
International Tables for Crystallography

Volume G: Definition and exchange of crystallographic data

Edited by S. R. Hall and B. McMahon

Chapter 3.1. General considerations when defining a CIF data item
(B. McMahon)

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained.
Republication of this article or its storage in electronic databases or the like is not permitted without prior
permission in writing from the IUCr.

Volume

G
Definition and exchange of
crystallographic data

Edited by
S.R.Hall and B.McMahon

First editionIN
T
E
R
N
A
T
IO

N
A
L
T
A
B
L
E
S

fo
r
C
R
Y
S
T
A
L
L
O
G
R
A
P
H
Y

Volume G describes the standard data exchange and archival file format (CIF) used throughout crys-
tallography. It provides in-depth information vital for small-molecule, inorganic and macromolecular
crystallographers, mineralogists, chemists, materials scientists, solid-state physicists and others who
wish to record or use the results of a single-crystal or powder diffraction experiment. The volume
also provides the detailed data ontology necessary for programmers and database managers to design
interoperable computer applications. The accompanying CD-ROM contains the CIF dictionaries in
machine-readable form and a collection of libraries and utility programs.

This volume is an essential guide and reference for programmers of crystallographic software, data
managers handling crystal-structure information and practising crystallographers who need to use
CIF.

For more information and an order form, please visit it.iucr.org/g

International Tables Online is available from it.iucr.org
c©International Union of Crystallography

http://it.iucr.org/
http://it.iucr.org/g/
http://dx.doi.org/openurl?url_ver=Z39.88-2003&rfr_id=ori:rid:author.iucr.org&rft_id=doi:10.1107/97809553602060000733&rfr_dat=cr%5FsetVer%3D01%26cr%5Fpub%3D10%2E1107%26cr%5Fwork%3DGeneral%20considerations%20when%20defining%20a%20CIF%20data%20item%26cr%5Fsrc%3D10%2E1107%26cr%5FsrvTyp%3Dhtml
http://it.iucr.org/g/
http://it.iucr.org

3.1. General considerations when defining a CIF data item

BY B. MCMAHON

3.1.1. Introduction

Much of the power and usefulness of the Crystallographic Infor-
mation File (CIF) arises from the existence of a comprehensive set
of data dictionaries that define all data items commonly used in
the field. These are the dictionaries that are presented in Part 4 of
this volume. The information contained in a CIF is expressed in
terms of these data items. A data item consists of a value associ-
ated with a data name, or tag. The tag may appear immediately
before a single data value or in the heading of a looped list where
the values form a column. In either construction, the data value is
identified by the tag and this unique character string is the key to
the definition of the data value in the dictionary.

A data definition may include information such as a text descrip-
tion of the quantity, its physical units, the range within which
valid values must lie, the names of other data items that are
related by inheritance or derivation to the data item and so on.
Placing this information in a dictionary file, rather than in the
data file itself, has a number of important advantages. First, it
encourages the standardization of unique tags for data items,
which is an essential step towards the seamless and unambigu-
ous exchange of information. Dictionaries also facilitate a glob-
ally accepted understanding of what each data item is, and thus
ensure that different data files using the same tags have a consistent
interpretation.

The existence of global dictionaries does not in any way restrict
the expressive power of CIF. A CIF may contain items not in
the standard dictionaries, as well as items in local dictionaries
with quite idiosyncratic definitions. The choice of which items to
include in a CIF depends on the capabilities of the applications
that are intended to use the data in the file. It is also influenced
by the extent to which the author of the file wishes the data to be
retrievable without ambiguity in the future. Of course, the same
applies to data in XML (Bray et al., 1998; W3C, 2004) or other
data languages. In the adoption and application of CIF as a spe-
cific exchange mechanism, the crystallographic community has
imposed on itself a particular discipline: the strict definition of its
data with carefully maintained dictionaries. This is not to be seen
as a restriction but as a means to unambiguous and effective com-
munication.

As mentioned above, data with local definitions are easily
accommodated in a CIF. However, for a CIF to be an effective
exchange medium, data definitions need to be accessible to the
community of users. This is most efficient when commonly used
data items are collected into a dictionary or dictionaries that are
readily obtainable and centrally coordinated. This is why the CIF
dictionaries, containing the definitions of standard data names and
their attributes, are published and maintained by a technical com-
mittee of the International Union of Crystallography (IUCr): the
Committee for the Maintenance of the CIF Standard (COMCIFS).
The dictionaries employ a dictionary definition language or DDL
(see Chapters 2.5 and 2.6) to describe relevant attributes of CIF
data items.

Affiliation: BRIAN MCMAHON, International Union of Crystallography, 5 Abbey
Square, Chester CH1 2HU, England.

This chapter will discuss the general concepts behind defining
data items in CIF dictionaries. It will describe how standard dic-
tionaries may be constructed and disseminated, and also how local
extensions may be built and used in ways that do not conflict with
the need for community standards. Some necessary details about
the administration of standard dictionaries are also provided.

3.1.1.1. Authorship of data dictionaries

A difficulty in developing a standard for information exchange
across the field of crystallography is the breadth of the subject area
and the many subdisciplines it includes. One feature of the con-
struction of data dictionaries for CIF is the delegation of responsi-
bility for identifying and defining the data items important within a
research area to experts in that field. In consequence, a richer com-
pilation of definitions results than would be possible from a single
author or small group of authors. However, each subdiscipline will
have its own emphases and requirements, and it becomes a chal-
lenge to accommodate the needs of each individual subdiscipline
within the framework of the general body of definitions covering
the entire subject area. COMCIFS deals with this challenge by ini-
tiating and ratifying dictionaries written by IUCr Commissions or
other specialist groups.

