs3.6S i32O 64

r (Å)

C
s

D
iff

er
en

tia
l P

D
F

G
(r)

S
tru

tu
re

 fu
nc

tio
ns

 Q
[S

(Q
)-1

]

Wave vector Q(Å-1)
0 2 4 6 8 10 12 14 16 18 20

-2

0

2

4

6

8

10

Cs4.6Si32O64

Cs3.6Si32O64

Si32O64(b) •Cs forms Cs+ in
zig-zag pattern
•Electrons are
counter-ions

http://nirt.pa.msu.edu/

RAPDF Geometry

http://nirt.pa.msu.edu/

Rapid Acquisition PDFs
Fast x-ray PDFs

– Four orders of magnitude decrease in data
collection time!

– Nickel data, 1s collection time, Qmax 28 Å-1

– Developed in collaboration with Xiangyun
Qiu, Pete Chupas, Jon Hanson, Peter Lee
and Clare Grey

http://nirt.pa.msu.edu/

Computational issues: A Brief History of
PDF

• Pieter Debye, 1912:

• Fritz Zernike and Jon Prins,
1927:

http://nirt.pa.msu.edu/

History

Tarasov, L. P., and Warren, B. E., (1936) J. Chem.
Phys., 4, 236.

X-ray PDFs of molten sodium

Debye and Menke, Z. Phys. (1930)

PDFs of mercury

http://nirt.pa.msu.edu/

History of PDF

• Early 1930’s
– Computer: slide rule
– Time to Fourier transform: few days
– Time to paper: 6 months

Page 110

http://nirt.pa.msu.edu/

History

Disordered Carbon

Warren, B. E., (1934) J.
Chem. Phys. 2, 551.

Franklin R. E. (1950) Acta
Crystallogr. 3, 107

Franklin R. E. (1951) Proc.
R. Soc. London A,.
209, 196

http://nirt.pa.msu.edu/

History of PDF

• 1930’s
– Computer: slide rule
– Time to Fourier transform: few days
– Time to paper: 6 months

• 1950’s
– Computer: Beevers Lipson strips + pen + paper
– Time to Fourier transform: “The whole procedure is very simple

and it is readily performed in three or four hours”-B.E. Warren
– Time to paper: 6 months

http://nirt.pa.msu.edu/

Beevers Lipson strips

Gould BCA
newsletter

http://nirt.pa.msu.edu/

History

PDFs from crystalline
Aluminum

R. R. Fessler, Roy Kaplow and B.
L. Averbach, Phys. Rev. 150,
34 (1966).

First use of Reverse-
Monte-Carlo
refinement

Kaplow R, Rowe, T. A. and
Averbach, B. L. (1968), Phys.
Rev. 168, 1068.

http://nirt.pa.msu.edu/

20 years later…

Combine Monte-Carlo modelling with
crystalline PDFs to get real,
quantitative, local structural
information: the first such paper was
on Tl high-Tc superconductors

B. H. Toby, T. Egami, J. D. Jorgensen, and M.
A. Subramanian, Phys. Rev. Lett. 64, 2414-
2417 (1990)

And yet 10 years
on Brian’s still
confused about
the subject

http://nirt.pa.msu.edu/

History of PDF

• 1930’s
– Computer: slide rule
– Time to Fourier transform: few days
– Time to paper: 6 months

• 1950’s
– Computer: Beevers Lipson strips + pen + paper
– Time to Fourier transform: “The whole procedure is very simple

and it is readily performed in three or four hours”-B.E. Warren
– Time to paper: 6 months

• 1980’s
– Computer: DEC microvax
– Time to Fourier transform: ~15 mins.
– Time to paper: 6 months

Page 111

http://nirt.pa.msu.edu/

PDF of crystals: the early days

• Microvax: 16Mb memory, 100Mb
hard drive

• PDFvax: 6 students, 2
postdocs, no crashes

• Picture credit: Tom Carlson
Location: Williamsburg, VA

• Well, my employer was re-modeling the
basement and they were going to throw
it out! Look at it! Would you let them just
toss it! I think not. (And to think, they
kept the AS/400! What were they
thinking?) So I somehow wedged both
towers into my Volkswagen and went to
pick up my wife at her work. I could tell
you what she said, but I like schools to be
able to link to here.

http://nirt.pa.msu.edu/

History of PDF

• 1930’s
– Computer: slide rule
– Time to Fourier transform: few days
– Time to paper: 6 months

• 1950’s
– Computer: Beevers Lipson strips + pen + paper
– Time to Fourier transform: “The whole procedure is very simple

and it is readily performed in three or four hours”-B.E. Warren
– Time to paper: 6 months

• 1980’s
– Computer: DEC microvax
– Time to Fourier transform: ~15 mins.
– Time to paper: 6 months

• 2000’s
– Computer: 1.5GHz Pentium PC
– Time to Fourier transform: <1 second
– Time to paper: 6 months

http://nirt.pa.msu.edu/

PDF how: Data Analysis software
• E.g., PDFgetN, PDFgetX2.

Available from ccp14 and:
• http://www.totalscattering.org
• http://nirt.pa.msu.edu/

• Graphical user interface &
integrated plotting.

• Supports most TOF
neutron powder file
formats.

• Records all processing
parameters as part of
output files G(r) and S(Q).

• Runs on Windows
95/98/NT/2000 and UNIX

• Legacy code, wrapped by
Pete Peterson and
Thomas Proffen

Peterson et al., J. Appl. Cryst. 33, 1192 (2000)

http://nirt.pa.msu.edu/

Modelling software, e.g., PDFFIT – real
space Rietveld ..

• Program features
– Controlled by FORTRAN style command language including loops and IF

statements.
– User defined relation between parameters and refinement variables.
– Multiple structural phases supported.
– Multiple data sets (neutron and X-ray) supported.
– Interfaces with DISCUS, KUPLOT and ATOMS.
– Available from ccp14 and:
– http://www.totalscattering.org
– Online help function.

• Technical information
– UNIX or Windows operating system.
– Binary or source code distribution.
– Written in FORTRAN-77 (and some

C).
– Written by Thomas Proffen after an

earlier effort by Simon BillingeProffen and Billinge, J. Appl. Cryst. 32, 572
(1999)

http://nirt.pa.msu.edu/

What is DANSE?

• It stands for Distributed Data analysis for neutron scattering
experiments

• It is a software proposal for $13M to the NSF
• It has received one year of design funding (~$1M)
• There will be a funding decision for construction funding in November
• Lead PI’s Michael Aivasis and Brent Fultz (Caltech)

http://nirt.pa.msu.edu/

DANSE basic philosophy

• Software Component architecture design
– Maintainable, extensible, reusable code

• Framework is Pyre, python based wrappers that will
support distributed computing and data-streaming
– Combines speed of compiled languages (component cores) with

flexibility of scripting languages (python)
– Component cores will include legacy code and new code

• C, C++, FORTRAN
– Pyre written by Aivazis

Data Flow

Controls
exceptions

User inputs
metadata

Data Flow

Page 112

http://nirt.pa.msu.edu/

Applications are networks of components

• Schematic of an
application to produce
an energy spectrum
from inelastic
scattering tof neutron
data

• Components
themselves can be
nested

• Framework handles
things such as
exceptions and
validation of inputs

http://nirt.pa.msu.edu/

Cobra/Viper GUI

• GUI is obsolete, but
gives an idea of how
this can work

• Directories reside on
different computers,
componenents are
dragged and dropped
onto the desktop and
wired together

• Users interact with the
software on different
levels: novice, senior
scientist, component
developer, framework
maintainer/developer

• Cobra/Viper and
independent
development

http://nirt.pa.msu.edu/

Provocative remark 1: Inheritance, code
design and UML

• Scientific Programs are algocentric
– Start with the algorithm, build out

• Commercial software is usercentric
– Need to sell the software
– Need to figure out what the people will buy
– Need to build that

• Determining “Use Cases” is the business of finding out
what people want and how they will use the code

• Once you have that, you build the code to deliver what is
wanted

• UML diagrams can help

http://nirt.pa.msu.edu/

Provocative remark 2: Inheritance, code
design and UML

Class Science()

def __init__()

def getData()

def analyzeData()

def writePaper()

def giveTalk()

Class rewards(science)

def __init__()

def payRaise()

Class Prize(rewards)

def __init__()

def thesis()

def nobel()

def knighthood()

If __name__==‘__main__’
…
greatData1=science.getdata(student1)
greatResults1=science.analyzeData(student1,
greatData1)
Nature=science.writePaper(student1,greatRes
ults1)
…
Science=science.writePaper(student1,greatRe
sults3)

greatData4=science.getdata(student2)
greatResults4=science.analyzeData(student2,
greatData4)
PRL=science.writePaper(student2,
greatResults4)

simonRich=rewards.payraise(simon)
simonFamous=prize.nobel(simon)

http://nirt.pa.msu.edu/

Inheritance, code design and UML

Class Science()
def __init__()
def getData()

def analyzeData()
def writePaper()
def giveTalk()

Class rewards(science)

def __init__()
def payRaise()

Class Prize(rewards)
def __init__()

def thesis()
def nobel()
def knighthood()

http://nirt.pa.msu.edu/

What can UML do for us?

Page 113

http://nirt.pa.msu.edu/

What can UML do for us?

http://nirt.pa.msu.edu/

What can UML do for us?

http://nirt.pa.msu.edu/

What can UML do for us?

http://nirt.pa.msu.edu/

What can UML do for us?

http://nirt.pa.msu.edu/

What can UML do for us?

http://nirt.pa.msu.edu/

Summary

• PDF: what, when, why, how
– Disorder in crystals

– Nanocrystals, nanoparticles and nanostructured materials

• Software Projects and Software Engineering
– Component architectures

– DANSE project

• Some provocative remarks

Useful introductory paper:

S. J. L. Billinge and M. G. Kanatzidis Beyond crystallography: the study of disorder nanocrystallinity

and crystallographically challenged materials, Chem. commun. , 749-760 (2004).

Page 114

http://nirt.pa.msu.edu/

Useful book

http://nirt.pa.msu.edu/

http://nirt.pa.msu.edu/

Acknowledgements

• Thomas Proffen (former post-doc, now LANL)
• Pete Peterson (former student, now ORNL)
• Pavol Juhas (current post-doc)
• Valeri Petkov (former post-doc, now at CMU)
• Xiangyun Qiu (former student, now at Cornell)
• Mike Thorpe (ASU), Valentin Levashov,

Ming Lei
• Groups of Mercouri Kanatzidis, Jim Dye and

Tom Pinnavaia
• Tom Vogt
• Pete Chupas, Jon Hanson, Peter Lee and

Clare Grey
• Facilities:

– APS, CHESS, NSLS (and people therein)
– MLNSC, ISIS, IPNS (and people therein)

• Funding: NSF-DMR 0304349, NSF-DMR
0075149, CHE-0211029, DOE-DE-FG02-
97ER45651

Page 115

IUCr Computing School Siena 18-23 August 2005

Dealing with overlapped data

Bill David, ISIS Facility,Bill David, ISIS Facility,
Rutherford Appleton Laboratory, UKRutherford Appleton Laboratory, UK

IUCr Computing School Siena 18-23 August 2005

Powder diffraction: issues and algorithms

Bill David, ISIS Facility,Bill David, ISIS Facility,
Rutherford Appleton Laboratory, UKRutherford Appleton Laboratory, UK

IUCr Computing School Siena 18-23 August 2005

WIFD - standard disclosure

• 1983-5 (Oxford to ISIS)
– GENIE – data manipulation and analysis package

• based on VMS command line interpreter – still in use
• (I still have my VAX (called JARAK) in the basement)

• 1983-
– CCSL – FORTRAN77 crystallographic subroutine library
– (www.iill.fr/dif/ccsl/html/ccsldoc.html) Rubbia effect

– basis of all Rietveld analysis at RAL until 1992
• 1997-

– DASH - structure solution from powders
• SA5TOR (VAX VMS) -2 weeks
• GUI (Winteracter – all FORTRAN – 6 months)
• CCDC – and testing – 18 months

IUCr Computing School Siena 18-23 August 2005

858075706560555045403530252015

110,000

100,000

90,000

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

-10,000

MgH2 11.15 %
LiBH4 0.04 %
MgO 31.55 %
MgHx 55.00 %
fcc-Mg-Li 2.26 %

858075706560555045403530252015

11.5
11

10.5
10
9.5

9
8.5

8
7.5

7
6.5

6
5.5

5
4.5

4
3.5

3
2.5

MgH2 11.15 %
LiBH4 0.04 %
MgO 31.55 %
MgHx 55.00 %
fcc-Mg-Li 2.26 %

Major advances in instrumentation

log-scale

Note width differences

IUCr Computing School Siena 18-23 August 2005

Outline

Massive overlap:
proteins & powders

Overlapping impurities

Overcoming overlap in structure
solution

Overlap in time:
dealing with millions of datapoints

IUCr Computing School Siena 18-23 August 2005

High Throughput Phase Diagram Mapping via Powder Diffraction: a case-study of
HEWL versus pH.S. Basso, A. N. Fitch, G. C. Fox, I. Margiolaki & J. P. Wright

Proteins and powders

Page 116

IUCr Computing School Siena 18-23 August 2005

Proteins and powders

IUCr Computing School Siena 18-23 August 2005

Colour representation of ID31 powder diffraction data from the pH variation experiment,
from pH 6.56 – 3.33 of HEWL crystallised at (a) 4°C and (b) RT. At low temperature the
tetragonal phase is favoured and a smooth anisotropic shift in the peak position is
apparent.

Proteins and powders

See Jon Wright / Jeremy Cockcroft

IUCr Computing School Siena 18-23 August 2005

after
Baerlocher &

McCusker

powder diffraction - standard disclosure

IUCr Computing School Siena 18-23 August 2005

powder diffraction
radial reciprocal space distance only - d-spacing

2*22*22*2

cos2cos2cos2 bhkachlacklb
clbkahQhkl

a*

c*

*

bottlenecks in the maze

IUCr Computing School Siena 18-23 August 2005

V*

d*

V*=4 d*2 d*
N=4 Vd*2 d*

N=2 VA d*2 d*

TRAFFIC JAM in the maze!

IUCr Computing School Siena 18-23 August 2005

xxp
Nx

NN exp
2222

peak density - TRAFFIC JAM in the maze!

Page 117

IUCr Computing School Siena 18-23 August 2005

xxp
Nx

NN exp
2222

asymasym

asym

NV
dVddN

20

2 *2**

(S)3601.0)20tan(
(L)1606.0)45tan(

2tan

o

o

o
asymN

peak density - TRAFFIC JAM in the maze!

IUCr Computing School Siena 18-23 August 2005

xxxp
xxp

Nx

NNN

NN

exp
exp

2222

peak density - TRAFFIC JAM in the maze!

IUCr Computing School Siena 18-23 August 2005

dealing with the TRAFFIC JAM of peak overlap

IUCr Computing School Siena 18-23 August 2005

Dehydration of pharmaceutical compounds

Zopiclone hydrates
C17H17ClN5O3.2H2O
hypnotic – insomnia
line phases: dihydrate - anhydrous

Paracetamol hydrates
C8H9NO2.nH20
pain-killer, analgesic, antipyretic
4'-hydroxyacetanilide,
acetaminophen, tylenol

IUCr Computing School Siena 18-23 August 2005

Key points

• Analysing all the data as fully as possible
– Managing a million data-points

• 130 patterns
• 8520 points per pattern
• 1,107,600 points

• Identifying change
– Principal component analysis / clustering

• Quantitative phase analysis
• Structure determination
• Rietveld refinement

– Structure, microstructure & inhomogeneity

IUCr Computing School Siena 18-23 August 2005

time2 0oC

35oC

30oC30oC

Page 118

IUCr Computing School Siena 18-23 August 2005

water+dissolved
paracetamol

crystallisation
+ ice formation

ice melting

trihydrate

step-function in
water background

trihydrate – monohydrate
transformation

novel
paracetamol

phase
formation

new intermediate phase

monohydrate

time2 2 mins

IUCr Computing School Siena 18-23 August 2005

Comparing paracetamol trihydrate structures

IUCr Computing School Siena 18-23 August 2005

Dehydration of pharmaceutical compounds

Zopiclone hydrates
C17H17ClN5O3.2H2O
hypnotic – insomnia
line phases: dihydrate - anhydrous

Paracetamol hydrates
C8H9NO2.nH20
pain-killer, analgesic, antipyretic
4'-hydroxyacetanilide,
acetaminophen, tylenol

IUCr Computing School Siena 18-23 August 2005

Zopiclone dehydration and phase transformations

TGA

DSC

-7.17ww% = 2H2O

IUCr Computing School Siena 18-23 August 2005
2 theta

di
hy

dr
at

e

an
hy

dr
ou

s

T(
o C

)

IUCr Computing School Siena 18-23 August 2005

Page 119

IUCr Computing School Siena 18-23 August 2005 2 theta

Te
m

pe
ra

tu
re

 (o C
)

Complex anisotropic sample line-shape

IUCr Computing School Siena 18-23 August 2005

2H2O

xH2O

no H2O

IUCr Computing School Siena 18-23 August 2005

TOPAS
zopiclone dihydrate
standard line-shape (axial divergence …)

IUCr Computing School Siena 18-23 August 2005

TOPAS
zopiclone dihydrate
standard line-shape (axial divergence …)

IUCr Computing School Siena 18-23 August 2005

diff

(2)

-0 .0 3 -0 .0 2 -0 .0 1 0 .0 0 0 .0 1 0 .0 2 0 .0 3

In
st

ru
m

en
ta

l p
ea

k
sh

ap
e

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

(2)

0 .0 0 0 0 .0 0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 .0 2 5

sa
m

pl
e

pe
ak

 s
ha

pe

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

obscalc

Complex anisotropic sample line-shape

IUCr Computing School Siena 18-23 August 2005

hklfwidth

*
1

*
1

2*
1

2*
1

22*
1

*
0

*
0

2*
0

2*
0

2

*
0

*
0

*
0

2*
0

22*
0

22*
0

22*
0

2

2

cos2

hlEClBkAhd
hlEClBkAh

chlaclbkahd

**2*2*2
max

2* 2 EhlClBkAhd

tan21802 **2*2*22
max EhlClBkAhd

hkld *
0 hkld *

1

There is a distribution of water
content leading to a distribution
of lattice constants

Complex anisotropic sample line-shape

Page 120

IUCr Computing School Siena 18-23 August 2005

 2 2 max

-1.0 -0.5 0.0 0.5 1.0
po

ly
no

m
ia

l c
om

po
ne

nt
s

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

constant term
linear term
quadratic term
cubic term

0.0 1.00.50.25 0.75

3
3xa

2
2 xa

xa1

0a

 2

-1.0 -0.5 0.0 0.5 1.0

po
ly

no
m

ia
l c

om
po

ne
nt

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

combined lineshape

 2 2 max

-1.0 -0.5 0.0 0.5 1.0

po
ly

no
m

ia
l c

om
po

ne
nt

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

combined lineshape
truncated exponential

0.0 1.00.50.25 0.75

we have defined the limits of
the sample line-shape

but we don’t know the lineshape

construct a generalised
lineshape using polynomials /
orthogonal polynomials

cubic polynomial

tan21802 **2*2*22
max EhlClBkAhd

max

3
3

2
210

2212

2

x
xaxaxaa

Complex anisotropic sample line-shape

IUCr Computing School Siena 18-23 August 2005

TOPAS screenshot

hkl-dependent polynomial line-shape

hkl-dependent exponential convolution

IUCr Computing School Siena 18-23 August 2005

TOPAS
zopiclone dihydrate
standard line-shape (axial divergence …)
convoluted with hkl-dependent
exponential

IUCr Computing School Siena 18-23 August 2005

with thanks …

M Brunelli, A Fitch, J Wright (ESRF)
A Coelho
N Shankland, A Kennedy (Strathclyde)
C Pulham (Edinburgh)
K Shankland, A J Markvardsen (ISIS)

Zopiclone

Page 121

Programming the Science of
Crystallography

PLATON, a Multipurpose
Crystallographic Tool

Ton Spek, Utrecht University

Programming Languages

• Current choices are Fortran-(xx), C(++) or one of the many
scripting languages (e.g. Python).

• My choice for scientific software over the last 30 years
was and still is Fortran.
I have seen many (scripting) languages come and go …
algol, pascal, ratfor … and changed only once …

• I might consider a conversion to C++ after my official
retirement in 2009 (assuming that C++ is still mainstream
by that time and not superseded by Fortran2xxx …..)

Pro’s and Con’s of Fortran

• Fortran Pro’s:
- Designed for scientific computing, readily available and
still evolving to include additional useful constructs.
- Relatively easy to learn and port to other platforms.

• Fortran Con’s:
- No longer mainstream in the current software
development community.
- Interface to C libraries (e.g. Xlib) needed for graphics
functionality.

PLATON AS AN EXAMPLE

• PLATON is focused mainly on small-molecule
applications.

• The development of PLATON is essentially evolutionary,
science driven and based on the needs of a national single
crystal structure facility.

• Following is an overview of the IDEAS and TOOLS that
have been implemented over the past 25 years in the
program suite PLATON.

PLATON IMPLEMENTATION

• The development of PLATON started on various CDC
mainframe platforms and migrated via VAX/VMS and
DEC-UNIX to the PC/LINUX platform.

• Implementations are also available for MS-WINDOWS
(thanks to Louis Farrugia, Glasgow) and Mac-OSX.

• PLATON tries to be compatible and complementing to the
SHELX software suite.

• PLATON is currently used as the major structure
validation engine in the IUCr CHECKCIF facility.

PLATON ORGANISATION

• Single FORTRAN source + a small C routine as
an interface to X11 graphics.

• Separate group of routines for the handling of the
Space Group Symmetry.

• Separate group of routines for handling the
Graphics (X11/PostScript/HPGL).

• Separate group of reusable global routines (SORT,
INVERT, etc.)

Page 122

Input Files

Input files are:
1. A parameter/coordinate file of type res,

cif, fdat, spf. The file type is guessed from
the content, not from the file extension.

2. A reflection file of type hkl or fcf.
3. Command line input for instructions.

Output Files

• A full listing file (.lis).
• The PostScript version of .lis (.lps) for

printing on a laserprinter or viewing with
GhostScript.

• A summary listing on the console.
• Optionally a new parameter file
• Optionally a new reflection file
• Optionally a validation report (.chk, .fck)

Graphics Output

• Graphics output is implemented via calls to a single
routine.

• This routine implements graphics instructions for the
various types of graphics hardware.

• Currently, only X11, PostScript and HPGL are supported.
• In the past there was similar support for Tektronix etc.
• X11 library calls are implemented in a single C routine.
• The Windows version substitutes its own library calls.
• PLATON implements its own character set.

Features

• PLATON includes a number of unique tools such as
ADDSYM, VOIDS, SQUEEZE, TwinRotMat, CIF, FCF
Validation, BijvoetPairs, and SYSTEM-S.

• Provides a ‘research framework’ for the convenient
implementation and testing of new ideas.

• Few outside dependencies (single source) (libX11 or
equivalent for graphics).

• Non-standard language features are avoided.
• Up-to-Date HTML-HELP (via right mouse click on item)

with a browser over the Internet or locally installable.

Entry points

• Via command line options allowing for use
in scripts:
e.g. ‘platon –u shelxl.cif’ will produce as
the only output a file ‘shelxl.chk’ with a
validation report.

• The clickable PLATON main menu gives
an overview of the available functions.

Page 123

Space Group Symmetry
• 230 Unique Space Groups, multiple settings, synonyms,

specification.
• Explicit symmetry operator, H-M or Hall Symbol input
• Space Group Routine: Multiple callable functions:

- Expansion of the set of symmetry generators
- Explicit symmetry H-M and Hall Symbol
- Symmetry operations on coordinates or reflection h,k,l
- Multiplication of two supplied symmetry operators

(R’|t’) = (R1|t1)(R2|t2) Network Analysis
- Return inverted symmetry operation (including transl.)

Geometry Analysis

• Intra-molecular geometry
bonds,angles,torsions,rings,planes etc.

• Inter-molecular geometry
Short contacts, H-bonds, networks

• Coordination geometry

Default: CALC ALL

Derived Geometry and
Standard Uncertainties

• Standard uncertainties for derived quantities f (p) can be derived in
principle using the Least-Squares Covariance Matrix and the
expression for the propagation of error:

^2(f) = ij (f / p(i))(df / p(j)) cov (p(i),p(j))
• Or in case only variances are available:

^2(f) = i (f / p(i))^2 ^2(p(i))
• Analytical Evaluation (clumsy for torsion angles and up)

• Numerical: approximate f / p(i) ~ (f(p + i) – f(p)) / i

Take: i = (p(i)), then

^2(f) ~ i (f(p + p(i)) – f(p)) ^2

Solvent Accessible Voids

• A typical crystal structure has only 65% of the available
space filled.

• The remainder volume is in voids (cusps) in-between
atoms (too small to accommodate an H-atom)

• Solvent accessible voids can be defined as regions in the
structure that can accommodate at least a sphere with
radius 1.2 Angstrom without intersecting with any of the
van der Waals spheres assigned to each atom in the
structure.

• Algorithm: Graphical and Computational STEP #1 – EXCLUDE VOLUME INSIDE THE
VAN DER WAALS SPHERE

DEFINE SOLVENT ACCESSIBLE VOID

Page 124

DEFINE SOLVENT ACCESSIBLE VOID

STEP # 2 – EXCLUDE AN ACCESS RADIAL VOLUME
TO FIND THE LOCATION OF ATOMS WITH THEIR

CENTRE AT LEAST 1.2 ANGSTROM AWAY

DEFINE SOLVENT ACCESSIBLE VOID

STEP # 3 – EXTEND INNER VOLUME WITH POINTS WITHIN
1.2 ANGSTROM FROM ITS OUTER BOUNDS

Voids: Algorithm

1. Expand the unitcell contents to P1
2. Define a 3D grid with gridstep ~ 0.2 Angstrom and with

the number of gridpoints in each direction a multiple of
12 (for exact symmetry mapping)

3. Scan through all gridpoints in search of gridpoints that
have a distance greater than the probe radius to the
nearest van der Waals sphere.

4. Join gridpoints into connected sets (S).
5. Expand this set with gridpoints within the probe radius

from the surface of S.

Cg

VOID APPLICATIONS

• Calculation of Kitaigorodskii Packing Index
• As part of the SQUEEZE routine to handle

the contribution of disordered solvents in
crystal structure refinement

• Determination of the available space in
solid state reactions (Ohashi)

• Determination of pore volumes, pore shapes
and migration paths in microporous crystals

Page 125

SQUEEZE

• Takes the contribution of disordered solvents to
the calculated structure factors into account by
back-Fourier transformation of density found in
the ‘solvent accessible volume’ outside the
ordered part of the structure.

• Filter: Input shelxl.res & shelxl.hkl
Output: ‘solvent free’ shelxl.hkl

• Refine with SHELXL or Crystals

SQUEEZE Algorithm

1. Calculate difference map (FFT)
2. Use the VOID-map as a mask on the FFT-map to set all

density outside the VOID’s to zero.
3. FFT-1 this masked Difference map -> contribution of the

disordered solvent to the structure factors
4. Calculate an improved difference map with F(obs)

phases based on F(calc) including the recovered solvent
contribution and F(calc) without the solvent
contribution.

5. Recycle to 2 until convergence.

Comment

• The Void-map can also be used to count the
number of electrons in the masked volume.

• A complete dataset is required for this feature.
• Ideally, the solvent contribution is taken into

account as a fixed contribution in the Structure
Factor calculation (CRYSTALS) otherwise it is
substracted temporarily from F(obs)^2 (SHELXL)
and reinstated afterwards for the final Fo/Fc list.

(Pseudo)Merohedral Twinning
• Options to handle twinning in L.S. refinement available in

SHELXL, CRYSTALS etc.
• Problem: Determination of the Twin Law that is in effect.
• Partial solution: coset decomposition, try all possibilities

(I.e. all symmetry operations of the lattice but not of the
structure)

• ROTAX (S.Parson et al. (2002) J. Appl. Cryst., 35, 168.
(Based on the analysis of poorly fitting reflections of the
type F(obs) >> F(calc))

• TwinRotMat Automatic Twinning Analysis as
implemented in PLATON (Based on a similar analysis but
implemented differently)

Example

• Structure refined to R= 20% in P-3
• Run TwinRotMat on CIF/FCF
• Result: Twinlaw with estimate of the

twinning fraction and drop in R-value

Page 126

Ideas behind the Algorithm

• Reflections effected by twinning show-up in the
least-squares refinement with F(obs) >> F(calc)

• Overlapping reflections necessarily have the same
theta within a tolerance.

• The more interesting cases of twinning in the
current context are those with layers of
overlapping reflections that can be described with
a rotation about a reciprocal axis.

Possible Twin Axis

H H’

H” = H + H’

Strong reflection H’ with theta
close to theta of reflection H

Candidate twinning axis

Reflection with
F(obs) >> F(calc)

TwinRotMat Algorithm

• Select the set of reflections H with F(obs) >> F(calc)
• Loop over all reflections H’ (including symmetry related

ones) for which F(H’) > F(H) and ’)
• Register H” = H + H’ (reduced to co-prime integers) as a

possible twinning axis (I.e. count the frequency of
occurrence)

• Eliminate symmetry directions and H” that are related by
symmetry.

• Determine the twinning factor that gives the lowest R-
factor (simple gridsearch).

Special Implementations

Older programs with dated input.
StructureTidy (standardisation of Inorganic
Structures). CIF interface generates the
proper input in original input format.

Bond Valence Analysis

System S

• Automatic structure determination
(Space group determination, solution,
refinement, analysis)

• Build-in in PLATON (Unix only)
• Calls external programs including itself for

various functions.
• Program runs in either guided or no-

questions-asked mode

Page 127

Concluding Remarks

• The ‘Single Source’ approach of PLATON makes it easy
(for me) to implement new tools within the existing
framework of already available tools.

• Only one program has to be maintained.
• A one-person project, so no internal discussions.
• Of-course, the above is controversial …

Thanks

• Thanks to the users for their:
• Complaints
• Bug reports (‘undocumented features ..)
• Suggestions

Page 128

Simple algorithms for
macromolecular phasing

George M. Sheldrick

http://shelx.uni-ac.gwdg.de/SHELX/

IUCr Computing School, Siena,
August 2005

Experimental phasing of macromolecules
Except in relatively rare cases where atomic resolution data
permit the phase problem to be solved by ab initio direct
methods, experimental phasing usually implies the presence of
heavy atoms to provide reference phases. We then calculate the
phases T of the full structure by:

T = A +

Where A is the calculated phase of the heavy atom substructure.
As we will see, can be estimated from the experimental data.
The phase determination requires the following stages:

1. Location of the heavy atoms.

2. (Refinement of heavy atom parameters and) calculation of A.

3. Calculation of starting protein phases using T = A + .

4. Improvement of these phases by density modification (and
where appropriate NCS averaging).

SAD as a special case of MAD
|F+|2 = |FT|2 + a|FA|2 + b|FT||FA|cos + c|FT||FA|sin

|F–|2 = |FT|2 + a|FA|2 + b|FT||FA|cos – c|FT||FA|sin
where a = (f” 2+f’ 2)/f0

2, b = 2f’/f0, c = 2f”/f0 and = T – A

By subtracting the second equation from the first we obtain:

|F+|2 – |F–|2 = 2c|FT||FA|sin
If we assume that the native structure factor |FT| is given by
|FT| = ½(|F+| +|F–|), this simplifies to:

|F+| – |F–| = c|FA|sin
where |FA| is the heavy atom structure factor) and T = A + .
Amazingly, this is sufficient to find the heavy atoms and to use
them to estimate the protein phases T for some reflections.

SAD, SIR, SIRAS and MAD
For SAD, the reflections with the largest normalized anomalous
differences |EA| will tend to have close to 90 or 270º. These
reflections are used to find the heavy atoms (only the largest |EA|
are used by direct methods) and to start the phasing.

In the case of SIR, if we assume that the isomorphous difference
is small compared to the native structure factor, we obtain the
approximation:

|Fderiv| – |Fnat| = b|FA|cos
So reflections with large normalized isomorphous differences
will tend to have close to 0 or 180º. Although ||Fderiv|–|Fnat|| will
in general be larger than ||F+|–|F–||, as we shall see values of 0º
or 180º are less useful than 90º or 270º, and there are problems
with lack of isomorphism and scaling.

For MAD (and SIRAS) we have FAsin and FAcos and so we can
derive both |FA| and .

Substructure solution
The same methods used for ab intio all-atom structure
solution from very high resolution native data turn out to be
eminently suitable for the location of heavy atom sites from
SIR, SAD F or MAD FA values. The resolution is then not so
critical; 3.5Å is fine because it is normally still greater than the
distance between the sites. In the case of sulfur-SAD, the two
sulfurs in a disulfide bridge fuse into a single super-sulfur
atom at this resolution.

The F or FA values are normalized to give E-values. The fact
that direct methods use only the larger E-values is an
advantage, especially for SIR or SAD, because the F values
represent lower limits on the heavy atom structure factors and
so the weak F are very unreliable anyway.

Random (or better)
starting atoms

reciprocal space:
refine phases

real space:
select atoms

SF calculation

FFT

Many cycles E > Emin

If the figures of merit indicate a solution, it can be
expanded to the complete structure using all data

Implemented in SnB and (later) SHELXD

Weeks, Miller, DeTitta,
Hauptman et al. (1993)

Dual space recycling

Page 129

Random atom positions

This Fortran code generates random coordinates x, y and z in
the range 0…1. The use of three independent series ensures
that the the repeat length is long (3.5x1015). JS etc. can be given
fixed starting values so that the same sequence is always
generated (with luck also on different computers) or they can be
made randomly random (e.g. by using the last few digits of the
current time (expressed as a real number in seconds).

JS=MOD(JS*3877+29573,139968)
JK=MOD(JK*3613+45289,214326)
JR=MOD(JR*1366+150889,714025)
X=7.1444902E-6*REAL(JS)
Y=4.6657895E-6*REAL(JK)
Z=1.4005112E-6*REAL(JR)

Probabilistic Patterson sampling (PATS in SHELXD)
Each unique general Patterson vector of suitable length is a
potential HA-HA vector, and may be employed as a 2-atom
search fragment in a translational search based on the Patterson
minimum function. Alternatively a vector of known length – e.g.
a S-S bond (2.03Å) – but random orientation can be used. For
each position of the two atoms in the cell, the Patterson height Pj
is found for all vectors between them and their equivalents, and
the sum (PSUM) of the lowest (say) 35% of Pj calculated.

It would be easy to find the global maximum of PSUM using a
fine 3D grid, but this often does NOT lead to the solution of the
structure! A more effective approach is to generate many
different starting positions by simply taking the best of a finite
number of random trials each time.

The full-symmetry Patterson superposition minimum function is
used to expand from the two atoms to a much larger number
before entering the dual-space recycling.

Selecting vectors for the translational search
C
C Choose biased random starting vector (PATS +n)
C

NJ=LM-JW+1
IF(NJ.LE.0)GOTO 18
N=JW
DO 20 NW=1,JQ
JR=MOD(JR*1366+150889,714025)
N=MAX0(N,LM-MOD(JR,NJ))

20 CONTINUE

This SHELXD Fortran code was cited by Ralf Grosse-Kunstleve as
a typically cryptic piece of SHELX code (he diplomatically said
that he found the comment useful). The general Patterson peaks
are stored in XA(JW…LM) etc., JR is a random number and JQ is
a ‘bias factor’ (third PATS parameter, usually 5) that causes
(higher) peaks closer to LM to be chosen more often.

Calculating the Patterson minimum function
In its simplest form, the Patterson minimum function is simply
the lowest Patterson density at a series of points in the
Patterson, e.g. in the case of the symmetry minimum function
these are all vectors between one site and its symmetry
equivalents.

When more than one site is involved or the symmetry is high,
the chance of an accidental low value is too high, so Schilling
(1970) and Nordman (1980) improved the function by summing
the lowest (say) 1/3 of the Patterson densities involved. Since
this requires sorting the values, it can become rate determining.

Alternatively one can sum some suitable function of the
Patterson densities designed to put more weight on the lower
values. Summing s where s is the sign of works quite
well, even in high symmetry space groups and with noisy data,
which can cause problems for the Schilling/Nordman method.

How to find the independent Patterson Vectors
Assume that we wish to find all unique non-origin vectors
involving atoms x1,y1,z1 and x2,y2,z2 and their symmetry
equivalents in order to calculate a Patterson superposition
function and that there are NS symmetry operations. Lattice
operators are ignored because they will generate equivalent
peaks (the Patterson has the same lattice type as the structure)
but a center of symmetry should be included in the symmetry
operators.

There are (NS–1) unique Harker vectors for each of the two
atoms. To find the unique cross-vectors we need to subtract
x1,y1,z1 from x2,y2,z2 and all its symmetry equivalents. So the
total number of unique vectors generated by a two-atom search
fragment is 2(NS–1) + NS. In the space group P43212 this is 22.
For an NA-atom fragment the number is NA(NS-1) + ½(NA-1)NANS.

Note that in high-symmetry cases some Harker vectors have
multiplicities greater than one, and that in centrosymmetric
space groups all non-Harker have multiplicities of at least two.

The full-symmetry Patterson superposition
minimum function

SHELXD finds good (but different) positions for a two-atom
fragment by trying (say) 10000 random translations and using
the PSMF as a criterion. The full-symmetry PSMF is then
calculated one pixel at a time. A dummy atom is placed on the
pixel and the Patterson function values at all vectors involving
it, the two atoms of the search fragment, and their symmetry
equivalents found. The sum of the lowest (say 1/3) of these
values (the PSMF) is stored at that pixel.

The resulting map is then peak-searched to find the starting
atom sites in the dual-space recycling part of the SHELXD
procedure for finding the heavy atom sites. Each overall trial
generates a different starting set of sites that are relatively
consistent with the Patterson. There is no limit to the number
of starting sets that can be generated in this way.

Page 130

Density modification
The heavy atoms can be used to calculate reference phases;
initial estimates of the protein phases can then be obtained by
adding the phase shifts to the heavy atom phases as explained
at the beginning of this talk.

These phases are then improved by density modification.
Clearly, if we simply do an inverse Fourier transform of the
unmodified density we get back the phases we put in. So we try
to make a ‘chemically sensible’ modification to the density
before doing the inverse FFT in the hope that this will lead to
improved estimates for the phases.

Many such density modifications have been tried, some of them
very sophisticated. Major contributions have been made by
Kevin Cowtan and Tom Terwilliger. One of the simplest ideas,
truncating negative density to zero, is actually not too bad (it is
the basic idea behind the program ACORN).

The sphere of influence algorithm
The variance V of the density on a spherical surface of radius
2.42Å is calculated for each pixel in the map. The pixels with the
highest V are most likely to correspond to real protein atomic
positions.

Pixels with low V are flipped (S’ = – where is about one).

For pixels with high V, is replaced by [4/(2 2()+ 2)]½ (with
usually 1.0) if positive and by zero if negative. This has a similar
effect to the procedure used in the program ACORN.

A fuzzy boundary is used; in the fuzzy region is set to a
weighted sum of the two treatments. The fuzzy boundary is an
attempt to avoid the lock-in effect of a binary mask.

The use of a spherical surface rather than a spherical volume
was intended to add a little chemical information (2.42Å is a
typical 1,3-distance in proteins and DNA). An empirical weighting
scheme for phase recombination is used to combat model bias.

The fuzzy solvent boundary

0.0

1.0

Fraction of pixels sorted on variance of density in 2.42Å spherical shell

Fraction of pixels in solvent)

Fuzzy
region

P’ = [4/(2 2()+ 2)]½

if > 0 and

P’ = 0 if 0.

Pixels with high V:

Pixels with low V:
S’ = –

0.0 1.0

In the fuzzy region, the modified density is a weighted
mean of the two treatments: ’ = P’ + (1–) S’

The parameters and are both usually set to 1.0

Calculating the sphere of influence

Graphic by Voita Jancik

In SHELXE, the following method
is used to generate the sphere. A
C60 molecule consists of five and
six-membered rings. If we make
a vector from the center to each
atom and also from the center to
the center of each of the 32
faces, we define 92 directions
that are well distributed in space.
These 92 directions are stored in
the form of 92 triplets of pixel
offsets with vector lengths close
to 2.42 Å. These are added to the
coordinates of each pixel in turn
to calculate the variance of the
density in the sphere of influence
of each pixel.

The free lunch algorithm
In two recent papers (Caliandro et al., Acta Cryst. D61 (2005) 556-
565 and 1080-1087) the Bari group around Carmelo Giacovazzo
used density modification to calculate phases for reflections that
had not been measured, either completing the data to a given
resolution or extending the resolution.

Their unexpected conclusion was that if these phases are now
used to recalculate the density, using very rough estimates of
the (unmeasured) amplitudes, the density actually improves! I
have incorporated this into a test version of SHELXE and can
completely confirm their observations, at least when the native
data have been measured to a resolution of 2 Å or better.

Since one is apparently getting something for nothing, I propose
that this algorithm be named the free lunch algorithm.

Solution of an unknown structure
The free lunch algorithm (FLA) clearly improved the density for a
number of standard test structures, introducing real features
that were not present in the original maps. However a
particularly convincing example was the application to the
solution of an unsolved structure by Isabel Usón using data
collected by Clare Stevenson.

Data for this 262 amino-acid protein in space group P2 were
almost complete to 1.9 Å and somewhat partial to 1.35 Å.
Despite collecting six datasets the only phase information was a
weak SIRAS signal to about 3.5 Å from a mercury acetate
derivative. All attempts to improve these maps by interpretation
or modification of the density and also molecular replacement
on the native data failed.

At first we thought that the free lunch algorithm might be able to
fill in the missing data, but Isabel was ambitious and expanded
to 1.0 Å, much further than the crystals had ever diffracted.

Page 131

Postmortem on a free lunch

Best experimental
phases after den.

mod. (MapCC 0.57)

After FLA filling in to
1.34 Å (MapCC 0.66)

FLA expansion to
1.0 Å (MapCC 0.94)

Phase errors
calculated relative to

the subsequently
refined structure

Maps before and after a free lunch

Best experimental phases
after den. mod. (MapCC 0.57)

After expansion to 1.0 Å with
virtual data (MapCC 0.94)

Why do we get a free lunch?
It is not immediately obvious why inventing extra data
improves the maps. Possible explanations are:

1. The algorithm corrects Fourier truncation errors that may
have had a more serious effect on the maps than we had
realised.

2. Phases are more important than amplitudes (see Kevin’s
ducks and cats!), so as long as the extrapolated phases are
OK any amplitudes will do.

3. Zero is a very poor estimate of the amplitude of a reflection
that we did not measure.

Acknowledgements
I am particularly grateful to Isabel Usón, Thomas R. Schneider,
Stephan Rühl and Tim Grüne for many discussions.

SHELXD: Usón & Sheldrick (1999), Curr. Opin. Struct. Biol. 9,
643-648; Sheldrick, Hauptman, Weeks, Miller & Usón (2001),
International Tables for Crystallography Vol. F, eds. Arnold &
Rossmann, pp. 333-351; Schneider & Sheldrick (2002), Acta
Cryst. D58, 1772-1779.
SHELXE: Sheldrick (2002), Z. Kristallogr. 217, 644-650;
Debreczeni, Bunkóczi, Girmann & Sheldrick (2003), Acta Cryst.
D59, 393-395; Debreczeni, Bunkóczi, Ma, Blaser & Sheldrick
(2003), Acta Cryst. D59, 688-696; Debreczeni, Girmann, Zeeck,
Krätzner & Sheldrick (2003), Acta Cryst. D59, 2125-2132.

http://shelx.uni-ac.gwdg.de/SHELX/

Page 132

Automation of structure determination

Use of scoring procedures to assist in decision-making

Simple procedures for automation choosing the current
best path at each decision-point

What is automation?

Procedures (things to do)

Control (deciding what to do)

What is automation?

Automation as a set of linked procedures

Each procedure has clearly-defined…

Inputs
Methods to apply to inputs

Outputs

What is automation?

Automation as a set of linked procedures

Control steps have clearly-defined…

Possible decisions to make
Information required to make decisions
Next step(s) to take based on decisions

(Including…what to do if things go wrong)

Simple automation using a scoring scheme for decision-making
(as implemented in PHENIX wizards)

Read Facts
(“what is state of the world now?”)

Get user inputs (if needed)

List and score all options

Carry out best option

No more options:
write state to Facts and quit

Modular PYTHON routines in AutoSol

Create function to do something
(“score_all_solutions”)

Identify all required antecedents in a list
required_antecedents=[‘solution_list’,’scoring_table’,…]

Create a method to score the utility of carrying out the procedure
“eval_score_all_solutions”

Page 133

Deciding which solutions to follow
up: “COVERAGE”

User sets “coverage” = “the desired confidence
of keeping the best solution in consideration”

Score solutions, with confidence intervals

Follow up on any solution that could really be the top one
(i.,e, top solution Z-score = 14, next solution Z=13, “coverage”=95%

-> carry through with BOTH solutions because either could be the best)

PHENIX AutoSol
wizard standard

sequence

Automation of structure determination

Scale data

HYSS heavy-atom search

Phase and quick density modification
Get sites with difference Fourier

Coverage satisfactory:
go on to full density modification and

iterative model-building

Score and rank solutions

Why we need good measures of the quality of an electron-
density map:

Which solution is best?

Are we on the right track?