3.1.1.2. Certification for community use

A further responsibility of COMCIFS is to try to harmonize the
treatment of similar data requirements in different dictionaries and
to maintain maximum compatibility between data files originating
from different subdisciplines. To achieve this, COMCIFS can offi-
cially approve dictionaries submitted to and reviewed by it. It is
these ‘official’ dictionaries that are included in this volume. Provi-
sional dictionaries may also be issued and used within the relevant
community before formal approval is given.

3.1.1.3. DDL versions

Ideally, compatibility between the data dictionaries originating
from specific subdisciplines would be ensured by the adoption of
the same attribute sets for data items. However, at this point in the
evolution of the CIF standard, two slightly different attribute sets
have become established. These are expressed in two versions of
the dictionary definition language, DDL1 and DDL2 (detailed in
Chapters 2.5 and 2.6, respectively). The differences arise because
some subdisciplines benefit from a strict data model that is not
appropriate in other areas. The core data items in crystallography
must of course be accessible across the field, and so there are two
formulations of the dictionary of core items, one in each DDL ver-
sion. The existence of two formulations can make full information
interchange across all areas of crystallography difficult, so work is
under way to bring about a convergence of the two current repre-
sentations (Hall et al., 2002). It is particularly important for future
interchange between crystallography and other related disciplines
that a full understanding be reached of the best way to include dif-
ferent data structure models within a common interchange format.

73

International Tables for Crystallography (2006). Vol. G, Chapter 3.1, pp. 73–91.

Copyright © 2006 International Union of Crystallography

http://dx.doi.org/openurl?url_ver=Z39.88-2003&rfr_id=ori:rid:author.iucr.org&rft_id=doi:10.1107/97809553602060000733&rfr_dat=cr%5FsetVer%3D01%26cr%5Fpub%3D10%2E1107%26cr%5Fwork%3DGeneral%20considerations%20when%20defining%20a%20CIF%20data%20item%26cr%5Fsrc%3D10%2E1107%26cr%5FsrvTyp%3Dhtml

3. CIF DATA DEFINITION AND CLASSIFICATION

In this chapter, there will be some discussion of the differences
in practice between the DDL versions DDL1 and DDL2, as these
will strongly influence the choice of formalism for a dictionary
relevant to a subdiscipline not yet represented.

3.1.2. Informal definition procedures

Before considering the techniques for defining data items in stan-
dard globally adopted dictionaries, it is important to discuss the
techniques for including information that is only of local interest
in a way that does not conflict with public data names.

An author of a CIF is free to include data names for local
use (i.e. names not intended for common use across the commu-
nity). However, such local data names must not conflict with those
defined in public dictionaries, since the data name alone identifies
the meaning that one must attach to an associated data value. Some
protocols and conventions exist to prevent conflict in data names
when the local data name is invented or subsequently, when later
public dictionaries are released.

An author may also define local data names in some completely
informal manner; that is, there is no obligation to construct an
attribute table in an external file that conforms to the style of
the public dictionaries. Nevertheless, there are clear advantages
to doing so: the author will benefit from standard software tools
that validate data against dictionaries and the data names are more
easily exported to the public domain if they subsequently become
relevant to a wider community. In the following, it is assumed that
the author of a new data name wishes to define fully its attributes
in an appropriate standard dictionary formalism.

3.1.2.1. The [local] prefix

The string _[local]_ is reserved as a prefix to identify data
names that do not appear in any public dictionary. (The left and
right square brackets are included in this label.) Hence an author
may construct private data names according to one of the following
models, secure in the knowledge that the name will not appear in
any global dictionary. With DDL1, a private data name will always
have the form _[local]_private_data_name, while with DDL2
the forms _[local]_new_category_name.private_data_name

and _existing_category_name.[local]_private_data_name

may be used. The first DDL2 form is used for private data names
in a category not already defined by a public dictionary; the sec-
ond form permits the addition of local data names to an existing
category. Note that the initial underscore character is dropped in
the second DDL2 form.

While this convention guarantees that the new data name will
not conflict with a public one, it cannot guarantee that it will not
conflict with a local data name created by another author. There-
fore these data names are appropriate only for testing purposes and
not for release in data files that may be used by others.

3.1.2.2. Reserved prefixes

To guarantee that locally devised data names may be placed
without name conflict in interchange data files, authors may reg-
ister a reserved character string for their sole use. As with the
special prefix _[local]_ discussed in Section 3.1.2.1, the author’s
reserved prefix is simply an underscore-bounded string within the
data name (i.e. it may not itself include an underscore character).
For DDL1 applications it must be the first component of the data
name; for DDL2 applications it forms the first component of the
data name if describing data names in a category not defined in
the official dictionaries; or the first component after the full stop

Table 3.1.2.1. Reserved prefixes for private CIF data names

String Reserved for the use of

anbf Australian National Beamline Facility
asd Active Site Database
B+S Software developers Bernstein + Sons
ccdc Cambridge Crystallographic Data Centre
CCP4 CCP4 program system
cgraph Oxford Cryosystems Crystallographica package
cifdic Register of CIF dictionaries
crystmol CrystMol package
csd Cambridge Structural Database
ebi European Bioinformatics Institute
edchem Edinburgh University Chemistry Department
gsas GSAS powder refinement system
gsk Glaxo Smith Kline
iims EBI project on integration of information about macromolecular

structure
iucr IUCr journal use
mdb Model Database (Glaxo)
msd EBI Molecular Structure Database Group
ndb Nucleic Acids Database Project, Rutgers University
oxford CRYSTALS package, University of Oxford
parvati Validation and statistical summaries from PARVATI validation

server
pdb Protein Data Bank
pdbx Protein Data Bank exchange dictionary
pdb2cif Additions to mmCIF used by program pdb2cif
rcsb Research Collaboratory for Structural Bioinformatics
shelx SHELXL solution and refinement programs
vrf Validation reply form (IUCr/Acta Crystallographica use)
wdc Entries in the World Directory of Crystallographers
xtal Xtal program system

(category delimiter) if the local data name is an extension to an
existing category.