If map is good:
It is easy

(which is correct?)

Many very short
connected regions

A few connected regions
can trace entire molecule

Connectivity of regions of
high density

(Baker, Krukowski, & Agard,
1993)

CC with filtered version is
low

CC of map with a filtered
version is high

Presence of tubes of
density or helices/strands
or local patterns in map
(Colovos, Toth & Yeates, 2001;

Terwilliger, 2004)

Map is uniformly noisy Solvent and protein
regions have very

different rms densities

SD of local rms densities
(Terwilliger, 1999)

Gaussian histogramHighly skewed
(very positive at positions of

atoms, zero elsewhere)

Skew of density
(Podjarny, 1977)

Random mapGood mapBasis

Evaluating electron density maps: Methods examining the map itself

Scoring: does the native
Fourier look like a protein?

A good
map:
clear

solvent
vs

protein

A poor
map: it

looks the
same all

over

Local
rms of
map

Overall
SD of
local

rms of
map

Many very short
connected regions

A few connected regions
can trace entire molecule

Connectivity of regions of
high density

(Baker, Krukowski, & Agard,
1993)

CC with filtered version is
low

CC of map with a filtered
version is high

Presence of tubes of
density or helices/strands
or local patterns in map
(Colovos, Toth & Yeates, 2001;

Terwilliger, 2004)

Map is uniformly noisy Solvent and protein
regions have very

different rms densities

SD of local rms densities
(Terwilliger, 1999)

Gaussian histogramHighly skewed
(very positive at positions of

atoms, zero elsewhere)

Skew of density
(Podjarny, 1977)

Random mapGood mapBasis

Evaluating electron density maps: Methods examining the map itself

Page 134

Lower correlationHigh correlationCorrelation of map made
with map-probability

phases with original map
(Terwilliger, 2001)

(map-probability from solvent
flattening or from truncation

at high density level)

High R-factorLow R-factorR-factor in 1st cycle of
density modification

(Cowtan, 1996)

Random mapGood mapBasis

Evaluating electron density maps
Methods based on density-modification and R-factors

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Correlation of randomized map to model map

N
or

m
al

iz
ed

 s
ke

w

IF5A (P. aerophilum, 60% solvent; randomized maps)

Skew of electron density in maps of varying quality

(High electron
density at

positions of
atoms; near zero
everywhere else
=> high skew for

good map)

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

CC of randomized map to model map

N
or

m
al

iz
ed

 S
D

 o
f l

oc
al

 rm
s

IF5A (P. aerophilum, 60% solvent; randomized maps)

SD of local rms of electron density in maps of varying quality

(Large rms in
protein region;

low in solvent =>
high SD for good

map)

IF5A (P. aerophilum, 60% solvent; randomized maps;

Number of contiguous regions required to enclose top 5% of density)

Connectivity of maps of varying quality

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

CC of randomized map to model map

N
or

m
al

iz
ed

 c
on

ne
ct

iv
ity

(Most of high
density is

connected in a
good map)

SKEW-GVP

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

CC of randomized map to model map

SKEW-GVP

Start with database of randomized model data:

What values of skew do I measure if the actual
map correlation is CC?

CC -> P(skewobs |CC)

Bayesian estimation of map quality from skew
measurement on map

Estimation of CC of map from skew
(gvp)

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

Estimated CC of randomized map to model map

A
ct

ua
l C

C
 o

f r
an

do
m

iz
ed

 m
ap

 to

m
od

el
 m

ap

SKEW-GVP

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

CC of randomized map to model map

SKEW-GVP

Given measurement of skew : estimate CC…

For each possible value of CC:

“probability that CC is correct is proportional to
probability of measuring skewobs given this CC”

P(CC) = P(skewobs |CC)

Combine all independent sources of information

Bayesian estimation of map quality from skew
measurement on map

Page 135

Estimation of CC of map from
skew+SD+R-factor
(P9, 60% solvent)

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

Estimated CC of randomized map to model map

A
ct

ua
l C

C
 o

f r
an

do
m

iz
ed

 m
ap

 to

m
od

el
 m

ap

Bayesian estimation of map quality using Skew, SD of
local rms density, R-factor

R-factors for random/dm maps
(gvp)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.2 0.4 0.6 0.8 1

CC of randomized or DM map to model map

R
-f

ac
to

r

Random

Density-modified

R-factors for density-modified maps are systematically
lower than those of randomized maps of same quality

Estimation of CC of map from
skew+SD+R-factor

(P9,density-modified; 60% solvent)

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

Estimated CC of randomized map to model map

A
ct

ua
l C

C
 o

f r
an

do
m

iz
ed

 m
ap

 to

m
od

el
 m

ap

Estimation of CC of map from
skew+SD+R-factor
(P9, 60% solvent)

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

Estimated CC of randomized map to model map

A
ct

ua
l C

C
 o

f r
an

do
m

iz
ed

 m
ap

 to

m
od

el
 m

ap

Bayesian estimation of map quality

Estimates for randomized maps are much better than
those of density-modified maps

Randomized maps Density-modified maps

Model-building at moderate
resolution using scoring methods

for decision-making
(following ideas of T.A. Jones, Cowtan,

Oldfield, McRee, Levitt, Perrakis, Lamzin)

•FFT-based identification of helices and
strands

•Extension with tripeptide libraries

•Probabilistic sequence alignment

•Automatic molecular assembly

Placement of helical and
extended templates

•Identify locations with FFT-based convolution search

•Maximize CC of template with map

•Superimpose each fragment in corresponding library (helix,sheet) on template

•Identify longest segment in good density, score = <density>*sqrt(Natoms)

Initial model-building – strand fragments

Page 136

Chain extension by
placement of tripeptide

fragments

•Look-ahead scoring: find fragment that can itself be optimally extended

•C-terminal extension. Start at C-terminus of protein

•Each of 10000 fragments: superimpose CA C O on same atoms of last residue in chain
(extending by 2 residues): pick best 10

•Each of best 10: extend again by 2 residues and pick best 1; score for 2-residue
extension= best <density> for 4-residue extension based on this 2-residue extension

•N-terminal: same, but going in opposite direction

Chain extension with tripeptide libraries
(result: many overlapping fragments)

Assembly of main-chain

•Choose highest-scoring fragment

•Test all overlapping fragments as possible extensions

•Choose one that maximizes score when put together with current fragment

•When current fragment cannot be extended: remove all overlapping fragments, choose
best remaining one, and repeat

Main-chain as a series of fragments
(choosing the best fragment at each location)

Scoring side-chain
templates at each position

•Identify side-chain orientation from N CA C of main-chain

•Get CC of template with density -> Z-score

•(Compare CC with mean, SD of all side chain density with this template)

•P(this side-chain/rotamer is correct)= Po(this side-chain/rotamer)*P(Z)

Side-chain template matching to identify sequence alignment to map (IF5A data)
Relative probability for each amino acid at each position

(Correct amino acids in bold)

0000000000000000000969

610116500341012610236328

000000117016315000000007

91004200120000814413316

11102260145310124737315

4302670148310258166974

220235013731023512523113

600021003200202537141142

41016912262111618184561

TPNQDEHWRKYFCMLIVSAG#

Page 137

Addition of side-chains to fixed main-chain positions
Iterative model-building, density modification and

refinement at moderate resolution using the PHENIX
IterativeBuild wizard (Following ideas from Lamzin & Perrakis)

Fp, phases, HL coefficients

Density modify (with NCS, density
histograms, solvent flattening, fragment ID, local

pattern ID)

Density modify including model information

Evaluate final model

Build and score models
Refine with phenix.refine

Automated NCS identification from heavy-atom sites

•Expand heavy-atom sites within radius R of origin
•Make list of all pairs of sites, sorted by distance between
sites d

•Choose any 3 HA sites – a triangle ABC
•Find all other sets of 3 HA sites that form the same triangle

•If some exist (DEF) -> this might correspond to NCS
•If none…try another set of 3 HA sites

•Testing NCS: Sites ABC match sites DEF
•Does density near ABC match (after rotation/translation)
density near DEF?

A

CB

D

F

E

Automated NCS identification using heavy-atom sites and
analysis of the electron-density map

Structure Number of
sites

NCS NCS
(found from
heavy-atom

sites)

NCS
(electron-
density

map)

NDP Kinase 9 3-fold 3-fold 3-fold

Hypothetical 16 2-fold 2-fold 2-fold

Red Fluorescent
Protein

26 4
copies

4 copies 4 copies

AEP Transaminase 66 6
copies

6 copies 6 copies

Formate
dehydrogenase

12 2-fold 2-fold* 2-fold

Gene 5 protein 2 None None None

Armadillo repeat from
-catenin

15 None 2 copies None

Dehalogenase 13 None 3 copies None

Initiation Factor 5A 4 None None None

Molecular assembly in RESOLVE

List all chains assigned to sequence (anywhere in space)

A possible arrangement consists of:

•Each chain assigned to a molecule
•Each chain assigned to a symmetry-related position

Score a possible arrangement based on:

•Plausibility of gap distances between position of C of residue i and N of
residue j

•RMS distance of chains from molecular center
•RMSD of NCS symmetry for corresponding atoms

•Try a reasonable starting arrangement (each chain assigned to the center of
an NCS copy)
•Adjust by moving chains and groups of chains randomly from one
symmetry-related position to another. Choose based on score.

Molecular assembly in RESOLVE

Summary of molecular assembly results (NDP-kinase)

NCS copies: 3

Molecule: 1 Chain: 1 Score for molecular location: 0.83

Link Mol NCS NCS
Frag Start End N Overlap Length Radius RMSD <N> Score

1 17 64 48 0 6.6 4.5 0.7 31.0 51.0
2 69 74 6 0 24.5 19.6 0.5 3.0 3.7
3 115 137 23 0 14.4 5.2 0.8 20.5 22.7
4 166 186 21 0 5.2 0.6 9.5 22.4

Residues placed for this molecule: 98

Total residues placed: 309 of 588 or 52%
Residues built without side chains: 65
Total residues built: 374 or 63%

Total score for this arrangement: 314.4

Page 138

Automation of structure determination

Use of scoring procedures to assist in decision-making

Simple procedures for automation choosing the current best path
at each decision-point

The PHENIX project
Crystallographic software for automated structure determination

Computational Crystallography Initiative (LBNL)
-Paul Adams, Ralf Grosse-Kunstleve, Peter Zwart,
Nigel Moriarty, Nicholas Sauter, Pavel Afonine

Los Alamos National Lab (LANL)
-Tom Terwilliger, Li-Wei Hung,Thiru Radhakannan

Cambridge University
-Randy Read, Airlie McCoy, Laurent Storoni,
-Hamsapriye

Texas A&M University
-Tom Ioerger, Jim Sacchettini, Kreshna Gopal, Lalji Kanbi,
-Erik McKee, Tod Romo, Reetal Pai, Kevin Childs, Vinod Reddy

Acknowledgements

PHENIX: www.phenix-online.org

Paul Adams, Ralf Grosse-Kunstleve, Nigel
Moriarty, Nick Sauter, Pavel Afonine, Peter Zwart
(LBNL Computational Crystallography Initiative)

Randy Read, Airlie McCoy, Laurent Storoni,
Hamsaprie (Cambridge)

Tom Ioerger, Jim Sacchettini, Kresna Gopal, Lalji
Kanbi, Erik McKee Tod Romo, Reetal Pai, Kevin
Childs, Vinod Reddy (Texas A&M)

Li-wei Hung,Thiru Radhakannan (Los Alamos)

Generous support for PHENIX from the NIGMS Protein
Structure Initiative

Page 139

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic Symmetry

Crystallographic Symmetry in Real and
Reciprocal Space.

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry

Crystallographic symmetry in Real Space

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Overview:

� Brief review of concepts.

� Spacegroups and settings.

� Spacegroup symbols.

� Symmetry operators.

� Symmetry in reciprocal space.

� Symmetry in real space.

� Ideas and implementations.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Concepts:

� Point group – symmetries about a point.

� e.g. n-fold rotation (any n), mirror, inversion.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Concepts:

� Lattice group – symmetries of a lattice.

� Lattice can be made of any shape which tessellates.
� 2D: square, rectangle, rhombus, parallelogram, triangle,

hexagon.

� 3D: prisms of above, tetrahedron, parallelepiped.

� Lattice symmetries restricted by those shapes.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Concepts:

� Bravais lattice – parallelopiped cell with lattice
centerings to represent the other shapes.
(P/F/I/C/R).

� Primitive cell – Un-centered cell chosen from within
a centered lattice.

Page 140

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Space group:

� Combines symmetry of lattice, lattice centering, and
symmetry within the primitive cell.

� 230 distinct space groups (i.e. combinations of
symmetries consistent with 3D lattice).

� Tabulated and numbered in International Tables for
Crystallography.

� Also described by Hermann-Mauguin symbols.

� e.g. Spacegroup 19 = P212121

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:
� Which is great, but what we really want to know is

where the atoms are. Which means knowing the
cell and the symmetry operators.

� e.g. If there is an atom at x = (13,17,24),
then u = (0.3, 0.2, 0.4), and the symop is (-u,v+1/2,-w),
so there is an atom at u = (-0.3, 0.7, -0.4) or x = (-13,45,-24)

� PROBLEM: The space group number (or H-M
symbol) do not uniquely determine the symmetry
operators.

� Several space groups have multiple tabulated settings.

� And there are a huge number of possible non-standard
settings.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:
� Solutions:

� Only allow certain settings.
� Inconvenient for users and hard to spot. More user support.

� Use a symbol which includes a precise definition of the
setting: Hall symbol from CCTBX (also in Clipper).

� Hall & Grosse-Kunstleve (2001) Int Tab B, 201.

� Ignore the space-group symbols, use the symmetry
operators.

� No ambiguity.

� Symmetry operators present in CCP4 MTZ/map files, and
deposited PDB files.

� Determining other space-group info from operators complex, but
already implemented in CCTBX, Clipper, CCP4.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� Express the symmetry relationships in the unit cell
(and therefore in the diffraction pattern.

� Fractional rotation-translation operators.

� For any spacegroup, let there be Nsym symops,

numbered 0 ... Nsym-1

Si (u) = Si u + Si

� Operator 0 is the identity.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� We can extract from the Nsym symops, two

subgroups of operators: the centering operators
and the primitive operators, such that:
Nsym = Nprimitive x Ncentering

� The centering operators have S = I .

� The primitive operators may have translation parts,
but all have S �I .
� These are the operators from the corresponding “P” space-group.

� In reciprocal space we generally ignore the centering operators.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� e.g. P 2yb (P 1 21 1 , spacegroup 4)

� Equivalent posns: u,v,w; -u,v+1/2,-w;

Page 141

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� e.g. P 31 (P 31 , spacegroup 144)

� Equivalent posns: u,v,w; -v,u-v,w+1/3; -u+v,-u,w+2/3;

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� e.g. C 2 2 (C 2 2 2, spacegroup 21)

� Primitive:
u,v,w;
-u,-v,w;
-u,v,-w;
u,-v,-w;

� Centering:
u,v,w;
u+1/2,v+1/2,w;

� Equivalent posns:
u,v,w;
-u,-v,w;
-u,v,-w;
u,-v,-w;
u+1/2,v+1/2,w;
-u+1/2,-v+1/2,w;
-u+1/2,v+1/2,-w;
u+1/2,-v+1/2,-w;

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� Remember: symops are fractional, and therefore
the matrix is not a true rotation.

� Convert the symop to orthogonal form, and it may
be used to transform orthogonal coordinates.

� If the cell is consistent, the matrix part should become a
true rotation.

� We can also convert symops to grid coordinates by
scaling the translations (assuming grid is consistent
with symmetry). Useful optimization when handling
maps.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Symops

Symmetry operators (Symops):

� Related symmetry groups:

� Point group: (symmetry of anomalous data)
� Just take the unique rotation parts of the symmetry operators.

� Laue group: (symmetry of non-anomalous data)
� Point group + inversion operator.

� Patterson group: (symmetry of the Patterson map)
� Laue group + centering operators.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:
Dealing with symmetry in mathematics:

� In our Likelihood functions we often treat different
reflections as independent. But symmetry related
reflections (and Friedel opposites) are not
independent – these must be handled explicitly.

Dealing with symmetry in software:

� Symmetry related values should never be
inconsistent. When we change a structure factor or
density, every related value should change
immediately.

� Only store a unique set of values (asymmetric unit), and
generate related values on-the-fly.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:
Map asymmetric units (ASUs):

� In P 1, the ASU is the whole cell.

� In P 2yb (P 1 21 1 , spacegroup 4),

� Symops are: u,v,w; -u,v+1/2,-w;

� Use v+1/2 to generate half the
cell along the b axis.

� For any screw axis, divide the
cell length by the screw translation.

� e.g. P 31

0 1 2 3 4 5 0
0
1

3
2

4
5

0
7
6

1

3
2

4
5

0

7
6

0
8

0
1

3
2

4
5

0
7
6

a

c

Page 142

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Maps
Map asymmetric units (ASUs):

� In P 2yb (P 1 2 1),

� Symops are:
u,v,w; -u,v,-w;

� Several sensible ASUs

0 1 2 3 4 5 0
0
1

3
2

4
5

0
7
6

a

c

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: Maps
Map asymmetric units (ASUs):

� We can define a box which
roughly encloses the ASU.

� Some points may still be
duplicates.

� Other points may be related
to themselves:

� 'symmetry enhanced'

� in atom density calculation,
they may require special
treatment.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry

Crystallographic symmetry in Reciprocal Space

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Relationships between reflections:

F(h) = Σj fj(h) exp(2πi hT uj)

= Σj fj(h) exp(2πi hT [Sk uj + Sk])

= Σj fj(h) exp(2πi [hT Sk uj + hT Sk])

= Σj fj(h) exp(2πi [(Sk
T h)T uj + hT Sk])

but:
F(Sk

T h) = Σj fj(h) exp(2πi (Sk
T h)T uj)

therefore:
F(h) = F(Sk

T h) exp(2πi hT Sk)

F(Sk
T h) = F(h) exp(-2πi hT Sk)

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Example: P 31

� Symmetry related
reflections are: Sk

T h

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Relationships between reflections:

F(Sk
T h) = F(h) exp(-2πi hT Sk)

� But: Sometimes the symmetry operation relates a
reflection to itself or its Friedel opposite.

e.g. (1,0,0) under (u,-v,-w) or (-u,-v,w)

� We know:
F(h) = F(h) (by definition)
F(h) = F(-h)* (Hermitian symmetry)

Page 143

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Suppose:

Sk
T h = h

� Then:
F(h) = F(h) exp(-2πi hT Sk)

� This can only be true if hT Sk is an integer.

� If hT Sk is an integer, F(h) is an enhanced reflection, i.e.

its intensity I(h) is increased by a factor of ε, where ε is
the number of operators relating h to itself.

� If hT Sk is not an integer, F(h) is a systematic absence.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Suppose:

Sk
T h = -h

� Then:
F(h)* = F(h) exp(-2πi hT Sk)

-φ(h) = φ(h) - 2πhT Sk + 2nπ
φ(h) = πhT Sk + nπ
i.e. one of two values separated by π.
e.g. 0,π; +π/2,-π/2; -π/3,+2π/3;

� The reflection is centric.

� It may also be enhanced.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Determining the class of a reflection: (clipper::HKL_class)

� Loop over all (primitive) symmetry operators.

� If Sk
T h = -h , the reflection is centric.

� Calculate its allowed phases.

� If Sk
T h = h :

� If hT Sk is an integer, increase the enhancement by 1, otherwise

the reflection is a systematic absence.

� Enhancement is increased by the number of centerings.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl
� Transforming a reflection about reciprocal space:

|F(Sk
T h)| = |F(h)|

φ(Sk
T h) = φ(h) - 2π hT Sk

� From these, calculate the transformations for other
types of data, e.g. A,B, Hendrickson-Lattmann
coefficients.

� Clipper: when a reflection data type is defined, its
behavior under phase shift or Friedel inversion is also
defined. With these the reflection can be transformed
about reciprocal space by 'magic'.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl

Reciprocal space asymmetric units (ASUs).

� P1:

� For the most common calculations, we don't need to
store both a reflection and its Friedel opposite
(since F(-h) = F(h)*). Even for anomalous data, we
usually store F(h) and F(-h) together.

� Therefore, we only need to store a
hemisphere of data.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl

Reciprocal space asymmetric units (ASUs).

� P1: Hemisphere of data.

� But even that isn't simple.

� Use for example:
� (l > 0) or

� (l = 0 and h > 0) or

� (l = 0 and h = 0 and k > 0)

h

k

Page 144

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl

Reciprocal space asymmetric units (ASUs).

� P 2 2: (P 2 2 2)
� h ≥ 0 and k ≥ 0 and l ≥ 0

� P 3: (P 3)
� (h ≥ 0 and k ≥ 0) or

� (h = 0 and k = 0 and l ≥ 0)

� P 4 3 2: (P 4 3 2)
� k ≥ l and l ≥ h and h ≥ 0

h

k

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry: hkl

Implementation:

� Calculate point-group, and 'change-of-basis' to get
to standard setting, then use ASU for that point-
group on transformed hkl. (13 tabulated ASUs).

� CCTBX, CCP4

� Calculate oriented point-group, and then use ASU
for that point-group hkl. (51 tabulated ASUs).

� Clipper optimization.

� Sanity check by using a sample set of reflections.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

General implementation points:

� CCTBX is fully space-group general, and will
handle made-up settings without difficulty.

� Clipper is fully space-group general, and will
handle made-up settings without difficulty (except it
won't name a space-group from the symops unless
they match one from a list of common and
uncommon settings).

� CCP4 uses a data file of common and uncommon
settings, and won't handle anything else.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Implementation: Maps

� Typical map access modes...

� Loop over each unique grid point in turn.

� Access a grid point, and then one of its neighbors.

� Access grid points at random.

� Map data objects are ideally specialized to the
access pattern required.

� But useful compromises are possible.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Implementation: Maps

� e.g. for random access, use mod() to get grid
coordinates into the unit box, and then use a unit
cell grid of pointer pointing to the density value in
an asymmetric unit list.

� Cost: an extra memory access.

� To save memory share lookup tables between maps
using the same grid and space-group.
(Associative memory)

0
1

3
2

4
5

0
7
6

�������
0
1

3
2

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Implementation: Maps

� Clipper approach: random access is rare. Store an
ASU grid with pointers round the edge so that when
we run out of the grid we know where to get the
next density.

� No additional lookup.

� Good for sequential access and neighbor access.

� Lower overhead.

� For full-cell random access, a search over symops is
required (or expand to P1).

Page 145

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Implementation: Reflections

� Store a list of reflections with h,k,l?

� Good for sequential access.

� Efficient storage of ASU.

� Or store a 3D array of reflections?

� Good for random access.

� Inefficient storage of ASU.

� Sequential access may be harder.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Implementation: Reflections

� Clipper approach: Store a list of h,k,l and reflection
data values of arbitrary types. But also provide a
ragged 3D index array (ASU only) for when random
access is required.

� Fairly compact.

� For full-sphere random access, a search over symops is
required.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Crystal Symmetry

Crystallographic symmetry:

Summary:

� Symmetry is fundamental to crystallographic
calculation in both real and reciprocal space.

� We use space-group symbols, calculations use the
symmetry operators.

� Symmetry involves a lot of book-keeping, which
may be avoided by good enough class design.

� General designs are useful for many/most purposes.

� However, optimal solutions may be problem specific.

Page 146

IUCr Computing School Siena 18-23 August 2005

Profile refinement
Least-squares analysis and beyond

Bill David, ISIS Facility,Bill David, ISIS Facility,
Rutherford Appleton Laboratory, UKRutherford Appleton Laboratory, UK

When and why
do we use least-squares analysis

in crystallography?

Part I

Using least-squares analysis:
a basic part of crystallography

• It’s worked all right up till now!
– How accurate are your structural parameters?

• The fit looks pretty good!
– How good are your data really?
– How good, how complete is your model?

• If it ain’t broke don’t fix it!
Bert Lance 1977

“Learn the fundamentals of the game and stick
to them. Band-Aid remedies never last.”

• fundamental parameters
– Pearson VIIs are good but fundamental parameters are better
– “One of the intrinsic benefits of the fundamental parameters

approach is that it is easily adapted to any laboratory
diffractometer. Good fits can normally be obtained over the whole
2 range without refinement using the known properties of the
diffractometer (i.e. slit sizes, diffractometer radius and so on) and
the emission profile.”

– you can understand and explain the peak shape function

• fundamental statistics
– optimisation by plausible reasoning
– probabilistic reasoning for least-squares analysis and beyond
– minimise empiricism - no deus ex machina

Jack Nicklaus

What is least squares analysis?

obs(i) calc(i)

esd(i)

-()2

i

2
=

When do we use least squares analysis?

extremely specific extremely broad

Least squares analysis has its roots in the assumption
that the errors in the data follow a Gaussian (normal)

probability distribution function.

Least-squares analysis equates to the data
following a Gaussian probability distribution

0126.0
2

110001000 ansobsp16.01000980960 obsansp

Page 147

Maximising the likelihood = minimising -(log-likelihood)

Finding the most probable solution = maximising the probability

N

i
i

i
i DDp

1

2
22

1exp
2

1,likelihood

N

i
i

i

N

i
i

i
ii

DC

DDp

1

2
2

1

2
2

2
1

2
1ln2ln

2
1,lnMinimise

c.f. least squares minimisation

N

i
i

i

D
1

2
2

2 1Minimise

What if the fit isn’t that good?

Part II

What if the fit isn’t that good?

(obs-calc)/esd obsNj

i i
j icalciobs

1

2
2

2 1

2
3
1~

obsNj

i i
j icalciobs

1

2
2

2 1 What if the fit isn’t that good

• Is it wise to have 150,000 counts in the biggest peak and
5000 counts in a very highly structured background?
– No! Redo the experiment!

• Collect all Bragg peaks with similar fractional accuracy
– variable counting time to give E/ (E) constant

• If accuracy and precision are required be prepared to
– comprehensively model structure and microstructure
– perform fundamental line-shape analysis
– undertake detailed “fundamental” background analysis

• If all else fails - use statistics / plausible reasoning!

Page 148

400 counts

What’s gone wrong?
• We’ve performed a least-squares analysis and

implicitly assumed that all errors follow a Gaussian PDF
• We’ve been certain about our uncertainties!

• 400 counts uncertainty = 20
• but there are clearly other uncertainties
• all we can say is that 20 is the lower bound
• distribution of errors 20 (= min)
• use a scale-invariant Jeffreys distribution
• p() 1/ for min
• p() = 0 for < min

• Jeffreys prior
• p() 1/ for min
• p() = 0 for < min

• Jeffreys prior
• p() 1/ for min
• p() = 0 for < min

dDprobDp
min

2
22

1exp
2

1,

Gaussian

2
22

1exp
2

1, DDp

Gaussian

Page 149

2
22

1exp
2

1, DDp

Gaussian

2
erf

2
1,

min
min

D
D

Dp

0
2

4
6

Least-squares:

Robust:

2
2
1 x

xxerfln

Urea
(BM16 ESRF)

Urea (BM16 ESRF)

cumulative 2

cumulative robust 2

SXXD Least Squares LS-SXXD Robust R-SXXD
C1 z 0.3328(3) 0.3236(9) -0.0092(10) 0.3319(13) -0.0009(14)
O1 z 0.5976(4) 0.6013(5) 0.0037(6) 0.5984(7) 0.0008(8)
N1 x 0.1418(2) 0.1405(3) -0.0013(4) 0.1423(7) 0.0005(7)
z 0.1830(2) 0.1807(5) -0.0023(6) 0.1813(7) -0.0017(7)
C1 U11 0.0353(6) 0.0348(20) -0.0005(20) 0.0329(40) 0.0024(40)
U33 0.0155(5) 0.0396(30) 0.0241(30) 0.0413(40) 0.0258(40)
U12 0.0006(9) 0.0205(30) 0.0199(30) 0.0128(40) 0.0122(40)
O1 U11 0.0506(9) 0.0749(16) 0.0243(18) 0.0617(30) 0.0111(30)
U33 0.0160(6) 0.0080(14) -0.0080(15) 0.0090(20) -0.0070(20)
U12 0.0038(18) 0.0052(20) 0.0014(30) -0.0011(35) -0.0049(35)
N1 U11 0.0692(6) 0.0627(15) -0.0065(18) 0.0697(25) 0.0005(25)
U33 0.0251(4) 0.0460(22) 0.0211(22) 0.0365(30) 0.0114(30)
U12 -0.0353(7) -0.0252(18) 0.0101(20) -0.0361(30) -0.0008(30)
U13 -0.0003(3) -0.0015(11) -0.0012(12) -0.0029(15) -0.0026(15)

Urea (BM16 ESRF)

= diff > 4
9/14 > 4 1/14 > 4

Page 150

What if the model is incomplete?

Part III

• unknown impurity phase

• unknown fragment in crystal structure
• e.g. disordered guest in zeolite

unknown waters of hydration
disordered oxygen in high Tc material
incomplete models in structure solution
Fcalc has uncertainty as well as Fobs
(c.f. maximum likelihood in structural biology)

What if there’s an impurity phase?

main phase

impurity

impurity

main phase

Gaussian probability distribution

2
22

1exp
2

1, MDMDp

We’re happy that the data errors follow a Gaussian distribution

Our problem is that the model is incomplete. We have a known
phase with contribution, P, and an unknown (positive) component, A.

i.e. M=P+A

2
22

1exp
2

1)(, APDAprobPDp i

Use a scale invariant Jeffreys 1/A prior for prob(A)

logarithmic tail

Least-squares: 2
2
1 x

TiO2

Y2O3

HRPD, ISIS

100% Y2O3

Page 151

5% Y2O3 : robust refinement

N.B. the big TiO2 peaks.
In the next slide they “disappear”!

5% Y2O3 : robust refinement

The darkness of the dots indicates their relative impact in the robust analysis.
Large positive (obs-calc) points (i.e. mostly impurity peaks) are “invisible”.

5% Y2O3 : standard least-squares

5% Y2O3 : robust refinement

5% Y2O3 : robust refinement5% Y2O3 : standard least squares

100% Y2O3

Page 152

100% Y2O3

20% Y2O3 : robust refinement

20% Y2O3 : standard least squares

Summary of Part III
If the model is incomplete, careful construction of an
appropriate probability distribution function can bring significant
improvements over standard least-squares analysis.

Conclusions
• least-squares is fairly ubiquitous but not always

the most appropriate minimisation metric.
• try to keep things simple

– do the best experiment possible
– develop as complete a model as possible

• be as certain as possible about your uncertainties
(probability distribution functions)

• be prepared to go beyond least-squares!

(MaxEnt)
1. C
2. Fourier recycling

D S Sivia and W I F David, J. Phys. Chem. Solids 62, 2119-2127 (2001) Chlorothiazide

2
22

2
2

2

1
h

hh calcobs
h

I

I

FF

sintensitieintegratedtheminimise:crystalSingle

22222

2

h k
kkkhhh FFFFFFw modelobsmodelobshkCI

CIsintensitieintegratedcorrelatedtheMinimise

22222

2

h k
kkhh calcobscalcobshkCI

CI

FFFFw

sintensitieintegratedcorrelatedtheminimise:Powders

ln

i2-exp

rr

rhrh

r

r

maximisingwhile

where F

Page 153

The importance of phase information

acentric reflection
(with known fragment)

i
known

im ifF rhhh .2exp

22 hh
unknown

if

acentric reflection
(only magnitude known)

acentric reflection
(with known fragment)

2 completely overlapped
centric reflections

(with known fragment)

2 partially overlapped
centric reflections

(with known fragment)

Dealing with peak overlap correctly

Chlorothiazide

D S Sivia and W I F David, J. Phys. Chem. Solids 62, 2119-2127 (2001)

22222

2

h k
kkkhhh FFFFFFw modelobsmodelobshkCI

CIsintensitieintegratedcorrelatedtheMinimise

ln

i2-exp

rr

rhrh

r

r

maximisingwhile

where F

Bayesian map reconstruction from powder diffraction data

Ordinary Map Bayesian Map

level= 8.5% level= 5%

Chlorothiazide: C7H5N3O4S2Cl

Bayesian approach: S2Cl (32% scattering) to full structure

S2Cl

FourierBayesian
Fourier

full
structure

Page 154

with thanks …

M Brunelli, A N Fitch, J P Wright (ESRF)
A A Coelho
N Shankland, A Kennedy (Strathclyde)
C Pulham (Edinburgh)
K Shankland, A J Markvardsen, D S Sivia (ISIS)

Zopiclone
D S Sivia, Data Analysis: A Bayesian Tutorial, OUP, ISBN 0-19-851889-7

Page 155

Page 156

Page 157

Page 158

Page 159

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood

Maximum Likelihood in X-ray Crystallography

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood

Inspired by Airlie McCoy's lectures.
http://www-structmed.cimr.cam.ac.uk/phaser/publications.html

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood
� Science involves the creation of hypothesis (or

theories), and the testing of those theories by
comparing their predictions with experimental
observations.

� In many cases, the conclusions of an experiment
are obvious – the theory is supported or disproven.

� In other cases, results are much more marginal.
e.g. How big a sample size do we need to
distinguish a successful drug from placebo effect?

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood
� In order to correctly understand the impact of our

experiments on our theories, we need some
knowledge of statistics.

� This is especially necessary in crystallography,
since we have:

� a very weak signal:
(the observed magnitudes)

� a great deal of noise:
(the missing phases + measurement errors)

� from which we are trying to test a very detailed
hypothesis:

(the position of every atom in the unit cell)

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood
� Given the uncertainties of the data, we cannot

usually determine whether a hypothesis is right or
wrong – only how likely it is to be right:

The probability of the hypothesis.

� In order to do this, our hypothesis must be detailed
enough for us to work out how likely we would have
been to get the results we observe, assuming that
the hypotheses is true.

� We then use Bayes' theorem to determine the
probability.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Maximum Likelihood
� Examples:

� Hypothesis: The observed X-ray data arises from a
molecule which is roughly homologous to this known
molecule in this orientation in the cell.
(Molecular replacement – how probable is a given model)

� Hypothesis: The position of this atom (and its neighbors
better explains the X-ray data when moved in this
direction.
(Refinement – what is the relative probability of two very
similar models. Includes heavy-atom refinement.)

� In fact all problems come down to the comparison
of different hypotheses.

Page 160

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

Example:

� We have a cat. She has a kitten. We don't know
who the father is, but there are four possibilities in
the neighborhood.

� What can we say about the color of the father from
the color of the kitten?

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

Cat genetics is complex: we will simplify.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

One black kitten: which is the father?

Actually, it could be any one, since they may all carry
the appropriate genes. But they are not all equally
probable.

We need some more information.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

1/7
2/7

3/7
1/7

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

An extremely clever transformation has occurred:

� I gave you the probability of a kitten being a
particular color, given that we know the colors of
the father.

P(kitten color | father color)

� You gave me the probability of the father being a
particular color, given that we know the color of the
kitten.

P(father color | kitten color)

� P(x | y): The probability of x, given y.

Page 161

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

This is a simple experiment:

� The result of the experiment is our observed data:
the color of the kitten.

� The hypothesis is concerning the color of the cat.
We make 4 hypotheses about the father (orange,
black, cream, grey) and calculate the probability of
each.

� We can work out P(data | hypothesis)

� We want to know P(hypothesis | data)

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

How do we do this sort of maths for a general
problem?

� Use Bayes' theorem:

� Proof: The probability of x and y is the probability of
x given y multiplied by the probability of y.

Assumes
x and y

independent!

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

How do we do this sort of maths for a general
problem?

� Use Bayes' theorem:

� Therefore:

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

Therefore:

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood
� What if the population of male cats is non-uniform?

i.e. P(fathercolor) is non-uniform

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

1/11
6/11

3/11
1/11

Page 162

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood
� The elements of Bayes' theorem have names:

Likelihood:
The probability of getting the observed data,

given the current hypothesis.

Prior:
The probability of the current hypothesis,

before we even do an experiment.

Normalization:
So that all the possibilities add up to 1.

Independent of hypotheses. Usually ignore.

Posterior:
Our final measure of confidence in the

hypothesis having tested it.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Understanding Likelihood
� As applied to the cats:

Likelihood:
If we suppose that a given cat is the father,
we can work out the probable kitten colors.

Prior:
We know the distribution of male cats

before the kitten is born.

Normalization:
Since we only want to compare relative

probabilities, this doesn't matter.

Posterior:
We can determine the probably father color

from the results.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� How do we apply this to crystallography?

� Hypothesis: The observed X-ray data arises from a
molecule which is roughly homologous to this known
molecule in this orientation in the cell.
(Molecular replacement – how probable is a given model)

� Hypothesis: The position of this atom (and its neighbors
better explains the X-ray data when moved in this
direction.
(Refinement – what is the relative probability of two very
similar models. Includes heavy-atom refinement.)

� Each hypothesis leads to a set of predicted
structure factors: Fc(h). How well these explain the

observed |Fobs(h)| determines the likelihood.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� For most purposes, we treat each reflection as an

independent observation. Therefore we can consult
each reflection separately to determine how well it
agrees with the model. Then, we multiply all the
resulting likelihoods together.

� Problem: the product of 10,000s of small numbers
gives an underflow on a computer.

� Solution: Take the log of all the likelihoods and sum
them.

Usually minimize -log(likelihood) because it is +ve.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� Each hypothesis leads to a set of predicted

structure factors: Fc(h). How well these explain the

observed |Fobs(h)| determines the likelihood.

� But: we have a continuum of hypotheses. We can
rotate an MR model or move a refinement atom
continuously to improve the model.

� We refine the parameters of the model (e.g.
rotation of MR model, position of refinement atoms)
in order to best explain the observed data, i.e. to
give the highest value of the likelihood, hence:

Maximum Likelihood

Page 163

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� But actually we want to maximize the posterior.

e.g. in refinement:

� Prior gives the probability of the model on the basis of its
agreement with stereo-chemical restraints.

� Likelihood gives the probability of the model on the basis
of the observed X-ray data.

� If we just maximize the likelihood, we get lousy
geometry.

� But people call it 'maximum likelihood' anyway.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� Each hypothesis leads to a set of predicted

structure factors: Fc(h). How well these explain the

observed |Fobs(h)| determines the likelihood.

� Note: To calculate a
probability we must
also estimate the error
associated with the
Fc(h).

� The error estimation
is a vital part of the
model or hypothesis.

|Fobs(h)|

Fc(h)

�

�

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� How do we estimate the errors? Surely as the error

estimate increases, the model always becomes a
better description of the data?

|Fobs(h)|

Fc(h)

�

�

|Fobs(h)|

Fc(h)

�

�

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� No, the likelihood favors appropriate noise levels:

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� Error estimation is in terms

of a parameter σA, where

σA is the fraction of the

normalised structure factor
EC(h) which is correct, and

(1-σA
2) is the variance of

the noise signal.

� Typically estimated as a
function of resolution.

� Read (1986) Acta Cryst A42, 140-149

|Eobs(h)|

σAEc(h)

�

�

Ec(h)

1-σA
2

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� We can calculate the

Likelihood Function for
Eobs given Ec :

|Eobs(h)|

σAEc(h)

�

�

Ec(h)

1-σA
2

Page 164

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography
� But we don't know Eobs !

� The data are the observed
magnitudes: |Eobs|

� We want P(data|model)

� Therefore, sum (integrate)
the likelihood over all the
unknown phases: Rice fn
(i.e. eliminate nuisance variable)

|Eobs(h)|

�

�

L(|E|)

|Ec|

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and Crystallography

Steps:

� Construct a model, with some parameters: e.g.

� MR: Rotation R, Translation T, Error term σA

� Refinement: Coords xi, Temp factors Bi, Error term σA

� Refine parameters R,T / xi,Bi , σA to maximize the

likelihood using the known magnitudes.

� Then use the resulting probability function for the
phases to calculate an electron density map.

� Programs will output ML map coefficients.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and crystallography

Other details: Molecular replacement

� Programs will also use a likelihood function for un-
positioned models to rank rotation function results.

� More complex likelihood functions allow
combination of information from multiple fragments,
even when relative position is unknown.

� See for example
Read (2001), Acta Cryst. D57, 1373-1382.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and crystallography

Other details: Refinement

� Programs may also perform anisotropy correction,
TLS refinement, bulk solvent correction. ML
parameter refinement may be used to refine all of
these parameters.

� Heavy atom refinement is similar, but is applied
against multiple data sets simultaneously.

� See for example
Pannu, Murshudov, Dodson, Read, (1998) Acta
Cryst. D54, 1285-1294.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Maximum Likelihood

Likelihood and crystallography

Summary:

� Likelihood provides a tool for establishing the
probability of a hypothesis.

� When data is weak, this is vital for describing our
current state of knowledge.

� Direct benefits include improved models and
weighted maps.

� Employed in:

� phasing, MR, refinement, phase improvement, map
interpretation.

Page 165

Page 166

Page 167

Refinement II - Modern
Developments

Dale E. Tronrud
Howard Hughes Medical Institute

University of Oregon

TNT Refinement Package

• Designed and partially implemented by Lynn Ten Eyck in the late 1970’s
• I have been working on it since 1981.
• We started distributing copies to other labs around 1984.
• It is used as the refinement engine in Buster/TNT from Gerard Bricogne’s

group.

Relevant Design Aspects
• The first popular reciprocal space refinement program was PROLSQ from

Konnert and Hendrickson.
• This was a monolithic program.

– To explore your own ideas of refinement you had to understand and modify their
code.

• Lynn went the opposite way: a collection of programs coordinated by a
scripting language.

– One advantage of this design is that individual programs can be replaced with
better implementations without worrying about the rest of the programs.

– Another advantage is that one has access to the data stream between TNT
programs, which allows one to add enhancements to without modifying or even
trying to understand our programs.

Model

Some Space-group Specific FFT

Rfactor

Coordinate file

Calculated density map

Calculated structure factors

Observed structure factors

Function value Difference coefficients

So, we write a single program for structure factor calculation

Coordinate file
Calculated
structure
factors

Map
calculation

routine

FFT
routine

GeneralSF

map

What rate to
sample the

map?

What layout
of map?

What if I
want to read

the map
from a file?

A more complicated example of the same problem

Convolution Structure
factor file

Page 168

A more complicated example of the same problem

FFT

Structure
factor file

FFT

Multiply FFT

map

map

map

Convolution program
What rate to
sample this

map?

What
volume of

space should
it cover?

A more complicated example of the same problem

FFT

Structure
factor file

FFT

Multiply FFT

map

map

map

Convolution program

The Solution
• Change the programming model.

– Instead of programming serial operations, go to an event driven model.
• The user isn’t asking the program to do all these steps. The program should

begin with the user’s request.

– I would like a structure factor file which contains the results of multiplying in real
space the maps which correspond to the data in these two files.

• The program should formalize this request and pass it to a routine (class,
object, module, function, subroutine, whatever) whose job it is to fulfill
requests.

• The “request satisfier” will unfold the top layer of the request, and compose
new requests for the data it needs.

• It then recursively calls itself to acquire the data it needs.

• I would like a structure factor file which contains the results of multiplying in
real space the maps which correspond to the data in these two files.

– (While the program knows at this point if each file is a map, or HKL’s, the “request
satistier” does not.)

• The program rephrases this request as: Give me the set of structure factors that
result from this calculation:

• Multiply[Map](File1, File2)
• The request is passed to the “request satisfier”
• The “request satisfier” sees that structure factors are requested but the script

returns a map, so it passes the request to the structure factor calculating FFT
for processing.

• The FFT builds a request for a map based on its needs.
– It needs the map to cover an asymmetric unit of the unit cell.
– It needs the sampling rate to be at lease twice the resolution of the map.
– It doesn’t know the space group or the resolution so its request must be vague.
– The new request is passed to another incarnation of the “request satisfier”.

• This “satisfier” sees a request for a map to be derived from a operator that
creates a map.

– It fires up the code that implements Multiply[MAP] and passes it the request.

• The map multiplier knows that it needs two maps to multiply.
– It generates a request for its first argument.

• It knows that it needs an asymmetric unit filled with density. The sampling rate is more
of a problem.

– The resolution limit will be higher than the arguments. My code assumes that the two maps will
have the same resolution so I double the sampling rate of the requests maps. This map should be
oversampled by a factor of four.

• The script for this request is simply “File1”.
– It sends its request for its first argument to yet another incarnation of the “request

satisfier”.

• This incarnation sees that it has a request for a map but the source is a
structure factor file. It calls of the map calculating FFT and passes on the
request.

• The FFT knows that it needs structure factors and creates a request for them
and passes that request, along with the script “File1” to yet another incarnation
of the “request satisfier”.

• The satisfier sees that it is being requested to return structure factors from a
structure factor file, so it does so. Finally the space group and resolution limit
is known.

• The FFT now knows the space group and resolution limit so it can decide on a
sampling rate for the map and and its layout.

• It calculates the desired map and returns it to the satisfier who returns it to the
map multiplier.

• The map multiplier receives the map for its first argument and builds a request
for the second.

– The second map must have the same sampling rate as the first because the grid
points must line up. The layout must also be the same. This request is more
specific.

• The second argument request is passed down the line and a map is returned.
• This map may not fulfill the needs of the request. The suppliers of data try

their best to match a request but sometimes it is impossible.
– The map multiplier must check that maps it receives are suitable for its calculation

and adjust accordingly.
• The space group of the product map may differ from the arguments. The true

space group must be passed back to the requestor.
• The map multiplier multiplies the maps and return the result to the structure

factor calculating FFT.
• The FFT now learns the space group, resolution, and sampling rate of its map.