Prefixes may be registered online through a web form at
http://www.iucr.org/iucr-top/cif/spec/reserved.html. Table 3.1.2.1
gives a list of prefixes registered as of March 2005; this list will
of course go out of date, but a current list will be maintained on
the web at the address above.

An example of a data name incorporating a reserved prefix is
the listing of a protein amino-acid sequence recorded temporarily
by the Protein Data Bank before a protein structure is released,
_pdbx_prerelease_seq.seq_one_letter_code.

3.1.2.3. Name spaces

The allocation of special prefixes as in Sections 3.1.2.1 and
3.1.2.2 above is a basic form of name-space allocation, because it
gives authors the freedom to reproduce portions of otherwise stan-
dard data names within their own private constructions. This raises
the wider question of whether a complete formalism for name-
space allocation is needed. That is, the same data name might
appear with different meanings in different files, provided it was
clear which of the alternative definitions must be used in each
case. For now, the decision has been taken not to permit the use
of the same data names with different meanings in different con-
texts. This is to enforce uniformity of definition across the whole
field of crystallography as far as is possible. This policy might be
reviewed in the future if similar formalisms to CIF are created in
related disciplines.

3.1.3. Formal definition process

This section describes the formal system for creating public dictio-
naries or appending to them. It includes information on the review
and approval cycles currently required by COMCIFS, which could
change if these procedures are modified. The IUCr web page

74

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

(http://www.iucr.org/iucr-top/cif) should be consulted for current
practice. However, a short overview of the existing procedures is
helpful in describing how the community can participate in extend-
ing the standard.

3.1.3.1. Dictionary maintenance groups

Each published dictionary authorized by COMCIFS has a group
of specialists appointed or invited to extend and maintain the
dictionary to serve the changing needs of the subdiscipline that
sponsors the dictionary. Members of these dictionary maintenance
groups (DMGs) may suggest extensions or corrigenda on their own
initiative or may pass on requests for extensions from individual
crystallographers. A DMG will typically debate and review any
suggested amendments and produce a draft revised dictionary for
approval by COMCIFS.

3.1.3.2. mmCIF review cycle

The macromolecular CIF dictionary covers a very broad and
active field, and a more formal procedure exists for the submis-
sion and review of proposed extensions. Possible new definitions
are submitted using pro forma dictionary templates to a member
of an editorial board appointed by the mmCIF dictionary mainte-
nance group. Accepted proposals are approved by the DMG and
released for general community review in provisional extension
dictionaries as circumstances require. The extension dictionary is
revised as necessary and is finally incorporated within the parent
mmCIF dictionary after COMCIFS approval has been granted.

3.1.3.3. New dictionaries

A completely new dictionary to cover a subdiscipline not other-
wise catered for may be commissioned by COMCIFS or may arise
from community action, occasionally sponsored by an IUCr Com-
mission. A working group is appointed to create the dictionary and
relevant example files or software. The working group is expected
to test the new dictionary extensively within its own community
before submitting it to COMCIFS for initial approval. It is the
responsibility of COMCIFS to check the dictionary for technical
consistency and for compatibility with related dictionaries. COM-
CIFS may refer the dictionary back to the working group for fur-
ther revisions. When the dictionary finally receives formal COM-
CIFS approval and is published, a dictionary maintenance group is
formed to promote its further development (Section 3.1.3.1). The
DMG usually includes one or more members of the initial working
group and at least one voting member of COMCIFS.

3.1.4. Choice of data model

The following sections of this chapter describe the technical con-
siderations in defining data items within a dictionary. Fundamen-
tal to this is the data model on which the dictionary is based. The
STAR File upon which CIF is based is a very versatile data for-
mat and can accommodate a variety of data models. However, the
use within CIF of a single level of looping enforces a rather flat
data structure and a typical CIF maps most easily onto a relational
database model. This is implicit in DDL1, which assigns different
attributes to data items depending on whether they appear in data
loops or not. Generally speaking, one may consider a list header
and its associated data values as the head and body of a table of
data values. The list header (or equivalently the table head) iden-
tifies the data items ranged by column within the table. For the
dictionary entries relating to the data names in the list header,
the _category attribute collects together data items which may
be looped together in the same table, and the _list_reference,

Example 3.1.4.1. Core dictionary definitions for the atom-site
labels and bond distances in a CIF table of molecular geom-
etry.

data_geom_bond_atom_site_label_
loop_ _name

’_geom_bond_atom_site_label_1’
’_geom_bond_atom_site_label_2’

_category geom_bond
_type char
_list yes
_list_mandatory yes
_list_link_parent ’_atom_site_label’
_definition

; The labels of two atom sites that form a bond.
These must match labels specified as
_atom_site_label in the atom list.

;

data_geom_bond_distance
_name ’_geom_bond_distance’
_category geom_bond
_type numb
_type_conditions esd
_list yes
_list_reference ’_geom_bond_atom_site_label_’
_enumeration_range 0.0:
_units A
_units_detail ’angstroms’
_definition

; The intramolecular bond distance in angstroms.
;

_list_mandatory and _list_uniqueness attributes work together
to indicate the data items that must be present and collectively have
a unique value to identify a specific row in a table of values.

For example, the following example from the core CIF dictio-
nary (Chapter 4.1) shows a table of bond distances. The dictionary
definitions are given in Example 3.1.4.1.

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance

O1 C2 1.342(4)
O1 C5 1.439(3)
C2 C3 1.512(4)
C2 O21 1.199(4)
C3 N4 1.465(3)
C3 C31 1.537(4)
C3 H3 1.00(3)
N4 C5 1.472(3)

Within the dictionary, entries for all of _geom_bond_distance,
_geom_bond_atom_site_label_1 and _geom_bond_atom_site_

label_2 share the same _category attribute, namely
‘geom bond’. (In the rest of this chapter, as elsewhere in the
volume, we refer to categories by the upper-case form of their
category attribute values; here, therefore, we are referring to the
GEOM_BOND category.) The entry for _geom_bond_distance has
a _list_reference value of ’_geom_bond_atom_site_label_’

indicating the data names that may be used to identify this par-
ticular table. The trailing underscore in this example indicates
that all matching data names must be considered as components
of a compound identifier; for this case the matching data names
are ’_geom_bond_atom_site_label_1’ and ’_geom_bond_atom_

site_label_2’. The dictionary entry for _geom_bond_atom_

site_label_ has a _list_mandatory value of yes, indicating
that these data items must be present within the table. In this way,
the attributes specify the unique key within a database table (in
this case, the key has multiple components: the labels of both
contributing atom sites).

However, the mapping onto a relational database is not exact. In
some cases CIFs may present data from a single category across

75

3. CIF DATA DEFINITION AND CLASSIFICATION

several tables, or the implied key may not have a unique value
unless concatenated with other fields in the table row. For many
applications this is only of academic interest; but in some subdis-
ciplines it is important that the data model is constrained strictly
to a relational one, and for those applications dictionaries built on
the DDL2 formalism are more appropriate.

Of the dictionaries presented in this volume, the core, pow-
der, modulated structures and electron density dictionaries use the
DDL1 formalism and the symmetry, macromolecular and image
dictionaries use the DDL2 formalism. The core dictionary uses
DDL1 so that it can be used alongside other less rigorous dictio-
naries. The powder dictionary is one case of this, where the need to
tabulate and merge extensive lists of raw or processed data is not
well served by a relational model. Modulated structures are also
best served by a data model that is not rigorously relational. The
macromolecular dictionary uses DDL2 because many of the major
database applications in macromolecular crystallography are rela-
tional in nature, but in consequence it contains a copy of the core
data items re-expressed in DDL2 formalism. The image dictio-
nary is in DDL2 because it was designed to operate closely along-
side the macromolecular dictionary. The symmetry dictionary is
an interesting case. It was constructed in DDL2 format as an exer-
cise in supplying an extension dictionary immediately suitable for
direct incorporation into other DDL2-based dictionaries and also
suitable for transformation to the simpler DDL1 formalism as nec-
essary to complement existing DDL1 dictionaries.

While the main difference between DDL1 and DDL2 lies in the
rigour with which relational data structures are enforced, DDL2
also offers a larger set of attributes for specifying hierarchical rela-
tionships between data names and for typing data values, and in
consequence a complete DDL2-based dictionary is richer (and cor-
respondingly more complex to construct) than an equivalent DDL1
description.

There may be no obvious reason for selecting one formalism
over the other when planning a new data dictionary, and prospec-
tive authors must give considerable thought to the merits of both
formalisms. However, once the choice has been made, the struc-
ture of the dictionary and its component definitions is profoundly
affected. The constructions of the two types of dictionary are dis-
cussed separately in Sections 3.1.5 and 3.1.6 below.

3.1.5. Constructing a DDL1 dictionary

Dictionaries constructed according to DDL1 have quite a simple
structure. The structure is summarized in this section; Sections
3.1.5.1–3.1.5.4 provide more detail. Each definition is encapsu-
lated within its own data block. Fig. 3.1.5.1 outlines the contents
of the core CIF dictionary. The order of the data blocks has no
significance, but it is common practice to start the file with the
data block that describes the name, version and revision history of
the dictionary itself and then to arrange data blocks in alphabeti-
cal order, sorted first on category then on names within a category.
This practice is not always followed – for example, the powder
dictionary is ordered by theme. The choice of order in a dictio-
nary is only used for presentation and dictionary parsers should
not assume or rely on any order of data blocks.

The name of a data block is usually constructed from the name
of the data item it describes, e.g. data_refln_phase_meas. Where
the data block describes an entire category instead of a single data
item, the category name is followed by matching square brack-
ets, which may contain an alphabetic code representing the dic-
tionary name if it is an extension to the core dictionary (e.g.

data_on_this_dictionary
_dictionary_name cif_core.dic
_dictionary_version 2.3.1
_dictionary_update 2005-06-27
_dictionary_history

;
1991-05-27 Created from CIF Dictionary text. SRH
. . .