– It must verify that it can work with this result.
– If so, it does the FFT and returns the structure factors.

• The user finally gets the structure factors they wanted!

Page 169

Multiply[Map](file1, file2)

FFT

Structure
factor file

FFT

Multiply FFT

map

map

map

Convolution program
General purpose program

Calc Map

Coordinates

Coordinates()

A Other Examples

• Apply_Mask(File, Envelope(Triangle(Truncate(File))))
– This script applies Wang-style solvent flattening to the map, or structure factors

from a file.

• Multiply[SF](File, Conjg[SF](File))
– Calculates Patterson coefficients, a Patterson Map, or Patterson peaks depending on

what type is requested.

Problems

• This entire concept is illegal in Fortran 77!
– Recursion is forbidden.

• Designing the ability to make sufficiently vague requests is an ongoing task.
– For example, when asking for an asymmetric unit of peaks you need a map that has

a little extra around each edge of the asymmetric unit.

• Some decisions are hard without more knowledge.
– For example, when zero-truncating a density map the resolution of the resulting

map will likely be greater than the unmodified map. But by how much?
• It depends on how many grid points you zero.

What next?

• Currently all the structure factor and map calculations in TNT are done with
this scheme.

• I would like to expand this to other data types, such as atomic shifts, gradients
and curvatures. With this I could restructure the package to simply answer the
request “I would like a better model given this model”.

• Reality check:
• I am reaching the limits of what I can do in this language. I am thinking in

object oriented terms but my tools are the classic “stone knives and bear
skins”. It’s probably time for a complete rewrite.

Page 170

On Minimization Targets and
Algorithms

Dale E. Tronrud
Howard Hughes Medical Institute
Institute of Molecular Biology
University of Oregon, USA
http://www.uoxray.uoregon.edu/dale/

Refinement and Rebuilding

Refinement and model rebuilding cannot be
considered separately. Each is useless without the
other.
“Refinement” is a process where continuous
changes are made to the model with consideration
given to the observations.
“Rebuilding” requires consideration of the context of
each portion of the model with an eye towards
making large changes, e.g. rotomer changes,
peptide flips, as well as adding and deleting atoms.
Rebuilding is usually manually controlled, although
some protocols, such as arp/warp, are automated.

What is Refinement?

Refinement is the optimization of a function by
changing the parameters of a model.

What are the parameters?
– Usually everyone agrees that the parameters are the

position, B factor, and occupancy of each atom.
– In most cases other parameters are added.
– In some special cases different parameters are chosen.
What is the function?
– Maximum likelihood in REFMAC, CNS, BUSTER
– Least squares in SHELX and TNT
– Empirical energy in X-PLOR, CNS

What minimization method?
– Choice depends upon the function and the model.
– Usually a variety of methods will be used on the same

problem.
– A variety of methods are used; several being used in the

same project.
• Simulated Annealing
• Conjugate Gradient
• Preconditioned Conjugate Gradient
• Sparse Matrix
• Full Matrix
• . . .

What Parameters to Refine?

Page 171

Elaborate Parameterization

If one holds to the traditional parameterization of
position and isotropic B’s
– High resolution and more precise lower resolution data will

be wasted.

The cost of elaboration is an increase in the total
number of parameters.
– Too many parameters leads to “overfitting” and poor

refinement results.
– Finding the right balance is difficult and will vary from case

to case.

The recent success stories are:
– Torsion angle simulated annealing at low resolution
– TLS anisotropic B’s at midrange resolution

Who’s Got What?

All packages can refine positions and isotropic B’s
and atomic occupancies.
All packages can perform rigid body refinement.
SHELLX, REFMAC, and Restrain have individual
anisotropic B’s.
REFMAC has TLS anisotropic B’s built as a “tree”.
CNS has a “torsion-angle” parameterization which
greatly improves simulated annealing refinement.
Each program has many options to vary
parameterization. Check the documentation for the
options available to you.

What Function to Optimize?

Maximum Likelihood
Is a generalized statistical framework for optimizing
models
– Which means it is somewhat vague.

The best set of parameters is the one for which the
probability is the greatest that the experiment
performed would result in the measured values.
The character of the errors in your model are
specifically built into the target function.
If the errors in the experiment and the model obey
certain assumptions Least Squares is the proper
Maximum Likelihood method for the problem.
Generally, the larger the errors the less applicable
Least Squares becomes.

Maximum Likelihood (cont.)

Least Squares assumes that for all
reflections obeys a Normal distribution with a mean
of zero and a standard deviation of one.
Least Squares view of the world:

o

co FF ||||

Amplitude

Li
ke

lih
oo

d

|Fo|
|Fc|

o

Maximum Likelihood’s View

Fo Fc

Page 172

Difficulties in Maximum Likelihood

What is the character of the uncorrected errors in
the model?
– Existing programs assume the errors behave like

randomly, and Normally distributed displacements of
atomic positions and B factors.

– Buster offers the option of non-uniform distribution of errors
• It has a two state error model, where one part is treated in the

usual way, but another part is identified only by a region of
space and an elemental composition.

How does one estimate the quantity of error in the
model?
– All ML programs use the agreement of the model to the

test set to calibrate the error level.

The Least-squares Function

Observed quantity i
Observed variance of quantity i
Parameters of a model
Corresponding quantity inferred from the
current model

The best is that which minimizes

Different Classes of Observations
This equation can easily handle observations of
many different classes.

Examples of classes are:
– Structure factor amplitudes
– Bond length and angles
– Torsion angles and planarity
– Non-bonded contacts
– Stereochemical B factor correlation
– MIR Phases
– Noncrystallographic symmetry

Major Limitation of this Equation

The equation assumes that the observations are
statistically independent. Often this is not the case.
– Some programs use non-independent stereochemical

restraint categories.
– Many particular stereochemical targets are correlated.
– The presence of noncrystallographic symmetry creates

dependencies between some (many) reflections.

This limitation also exists in all Maximum Likelihood
implementations to date.

Energy Minimization

The best model with the one with the lowest energy.
How does one calculate the “energy” of a model?
How does the diffraction data become “energy”?
How does one reconcile the instantaneous nature of
energy with the time averaged nature of the
diffraction data?
Why bother when a statistically based method has
answers to all these questions?

How to Optimize the Function?

Page 173

Methods of Minimization

Methods using no function derivatives
– Simulated Annealing, Monte Carlo, Simplex, Metropolis

Methods using first derivatives
– Steepest Descent, Conjugate Gradient

Methods using first and second derivatives
– Full matrix, Block diagonal, Diagonal, Preconditioned

Conjugate Gradient (, and Conjugate Gradient II)

Simulated Annealing

You are here

Maybe you’re here

Full Matrix Minimization

If the function is not quadratic
– more than one cycle is required to reach the minimum.
– an initial guess for the parameters is required.

The second derivative matrix is huge
– very time consuming to calculate and invert.

The power of convergence is great.
The radius of convergence is very poor.
It absolutely requires an overdetermined problem.

Approximations to Full Matrix

Sparse Matrix
– Only large matrix elements are used

Block Diagonal
– Assumes the parameters can be categorized

Preconditioned Conjugate Gradient
– Assumes all off diagonal elements are zero, but learns the truth from

experience

Gradient / Curvature
– Assumes all off diagonal elements are zero, and is pig-headed about it.

Conjugate Gradient
– Assumes all diagonal elements are equal, but learns from experience

Steepest Descent
– Assumes all diagonal elements are equal

The Minimization Continuum

Increasing radius of convergence

Increasing rate of convergence

Increasingly conservative

No
derivatives

First
derivatives

Second
derivatives

Increasing CPU time

sdsearch full matrix<--- sa ---> cg pcg

Page 174

Who’s Got What?

Full matrix refinement is available
– SHELLX, REFMAC, and RESTRAIN.
– Full matrix programs usually allow for the exclusion of

subsets of off-diagonal elements.
– They will also offer a selection of means to approximate the

inverse of the Normal matrix.
Ignoring all off-diagonal elements leads to the
diagonal approximation and preconditioned
conjugate gradient.
– TNT and BUSTER

Ignoring the diagonal elements leads to steepest
descent and conjugate gradient.
– X-PLOR and CNS

In Conclusion...

This talk should help you to ask the right questions
to find out how one refinement package differs from
another.
One must know the differences between the
packages to make a rational decision about which to
use in your project.
One must also know the limitations of their package
and what problems to watch for. No package is
perfect.

Page 175

Computational aspects of the
Rietveld Method

Needs for precise refinements and
microstructural effects:

Improvement of treatment of peak
shapes, Rietveld algorithm, …

Juan Rodríguez-Carvajal
Laboratoire Léon Brillouin, (CEA-CNRS), CEA/ Saclay

FRANCE

A powder diffraction pattern can be recorded in numerical
form for a discrete set of scattering angles, times of flight or
energies. We will refer to this scattering variable as : T.
The experimental powder diffraction pattern is usually
given as three arrays :

The profile can be modelled using the calculated counts: yci
at the ith step by summing the contribution from
neighbouring Bragg reflections plus the background.

1,2,...
, ,i i i i n

T y

Experimental powder pattern

yi

Position “i”: Ti

Bragg position Th

yi-yci
zero

Powder diffraction profile:
scattering variable T: 2 , TOF, Energy The calculated profile of

powder diffraction patterns

()h h
{h}

ci i iy I T T b

Contains structural information:
atom positions, magnetic moments, etch h II I

(,)h Pix Contains micro-structural information:
instr. resolution, defects, crystallite size…

Bi ib b Background: noise, incoherent scattering
diffuse scattering, ...

The calculated profile of
powder diffraction patterns

()h h
{h}

ci i iy I T T b

The symbol {h} means that the sum is extended only to those
reflections contributing to the channel “i” .

This should be taken into account (resolution function of the
diffractometer and sample broadening) before doing the
actual calculation of the profile intensity.

This is the reason why some Rietveld programs are run in
two steps

, ,
{ }

()h h
h

ci i iy s I T T b

Several phases (= 1,n) contributing
to the diffraction pattern

, ,
{ }

()
h h

h

p p p p p
ci i iy s I T T b

Several phases (= 1,n) contributing
to several (p=1,np) diffraction patterns

Page 176

2
h h

I S L pO ACF
Integrated intensities are proportional
to the square of the structure factor F.
The factors are:
Scale Factor (S), Lorentz-polarization
(Lp), preferred orientation (O),
absorption (A), other “corrections” (C)
...

()h h
{h}

ci i iy I T T b The Structure Factor contains
the structural parameters

(isotropic case)

1
2h h t r

n

j j j js
j s

F O f h T exp i S

(, ,) (1, 2, ...)r j j j jx y z j n
sinexp()j jT B

Structural Parameters
(simplest case)

(, ,)r j j j jx y z Atom positions (up to 3n
parameters)

jO Occupation factors (up to
n-1 parameters)

jB Isotropic displacement
(temperature) factors (up
to n parameters)

Structural Parameters
(complex cases)

As in the simplest case plus additional (or alternative)
parameters:

• Anisotropic temperature (displacement) factors

• Anharmonic temperature factors

• Special form-factors (Symmetry adapted spherical
harmonics), TLS for rigid molecules, etc.

• Magnetic moments, coefficients of Fourier components
of magnetic moments , basis functions, etc.

The Structure Factor in
complex cases

1
() 2h h h t r

n

j j j j s js
j s

F O f h T g exp i S

()hj sg
Complex form factor of object j
Anisotropic DPs
Anharmonic DPs

1, 2, ...h T
s s G

s

h h
k S k s N
l l

The peak shape function of powder diffraction
patterns contains the Profile Parameters

(,) (,)h P h Pi ix T T

() 1x dx

() () ()x g x f x instrumental intrinsic profile

() () () ()x L x G x V x

In most cases the observed peak shape is approximated by
a linear combination of Voigt (or pseudo-Voigt) functions

Page 177

1 2() () ()V x V x V x
Properties of the Voigt function

1 2
2 2 2

1 2

L L L

G G G

Lorentzian breadths simply
have to be summed

Gaussian breadths have to be
summed quadratically

2 2 2

fL hL gL

fG hG gG

Correction for
instrumental broadening

The Voigt function has proven to be a very good
experimental approximation in many cases

The Rietveld Method consist of refining a crystal
(and/or magnetic) structure by minimising the
weighted squared difference between the
observed and the calculated pattern against the
parameter vector:

22

1
()

n

i i ci
i

w y y

2
1
i

iw
2
i : is the variance of the "observation" yi

However, the Rietveld Method can be easily
extended by using, instead of the traditional 2

(least squares), another Cost Function to be
minimised against the parameter vector

1
(())

n

i ci
i

Cost F y y

log()Cost Likelihood

Least squares: Gauss-Newton (1)
Minimum necessary condition:

A Taylor expansion of around allows the application
of an iterative process. The shifts to be applied to the parameters
at each cycle for improving 2 are obtained by solving a linear
system of equations (normal equations)

2

0

()icy 0

0

0 0

0

() ()

()()

A b

ic ic
kl i

i k l

ic
k i i ic

i k

y yA w

yb w y y

Least squares: Gauss-Newton (2)

The new parameters are considered as the starting ones in the
next cycle and the process is repeated until a convergence
criterion is satisfied. The variances of the adjusted parameters
are calculated by the expression:

The shifts of the parameters obtained by solving the
normal equations are added to the starting parameters
giving rise to a new set

01 0

1() ()Ak kk

N - P+C

Least squares: a local
optimisation method

• The least squares procedure provides (when it converges)
the value of the parameters constituting the local
minimum closest to the starting point

• A set of good starting values for all parameters is needed

• If the initial model is bad for some reasons the LSQ
procedure will not converge, it may diverge.

Page 178

Needs for precise refinements and
microstructural effects

Precise refinements can be done with confidence only if
the intrinsic and instrumental peak shapes are properly
approximated.
At present

The approximation of the intrinsic profile is mostly
based in the Voigt (or pseudo-Voigt) function

The approximation of the instrumental profile is also
based in the Voigt function for constant wavelength
instruments

For TOF the instrumental+intrinsic profile is
approximated by the convolution of a Voigt function
with back-to-back exponentials or with the Ikeda-
Carpenter function.

2 2 2 2 2
2((1) ()) tan

cos
fG

hG f f fST D gG

I
H U D H

[()]
(()) tan

cos
f f S

hL f f fST D gL

Y F
H X D H

Example: General 2 dependence of the
instrumental broadening (determined by a

standard sample)

The Gaussian and Lorentzian components of the instrumental Voigt
function are interpolated between empirically determined values.
If needed, axial divergence is convoluted numerically with the
resulting profile.

Microstructural effects and peak shapes
(Rietveld)

Recent developments:
Anisotropic peak broadening (strain/size effects):

quartic forms in hkl (dislocations, micro-twinning
composition fluctuations)

spherical harmonics (complex size/microstrain effects)
special reflections (stacking faults, antiphase

domains, polytypes)

New sample profiles: Linear combination of pseudo-
Voigt functions to mimic log-normal and gamma size
distributions (Popa et al. J.Appl.Cryst 35, 2002, 338-346)

hkl - dependent shifts with respect to Bragg positions:
special reflections, quartic forms, …

Nd2NiO4

 S_400 S_040 S_004 S_220
22.04(78) 17.74(57) 0.016(2) -38.8(1.2)
Lorentzian Parameter: 0.093(2)

Nd2NiO4, LT

A-strain h k l
43.4585 0 1 2
48.1172 1 0 2
 7.1018 1 1 0
 5.9724 1 1 1
 4.1383 1 1 2
 9.7952 0 0 4
 4.0162 1 1 3
79.5271 0 2 0
87.5578 2 0 0

Ca2MnO4(
4

1

1
3
)

(
2

1

2
1
)
(
4

3

3
)

(
4

1

1
5
)

(
4

3

9
)

(
5

2

3
)
,

(
2

1

2
3
)

(
4

1

1
7
)

(
4

1

1
9
)

(
4

3

1
5
)

(
4

3

1
1
)

Ca2MnO4 (I 41/acd), RT
a=5.187 Å, c=24.123 Å

Broadening: (hkl), l=2n+3

Selective size broadening observed by neutron diffraction at room temperature (3T2,
LLB) for superstructure reflections in Ca2MnO4. (top) Size parameter fixed to zero.
(bottom) Single size parameter according to the rule (hkl), l=2n+3.

c

b

a

c

Size broadening in Ni(OH)2

Page 179

Problems when modeling the peak
shape, a real case: low resolution
neutron powder diffractometers

D20 at ILL:

A diffraction pattern can be collected in less than a second!

Large graphite monochromator with a quite low take-off angle
(2 M 40º)

This implies that at high angle the peaks are broad and have a
strange peak shape (that can be reproduced quite precisely by
ray tracing or Monte Carlo simulations of the instrument !)

How can we solve this problem?

The inability to model peak shapes properly
introduces a “systematic error” in the data
treatment affecting the structural parameters
and the estimation of their uncertainties

Future developments for Rietveld
analysis: the treatment of the peak shape

Further step on complexity:
Fundamental parameters approach
Numerical instrumental profile (when needed)
Local convolution with analytical sample profile
using FFT or interpolated direct convolution

1() () () () ()x FT G t F t g x f x
This is partially performed (with analytical functions)
in the CCSL based code at ISIS and in FullProf/GSAS
for the TOF case: V(x) IK(x)
In TOPAS the fundamental parameters approach is
fully implemented

Future developments for Rietveld
analysis: the treatment of the peak shape

Different components of both instrumental and sample
profile functions are just multiplied in the Fourier space.

The global G(t) may be provided in the instrumental
resolution file in different forms, depending if it can be
approximated by analytical functions or not.

1 2 3

1 2 3

() () () ()...
() () () ()...

G t G t G t G t
F t F t F t F t

This procedure is faster than the direct convolution using
numerical integration when the number of points per profile is
greater than ~ 64.

Page 180

The core of the algorithm used in
the

Rietveld Method

Skeleton of the Rietveld algorithm

Calculations in a single cycle for all
patterns

do n_pat=1,n_patt
if(affpat(n_pat) == 0) cycle
Select case(xunit(n_pat))

Case("2theta")
Call calc_pattern_2theta(n_pat)
Case("TOF")
Call calc_pattern_TOF(n_pat)
Case("Energy")
Call calc_pattern_Ed(n_pat)
.

End Select
end do

The Rietveld algorithm:
(do over points/reflections)

Subroutine calc_pattern_TOF(n_pat)
..........
DO i=1,npts(n_pat)

ini=code_contribution(i,n_pat,"ini")
fin=code_contribution(i,n_pat,"fin")
IF(iprev <= fin) THEN

DO j=iprev,fin
CALL calcul_tof(j,n_pat)
END DO
iprev=MAX(iprev,fin+1)

END IF
CALL summat_tof(i,n_pat,ini,fin)

END DO
return

End Subroutine calc_patterns_TOF

{h}

The Rietveld algorithm:
calculation for each reflection

SUBROUTINE calcul_tof(nn,n_pat)
......
!Calculate contribution of micro-structure
CALL strain (n_pat,nn,h,iph,dst ,ss,dvv)
CALL sizef (n_pat,nn,h,iph,dsiz,ss,dvs)
CALL shifhkl(n_pat,nn,h,iph,shv ,ss,dshv)
!Calculate FWHM and so on ...
....

!Different models to calculate the structure factors
Select case(Model_STF)

.....
case("Magnetic_reflection_IREPS")
call calmag_bas(n_pat,nn,iph,h ...,fnn)

....
End Select
....
CALL correct_tof(n_pat,nn,iph,h,fnn,ider)

!-----Calculate and store part of derivatives
.........

RETURN
END SUBROUTINE calcul_tof

The Rietveld algorithm:
(do over points/reflections)

Subroutine calc_patterns_TOF(n_pat)
..........
DO i=1,npts(n_pat)

ini=code_contribution(i,n_pat,"ini")
fin=code_contribution(i,n_pat,"fin")
IF(iprev <= fin) THEN

DO j=iprev,fin
CALL calcul_tof(j,n_pat)

END DO
iprev=MAX(iprev,fin+1)

END IF
CALL summat_tof(i,n_pat,ini,fin)

END DO
return

End Subroutine calc_patterns_TOF

The Rietveld algorithm: (do over reflections,
make sums, derivatives, LSQ matrix)

SUBROUTINE summat_tof(ipm,n_pat,ini,fin)
.......

! Calculate Ycalc and its derivative w.r.t all parameters
DO i=ini,fin

! Profile calculation
Select case (nprof(n_pat))

...........
case("pV-conv-exp")
omega= tof_peak2(delta,ider)
.....

End Select
omegap= scale_Lp_abs*omega
yc(ipm,n_pat)=yc(ipm,n_pat)+omegap*ff(i,n_pat)*corr(i,n_pat)

! Loop over MAXS parameters for completing derivatives
j=MOD(i,MaxOVERL)+1
DO k=1,maxs

........
deriv(k)=dersto(j,k)*der*omegap+deriv(k)

END DO
END DO

! Derivatives w.r.t. background parameters
! Construction of the Least-squares Matrix and Vector
........

END SUBROUTINE summat_tof

Page 181

The Rietveld algorithm: summary
Do for N_cycles

Do for Patterns may be done in parallel
Do for points in Patterns

Do for contributing reflections
Calculate broadening w.r.t to IRF
Calculate structure factors+derivatives
Sum contributions (LSQ matrix + vector)
calculate profile for current point and reflections
contributing to it (convolution neighbours needed)
profile derivatives

End do reflections
End do points in Patterns

End do Patterns
Invert LSQ matrix and update the free parameters

Tests for convergence (if convergence is reached exit!)
End do N_cycles

May the Rietveld algorithm be
improved?

New ideas are needed to improve the efficiency:

New data structures?
Store individual peak shapes?
Change the order of loops?
Modularise different parts of the calculations?
. . .

The Rietveld algorithm in a context of
increasing complexity

With the forthcoming high performance instruments,
and increasing complexity, we need an improvement of
the algorithms for handling Rietveld refinements if we
want to preserve interactivity.
Options:

Develop small specialized Rietveld programs

Maintain the possibility of general treatment and
improve the efficiency by making strong changes
on the Rietveld codes.

A combination of both …

Conclusions and perspectives

The increasing complexity of instruments and the necessity
of better refinements call for collaborative teams for
improving the existing software and develop new tools.

A list of tasks and priorities is needed to undertake a rational
software development.

This opens new opportunities for young people wishing to
dedicate their scientific activities to

Crystallographic Computing.

Page 182

Statistical Treatment of
Uncertainties

Dale E. Tronrud
Howard Hughes Medical Institute
Institute of Molecular Biology
University of Oregon, USA
http://www.uoxray.uoregon.edu/dale/

Introduction

There has been much discussion of uncertainty in this workshop. All
this talk simply means that the topic is critical to everything that we
do.
Unfortunately many people, and most of the users of our software,
would prefer that everything is clear cut and certain.
The world is filled with uncertainty and true understanding requires us
to know the limits of our knowledge.

My hope here is to clarify some of the terms and issues in this area.
Terms tend to be used without clear definition and even the experts
confuse them quite often.

Major Topics in Uncertainty

There are three (ok, maybe four) major topics in this area

Probability Distribution Functions -- PDF’s
Baysian Parameter Estimation
Maximum Likelihood -- ML
Least-Squares

Probability Distribution Functions (PDFs)

Every quantity has an uncertainty. We like to say the uncertainty is
plus or minus some amount but this is not sufficiently descriptive.
With a PDF a probability is assigned to every conceivable value the
quantity could “really” be.

x

P ()X x

Probability of the quantity X as a function of x

People would rather deal with something simpler than this entire
distribution.
The basic characteristics are

– The most probable value
– The expectation value (also known as the “mean”, “best”, or “centroid”)
– The standard deviation (also known as “sigma”)

There are others that are less used
– Skew, Kurtosis, and Entropy

For the Normal distribution the most probable value is the mean and
sigma is what we are used to.

x

P ()X x
Calculations in the presence of uncertainty

If you have a quantity X what is the uncertainty of 2X?
Actually you have to go to the PDF to find out. The rule is

Once you have created the PDF for 2X you can derive things like the
“best” value.
For linear functions the most probable value and “best” value
transform with the variable. If you multiply X by 2 then the most
probable and “best” values will also be multiplied by 2.
This is not true for nonlinear functions.

2P () P (/ 2)X Xx x

2

2

P (| 0) P () P ()

P (| 0) 0
X XX

X

x x x x

x x p

Page 183

When doing math, the key is to work on the PDF and then recalculate
the characterizing values and not to try to calculate the mean of the
transformed variable by transforming the mean.

If you have a single measurement, you must come up with some idea
of its uncertainty. If you have no idea how confident you can be in a
value, it is useless.

– To generate a PDF for a single measurement you must understand how
that value was acquired.

– For most measurements the uncertainty is a Normal distribution and the
sigma would be determined from your knowledge of the instrument.

If you have multiple measurements, transform them all and then
calculate the mean.
A major limitation in practice is that often we are unsure of the PDF.

– This leads to the realization that each point in the PDF must be
represented by a PDF itself. This makes my head hurt.

Multiple Variables

In any project there are many variables. While each has a PDF to
represent it uncertainty, the uncertainties are often not independent of
each other.
For a reflection we usually consider the uncertainty in amplitude and
phase to be independent, but that is not always the case. This leads
to a two dimensional PDF

Then again, the uncertainties of the amplitude and phase of a
reflection are tied to its Fridel mate. This requires a four dimensional
PDF.
Then again, there is noncrystallographic symmetry. This requires an
eight dimensional (or probably more) PDF.
Let’s face it, all reflections are tied to all others via crystal’s contents.
That requires a PDF that has a lot of dimensions.

All interesting PDF’s are multidimensional and usually they have an
enormous number of dimensions.
Finding some way to represent these PDF’s is a problem yet to be
solved.

Getting a Handle on the Matter

If you have a big, multidimensional PDF it might be true that there is
only one peak and that peak looks like a Normal distribution.
In that special case, the most probable value is the “best” value and
you can gage you uncertainty in that value.

– For a 3 dimensional PDF this is not done with 3 sigmas.
– You need a 3x3 covariance matrix.

– Macromolecular crystallographers keep asking for a sigma for each
parameter, but that would be uninformative without the correlation
coefficients.

2

2

2

X X Y XY X Z XZ

X Y XY Y Y Z XZ

X Z XZ Y Z YZ Z

r r
r r
r r

The danger is that there are more peaks hiding in your PDF.
In that case you could find both and calculate a covariance matrix for
each as though the other doesn’t exist.

x

P ()X x

Baysian Parameter Estimation

Kevin has talked quite a bit in the last session about this topic and I
don’t see a need to repeat what he said.

Each of these probabilities is a multidimensional PDF.
– In refinement they have an incomprehensible number of dimensions.

Even if you could determine the probabilities for all possible hypothesis's you
would have to search though them all to find the most probable, or integrate
over them all for the “best” hypothesis.
This is equivalent to the Global Minimum problem that has plagued us in
refinement.
No one has come up with a solution for this, for macromolecular refinement.
The solution is to find a guess for the most probable hypothesis some other
way, assume there can be only one, and then search for the most probable
nearby hypothesis in the neighborhood.

P(|) P(|)P(|)
P(|)

d h h knowledgeh d
d knowledge

Page 184

Maximum Likelihood

Finding the most probable hypothesis in the Likelihood distribution,
assuming there is only one peak, is the Maximum Likelihood
method.

– It finds the most probable, not necessarily the “best” hypothesis.
– There may be whole worlds of stuff happening elsewhere in the

likelihood distribution, but that is ignored.

Baysian Parameter Estimation is a rigorous and robust procedure,
but is very hard for our problems.
Maximum Likelihood is a massive simplification that allows us to
bring in many of the ideas of BPE but reduces the problem to
something very similar to what our old programs did.

A Comparison of the Methods used in
Macromolecular Refinement.

There are three types of target functions that have been used in
macromolecular refinement.
– Energy Minimization
– Least Squares
– Maximum Likelihood

Energy Minimization

The best model with the one with the lowest energy.
How does one calculate the “energy” of a model?
How does the diffraction data become “energy”?
How does one reconcile the instantaneous nature of
energy with the time averaged nature of the
diffraction data?
Why bother when a statistically based method has
answers to all these questions?

The Least-squares Function

Observed quantity i
Observed variance of quantity i
Parameters of a model
Corresponding quantity inferred from the
current model

The best is that which minimizes

Major Limitation of this Equation

The equation assumes that the observations are
statistically independent. Often this is not the case.
– Some programs use non-independent stereochemical

restraint categories.
– Many particular stereochemical targets are correlated.
– The presence of noncrystallographic symmetry creates

dependencies between some (many) reflections.

This limitation also exists in all Maximum Likelihood
implementations to date.

Maximum Likelihood

Least Squares assumes that for all
reflections obeys a Normal distribution with a mean
of zero and a standard deviation of one.
Least Squares view of the world:

o

co FF ||||

|Fo|

Amplitude

Li
ke

lih
oo

d |Fc|

o

Page 185

Is Structure Factor Calculation Hard?

Fcalc

Atomic Space Reciprocal Space

D Fcalc

Getting to Amplitudes

Fcalc

Amplitude

Li
ke

lih
oo

d

|Fobs|

|Fcalc|

Rice
Distribution

Difficulties in Maximum Likelihood

What is the character of the uncorrected errors in
the model?
– Existing programs assume the errors behave like

randomly, and with Normally distributed displacements of
atomic positions and B factors.

– Buster offers the option of non-uniform distribution of errors
• It has a two state error model, where one part is treated in the

usual way, but another part is identified only by a region of
space and an elemental composition.

How does one estimate the quantity of error in the
model?
– All ML programs use the agreement of the model to the

test set to calibrate the error level.

Page 186

Brian H. Toby
NIST Center for Neutron Research

Programming pdCIF and
Rietveld:

Talk Outline

• Motivation/Goals
• Data Grammars vs. Data Languages
• CIF
• Informatics and the next generation of
Rietveld software

• Programming writing & reading CIFs

Motivation for
Standardized Data Formats
Back in the dark ages of crystallography
every program used its own data
format.
– Electronic data communication was
unusual and even then by sneakernet.

Even then many crystallographers felt
there must be a better way…

Modern goals:

• Direct communication between
instruments and data analysis tools

• Interoperability between programs
• Electronic communication of results
• Facile publication
Productivity increases when computers
function for scientists rather than the
other way round!

Data Grammars vs. Data
Languages
A Data Grammar specifies how
information will be formatted so that a
computer program can interpret it.
– JCAMP-DX
– Spreadsheet (.csv)
– HDF
– STAR
– XML

XML syntax
Open Delimiter

Value

Closing Delimiter

<ObjCryst Date="2002-08-09T14:35:06">
<Crystal Name="Alumina" SpaceGroup="R -3 c">
<Par Refined="0" Min="1" Max="100" Name="a">4.76055</Par>
<Par Refined="0" Min="1" Max="100" Name="b">4.76055</Par>
<Par Refined="0" Min="1" Max="100" Name="c">12.9965</Par>
<Par Refined="0" Min="28." Max="171." Name="alpha">90</Par>
<Par Refined="0" Min="28." Max="171." Name="beta">90</Par>
<Par Refined="0" Min="28." Max="171." Name="gamma">120<Par>
<Atom Name="Al1" ScattPow="Al">

<Par Name="x">0</Par><Par Name="y">0</Par><Par Name="z">0.3519</Par>
</Atom>
<Atom Name=”O1" ScattPow=”O">
<Par Name="x">0.33333</Par><Par Name="y">0</Par>
<Par Name="z">0.25</Par>

</Atom>
</Crystal>

</ObjCryst>

Nested Objects

Page 187

STAR syntax (used in CIF)
data_alumina_example
_cell_length_a 4.766
_cell_length_c 12.95
_cell_angle_alpha 90.
_symmetry_space_group_name_H-M 'R -3 c '

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Al1 Al 12 0.0 0.0 0.34
O1 O 18 0.33 0.0 0.25

Data name

Data Value

Table of data
(“loop”)

Block header
Data Language:

• Built on a data grammar (usually)
• Provides rigorous definitions for each data
value

• Establishes validation information (usually)
• Defines logical relationships between data
items (optional)

CIF: first comprehensive & interoperable
data language for crystallography

Interoperability is

Data languages are not new What’s so special about CIF?
Each data item in CIF is defined in a
computer-readable dictionary

>3,000 defined
terms (250+
pages in Int. Tabl.)

uses subset of
STAR data
grammar

>20 years of development effort (adopted by
IUCr in 1990.)

CIF has redefined
small molecule publishing

CIF is the uncontested standard for
communication of structure factors & crystal
structure results

• Reduces errors in print: Journals can use
structure validation software

• Bond distance & angle tables are generated
directly from the CIF

• Required for IUCr Journals (Acta Cryst., etc.)

Impact on mm (via PDB) is
probably even larger

How does CIF work:
CIF Syntax

• Data names (tags) & values
• loop_: links sets of data names & sets of values

(Tables)
• Dictionary specifies:

– Definition
– Rules on allowed values
– Category

• All data names in loop must be in same category
– Loop rules

• Specifies which data items can/must/cannot be looped
• Specifies logical connections between loops
• Specifies a unique item for each loop

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Al1 Al 0.0 0.0 0.34
O1 O 0.33 0.0 0.25

_cell_length_a 4.766
_cell_length_c 12.95
_cell_angle_alpha 90.

Page 188

CIF Dictionaries
CIF definitions are developed by teams with

widespread interests
• Core -- fundamental & single-crystal terms
• mmCIF -- macromolecular
• pdCIF -- powder diffraction
• msCIF -- modulated structures
• imgCIF -- 2D images
• symCIF -- symmetry
• rhoCIF -- electron density
• diffCIF -- diffuse scattering (in progress)

The two dialects of
CIF Dictionaries

• In the course of defining CIF dictionaries, the
mmCIF designers wanted more database
structure than required for CIF initially.
– Created a dictionary for defining dictionaries:

• DDL (data definition language)
– After inflicting many database structures into DDL

v1.x, the mmCIF was written using DDL2.x
– Programs that read dictionaries need to be aware

of DDL1 vs DDL2 differences,
– programs that only read/write CIFs do not.
– Discussions on merging DDLs are underway

CIF Information Sources

• Formal specifications, see:
http://www.iucr.org/iucr-top/cif/

• Also see templates & examples on
Acta Cryst. Author’s Guides

• International Tables Vol. G (today in Florence!)

• Developer’s discussion list
http://www.iucr.org/iucr-top/lists/cif-developers/

CIF for Powder Diffraction
(pdCIF)

Universal data format for powder diffraction
Goals beyond those of CIF:
• Accommodate all types of powder data

– Flexibility in conflict with mmCIF
• Document experimental geometry,

conditions
• Record “raw” and processed diffraction

data & Rietveld fits

Editorial comment:

pdCIF is far more important than a
mechanism for data interchange &
review.

• CIF has the potential to be the
cornerstone of the next generation of
Rietveld analysis software

The future of “Rietveld”

• Problems increasingly are more
complex than can be accommodated
with powder data at any resolution
– Need incorporate many additional types of

observations and constraints
• Characterize non-periodic aspects of

crystal structures
– Local order; stacking faults; defects

Page 189

The Next Generation
of Data Fitting
• Codes should be modular, glued by a scripting

language: customization
• Data modules can compute contributions to

design matrix & least-squares vector against
data & restraints

• Hard constraint modules can reduce parameters
using GSAS or Finger-Prince approach

• Minimizer modules can develop & apply shifts
from Hessian

• Cost function modules can keep parameters in
bounds by adding to design matrix or Hessian

CIF is the control file for
next generation data fitting
CIF defines the basis for state-of-art refinement

data objects
Where models cannot be described, CIF must

expand
• Data item descriptions are rigorous so that structure

factors can be computed directly from the CIF
– Modulated structures
– Need more defect model descriptions

• Powder data can be simulated to match data items
found in CIF

• With CIF additions PDF fitting becomes straight-
forward

CIF without STAR?
• CIF contains 20 years of informatics design efforts
• CIF is poor for large data structures

– HDF is a portable data grammar for large data volumes
– NeXus (HDF for scattering) not yet a complete data

language
• XML is state-of-art ASCII data grammar

– Again not a data language
CIF definitions can be transferred to other data

grammars
– Efforts to pair XML and CIF are underway (c.f. IUCr

Florence, 2005)
– A marriage between CIF & NeXus would benefit everyone

Programming with CIF:
Resources

• International Tables Volume G
• Open-source CIF parsers (see

www.iucr.org/iucr-top/cif/software/):
– CIFtbx 3.0 [Fortran]
– Rutgers mmCIF lib [C]
– CBFlib (used in RasMol) [C?]

http://www.bernstein-plus-sons.com/software/CBF

– PyCifRW [Python]
www.ansto.gov.au/natfac/ANBF/CIF/

– CIFIO in XTAL pkg [RATMAC=FORTRAN]
xtal.sf.net

Personal Experiences in CIF
Programming

• GSAS2CIF
– Exports GSAS refinements in CIF
– FillTemplate

• Enter information into CIF templates (EXPGUI)
– CIFSelect

• Set [don’t] publish flag in bond distances (EXPGUI)

• pdCIFplot
– Plots Rietveld fits from CIF

• CIFEDIT
– CIF validation & editor

• CMPR

GSAS2CIF: Challenges

• Potentially complex data structures:
– N (�9) phases
– M (�99) data sets
– NxM+1 CIF Blocks (or 1 if N=M=1)

• Reuse of author-entered information
(metadata)

• Avoid use of CIF parser
Toby, B. H., Von Dreele, R. B, and Larson, A. C., "Reporting of Rietveld Results Using pdCIF:
GSAS2CIF", J. Appl. Cryst. 36, 1290 (2003)

http://www.ncnr.nist.gov/xtal/software/expgui/gsas2cif.html
Page 190

GSAS2CIF: Solutions

• Divide Acta Cryst. template into sections
1. Publication info
2. Sample/characterization info (need N copies)
3. Instrument/data collection info (need M copies)
– Remove parameters “known” to GSAS

• CIF is generated by “quilting” together
template sections with fit results

• Author-entered info (metadata) goes into
template sections not into “final” CIF

– Quick regeneration of new “final CIF”
– Sharing of template sections between projects

GSAS2CIF GUI Tools:
FillTemplate

Author must supply
metadata -- entered
into template

GSAS2CIF GUI Tools:
FillTemplate

Author must supply
metadata -- entered
into template

GSAS2CIF GUI Tools:
FillTemplate

Author must supply
metadata -- entered
into template

GSAS2CIF GUI Tools:
FillTemplate

Author must supply
metadata -- entered
into template

GSAS2CIF GUI Tools:
CIFSelect

Select distances & angles for publication
– Keep flags in separate file

Page 191

GSAS2CIF GUI Tools:
CIFSelect

Select distances & angles for publication
– Keep flags in separate file

pdCIFplot: Challenge

• Change pdCIF from write-only to RW:
Plot powder diffraction data/results
from CIF

• Requirements
– Select from many relevant data fields
– Need Tcl/Tk CIF parser

• Task 1: tabulate possible data names
for abscissa & ordinates

Toby, B. H., "Inspecting Rietveld Fits from pdCIF: pdCIFplot", J. Appl.Cryst. 36, 1285 (2003)

http://www.ncnr.nist.gov/xtal/software/cif/pdCIFplot.html

Sequential GUI programming
(ugh)

Select block (skipped if no choices)

Specify plot contents

Page 192

Specify plot contents

Page 193

Structure Comparison, Analysis and
Validation

Ton Spek
National Single Crystal Facility

Utrecht University

Overview

This lecture lists and discusses the
various tools and descriptors that
are available for the analysis and
validation of a single crystal study
as implemented in the PLATON
program.

Structure Analysis

• Analysis of the Intra-molecular Geometry
• Analysis of the Inter-molecular Geometry
• Analysis of the Coordination Geometry
• Bond Valence Model (Brown et al.)
• ‘CALC ALL’ - LISTING

Intra-molecular Geometry

• Generation of the symmetry expended
Connected Set on the basis covalent radii
plus a tolerance..

• Special tolerances are applied for certain
types of X-Y bonds/contacts, either to
include or avoid them.

• Residues grow from a starting atom by
recursive spherical expansion.

Intra-molecular Geometry

• Detection of residues and derivation of the Moiety
formula, Z and Z’.

• Bond distances, Bond Angles, Torsion Angles.
• Automatic ring search,automatic seach of planar

parts in the structure

Page 194

Intra-Molecular (Continued)

• Determination of the hybridization, R/S
assignments and ‘topology numbers’.

• Listing of the plane-plane and bond-plane
angles.

• Ring puckering analysis (Cremer & Pople)

Inter-Molecular

• Hydrogen Bonds (linear, bi- and trifurcated)
• Automatic analysis in terms of 1, 2 and 3-D

networks (aggregates or cooperative)
• Search for pi-pi and C-H..pi interactions

Structure Comparison

• Quaternion Fitting
- Modified version of A.L.Mackay (1984),
A40,165-166 (Note: 180 degree singularity)
- Alternative: S.K.Kearsley (1989), A45,
208-210.

• Comparison of Simulated Powder Patterns
• StructureTidy (Inorganics)

QUATERNION FIT

• In many cases, an automatic molecule fit
can be performed

• A) Identical atom numbering
• B) Sufficient number of Unique Atoms
• C) By manual picking of a few atom pairs

Page 195

QUATERNION FIT

Cg1 0.946 0.234 0.592

Cg2 0.441 0.253 0.581

Simulated Powder Patterns

• It is not always apparent that two crystal
structures are identical. The assigned unit
cell or space group can differ.

• Comparison of the associated calculated
powder patterns should solve the issue.

• Example for the CSD:

Page 196

“Orthorhombic”
Polymorph Tetragonal

Polymorph

“Orthorhombic”

Tetragonal Absolute Structure

• The absolute structure of a compound is
normally determined with the refinement of
the Flack parameter.

• The value of the Flack parameter can be
inconclusive in view of a high su.

• A detailed scatter-plot may be more
conclusive.

BIJVOET PAIR

SCATTER PLOT

Validation

• ORTEP
• IUCr – CHECKCIF Structure Validation
• FCF- Validation (Completeness &

Twinning)

Page 197

Praseodymium complex

J.A.C.S. (2000),122,3413 – P1, Z = 2

P-1, Z=2

CORRECTLY REFINED STRUCTURE

STRUCTURE VALIDATION

Single crystal structure validation addresses
three important questions:

1 – Is the reported information complete?
2 – What is the quality of the analysis?
3 – Is the Structure Correct?

IUCR-CHECKCIF
IUCR-TESTS:
- MISSING DATA, PROPER PROCEDURE, QUALITY
PLATON TESTS:
- SYMMETRY, GEOMETRY, DISPLACEMENT

PARAMETERS
ALERT LEVELS:
- ALERT A - SERIOUS PROBLEM
- ALERT B - POTENTIALLY SERIOUS PROBLEM
- ALERT C - CHECK & EXPLAIN

Problems Addressed by
PLATON

- Missed Higher Space Group Symmetry
- Solvent Accessible Voids in the Structure
- Unusual Displacement Parameters
- Hirshfeld Rigid Bond test
- Miss-assigned Atom Type
- Population/Occupancy Parameters
- Mono Coordinated/Bonded Metals
- Isolated Atoms

Problems Addressed by
PLATON

- Too Many Hydrogen Atoms on an Atom
- Missing Hydrogen Atoms
- Valence & Hybridization
- Short Intra/Inter-Molecular Contacts
- O-H without Acceptor
- Unusual Bond Length/Angle
- CH3 Moiety Geometry

Page 198

Validation with PLATON

- Details: www.cryst.chem.uu.nl/platon
- Driven by the file CHECK.DEF with

criteria, ALERT messages and advice.
- Use: platon –u structure.cif
- Result on file: structure.chk
- Applicable on CIF’s and CCDC-FDAT
- FCF-Valid: platon –V structure.cif

BAMYEU

Dalton Trans
2003,134-140

Cc

Misoriented O-H

• The O-H moiety is generally, with very few
exceptions, part of a D-H..A system.

• An investigation of structures in the CSD
brings up many ‘exceptions’.

• Closer analysis shows that misplacement of
the O-H hydrogen atom is in general the
cause.

Example of Misplaced Hydrogen Atom

Page 199

Two ALERTS related to the misplaced Hydrogen Atom Unsatisfactory Hydrogen Bond Network

Satisfactory Hydrogen Bond Network with new H-position

Page 200

Consult the CSD

• It is a good idea to always consult the CSD
for previous reports on structures related to
the one at hand.

• The statistics provided by VISTA (CCDC)
can be very helpful for this.

• However, such an analysis often shows
outliers. Many of those appear to be errors.

Entry from the CAD

HS

But with Space Group Symmetry

=> Different structure with S-S Bond !

Concluding Remarks

• Automatic Validation both ALERTS for
potential errors and for interesting features
in a structure to be discussed.

• Detailed analysis of intermolecular
interactions appears often to be ignored in a
service setting.

SIENA 2005

TOSCANY

Page 201

Testing software

Harry Powell MRC-LMB

Testing has different purposes:

• do existing functions still work?
• do new functions work?
• does it give the customer what they want?
• is it an improvement over what existed before?
• performance testing

and different phases:

• alpha testing (core developers)
• beta testing (other developers + trusted users)
• release (the wider community)

Alpha testing is performed by the core developer(s) before
any users see anything

• Uses standard input to give standard output
• tests new features (makes sure they don’t break existing

ones)
• Should get rid of all obvious bugs

Beta testing should be carried out by a small group of
intelligent users:

• Once alpha testing is complete and no obvious bugs exist
• Makes sure features behave as expected in a non-sterile

environment
• Reliable experienced users who will give full reports of

failures (log files, circumstances, etc.)