;

(a)

data_atom_site_[]
_name ’_atom_site_[]’
_category category_overview
_type null
loop_ _example
_example_detail . .

data_atom_site_adp_type
_name ’_atom_site_adp_type’
_category atom_site
_type char
_definition ’A standard code ...’

data_atom_site_aniso_B_
loop_ _name ’_atom_site_aniso_B_11’

. . .

(b)

Fig. 3.1.5.1. Schematic structure of core CIF dictionary. (a) Dictionary identifiers.
(b) Definitions of categories and data items.

data_refln_[], data_audit_link_[ms]). Where the data block
defines several data names, the initial common portion of the
names is used with a trailing underscore (e.g. data_refln_).

A preliminary data block, by convention labelled with the
header string data_on_this_dictionary, contains the dictionary
identification information and revision history. The name of the
dictionary itself (given by the data name _dictionary_name) is
conventionally of the form cif_identifier.dic, where the iden-
tifier is a short code for the topic area of the dictionary (e.g. ‘core’
for the core dictionary, ‘pd’ for the powder dictionary, ‘ms’ for
the modulated structures dictionary, ‘rho’ for the electron density
dictionary).

Data names are classified by category. The _category attribute
is a character string intended to indicate the ‘natural grouping’ of
data items. If a data item occurs in a looped list, it must be grouped
only with items from the same category. It is, however, permissible
for a file to contain more than one looped list of the same category,
provided that each loop has its own specific reference item identi-
fied by the _list_reference attribute of the data names included.
Examples of this will be given below.

For each category, a data block is usually provided that contains
information about the purpose of the category, generally illustrated
with examples.

All other data blocks represent self-contained definitions of a
single data item or a small set of closely related data items. The
definition includes the physical units of and constraints on the val-
ues of the data labelled by the defined data name, and also infor-
mation about relationships with other data items.

It is conventional, although not mandatory in DDL1 dictionar-
ies, that the category name should appear as the leading compo-
nent or components of a data name. For example, the data name
_exptl_crystal_colour is a member of the core category EXPTL,
while _exptl_crystal_density_meas is a member of the cate-
gory EXPTL_CRYSTAL and _exptl_crystal_face_perp_dist is a
member of the category EXPTL_CRYSTAL_FACE. However, it will

76

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.5.1. A DDL1 dictionary identification block.

data_on_this_dictionary
_dictionary_name cif_core.dic
_dictionary_version 2.3.1
_dictionary_update 2005-06-27
_dictionary_history

; 1991-05-27 Created from CIF Dictionary text. SRH
1991-05-30 Validated with CYCLOPS & CIF ms. SRH
...

;

be seen that there is no sure way of working out the cate-
gory from the complete data name except by referring to its
_category attribute in the associated dictionary. This differs from
the DDL2 convention of including an explicit separator (a full
stop) between the category name and the remainder of a data
name.

While it is not mandatory that a data name should incor-
porate its category name as a leading component, authors are
strongly encouraged to adopt this convention. A small number
of core data items that did not conform to this convention have
been deprecated in later releases of the core dictionary. How-
ever, in the powder dictionary the convention has been bro-
ken so that one can present data sets separately or merge them
together. In this dictionary, some data names beginning with the
strings _pd_calc, _pd_meas and _pd_proc all belong formally
to the category PD_DATA. This allows calculated data values to
be tabulated with raw and processed measurements if this is
useful.

One other case where a data name does not begin with its asso-
ciated category name is that of the pseudo data names such as
exptl[] that appear in the dictionary to describe the purpose of
a category (Section 3.1.5.3). Such data names are always assigned
the category CATEGORY_OVERVIEW and are further differentiated
from other data names by having a data type of ‘null’.

3.1.5.1. The dictionary identification block

As mentioned above, the dictionary file must contain informa-
tion that unambiguously states its identity and version. In DDL1-
based CIF dictionaries, this is achieved by itemizing the full set
of dictionary attributes (see Section 2.5.6.5) within a data block
named data_on_this_dictionary, as in Example 3.1.5.1 from the
core dictionary.

3.1.5.2. Irreducible sets of data items

In general, a dictionary data block defines a single data item.
However, there are instances where several related data names
are defined in the same data block. Sometimes this has been
done for convenience, to produce a compact listing of similar
data names that have common attributes and whose small differ-
ences in meaning can best be expressed by a single definition.
Such groupings are discouraged, except where they represent com-
ponents of a larger entity that has no sensible meaning in the
absence of any of the components. For example, the data block
data_refln_index_ defines the three data items _refln_index_h,
_refln_index_k and _refln_index_l that represent the Miller
indices of a reflection. All three indices must have a value in
order to specify a reflection and so each has no meaning in
isolation.

Note that there is no formal method of expressing this close rela-
tionship within DDL1 except by grouping the definitions in the
same data block in this way. In DDL2 dictionaries, it is common
to assign the components of an irreducible set to a specific subcat-
egory.

Example 3.1.5.2. A category description in a DDL1 dictionary.

data_exptl_[]
_name ’_exptl_[]’
_category category_overview
_type null
loop_ _example
_example_detail

-
; _exptl_absorpt_coefficient_mu 0.962

_exptl_absorpt_correction_type psi-scan
_exptl_absorpt_process_details

’North, Phillips & Mathews (1968)’
_exptl_absorpt_correction_T_min 0.929
_exptl_absorpt_correction_T_max 0.997

;
; Example 1 - based on a paper by Steiner [Acta

Cryst. (1996), C52, 2554-2556].
;
-

_definition
; Data items in the EXPTL category record

details about the experimental work prior
to the intensity measurements and details
about the absorption-correction technique
employed.

;

3.1.5.3. Category descriptions

As discussed above, categories in DDL1 are intended as ‘natural
groupings’ of data items. To document the purpose of a category
within a dictionary, ‘pseudo’ data names are used. All pseudo data
names are assigned a _category attribute of category_overview
and have an associated _type value of ‘null’. They are also named
by convention as _category_name_[dictionarycode], for exam-
ple _pd_data_[pd] for the description of the PD_DATA category in
the powder dictionary (indicated by the code ‘pd’ in square brack-
ets). For the core dictionary, dictionarycode is not given, resulting
in names like _exptl_[] to describe the EXPTL category.

Example 3.1.5.2 is a slightly edited extract from the core dictio-
nary showing how a data block for a category description is com-
posed, including the presence of an example.

Note that the dictionarycode extension allows a dictionary
to include comments on items that it defines in a category
already established in the core dictionary. For example, the mod-
ulated structures dictionary includes the category overview item
_audit_link_[ms]. This describes the convention adopted to
express the relationship between data blocks in a modulated struc-
tures data file using the _audit_link_ data names already defined
in the core dictionary.

3.1.5.4. Data-item definitions

The data blocks described in Sections 3.1.5.1 and 3.1.5.3 are
used to identify the dictionary and to describe the nature and pur-
pose of a category. The remaining data blocks in a dictionary pro-
vide the attributes of data values in a form suitable for machine
extraction and validation. The following examples show how this
is done for various types of data.

3.1.5.4.1. Definitions of single quantities

Example 3.1.5.3 is the core dictionary definition of the data
name for the ambient temperature during the experiment. Because
this is a single (non-looped) value, the relevant data name is one
among several discrete items in the DIFFRN category. No further
description of its relationship to other data items is required.

The type of the associated data value (numb for numerical) is
specified, together with any constraint on its legal value. The range

77

3. CIF DATA DEFINITION AND CLASSIFICATION

Example 3.1.5.3. A simple definition of a data item describing a
physical quantity.

data_diffrn_ambient_temperature
_name ’_diffrn_ambient_temperature’
_category diffrn
_type numb
_type_conditions esd
_enumeration_range 0.0:
_units K
_units_detail kelvin
_definition

; The mean temperature in kelvins at which the
intensities were measured.

;

specified (0.0:) indicates that it may be any non-negative real
number. The physical units of the quantity are also indicated.

The _definition attribute is a concise human-readable docu-
mentation of the meaning associated with the data name.

Example 3.1.5.4 is taken from the powder dictionary and illus-
trates a data item that can have only one of a limited set of values.
This data item indicates the geometry of the experiment. The asso-
ciated data value is of type char and may legally take only one of
the two possible values listed.

3.1.5.4.2. Looped data

Many of the attributes of looped data items, such as their phys-
ical units or valid numerical values, may be defined in exactly the
same way as for non-looped data. However, more care needs to be
taken to describe the relationships between different looped data
items.

Consider the following example listing of some three-
dimensional atom-site coordinates and displacement parameters.

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
O1 .4154(4) .56990(10) .3026000 .0600(10) Uani
C2 .5630(5) .5087(2) .32460(10) .060(2) Uani
C3 .5350(5) .4920(2) .39970(10) .0480(10) Uani
N4 .3570(3) .55580(10) .4167000 .0390(10) Uani
C5 .3000(5) .6122(2) .35810(10) .0450(10) Uani

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_23

O1 .071(1) .076(1) .0342(9) .008(1) .0051(9) -.0030(9)
C2 .060(2) .072(2) .047(1) .002(2) .013(1) -.009(1)
C3 .038(1) .060(2) .044(1) .007(1) .001(1) -.005(1)
N4 .037(1) .048(1) .0325(9) .0025(9) .0011(9) -.0011(9)
C5 .043(1) .060(1) .032(1) .001(1) -.001(1) .001(1)

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
O1 C2 1.342(4)
O1 C5 1.439(3)
C2 C3 1.512(4)
C2 O21 1.199(4)

These loops, or tables of values, are properties of atom sites,
each identified by a label such as O1. The definition of a data name
such as _atom_site_U_iso_or_equiv expresses this by using the
DDL1 _list_reference attribute (Example 3.1.5.5).

Example 3.1.5.4. A data item that can take only one of a discrete
set of allowed values.

data_pd_spec_mount_mode
_name ’_pd_spec_mount_mode’
_category pd_spec
_type char
loop_ _enumeration reflection

transmission
_definition

; A code describing the beam path through
the specimen.

;

Example 3.1.5.5. Definition relating a looped data item to the
item used to identify a ‘loop packet’, or row of entries in a
table.

data_atom_site_U_iso_or_equiv
_name ’_atom_site_U_iso_or_equiv’
_category atom_site
_type numb
_type_conditions esd
_list yes
_list_reference ’_atom_site_label’

Example 3.1.5.6. Definition of a mandatory item within a loop.

data_atom_site_label
_name ’_atom_site_label’
_category atom_site
_type char
_list yes
_list_mandatory yes
loop_ _list_link_child

’_atom_site_aniso_label’
’_geom_bond_atom_site_label_1’
’_geom_bond_atom_site_label_2’

For an entry in the table to make sense, the site identifier must
be present, so the definition for _atom_site_label declares it a
mandatory item within its list (Example 3.1.5.6).