Release is to the world at large (“real” users) and provides
the most brutal testing

• you will enter the wonderful world of user support
• expect to get bug reports like “I pressed a button and it

broke”
• users find “odd” bugs which arise from abuse of your

carefully crafted software
• naïve users will find innovative ways of running (ruining?)

your program

Reasons for testing existing software:

1. Want an identical result
2. Will accept a similar result
3. Want a different (better) result
4. Portability across platforms
5. Checking installation & performance

Types of testing:

1. background/batch/command-line
2. effect of different input
3. interactive via a GUI

Page 202

You may want an identical result if:

• you have fixed an “unrelated” bug and don’t want to
change the outcome

• you have tidied up the code (e.g. rewritten a routine)
• you have changed the optimization in compilation (e.g.

from “-O0 g3” to “-O5 -funroll-loops”)
• you have used a different compiler (e.g. xlf instead of

g77)
• you’ve only changed OS (e.g. rebooted from Linux to MS-

Windows on the same box)
• you are running the program in different modes with the

same input (e.g. batch mode or through a GUI)

You may accept a similar result if:

• you have just ported to a different chip (e.g. from
PowerPC to i686)

• you are using a “random” seed
• your input is different
• you are using a different compiler

e.g. SGI Octane vs HP Alpha (autoindexing tetragonal lysozyme):

alf1_harry> diff alpha.lp irix_6.5_64.lp
186c186
< 20 306 tI 110.12 115.94 36.83 71.7 90.0 90.2

> 20 306 tI 110.12 115.95 36.83 71.7 90.0 90.2
188c188
< 18 204 oI 36.83 110.12 115.94 89.8 71.7 90.0

> 18 204 oI 36.83 110.12 115.95 89.8 71.7 90.0
223c223
< Initial cell (before refinement) is 77.8506 77.8506 36.8255

90.000 90.000 90.000

> Initial cell (before refinement) is 77.8507 77.8507 36.8255

90.000 90.000 90.000

You may want a different (better) result if:

• you have just spent six months improving an underlying
algorithm

• you've implemented something new
• there are better traps for bad input
• you’ve been bug fixing

Batch testing (once set up) is easier, more reliable and
less tedious than running a GUI

set up a shell script to
• run the program(s)
• check the output against a standard
• do the work while you do something more

interesting
then expand the functionality as you realize you need it

Using a GUI usually means that you have to sit at a
terminal and work through sets of examples and
compare the answers (but with a scripted GUI (e.g.
written in Tcl or Python) this can also be automated to
some extent)...

Use a shell (csh or bash) or a scripting language?

csh (or tcsh) is the most common shell used by protein
crystallographers

bash is most commonly used by computer scientists
zsh is a new tcsh-like shell which is becoming popular.
small molecule & powder crystallographers are often less familiar

with shells

Largely a matter of personal choice, but bash’s syntax is a little
more flexible and internal counters can be larger (but csh
mutates less between platforms, and bash is missing on
many SGIs).

For small scripts, a shell language is suitable, but for rigorous
testing a proper scripting language may make further
development easier (but remember James Holton's Elves -
63,000 lines of csh).

Page 203

#!/bin/bash -f
export IPMOSFLM=/Users/harry/mosflm625/bin/ipmosflm
export LOGFILE=mosflm625_osx_august_01.log
if [! -e $IPMOSFLM]
then

echo $IPMOSFLM doesn\'t exist - exiting now\!\!
exit

fi
#
echo Executable $IPMOSFLM | tee $LOGFILE
echo Running test on `date` >> $LOGFILE
#
I=1
while [$I -le 10]

do
TIME_USED=$((time ${IPMOSFLM} < test_$I > mosflm.lp) 2>&1 > /dev/null)
echo Run \#$I: cpu time: `echo $TIME_USED | awk '{print $4}'` >> $LOGFILE
mv mosflm.lp mosflm_$I.lp
mv lys_fine_002.mtz $I.mtz
mv SUMMARY summary.$I
/bin/rm -f GENFILE

let I=I+1
done

#
I=1
while [$I -le 10]

do
wc -l mosflm_$I.lp IPMOSFLM_$I.lp

let I=I+1
done

echo finished test at `date` >> $LOGFILE

! DO NOT ADD or REMOVE STUFF FROM THIS FILE
! It is intended to test mosflm in a background job with the
! following sequence of processes:
!
! (1) Autoindex from two images
! (2) estimate mosaicity from the first
! (3) postrefinement
! (4) integration
!
BEAM 149.79 150.87
GAIN 1.80
ADCOFFSET 6
DISTANCE 195.132
TEMPLATE lys_fine_###.pck
NEWMAT postref2.mat
MOSAIC ESTIMATE
AUTOINDEX DPS IMAGE 2 PHI 0 0.2 IMAGE 51 PHI 9.8 10.0
GO
POSTREF MULTI SEGMENT 2
PROCESS 2 TO 5 START 0 ANGLE 0.2
GO
PROCESS 47 TO 50 START 9 ANGLE 0.2
GO
#
POSTREF MULTI NOSE FIX ALL
PROCESS 2 TO 51 START 0 ANGLE 0.2
GO

[g4-15:~/test/lys_fine] harry% ./testit.sh
Executable /Users/harry/mosflm625/bin/ipmosflm

19010 mosflm_1.lp
19191 IPMOSFLM_1.lp
38201 total (22313 lines different)
19366 mosflm_2.lp
19229 IPMOSFLM_2.lp
38595 total 23106 “ “
20329 mosflm_3.lp
19229 IPMOSFLM_3.lp
39558 total 25123 “ “

.

.

.

[g4-15:~/test/lys_fine] harry% more mosflm625_osx_august_01.log
Executable /Users/harry/mosflm625/bin/ipmosflm
Running test on Mon Aug 1 15:18:58 BST 2005
Run #1: cpu time: 0m46.886s
Run #2: cpu time: 0m50.305s
Run #3: cpu time: 1m0.763s
Run #4: cpu time: 0m58.744s
Run #5: cpu time: 0m56.463s
Run #6: cpu time: 0m54.628s
Run #7: cpu time: 0m51.343s
Run #8: cpu time: 1m2.693s
Run #9: cpu time: 0m47.770s
Run #10: cpu time: 0m56.151s
finished test at Mon Aug 1 15:29:01 BST 2005

[macf3c-3:~/test/lys_fine] harry% diff mosflm_2.lp IPMOSFLM_2.lp | wc -l
23106

[macf3c-3:~/test/lys_fine] harry% diff mosflm_2.lp IPMOSFLM_2.lp | more
1,3c1
<
<
< ************ Version 6.2.5 for Image plate and CCD data 9th August 2005

> ************ Version 6.2.5 for Image plate and CCD data 30th June 2004

•
•
•

511c487
< 149.74 150.90 1.0014 195.40 1.0002 14 20 0.070 -0.311 0.000 0.000

> 149.74 150.90 1.0014 195.40 1.0002 14 19 0.070 -0.311 0.000 0.000
651a628,631
>
> Detector distortion refinement using 50 SPOTS
> Starting residual=0.163mm; Weighted residual 0.87
> Residual after 1 CYCLE=0.115mm; Weighted residual 0.49
654c634
< 149.72 151.02 1.0010 195.33 0.9996 4 9 0.116 -0.322 0.000 0.000

> 149.72 151.02 1.0010 195.33 0.9996 4 8 0.116 -0.322 0.000 0.000
683a664,667
>
> Detector distortion refinement using 24 SPOTS
> Starting residual=0.090mm; Weighted residual 0.47

Is it an improvement over what existed before?

• produces results where it (or other software) didn’t before
• faster (more streamlined code, better compilation, removal of

bottlenecks)
• more accurate results (lower Rs, nicer peaks in maps)
• easier to use
• runs on a new platform

Performance testing:

Can inform choice of hardware/OS/compiler/flags e.g. for the
batch test series earlier:

clock time
Linux, Pentium, 3.2GHz, g77 3.4, -O2: 8m 37s
Linux, Pentium, 1.5GHz, g77 3.2, -O1: 16m 51s
Linux, Pentium, 1.5GHz, ifc, -O3: 25m 53s
OS X, Mac, 1.67GHz, g77, -O0: 17m 33s
OS X, Mac, 1.67GHz, g77, -O2: 10m 22s
OS X, Mac, 1.67GHz, g77, -O5 -funroll-loops: 10m 09s
OS X, Mac, 2.0 GHz, XLF -O2: 4m 55s
Tru64, Alpha, 500MHz, f77 -O2: 5m 41s
Irix 6.5, SGI, 400MHz, f77 -O2: 24m 09s

Page 204

Can highlight particular problems or indicate improvements:

e.g. for Linux, NFS mounted disks can cause severe
performance problems - caused by local/remote handshaking
every time a read or write is performed.

cure: (a) only use local disks
(b) buffer i/o to reduce the number of transfers

Profiling: use an external program to locate bottlenecks

e.g. Shark in OSX, gprof under other UNIXes; compile & link with
flag "-pg", run the program and then

$ gprof <progname> gmon.out
.
.
.

granularity: each sample hit covers 4 byte(s) for 0.03% of 39.25 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
12.4 4.87 4.87 115121 0.04 0.08 _eval_ [4]
11.7 9.48 4.61 43166 0.11 0.19 _integ2_ [6]
10.1 13.44 3.96 43166 0.09 0.09 _getprof_ [11]
8.5 16.76 3.32 _moncount (7093)
8.4 20.06 3.30 24 137.50 137.50 _rotate_clock90 [12]
6.5 22.61 2.55 115148 0.02 0.02 _sortup4_ [14]
5.7 24.84 2.23 24 92.92 92.92 _unpack_wordmar [16]
4.0 26.42 1.58 49069 0.03 0.11 _integ_ [10]
3.4 27.76 1.34 22 60.91 657.99 _process_ [3]
3.4 29.08 1.32 mcount (152)

Finally - test at all stages of development.

Modern OOP methodology recommends producing
test classes for all important methods to check they
work with model data before inclusion into your main
program. Having the test class available makes it
easier to investigate when someone breaks your
program with unexpected input.

Page 205

The future of direct methods

George M. Sheldrick

http://shelx.uni-ac.gwdg.de/SHELX/

IUCr Computing School, Siena,
August 2005

The crystallographic phase problem

This is known as the crystallographic phase problem and would
appear to be difficult to solve!

Despite this, for the vast majority of small-molecule structures the
phase problem is solved routinely in a few seconds by black box
direct methods.

In order to calculate an electron density map, we require both the
intensities I = |F |2 and the phases of the reflections hkl.

The information content of the phases is appreciably greater than
that of the intensities.

Unfortunately, it is almost impossible to measure the phases
experimentally !

Finding the minimum The Sayre equation
Sayre (1952). In the same issue of Acta Cryst., Cochran and
Zachariasen independently derived phase relations and showed
that they were consistent with Sayre’s equation:

Fh = q h’ (Fh’ Fh-h’)
where q is a constant dependent on sin()/ for the reflection h
(hkl) and the summation is over all reflections h’ (h’k’l’) . Sayre
derived this equation by assuming equal point atoms. For such a
structure the electron density (0 or Z) is proportional to its square
(0 or Z2) and the convolution theorem gives the above equation
directly.

The Sayre equation is (subject to the above assumptions) exact,
but requires complete data including F000.

Normalized structure factors
Direct methods turn out to be more effective if we modify the
observed structure factors to take out the effects of atomic thermal
motion and the electron density distribution in an atom. The
normalized structure factors Eh correspond to structure factors
calculated for a point atom structure.

Eh
2 = (Fh

2/) / <F2/ >resl. shell

where is a statistical factor, usually unity except for special
reflections (e.g. 00l in a tetragonal space group). <F2/ > may be used
directly or may be fitted to an exponential function (Wilson plot).

The tangent formula (Karle & Hauptman, 1956)

h’ | Eh’ Eh-h’ | sin(h’ + h-h’)
tan(h) =

h’ | Eh’ Eh-h’ | cos(h’ + h-h’)

The tangent formula, usually in heavily disguised form, is still a key
formula in small-molecule direct methods:

The sign of the sine summation gives the sign of sin(h) and the
sign of the cosine summation gives the sign of cos(h), so the
resulting phase angle is in the range 0-360º.

Page 206

The Multan Era (1969-1986)
The program MULTAN (Woolfson, Main & Germain) used the tangent
formula to extend and refine phases starting from a small number of
reflections; phases were permuted to give a large number of starting
sets. This multisolution (really multiple attempt) direct methods
program was user friendly and relatively general, and for the first
time made it possible for non-experts to solve structures with direct
methods. It rapidly became the standard method of solving small-
molecule structures.

Yao Jia-Xing (1981) found that it was even better to start from a large
starting set with random phases (RANTAN), and this approach was
adopted by most subsequent programs.

Negative quartets: using the weak data too
Schenk (1973) discovered that the quartet phase sum:

= h + h’ + h” + -h-h’-h”

is, in contrast to the TPR sum, more often close to 180º than 0º when
the four primary E-values Eh, Eh’, Eh” and E-h-h’-h” are relatively large
and the three independent cross-terms Eh+h’, Eh+h” and Eh’+h” are all
small. Hauptman (1975) and Giacovazzo (1976) derived probability
formulas for these negative quartets using different approaches;
Giacovazzo’s formula is simpler and more accurate and so has come
into general use.

Although this phase information is weak (and depends on 1/N rather
than 1/N½ for TPRs) tests based on negative quartets discriminate
well against uranium atom false solutions.

Random (or better)
starting atoms

reciprocal space:
refine phases

real space:
select atoms

SF calculation

FFT

Many cycles E > Emin

If the figures of merit indicate a solution, it can be
expanded to the complete structure using all data

Implemented in SnB and (later) SHELXD

Weeks, Miller, DeTitta,
Hauptman et al. (1993)

Dual space recycling The correlation coefficient between Eo and Ec

100 [(wEo Ec) w – (wEo) (wEc)]

{ [(wEo
2) w – (wEo)2] • [(wEc

2) w – (wEc)2] }½

Fujinaga & Read, J. Appl. Cryst. 20 (1987) 517-521.

For data to atomic resolution, a CC of 65% or more almost
always indicates a correct solution.

CC =

Strategies for atom selection

Strategies for phase refinement

• Simply keep top N atoms

• Eliminate atoms to maximize e.g. Ec
2(Eo

2-1)
• Eliminate 30% atoms at random

• Do no phase refinement
• Reduce the minimal function by the parameter-shift method
• Fix 30-50% of the phases with largest Ec, derive the rest by
tangent expansion

Gramicidin A (N=317) - different strategies
a: random omit +
tangent expansion

b: random omit +
minimal function

c: top N peaks +
minimal function

d: random omit +
no phase refinement

Page 207

Random OMIT maps
Omit maps are frequently used by protein crystallographers to reduce
model bias when interpreting unclear regions of a structure. A small
part (<10%) of the model is deleted, then the rest of the structure
refined (often with simulated annealing to reduce memory effects) and
finally a new difference electron density map is calculated.

A key feature of SHELXD is the use of random omit maps in the search
stage. About 30% of the peaks are omitted at random and the phases
calculated from the rest are refined. The resulting phases and
observed E-values are used to calculate the next map, followed by a
peaksearch. This procedure is repeated 20 to 500 times.

Although the random omit and probabilistic Patterson sampling
appreciably improve the efficiency of direct methods, using both
together is not much better than either alone. Usually we use the
probabilistic Patterson sampling for the location of heavy atoms for
macromolecular phasing and random omit maps for ab initio structure
solution.

Unknown structures solved by SHELXD
Compound Sp. Grp. N(mol) N(+solv) HA d(Å)
Hirustasin P43212 402 467 10S 1.20
Cyclodextrin P21 448 467 0.88
Decaplanin P21 448 635 4Cl 1.00
Cyclodextrin P1 483 562 1.00
Bucandin C2 516 634 10S 1.05
Amylose-CA26 P1 624 771 1.10
Viscotoxin B2 P212121 722 818 12S 1.05
Mersacidin P32* 750 826 24S 1.04
Feglimycin P65* 828 1026 1.10
Tsuchimycin P1 1069 1283 24Ca 1.00
rc-WT Cv HiPIP P212121 1264 1599 8Fe 1.20
Cytochrome c3 P31 2024 2208 8Fe 1.20
*twinned

The 1.2 Å rule
“Experience with a large number of structures has led us to
formulate the empirical rule that if fewer than half the number of
theoretically measurable reflections in the range 1.1-1.2 Å are
“observed”, it is very unlikely that the structure can be solved by
direct methods” [Sheldrick, 1990].

Morris & Bricogne, Acta Cryst.
D59 (2003) 615-617 gave an
explanation: the variation of the
experimental E2 with resolution
shows that data in the range 1.2-
1.0 Å have a higher information
content.

Heavy atoms and the 1.2 Å rule
When heavier atoms such as S or Fe are present, this rule can be
relaxed a little. Tests using high resolution data artificially truncated
(or not measured) to a resolution worse than the diffraction limit of
the crystal also tend to perform better. Many of the largest
structures solved by direct methods fall into these categories.

When heavy atoms are present, probabilistic sampling of a super-
sharp Patterson [e.g. with coefficients (E3F)] is a good way to kick-
start ab initio direct methods.

Cytochrome c6 Pattersons

Normal native Patterson Super-sharp native Patterson

Anomalous difference
Patterson

Resolving the resolution problem
Replacing peak picking by some form of density modification, as
used by Giacovazzo et al. in SIR2003 and in ACORN (Yao Jia-Xing et
al.) appears to alleviate the resolution problem a little, though maybe
only to 1.3 or 1.4 Å. Recent versions of SIR (Giacovazzo et al.) make
extensive use of iterative density modification, e.g. using only the
strongest E-values and setting all but the highest density to zero. To
judge from the published tests, SIR2005 may be more effective than
SHELXD and SnB for large structures at borderline atomic resolution,
especially when heavier atoms are present.

A more far-reaching solution will probably be to find a clever way of
exploiting chemical information that is not too expensive in terms of
computer time. It should be noted that searching for small fragments
instead of single atoms is particularly slow. We have successfully
taken a small step in this direction by fitting S2-units when locating
the anomalous scatterers for sulfur-SAD phasing.

Page 208

Disulfide bond resolution
When the anomalous signal does not extend to sufficient resolution
to resolve disulfides, it has been standard practice to search for
super-sulfur atoms.

An effective alternative is to modify the peaksearch to locate the
best positions for S-S units in the slightly elongated electron density
maxima. These resolved disulfides not only improve the
performance of the substructure solution, they also give a much
better phase extension to higher resolution and better final map
correlation coefficients. The CPU time overhead is negligible.

This suggests that searching for small fragments in the real space
part of the dual-space recycling may be a good way of extending
direct methods to lower resolution, provided that it can be done
efficiently.

Mean phase errors as a function of resolution for SAD
phasing of cubic insulin at a wavelength of 1Å

without disulfide resolution with disulfide resolution

Other promising methods for atomic resolution data
1. Iterated projections [Elser, Acta Cryst. A59 (2003) 201-209]. This is

a complicated iterative density modification algorithm that seems
to be quite effective and not much slower than SnB or SHELXD.
So far it is restricted to space group P1.

2. Charge flipping [Oszlanyi & Suto, Acta Cryst. A60 (2004) 134-141;
A61 (2005) 147-152; Wu et al., A60 (2004) 326-330]. This algorithm
is simple and easy to program, but in my tests was not quite as
effective as the almost as simple random omit method (on its own
without the tangent formula etc.).

3. Integer programming [Viai & Sahinidis, Acta Cryst. A59 (2003)
452-458 & A61 (2005) 445-452]. By reducing CENTROSYMMETRIC
direct methods to an integer programming problem, it appears
that these authors have indeed found a solution to the phase
problem in polynomial time. Tests have shown that this method
is as fast or faster, and less likely to fail, than existing methods
for centrosymmetric structures.

Ab initio direct methods at lower resolution
Considerable progress has also been made at very low resolution,
where the number of reflections is so small that it is feasible to test
many phase permutations [e.g. Lunina, Lunin & Urzhumtsev, Acta
Cryst. D59 (2003) 1702-1713]. Solutions are selected on the basis of
good connectivity and the right number of connected fragments in
the cell, and then merged with each other. In favourable cases it may
be possible to begin to see secondary structure in the 4 to 6 Å maps
that are produced. Such methods are very sensitive to missing or
wrongly measured low order reflections.

Conditional optimisation [Scheres & Gros, Acta Cryst. D57 (2001)
1820-1828] is a sort of molecular dynamics with N atoms in a box
subject to a very general force field so that chemically sensible
ensembles of atoms are favoured. In principle this is a promising
method, but will probably require massive computer resources.

Structure solution in P1
It has been observed [e.g. Sheldrick & Gould, Acta Cryst. B51 (1995)
423-431; Xu et al., Acta Cryst. D56 (2000) 238-240; Burla et al., J. Appl.
Cryst. 33 (2000) 307-311] that it may be more efficient to solve
structures in P1 and then search for the symmetry elements later.
This works particularly well for solving P1 structures in P1.

I thought that this might be a good way of tackling problems where
the space group is not clear. A decision as to the space group could
simply be postponed until the structure has been solved! However
after much effort I have come to the conclusion that, although the
approach works well in straightforward cases, in pseudosymmetry
cases there may be a problem in recognising the correct solution to
the phase problem, so the current procedure of trying all possible
space groups may be more effective!

More than 90% of the algorithms I have devised and programmed
turned out, on objective assessment, not to represent improvements
on current practice. This was simply one more example.

Acknowledgements
I am particularly grateful to Isabel Usón, Thomas R. Schneider,
Stephan Rühl and Tim Grüne for many discussions.

SHELXD: Usón & Sheldrick (1999), Curr. Opin. Struct. Biol. 9, 643-648;
Sheldrick, Hauptman, Weeks, Miller & Usón (2001), International
Tables for Crystallography Vol. F, eds. Arnold & Rossmann, pp. 333-
351; Schneider & Sheldrick (2002), Acta Cryst. D58, 1772-1779.
SHELXE: Sheldrick (2002), Z. Kristallogr. 217, 644-650; Debreczeni,
Bunkóczi, Girmann & Sheldrick (2003), Acta Cryst. D59, 393-395;
Debreczeni, Bunkóczi, Ma, Blaser & Sheldrick (2003), Acta Cryst. D59,
688-696; Debreczeni, Girmann, Zeeck, Krätzner & Sheldrick (2003),
Acta Cryst. D59, 2125-2132.

http://shelx.uni-ac.gwdg.de/SHELX/

Page 209

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper

Using the Clipper libraries.

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Why use a crystallographic library?

� Because it will save you a huge amount of work:

� 3-10x increase in productivity.

� Common algorithms are already built-in.

� Well designed classes prevent common coding errors.

� Because it has been extensively debugged.

� by use in other programs.

� by test suites of varying degrees of formality.

Why not?

� Because its more to learn, and more to build.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Why use a Clipper in particular?

� Purpose designed for phase improvement and
interpretation, i.e. good for:

� Phasing

� Phase improvement

� Refinement

� Model building

Why not?

� No facilities for un-merged data.

� Limited facilities for anything before fixing origin.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Why use a Clipper in particular?

� Mainly for C++ use.

� For Fortran or scripting purposes, write a wrapper
which does most of the task and communicates in
an appropriate way with the problem concerned.

Why not?

� No general scripting interface.

� (Although it certainly works with SWIG.)

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

How to get Clipper:

� From my website:

� http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html

� Simple script based build system.

� With CCP4

� GNU autoconf build system.

� With CCTBX

� SCONS build system.

I'm not an expert on build systems!

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

How to get information on Clipper:

� From my website:

� http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html

� Comprehensive 'doxygen' documentation, including:
� class codumentation

� a range of tutorials

� a few examples: more are in the 'examples' directory.

� Aside: When you write code:
� document it.

� write test code.

� (Proper test classes are better than stand-alone test
programs – I'm working on it right now).

Page 210

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Building Clipper applications:

� When compiling, -I$INCLUDEDIR

� Usually $PREFIX/include

� When linking, -L$LIBDIR

� Usually $PREFIX/include

� Using my build scripts, to make a simple program
put a single .cpp file in the examples directory,
and use

make program_name

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Clipper conventions:

� Main classes in 'clipper' namespace.

� Data may be held at either precision: data classes
in 'clipper::data32', 'clipper::data64'

� Small objects use 'double' by default, but 'float' is
also possible.

� Terminology:

� fractionals are (u,v,w).

� 4sin2 / 2 is 'invresolsq'

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper

Brief overview of classes

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Overview of classes:

� Helper classes

� Clipper::String

� An interchangeable extension to std::string, with additional
parsing and manipulation methods (e.g. split, strip).

� Clipper::Util

� A collection of useful static functions providing common
crystallographic functions (e.g. I1/I0, B-U conversion) and

portability code.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Overview of classes:

� Crystal information

� cell and symmetry

� Ordinates, derivatives, operators and grids

� HKLs, coordinates etc.

� Data classes

� reflection data, maps (crystallographic and otherwise)

� Method objects

� common tasks, e.g. data conversion, sigmaa, etc.

� Input/output classes

Page 211

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Crystal information:

� A crystal is defined by two main classes: a unit cell
(clipper::Cell) and a spacegroup
(clipper::Spacegroup).

� These are complex classes which store derived
information and provide optimised methods for handling
it.

� Two smaller 'descriptor' objects provide a more compact
representation for storage and transmission: The cell
descriptor (clipper::Cell_descr) holds just the cell
edges and angles, and the spacegroup descriptor
(clipper::Spgr_descr) holds the 'signature' of the
spacegroup.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Ordinates and grids:

� Ordinates include Miller indices (clipper::HKL),
orthogonal and fractional coordinates
(clipper::Coord_orth, clipper::Coord_frac),
grid coordinates (clipper::Coord_grid), and others.

� The ordinates have methods to convert to any other related
form.

� Operators for transforming coordinates. Rotation
matrices and rotation translation operators (e.g.
clipper::RTop_orth, clipper::RTop_frac,
clipper::Symop).

� Operators also contain transformation methods.

� Gradients, curvatures, grids
(clipper::Grid_sampling), etc.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Data objects hold the actual crystallographic data. They
include reciprocal space data
(clipper::HKL_info, clipper::HKL_data),
crystallographic and non-crystallographic maps
(clipper::Xmap, clipper::NXmap),
and FFT maps (clipper::FFTmap)

� The primary design goal of the data objects is that they
hide all the bookkeeping associated with crystallographic
symmetry (and in real space, cell repeat). Data can be
written to and read from any region of real or reciprocal
space, and the unique stored copy of the data will be
modified correctly. This is all achieved in a
computationally efficient manner.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method Objects:

� For common crystallographic tasks:

� calculating functions of resolution.

� calculating structure factors from coordinates.

� sigma-a, likelihood maps.

� map filtering.

� map alignment, feature recognition, skeletonisation.

� Constructor creates a (tiny) method object setting
any parameters for the calculation.

� operator(...) method does the actual
calculation.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Input/Output objects

� Input/Output objects are used to record the
contents of an object in a file or restore the
contents from a file.

� Different objects are used for different file types, but
the interfaces are as similar as the file format
allows.

� (CCP4MTZfile, CCP4MAPfile, MMCIFfile,
CNSfile, PHSfile)

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper

Detailed classes and examples

Page 212

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Crystal Information: Cell and Spacegroup

� We almost never make objects from scratch, but we
can using the compact 'descriptions':
Cell_descr celld(30.0,40.0,50.0);
Cell cell(celld);

Spgr_descr spgrd(“P 2ac 2ab”);
Spacegroup spgr(spgrd);

� Cell description takes up to 6 arguments
(a,b,c,alpha,beta,gamma), degrees or radians.

� Spacegroup description can be H-M or Hall symbol,
spacegroup number, or list of operators.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Crystal Information: Cell

� We can access cell properties:

double a = cell.a();
double astar = cell.a_star();
double vol = cell.volume();
Mat33<> mat = cell.matrix_orth();

� Many clipper objects have an 'null' state, which they
are in if not initialised, and an 'init' method:

if (cell.is_null())
 cell.init(clipper::Cell_descr(...));

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Crystal Information: Spacegroup

� We can access symmetry operators:
int nsym = spgr.num_symops();
int nsymp = spgr.num_primitive_symops();
Symop op = spgr.symop[i];

� Asymmetric units:
if (spgr.in_asu(hkl))
 ...

� Reflection centric/absence/multiplicity:
HKL_class cls = spgr.hkl_class(hkl);

� And much more.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Coordinates:

� Can construct from 3 numbers, or Vec3<>.

� Can convert orthogonal <-> fractional
using Cell.

� Can convert fractional <-> grid
using Grid_sampling.

� Can transform using coord.transform(rtop)
or rtop*coord

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Coordinates:

� Example transformations...
// Make grid coord from ints
Coord_grid cg(u, v, w);
// convert to fractional using grid
Coord_frac cf = cg.coord_frac(grid);
// transform using symop
cf = spgr.symop(2) * cf;
// convert to orthogonal using cell
Coord_orth co = cf.coord_orth(cell);
// format and print the result
std::cout << co.format() << “\n”;

Page 213

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Operators:

� Rotation-translation
operator most common,
consists of rotation matrix
and translation vector.

� Construct from matrix and vector.

� Can apply to any coordinate in the
same system.

� Can combine multiple RTop-s by multiplication.

RTop<>

RTop_orth RTop_frac

Symop

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

Operators:

� Rotations may also be represented by Euler angles
(CCP4 or full 24 conventions), polar angles (CCP4
convention), or quaternion (interchange format).
//Make euler rotation (radians)
Euler_ccp4 euler(pi/3, pi/4, pi/5);
// convert to quaternion
Rotation rot(euler);
// convert to polar
Polar_ccp4 polar = rot.polar_ccp4();
// make vector
Coord_orth co(1.0, 2.0, 3.0)
// make RTop_orth
Rtop_orth op(rot.matrix(), co);

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper Libraries: In detail

HKLs:

� Construct from integers, access h, k, l:
HKL hkl(1,2,3);
int h = hkl.h();

� Calculate resolution:
double s = hkl.invresolsq(cell);

� Transform:
HKL equiv1 = spgr.symop(i) * hkl;
HKL equiv2 = spgr.isymop(i) * hkl;

� Calculate phase shift, etc:
double dphi = hkl.sym_phase_shift(symop);

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Reciprocal space:

� We often want to handle many lists of related reflection
data, handling all the data connected with one HKL at
once.

� We often want to add new data during the course of the
calculation.

� Some data are tied together.

� Clipper implements a system of data lists, holding
data of crystallographic types, using a common
indexing defined by a parent object.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Reciprocal space:

Note: Data types may be complex, e.g. F+/F-, ABCD

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Reciprocal space:

� clipper::HKL_info manages the list of HKLs for all
the objects.

� clipper::HKL_data<type> holds a single list of data
of some crystallographic type.
(e.g. F/sigF, A/B/C/D, I(+)/I(-)/sigI(+)/sigI(-))

� Note this is the scheme in Clipper version 1. In version 2
(coming soon), clipper::HKL_info objects will disappear,
being created and destroyed in the background automatically as
required. Existing code is not affected!

Page 214

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Reciprocal space:
// make crystal objects
Spacegroup spgr(...);
Cell cell(...);
Resolution reso(3.0);
// make reflection list
HKL_info hklinf(spgr, cell, reso, true);
// make data lists using reflection list
HKL_data<data32::F_sigF> fsig(hklinf);
HKL_data<data32::Phi_fom> phiw(hklinf);
HKL_data<data32::ABCD> abcd(hklinf);

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Reciprocal space: Can access data by index in list,
or by HKL. If the HKL requested isn't in the list, the
correct symmetry equivalent will be chosen, and
the data transformed automatically (including
Friedel and phase shift).
// get 23rd data by index
double f = fsig[23].f();
double sig = fsig[23].sigf();
// get (1,2,3) data, (-1,-2,-3) data
double phi1 = fphi[HKL(1,2,3)];
double phi2 = fphi[HKL(-1,-2,-3)];
// by definition, phi1 = -phi2

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Data types are complex objects, from which individual
items may be accessed. They know how to transform
themselves about reciprocal space. The user can
define new data types.

� Operators (+,-,*,&,|,!) are available to add, subtract, or
scale entire lists when these make sense.

� 'Compute operators' are available for applying
common operations and conversions to data, e.g.:

� ABCD <-> phi/fom

� Scaling by scale, overall B

� F -> semi-normalised E
Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Conversions are available for transforming between
types, individually or as a list. (Lambda operators).
HKL_data<data32::F_sigF> fsig(hklinf);
HKL_data<data32::ABCD> abcd(hklinf);
HKL_data<data32::Phi_fom> phiw(hklinf);
HKL_data<data32::F_phi> fphi(hklinf);
// convert abcd to phi/fom
phiw.compute(abcd, Compute_phifom_from_abcd());
// convert F/sigF and phi/fom to weighted F/phi
fphi.compute(fsig, phiw,
 Compute_fphi_from_fsigf_phifom());

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� These methods provide convenient access when
performance isn't an issue. But access by HKL
involves symmetry search, so can be slow. When
performance is critical, an alternative approach is
adopted, using 'reference' objects, which are slightly
related to STL iterators. These are designed to
optimise common access pattens:

� When looping over all data sequentially:
HKL_data<*>::HKL_reference_index

� When accessing data by HKL rather than by index:
HKL_data<*>::HKL_reference_coord

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� The index is like a normal array index, but can also
return resolution and other information. It may be used
for any HKL_data with the same HKL_info.
HKL_data<data32::F_phi>::HKL_reference_index ih;
for (ih = fphi.first(); !ih.last(); ih.next()) {

HKL hkl = ih.hkl();
double s = ih.invresolsq();
data32::F_phi fp = fphi[ih];

}

� The coordinate reference type allows fast access to
neighbouring and nearby reflections (for which the
symmetry operator for the stored ASU is usually
conserved).

Page 215

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Indices and references may be used across any
lists which share the same HKL_info.

� To transfer data between differently indexed lists,
you must go back to the underlying HKL.

� Loop over the target HKL_data and fetch data from the
source HKL_data by HKL.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Crystallographic and non-crystallographic maps
(clipper::Xmap, clipper::NXmap)

� The data objects are templates which can hold data of
any type. In the case of a map, this type will usually be
`double' or `float'.

� Xmap-s have crystallographic symmetry and lattice
repeat.

� Nxmap-s have neither, and define a bounded region in
the coordinate space.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Crystallographic maps (clipper::Xmap)

� Construct from Spacegroup, Cell, Grid_sampling.

� Usually construct Grid_sampling from Spacegroup, Cell,
Resolution.
Grid_sampling grid(spgr, cell, reso);
Xmap<float> xmap(spgr, cell, grid);

� Can the calculate maps by FFT from HKL_data<F_phi>
xmap.fft_from(fphi);
xmap.fft_to(fphi);

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Crystallographic maps (clipper::Xmap)

� Access map by index, or coordinate:
// allowed but discouraged
float rho1 = xmap.get_data(1234);
float rho2 = xmap.get_data(Coord_grid(1,2,3));

� Fine for some tasks. However:

� Indices are not sequential, owing to irregular shape of
ASU.

� Access by coodinate requires symmetry lookup to find
value in stored ASU.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Crystallographic maps (clipper::Xmap)

� Access map by two reference types when performance is
important:
// preferred: reference index
Xmap::Map_reference_index ix;
for (ix = xmap.first(); !ix.last(); ix.next())
 float rhox = xmap[ix];

// preferred: reference coord
Xmap::Map_reference_coord iy(xmap, Coord_grid(1,2,3));
float rho1 = xmap[iy];
iy.next_u();
iy.prev_w();
float rho2 = xmap[iy];
// now iy -> Coord_grid(2,2,2)

� References may be shared across similar maps.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Crystallographic maps (clipper::Xmap)

� Methods are provided for interpolation, and also gradient
and curvature calculation:
// get interpolated density
Coord_frac cf(0.1, 0.2, 0.3);
float rho1 = xmap.interp<Interp_linear>(cf);
float rho2 = xmap.interp<Interp_cubic> (cf);

� Also sorting, statistics, etc.

Page 216

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Indices and references may be used across any
maps which share the same space-group and grid
(similar to reflection data).

� To transfer data between differently indexed maps,
you must go back to the underlying Coord_grid,
or Coord_orth if cells are different (interpolate).

� Loop over the target Xmap and fetch data from the
source Xmap by Coord_grid.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Data objects:

� Atoms:
(clipper::Atom, clipper::Atom_list)

� clipper::Atom: The simplest definition necessary for
electron density calculation.

� clipper::Atom_list: Derived from
std::vector<Atom>.

� For more complex atom manipulation, see the MMDB
interface and the MiniMol package.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method objects:

� There are a range of common calculations provided
in to the Clipper packages:

� Resolution functions – used to calculate smoothly varying
estimates of things in reciprocal space, e.g. |F(|h|)| for
normalisation of E's.

� Electron density/structure factor calculation from atoms.

� Map filtering, e.g. for calculating local mean of variance of
electron density.

� Skeletonisation.

� Likelihood weighting and map calculation.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method objects:

� There are a range of common calculations provided
in to the Clipper packages:

� Electron density/structure factor calculation from atoms.
SFcalc_iso_fft sfcalc;
Atom_list atoms;
...
sfcalc(fphi, atoms);

� Constructor for SFcalc_iso_fft can take optional
arguments to control it's behaviour.

� The actual calculation is done by the () operator. The result
is the first argument.

� Note: there are several implementations (e.g. slow/fft/iso/aniso).

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method objects:

� Other examples:

� Map filtering: first we define the filter function to apply to
the map, and then we apply it using a given filter
implementation.
MapFilterFn_step fn(filter_radius);
MapFilter_fft<float> fltr(fn, 1.0, Relative);
Xmap<float> filtered;
fltr(filtered, xmap);

� This filters with a step function of a given radius, using the
scaling parameters 1.0 and 'Relative', and puts the result in
the new map.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method objects:

� Other examples:

� Resolution functions are more complex:
� First, we define the curve we want to fit.

� Secondly, we define the function the curve must minimise.

� Thirdly, we define a set of initial parameters.

� Fourthly, we feed both of these to an evaluator.

� e.g. fitting a spline function to scale two datasets together:
BasisFn_spline basisfn(6);
TargetFn_scaleF1F2<data32::F_sigF,data32::F_sigF>
 targetfn(fsig1, fsig2);
std::vector<double> params(6, 1.0);
clipper::ResolutionFn
 rfn(hklinf, basisfn, targetfn, params);

Page 217

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Method objects:

� Other examples:

� e.g. fitting a spline function to scale two datasets together:
// fitting the function
BasisFn_spline basisfn(6);
TargetFn_scaleF1F2<data32::F_sigF,data32::F_sigF>
 targetfn(fsig1, fsig2);
std::vector<double> params(6, 1.0);
clipper::ResolutionFn
 rfn(hklinf, basisfn, targetfn, params);

// scaling the data
for (ih = fsig1.first(); !ih.last(); ih.next())
 fsig1[ih].scale(sqrt(rfn(ih)));

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Input/output objects:

� Open an I/O object for a particular file type, for read
or write, and then import/export the data oject
concerned using that object.

� e.g. For a crystallograpic map:
Xmap<float> map;
CCP4MAPfile mapfile;
mapfile.open_read(“1ajr.map”);
mapfile.import_xmap(map);
mapfile.close();

� For export, open_write() and then export_xmap().

� Can also import/export NXmap-s from the same object.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Input/output objects:

� Reflection files vary. PHS files are simple. CNS and
mmCIF files intermediate. MTZ files contain multiple
sets of data of various types, and accompanying
information.

� e.g. Import a set of F-s and σ-s:
CCP4MTZfile mtzfile;
mtzfile.open_read(“1ajr.map”);
mtzfile.import_hkl_info(hklinf);
mtzfile.import_hkl_data(fsig, “/*/*/[FP,SIGFP]”);
mtzfile.close();

� Can also import/export spacegroup, cell, and dataset
information, where the format supports it.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Trivial examples:

� Read some data, calculate a map.

� Assume F and phi.
(We've seen how to get these from phi/fom, ABCD.)

� Expand data to P1

� Including all appropriate symmetry transformations.

� Rotating density from an Xmap into an Nxmap

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries
Calculate a map from structure factors:

clipper::HKL_info hkls; // define hkl objects
clipper::HKL_data<clipper::data32::F_phi> fphidata(hkls);
// READ DATA
clipper::CCP4MTZfile mtzin;
mtzin.open_read("my.mtz"); // open new file
mtzin.import_hkl_info(hkls); // read sg, cell, reso, hkls
mtzin.import_hkl_data(fphidata, "/*/*/[FCAL,PHICAL]");
mtzin.close_read();
// DEFINE MAP
clipper::Grid_sampling mygrid(hkls.spacegroup(), hkls.cell(),
 hkls.resolution()); // grid
clipper::Xmap<float> mymap(hkls.spacegroup(), hkls.cell(),
 mygrid); // map
mymap.fft_from(fphidata); // fill map
// OUTPUT MAP
clipper::CCP4MAPfile mapout;
mapout.open_write("my.map"); // write map
mapout.export_xmap(mymap);
mapout.close_write();

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries
Expanding data to lower symmetry:

// make new objects
clipper::HKL_info newhkls(newspacegroup,
 hkls.cell(), hkls.resolution());
clipper::HKL_data<clipper::data32::f_phi> newfphidata(newhkls);
// and fill them
HKL_info::HKL_reference_index ih;
for (ih = newhkls.first(); !ih.last; ih.next())
 newfphidata[ih] = fphidata[ih.hkl()];

// same thing to expand a map
// make new object
newmap.init(newspacegroup, map.cell(), map.grid_sampling());
// and fill it
clipper::Xmap_base::Map_reference_index ix;
for (ix = newmap.first(); !ix.last(); ix.next())
 newmap[ix] = map.get_data(ix.coord());

Page 218

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries
Expanding data to lower symmetry:

// make new objects
clipper::HKL_info newhkls(newspacegroup,
 hkls.cell(), hkls.resolution());
clipper::HKL_data<clipper::data32::f_phi> newfphidata(newhkls);
// and fill them
HKL_info::HKL_reference_index ih;
for (ih = newhkls.first(); !ih.last; ih.next())
 newfphidata[ih] = fphidata[ih.hkl()];

Important rule of thumb for reflections and maps:

� When moving data into an object with organization, always loop
through the target object, and set each element by fetching data
from the source object by coordinate.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries
Rotating a map:

// make objects
clipper::Xmap<float> xmap;
clipper::NXmap<float> nxmap;
clipper::RTop_orth rtop

// initialise objects
...

// do the rotation
clipper::NXmap_base::Map_reference_index ix;
for (ix = nxmap.first(); !ix.last(); ix.next())
 nxmap[ix] = xmap.interp<Interp_cubic>(rtop*ix.coord_orth());

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper

Miscellany

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

CCP4 Extras:

� A mini-package of tools for building CCP4 command
line programs:

� A parser class, which combines input from both command
line and standard input.

� A CCP4-program class, which calls all the normal functions
at the beginning of a program, and tidies up at the end.

� Note: don't use exit. Continue to the end of a block.

� Currently just a source file which you can link to your
program.

� Possible part of libclipper-ccp4 in future?

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Learning more:

� Documentation contains several tutorials, plus
extensive reference material (~1000 pages)

� Lots of material in the 'examples' directory:

� map calculation

� structure factor calculation

� ML weighting and maps

� data analysis

� data conversion

� scaling

� etc.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Clipper

Clipper libraries

Conclusions:

� Clipper contains a great many building blocks for the
rapid construction of crystallographic calculations.

� It is suitable for a certain range of problems, based on
language and stage of structure solution.

� Convenience methods provide very simple ways to do
complex tasks.

� Optimised methods provide near-optimal performance
in terms of CPU and memory usage.

� Lots of documentation and examples...

Page 219

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Exercises in map manipulation.

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Exercises:
(Attempt any or all of these in any order. Don't
expect to finish them during the meeting)

� Identify connected regions in a mask

� Skeletonise an electron density map

� Calculate electron density from atomic coordinates

� Each task can be more of less difficult depending on
whether you account for lattice repeat, space-group
symmetry, and cell geometry.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Identify connected regions in a mask
� The file mask.txt contains a 12x10x8 mask, in obvious

human readable format. Read this into an array, and using
an algorithm of your choice, identify how many discrete
connected masked regions there are. Mark each connected
region in the mask with a unique identifier. Print a list of
them, along with their sizes.

� For a more advanced solution, include the fact that the map
is cyclic and wraps round at its edges.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonise an electron density map
� The file map.txt contains a 12x10x8 map, in obvious human

readable format. Read this into an array, and calculate a
modified Greer skeleton, using the algorithm described.

� For a more advanced solution, include the fact that the map
is cyclic and wraps round at its edges.
If writing this using Clipper, you should also be able to incorporate
crystallographic symmetry. (If you store the skeleton in an Xmap, then it will also
have magic symmetry. This is how 'coot' displays infinite skeletons.)

� Are there any changes you would make to the program to
support skewed grids?

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Calculate electron density from atomic coordinates
� Using a blank 12x10x8 map representing a 18x15x9A cell,

read the coordinates from the file atoms.txt. Calculate the
electron density for the unit cell, assuming that each atom is
a Gaussian whose height is its atomic number and whose
half width is 0.75A.

� For a more advanced solution, include the fact that the map
is cyclic and wraps round at its edges.

� How must the calculation be modified to handle skewed
cells? What types of coordinates are involved?

� If you are using Clipper, the file clipper/contrib/edcalc.cpp contains a symmetry
general solution: Edcalc_iso<T>::operator() . Why do you think a multiplicity
correction is required at the end of the calculation?

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

� Aim is to trace the ridges connecting peaks of
density in the map.

� Simplest approach is a modified 'Greer' algorithm.

� This version descended from one implemented
in 'dm' in the late '90s.

� Also similar to one used in TEXTAL.

� A more general version (symmetry and crystal
geometry) is implemented in Clipper.

Page 220

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

� Make a map of flags, using the same grid as the
density map. Mark every point as 'skeleton'.

� Consider each grid point in the map in turn, in order
of increasing density.

� For each point, consider whether removing that
point from the skeleton will 'disconnect' any of its
(6 orthogonally adjacent) neighbours.

� If so, leave it in the skeleton.
� If not, remove it from the skeleton.

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

� e.g. in 2 dimensions...

� So in this example, removing
the center point will disconnect
the top neighbor from the left
and bottom neighbors.

� So we keep it.

In skeleton

Not in skeleton

Testing

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

� Keep:

� Lose:

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Page 221

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Page 222

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Kevin Cowtan, cowtan@ysbl.york.ac.uk Sienna/Map manipulation

Map manipulation

Skeletonisation:

3

29

25

30

21

10

8

23

7

17

28

24

6

14

13

18

20

11

15

27

4

22

16

19

2

26

9

5

12

1

Page 223

Reciprocal Space Tutorial

George M. Sheldrick

http://shelx.uni-ac.gwdg.de/SHELX/

IUCr Computing School, Siena,
August 2005

Fortran-90

1. Fortran code is extremely portable and stable – the original
SHELX-76 code still compiles and runs correctly on any
modern computer without any changes being necessary.

2. It is easy to produce robust stand-alone statically-linked
binaries with ZERO DEPENDENCIES (e.g. SHELX).

3. Many highly optimized and debugged libraries are available
for numerical applications (e.g. the Intel MKL, which includes
multithreaded multidimensional mixed-radix FFTs).

4. Fortran-90 added many useful new features, e.g. array and
character operations, runtime memory allocation etc.

5. OPEN-MP enables multithreaded code to be generated easily.

Despite the massive campaigns for python etc., we should not
forget that Fortran was specifically designed for scientific
number crunching applications, and – especially Fortran-90 –
still has many advantages for crystallographic calculations:

Fortran-90 example
The following Fortran-90 program is provided as a solution to
Kevin’s first exercise [finding separate domains in a cyclic mask
consisting of 0 (solvent) and 1 (protein)]. It makes limited use
[e.g. read(*,*)m; m=-m; p=minloc(m)] of F-90 array functions:

integer::m(12,10,8),p(3),c(960)
read(*,*)m; m=-m; n=0
1 p=minloc(m); if(m(p(1),p(2),p(3)).ge.0)goto 7
n=n+1; c(n)=1; m(p(1),p(2),p(3))=n
2 l=0; do 5 k=1,8; do 4 j=1,10; do 3 i=1,12
if(m(i,j,k).ge.0)goto 3
if(max(m(mod(i,12)+1,j,k),m(mod(i+10,12)+1,j,k),&
m(i,mod(j,10)+1,k),m(i,mod(j+8,10)+1,k),&
m(i,j,mod(k,8)+1),m(i,j,mod(k+6,8)+1)).le.0)goto 3
m(i,j,k)=n; c(n)=c(n)+1; l=1
3 continue; 4 continue; 5 continue
if(l.gt.0)goto 2; goto 1
6 format(' Domain',i4,' contains',i5,' pixels')
7 write(*,6)(i,c(i),i=1,n); end

What is an algorithm ?
An algorithm is a way of calculating something that even the
person who invented it cannot understand !?

Usually algorithms involve some clever mathematics to do
something faster – sometimes by orders of magnitude – or
‘better’ than the obvious way of doing it.

Examples:

Sorting (e.g. reflection and peak lists)

FFT for structure factor calculations etc.

Fast calculation of interatomic distances

Derivation of phase relations for direct methods

Simple example – mean and variance
x = x / N V = (x – x)2 / N

This appears to require two scans through the data: the first to
find x and the second to find V. A ‘one-scan’ method would be
faster if the data are stored on a disk (or are in RAM but do not
all fit into the CPU ‘cache’ at the same time). We will look into
this trivial example in detail because it illustrates several
important points.

A one-scan algorithm
V = (x – x)2 / N = (x2 – 2xx + x2) / N

But x = x / N. Substituting this:

V = x2/N – [(x)/N]2

Which only requires one scan, summing both x and x2.

Usually we need V, so it is important to know whether it is ever
possible for V calculated in the above way to be negative, this
would ‘crash’ the program! In a mathematical sense V can never
be negative, but it could still happen as a result of rounding
errors if all x are equal and non-integral. So a good ‘defensive’
programmer would intuitively avoid this by replacing a negative
value of x2/N – [(x)/N]2 by zero.

Page 224

The hidden trap
If the floating point numbers are (as is often the case) being
stored in 4 bytes each, they will have a precision of about 6½
decimal digits. If we happen to be summing over 108 pixels of a
large Fourier map to calculate the ‘one sigma level’ V, both
formulas will give the wrong answers !!

The reason is that when we add (say) the 10000000th pixel to the
running totals, the increment will be smaller than the precision to
which the numbers are being stored, so the running totals will
not change, i.e. the increment is thrown away.

Possible remedies are to sum rows and layers of the map first
and then add the totals, or do all the calculations with 8-byte (64-
bit) numbers.

Sort algorithms
Sorting algorithms are the highlight of many informatics
courses because the difference in speed can be enormous. An
obvious method such as scanning A(1..N) to find the largest
element, then swapping it with A(1), then scanning A(2..N) and
swapping the largest element with A(2), then scanning A(3..N)
etc. takes a time of order N2 (which for large N can be all week).
The best general algorithms are of order NlogN but are
complicated (best to call a library routine).

Sometimes – as with sorting reflection lists – we can take
advantage of the special features of the particular problem to
reduce the order to N. For 10000 reflections, N2 is 100000000,
NlogN is 50000 but N is only 10000 (but the constant factor
multiplying the order may differ)!

A typical sort algorithm
The following FORTRAN routine (called comb-sort) is a good
general purpose algorithm for sorting a few hundred items (e.g.
Fourier map peaks). Although not quite NlogN it is fast because
it has a low overhead. The array A(1..N) (containing e.g. peak

K=N
1 K=INT(REAL(K)/1.2796)

IF(K.LT.1)K=1
IF(K.EQ.9.OR.K.EQ.10)K=11
M=0

DO 2 I=1,N-K
J=I+K
IF(A(J).GT.A(I))THEN
Q=A(J)
A(J)=A(I)
A(I)=Q
M=1
ENDIF

2 CONTINUE
IF(M+K.GT.1)GOTO 1

heights) is sorted into
descending order. In
practice the IF..ENDIF
loop would also need
to swap the atom
coordinates x, y and z
as well as the peak
heights.

Sorting reflection lists (order N)
First h,k,l are transformed to a standard equivalent (e.g.
maximum l, if l values are equal then maximum k, if both k and l
equal then maximum h). Then the maximum and minimum
values of each index are found.

To sort on h, scan list, count how often each h is present,
storing the results in an integer array N(hmin..hmax). This is then
converted so that it holds ‘pointers’ ph to the final list:

p3 p4 p5 p6

• • • all h=3 all h=4 all h=5 all h=6 • • •

The list is scanned again, putting each reflection into the final
location pointed to by ph and then incrementing ph.

The list is sorted first on h, then on k, and finally on l. In the
final sorted list, equivalents finish next to each other and so can
easily be averaged.

FINAL LIST

Sorting small integers (Fortran-77)
C

SUBROUTINE INSORT(N,IP,IQ,ID)
C
C Sort-merge integer data in order of ascending ID(I). IP is the
C current pointer array to ID and IQ becomes the new pointer array.
C

INTEGER::IP(N),IQ(N),ID(N),IT(999)
L=ID(1)
M=L

DO 1 I=2,N
L=MIN0(ID(I),L)
M=MAX0(ID(I),M)

1 CONTINUE
L=L-1
M=M-L

DO 2 I=1,M
IT(I)=0

2 CONTINUE
DO 3 I=1,N
J=ID(I)-L
IT(J)=IT(J)+1

3 CONTINUE

J=0
DO 4 I=1,M
K=J
J=J+IT(I)
IT(I)=K

4 CONTINUE
DO 5 I=1,N
J=ID(IP(I))-L
IT(J)=IT(J)+1
IQ(IT(J))=IP(I)

5 CONTINUE
RETURN
END

Sorting and merging reflections
Kevin Cowtan’s notes on Symmetry in Reciprocal Space must be
read before attempting this exercise!

The file “in” contains cell, symops and reflection data in free
format for a small protein in space group P3121. There are
389596 data before merging. The exercise is to sort-merge the
data, remove systematic absences (and print them out with I/
ratios) and count the number of unique reflections remaining,
and how many of them are in centric projections (and so have no
anomalous differences). R(int) = | I – < I > | / I should also be
calculated (only reflections in groups of more than one
equivalent should be included in the R(int) calculation).

There should be 42827 remaining unique reflections, 4354 of
them centric and R(int) is 0.0466.

Any computer language and libraries may be used.

Page 225

The symmetry operators
All symmetry-dependent information in real or reciprocal space
can be derived from the symmetry operators! E.g. Space group
P31: m = 1: x, y, z; m=2: -y, x-y, z+1/3; m=3: -x+y, -x, z+2/3

These operators may also be expressed as 3x3 matrices R plus
vectors t:

xm R11 R12 R13 x t1

ym = R21 R22 R23 y + t2

zm R31 R32 R33 z t3

Or: xm = Rmx + tm, which in the case of operator m=3 is:

xm –1 1 0 x 0

ym = –1 0 0 y + 0

zm 0 0 1 z 2/3

Symmetry operators for P41212
For the examples in this talk we will use the space groups P31
and P41212; for the latter the general positions are:

m=1: x, y, z m=2: –x, –y, z+½

m=3: ½–y, ½+x, z+¼ m=4: –y, –x, ½-z

m=5: ½+y, ½–x, z+¾ m=6: ½–x, ½+y, ¼–z

m=7: ½+x, ½–y, ¾–z m=8: y, x, -z

i.e. for m=5:
0 1 0 ½

R = –1 0 0 t = ½

0 0 1 ¾

To obtain the general positions of the enantiomorphous space
group P43212, just exchange ¼ and ¾ !

Properties of R and t
The determinant of the matrix R must be +1 or –1. If it is –1 it
produces an inverted image, so the space group in not chiral
(but may still be non-centrosymmetric).

When one row of R is never negative for any operator [e.g. the
third row (R31 R32 R33) in P31] the space group is polar.

If all elements of t are zero for all operators (not including lattice
centering) the space group is symmorphic (and has no
systematic absences apart from lattice absences).

If t includes elements that are not multiples of ½ and the lattice
is primitive the space group is one member of an
enantiomorphic pair; if either all elements of t are multiples of ½
or the lattice is centered the space group does not belong to an
enantiomorphic pair (!)

Symmetry in reciprocal space
For the symmetry operator m: xm = Rmx + tm

The calculated structure factor Fc is given by the complex
number Fc = (A + iB) where:

Ahkl = atoms symm fj cos[2 (hxm+kym+lzm)]

Bhkl = atoms symm fj sin[2 (hxm+kym+lzm)]

(the exponential term for atomic displacements has been
included in the scattering factor fj here for simplicity). But

hxm+kym+lzm = h (Rmx+tm) = hmx + kmy + lmz + ht1 + kt2 + lt3

where: hm = R11h + R21k + R31l
km = R12h + R22k + R32l
lm = R13h + R23k + R33l

So to find the equivalent indices hm, km, lm we multiply h, k, l
by the transpose of the matrix R.

The phases of equivalent reflections
The phase m of the equivalent reflection hm is derived from the
phase of the (prime) reflection h by:

m = – 2 htm = – 2 (ht1 + kt2 + lt3)

For example in P31: h2 = 0.h +1.k + 0.l = k
k2 = –1.h –1.k + 0.l = –h –k
l2 = 0.h + 0.k + 1.l = l

So h2 is k, –h–k, l with phase:

2 = – 2 ht2 = – 2 (h.0 + k.0 + l.1/3) = – 2 l/3
These are the true equivalent reflections; they have the same
intensities and exactly the above phase shifts whether
anomalous scatterers (that would cause Friedel’s law to break
down) are present or not.

Friedel’s law
Friedels law states that |F–m| = |Fm| and –m = – m where –m
is the phase of –hm –km –lm. Friedel’s law is strictly valid only
when f” is equal (or zero) for all atoms in the structure, but it is
almost always a good approximation. In space group P31:

|Fh,k,l| = |Fk,–h–k,l| = |F–h–k,h,l| (exact equivalents) and

|F–h,–k,–l| = |F–k,h+k,–l| = |Fh+k,–h,–l| (exact equivalents)

but these two groups are only approximately equal because
they are related by Friedel’s law. For non-centrosymmetric
space groups (chiral or not) there are always two groups of
exact equivalents; if Friedel’s law holds, the |F| values of the
two groups are also the same.

Page 226

Equivalents in P41212
For P41212 the two groups of equivalents are:

h,k,l = –h,–k,l = k,–h,l = –k,–h,–l = –k,h,l = –h,k,–l = h,–k,–l = k,h,–l

–h,–k,–l = h,k,–l = –k,h,–l = k,h,l = k,–h,–l = h,–k,l = –h,k,l = –k,–h,l

The space group P4mm has the same Laue group as P41212 but
different Friedel-related groups:

h,k,l = –h,–k,l = k,–h,l = –k,–h,l = –k,h,l = –h,k,l = h,–k,l = k,h,l

–h,–k,–l = h,k,–l = –k,h,–l = k,h,–l = k,–h,–l = h,–k,–l = –h,k,–l = –k,–h,–l

To derive these groups of equivalents correctly, it is necessary
to know the point group (or space group). The Laue group
contains an inversion center and so is not sufficient. It should
be noted that for chiral compounds (i.e. for macromolecules)
there is only one possible point group (the one that has rotation
axes but no mirror planes, inversion centers or inverse tetrads)
corresponding to each Laue group.

Systematic absences
A reflection is systematically absent when hm = h but m is
not equal to (+2n where n is an integer). In P31:

k,–h–k,l = h,k,l – 2 l/3 (+2n)

so when h = k = 0:
0,0,l = 0,0,l – 2 l/3 (+2n)

which can only be true when l = 3n, i.e. reflections 0,0,l with l
not equal to 3n are systematically absent.

Note that the reflection is absent if this applies for any operator
m. E.g. in P41212:

m=2: –h,–k,l = h,k,l – l (+2n)

which implies 0,0,l absent for l not equal to 2n, but:

m=3: k,–h,l = h,k,l – h – k – ½ l (+2n)

which requires 0,0,l absent for l not 4n, so 0,0,2 is also absent.

Symmetry-restricted phases
If h–m = h but –m is not equal to (+2n) then:

–m = – (– 2 htm) = (+2n)

which gives the equation:

2 = 2 htm + 2n (n integer)

or = (ht1 + kt2 + lt3 + n)

So there can only be two possible values for (corresponding
to n odd and n even) and they must differ by . Such
reflections belong to a centrosymmetric projection. In P31, for
no values of m and h,k,l (except 0,0,0) is h–m = h, so there
are no centrosymmetric projections. This is clearly also true in
real space from inspection of the IT diagram.

Centric reflections in P41212
P41212 has several classes of reflections with restricted
phases, e.g.:

m=2: h–m = –(–h,–k,l)

which is equal to h,k,l when l=0, which gives:

h,k,0 = (h.0 + k.0 + 0.½) + n = n

so the h,k,0 reflections have phases restricted to 0 or .
Similarly, m=6 gives h–m = –(–h, k, –l) which is equal to h,k,l
if k = 0. Then:

h,0,l = (h.½ + 0.½ + l.¼) + n = (½h +¼l) + n

So for example the reflection 1,0,1 has two possible phases of
3 /4 or 7 /4.

In the case m=4, h–m = –(–k,–h,–l) which is equal to h,k,l when
h = k. Thus it can be shown that reflections h,h,l are restricted
to /2 or 3 /2.

Datafile for sort-merge exercise
The file “in” begins with a comment line, followed by the cell,
symmetry and reflection data all in free format.

Trigonal bovine trypsin P3121 #152 CuKa
54.735 54.735 106.786 90 90 120
6 symops follow, then h,k,l,I and sig(I)
1 0 0 0 1 0 0 0 1 0.0 0.0 0.0
0 -1 0 1 -1 0 0 0 1 0.0 0.0 0.333333
-1 1 0 -1 0 0 0 0 1 0.0 0.0 0.666667
0 1 0 1 0 0 0 0 -1 0.0 0.0 0.0
1 -1 0 0 -1 0 0 0 -1 0.0 0.0 0.666667
-1 0 0 -1 1 0 0 0 -1 0.0 0.0 0.333333
22 -3 -41 21.38 3.27
-2 6 -12 162.92 11.71
-19 4 -32 81.44 6.82
-13 -9 -51 16.44 3.87

etc. 389596 reflections in total, terminated by the end of the file.

Hints for the tutorial
1. Remember to use transposed symops for transforming the

reflections to their equivalents! Do not forget Friedel’s law.

2. The basic idea is to tranform all reflections to a standard
setting (e.g. maximum l, if l is equal for two equivalents then
maximum k etc.). This list of standardized reflections is then
sorted so that reflections with the same indices appear
adjacent in the sorted list. It is quicker to sort pointers than
shuffling the contents of the lists.

3. Reflections with same indices are merged: < I > = I / n;
(< I >) = 1 / [(1/ 2(I))]½ [for more sophisticated merging

see Blessing, J. Appl. Cryst. 30 (1997) 421-426].

4. To find out if a reflection is systematically absent, generate
equivalent h,k,l and see if any are identical to the original. A
non-integral phase shift (calculated using h,k,l and the
translational part of the symop.) then indicates an absence.
Centric reflections have equivalents with indices –h,–k,–l.

Page 227

Fortran-77 and C++ solutions to exercise
Solutions to the exercise are provided in both Fortran-77
(smerg.f) and C++ (sortmerge.cpp, written by Tim Grüne).
Note that the C++ file-reading routine could be replaced by
the appreciably faster C-routine in the latter. Under Linux
they may be compiled and run as follows:

f77 smerge.f –o smerg g++ sortmerge.cpp –o sortmerge
time ./smerg <in time ./sortmerge in

which gave runtimes of 2.3 and 2.8 seconds resp. on a 3 GHx
Xeon. After optimization (in both cases with –O –ffast-math)
these were reduced to 1.9 and 2.3 seconds. The Intel ifort
compiler was (in this somewhat untypical example) a little
slower.

Page 228

D:\tmp\gs_tutorial_code\gsm_data_and_fortran_solution\smerg.f

C
PROGRAM SMERG

C
C Fortran-77 sort-merge solution for Siena exercise
C

PARAMETER(NX=2000000)
INTEGER IH(NX),IK(NX),IL(NX),IP(NX),IQ(NX)
REAL FF(NX),SI(NX),SY(12,24)

C
C Read data from standard input
C

READ(*,'(/)')
READ(*,*)NS
READ(*,*)((SY(I,J),I=1,12),J=1,NS)
NR=0

1 N=NR+1
IF(N.GT.NX)STOP '** Too many reflections **'
READ(*,*,END=5)IH(N),IK(N),IL(N),FF(N),SI(N)
IP(N)=N
NR=N

C
C Convert reflection indices to standard setting
C

U=REAL(IH(N))
V=REAL(IK(N))
W=REAL(IL(N))
DO 4 M=-1,1,2
DO 3 J=1,NS
I=M*NINT(SY(1,J)*U+SY(4,J)*V+SY(7,J)*W)
K=M*NINT(SY(2,J)*U+SY(5,J)*V+SY(8,J)*W)
L=M*NINT(SY(3,J)*U+SY(6,J)*V+SY(9,J)*W)
IF(L.LT.IL(N))GOTO 3
IF(L.GT.IL(N))GOTO 2
IF(K.LT.IK(N))GOTO 3
IF(K.GT.IK(N))GOTO 2
IF(I.LE.IH(N))GOTO 3

2 IH(N)=I
IK(N)=K
IL(N)=L

3 CONTINUE
4 CONTINUE

GOTO 1
C
C Sort pointer arrays on h, then k, then l
C
5 CALL INSORT(NR,IP,IQ,IH)

CALL INSORT(NR,IQ,IP,IK)
CALL INSORT(NR,IP,IQ,IL)

C
C Combine equivalents - now contiguous
C

R=0.
S=0.
NU=NR
NC=0
N=1

6 IF(N.GT.NR)GOTO 16
M=N
MQ=IQ(M)
P=0.
Q=0.

7 NQ=IQ(N)
IF(IH(NQ).NE.IH(MQ).OR.IK(NQ).NE.IK(MQ).OR.IL(NQ).NE.IL(MQ))GOTO 8
P=P+FF(NQ)
Q=Q+1./SI(NQ)**2
N=N+1
IF(N.LE.NR)GOTO 7

Page 229

D:\tmp\gs_tutorial_code\gsm_data_and_fortran_solution\smerg.f

8 P=P/REAL(N-M)
Q=1./SQRT(Q)

C
C Detect systematic absences and centric reflections
C

U=REAL(IH(MQ))
V=REAL(IK(MQ))
W=REAL(IL(MQ))
NT=0
DO 13 J=2,NS
I=NINT(SY(1,J)*U+SY(4,J)*V+SY(7,J)*W)
K=NINT(SY(2,J)*U+SY(5,J)*V+SY(8,J)*W)
L=NINT(SY(3,J)*U+SY(6,J)*V+SY(9,J)*W)
IF(I.NE.IH(MQ).OR.K.NE.IK(MQ).OR.L.NE.IL(MQ))GOTO 12
IF(MOD(NINT(12.*(SY(10,J)*U+SY(11,J)*V+SY(12,J)*W)),12).EQ.0)

+ GOTO 13
11 FORMAT(' Reflection',3i4,' syst. abs., I/sigma =',F8.2)

WRITE(*,11)IH(MQ),IK(MQ),IL(MQ),P/Q
GOTO 6

12 IF(-I.EQ.IH(MQ).AND.-K.EQ.IK(MQ).AND.-L.EQ.IL(MQ))NT=1
13 CONTINUE

NC=NC+NT
NU=NU+1
IF(NU.GT.NX)STOP '** Too many reflections **'
IH(NU)=IH(MQ)
IK(NU)=IK(MQ)
IL(NU)=IL(MQ)
FF(NU)=P
SI(NU)=Q
IF(N.LE.M+1)GOTO 6
DO 14 I=M,N-1
R=R+ABS(FF(IQ(I))-P)
S=S+P

14 CONTINUE
GOTO 6

C
C Unique reflections now in IH(NR+1..NU) etc. Output statistics.
C
15 FORMAT(/I6,' Unique reflections, of which',I5,' centric ',

+'R(int) =',F8.4/)
16 WRITE(*,15)NU-NR,NC,R/S

END
C
C --
C

SUBROUTINE INSORT(N,IP,IQ,ID)
C
C Sort-merge integer data in order of ascending ID(I). IP is the
C current pointer array to ID and IQ becomes the new pointer array.
C

INTEGER IP(N),IQ(N),ID(N),IT(9999)
L=ID(1)
M=L
DO 1 I=2,N
L=MIN0(ID(I),L)
M=MAX0(ID(I),M)

1 CONTINUE
L=L-1
M=M-L
DO 2 I=1,M
IT(I)=0

2 CONTINUE
DO 3 I=1,N
J=ID(I)-L
IT(J)=IT(J)+1

3 CONTINUE
J=0

Page 230

D:\tmp\gs_tutorial_code\gsm_data_and_fortran_solution\smerg.f

DO 4 I=1,M
K=J
J=J+IT(I)
IT(I)=K

4 CONTINUE
DO 5 I=1,N
J=ID(IP(I))-L
IT(J)=IT(J)+1
J=IT(J)
IQ(J)=IP(I)

5 CONTINUE
RETURN
END

Page 231

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

/**
 * \file sort_reflections.cpp
 * \date 16/08/2005
 * \author Tim Gruene
 * read in a file with header (3 + n(symops) lines) and sort reflections,
 * first by h, then by k, then by l
 */

#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <vector>
#include <fstream>
#include <sstream>
#include <string>

// definition of a useful struct
struct Symop
{

int R[3][3];
int T[3];

};

class Reflection
{

private:
int h_, k_, l_;
float I_, sigI_;
bool absent;

public:
Reflection(int h, int k, int l, float I, float sigI):

h_(h), k_(k), l_(l), I_(I), sigI_(sigI), absent(false){}
~Reflection(){}

// retrieve data members
int h() const { return h_;}
int k() const { return k_;}
int l() const { return l_;}
float I() const { return I_;}
float sigI() const { return sigI_;}

// equality operator -- based on indices only
bool operator==(const Reflection& r) const
{ return ((h_ == r.h_) && (k_ == r.k_) && (l_ == r.l_));}

// comparison operator
inline bool operator<(const Reflection&) const;

// multiplication with Symop
inline Reflection operator*(const Symop&) const;

//inline Reflection operator*(int) const;
//! negation operator
inline Reflection operator-() const;

// set absence flag
void set_absence() { absent=true;}

// returns sym.-equivalent with maximal index
Reflection max_equivalent(std::vector<Symop>&) const;

// check absence
friend bool is_absent(const Reflection& r) { return r.absent;}

// for printing
friend std::ostream& operator<<(std::ostream& os, const Reflection&);

Page 232

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

};

typedef std::vector<Reflection> Reflexes;

// forward declarations of functions called from main
void usage();
int read_reflections(char *, std::vector<Symop>&, std::vector<Reflection>&);
int merge_reflections(const Reflexes&, Reflexes&);
int remove_sys_abs(const std::vector<Symop>&,Reflexes&);
int sys_absences(const std::vector<Symop>&,Reflexes&);
float Rint(const std::vector<Symop>&, const Reflexes&, const Reflexes&);

int main(int argc, char* argv[])
{

std::vector<Reflection> reflexes, refl_merged;
std::vector<Symop> symops;
std::vector<Reflection>::iterator it;

if (argc < 2)
{

usage();
return -1;

}

if (read_reflections(argv[1], symops, reflexes))
{

std::cerr << "An error occurred while reading " << argv[1] << '\n';
return EXIT_FAILURE;

}

std::cout << "Standardising indices.\n";
for (it = reflexes.begin(); it != reflexes.end(); it++)
{

*it = it->max_equivalent(symops);
}

std::cout << "Sorting reflections.\n";
std::sort(reflexes.begin(), reflexes.end());

std::cout << "Merging symmetry equivalents.\n";
merge_reflections(reflexes, refl_merged);

std::cout << "Analysing systematic absences.\n";
sys_absences(symops, refl_merged);

std::cout << "Number of reflections: " << reflexes.size() << '\n';

std::cout << "After merging, there are " << refl_merged.size()
<< " unique reflections.\n";

std::cout << "R(int) = "
<< std::fixed << std::setprecision(4)
<< Rint(symops, reflexes, refl_merged) << '\n';

return 0;
}

// compare hkl indices of two reflections
bool Reflection::operator<(const Reflection& other)const
{

if (h_ < other.h_) return true;
else if (h_ > other.h_) return false;
else // h1 == h2
{

if (k_ < other.k_) return true;
else if (k_ > other.k_) return false;

Page 233

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

else // k1 == k2
{

if (l_ < other.l_) return true;
else if (l_ > other.l_) return false;

}
}

// h1 == h2 && k1 == k2 && l1 == l2
return false;

}

// finds the equivalent with maximal indices
Reflection Reflection::max_equivalent(std::vector<Symop>& symops) const
{

Reflection max_refl = *this;
std::vector<Symop>::const_iterator it;

for (it = symops.begin(); it != symops.end(); it++)
{

Reflection sym_refl = ((*this)* (*it));

if (max_refl < sym_refl)
{

max_refl = sym_refl;
}
else if (max_refl < -sym_refl)
{

max_refl = -sym_refl;
}

}
return max_refl;

}

Reflection Reflection::operator*(const Symop& symop) const
{

Reflection produkt(*this);

produkt.h_ = h_*symop.R[0][0] + k_*symop.R[1][0] + l_*symop.R[2][0];
produkt.k_ = h_*symop.R[0][1] + k_*symop.R[1][1] + l_*symop.R[2][1];
produkt.l_ = h_*symop.R[0][2] + k_*symop.R[1][2] + l_*symop.R[2][2];

return produkt;
}

/*
Reflection Reflection::operator*(int m) const
{
 Reflection r(*this);
 r.h_ = m*this->h_;
 r.k_ = m*this->k_;
 r.l_ = m*this->l_;

 return r;
}
*/

/**
 * returns a reflex with negated indices
 */
Reflection Reflection::operator-() const
{

Reflection neg(*this);
neg.h_ = -neg.h_;
neg.k_ = -neg.k_;
neg.l_ = -neg.l_;

return neg;

Page 234

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

}

std::ostream& operator<<(std::ostream& os, const Reflection& r)
{

os << std::fixed
<< std::setw(6) << r.h_
<< std::setw(6) << r.k_
<< std::setw(6) << r.l_
<< std::setw(10) << std::setprecision(3) << r.I_
<< std::setw(10) << std::setprecision(3) << r.sigI_;

return os;
}

void usage()
{

std::cout << "Usage: siena <filename>.\n";
}

/**
 * read a list of reflections from filename. Format must be:
 * line 1: title/comment
 * line 2: cell (a b c alpha beta gamma)
 * line 3: n symops (n = number of symops)
 * line 4 - 4+n: symops
 */
int read_reflections(char * filename,

std::vector<Symop>& symops, std::vector<Reflection>& refls)
{

std::ifstream input(filename);
std::string line; // for getline
int num_symops;

if (! input.is_open())
{

std::cout << "Could not open file " << filename << '\n';
return -1;

}

// skip first two lines
std::getline(input, line);
std::getline(input, line);

// get number of symops
std::getline(input, line);
std::istringstream num_symops_stream(line);

num_symops_stream >> num_symops;

// read in symops
for (int i = 0; i < num_symops; i++)
{

std::getline(input, line);
std::istringstream symop_stream(line);

Symop symop;
float tx, ty, tz;

for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)

symop_stream >> symop.R[j][k];
symop_stream >> tx >> ty >> tz;

symop.T[0] = int (0.5+12*tx);
symop.T[1] = int (0.5+12*ty);
symop.T[2] = int (0.5+12*tz);

Page 235

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

symops.push_back(symop);
}

// now read in reflections
refls.clear();

while (true)
{

int h, k, l;
float I, sigI;
input >> h >> k >> l >> I >> sigI;
if(input.eof()) break;
refls.push_back(Reflection(h,k,l,I,sigI));

/*
 std::istringstream refl_stream(line);

 refl_stream >> h >> k >> l >> I >> sigI;
 refls.push_back(Reflection(h,k,l,I,sigI));
 // get next line
 std::getline(input, line);
 */

}

return 0;
}

/**
 * Merges list of Reflections unmerged based on the list of symmetry operators
 * and puts the merged list into merged
 */
int merge_reflections(const Reflexes& unmerged, Reflexes& merged)
{

Reflexes::const_iterator it;

for (it = unmerged.begin(); it != unmerged.end(); it++)
{

double sumI = 0.0;
double sum_sigma = 0.0;
int num_sym_equiv = 0;

Reflection reference(*it);

while (reference == *it)
{

sumI += it->I();
sum_sigma += 1.0/(it->sigI() * it->sigI());
++num_sym_equiv;
++it;

}
merged.push_back(Reflection(reference.h(), reference.k(), reference.l(),

sumI/num_sym_equiv, 1.0/std::sqrt(sum_sigma)));
// rewind by one
--it;

}

return 0;
}

/**
 * checks merged for systematically absent reflections and prints I/sigI for
 * these reflections. They are removed from the list. Also counts number of
 * centric reflections
 * \param symops list of symmetry operators
 * \param merged list of merged reflexes
 */

Page 236

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

int sys_absences(const std::vector<Symop>& symops,Reflexes& merged)
{

Reflexes::iterator it_r;
std::vector<Symop>::const_iterator it_sym;
int num_sys_abs(0);
int centric_reflections(0);
bool is_centric;

for (it_r = merged.begin(); it_r != merged.end(); it_r++)
{

is_centric = false;
for (it_sym = symops.begin()+1; it_sym != symops.end(); it_sym++)
{

Reflection equiv = (*it_r)*(*it_sym);
if (equiv == (*it_r))
{

if ((!it_sym->T[0]) && (!it_sym->T[1]) && (!it_sym->T[2]))
{

continue;
}
else
{

int shift = (equiv.h() * it_sym->T[0] +
equiv.k() * it_sym->T[1] +
equiv.l() * it_sym->T[2]);

if (shift%12) // the remainder of division
{

it_r->set_absence();
std::cout << "Reflection " << *it_r

<< " syst. abs., I/sigI: "
<< std::fixed
<< std::setw(7)
<< std::setprecision(2)
<< it_r->I()/it_r->sigI()
<< '\n';

break;
}

}
}
else // indices are not identical
{

if (equiv == -(*it_r)) // check for centric reflex
{

is_centric = true;
}
continue;

}
}
if (is_centric) ++centric_reflections;

}

// Now let's remove absent reflections from the list
Reflexes::iterator it_remove;
it_remove = std::remove_if(merged.begin(), merged.end(), is_absent);
merged.erase(it_remove, merged.end());

std::cout << "Number of centric reflections: " << centric_reflections
<< std::endl;

return (num_sys_abs);
}

/**
 * Calculate R_int for list unmerged, <I> is taken from merged
 * \param symops list of symmetry operators
 * \param unmerged list of sorted but unmerged reflections
 * \param merged list of merged reflections (for <I>
 */

Page 237

D:\tmp\gs_tutorial_code\tim_gruene_cpp_soln_gms_tutorial\sortmerge.cpp

float Rint(const std::vector<Symop>& symops, const Reflexes& unmerged,
const Reflexes& merged)

{
Reflexes::const_iterator it;
Reflexes::const_iterator it_Imean;
double R_int (0.0);
double I_total(0.0);

it_Imean = merged.begin();

for (it = unmerged.begin(); it != unmerged.end(); it++)
{

int num_sym_equiv(0);
float Imean;
double r_int (0.0);
double i_total(0.0);

Reflection test(*it);

// we could also simply increase it_Imean after each while-loop
//it_Imean = std::find(it_Imean, merged.end(), test);
Imean = it_Imean->I();
if (! (*it_Imean == *it)) continue;
++it_Imean;

while (test == *it && it != unmerged.end())
{

r_int += std::abs(it->I() - Imean);
i_total += it->I();
++num_sym_equiv;
++it;

}
// only consider reflections with more than one symmetry mate
if (num_sym_equiv > 1)
{

R_int += r_int;
I_total += i_total;

}
// while loop went one too far
--it;

}

return (R_int / I_total);
}

Page 238

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\smerg.cc

#include "small_matrix.hpp"
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <valarray>

typedef Math::tMatrix<3> Matrix;
typedef Math::tVector<3> Vector;

class Reflection {
public:
Vector hkl;
float intensity;
float sigma;
float inverse_sqr_sigma; // accumulates 1/sqare(sigma)
float size; // and n, for equivalent reflections

bool centric;
bool absent;
float phase_shift;

Reflection (){
size=1; // n=1 for each unmerged reflection
centric = false;
absent = false;

}

// create a reflection from hkl, I and sigma etc
Reflection (Vector v, float i, float s, bool ab=false, bool cen=false,

float shft = 0.0) {
hkl = v;
intensity = i;
sigma = s;

size = 1.0;
inverse_sqr_sigma = 1.0 / (s * s);
absent = ab;
centric = cen;
phase_shift = shft;

}

// adds another reflection to this one if equivalent and return true
// if not equivalent, just return false
bool add(const Reflection & another_refl) {

if (this->hkl == another_refl.hkl) {
this->intensity += another_refl.intensity;
this->inverse_sqr_sigma += another_refl.inverse_sqr_sigma;
this->size += 1.0;

this->centric = (this->centric || another_refl.centric);
this->absent = (this->absent || another_refl.absent);

return true;
}
return false;

}

float merged_sigma() {
return 1.0 / (sqrt (inverse_sqr_sigma));

}

float merged_intensity() {
return intensity / size;

}

Page 239

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\smerg.cc

float intensity_over_sigma() {
return intensity / (size * sqrt (inverse_sqr_sigma));

}

}; // Reflection

// comparison of reflections
bool operator < (const Reflection& lhs, const Reflection& rhs) {

return (lhs.hkl < rhs.hkl);
}

// equality of reflections
bool operator == (const Reflection& lhs, const Reflection& rhs) {

return (lhs.hkl == rhs.hkl);
}

// pretty printing of reflections
std::ostream& operator<<(std::ostream& os, Reflection& ref) {

using namespace std;
os<<setiosflags(ios::fixed);
os<<setprecision(3);
os<<"Reflection "<<ref.hkl<<" I/sigma =

"<<setw(8)<<ref.intensity_over_sigma();
return os;

}

// A function object initialized with a lists of symops (rotational,
translational)
// Applied to each reflection,
// it translates each input hkl to the reduced hkl and returns it.
struct HKLReducer {

std::vector< Matrix > Rt; // transpose of rotational
std::vector< std::valarray<float> > Tr; // translational

Vector hkl_m;
int max;

HKLReducer(const std::vector< Matrix > &rot ,
const std::vector< std::valarray<float> >

&trans) {
Rt = rot;
Tr = trans;
max = (rot.size() * 2)-1;

}

// this is where the magic happens
Reflection operator() (const Reflection& ref) {

const Vector& prime_hkl = ref.hkl;
bool centric=false;
bool absent = false;
float phase_shift;

std::vector< Vector > list_of_equivalents;
list_of_equivalents.push_back(prime_hkl); // store prime HKL

and its friedel mate
list_of_equivalents.push_back(-prime_hkl);

// loop over rotational symops Rt_m and generate equivalent
hkl_m

for (int m=1; m< Rt.size(); ++m) {
hkl_m = Rt[m] * prime_hkl;
list_of_equivalents.push_back(hkl_m); // add hkl_m and its

friedel mate in
list_of_equivalents.push_back(-hkl_m); // to the list of

equivalents

Page 240

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\smerg.cc

// identify systematic absences
if (hkl_m == prime_hkl) {

phase_shift = (
(Tr[m])[0] * prime_hkl(0)

+ (Tr[m])[1] * prime_hkl(1)
+ (Tr[m])[2] * prime_hkl(2)

);
if (std::abs(phase_shift - round(phase_shift)) > 0.001)

absent = true;
} else if (hkl_m == -prime_hkl) {

centric = true;
}

}

// The maximum hkl in the list represents the bunch
sort(list_of_equivalents.begin(),list_of_equivalents.end());

return Reflection(list_of_equivalents[max],
ref.intensity, ref.sigma, absent, centric,

phase_shift);
}

};

class printHKL{
public:
int absent;
int centric;
int rest;

printHKL() {
rest = centric = absent = 0;

}

void operator() (Reflection &r){
if (r.absent) {

++absent;
std::cout<<r<<std::endl;

} else if (r.centric) {
++centric;
++rest;

} else ++rest;
}
void complete() {

std::cout<<std::endl<<rest<<" unique reflections of which "
<<centric<<" are centric"<<std::endl;

std::cout<<absent<<" systematic absences"<<std::endl;
}

~printHKL() { complete(); }

} my_printer;

int main () {
std::ifstream data_file ("in");
std::string junk_string;
int number_of_symops=6; // symops to read from file

std::vector< Matrix > list_of_Rt;
std::vector< std::valarray<float> > list_of_Tr;
Matrix Rt(false);

std::valarray<float> Tr(3);

// Skip header
for (int i=0 ; i < 3 ; ++i) getline (data_file,junk_string);

Page 241

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\smerg.cc

for (int i=0 ; i < number_of_symops ; ++i) {
// Read symops and store the transposes;
for (int k=0; k < 9; ++k) {

data_file >> Rt(k % 3, k / 3); // swap i and j to read in transpose
directly

}

data_file >>Tr[0]>>Tr[1]>>Tr[2];
list_of_Rt.push_back(Rt);

list_of_Tr.push_back(Tr);
}

// let the reducer know which symops to use.
HKLReducer my_hkl_reducer(list_of_Rt, list_of_Tr);

std::vector<Reflection> data_list;
Vector tmp_hkl;
float tmp_i, tmp_s;

while (!data_file.eof()) {

// read in line of data: h, k, l, int, sigma
data_file>>tmp_hkl(0)>>tmp_hkl(1)>>tmp_hkl(2)>>tmp_i>>tmp_s;

// transform Reflection to asym unit and store in data_list
data_list.push_back(my_hkl_reducer(Reflection(tmp_hkl, tmp_i, tmp_s)

));
}

sort(data_list.begin(), data_list.end());

// loop through data_list, add up multiple entries and transfer into new
// vector

std::vector<Reflection> merged_data;
merged_data.push_back(data_list[0]); // store first element before loop
int my_pos = 0;
for(int i=1; i < data_list.size(); ++i) {

if (! merged_data[my_pos].add(data_list[i])) {
++my_pos;
merged_data.push_back(data_list[i]);

}
}

for_each(merged_data.begin(), merged_data.end(), my_printer);
my_printer.complete();

}

/*
// overload mult operator for multiplying matrix and vector
const Vector operator * (const Matrix& lhs,const Vector& rhs) {
 Vector tmp;
 for (int i = 0; i < 3; ++i) {
 tmp(i) = 0;
 for (int j = 0; j < 3; ++j)
 tmp(i) += static_cast<int>(lhs(i,j) * rhs(j));
 }
 return tmp;
}

// a comparison operator is needed to sort a container of Vectors
bool operator < (const Vector& lhs, const Vector& rhs) {
 if (lhs(0) < rhs(0)) {
 return true;
 } else if (lhs(0) == rhs(0)) {
 if (lhs(1) < rhs(1)) {
 return true;

Page 242

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\smerg.cc

 } else if (lhs(1) == rhs(1)) {
 if (lhs(2) < rhs(2)) {
 return true;
 } else return false;
 } else return false;
 } else return false;
}

// test element-wise equality of vectors
bool operator == (const Vector& lhs, const Vector& rhs) {
 if (lhs(0) == rhs(0))
 if (lhs(1) == rhs(1))
 if (lhs(2) == rhs(2))
 return true;
 return false;
}
*/

Page 243

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\small_matrix.hpp

#ifndef tMatrix_H
#define tMatrix_H

#include <ostream>
#include <iomanip>
#include <limits>

namespace Math {

template <class T>
inline T sign(T a, T b) {
return ((b) >= 0.0 ? fabs(a) : -fabs(a));
}

template <class T>
inline T sqr(T a) {
return (a * a);
}

template <class T>
inline void swap(T& a,T& b) {

T y = a;
a = b;
b = y;

}

template <int order>
class tMatrix {

protected:
float mVal[order][order];
int pos; // for operator , use only

public:
static const tMatrix<order> identity() {

tMatrix<order> a;
for (int i = 0; i < order; ++i)

for (int j = 0; j < order; ++j)
a(i,j) = (i==j) ? 1 : 0;

return a;
}

tMatrix<order>(bool initialize=true) {
if (initialize) reset();

}
float& operator()(int i, int j) { return mVal[i][j]; }
const float& operator()(int i, int j) const { return

mVal[i][j]; }
tMatrix<order>& operator=(float d) {

int i = pos / order;
int j = pos % order;
mVal[i][j] = d;
pos++;
return *this;

}

const tMatrix<order> transpose(){
tMatrix<order> b;

for (int i = 0; i < order; ++i)
for (int j = i; j < order; ++j) {

b(j,i)=mVal[i][j];
b(i,j)=mVal[j][i];

}
return b;

}

void reset() {
for (int i = 0; i < order; ++i)

Page 244

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\small_matrix.hpp

for (int j = 0; j < order; ++j)
(*this)(i,j) = 0.0;

pos = 0;
}

};

template <int order>
class tVector {

public:
int mVal[order];
int pos; // for operator , use only

float shift;
bool centric;
bool absent;

tVector<order>(bool initialize=true) {
if (initialize) reset();
absent = false;
centric = false;

}

int& operator()(int i) { return mVal[i]; }
const int& operator()(int i) const { return mVal[i]; }
void reset() {
for (int i = 0; i < order; ++i)

(*this)(i) = 0;
pos = 0;

}

const tVector<order> operator-() const {
tVector<order> tmp;

for (int i = 0; i < order; ++i)
tmp(i) = -mVal[i];

return tmp;
}

};

template <int order>
std::ostream& operator<<(std::ostream& os, const tMatrix<order>& m) {

using namespace std;
os<<setiosflags(ios::fixed);
os<<setprecision(3);
os<<order<<" x "<<order<<"=\n";
for(int i=0;i<order;++i) {

os<<"[";
for(int j=0;j<order;++j)

os<<setw(8)<<m(i,j)<<",";
os<<"]\n";

}
return os;

}

template <int order>
std::ostream& operator<<(std::ostream& os, const tVector<order>& m) {

using namespace std;
os<<setiosflags(ios::fixed);
os<<setprecision(3);
for(int j=0;j<order;++j){

os<<setw(5)<<m(j);
}
return os;

}

template <int order>

Page 245

D:\tmp\gs_tutorial_code\michel_fodje_cpp_soln_gms_tutorial\small_matrix.hpp

const tVector<order> operator * (const tMatrix<order>& lhs,const
tVector<order>& rhs) {

tVector<order> tmp;
for (int i = 0; i < order; ++i) {

tmp(i) = 0;
for (int j = 0; j < order; ++j)

tmp(i) += static_cast<int>(lhs(i,j) * rhs(j));
}
return tmp;

}

bool operator < (const tVector<3>& lhs, const tVector<3>& rhs) {
if (lhs(0) < rhs(0)) {

return true;
} else if (lhs(0) == rhs(0)) {

if (lhs(1) < rhs(1)) {
return true;

} else if (lhs(1) == rhs(1)) {
if (lhs(2) < rhs(2)) {

return true;
} else return false;

} else return false;
} else return false;

}

bool operator == (const tVector<3>& lhs, const tVector<3>& rhs) {
if (lhs(0) == rhs(0))

if (lhs(1) == rhs(1))
if (lhs(2) == rhs(2))

return true;
return false;

}

} // Math

#endif

Page 246

D:\tmp\gs_tutorial_code\juan_rc_f95_soln_gms_tutorial\data_red.f95

Program DataRed
use Crystallographic_Symmetry, only: Space_Group_Type, Set_SpaceGroup,

Write_SpaceGroup
use String_Utilities, only: u_case
use Reflections_Utilities, only: hkl_absent, hkl_equiv, hkl_s
use Math_gen, only: sort, asind
use Crystal_types, only: Crystal_Cell_Type, Set_Crystal_Cell,

Write_Crystal_Cell

implicit none

integer, parameter :: nref=400000, inp=1, ihkl=3, irej=4, iin=10,
i_scr=99

integer, dimension(3,nref) :: h
integer, dimension(3) :: h1,h2
real, dimension(nref) :: intens, sigma, twtheta, intav, sigmav
integer, dimension(nref) :: itreat, iord, nequv, ini, fin, warn
real, dimension(48) :: weight
character(len=256) :: filein, fileout, filecon
character(len=132) :: line, cmdline, title
character(len=20) :: spg_symb
character(len=6) :: key
real, dimension(3) :: cel,ang
type (Space_Group_Type) :: grp_espacial
type (Crystal_Cell_Type) :: celda
character(len=*),parameter,dimension(0:1) :: warn_mess=(/"

 ", &
" <- Dubious

reflection"/)
Logical :: Friedel=.true., cell_given=.false., wave_given=.false.
real :: sig, suma, suman, Rint, &

wavel,sigg, delt, warning, t_start, t_end
integer :: i,j,k, ier, nr=0, ns, rej, len_cmdline, &

lenf, nin, cent
integer :: iargc, narg

!----------------------------- Treating the command line
narg=iargc()
len_cmdline=0
if(narg > 0) then

call getarg(1,cmdline)
len_cmdline=len_trim(cmdline)

end if

if(len_cmdline /= 0) then
lenf=index(cmdline," ")-1
filecon=cmdline(1:lenf)//".red"
open(unit=iin,file=filecon,status="old",iostat=ier,action="read")
if(ier/=0) then
write(unit=*,fmt="(3a)") " => File: ", trim(filecon)," not found!"
stop

end if
read(unit=iin,fmt="(a)") title

else
write(unit=*,fmt="(a)") " => Please invoke the program as: 'data_red

myfile' where myfile.res is the input file"
stop

end if
!----------------------------- End Treating the command line

call cpu_time(t_start)
write(unit=*,fmt="(a)") " ==============================="
write(unit=*,fmt="(a)") " DATA REDUCTION PROGRAM: DataRed"
write(unit=*,fmt="(a)") " ==============================="
write(unit=*,fmt="(a)") " "
twtheta(:) =0.0

Page 247

D:\tmp\gs_tutorial_code\juan_rc_f95_soln_gms_tutorial\data_red.f95

!----------------------------- Start reading the input command file

read(unit=iin,fmt="(a,a)") key, filein
filein=adjustl(filein)
write(unit=*,fmt="(a,a)") " => Name of the input file: ", trim(filein)
read(unit=iin,fmt="(a,a)") key, fileout
fileout=adjustl(fileout)
write(unit=*,fmt="(a,a)") " => Code of the output file: ", trim(fileout)
warning=0.30 ! 30% error for warning equivalent reflections

do
read(unit=iin,fmt="(a)", iostat=ier) line
if(ier /= 0) exit
line=adjustl(line)
if(line(1:1) == "!") cycle

key=u_case(line(1:5))

Select Case(key(1:5))

Case("SPGR ")
spg_symb=adjustl(line(6:))

Case("NFRDL")
Friedel=.false.