It is common for an atom-site identifier to be used in several
related tabulations in a particular crystal structure description, and
in a CIF description this means that it may occur in several differ-
ent looped lists. The dictionary definition gives a formal account
of this by listing the data names in other looped lists which are
just different manifestations of this same item. This is done using
the _list_link_child attribute, which identifies the data names
to which the one being currently defined is ‘parent’. In Example
3.1.5.6 (which is a subset of the full list in the core dictionary),
_atom_site_aniso_label, _geom_bond_atom_site_label_1 and
_geom_bond_atom_site_label_2 are identified as children of
_atom_site_label.

It can been seen immediately that _atom_site_aniso_label is
the atom-site identification label appearing in the second table in
the example listing above, and the _geom_bond_ items are clearly
atom-site labels in a table of bonding properties between specified
sites. There is, however, a difference between the two secondary
tables: the bond-properties table is described by data items in the
GEOM_BOND category, but the table of anisotropic displacement
parameters includes data names that have the same _category

attribute as the coordinate data items, namely ATOM_SITE. The lat-
ter is an example of multiple lists or tables belonging to the same
category, a feature permitted only in DDL1-based data files.

3.1.5.4.3. Units

The physical units in which a quantitative data item must
be expressed are identified by the DDL1 attributes _units and

78

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

_units_detail. The latter is a character field describing the units;
the _units attribute is a code that may be interpreted by machine.
In DDL1-based dictionaries, type codes are purely conventional,
and there is no mechanism for converting units or relating quanti-
ties in different units. Table 3.1.5.1 lists the units codes used in the
DDL1-based dictionaries described in this volume. There can be
some inconsistencies: two codes (‘s’ and ‘sec’) are already in use
to indicate the time unit of seconds.

The original CIF paper (Hall et al., 1991) described a conven-
tion allowing physical quantities to be listed in a CIF in units other
than those specified in the dictionary. Under this convention, a data
name representing a value expressed in different units could be
constructed by appending one of a series of known ‘units exten-
sion codes’ to the standard data name. Thus _cell_length_a_pm

would represent a cell length expressed in picometres instead of
the default ångströms. This approach is now deprecated, and all
quantities must be expressed in the single unit permitted in their
definition block. However, to allow the formal validation of old
CIFs, a ‘compatibility dictionary’ is available which defines all
data names that could have been constructed under this convention
in a properly DDL1.4-compliant form. This dictionary should only
be used for validating old CIFs, and must not be used to construct
new data files. The dictionary is called cif compat.dic in the IUCr
CIF dictionary register (see Section 3.1.8.2).

3.1.6. Constructing a DDL2 dictionary

The DDL2 dictionary definition language was designed to specify
a relational data model and has provision for including within a
dictionary tables of relationships between data entries. Like a rela-
tional database which contains tables describing the data tables in
the database, DDL2-based dictionaries contain definition blocks
describing CIF categories, units and relationships as well as data
items.

Unlike DDL1 dictionaries, a DDL2 dictionary is presented as a
single data block. Within this data block a number of looped lists
describe properties of the dictionary as a whole, or properties and
relationships shared across the items defined in the dictionary. Typ-
ically these are: the dictionary name, version identifiers and revi-
sion history; the category groupings that give structure to the items
defined by the dictionary; the labels that identify closely related
data items; and the physical units employed in the dictionary, their
definitions in terms of base units and their interconversion factors.

Definitions of individual data items and categories are contained
within save frames. While the save frames are not referenced by
name in any dictionary application, they permit multiple occur-
rences of data definition tags within the scope of a single data block
and are therefore suitable for structuring a data dictionary. It is a
convention that the name of a save frame defining a category is
given in capitals, and the name of a save frame for a definition of a
data item is given as lower-case. For example, save_ATOM_SITE
is the name of the save frame defining the category with the
atom_site identifier, while save_ _atom_site.details is the
name of the save frame holding the definition of the individual
data name _atom_site.details (note how the initial underscore
character of the data name is preserved following the initial save_
string of the save-frame name).

As with DDL1 dictionaries, the name of the dictionary itself
(given by the data name _dictionary.title) is usually of the
form cif_identifier.dic, where the identifier is a short code for
the topic area of the dictionary (e.g. ‘img’ for the image dictionary,
‘sym’ for the symmetry dictionary).

Table 3.1.5.1. Units codes and their interpretation in DDL1-based
dictionaries

Unit code (_units) Meaning (_units_detail)

A Ångströms
Aˆ-1ˆ Reciprocal ångströms
Aˆ2ˆ Ångströms squared
Aˆ3ˆ Ångströms cubed
Da Daltons
K Kelvins
Kminˆ-1ˆ Kelvins/minute
Mgmˆ-3ˆ Megagrams per cubic metre
\ms Microseconds
deg Degrees
deg/min Degrees per minute
eV Electronvolts
e_Aˆ-3ˆ Electrons per cubic ångström
fm Femtometres
kPa Kilopascals
kV Kilovolts
kW Kilowatts
mA Milliamperes
min Minutes
mm Millimetres
mmˆ-1ˆ Reciprocal millimetres
s Seconds
sec Seconds

As is invariable with DDL2 data names, the names themselves
are formed from the category name separated by a full stop from
the specific descriptor of the item.