Case("CELL ")
read(unit=line(7:),fmt=*) cel, ang
call Set_Crystal_Cell(cel,ang,Celda)
cell_given=.true.

Case("WAVE ")
read(unit=line(7:),fmt=*) wavel
wave_given=.true.

End Select

end do

! check that all is O.K.
if(.not. cell_given) then
write(unit=*,fmt=*)" => UNIT CELL not GIVEN! Modify your input file."
stop

end if
if(.not. wave_given) then
write(unit=*,fmt=*)" => WAVELENGTH not GIVEN! Modify your input file."
stop

end if

!----------------------------- End reading the input command file

!----------------------------- Start reading the INTENSITY input file
open(unit=inp, file=filein, status="old", iostat=ier,action="read")
nr=0

!Reading reflections and calculate 2theta

do
nr=nr+1
read(unit=inp,fmt=*,iostat=ier) h1(:), intens(nr), sigma(nr)
if(ier /= 0) then
nr=nr-1
exit
end if

Page 248

D:\tmp\gs_tutorial_code\juan_rc_f95_soln_gms_tutorial\data_red.f95

twtheta(nr)=2.0* ASIND(hkl_s(h1,celda)*WAVEL)
if(twtheta(nr) < 0.0001) ier=1
h(:,nr)=h1(:)
if(sigma (nr) <= 0.0) sigma(nr)=0.004

end do

write(unit=*,fmt="(a,i6)") " => Total number of reflections read: ", nr

!----------------------------- End reading the INTENSITY input file

!
! Order the reflections by ascending twtheta
!

call sort(twtheta,nr,iord)

! Non-elegant way of ordering things
open(unit=i_scr,status="scratch",form="unformatted",action="readwrite")
do i=1,nr
k=iord(i)
write(unit=i_scr) h(:,k), intens(k), sigma(k), twtheta(k)

end do
rewind (unit=i_scr)
do k=1,nr
read(unit=i_scr) h(:,k), intens(k), sigma(k), twtheta(k)

end do
close(unit=i_scr)
write(unit=*,fmt="(a)")" => Reflections ordered by ascending two-theta

O.K.!"
!
! Set symmetry
!

call Set_SpaceGroup(spg_symb,grp_espacial)

!
! Opening file for rejected reflections
!

open(unit=irej, file=trim(fileout)//".rej", status="replace",action="write")
write(unit=irej,fmt="(a)") " REJECTED REFLECTIONS (Symmetry

forbidden)"
write(unit=irej,fmt="(a)") " h k l Intensity Sigma TwoTheta

 I/sig"
write(unit=irej,fmt="(a)") "

==="
!
! First loop over reflections
!

nin=0
itreat(:)=0
ini(:)=0
fin(:)=0

rej=0

do i=1,nr !Loop over all measured reflections

if(itreat(i) == 0) then !If not yet treated do the following
h1(:)=h(:,i)
if(hkl_absent(h1,grp_espacial)) then !reject absent reflections
rej=rej+1
write(unit=irej,fmt="(3i4,2f12.3,f10.4,f10.2)") h1(:),intens(i),

sigma(i),twtheta(i), intens(i)/sigma(i)
cycle

end if

nin=nin+1 !update the number of independent reflections
itreat(i)=i !Make this reflection treated
sig =1.0/sigma(i)**2

Page 249

D:\tmp\gs_tutorial_code\juan_rc_f95_soln_gms_tutorial\data_red.f95

ini(nin)=i !put pointers for initial and final equivalent reflections
fin(nin)=i
nequv(nin)=1 !One reflection for the moment equivalent to itself

do j=i+1,nr !look for equivalent reflections to the current (i)
in the list

if(abs(twtheta(i)-twtheta(j)) > 0.001) exit
h2=h(:,j)
if(hkl_equiv(h1,h2,grp_espacial,Friedel)) then ! if h1 eqv h2
itreat(j) = i ! add h2 to the

list equivalent to i
nequv(nin)=nequv(nin)+1 ! update the

number of equivalents
sig=sig + 1.0/sigma(j)**2
fin(nin)=j
end if

end do

ns=0
do j=ini(nin),fin(nin)
if(itreat(j) == i) then
ns=ns+1
weight(ns)=(1.0/sigma(j)**2)/sig

end if
end do

suma=0.0
ns=0
do j=ini(nin),fin(nin)
if(itreat(j) == i) then
ns=ns+1
suma=suma+weight(ns)*intens(j)

end if
end do

intav(nin)=suma

suma=0.0
ns=0
do j=ini(nin),fin(nin)
if(itreat(j) == i) then
ns=ns+1
delt= intav(nin)-intens(j)
if(abs(delt)/intav(nin) > warning) warn(nin)=1
suma=suma+weight(ns)*delt*delt

end if
end do

sigmav(nin)=sqrt(suma)
sigg=SUM(sigma(ini(nin):fin(nin)))/max(1.0,real(fin(nin)-ini(nin)))
if(sigmav(nin) < sigg) sigmav(nin) = sigg

end if !itreat
end do

!
! Second loop over reflections to calculate R-int
!

ns=0
suma =0.0
suman=0.0
do i=1,nin
k=ini(i)
if(nequv(i) < 2) cycle
sig=0.0
do j=ini(i),fin(i)
if(itreat(j) == k) then
sig=sig+1.0/sigma(j)**2

Page 250

D:\tmp\gs_tutorial_code\juan_rc_f95_soln_gms_tutorial\data_red.f95

end if
end do
sig=1.0/sig
do j=ini(i),fin(i)
if(itreat(j) == k) then
ns=ns+1
suma=suma+abs(intav(i)-intens(j))
suman=suman+intens(j)

end if
end do

end do
Rint = 100.0*suma/max(1.0,suman)

!
!--- Writing the list of rejected and merged reflections
!

open(unit=ihkl, file=trim(fileout)//".int", status="replace",action="write")
write(unit=ihkl,fmt="(a)") title
write(unit=ihkl,fmt="(a)") "(3i4,2F12.3,i5,4f8.2)"
write(unit=ihkl,fmt="(f9.5,a)") wavel," 0 0"
cent=0
do i=1,nin
j=ini(i)
h1(:)= h(:,j)
if(hkl_equiv(h1,-h1,grp_espacial,.false.)) then

cent=cent+1 !calculate the number of acentric reflections
write(unit=ihkl,fmt="(3i4,2f12.3,i5,4f8.2,a)") h1(:),intav(i),sigmav(i),

1,0.0,0.0,0.0,0.0, warn_mess(warn(i))//" Centric"
else

write(unit=ihkl,fmt="(3i4,2f12.3,i5,4f8.2,a)") h1(:),intav(i),sigmav(i),
1,0.0,0.0,0.0,0.0, warn_mess(warn(i))

end if
end do

!--------- All calculations have been done!

write(unit=*,fmt="(/,a,i6)")" => Number of reflections read :
", nr

write(unit=*,fmt="(a,i6)") " => Number of valid independent reflections:
", nin

write(unit=*,fmt="(a,i6)") " => Number of Centric reflections:
", cent

write(unit=*,fmt="(a,i6)") " => Number of rejected (absences) reflections:
", rej

write(unit=*,fmt="(a,f6.2)")" => R-internal for equivalent reflections (%):
", Rint

write(unit=*,fmt="(a)") " => Program finished O.K.!, look in output
files!"

write(unit=*,fmt="(a,a)") " General Output file: ",
trim(fileout)//".out"

write(unit=*,fmt="(a,a)") " Independent reflections file: ",
trim(fileout)//".int"

write(unit=*,fmt="(a,a)") " Rejected reflections file: ",
trim(fileout)//".rej"

write(unit=*,fmt="(a)") " "
call cpu_time(t_end)
write(unit=*,fmt="(a,f10.2,a)") " CPU-Time: ", t_end-t_start," seconds"
stop
End Program DataRed

Page 251

package reflectionSort;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

public class Main {

public static void main(String[] args) {
long startTime = System.currentTimeMillis();

 ArrayList<Reflection> reflections = new ArrayList<Reflection>();
 ArrayList<SymmetryOperator> symmetryOperators = new ArrayList<SymmetryOperator>();

// Read symmetry operators and reflections
try {

 BufferedReader in = new BufferedReader(new FileReader("in"));
 DataFileReader reader = new DataFileReader(in);
 reader.readData(symmetryOperators, reflections);
 } catch (FileNotFoundException e) {
 e.printStackTrace();

return;
 } catch (IOException e) {
 e.printStackTrace();

return;
 }

long readTime = System.currentTimeMillis();

// Standardize reflections
for (Reflection reflection : reflections) {

 reflection.standardizeHkl(symmetryOperators);
 }

long standardizeTime = System.currentTimeMillis();

// Sort reflections
 Collections.sort(reflections);

long sortTime = System.currentTimeMillis();

// Merge reflections, remove systematic absences, and count centric reflections
 LinkedList<Reflection> uniqueReflections = new LinkedList<Reflection>();
 List<Reflection> systematicallyAbsentReflections;

double rint = ReflectionAnalyzer.mergeUniqueReflections(reflections, uniqueReflections, new SimpleMergeFunction());

 systematicallyAbsentReflections = ReflectionAnalyzer.removeSystematicAbsences(uniqueReflections, symmetryOperators);
int centricReflections = ReflectionAnalyzer.countCentricReflections(uniqueReflections, symmetryOperators);

long mergeTime = System.currentTimeMillis();

// Print list of systematically absent reflections
for (Reflection reflection : systematicallyAbsentReflections) {

 System.out.println(String.format("Systematically absent: %3d %3d %3d I/sigma = %5.2f", reflection.getHkl().x,
 reflection.getHkl().y, reflection.getHkl().z, reflection.getI() / reflection.getSigI()));
 }

// Print statistics
 System.out.println(reflections.size() + " total reflections");
 System.out.println(systematicallyAbsentReflections.size() + " systematically absent reflections");
 System.out.println(uniqueReflections.size() + " unique reflections");
 System.out.println(centricReflections + " centric reflections");
 System.out.println("R(int) = " + String.format("%5.4f", rint));

long outputTime = System.currentTimeMillis();

boolean printTiming = true;
if (printTiming) {

 System.out.println(String.format("%4.2f seconds reading", (readTime - startTime) / 1000.0));
 System.out.println(String.format("%4.2f seconds standardizing", (standardizeTime - readTime) / 1000.0));
 System.out.println(String.format("%4.2f seconds sorting", (sortTime - standardizeTime) / 1000.0));
 System.out.println(String.format("%4.2f seconds merging", (mergeTime - sortTime) / 1000.0));
 System.out.println(String.format("%4.2f seconds printing", (outputTime - mergeTime) / 1000.0));
 System.out.println(String.format("%4.2f seconds total", (outputTime - startTime) / 1000.0));
 }
 }
}

Page 252

package reflectionSort;

import java.io.BufferedReader;
import java.io.IOException;
import java.util.List;

public class DataFileReader {

private final BufferedReader input;

public DataFileReader(BufferedReader in) {
this.input = in;

 }

public void readData(List<SymmetryOperator> symmetryOperators, List<Reflection> reflections) throws IOException {
// Ignore first two lines of input

 String line = input.readLine();
 line = input.readLine();

// Read line which starts with an integer indicating the number of
// symmetry operators

 line = input.readLine();
 String[] tokens = line.split("\\s");

int numberOfSymmetryOperators = Integer.parseInt(tokens[0]);
// Read symmetry opertors in the format:
// r11 r12 r13 r21 r22 r23 r31 r32 r33 t1 t2 t3
int[] matrix = new int[9];
float[] vector = new float[3];
for (int i = 0; i < numberOfSymmetryOperators; ++i) {

 line = input.readLine();
 tokens = line.split("\\s");

for (int j = 0; j < matrix.length; ++j) {
 matrix[j] = Integer.parseInt(tokens[j]);
 }

for (int j = 0; j < vector.length; ++j) {
 vector[j] = Float.parseFloat(tokens[9 + j]);
 }
 symmetryOperators.add(new SymmetryOperator(matrix, vector));
 }

// Read read reflections in the format:
// h k l I sigI

 line = input.readLine();
while (line != null) {

 tokens = line.split("\\s");
 Reflection r = new Reflection(Integer.parseInt(tokens[0]), Integer.parseInt(tokens[1]), Integer
 .parseInt(tokens[2]), Double.parseDouble(tokens[3]), Double.parseDouble(tokens[4]));
 reflections.add(r);

 line = input.readLine();
 }
 }
}

Page 253

package reflectionSort;

public class SymmetryOperator {

int[] reciprocalMatrix = new int[9];
float[] vector = new float[3];

public SymmetryOperator(int[] matrix, float[] vector) {
reciprocalMatrix[0] = matrix[0];
reciprocalMatrix[1] = matrix[3];
reciprocalMatrix[2] = matrix[6];
reciprocalMatrix[3] = matrix[1];
reciprocalMatrix[4] = matrix[4];
reciprocalMatrix[5] = matrix[7];
reciprocalMatrix[6] = matrix[2];
reciprocalMatrix[7] = matrix[5];
reciprocalMatrix[8] = matrix[8];
this.vector[0] = vector[0];
this.vector[1] = vector[1];
this.vector[2] = vector[2];

 }

public void applyReciprocalRotation(Tuple3i hkl, Tuple3i transformedHkl) {
 transformedHkl.x = reciprocalMatrix[0]*hkl.x + reciprocalMatrix[1]*hkl.y + reciprocalMatrix[2]*hkl.z;
 transformedHkl.y = reciprocalMatrix[3]*hkl.x + reciprocalMatrix[4]*hkl.y + reciprocalMatrix[5]*hkl.z;
 transformedHkl.z = reciprocalMatrix[6]*hkl.x + reciprocalMatrix[7]*hkl.y + reciprocalMatrix[8]*hkl.z;
 }

public float phaseShift(Tuple3i hkl) {
return hkl.z*vector[0] + hkl.y*vector[1] + hkl.z*vector[2];

 }

}

package reflectionSort;

import java.util.List;

class Reflection implements Comparable<Reflection>, Cloneable {
 MillerIndex hkl;

double i;

double sigI;

protected Reflection() {
hkl = new MillerIndex();

 }

 Reflection(int h, int k, int l, double i, double sigI) {
this.hkl = new MillerIndex(h, k, l);
this.i = i;
this.sigI = sigI;

 }

public Object clone() {
 Reflection r = new Reflection();
 r.hkl = new MillerIndex(hkl);

return r;
 }

public String toString() {
return String.format("%4d %4d %4d %6.2f %6.2f", hkl.x, hkl.y, hkl.z, i, sigI);

 }

void standardizeHkl(List<SymmetryOperator> symmetryOperators) {
 MillerIndex transformedHkl = new MillerIndex();
 applySymmetryOperators(symmetryOperators, transformedHkl);
 }

private void applySymmetryOperators(List<SymmetryOperator> symmetryOperators, MillerIndex transformedHkl) {
for (SymmetryOperator symmetryOperator : symmetryOperators) {

 symmetryOperator.applyReciprocalRotation(hkl, transformedHkl);
 setIfStandardHkl(transformedHkl);
 transformedHkl.negate();
 setIfStandardHkl(transformedHkl);
 }
 }

Page 254

private void setIfStandardHkl(MillerIndex transformedHkl) {
if (transformedHkl.z > hkl.z || (transformedHkl.z == hkl.z && transformedHkl.y > hkl.y)

 || (transformedHkl.z == hkl.z && transformedHkl.y == hkl.y && transformedHkl.x > hkl.x)) {
hkl.set(transformedHkl);

 }
 }

public MillerIndex getHkl() {
return hkl;

 }

public double getI() {
return i;

 }

public double getSigI() {
return sigI;

 }

@Override
public boolean equals(Object obj) {
return hkl.equals(((Reflection) obj).hkl);

 }

@Override
public int hashCode() {
return hkl.hashCode();

 }

public int compareTo(Reflection other) {
return hkl.compareTo(other.hkl);

 }

public void setI(double i) {
this.i = i;

 }

public void setSigI(double sigI) {
this.sigI = sigI;

 }

}

package reflectionSort;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

public class ReflectionAnalyzer {

public static double mergeUniqueReflections(List<Reflection> reflectionsList,
 List<Reflection> uniqueReflectionsList, SimpleMergeFunction mergeFunction) {

 List<Reflection> duplicateReflections = new ArrayList<Reflection>();
double rIntSumIDeviation = 0.0;
double rIntSumI = 0.0;

// Merge duplicate reflections and determine systematic absences
 PeekableIterator iter = new PeekableIterator(reflectionsList.iterator());

do {
 Reflection reflection = (Reflection) iter.next();
 duplicateReflections.clear();
 duplicateReflections.add(reflection);

while (iter.peek() != null && iter.peek().equals(reflection)) {
 Reflection duplicateReflection = (Reflection) iter.next();
 duplicateReflections.add(duplicateReflection);
 }

if (duplicateReflections.size() > 1) {
 Reflection mergedReflection = mergeFunction.merge(duplicateReflections);

for (Reflection duplicateReflection : duplicateReflections) {
 rIntSumIDeviation += Math.abs(duplicateReflection.getI() - mergedReflection.getI());
 rIntSumI += mergedReflection.getI();
 }
 uniqueReflectionsList.add(mergedReflection);
 } else {
 uniqueReflectionsList.add(reflection);
 }
 } while (iter.hasNext());

return rIntSumIDeviation / rIntSumI;
 }

public static List<Reflection> removeSystematicAbsences(List<Reflection> uniqueReflectionsList, List<SymmetryOperator>
 symmetryOperators) {
 ArrayList<Reflection> systemmaticallyAbsentReflections = new ArrayList<Reflection>();

for (Iterator iter = uniqueReflectionsList.iterator(); iter.hasNext();) {
 Reflection reflection = (Reflection) iter.next();

Page 255

if (MillerIndex.isSystematicallyAbsent(reflection.getHkl(), symmetryOperators)) {
 iter.remove();
 systemmaticallyAbsentReflections.add(reflection);
 }
 }

return systemmaticallyAbsentReflections;
 }

public static int countCentricReflections(Collection<Reflection> uniqueReflectionsList, List<SymmetryOperator>
 symmetryOperators) {

int i = 0;
for (Reflection reflection : uniqueReflectionsList) {
if (MillerIndex.isCentrosymmetric(reflection.getHkl(), symmetryOperators)) {

 ++i;
 }
 }

return i;
 }

}

package reflectionSort;

import java.util.List;

class SimpleMergeFunction {

public Reflection merge(List<Reflection> reflections) {
double sumI = 0.0;
double sumSigI = 0.0;
for (Reflection reflection : reflections) {

 sumI += reflection.getI();
 sumSigI += 1.0 / (reflection.getSigI() * reflection.getSigI());
 }

double i = sumI / reflections.size();
double sigI = 1.0 / Math.sqrt(sumSigI);

 Reflection mergedReflection = (Reflection) reflections.get(0).clone();
 mergedReflection.setI(i);
 mergedReflection.setSigI(sigI);

return mergedReflection;
 }

}

Page 256

package reflectionSort;

import java.util.List;

public class MillerIndex extends Tuple3i {

public MillerIndex() {
super();

 }

public MillerIndex(MillerIndex hkl) {
super(hkl);

 }

public MillerIndex(int h, int k, int l) {
super(h, k, l);

 }

void standardize(List<SymmetryOperator> symmetryOperators) {
 MillerIndex transformedHkl = new MillerIndex();

for (SymmetryOperator symmetryOperator : symmetryOperators) {
 symmetryOperator.applyReciprocalRotation(this, transformedHkl);
 setIfStandard(transformedHkl);
 transformedHkl.negate();
 setIfStandard(transformedHkl);
 }
 }

private void setIfStandard(MillerIndex transformedHkl) {
if (transformedHkl.z > z || (transformedHkl.z == z && transformedHkl.y > y)

 || (transformedHkl.z == z && transformedHkl.y == y && transformedHkl.z > z)) {
 set(transformedHkl);
 }
 }

public static boolean isSystematicallyAbsent(MillerIndex hkl, List<SymmetryOperator> symmetryOperators) {
for (SymmetryOperator symmetryOperator : symmetryOperators) {
if (isSymmetric(hkl, symmetryOperator)) {
double n = symmetryOperator.phaseShift(hkl);
if (Math.abs(Math.rint(n) - n) > 0.001) {
return true;

 }
 }
 }

return false;

 }

public static boolean isCentrosymmetric(MillerIndex hkl, List<SymmetryOperator> symmetryOperators) {
for (SymmetryOperator symmetryOperator : symmetryOperators) {
if (isCentrosymmetric(hkl, symmetryOperator)) {
return true;

 }
 }

return false;
 }

static boolean isSymmetric(MillerIndex hkl, SymmetryOperator symmetryOperator) {
 MillerIndex transformedHkl = new MillerIndex();
 symmetryOperator.applyReciprocalRotation(hkl, transformedHkl);

return hkl.equals(transformedHkl);
 }

static boolean isCentrosymmetric(MillerIndex hkl, SymmetryOperator symmetryOperator) {
 MillerIndex transformedHkl = new MillerIndex();
 symmetryOperator.applyReciprocalRotation(hkl, transformedHkl);
 transformedHkl.negate();

return transformedHkl.equals(hkl);
 }
}

Page 257

package reflectionSort;

public class Tuple3i implements Comparable<Tuple3i> {

public int x;
public int y;
public int z;

public Tuple3i() {
 }

public Tuple3i(Tuple3i t) {
this(t.x, t.y, t.z);

 }

public Tuple3i(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;

 }

public Tuple3i(int[] xyz) {
this(xyz[0], xyz[1], xyz[2]);

 }

public String toString() {
return String.format("%d %d %d", x, y, z);

 }

public int hashCode() {
int result = x;

 result += 29 * y;
 result += 29 * z;

return result;
 }

public boolean equals(Object o) {
return compareTo((MillerIndex) o) == 0;

 }

public int compareTo(Tuple3i o) {
int result = z - o.z;
if (result == 0) {

 result = y - o.y;
if (result == 0) {

 result = x - o.x;

 }
 }

return result;
 }

public void negate() {
x *= -1;
y *= -1;
z *= -1;

 }

public void set(Tuple3i t) {
 set(t.x, t.y, t.z);
 }

public void set(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;

 }

}

Page 258

package reflectionSort;

import java.util.Iterator;

public class PeekableIterator implements Iterator {

 Object next;
 Object peek;
 Iterator iter;

 PeekableIterator(Iterator iter) {
this.iter = iter;
if (iter.hasNext()) {
peek = iter.next();

 }
 }

public boolean hasNext() {
return peek != null;

 }

public Object next() {
next = peek;
if (iter.hasNext()) {
peek = iter.next();

 } else {
peek = null;

 }
return next;

 }

public void remove() {
throw new UnsupportedOperationException();

 }

public Object peek() {
return peek;

 }

}

Page 259

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

program sortmerge

implicit none

integer::n_reflection,n_rejected,n_unique,n_centric,n_new_unique
real::rint,fob,sf,temp
integer::rots_symm(3,3,6)
real::tran_symm(3,6)
integer::ind_h,ind_k,ind_l,temp_h,temp_k,temp_l
integer::index_h(400000),index_k(400000),index_l(400000)
real::fobs(400000),sigmaf(400000)
integer::flag,centric,new_h,new_k,new_l,n_symm,centric_flag

integer::a,b

C---C
C-- Read reflection file --C
C---C

centric = 0
n_reflection = 1
n_rejected = 0
rint = 0
n_unique = 0
n_symm=6
n_centric = 0

open(1,file='in')
read(1,*)
read(1,*)
read(1,*)

do a = 1 , n_symm
read(1,*)rots_symm(1,1,a),rots_symm(1,2,a),rots_symm(1,3,a),

+ rots_symm(2,1,a),rots_symm(2,2,a),rots_symm(2,3,a),
+ rots_symm(3,1,a),rots_symm(3,2,a),rots_symm(3,3,a),
+ tran_symm(1,a),tran_symm(2,a),tran_symm(3,a)
end do

do
read (1 , * , end = 999) ind_h , ind_k , ind_l , fob , sf

C---C
C-- Reorder indices to a standard form: --C
C-- --C
C-- l positive, l=0 => k positive, l=k=0 => h positive --C
C---C

new_h = ind_h
new_k = ind_k
new_l = ind_l

do a = 1 , n_symm

temp_h = ind_h * rots_symm(1,1,a) + ind_k * rots_symm(2,1,a)
+ + ind_l * rots_symm(3,1,a)

temp_k = ind_h * rots_symm(1,2,a) + ind_k * rots_symm(2,2,a)
+ + ind_l * rots_symm(3,2,a)

temp_l = ind_h * rots_symm(1,3,a) + ind_k * rots_symm(2,3,a)
+ + ind_l * rots_symm(3,3,a)

if ((temp_l .LT. 0) .OR. (temp_l .EQ. 0 .AND. temp_k .LT. 0)
+ .OR. (temp_l .EQ. 0 .AND. temp_k .EQ. 0 .AND. temp_h
+ .LT. 0)) then

temp_h = -temp_h
temp_k = -temp_k
temp_l = -temp_l

Page 260

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

end if

if ((temp_l .GT. new_l) .OR. (temp_l .EQ. new_l .AND. temp_k
+ .GT. new_k) .OR. (temp_l .EQ. new_l .AND. temp_k .EQ. new_k
+ .AND. temp_h .GT. new_h)) then

new_h = temp_h
new_k = temp_k
new_l = temp_l

end if
end do

index_h(n_reflection) = new_h
index_k(n_reflection) = new_k
index_l(n_reflection) = new_l

fobs(n_reflection) = fob
sigmaf(n_reflection) = sf

n_reflection = n_reflection + 1

end do

999 continue

n_reflection = n_reflection - 1

C---C
C-- Processing the data. --C
C---C

call sort_hkl(n_reflection,index_l,index_k,index_h,fobs,sigmaf)

call calculate_rint_value(n_reflection,index_h,index_k,index_l,
+ fobs,sigmaf,rint)

call merge_equivalent_reflections(n_reflection,index_h,index_k,
+ index_l,fobs,sigmaf,n_unique)

C---C
C-- Identify a reflection, that should be systematically absent and count --C
C-- the number of centric reflections. --C
C---C

n_new_unique = 0
centric_flag = 0
outer: do b = 1 , n_unique
do a = 2 , n_symm

temp_h = index_h(b) * rots_symm(1,1,a)
+ + index_k(b) * rots_symm(2,1,a)
+ + index_l(b) * rots_symm(3,1,a)

temp_k = index_h(b) * rots_symm(1,2,a)
+ + index_k(b) * rots_symm(2,2,a)
+ + index_l(b) * rots_symm(3,2,a)

temp_l = index_h(b) * rots_symm(1,3,a)
+ + index_k(b) * rots_symm(2,3,a)
+ + index_l(b) * rots_symm(3,3,a)

! Look for systematically absent reflections

if (temp_h .EQ. index_h(b) .AND. temp_k .EQ. index_k(b) .AND.
+ temp_l .EQ. index_l(b)) then

temp = index_h(b) * tran_symm(1,a)
+ + index_k(b) * tran_symm(2,a)
+ + index_l(b) * tran_symm(3,a) + 999.5

if (temp - int(temp) .LT. 0.4) then
n_rejected = n_rejected + 1

Page 261

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

print *,'Reflection ',index_h(b), index_k(b), index_l(b)
+ ,' is systematically absent with I/sigma = '
+ ,fobs(b)/sigmaf(b)

centric_flag = 0
cycle outer

end if

! flag centric reflections

elseif (temp_h .EQ. -index_h(b) .AND.
+ temp_k .EQ. -index_k(b) .AND.
+ temp_l .EQ. -index_l(b)) then

centric_flag = 1
end if

end do
n_centric = n_centric + centric_flag
centric_flag = 0
n_new_unique = n_new_unique +1
index_h(n_new_unique) = index_h(b)
index_k(n_new_unique) = index_k(b)
index_l(n_new_unique) = index_l(b)
fobs(n_new_unique) = fobs(b)
sigmaf(n_new_unique) = sigmaf(b)

end do outer

print *,n_reflection,' Reflections were reduced to ',n_new_unique
+ , ' Reflections '
print *,'of which ',n_centric,' were centric.'
print *,'R(int)=',rint
print *,n_rejected,' Reflections were systematically absent.'

close(1)

end

C===C
C C
C Soubroutine for sorting hkl-indices C
C C
C This routine sorts the hkl indices in the following way: C
C fastest changing index: index_3 C
C slowest changing index: index_1 C
C C
C===C

subroutine sort_hkl(n_reflection,index_1,index_2,index_3,
+ fobs,phi)

implicit none

integer::n_reflection
integer::index_1(n_reflection),index_2(n_reflection),
+ index_3(n_reflection)
real::fobs(n_reflection),phi(n_reflection)

C---C
C-- Local variables --C
C---C

integer::t1,t2,position,start
integer,allocatable::n_index_1(:),n_index_2(:),n_index_3(:)
integer,allocatable::pointer_1(:),pointer_2(:),
+ pointer_3(:,:),pointer_4(:,:)
integer::max_1,min_1,max_2,min_2,max_3,min_3

Page 262

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

integer::index_1_temp(n_reflection),index_2_temp(n_reflection),
+ index_3_temp(n_reflection)
real::fobs_temp(n_reflection),phi_temp(n_reflection)

integer::i,j,k

C---C
C-- Sort on index_1 --C
C---C

C---C
C-- Determine minimum and maximum index in index_1 --C
C---C

max_1 = -500
min_1 = 500
max_2 = -500
min_2 = 500

do i = 1 , n_reflection
if (index_1(i) .GT. max_1) then
max_1 = index_1(i)

end if
if (index_1(i) .LT. min_1) then
min_1 = index_1(i)

end if
if (index_2(i) .GT. max_2) then
max_2 = index_2(i)

end if
if (index_2(i) .LT. min_2) then
min_2 = index_2(i)

end if
end do

allocate (n_index_1(min_1:max_1))

do i = min_1 , max_1 + 1
n_index_1(i) = 0

end do

C---C
C-- Scan list and count how often each index occurs --C
C---C

do i = 1 , n_reflection
t1 = index_1(i)
n_index_1(t1) = n_index_1(t1) + 1
index_1_temp(i) = index_1(i)
index_2_temp(i) = index_2(i)
index_3_temp(i) = index_3(i)
fobs_temp(i) = fobs(i)
phi_temp(i) = phi(i)

end do

C---C
C-- Define an array with pointers to the positions in the sorted list --C
C---C

allocate (pointer_1(min_1:max_1))
allocate (pointer_2(min_1:max_1))
allocate (pointer_3(min_1:max_1,min_2:max_2))
allocate (pointer_4(min_1:max_1,min_2:max_2))

t1 = 0

do i = min_1 , max_1
t2 = n_index_1(i)

Page 263

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

n_index_1(i) = t1
pointer_1(i) = t1 + 1
t1 = t1 + t2
pointer_2(i) = t1

end do

C---C
C-- Scan list again and put each index at the final position --C
C---C

do i = 1 , n_reflection
t1 = index_1_temp(i)
position = n_index_1(t1) + 1
index_1(position) = index_1_temp(i)
index_2(position) = index_2_temp(i)
index_3(position) = index_3_temp(i)
fobs(position) = fobs_temp(i)
phi(position) = phi_temp(i)
n_index_1(t1) = position

end do

deallocate (n_index_1)

C---C
C-- Sort on index_2 --C
C---C

start = 0

do i = min_1 , max_1

max_2 = -500
min_2 = 500

do j = pointer_1(i) , pointer_2(i)
if (index_2(j) .GT. max_2) then
max_2 = index_2(j)

end if
if (index_2(j) .LT. min_2) then
min_2 = index_2(j)

end if
end do

allocate (n_index_2(min_2:max_2))

do j = min_2 , max_2 + 1
n_index_2(j) = 0

end do

do j = pointer_1(i) , pointer_2(i)
t1 = index_2(j)
n_index_2(t1) = n_index_2(t1)+1
index_1_temp(j) = index_1(j)
index_2_temp(j) = index_2(j)
index_3_temp(j) = index_3(j)
fobs_temp(j) = fobs(j)
phi_temp(j) = phi(j)

end do

t1 = start

do j = min_2 , max_2
t2 = n_index_2(j)
n_index_2(j) = t1
pointer_3(i,j) = t1 + 1
t1 = t1 + t2
pointer_4(i,j) = t1

Page 264

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

end do

start = pointer_4(i,max_2)

do j = pointer_1(i) , pointer_2(i)
t1 = index_2_temp(j)
position = n_index_2(t1) + 1
index_1(position) = index_1_temp(j)
index_2(position) = index_2_temp(j)
index_3(position) = index_3_temp(j)
fobs(position) = fobs_temp(j)
phi(position) = phi_temp(j)
n_index_2(t1) = position

end do

deallocate (n_index_2)

end do

C---C
C-- Sort on index_3 --C
C---C

start = 0

do i = min_1 , max_1

max_2 = -500
min_2 = 500

do j = pointer_1(i) , pointer_2(i)
if (index_2(j) .GT. max_2) then
max_2 = index_2(j)

end if
if (index_2(j) .LT. min_2) then
min_2 = index_2(j)

end if
end do

do j = min_2 , max_2

max_3 = -500
min_3 = 500

do k = pointer_3(i,j) , pointer_4(i,j)
if (index_3(k) .GT. max_3) then
max_3 = index_3(k)

end if
if (index_3(k) .LT. min_3) then
min_3 = index_3(k)

end if
end do

allocate (n_index_3(min_3:max_3))

do k = min_3 , max_3 + 1
n_index_3(k) = 0

end do

do k = pointer_3(i,j) , pointer_4(i,j)
t1 = index_3(k)
n_index_3(t1) = n_index_3(t1) + 1
index_1_temp(k) = index_1(k)
index_2_temp(k) = index_2(k)
index_3_temp(k) = index_3(k)
fobs_temp(k) = fobs(k)
phi_temp(k) = phi(k)

Page 265

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

end do

t1 = start

do k = min_3,max_3
t2 = n_index_3(k)
n_index_3(k) = t1
t1 = t1 + t2

end do

start = t1

do k = pointer_3(i,j) , pointer_4(i,j)
t1 = index_3_temp(k)
position = n_index_3(t1) + 1
index_1(position) = index_1_temp(k)
index_2(position) = index_2_temp(k)
index_3(position) = index_3_temp(k)
fobs(position) = fobs_temp(k)
phi(position) = phi_temp(k)
n_index_3(t1) = position

end do

deallocate (n_index_3)

end do

end do

deallocate (pointer_1,pointer_2,pointer_3,pointer_4)

return
end

C===C
C C
C Subroutine for merging equivalent reflections. C
C C
C===C

subroutine merge_equivalent_reflections(nref,inh,ink,inl,fob,
+ sig,uni)

implicit none

integer::nref,inh(nref),ink(nref),inl(nref)
integer::uni
real::fob(nref),sig(nref)

real::fmean,sum_s,sum_1,fobs_new,sig_new

integer::i,j,k

i = 1
j = 1
uni = 0
fmean = fob(i)
sum_s = 1/sig(i)**2

do
if (inh(i) .EQ. inh(i+j) .AND. ink(i) .EQ. ink(i+j) .AND.

+ inl(i) .EQ. inl(i+j)) then
fmean = fmean + fob(i+j)
sum_s = sum_s + 1/sig(i+j)**2
j = j + 1
if ((i + j) .LE. nref) then

Page 266

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

cycle
end if

end if
fobs_new = fmean / j
sig_new = 1/sqrt(sum_s)
uni = uni + 1
inh(uni) = inh(i)
ink(uni) = ink(i)
inl(uni) = inl(i)
fob(uni) = fobs_new
sig(uni) = sig_new

i = i + j
j = 1
if (i + j .LE. nref) then
fmean = fob(i)
sum_s = 1/sig(i)**2
fobs_new = 0
sig_new = 0

else
uni = uni + 1
inh(uni) = inh(i)
ink(uni) = ink(i)
inl(uni) = inl(i)
fob(uni) = fmean
sig(uni) = 1/sqrt(sum_s)
exit

end if
end do

return
end

C===C
C C
C Subroutine for calculating Rint values. C
C C
C===C

subroutine calculate_rint_value(uni,indh,indk,indl,fob,sig,ri)

implicit none

integer::uni,indh(uni),indk(uni),indl(uni)
real::fob(uni),sig(uni),ri

real::sum_i,temp1,temp2

integer::a,b,c

temp1 = 0
temp2 = 0
a = 1
do while (a < uni + 1)
b = 1
sum_i = fob(a)
do
if (indh(a) .EQ. indh(a+b) .AND. indk(a) .EQ. indk(a+b) .AND.

+ indl(a) .EQ. indl(a+b)) then
sum_i = sum_i + fob(a+b)
b = b + 1
if (a+b .LE. uni) then
cycle

end if
end if
if (b.NE.1) then
sum_i = sum_i / b

Page 267

D:\tmp\gs_tutorial_code\stephan_ruehl_fortran_soln_gms_tutorial\sort-merge_sr.f

do c = a , a + b - 1
temp1 = temp1 + abs(fob(c) - sum_i)
temp2 = temp2 + fob(c)

end do
end if
a = a + b
b = 1
exit

end do
end do

ri = temp1 / temp2

return
end

Page 268

D:\tmp\gs_tutorial_code\ralf_gk_python_soln_gms_tutorial\sort_merge_initial.py

from cctbx.array_family import flex
from cctbx import crystal
from cctbx import uctbx
from cctbx import sgtbx
from cctbx import miller
import sys

def run(args):
assert len(args) == 1
lines = open(args[0]).read().splitlines()
title = lines[0]
unit_cell = uctbx.unit_cell(lines[1])
n_symops = int(lines[2].split()[0])
space_group = sgtbx.space_group()
for line in lines[3:3+n_symops]:
coeffs = [float(field) for field in line.split()]
space_group.expand_smx(sgtbx.rt_mx(coeffs[:9], coeffs[9:]))

crystal_symmetry = crystal.symmetry(
unit_cell=unit_cell,
space_group=space_group)

miller_indices = flex.miller_index()
data = flex.double()
sigmas = flex.double()
for i_line in xrange(3+n_symops,len(lines)):
fields = lines[i_line].split()
assert len(fields) == 5
miller_indices.append([int(value) for value in fields[:3]])
data.append(float(fields[3]))
sigmas.append(float(fields[4]))

miller_set=miller.set(
crystal_symmetry=crystal_symmetry,
indices=miller_indices,
anomalous_flag=False)

miller_array = miller_set.array(
data=data,
sigmas=sigmas).set_observation_type_xray_intensity()

print "Before merging:"
miller_array.show_summary()
print
merged = miller_array.merge_equivalents().array().sort(by_value="data")
print "After merging:"
merged.show_comprehensive_summary().show_array()
print

if (__name__ == "__main__"):
run(sys.argv[1:])

Page 269

D:\tmp\gs_tutorial_code\ralf_gk_python_soln_gms_tutorial\sort_merge.py

#
cctbx sort-merge solution for Siena exercise given by George Sheldrick
#
sort_merge_initial.py was written in exactly 30 minutes while
sitting in the audience as others explained their solutions.
#
sort_merge.py is a slight enhancement (use diff for details).
It doesn't solve the exercise exactly, but demonstrates how to
work with the high-level cctbx facilities to solve most of the
exercise. Note that sort_merge.py produces significantly more
information than was requested, e.g. the space group name,
data completeness, etc.
#

from cctbx.array_family import flex
from cctbx import crystal
from cctbx import uctbx
from cctbx import sgtbx
from cctbx import miller
import sys

def run(args):
assert len(args) == 1
lines = open(args[0]).read().splitlines()
title = lines[0]
unit_cell = uctbx.unit_cell(lines[1])
n_symops = int(lines[2].split()[0])
space_group = sgtbx.space_group()
for line in lines[3:3+n_symops]:
coeffs = [float(field) for field in line.split()]
space_group.expand_smx(sgtbx.rt_mx(coeffs[:9], coeffs[9:]))

crystal_symmetry = crystal.symmetry(
unit_cell=unit_cell,
space_group=space_group)

miller_indices = flex.miller_index()
data = flex.double()
sigmas = flex.double()
for i_line in xrange(3+n_symops,len(lines)):
fields = lines[i_line].split()
assert len(fields) == 5
miller_indices.append([int(value) for value in fields[:3]])
data.append(float(fields[3]))
sigmas.append(float(fields[4]))

miller_set=miller.set(
crystal_symmetry=crystal_symmetry,
indices=miller_indices,
anomalous_flag=False)

miller_array = miller_set.array(
data=data,
sigmas=sigmas).set_observation_type_xray_intensity()

print "Before merging:"
miller_array.show_summary()
print
merged = miller_array.merge_equivalents()
merged.show_summary()
print
merged_array = merged.array()
print "After merging:"
merged_array.show_comprehensive_summary()
print

if (__name__ == "__main__"):
run(sys.argv[1:])

Page 270

CrysFML: A crystallographic
library in modern Fortran

Juan Rodríguez-Carvajal
Laboratoire Léon Brillouin, (CEA-CNRS), CEA/ Saclay

FRANCE

Content of the talk

Scientific Computing: Why Fortran?

Crystallographic computing: CrysFML

Procedural, imperative structured programming (PP)

Object oriented programming (OOP)

Pascal, C, Fortran 77, …

C++, Java, Smalltalk, Eiffel, ADA95, …

Module-Oriented Programming (MOP)

Programming paradigms for scientific
applications (I)

Fortran 95, ADA95, Modula-2, … Fortran 2003

Fortran 2003

Some reasons for developing in modern Fortran

Simplicity and clarity of the syntax and the new facilities for
global array manipulation. This is important for the common
scientist that may write programs occasionally. This makes
programming in Fortran more natural and problem solving
oriented.

Availability of many OOP features in modern Fortran: user-
defined types, encapsulation, overload of procedures and functions.
The lacking features (e.g. direct inheritance and class methods) are
of less importance for scientific computing than those already
available (all of them are available in Fortran 2003).

Programming paradigms for scientific
applications (II). Why Fortran?

Some reasons for developing in modern Fortran

The powerful implicit interface provided by encapsulating all
functions and subroutines in modules, allowing to catch many
errors at compile time, if one uses the intent attribute for
procedure arguments. We may consider that Module Oriented
Programming as an alternative/complement to OOP.

Efficiency of the generated executable codes compared to
C/C++ programs of similar complexity.

Compatibility with legacy code and availability of a huge amount
of free mathematical subroutines and functions. Re-usability of
procedures written in Fortran 77 was already a reality.

Programming paradigms for scientific
applications (III). Why Fortran?

Some reasons for developing in modern Fortran

The new standard (published in November 2004):
Fortran 2003 contains all necessary features to perform
pure OOP

John Reid, WG5 Convener: The new features of Fortran 2003,
PDF document available directly from the Internet:
ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf

To our knowledge Fortran 2003 exist partially in NagF95,
G95, in the new Lahey compiler for .NET, …

Programming paradigms for scientific
applications (IV) . Why Fortran?

Page 271

CCSL (Crystallographic Cambridge Subroutines Library)
J. Brown, J.C. Matthewmann
(W.I.F. David for powder diffraction)

The most complete set of procedures for crystallographic
calculations. Well documented.

Written in Fortran 77 and with single crystal work in mind.
Profuse use of commons. Difficult to adapt to modern
programming techniques.

Existing Crystallographic
Libraries (CCSL)

Computational Crystallography Toolbox (cctbx)
R.W. Grosse-Kunstleve, P.D. Adams….

Clipper
Kevin Cowtan

Written in C++ and handled using Python scripts.

Existing Crystallographic
Libraries (cctbx, Clipper)

“Crystallographic Fortran
Modules Library (CrysFML). A
simple toolbox for crystallographic
computing programs”
Commission on Crystallographic
Computing, IUCr
Newsletter No.1, pp 50-58,
January 2003.

CrysFML: a collection of F-modules for crystallography

There are many other modules
that are not ready for distribution:
Magnetism,
Cost_functions
Instrument descriptions (Four
circles + large PSD)
Refinement codes for molecular
crystals

CrysFML info

In some cases the
information about a
particular procedure
doesn’t appear, then

goto the source code!

The reason: I didn’t
obey my own rules
for documentation!

Developers of
CrysFML/WinPLOTR/FullProf

Juan Rodríguez-Carvajal (LLB, France)
CrysFML, FullProf, BasIreps, Simbo, Enermag, Polar3D,…

Javier González-Platas (ULL, Tenerife, Spain)
CrysFML, GUIs, GFourier, EdPCR

Contributors:
Thierry Roisnel (LCSIM, Rennes, France)

WinPLOTR
Carlos Frontera (ICMAB, Barcelona, Spain)

Polarized neutrons, Flipping ratio data handling
Marc Janoschek (PSI, Villigen, Switzerland)

Polarized neutrons, 3D-Polarimetry
Laurent Chapon & Aziz Daoud-Aladine (ISIS, U.K.)

T.O.F. powder diffraction, WCrysFGL, Fp_Studio
Incommensurate crystal structures

Developers of …
We are not professional programmers!

Juan Rodríguez-Carvajal (LLB, CEA-CNRS, France)
Structural, electronic and magnetic properties of oxides and
intermetallics. Modeling of magnetic structures
Javier González-Platas (ULL, Tenerife, Spain)
Crystal structure determination of organic natural compounds.
Teaching in Physics.
Thierry Roisnel (LCSIM, Rennes, France)
Crystal structure determination of cluster compounds
Single Crystal X-ray diffraction service (U. of Rennes)
Carlos Frontera (ICMAB, Barcelona, Spain)
Magnetic properties of oxides
Aziz Daoud-Aladine (ISIS, UK)
Charge, spin and orbital ordering in manganites (Co-resp. SXD)
Laurent Chapon (ISIS, UK)
Thermo-electrics, multi-ferroics, … (Co-resp. GEM)
Marc Janoschek (PSI, Villigen, Switzerland)
Polarized neutrons instrumentation, Mu-PAD

Page 272

We have developed a set of Fortran 95 modules, Crystallographic Fortran
Modules Library (CrysFML), that may be used (in the Fortran 95 sense) in
crystallographic and diffraction computing programs.

Modern array syntax and new features of Fortran 95 are used through the
modules. In fact the whole library is written in F-language, a strict subset of
Fortran 95 for which free compilers are available.

We take advantage of all object oriented programming (OOP) techniques
already available in Fortran: user-defined types, encapsulation, overload
(polymorphism) of procedures and functions. The lacking features (e.g.
inheritance and class methods) will be easily implemented as soon as
Fortran 2003 compilers become available.

Main programs using the adequate modules may perform more or less
complicated calculations with only few lines of code.

Scope of CrysFML

All free F-compilers can be downloaded from the site:

ftp://ftp.swcp.com/~walt/pub/F

See also:

http://www.fortran.com/fortran/Imagine1

F-language
(strict subset of Fortran 95)

All implementations of the G95-compiler (based
in gcc) can be downloaded from the G95 home
page:

http://www.g95.org

Platforms: Linux, Windows, Mac OS, Solaris,
OpenBSD, etc…

Free Fortran 95 compiler
G95: strong development The present CrysFML contains general and specific Mathematical

modules (FFTs, geometrical calculations, optimizers, matrix operations).
Procedures for reading files of many different formats, string utilities for
handling free format, generation and reading of CIF files.

Modules for generating space groups from their Hermann-Mauguin or
Hall symbols. Generic space groups with non-conventional lattice centring
vectors can also be built using user-defined generators.

Reflection handling modules, including propagation vectors, may be
used for generating reflections in selected regions of reciprocal space and
for calculating structure factors.

The documentation is written within the source code using special
comment symbols. A document, in HTML format, containing the
description of all modules and procedures can be generated using a
Fortran program (get_doc).

Present status of CrysFML

At present there is no formal way of distributing CrysFML,
I can send copies (of the most stable modules) by e-mail to
everyone wishing to use it.

There are parts of the library that are not completely
developed so be patient and comprehensive.

The library is distributed with a set of working examples
so that the user can mimic in order to create his (her) own
programs.

Present status of CrysFML

FullProf : Crystal and magnetic structure refinement, powder/single
crystals, polarised neutrons, constant wavelength, TOF, energy
dispersive, multiple patterns.

FOURIER, GFOURIER and EdPCR. These programs work on Windows
and Linux and are already distributed from the LLB Web site.

BasIREPS: Program for calculating basis functions of irreducible
representations of space groups. This program is useful for determining
magnetic structures and phonon symmetry analysis.

SIMBO: Program for the analysis of the magnetic topology of an arbitrary
crystal structure. Generates a formal description of the Fourier transform
of the exchange interactions to be used by other programs.

Programs using CrysFML (I)

Page 273

ENERMAG: Program to analyse the classical magnetic energy as a
function of the exchange interactions and the point in the Brillouin Zone.
This program can be used to generate theoretical magnetic phase
diagrams in the J-space in order to get insight into the experimentally
determined magnetic structures.

SIMILAR: Program to make conversion of settings for describing
crystallographic structures. It determines automatically the splitting of
Wyckoff positions on going from a space group to one of their subgroups.
Calculate all the translationengleiche subgroups of a space group, co-set
decompositions, etc.

DATARED: Program for data reduction of single crystal data. It handles
twinning and incommensurate magnetic and crystal structures. Prepares
files to be read by FullProf when using single crystals.

Programs using CrysFML (II)

The programs Gfourier and
Fourier are based in CrysFML

Graphic utilities: Winteracter
http://www.winteracter.com

A GUI for FullProf: EdPCR

GUI using Winteracter: http://www.winteracter.com

Code of files

Working
directory

Title

Space group
symbol
or generators

Brillouin
Zone label

k-vector

Axial/polar

Number of atoms
Atoms
positions

Atoms in
Unit Cell

ftp://ftp.cea.fr/pub/llb/divers/fullprof.2k

GUI for BasIreps

Example of BasIreps output: *.bsr
PROPAGATION VECTOR GROUP INFORMATION
====================================

=> The input propagation vector is: K=(0.5000 0.5000 0.5000)
=> K .. IS NOT .. equivalent to -K
=> The operators following the k-vectors constitute the co-set decomposition G[Gk]

The list of equivalent k-vectors are also given on the right of operators.
=> The star of K is formed by the following 2 vectors:

k_1 = (0.5000 0.5000 0.5000) Op: (1) x,y,z
Op: (3) x,-y,-z -> (0.5000 -0.5000 -0.5000)
Op: (4) -x+1/2,-y,z+1/2 -> (-0.5000 -0.5000 0.5000)
Op: (7) -x+1/2,y,-z+1/2 -> (-0.5000 0.5000 -0.5000)
Op: (10) y+3/4,-x+1/4,-z+3/4 -> (-0.5000 0.5000 -0.5000)
Op: (13) -y+3/4,-x+1/4,z+3/4 -> (-0.5000 -0.5000 0.5000)
Op: (14) -y+3/4,x+3/4,-z+1/4 -> (0.5000 -0.5000 -0.5000)
Op: (16) y+3/4,x+3/4,z+1/4 -> (0.5000 0.5000 0.5000)

Eqv. -K: k_2 = (0.5000 -0.5000 0.5000) Op: (2) -y+1/4,x+3/4,z+1/4
Op: (5) y+1/4,x+3/4,-z+1/4 -> (0.5000 0.5000 -0.5000)
Op: (6) y+1/4,-x+1/4,z+3/4 -> (-0.5000 0.5000 0.5000)
Op: (8) -y+1/4,-x+1/4,-z+3/4 -> (-0.5000 -0.5000 -0.5000)
Op: (9) -x,-y,-z -> (-0.5000 -0.5000 -0.5000)
Op: (11) -x,y,z -> (-0.5000 0.5000 0.5000)
Op: (12) x+1/2,y,-z+1/2 -> (0.5000 0.5000 -0.5000)
Op: (15) x+1/2,-y,z+1/2 -> (0.5000 -0.5000 0.5000)

=> G_k has the following symmetry operators:
1 SYMM(1) = x,y,z
2 SYMM(3) = x,-y,-z
3 SYMM(4) = -x+1/2,-y,z+1/2
4 SYMM(7) = -x+1/2,y,-z+1/2
.

Example of BasIreps output: *.bsr
=> Number of elements of G_k: 8
=> Number of irreducible representations of G_k: 2
=> Dimensions: 2 2

=> Symmetry elements of G_k and ireps:
Symmetry elements reduced to the standard form (positive translations < 1)
The matrices of IRreps have been multiplied by the appropriate phase factor
.

-> SYMM_K(2): -x+1/2,-y,z+1/2 : 2 (0, 0, z) -> h4
Phase factor for correcting input data: 0.0000
Matrix of IRrep(1):

i 0
0 -i

Matrix of IRrep(2):
i 0
0 -i

.
-> SYMM_K(8): y+3/4,x+3/4,z+1/4 : m (x, x, z) -> h37

Phase factor for correcting input data: 1.5000
Matrix of IRrep(1):

0 i
-1 0

Matrix of IRrep(2):
0 -i
1 0

Page 274

Example of BasIreps output: *.bsr
+++

=> Basis functions of Representation IRrep(1) of dimension 2 contained 3 times in GAMMA
+++

SYMM x,y,z -x+1/2,-y,z-1/2 y+3/4,-x+1/4,-z+3/4 -y+1/4,x+1/4,-z+3/4
Atoms: Cu_1 Cu_2 Cu_3 Cu_4
1:Re (1 0 0) (0 0 0) (0 -1 0) (0 -1 0)

Im (0 0 0) (-1 0 0) (0 0 0) (0 0 0)
2:Re (0 1 0) (0 0 0) (1 0 0) (1 0 0)

Im (0 0 0) (0 -1 0) (0 0 0) (0 0 0)
3:Re (0 0 1) (0 0 0) (0 0 -1) (0 0 1)

Im (0 0 0) (0 0 1) (0 0 0) (0 0 0)
4:Re (-1 0 0) (0 0 0) (0 0 0) (0 0 0)

Im (0 0 0) (-1 0 0) (0 1 0) (0 -1 0)
5:Re (0 1 0) (0 0 0) (0 0 0) (0 0 0)

Im (0 0 0) (0 1 0) (1 0 0) (-1 0 0)
6:Re (0 0 1) (0 0 0) (0 0 0) (0 0 0)

Im (0 0 0) (0 0 -1) (0 0 -1) (0 0 -1)

----- LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q
General expressions of the Fourier coefficients Sk(i) i=1,2,...nat

SYMM x,y,z Atom: Cu_1 0.0000 0.0000 0.5000
Sk(1): (u-p,v+q,w+r)

SYMM -x+1/2,-y,z-1/2 Atom: Cu_2 0.5000 0.0000 0.0000
Sk(2): i.(-u-p,-v+q,w-r)

SYMM y+3/4,-x+1/4,-z+3/4 Atom: Cu_3 0.7500 0.2500 0.2500
Sk(3): (v,-u,-w)+i.(q,p,-r)

SYMM -y+1/4,x+1/4,-z+3/4 Atom: Cu_4 0.2500 0.2500 0.2500
Sk(4): (v,-u,w)+i.(-q,-p,-r)

A Fortran 95/2003 compiler is needed (G95 is free!)

Learn the main structure types and procedures existing
in the modules of the library by reading the
documentation

Write a main program, using the modules of the library,
for a particular purpose

Programming with CrysFML
using it nearly as a black-box

Example using
the HTML
automatically
generated
documentation

Space Group Type in CrysFML

Page 275

Example using
the HTML
automatically
generated
documentation

The procedure Set_SpaceGroup

Header of the subroutine Set_Spacegroup. Only two arguments are needed
in the most simple cases.

The string Spacegen may contain the Hermann-Mauguin (H-M) symbol, the
Hall symbol or, simply, the number of the space group.

The object Spacegroup is provided by a call to the subroutine.

The procedure Set_SpaceGroup
One can make a call to the subroutine as follows:

! Declarations omitted

Ngen=3
Gen(1)=”y,-x, z”
Gen(2)=”-x,-y,-z”
Gen(3)=”x+1/2, y+1/2, -z”
Call Set_Spacegroup(Spacegen,Spacegroup,Gen,Ngen,”GEN”)

On output the object Spacegroup of type Space_Group_type
is filled with all possible information obtained from the list of the
given generators.

The procedure Write_SpaceGroup The procedure Write_SpaceGroup

The argument full in procedure Write_SpaceGroup means
that all detailed information in asked to be output in the screen.
One may change the instruction to write directly to an already
opened file. For instance writing:

Call Write_SpaceGroup(SPG,iunit=3,full=.true.)

directs the output to the file connected with logical unit 3

Page 276

Output of the small program: Get_SPG_info Another small program: test_subgroup

Output of the small program: test_subgroup
Information on Space Group:

=> Number of Space group: 176
=> Hermann-Mauguin Symbol: P 63/M
=> Hall Symbol: -P 6c
=> Table Setting Choice:
=> Setting Type: a'=a, b'=b, c'=c -> Origin: (0,0,0)
.

=> LIST of Translationengleiche Subgroups:

=> P 63 P 6c Index: [2] -> { x,y,z : …}, Acentric
=> P 63/M -P 6c Index: [1] -> { x,y,z : …}, Centric
=> P 3 P 3 Index: [4] -> { x,y,z : …}, Acentric
=> P -3 -P 3 Index: [2] -> { x,y,z : …}, Centric
=> P 1 1 21 P 2c Index: [6] -> { x,y,z : …}, Acentric
=> P 1 1 21/M -P 2c Index: [3] -> { x,y,z : …}, Centric
=> P -1 -P 1 Index: [6] -> { x,y,z }, Centric
=> unknown P -6c Index: [2] -> { x,y,z : …}, Acentric
=> unknown P -2c Index: [6] -> { x,y,z : …}, Acentric
=> Please enter a space group (H-M/Hall/number):

Another Example: Check_Group

Check_Group output (1)

PROGRAM CHECK_GROUP: attempt to select the possible space groups from
an experimental Powder Diffraction Pattern

Author: J.Rodriguez-Carvajal (version 0.01, based on CrysFML)

Conditions:
Input hkl-file : testga1.hkl
Crystal System : Tetragonal
Check centred cells?: Y
Maximum angle : 20.0000
Number of FWHMs : 2.0000
Threshold in % : 0.1000

=> List of read reflections:

h k l Intensity Sigma 2theta FWHM Good?
1 0 1 0.0000 0.0000 3.2518 0.0093 1
1 1 0 3.4230 0.4030 3.6146 0.0113 1
0 0 2 0.5280 0.2050 4.0212 0.0091 1
1 1 1 1.8570 0.3130 4.1363 0.0111 1
. .
2 2 2 3562.2319 38.4840 8.2781 0.0138 1
2 1 3 5.4550 0.3910 8.3152 0.0118 0
3 1 1 23.2680 0.1620 8.3347 0.0124 0
1 0 4 0.0000 0.0000 8.4448 0.0102 1

Check_Group output (2)
=> Number of good reflections : 94
Maximum intensity : 3562.2319
Minimum (for observed) : 3.5622
Number of Space Group tested: 85

=> LIST OF POSSIBLE SPACE GROUPS, a total of 24 groups are possible
--
Number(IT) Hermann-Mauguin Symbol Hall Symbol
--

75 P 4 P 4
76 P 41 P 4w
77 P 42 P 4c
78 P 43 P 4cw
81 P -4 P -4
83 P 4/M -P 4
84 P 42/M -P 4c
89 P 4 2 2 P 4 2
90 P 4 21 2 P 4ab 2ab
91 P 41 2 2 P 4w 2c
92 P 41 21 2 P 4abw 2nw
. .
113 P -4 21 M P -4 2ab
114 P -4 21 C P -4 2n
115 P -4 M 2 P -4 –2
.

Page 277

Program Calc_structure_factors
use crystallographic_symmetry,only: space_group_type, Write_SpaceGroup
use Atom_Module, only: Atoms_List_Type, Write_Atoms_List
use crystal_types, only: Crystal_Cell_Type, Write_Crystal_Cell
use Reflections_Utilities, only: Reflection_Type, Hkl_Uni, get_maxnumref
use IO_Formats, only: Readn_set_Xtal_Structure,err_mess_form,err_form
use Structure_Factor_Module, only: Structure_Factors, Write_Structure_Factors
type (space_group_type) :: SpG
type (Atoms_list_Type) :: A
type (Crystal_Cell_Type) :: Cell
type (Reflection_Type),allocatable, dimension(:) :: hkl
character(len=256) :: filcod !Name of the input file
real :: stlmax !Maximum Sin(Theta)/Lambda
integer :: MaxNumRef, Num, lun=1

do
write(unit=*,fmt="(a)") " => Code of the file xx.cif (give xx): "
read(unit=*,fmt="(a)") filcod
if(len_trim(filcod) == 0) exit
write(unit=*,fmt="(a)") " => Maximum sinTheta/Lambda: "
read(unit=*,fmt=*) stlmax
open(unit=lun,file=trim(filcod)//".sfa", status="replace",action="write")

call Readn_set_Xtal_Structure(trim(filcod)//".cif",Cell,SpG,A,Mode="CIF")

If(err_form) then
write(unit=*,fmt="(a)") trim(err_mess_form)
exit

else
call Write_Crystal_Cell(Cell,lun)
call Write_SpaceGroup(SpG,lun)
call Write_Atoms_List(A,lun=lun)
MaxNumRef = get_maxnumref(stlmax,Cell%CellVol,mult=SpG%Multip)
if(allocated(hkl)) deallocate(hkl); allocate (hkl(MaxNumRef))

call Hkl_Uni(Cell,Spg,.true.,0.0,stlmax,"s",Num,hkl)
call Structure_Factors(A,SpG,Num,hkl,mode="NUC")
call Write_Structure_Factors(lun,Num,hkl,mode="NUC")

end if
close(unit=lun)
end do

End Program Calc_structure_factors

Program Calc_structure_factors

.

call Readn_set_Xtal_Structure(trim(filcod)//".cif",&
Cell,SpG,A,Mode="CIF")

Reads a CIF file and sets up the objects:

Cell : contains everything related to metrics
SpG : contains everything related to symmetry

A : contains everything concerned with
atoms in the asymmetric unit

.

End Program Calc_structure_factors

Program Calc_structure_factors
use crystallographic_symmetry,only: space_group_type, Write_SpaceGroup
use Atom_Module, only: Atoms_List_Type, Write_Atoms_List
use crystal_types, only: Crystal_Cell_Type, Write_Crystal_Cell
use Reflections_Utilities, only: Reflection_Type, Hkl_Uni, get_maxnumref
use IO_Formats, only: Readn_set_Xtal_Structure,err_mess_form,err_form
use Structure_Factor_Module, only: Structure_Factors, Write_Structure_Factors
type (space_group_type) :: SpG
type (Atoms_list_Type) :: A
type (Crystal_Cell_Type) :: Cell
type (Reflection_Type),allocatable, dimension(:) :: hkl
character(len=256) :: filcod !Name of the input file
real :: stlmax !Maximum Sin(Theta)/Lambda
integer :: MaxNumRef, Num, lun=1

do
write(unit=*,fmt="(a)") " => Code of the file xx.cif (give xx): "
read(unit=*,fmt="(a)") filcod
if(len_trim(filcod) == 0) exit
write(unit=*,fmt="(a)") " => Maximum sinTheta/Lambda: "
read(unit=*,fmt=*) stlmax
open(unit=lun,file=trim(filcod)//".sfa", status="replace",action="write")

call Readn_set_Xtal_Structure(trim(filcod)//".cif",Cell,SpG,A,Mode="CIF")

If(err_form) then
write(unit=*,fmt="(a)") trim(err_mess_form)
exit

else
call Write_Crystal_Cell(Cell,lun)
call Write_SpaceGroup(SpG,lun)
call Write_Atoms_List(A,lun=lun)
MaxNumRef = get_maxnumref(stlmax,Cell%CellVol,mult=SpG%Multip)
if(allocated(hkl)) deallocate(hkl); allocate (hkl(MaxNumRef))

call Hkl_Uni(Cell,Spg,.true.,0.0,stlmax,"s",Num,hkl)
call Structure_Factors(A,SpG,Num,hkl,mode="NUC")
call Write_Structure_Factors(lun,Num,hkl,mode="NUC")

end if
close(unit=lun)
end do

End Program Calc_structure_factors

Program Calc_structure_factors
use crystallographic_symmetry,only: space_group_type, Write_SpaceG
use Atom_Module, only: Atoms_List_Type, Write_Atoms_List
use crystal_types, only: Crystal_Cell_Type, Write_Crystal_Cell
use Reflections_Utilities, only: Reflection_Type, Hkl_Uni, get_maxnumref
use IO_Formats, only: Readn_set_Xtal_Structure,err_mess_form,err_form
use Structure_Factor_Module, only: Structure_Factors, Write_Structure_Factors
type (space_group_type) :: SpG
type (Atoms_list_Type) :: A
type (Crystal_Cell_Type) :: Cell
type (Reflection_Type),allocatable, dimension(:) :: hkl
character(len=256) :: filcod !Name of the input file
real :: stlmax !Maximum Sin(Theta)/Lambda
integer :: MaxNumRef, Num, lun=1

do
write(unit=*,fmt="(a)") " => Code of the file xx.cif (give xx): "
read(unit=*,fmt="(a)") filcod
if(len_trim(filcod) == 0) exit
write(unit=*,fmt="(a)") " => Maximum sinTheta/Lambda: "
read(unit=*,fmt=*) stlmax
open(unit=lun,file=trim(filcod)//".sfa", status="replace",action="write")

call Readn_set_Xtal_Structure(trim(filcod)//".cif",Cell,SpG,A,Mode="CIF")

If(err_form) then
write(unit=*,fmt="(a)") trim(err_mess_form)
exit

else
call Write_Crystal_Cell(Cell,lun)
call Write_SpaceG(SpG,lun)
call Write_Atoms_List(A,lun=lun)
MaxNumRef = get_maxnumref(stlmax,Cell%CellVol,mult=SpG%Multip)
if(allocated(hkl)) deallocate(hkl); allocate (hkl(MaxNumRef))

call Hkl_Uni(Cell,Spg,.true.,0.0,stlmax,"s",Num,hkl)
call Structure_Factors(A,SpG,Num,hkl,mode="NUC")
call Write_Structure_Factors(lun,Num,hkl,mode="NUC")

end if
close(unit=lun)
end do

End Program Calc_structure_factors

Program Calc_structure_factors
.

call Hkl_Uni(Cell,Spg,.true.,0.0,stlmax,&
"s",Num,hkl)

call Structure_Factors(A,SpG,Num,hkl,mode="NUC")

call Write_Structure_Factors(lun,Num,hkl,&
mode="NUC")

Hkl_Uni: Generates unique reflections in a sin / range
(constructs, partially, the array of hkl objects)

Structure_Factors: Completes the construction
of the array of hkl objects

Write_Structure_Factors : Writes the results in a file
.
End Program Calc_structure_factors

Program Calc_structure_factors
use crystallographic_symmetry,only: space_group_type, Write_SpaceG
use Atom_Module, only: Atoms_List_Type, Write_Atoms_List
use crystal_types, only: Crystal_Cell_Type, Write_Crystal_Cell
use Reflections_Utilities, only: Reflection_Type, Hkl_Uni, get_maxnumref
use IO_Formats, only: Readn_set_Xtal_Structure,err_mess_form,err_form
use Structure_Factor_Module, only: Structure_Factors, Write_Structure_Factors
type (space_group_type) :: SpG
type (Atoms_list_Type) :: A
type (Crystal_Cell_Type) :: Cell
type (Reflection_Type),allocatable, dimension(:) :: hkl
character(len=256) :: filcod !Name of the input file
real :: stlmax !Maximum Sin(Theta)/Lambda
integer :: MaxNumRef, Num, lun=1

do
write(unit=*,fmt="(a)") " => Code of the file xx.cif (give xx): "
read(unit=*,fmt="(a)") filcod
if(len_trim(filcod) == 0) exit
write(unit=*,fmt="(a)") " => Maximum sinTheta/Lambda: "
read(unit=*,fmt=*) stlmax
open(unit=lun,file=trim(filcod)//".sfa", status="replace",action="write")

call Readn_set_Xtal_Structure(trim(filcod)//".cif",Cell,SpG,A,Mode="CIF")

If(err_form) then
write(unit=*,fmt="(a)") trim(err_mess_form)
exit

else
call Write_Crystal_Cell(Cell,lun)
call Write_SpaceG(SpG,lun)
call Write_Atoms_List(A,lun=lun)
MaxNumRef = get_maxnumref(stlmax,Cell%CellVol,mult=SpG%Multip)
if(allocated(hkl)) deallocate(hkl); allocate (hkl(MaxNumRef))

call Hkl_Uni(Cell,Spg,.true.,0.0,stlmax,"s",Num,hkl)
call Structure_Factors(A,SpG,Num,hkl,mode="NUC")
call Write_Structure_Factors(lun,Num,hkl,mode="NUC")

end if
close(unit=lun)
end do

End Program Calc_structure_factors

Page 278

-Create a directory called “CrysFML” (e.g.
c:\CrysFML)
-Copy the file CrysFML_G95.zip in and extract all files
respecting the directory structure
-Compile and build the library running the file
“crysfml_g95.bat”

Installing and compiling
CrysFML using G95 in Windows
G95 in Windows using MinGW
Copy the file g95-MinGW.exe in a temporary
directory and double-click on it: select the
installation folder and say “yes” to all questions!
(e.g. c:\G95, … warning! do not use “Program Files”)

The content of the CrysFML
folder and sub-folders

All CrysFML files start with the prefix “CFML_”
and have extension .f95

Content of the
“SimplePrograms” folder

Four main programs and make*.bat files, one *.hkl
file coming from FullProf , a *.inf file and a sub-
folder called “Sfac”

Content of the “Sfac” folder

Source code files:

There are two modules:
“observed_reflections” in file “observ.f90”
And
“cost_functions” in file “cost_functions.f90”

Three main programs:
“Calc_structure_factors” in “sfac_test.f90”
“Optimizing_structure” in “Optim_Sfac.f90”
“Optimizing_structure” in “Opt_restraints.f90”

Input files for CrysFML (CIF and CFL)
Title NiFePO5
! a b c alpha beta gamma
Cell 7.1882 6.3924 7.4847 90.000 90.000 90.000
! Space Group
Spgr P n m a
! x y z B occ Spin Charge
Atom Ni NI 0.0000 0.0000 0.0000 0.74 0.5 2.0 2.0
Atom Fe FE 0.1443 0.2500 0.7074 0.63 0.5 5.0 3.0
Atom P P 0.3718 0.2500 0.1424 0.79 0.5 0.0 5.0
Atom O1 O 0.3988 0.2500 0.64585 0.71 0.5 0.0 -2.0
Atom O2 O 0.19415 0.2500 0.0253 0.70 0.5 0.0 -2.0
Atom O3 O 0.0437 0.2500 0.4728 0.83 0.5 0.0 -2.0
Atom O4 O 0.3678 0.0566 0.2633 0.77 1.0 0.0 -2.0
! Codes for refinement
Vary xyz 0 1 0 1
!Fix x_Fe y_O4
!Equal y_Fe y_P 1.00
HKL-OBS mfe.hkl
MIN-DSPACING 1.5
OPTIMIZE Fobs-Fcal 1.0
SIM_ANN
! Name of the cost function
CostNam FobsFcal
! T_ini anneal num_temps
TemParM 8.0 0.95 90
! Nalgor Nconf nm_cycl num_therm accept
Algor_T 0 1 90 0 0.01
! Value of Seed (if SeedVAL = 0, random seed)
SeedVAL 0
! Treatment of initial configuration
InitCON RAN

Page 279

Workshop: Connecting to hardware

Goal of the excercises

The goal of this excercise is to try and abstract the different tasks to perform and separate
them into different modules in the program. The excercises both simulate progress in the
hardware and how it should be addressed, and in the demands that are made by the
scientist using the application.

General instructions

Try to solve these problems in such a way that a small change in the "hardware" to be
controlled or a small change in the kind of “experiment" you want to do with the
hardware will only need small changes in your code.

Description of the environment

The "hardware" is represented in this excercise as a server that is running on port 7777 of
a computer attached to the network. You can connect to it using a TCP socket connection.
You send it an ASCII string command, followed by a carriage-return (ASCII 13). The
server will give you an answer structured like:

 1 character protocol-id ("1")
 5 characters representing an integer status:

status = 0 = ERROR
status = 1 = OK

 5 characters representing a block length (n)
 a carriage-return character
 n characters of data or n characters of error message

After the data block, the connection is closed by the server.

The server has an unknown number (call it x) of strings that it can return; these are
numbered from 0 to x-1, and can be retrieved by sending a string representation of the
number ("%d", followed by ASCII 13 as was said earlier) as a command to the server.
Some other, secret, commands are available in the server as well, you will find out about
these during the excercises.

Page 280

Socket programming

To complete this excercise the program must make an internet socket. The use of such a
socket consists of a few steps:

Create a socket. Parameters are:
"domain" is PF_INET or AF_INET
"type" is SOCK_STREAM
"protocol" (if needed in your language) is 0

Create a socket address from the host name or IP address and the port number
Connect the socket to the address
Use send() and recv() to communicate over the socket. IO

In case you have no experience programming with sockets, an example of how the first
exercise can be solved is given on subsequent pages of this document. Examples are
available in python and in C, and should not be used as an example of how to solve the
exercise well, but only on how to use socket connections.

The excercises

Excercise 1: Make a client that connects to the server, and retrieves
and prints out string 0 (zero). That string is the next excercise.

Page 281

Example program in C
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <malloc.h>
#include <string.h>
#include <stdlib.h>

int port = 7777;

int s;
struct sockaddr_in serv_addr;
struct hostent *servent;

/* Receive a message from a socket based on knowledge of
the size of
 the packet to be received */
int recvfixed(int s, int n, char *x) {
 int i = 0;
 int tmp;
 while (i<n) {
 tmp = recv(s, x, n-i, MSG_WAITALL);
 if (tmp == -1) { return (-1); }
 i += tmp;
 }
 s[n] = '\0';
 return (0);
}

/* Open our socket and connect it to the server */
int sopen() {
 int s;
 s = socket(PF_INET, SOCK_STREAM, 0);
 servent = gethostbyname("127.0.0.1");
 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = servent->h_addrtype;
 memcpy((char *) &serv_addr.sin_addr.s_addr, servent-
>h_addr_list[0],
 servent->h_length);
 serv_addr.sin_port = htons(port);
 connect(s, (struct sockaddr *)&serv_addr, sizeof
(serv_addr));
 return (s);
}

int main() {
 /* All the strings we need */

Page 282

 char protocol[2];
 char s_status[6];
 char s_length[6];
 char s_sep[2];
 char *mess;
 /* Two of the strings correspond to integers */
 int status, length;
 /* Open the socket */
 s = sopen();
 /* Send the command 0 */
 send(s, "0\r", 2, 0);
 /* Interpret the protocolled answer */
 if (recvfixed(s, 1, protocol)) {
 fprintf(stderr, "Could not receive protocol\n");
 return (1);
 }
 if (strncmp(protocol, "1", 1)) {
 fprintf(stderr, "Protocol mismatch\n");
 return (1);
 }
 if (recvfixed(s, 5, s_status)) {
 fprintf(stderr, "Could not receive status\n");
 return (1);
 }
 status = strtol(s_status, NULL, 10);
 if (recvfixed(s, 5, s_length)) {
 fprintf(stderr, "Could not receive length\n");
 return (1);
 }
 length = strtol(s_length, NULL, 10);
 if (recvfixed(s, 1, s_sep)) {
 fprintf(stderr, "Could not receive separator\n");
 return (1);
 }
 mess = malloc(length+1);
 if (recvfixed(s, length, mess)) {
 fprintf(stderr, "Could not receive message\n");
 return (1);
 }
 if (status == 0) {
 fprintf(stderr, "ERROR: %s\n", mess);
 return (2);
 } else {
 fprintf(stdout, "%s\n", mess);
 }
 return (0);
}

Page 283

Example program in Python
import sys,socket

host = 'localhost'
port = 7777

class Error(Exception):
 pass

def recvfixed(s, n):
 ret = ''
 while n > 0:
 str = s.recv(n)
 ret += str
 n -= len(str)
 return ret

def sopen():
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((host, port))
 return s

def main():
 s = sopen()
 s.send("0\r")
 try:
 if recvfixed(s, 1) != '1':
 print >>sys.stderr, "Protocol mismatch"
 sys.exit(1)
 except IOError:
 print >>sys.stderr, "Could not receive protocol"
 sys.exit(1)
 try:
 status = int(recvfixed(s, 5))
 except IOError:
 print >>sys.stderr, "Could not receive status"
 sys.exit(1)
 try:
 length = int(recvfixed(s, 5))
 except IOError:
 print >>sys.stderr, "Could not receive length"
 sys.exit(1)
 try:
 sep = recvfixed(s, 1)
 except IOError:
 print >>sys.stderr, "Could not receive separator"
 sys.exit(1)
 try:

Page 284

 mess = recvfixed(s, length)
 except IOError:
 print >>sys.stderr, "Could not receive message"
 sys.exit(1)
 if status == 0:
 print >>sys.stderr, "ERROR: %s" % mess
 sys.exit(2)
 else:
 print mess

if __name__ == "__main__":
 main()

Page 285

Tcl/Tk demo

Brian Toby

Running the shell

• Tcl shell = /usr/bin/tclsh (tclsh.exe)
• Tcl/Tk shell = /usr/bin/wish (wish.exe)

– As usually distributed requires many extra
files

Here: combined distribution as one file
(starkit)
– Includes several “extra” packages

Starting “Tcl/Tk”

• Windows: ncnrpack-win.exe
• Linux: ncnrpack-linux
• OS X: ncnrpack-osx

– Requires X11
– Aqua version of Tcl/Tk does not support graphics

demo
Can be run as

ncnrpack-xxx <script> runs commands
in script

ncnrpack-xxx opens console

Tcl stuff

The set command
• set var1 value

• set var2 $var1

• set var3 var1

The set command
• puts “writes a string: $var1”

• puts {w/o substitution: $var1}

Embedded commands
• set list [glob *]

Math
• set var [expr {pow(2,3)*10}]

If-then-else

if {test1} {
statement(s)

} else {
statement(s)

}

if {var1 == “test”} {
puts “test done”
set var1 “”

} else {
puts “not test”

}

Page 286

looping
foreach var {1 2 3 a b c} {

puts $var
}

for {set I 1} {$I <= 4} {incr I} {
puts $I

}

Tk background

• Master window is named “.”
• Something inside master is a “child”
• Name of children of master will be

.<name>

– <name> ==> start w/lower case letter
– .b or .bToby not .BT

Some Tk Commands:
making widgets

• Command label
label <child-name> -text ”label text”

– Returns <child-name>
• Command button
button <child-name> -text ”txt” \

-command ”tcl command”

– Returns <child-name>
• N.B. creates child but does not display it

Displaying widgets

• For very quick demos, use pack:
label .l -text sample
pack .l

• Better, use grid
grid <child> -column <num> -row <num>

label .l -text sample
grid .l -column 1 -row 1

Demo1
label .label -text "Welcome to the Tcl/Tk demo"
grid .label -column 1 -row 1
button .b -text "Exit" -command "exit"
grid .b -column 1 -row 2

• Type the above into console or
• Windows: drag file demo1.txt onto ncnrpack-

win.exe icon
• or Command line:

Toby$ ncnrpack-osx demo1.txt

• or In console (windows may need cd <dir>
to get to right place):
source demo1.txt

Demo 1

Page 287

Children with children

• Child windows
toplevel <name>

• Frames (containers)
frame <name>

• Child of child is named .parent.child
toplevel .win
button .win.b -text “child button”
pack .win.b

• Destroy command deletes widgets & children
destroy .win (deletes .win & .win.b)
destroy . (same as exit)

Demo 2
label .label -text "Welcome to the Tcl/Tk demo"
grid .label -column 1 -row 1
button .b -text "Exit" -command "exit"
grid .b -column 1 -row 2
toplevel .w
pack [label .w.l -text child]
pack [button .w.b -text kill -command "destroy .w"]

Creates a 2nd window. Clicking on kill closes the
child window; clicking on exit closes both

Demo 2 Demo 3
foreach c {1 2 3} {
foreach r {1 2 3} {

 grid [label .cr -text "$c-$r"] -column $c -row $r
}

}

• Creates a table with grid

Demo 3 Demo 4
Define a new command

define a routine to delete children of an item
proc cleanup {parent} {

foreach item [winfo children $parent] {
if {$item != “.tkcon”} {destroy $item}

}
}

• Define a new command with:
proc <name> <args> {script}
– <name> <arg(s)> then executes command

Page 288

Demo 4

• Nothing happens!
– New command has been defined: cleanup
– Use as cleanup . -- like this:

Demo 3a
foreach c {1 2 3} {
foreach r {1 2 3} {
grid [label .cr -text "$c-$r"] -column $c -row $r

}
}
replace upper left element with frame
destroy .11
grid [frame .f -relief raised -bd 2] -column 1 -row 1
fill the frame
foreach c {1 2} {
foreach r {1 2} {
grid [label .f.cr -text "$c+$r"] -column $c -row $r

}
}

• Creates a table inside a table with grid &
frame

Demo 3a Demo 3b
foreach c {1 2 3} {
foreach r {1 2 3} {

 grid [label .cr -text "$c-$r"] -column $c -row $r
}

}
change an element on the fly to show it can be done
.33 configure -text "new element\n33"

• Changes an existing label

Demo 3b Graphics demo
package require BLT
pack [blt::graph .g]
.g element create l -xdata {1 2 3 4} -ydata {1 2 9 16}
oops
.g element configure l -ydata {1 4 9 16}
allow zooming
Blt_ZoomStack .g

• Shows how to use BLT for plotting

Page 289

Graphics Demo

• Zoom -->

Running external programs

• Many ways -- this one is platform
independent:
set fp [open x.txt w]
puts $fp ”input”
close $fp
exec program < x.txt > x.out
set fp [open x.out r]
while {[gets $fp line] >= 0} {

#do something with line
}

Running external programs

• Even better, have program write tcl code as
output, then replace while with:
set lines [read $fp]
close $fp
eval $lines

• To suppress errors in output
catch {eval $lines}

Running interactive
programs: Win9x, -ME

 # this creates a DOS box to run a program in
proc forknewterm {title command "wait 1" "scrollbar 1"} {

global env expgui
set pwd [file nativename [pwd]]

check the .EXP path -- can DOS use it?
if {[string first // [pwd]] != -1} {

MyMessageBox -parent . -title "Invalid Path" \
-message {Error -- Use "Map network drive" to

access this directory with a letter (e.g. F:) GSAS can't
directly access a network drive} \

-icon error -type ok -default ok \
-helplink "expgui_Win_readme.html NetPath"

return
}

if {[info command winutils::shell] == ""} {
MyMessageBox -parent . -title "Setup error" \
-message {Error -- "WINTILS not found. Can't do

anything!"} \
-icon error -type darn -default darn \
-helplink "expgui_Win_readme.html Winexec"
return

}
loop over multiple commands
foreach cmd $command {

replace the forward slashes with backward
regsub -all / $cmd \\ cmd
winutils::shell [file join $dir gsastcl.bat] $cmd
}

}
}

Win-NT/-2000/-XP
proc forknewterm {title command} {
global env expgui

loop over commands

foreach cmd $command {

replace the forward slashes with backward
regsub -all / $cmd \\ cmd

exec $env(COMSPEC) /c \

"start [file join $dir gsastcl.bat] $cmd"

}

}

Page 290

Unix/OS X
proc forknewterm {title command "wait 1" "scrollbar 1"} {
global env expgui
set termopts {}
if $scrollbar {

append termopts " -sb"
} else {

append termopts " +sb"
}
if {$wait} {

set suffix {}
} else {

set suffix {&}
}
catch {eval exec xterm $termopts -title [list $title] \

-e /bin/sh -c [list $command] $suffix} errmsg
if $expgui(debug) {puts "xterm result = $errmsg"}

}

• How can you tell where you are?
if {$tcl_platform(platform) == "windows" && \

$tcl_platform(os) == "Windows 95"} {
win-95…
} elseif {$tcl_platform(platform) == "windows"} {
win-XP…
} else {
the rest
}

• See file expgui/gsascmds.tcl for more
complete versions of the commands and for
gsascmds.bat

Page 291

unit_cell_refinement.py

Overview
The unit_cell_refinement.py Python example starts with a list of 2-theta peak
positions derived from a powder diffraction experiment, and associated Miller indices
obtained with an indexing program. The six unit cell parameters
a,b,c,alpha,beta,gamma are refined to minimize the least-squares residual function:

sum over all Miller indices of (two_theta_obs -
two_theta_calc)**2

The refinement starts with the unit cell parameters a=10, b=10, c=10, alpha=90,
beta=90, gamma=90. A general purpose quasi-Newton LBFGS minimizer is used.
The LBFGS minimizer requires:

an array of parameters, in this case the unit cell parameters.
the functional given the current parameters; in this case the
functional is the residual function above.
the gradients (first derivatives) of the functional with respect to
the parameters at the point defined by the current parameters.

To keep the example simple, the gradients are computed with the finite difference
method.

Before and after the minimization a table comparing two_theta_obs and
two_theta_calc is shown. The script terminates after showing the refined unit cell
parameters.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Input data
For simplicity, the input data are included near the beginning of the example script:

two_theta_and_index_list = """\
 8.81 0 1 1
 12.23 0 0 2
 12.71 0 2 0
...
 31.56 0 1 5
 32.12 2 2 3
""".splitlines()

Page 292

Here two steps are combined into one statement. The first step is to define a multi-line
Python string using triple quotes. In the second step the Python string is split into a
Python list of smaller Python strings using the standard splitlines() method. It is
instructive to try the following:

Temporarily remove the .splitlines() call above and print
repr(two_theta_and_index_list). This will show a single
string with embedded new-line characters:

' 8.81 0 1 1\n 12.23 0 0 2\n
12.71 0 2 0\n ...
31.56 0 1 5\n 32.12 2 2 3\n'

At the command prompt, enter libtbx.help str to see the full
documentation for the Python str type including the
documentation for splitlines():

| splitlines(...)
| S.splitlines([keepends]) -> list of
strings
|
| Return a list of the lines in S,
breaking at line boundaries.
| Line breaks are not included in the
resulting list unless keepends
| is given and true.

With the .splitlines() call added back, print
repr(two_theta_and_index_list) again. This will show a
Python list of strings:

[' 8.81 0 1 1', ' 12.23 0 0
2', ' 12.71 0 2 0', ...
' 31.56 0 1 5', ' 32.12 2 2 3']

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Conversion of input data to flex arrays
The list of Python strings as obtained above has to be converted to flex arrays to be
suitable for calculating the residual sum. This is achieved with the following Python
statements:

from cctbx.array_family import flex

two_thetas_obs = flex.double()
miller_indices = flex.miller_index()
for line in two_theta_and_index_list:
 fields = line.split()
 assert len(fields) == 4
 two_thetas_obs.append(float(fields[0]))

Page 293

 miller_indices.append([int(s) for s in fields[1:]])

The first statement imports the cctbx.array_family.flex module, which provides a
number of array types, e.g. int, double, std_string and miller_index. These flex
arrays can be one-dimensional or multi-dimensional. The numeric array types provide
a comprehensive set of functions for element-wise operations such as >, +, sin, and
reduction functions such as sum, min, min_index. Try libtbx.help
cctbx.array_family.flex and libtbx.help cctbx.array_family.flex.double to see a listing
of the available features. Almost all facilities provided by the flex module are
implemented in C++ and are therefore very fast.

In the unit_cell_refinement.py example the input data are converted to the flex
array types double and miller_index. The statement:

two_thetas_obs = flex.double()
miller_indices = flex.miller_index()

instantiate brand-new one-dimensional arrays. The initial size of both arrays is 0, as
can be verified by inserting print two_thetas_obs.size() and print
miller_indices.size(). The next three statements loop over all lines in
two_theta_and_index_list:

for line in two_theta_and_index_list:
 fields = line.split()
 assert len(fields) == 4

Each line is split into fields. Use libtbx.help str again to obtain the documentation for
the split() method. The assert statement reflects good coding practices. It is not
strictly needed, but the following two statements assume that the input line consists of
exactly four fields. If this is not the case, non-obvious error messages may result.
Using assert statements is an easy way of obtaining more reasonable error messages.
They also help others understanding the source code.

The fields are still strings, but it is easy to convert the first field to a Python float
instance and to append it to the two_thetas_obs array:

two_thetas_obs.append(float(fields[0]))

The same result could be achieved in three steps:

s = fields[0] # Python lists are indexed starting with 0
v = float(s) # conversion from str -> float
two_thetas_obs.append(v)

However, the one-line version is not only shorter but clearly better for two main
reasons:

Page 294

we don't have to invent names for the intermediate results (s
and v in the second version); therefore the code is easier to
read.
the intermediate results are automatically deleted, i.e. the
corresponding memory is released immediately.

A full equivalent of the one-line version is actually even longer:

s = fields[0]
v = float(s)
del s
two_thetas_obs.append(v)
del v

The conversion of the Miller indices is more involved. Three integer indices have to
be converted from strings to integers and finally added to the miller_indices array.
It could be done like this:

h = int(fields[1])
k = int(fields[2])
l = int(fields[3])
miller_indices.append([h,k,l])

However, anyone who has spent frustrating hours debugging silly copy-and-paste
mistakes like k = int(fields[1]) will prefer the alternative using Python's List
Comprehension syntax:

hkl = [int(s) for s in fields[1:]]

This is equivalent to the longer alternative:

hkl = []
for s in fields[1:]:
 hkl.append(int(s))

Of course, that's hardly a gain over the simple copy-and-paste solution, but the list
comprehension solution clearly is, and since it is one expression it can be directly
used as an argument for miller_indices.append().

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Calculation of 2-theta angles
Bragg's law tells us how to compute diffraction angles theta. In typical textbook
notation:

Page 295

lambda = 2 * d_hkl * sin(theta)

In Python we cannot use lambda as a variable name since it is a reserved keyword for
functional programming; therefore we use the variable name wavelength instead.
Rearranging Bragg's equation leads to:

2 * sin(theta) = wavelength / d_hkl

I.e. we need to obtain two pieces of information, the wavelength and the d-spacing
d_hkl corresponding to a Miller index hkl.

The input data in the unit_cell_refinement.py script are derived from a powder
diffraction experiment with copper k-alpha radiation. A lookup table for the
corresponding wavelength is compiled into the cctbx.eltbx.wavelengths module
(libtbx.help cctbx.eltbx.wavelengths.characteristic):

from cctbx.eltbx import wavelengths
wavelength = wavelengths.characteristic("CU").as_angstrom()

We don't have to calculate d_hkl explicitly since the cctbx.uctbx.unit_cell object
"knows" about Bragg's law and also how to compute d_hkl given unit cell parameters
(libtbx.help cctbx.uctbx.unit_cell). This allows us to write:

from cctbx import uctbx
unit_cell = uctbx.unit_cell((10,10,10,90,90,90))
two_thetas_calc = unit_cell.two_theta(miller_indices,
wavelength, deg=True)

Conveniently the two_theta() method computes all two_thetas_calc in one call,
given an array of miller_indices. Now that we have both two_thetas_obs and
two_thetas_calc it is a matter of two lines to show a nice table:

for h,o,c in zip(miller_indices, two_thetas_obs,
two_thetas_calc):
 print "(%2d, %2d, %2d)" % h, "%6.2f - %6.2f = %6.2f" % (o,
c, o-c)

Use libtbx.help zip to learn about Python's standard zip() function, or consult the
Python tutorial section on Looping Techniques for more information. The print
statement can be understood by reading the tutorial section on Fancier Output
Formatting.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Page 296

Computation of the least-squares
residual
Given two_thetas_obs and two_thetas_calc, the least-squares residual defined in
the first section can be computed with three nested calls of functions provided by the
flex module introduced before:

flex.sum(flex.pow2(two_thetas_obs - two_thetas_calc))

The inner-most call of a flex function may not be immediately recognizable as such,
since it is implemented as an overloaded - operator. In a more traditional
programming language the element-wise array subtraction may have been
implemented like this:

element_wise_difference(two_thetas_obs, two_thetas_calc)

Python's operator overloading gives us the facilities to write two_thetas_obs -
two_thetas_calc instead. This expression returns a new array with the differences.
The flex.pow2() function returns another new array with with the squares of the
differences, and the flex.sum() function finally adds up the squared differences to
return a single value, the least-squares residual. All intermediate arrays are
automatically deleted during the evaluation of the nested expression as soon as they
are no longer needed.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Gradient calculation via finite
differences
The Finite Difference Method approximates the gradients of a function f(u) at the
point x with the simple formula:

df/du = (f(x+eps) - f(x-eps)) / (2*eps)

eps is a small shift. This method is also applicable for computing partial derivatives
of multivariate functions. E.g. the gradients of f(u,v) at the point x,y are
approximated as:

df/du = (f(x+eps,y) - f(x-eps,y)) / (2*eps)
df/dv = (f(x,y+eps) - f(x,y-eps)) / (2*eps)

Page 297

The main disadvantage of the finite difference method is that two full function
evaluations are required for each parameter. In general it is best to use analytical
gradients, but it is often a tedious and time consuming project to work out the
analytical expressions. Fortunately, in our case we have just six parameters, and the
runtime for one function evaluation is measured in micro seconds. Using finite
differences is exactly the right approach in this situation, at least as an initial
implementation.

To facilitate the gradient calculations, the residual calculation as introduced before is
moved to a small function:

def residual(two_thetas_obs, miller_indices, wavelength,
unit_cell):
 two_thetas_calc = unit_cell.two_theta(miller_indices,
wavelength, deg=True)
 return flex.sum(flex.pow2(two_thetas_obs -
two_thetas_calc))

The finite difference code is now straightforward:

def gradients(two_thetas_obs, miller_indices, wavelength,
unit_cell, eps=1.e-6):
 result = flex.double()
 for i in xrange(6):
 rs = []
 for signed_eps in [eps, -eps]:
 params_eps = list(unit_cell.parameters())
 params_eps[i] += signed_eps
 rs.append(
 residual(
 two_thetas_obs, miller_indices, wavelength,
 uctbx.unit_cell(params_eps)))
 result.append((rs[0]-rs[1])/(2*eps))
 return result

The list() constructor used in this function creates a copy of the list of unit cell
parameters. The chosen eps is added to or subtracted from the parameter i, and a new
uctbx.unit_cell object is instantiated with the modified parameters. With this the
residual is computed as before. We take the difference of two residuals divided by
2*eps and append it to the resulting array of gradients.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

LBFGS minimization
As outlined at the beginning, the residual() and gradients() are to be used in
connection with the quasi-Newton LBFGS minimizer as implemented in the
scitbx.lbfgs module. A minimal recipe for using this module is shown in the
scitbx/scitbx/examples/lbfgs_recipe.py script:

Page 298

class refinery:

 def __init__(self):
 self.x = flex.double([0])
 scitbx.lbfgs.run(target_evaluator=self)

 def compute_functional_and_gradients(self):
 f = 0
 g = flex.double([0])
 return f, g

 def callback_after_step(self, minimizer):
 pass

This refinery class acts as a target_evaluator object for the
scitbx.lbfgs.run() function. Basically, the target_evaluator object can be any
user-defined type, but it has to conform to certain requirements:

target_evaluator.x must be a flex.double array with the
parameters to be refined.
target_evaluator.compute_functional_and_gradients()
must be a function taking no arguments. It has to return a
floating-point value for the functional, and a flex.double
array with the gradients of the functional with respect to the
parameters at the current point target_evaluator.x. The size
of the gradient array must be identical to the size of the
parameter array.
target_evaluator.callback_after_step() is optional. If it
is defined, it is called with one argument after each LBFGS
step. The argument is an instance of the
scitbx::lbfgs::minimizer C++ class and can be analyzed to
monitor or report the progress of the minimization.
target_evaluator.callback_after_step may or may not
return a value. If the returned value is True the minimization
is terminated. Otherwise the minimization continues until
another termination condition is reached.

The scitbx.lbfgs.run(target_evaluator=self) call in the __init__() method
above initiates the LBFGS procedure. This procedure modifies the self.x (i.e.
target_evaluator.x) array in place, according to the LBFGS algorithm. Each time
the algorithm requires an evaluation of the functional and the gradients, the
compute_functional_and_gradients() method is called. I.e. the refinery object
calls scitbx.lbfgs.run() which in turn calls a method of the refinery object. The
term callback is often used to describe this situation. Note that both
compute_functional_and_gradients() and callback_after_step() are callback
functions; they are just called in different situations.

Based on the residual() and gradients() functions developed before, it is not
difficult to customize the recipe for the refinement of unit cell parameters:

Page 299

class refinery:

 def __init__(self, two_thetas_obs, miller_indices,
wavelength, unit_cell):
 self.two_thetas_obs = two_thetas_obs
 self.miller_indices = miller_indices
 self.wavelength = wavelength
 self.x = flex.double(unit_cell.parameters())
 scitbx.lbfgs.run(target_evaluator=self)

 def unit_cell(self):
 return uctbx.unit_cell(iter(self.x))

 def compute_functional_and_gradients(self):
 unit_cell = self.unit_cell()
 f = residual(
 self.two_thetas_obs, self.miller_indices,
self.wavelength, unit_cell)
 g = gradients(
 self.two_thetas_obs, self.miller_indices,
self.wavelength, unit_cell)
 print "functional: %12.6g" % f, "gradient norm: %12.6g" %
g.norm()
 return f, g

 def callback_after_step(self, minimizer):
 print "LBFGS step"

With this class all required building blocks are in place. The refinement is run and the
results are reported with these statements:

refined = refinery(
 two_thetas_obs, miller_indices, wavelength,
unit_cell_start)
print refined.unit_cell()

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

To try goes studying over
The title of this section is Google's automatic translation of the German saying
"Probieren geht ueber studieren." It is an invitation to copy and run this and other
example scripts. Insert print statements to develop a better understanding of how all
the pieces interact. Use print list(array) to see the elements of flex arrays. It
may also be useful to insert help(obj) to see the attributes and methods of obj,
where obj can be any of the objects created in the script.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Page 300

Exercise (not very hard)
Read the 2-theta angles and Miller indices from a file.

Hint: Learn about import sys and sys.argv.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (not very hard)
import iotbx.command_line.lattice_symmetry and instantiate the
metric_subgroups class with the refined unit cell.

Hint: Look for "P 1" in the run() function in
iotbx/iotbx/command_line/lattice_symmetry.py.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (harder)
Estimate the start parameters from 6 indices and associated 2-theta angels.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (advanced)
Work out a way to use analytical gradients. The best solution is not clear to me
(rwgk). You may have to refine metric tensor elements instead of the unit cell
parameters to keep the problem manageable. See d_star_sq_alternative.py for a
possible start. Compare the time it took you to work out the code with the analytical
gradients to the time it takes to implement the finite difference method.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (requires creativity)
Study adp_symmetry_constraints.py. Use:

constraints = sgtbx.tensor_rank_2_constraints(

Page 301

 space_group=space_group,
 reciprocal_space=False,
 initialize_gradient_handling=True)

to reduce the number of unit cell parameters to be refined.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

View document source. Generated on: 2005-09-28 19:27 UTC. Generated by Docutils from
reStructuredText source.

Page 302

direct_methods_light.py

Overview
The direct_methods_light.py Python example is designed to read two CIF files
from the Acta Crystallographica Section C web page as inputs:

required: reduced X-ray diffraction data: vj1132Isup2.hkl
optional: the corresponding refined structure: vj1132sup1.cif

The iotbx.acta_c module is used to convert the diffraction data to a
cctbx.miller.array object; this is supported by James Hester's PyCifRW library.
Normalized structure factors ("E-values") are computed, and the largest E-values are
selected for phase recycling with the Tangent Formula.

The Miller indices of the largest E-values are used to construct index triplets h = k +
h-k with the cctbx.dmtbx.triplet_generator. The Tangent Formula is repeatedly
applied to recycle a phase set, starting from random phases. After a given number of
cycles, the resulting phase set is combined with the E-values. The resulting Fourier
coefficients are used in a Fast Fourier Transformation to obtain an "E-map". The E-
map is normalized and a symmetry-aware peak search is carried out; i.e. the resulting
peak list is unique under symmetry.

If the CIF file with the coordinates is given, it is first used to compute structure
factors f_calc. The correlation with the diffraction data is shown. Next, the CIF
coordinates are compared with the E-map peak list using the Euclidean Model
Matching procedure (Emma) implemented in the cctbx. The resulting output can be
used to quickly judge if the structure was solved with the simple Tangent Formula
recycling procedure.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Recommended reading
The unit_cell_refinement.py example introduces some important basis concepts.

Processing of vj1132Isup2.hkl
The first step is to get hold of the file name with the reduced diffraction data. The file
name has to be specified as the first command-line argument:

iotbx.python direct_methods_light.py vj1132Isup2.hkl

Page 303

In the example script, the command line argument is extracted from the sys.argv list
provided by Python's standard sys module (libtbx.help sys):

import sys
reflection_file_name = sys.argv[1]

The reflection_file_name is used in the call of the cif_as_miller_array()
function provided by the iotbx.acta_c module:

from iotbx import acta_c
miller_array =
acta_c.cif_as_miller_array(file_name=reflection_file_name)
miller_array.show_comprehensive_summary()

The iotbx.acta_c module makes use of the PyCifRW library to read CIF files.
PyCifRW returns the CIF data items as plain strings. The cif_as_miller_array()
function extracts the appropriate strings from the object tree returned by PyCifRW to
construct an instance of the cctbx.miller.array class, which is one of the central
types in the cctbx source tree. The miller.array class has a very large number of
methods (libtbx.help cctbx.miller.array), e.g. the show_comprehensive_summary()
method used above to obtain this output:

Miller array info: vj1132Isup2.hkl:F_meas,F_sigma
Observation type: xray.amplitude
Type of data: double, size=422
Type of sigmas: double, size=422
Number of Miller indices: 422
Anomalous flag: False
Unit cell: (12.0263, 6.0321, 5.8293, 90, 90, 90)
Space group: P n a 21 (No. 33)
Systematic absences: 0
Centric reflections: 83
Resolution range: 6.01315 0.83382
Completeness in resolution range: 1
Completeness with d_max=infinity: 1

We can see that the miller_array contains data and sigmas, both of type double. It
also contains Miller indices, an anomalous flag, a unit cell and a space_group object.
These are the primary data members. The observation type is an optional annotation
which is typically added by the creator of the object, in this case the
cif_as_miller_array() function. The information in the last five lines of the output
is calculated on the fly based on the primary information and discarded after the
show_comprehensive_summary() call is completed.

Two other cctbx.miller.array methods are used in the following statements in the
script:

if (miller_array.is_xray_intensity_array()):
 miller_array = miller_array.f_sq_as_f()

Page 304

If the miller_array is an intensity array, it is converted to an amplitude array. The
f_sq_as_f() method ("sq" is short for "square") returns a new cctbx.miller.array
instance. At some point during the evaluation of the statement the old and the new
instance are both present in memory. However, after the miller_array =
miller_array.f_sq_as_f() assignment is completed, the old miller_array
instance is deleted automatically by the Python interpreter since there is no longer a
reference to it, and the corresponding memory is released immediately.

It is very important to understand that most miller.array methods do not modify the
instance in place, but return new objects. The importance of minimizing the number
of methods performing in-place manipulations cannot be overstated. In large systems,
in-place manipulations quickly lead to unforeseen side-effects and eventually
frustrating, time-consuming debugging sessions. It is much safer to create new
objects. In most cases the dynamic memory allocation overhead associated with
object creation and deletion is negligible compared to the runtime for the actual core
algorithms. It is like putting on seat belts before a long trip with the car. The 10
seconds it takes to buckle up are nothing compared to the hours the seat belts protect
you.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Computation of E-values
Having said all the things about the dangers of in-place operations, the next statement
in the script happens to be just that:

miller_array.setup_binner(auto_binning=True)

However, the operation does not affect the primary data members of the
miller_array (unit cell, space group, indices, data, sigmas). The setup_binner()
call initializes or re-initializes a binner object to be used in subsequent calculations.
The binner object is understood to be a secondary data member and its state only
affects the results of future calculations. In situations like this in-place operations are
perfectly reasonable.

The result of the setup_binner() call is shown with this statement:

miller_array.binner().show_summary()

The output is:

unused: - 6.0133 [0/0]
bin 1: 6.0133 - 1.6574 [57/57]
bin 2: 1.6574 - 1.3201 [55/55]
bin 3: 1.3201 - 1.1546 [55/55]

Page 305

bin 4: 1.1546 - 1.0496 [45/45]
bin 5: 1.0496 - 0.9747 [55/55]
bin 6: 0.9747 - 0.9175 [55/55]
bin 7: 0.9175 - 0.8717 [48/48]
bin 8: 0.8717 - 0.8338 [52/52]
unused: 0.8338 - [0/0]

This means we are ready to calculate quasi-normalized structure factors by computing
f_sq / <f_sq/epsilon> in resolution bins:

all_e_values =
miller_array.quasi_normalize_structure_factors().sort(by_valu
e="data")

This statement performs two steps at once. First, the
quasi_normalize_structure_factors() method creates a new
cctbx.miller.array instance with the same unit cell, space group, anomalous flag
and Miller indices as the input miller_array, but with a new data array containing
the normalized structure factors. The sort() method is used immediately on this
intermediate instance to sort the E-values by magnitude. By default, the data are
sorted in descending order (largest first, smallest last). This is exactly what we want
here. To convince yourself it is correct, insert all_e_values.show_array().

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Generation of triplets
In direct methods procedures it is typical to generate the h = k + h-k Miller index
triplets only for the largest E-values. In the example script, the largest E-values are
selected with this statement:

large_e_values = all_e_values.select(all_e_values.data() >
1.2)

Again, this statement combines several steps into one expression. First, we obtain
access to the array of all E-values via all_e_values.data(). This array is a
flex.double instance, which in turn has its own methods (libtbx.help
cctbx.array_family.flex.double). One of the flex.double methods is the overloaded
> operator; in the libtbx.help output look for __gt__(...). This operator returns a
flex.bool instance, an array with bool values, True if the corresponding E-value is
greater than 1.2 and False otherwise. The flex.bool instance becomes the
argument to the select() method of cctbx.miller.array, which finally returns the
result of the whole statement. large_e_values is a new cctbx.miller.array
instance with the same unit cell, space group and anomalous flag as all_e_values,
but fewer indices and corresponding data. Of the 422 E-values only 111 are selected,
as is shown by this print statement:

Page 306

print "number of large_e_values:", large_e_values.size()

At this point all the information required to generate the triplets is available:

from cctbx import dmtbx
triplets = dmtbx.triplet_generator(large_e_values)

The triplet_generator is based on the cctbx::dmtbx::triplet_generator C++ class
which uses a very fast algorithm to find the Miller index triplets (see the references
near the top of triplet_generator.h). The triplets object manages all internal arrays
automatically. It is not necessary to know very much about this object, but is is
informative to print out the results of some of its methods, e.g.:

from cctbx.array_family import flex
print "triplets per reflection: min,max,mean: %d, %d, %.2f" %
(
 flex.min(triplets.n_relations()),
 flex.max(triplets.n_relations()),
 flex.mean(triplets.n_relations().as_double()))
print "total number of triplets:",
flex.sum(triplets.n_relations())

Here the general purpose flex.min(), flex.max(), flex.mean() and flex.sum()
functions are used to obtain summary statistics of the number of triplet phase relations
per Miller index. triplets.n_relations() returns a flex.size_t() array with
unsigned integers corresponding to the ANSI C/C++ size_t type. However, the
flex.mean() function is only defined for flex.double arrays. Therefore
n_relations() has to be converted via as_double() before computing the mean.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Tangent Formula phase recycling
Starting with RANTAN, the predominant method for initiating Tangent Formula
phase recycling is to generate random phases. In principle this is very easy. E.g. the
flex.random_double() function could be used:

random_phases_rad =
flex.random_double(size=large_e_values.size())-0.5
random_phases_rad *= 2*math.pi

However, centric reflections need special attention since the phase angles are
restricted to two values, phi and phi+180, where phi depends on the space group and
the Miller index. A proper treatment of the phase restrictions is implemented in the
random_phases_compatible_with_phase_restrictions() method of
cctbx.miller.array:

Page 307

input_phases =
large_e_values.random_phases_compatible_with_phase_restrictio
ns()

The underlying random number generator is seeded with the system time, therefore
the input_phases will be different each time the example script is run.

The Tangent Formula recycling loop has this simple design:

result = input
for i in xrange(10):
 result = function(result)

In the example script the actual corresponding code is:

tangent_formula_phases = input_phases.data()
for i in xrange(10):
 tangent_formula_phases = triplets.apply_tangent_formula(
 amplitudes=large_e_values.data(),
 phases_rad=tangent_formula_phases,
 selection_fixed=None,
 use_fixed_only=False,
 reuse_results=True)

In this case function() is the apply_tangent_formula() method of the triplet
object returned by the cctbx.dmtbx.triplet_generator() call. The function call
looks more complicated than the simplified version because it requires a number of
additional arguments customizing the recycling protocol. It may be interesting to try
different settings as an exercise. See cctbx::dmtbx::triplet_generator for details.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

E-map calculation
Another cctbx.miller.array method is used to combine the large_e_values with
the tangent_formula_phases obtained through the recycling procedure:

e_map_coeff = large_e_values.phase_transfer(
 phase_source=tangent_formula_phases)

The phase_transfer() returns a flex.complex_double array of Fourier
coefficients. A general proper treatment of phase restrictions is automatically
included, although in this case it just corrects for rounding errors.

Given the Fourier coefficients, an E-map could be obtained simply via
e_map_coeff.fft_map(). However, we have to think ahead a little to address a

Page 308

technical detail. A subsequent step will be a peak search in the E-map. For this we
will use a peak search algorithm implemented in the cctbx.maptbx module, which
imposes certain space-group specific restrictions on the gridding of the map. For all
symmetry operations of the given space group, each grid point must be mapped
exactly onto another grid point. E.g. in space group P222 the gridding must be a
multiple of 2 in all three dimensions. To inform the fft_map() method about these
requirements we use:

from cctbx import maptbx
e_map =
e_map_coeff.fft_map(symmetry_flags=maptbx.use_space_group_sym
metry)

The resulting e_map is normalized by first determining the mean and standard
deviation ("sigma") of all values in the map, and then dividing by the standard
deviation:

e_map.apply_sigma_scaling()

Since maps tend to be large and short-lived, this is implemented as an in-place
operation to maximize runtime efficiency. The statistics() method of the e_map
object is used to quickly print a small summary:

e_map.statistics().show_summary(prefix="e_map ")

This output is of the form:

e_map max 11.9224
e_map min -2.68763
e_map mean -2.06139e-17
e_map sigma 1

Due to differences in the seed for the random number generator, the max and min will
be different each time the example script is run. However, the mean is always very
close to 0 since the Fourier coefficient with index (0,0,0) is zero, and sigma is always
very close to 1 due to the prior use of apply_sigma_scaling(); small deviations are
the accumulated result of floating-point rounding errors.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Peak search
Given the normalized e_map, the peak search is initiated with this statement:

Page 309

peak_search =
e_map.peak_search(parameters=maptbx.peak_search_parameters(
 min_distance_sym_equiv=1.2))

The only purpose of the maptbx.peak_search_parameters class is to group the
fairly large number of parameters (libtbx.help
cctbx.maptbx.peak_search_parameters). This approach greatly simplifies the
argument list of functions and methods involving peak search parameters. It also
accelerates experimentation during the algorithm development process. Parameters
can be added, deleted or renamed without having to modify all the functions and
methods connected to the peak search.

In the example, the minimum distance between symmetry-related sites is set to 1.2 A.
This instructs the peak search algorithm to perform a cluster analysis. The underlying
distance calculations are performed for symmetry-related pairs and pairs of peaks
unique under symmetry ("cross peaks"). If the min_cross_distance peak search
parameter is not specified explicitly (as in the example), it is assumed to be equal to
the min_distance_sym_equiv parameter.

The cluster analysis begins by adding the largest peak in the map as the first entry to
the peak list. All peaks in a radius of 1.2 A around this peak are eliminated. The
largest of the remaining peaks is added to the peak list, and all peaks in a radius of 1.2
A around this peak are eliminated etc., until all peaks in the map are considered or a
predefined limit is reached. The example uses:

peaks = peak_search.all(max_clusters=10)

to obtain up to 10 peaks in this way. The peaks are printed in this for loop:

for site,height in zip(peaks.sites(), peaks.heights()):
 print " (%9.6f, %9.6f, %9.6f)" % site, "%10.3f" % height

See the unit_cell_refinement.py example for comments regarding the standard Python
zip() function. The Python tutorial section on Fancier Output Formatting is useful to
learn more about the print statement.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Processing of vj1132sup1.cif
Since it is not easy to quickly judge from the peak list if the structure was solved, the
vj1132sup1.cif file is used for verification purposes. It is processed in very much
the same way as the vj1132Isup2.hkl file before:

coordinate_file_name = sys.argv[2]

Page 310

xray_structure = acta_c.cif_as_xray_structure(
 file_name=coordinate_file_name,
 data_block_name="I")

The cif_as_xray_structure() call requires the name of the CIF data block name in
addition to the file name. This is because Acta C coordinate CIF files may contain
multiple structures (and because the iotbx.acta_c module is not sophisticated
enough to simply "do the right thing" if the CIF file contains only one structure). The
result is an instance of another central type in the cctbx source tree,
cctbx.xray.structure. The xray_structure object is best understood by asking it
for a summary:

xray_structure.show_summary()

The output is:

Number of scatterers: 13
At special positions: 0
Unit cell: (12.0263, 6.0321, 5.829, 90, 90, 90)
Space group: P n a 21 (No. 33)

We can also ask it for a list of scatterers:

xray_structure.show_scatterers()

The result is:

Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso
O1 O 4 (0.5896 0.4862 0.6045) 1.00 0.0356
O2 O 4 (0.6861 0.2009 0.7409) 1.00 0.0328
C2 C 4 (0.6636 0.2231 0.3380) 1.00 0.0224
H2 H 4 (0.7419 0.1804 0.3237) 1.00 0.0270
C1 C 4 (0.6443 0.3133 0.5818) 1.00 0.0222
C3 C 4 (0.5923 0.0216 0.2916) 1.00 0.0347
H3A H 4 (0.6060 -0.0308 0.1387) 1.00 0.0520
H3B H 4 (0.5153 0.0605 0.3069) 1.00 0.0520
H3C H 4 (0.6104 -0.0930 0.3997) 1.00 0.0520
N1 N 4 (0.6395 0.3976 0.1659) 1.00 0.0258
H1A H 4 (0.6815 0.5160 0.1942) 1.00 0.0390
H1B H 4 (0.5680 0.4351 0.1741) 1.00 0.0390
H1C H 4 (0.6544 0.3463 0.0261) 1.00 0.0390

Instead of writing:

xray_structure.show_summary()
xray_structure.show_scatterers()

we can also write:

Page 311

xray_structure.show_summary().show_scatterers()

This approach is called "chaining". The trick is in fact very simple:

class structure:

 def show_summary(self):
 print "something"
 return self

 def show_scatterers():
 print "more"
 return self

Simply returning self enables chaining.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Correlation of F-obs and F-calc
Given the amplitudes F-obs as miller_array and the refined coordinates as
xray_structure, F-calc amplitudes are computed with this statement:

f_calc = abs(miller_array.structure_factors_from_scatterers(
 xray_structure=xray_structure,
 algorithm="direct").f_calc())

This expression can be broken down into three steps. The first step is:

miller_array.structure_factors_from_scatterers(
 xray_structure=xray_structure,
 algorithm="direct")

This step performs the structure factor calculation using a direct summation algorithm
(as opposed to a FFT algorithm). The result is an object with information about the
details of the calculation, e.g. timings, or memory requirements if the FFT algorithm
is used. If the details are not needed, they can be discarded immediately by extracting
only the item of interest. In this case we use the f_calc() method to obtain a
cctbx.miller.array instance with the calculated structure factors, stored in a
flex.complex_double array. The outermost abs() function calls the __abs__()
method of cctbx.miller.array which returns another new cctbx.miller.array
instance with the structure factor amplitudes, stored in a flex.double array.

The correlation of F-obs and F-calc is computed with this statement:

Page 312

correlation = flex.linear_correlation(f_calc.data(),
miller_array.data())

flex.linear_correlation is a C++ class (libtbx.help
cctbx.array_family.flex.linear_correlation) which offers details about the correlation
calculation, similar in idea to the result of the
structure_factors_from_scatterers() above. We could discard all the details
again, but the correlation coefficient could be undefined, e.g. if all values are zero, or
if all values in one of the two input arrays are equal. We ensure the correlation is well
defined via:

assert correlation.is_well_defined()

It is good practice to insert assert statements anywhere a certain assumption is made.
The cctbx sources contain a large number of assert statements. They prove to be
invaluable in flagging errors during algorithm development. In most situations errors
are flagged close to the source. Time-consuming debugging sessions to backtrack
from the point of a crash to the source of the problem are mostly avoided. Once we
are sure the correlation is well defined, we can print the coefficient with confidence:

print "correlation of f_obs and f_calc: %.4f" %
correlation.coefficient()

It is amazingly high (0.9943) for the vj1132 case.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Euclidean Model Matching (Emma)
Our goal is to match each peak site with a site in the vj1132sup1.cif file. To make
this section less abstract, we start with an example result:

Match summary:
 Operator:
 rotation: {{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}}
 translation: {0.5, 0, -0.136844}
 rms coordinate differences: 0.85
 Pairs: 8
 O1 peak01 0.710
 O2 peak09 1.000
 C2 peak03 0.896
 C1 peak02 0.662
 C3 peak04 0.954
 H3B peak07 0.619
 H3C peak08 0.979
 H1C peak06 0.900
 Singles model 1: 5
 H2 H3A N1 H1A H1B

Page 313

 Singles model 2: 2
 peak00 peak05

This means, peak01 corresponds to O1 in the CIF file with a mismatch of 0.710 A,
peak09 corresponds to O2 with a 1.000 A mismatch, etc. The match is obtained after
inverting the hand of the peaks (the rotation) and adding {0.5, 0, -0.136844} to
the coordinates (the translation). Some sites in the CIF files have no matching
peaks (e.g. N1) and some peaks have no matching site in the CIF file (e.g. peak00).
The overall RMS (root-mean-square) of the mismatches is 0.85. I.e. this match is not
very good, except as a bad example.

In general, the comparison of two coordinate sets via pair-wise association of sites is
quite complex due to the underlying symmetry of the search space. In addition to the
space group symmetry, allowed origin shifts and a change of hand have to be taken
into consideration. This is described in detail by Grosse-Kunstleve & Adams (2003).

The cctbx.euclidean_model_matching module is available for computing the pairs
of matching sites. The search algorithm operates on specifically designed
cctbx.euclidean_model_matching.model objects. I.e. we have to convert the
xray_structure instance and the peaks to
cctbx.euclidean_model_matching.model objects. Converting the
xray_structure object is easy because the conversion is pre-defined as the
as_emma_model() method:

reference_model = xray_structure.as_emma_model()

Converting the peaks object is not pre-defined. We have to do it the hard way. We
start with assertions, just to be sure:

assert
reference_model.unit_cell().is_similar_to(e_map.unit_cell())
assert reference_model.space_group() == e_map.space_group()

This gives us the confidence to write:

from cctbx import euclidean_model_matching as emma
peak_model =
emma.model(special_position_settings=reference_model)

special_position_settings is a third central type in the cctbx source tree. It
groups the unit cell, space group, and the min_distance_sym_equiv parameter which
defines the tolerance for the determination of special positions. emma.model inherits
from this type, therefore we can use the reference_model (which is an emma.model
object) anywhere a special_position_settings object is required. This is more
convenient than constructing a new special_position_settings objects from
scratch.

Page 314

At this stage the peak_model object does not contain any coordinates. We add them
with this loop:

for i,site in enumerate(peaks.sites()):
 peak_model.add_position(emma.position(label="peak%02d" % i,
site=site))

The loop construct is a standard idiom (libtbx.help enumerate, Looping Techniques).
label="peak%02d" % i creates a label of the form peak000, peak001, etc. The label
and the site are used to construct an emma.position object which is finally added to
the peak_model via the add_position() method.

The emma.model_matches() function computes a sorted list of possible matches:

matches = emma.model_matches(
 model1=reference_model,
 model2=peak_model,
 tolerance=1.,
 models_are_diffraction_index_equivalent=True)

The tolerance determines the maximum distance for a pair of a site in model1 and a
site in model2. The models_are_diffraction_index_equivalent parameter is
used in the determination of the symmetry of the search space and has to do with
indexing ambiguities. It is always safe to use
models_are_diffraction_index_equivalent=False, but the search may be
slower. If it is certain that the models are derived from the same diffraction data
models_are_diffraction_index_equivalent=True can be used to reduce the
runtime. In this case we are sure because the correlation between F-obs and F-calc is
almost perfect.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (not very hard)
Run the example script several times. Each time the results will be different due to
different random seeds. You will observe that Emma is often mislead by the
hydrogens in the CIF file. To solve this problem, modify the script to remove the
hydrogens from the reference model.

Hint: Find the implementation of cctbx.xray.structure.as_emma_model()
(cctbx/cctbx/xray/__init__.py). Note that scatterer has a scattering_type
attribute.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Page 315

Exercise (harder)
Compute the correlation between all_e_values and a cctbx.xray.structure
constructed with the top 6 peaks, using "const" as the scattering_type.

Hint: Study iotbx/iotbx/acta_c.py to see how the xray_structure is constructed
from the CIF file. However, use peak_structure =
xray.structure(special_position_settings=xray_structure). Study
cctbx.xray.structure.__init__() to see why this works.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

Exercise (advanced)
Refactor the example script by splitting it up into functions and possibly classes.
Compute random starting phases a given number of times and repeat the Tangent
formula recycling for each. Avoid duplicate work. I.e. don't read the inputs multiple
time, don't create the Emma reference model multiple times.

[Complete example script] [Example output] [cctbx downloads] [cctbx front page]
[Python tutorial]

View document source. Generated on: 2005-09-28 19:27 UTC. Generated by Docutils from
reStructuredText source.

Page 316

Central cctbx types

special_position_settings

xray.structure

miller.set

miller.array

unit_cell

space_group_info

crystal.symmetry

+
=

min_distance_sym_equiv

array of xray.scatterer

array of miller.indexmiller.index

anomalous_flag

composition

inheritance

inheritance inheritance

composition

composition composition

composition

array of data

bool
int
double
complex_double
hendrickson_lattman

Page 317

Tutorial on scoring methods for evaluation of electron density maps

Tom Terwilliger, Los Alamos National Laboratory 12-August-2005

What you will do in this tutorial

This tutorial will show you how you can combine scores from several criteria to
evaluate the quality of an electron density map. You will be able to use real SAD data
from a small protein (IF5a), compare the maps obtained with the correct, inverse, and
random sites, and examine the scores obtained from analyzing features of the map
such as its SD of local rms, its skew, or connectivity. You will be able to choose
which scoring criteria are the most useful and to put these together into a simple
scoring algorithm. You will then be able to apply your scoring algorithm to solve this
structure and to test it on other structures.

Getting ready

Download the developmental version of PHENIX (www.phenix-online.org) and
install it. Installation takes just a minute or two if /usr/local/ is where you want phenix
to be installed and you use the command:

./install --prefix=/usr/local/ --no-textal-maps

Set up your environment: put the line

source /usr/local/phenix-1.21a/phenix_env
into your .cshrc file in your home directory and use the C-shell: just type

csh

and the phenix environment should be set up. You can test it with

iotbx.reflection_statistics
which should tell you about the iotbx analysis tool which you may wish to use to look
at the statistics of a data file.

Copy over some data to work on

Make a new directory to work in and copy over the if5a data (called p9_sad here) to
it. For example:

cd
mkdir phenix_tutorial
cd phenix_tutorial
cp -r $PHENIX/examples/p9_sad .
cd p9_sad
pwd
ls

Page 318

Running AutoSol in PHENIX to phase and evaluate a map

Running AutoSol in PHENIX is easy. In this tutorial we will run it from a script. You
control what AutoSol does with keywords in the file Facts.list. Edit the Facts.list that
is in this directory to look like this:

force
create_scoring_table True
resolution 3.0
sg "I 4"
cell 113.949 113.949 32.474 90.000 90.000 90.00
read_sites True
ha_sites_file p9_sites.xyz
stop_after_scoring True

and also make a file p9_sites.xyz with the correct heavy-atom sites for p9:

xyz 0.680 0.388 0.012
xyz 0.314 0.237 0.478
xyz 0.336 0.207 0.418

Now you can run AutoSol which will phase with these sites (and it will also phase
with the inverse solution) and evaluate the maps from each:

phenix.runWizard AutoSol restart |tee AutoSol.log
You need the restart command so that it will start over from the beginning every
time. As it runs notice that it gives you an output listing of the scores for randomized
maps for each of several criteria, and then the scores for the maps calculated from
your sites and from the inverse. Then it calculates a Z-score for your map for each
criteria, where the Z-score is the score for your map minus the mean score for the
random maps, divided by the standard deviation of scores for the random maps. The
overall score for your map is the sum of these Z-scores.

Part of the output in AutoSol.log might look something like this:

Evaluate_solution
Setting up new scoring table with 6 values
TEMP7/resolve.scores CC 0.1449478
TEMP7/resolve.scores RFACTOR 0.6076099
TEMP7/resolve.scores SKEW -0.0040215286
where the three criteria CC, RFACTOR an SKEW are being used to evaluate the map.

You can also look at the file AutoSol_summary.dat for a summary of the scoring on
each of your maps (the one from the sites as you put them in and the inverse sites).
Part of this file might look like:

Solution # 1 SCORE:58.8961885202 Dataset #1 FOM: 0.41 -----------

Page 319

Solution 1 read from file p9_sites.xyz Dataset #1

 Score type: CC RFACTOR SKEW NCS_OVERLAP
Raw scores: 0.473 0.501 0.122 0.000
Z-scores: 36.014 18.782 4.100 0.000

Refined heavy atom sites (fractional):
xyz 0.680 0.388 0.012
xyz 0.314 0.237 0.478
xyz 0.336 0.207 0.418

The main goal in this tutorial is to come up with the best set of criteria for combining
with Z-scores. You can use a single criterion or a group of them.

Criteria for evaluating an electron density map

You have available to you several criteria for evaluating an electron density map.
These are:

SKEW -- the skew of the electron density map (related to rho**3)
SD -- the standard deviation of local rms. This is the scoring criterion used in
SOLVE. It is high if there are regions of low rms (solvent) and regions of high
rms (protein), and low if the map has a uniform rms everywhere (random)
RFACTOR -- the r-factor for 1 cycle of density modification. This reflects
how well the observed amplitudes agree with those which would make the
map conform to expections (i.e., flat solvent).
CC -- the correlation of the starting map and the map obtained with only map-
probability phasing (phases from density modification not recombined with
original phases). This criteria is closely related to RFACTOR.
TRUNCATE -- The correlation of a map obtained by truncating the density in
the map at a high level with the original map. A measure of how distinct the
density is in the map.
REGIONS -- The number of regions obtained if the map is truncated at a high
level. A measure of the connectivity of the map.
NCS_OVERLAP -- the overlap of NCS-related density. This is zero if no
NCS is present or cannot be found from the heavy-atom sites.

Changing the criteria used for scoring

You can change the criteria used for scoring by adding a line to your Facts.list file
specifying which criteria to use. Here is how you would choose SD and SKEW and
RFACTOR:

score_type_list SD SKEW RFACTOR

Run AutoSol again, and see what scores you get for these criteria and how they add
up. Now try all the scoring criteria. Decide how to put these together to get the best
possible discrimination between the correct hand (the hand you put in) and the
inverse.

Page 320

Now reconsider what we are doing...is this the best way to optimize our scoring
procedure? Perhaps we need to check it against a random set of sites? Perhaps the
resolution matters? Perhaps we need also to check it against some different data?

Try a random set of sites by editing a new file random.xyz and putting some random
coordinates in it. How does this fare in your scoring scheme?

Now try changing the resolution with the resolution command in your Facts.list file.
The maximum resolution of this dataset is 2.1 A.

Trying your scoring criteria with a new set of data

Now try it with a new set of data. You can make a new directory for the sec17 data:

cd ../
mkdir sec17
cd sec17
cp $PHENIX/examples/sec17* .
pwd
ls

and a Facts.list something like this, except you will want to put in your own list of
scoring criteria:

force
create_scoring_table True
resolution 3.0
read_sites True
ha_sites_file sec17.xyz
score_type_list TRUNCATE REGIONS CC RFACTOR SKEW SD
stop_after_scoring True

and a sec17.xyz like this:

xyz 0.3780 0.1961 -0.0047
xyz 0.1489 0.4676 0.0266
xyz 0.1411 0.4397 0.4504

Does your scoring scheme still work? Is it the best one for this dataset? Perhaps you
might optimize your scoring scheme to simultaneously be good for both datasets.

Use your scoring scheme to solve the IF5a structure

Now that you have an optimized scoring scheme, use it to solve the IF5a structure.
Make a new Facts.list that looks like this one, but with your scoring criteria:

force
create_scoring_table True
build True

Page 321

ha_iteration False
resolution 2.5
sg "I 4"
cell 113.949 113.949 32.474 90.000 90.000 90.00
score_type_list CC RFACTOR SKEW

If you want to have the AutoSol Wizard iterate in finding additional heavy-atom sites
and optimizing their positions using difference Fouriers after density modification, try
adding the lines

ha_iteration True
max_ha_iterations 1
fix_xyz_after_denmod False

to your Facts.list file.

Now run AutoSol again now using the restart command as before:

phenix.runWizard AutoSol restart |tee AutoSol.log
You should obtain an AutoSol_summary.dat that lists the best solution found and
the scores you obtained with it and where the model is located. You can look at the
model with the command :

phenix.pymol

You can also look at all your results with a GUI if you type

phenix

and answer "yes" to the questions asked and then select Wizards and then double-
click on AutoSol and then click on RUN in the lower right corner to reset the Wizard.
You can then click on the magnifying glass icon at the top of the Wizard and it will
give you some options of things to look at (phasing log, model, model and map, etc).

Page 322

Call for Contributions to the Next CompComm Newsletter

The seventh issue of the Compcomm Newsletter is expected to appear around April of 2006 with the
tentative primary theme involving “Minimisation” algorithms for indexing, structure solution and
refinement. If no-one is else is co-opted, the newsletter will be edited by Lachlan Cranswick.

Contributions would be also greatly appreciated on matters of general interest to the crystallographic
computing community, e.g. meeting reports, future meetings, developments in software, algorithms,
coding, historical articles, programming languages, techniques and other news.

Please send articles and suggestions directly to the editor.

Lachlan M. D. Cranswick
Canadian Neutron Beam Centre
National Research Council of Canada
Building 459, Station 18,
Chalk River Laboratories,
Chalk River, Ontario,
Canada, K0J 1J0
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

Page 323

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