Fig. 3.1.6.1 shows the structure of the macromolecular CIF dic-
tionary. The ordering of the various looped lists and save frames is
of no significance for machine parsing. The sole data block has the
same name as the dictionary title string and the data block is intro-
duced by the dictionary identification data items. The dictionary
revision history introduces the file, followed by information about
the extended data types and physical units used within the cur-
rent dictionary. These are followed by the lists of closely related
items (corresponding to ‘irreducible sets’ in DDL1 dictionaries
and called ‘subcategories’ in the terminology of DDL2) and lists of
category groupings. The body of the dictionary contains category
and item definitions. Each category definition is followed by the
definitions of its component data items. The ordering is alphabetic
by category and then alphabetic by item name within categories.

3.1.6.1. Dictionary identification

Dictionary files must contain information that unambiguously
states their identity and version. In DDL2-based dictionaries this
is done using the dictionary attributes described in Section 2.6.6.4.
The name of the data block comprising the whole content of
a DDL2 dictionary is by convention the same as the dictionary
identification string given as _dictionary.title. This value is
repeated as the value of _dictionary.datablock_id (see Exam-
ple 3.1.6.1) for use in checking the consistency of the dictionary.

The dictionary history is also an important audit record of
changes to the dictionary content. Unlike in DDL1-based dictio-
naries where the history is contained in a single field, DDL2 pro-
vides a looped list of version labels, dates and annotations. For
convenience, the history records in large DDL2-based dictionaries
are sometimes placed at the end of the dictionary file.

3.1.6.2. Subcategory definitions

In the DDL1 formalism, particular relationships between data
items may sometimes be stated within a text description or may be
implied by the organization of the dictionary (where several data

79

3. CIF DATA DEFINITION AND CLASSIFICATION

data_mmcif_std.dic

_dictionary.title mmcif_std.dic
_dictionary.version 2.0.09
_dictionary.datablock_id mmcif_std.dic

(a)

loop_
_dictionary_history.version
_dictionary_history.update
_dictionary_history.revision . . .

(b)

loop_
_sub_category.id
_sub_category.description . .

loop_
_category_group_list.id
_category_group_list.parent_id
_category_group_list.description . . .

(c)

loop_
_item_type_list.code
_item_type_list.primitive_code
_item_type_list.construct
_item_type_list.detail

loop_
_item_units_list.code
_item_units_list.detail . .

loop_
_item_units_conversion.from_code
_item_units_conversion.to_code
_item_units_conversion.operator
_item_units_conversion.factor

(d)

save_CATEGORY_A . . . save_
save__category_a.item_1 . . . save_
save__category_a.item_2 . . . save_
save__category_a.item_3 . . . save_

save_CATEGORY_B . . . save_
save__category_b.item_1 . . . save_
save__category_b.item_2 . . . save_

(e)

Fig. 3.1.6.1. Schematic structure of the macromolecular CIF dictionary. (a) Dic-
tionary identifiers. (b) Dictionary history. (c) Subcategory and category group
listings. (d) Data types, units descriptions and conversion tables. (e) Multiple
category and item definition blocks.

items are defined in the same data block and are understood to
share the common attributes itemized in that data block).

Within DDL2, there are mechanisms for more for-
mal and machine-parsable statements of relationships. The
_sub_category.id attribute is a label shared by several data items
within a category that are related in a specific way described by
the associated _sub_category.description attribute. The rela-
tionships may be rather general, such as elements of a matrix; or
they may be specific physical properties or attributes, such as the
collection of axis lengths of a unit cell. The dictionary should list
all such labels that occur within its included data definition blocks.
Example 3.1.6.2 is an extract from the macromolecular dictionary.

3.1.6.3. Category groupings

In the DDL2 data model, a category of data corresponds to a
set of related data items that may be stored in a single relational

Example 3.1.6.1. DDL2 dictionary identification entries.

data_mmcif_std.dic

_dictionary.title mmcif_std.dic
_dictionary.version 2.0.09
_dictionary.datablock_id mmcif_std.dic

loop_
_dictionary_history.version
_dictionary_history.update
_dictionary_history.revision
0.1.1 1993-02-11

; Highlighted all notes with # %%%%% surrounds.
;

. . .

Example 3.1.6.2. DDL2 subcategories defined in the mmCIF dic-
tionary.

loop_
_sub_category.id
_sub_category.description
’fractional_coordinate’

; The collection of x, y, and z components of a
position specified with reference to unit cell
directions.

;
’matrix’

; The collection of elements of a matrix.
;

’miller_index’
; The collection of h, k, and l components of the

Miller index of a reflection.
;

’cell_length’
; The collection of a, b, and c axis lengths of a

unit cell.
;

’mm_atom_site_label’
; The collection of alt id, asym id, atom id, comp id

and seq id components of the label for a
macromolecular atom site.

;

database table. A number of such tables may collectively describe
the complete properties of some physical object. This is expressed
formally by assigning the same label (_category_group.id) to
the relevant categories. While relationships between categories are
implied in DDL1 dictionaries by the hierarchical structure of the
names of data items, in DDL2 dictionaries the relationships are
formally stated.

For subcategories, the category-group relationships present in
the dictionary are listed in a separate looped list. Example
3.1.6.3 is an extract from the macromolecular dictionary. The
inclusive_group entry shows the common parentage of all cat-
egories (and ultimately all data items) in the dictionary.

3.1.6.4. Category definitions

In the DDL2 formalism, a category of data items may be
mapped to a relational table. The dictionary entry for a category
includes the name of the category (an identifying label which is
referenced by the _item.category_id attribute of each compo-
nent data item) and a list of the category groups of which it may
be considered a member. The category key is explicitly specified –
that is, the data item (or group of items) that uniquely identifies an
individual row in a table of data of that category.

Where a category encompasses a set of data items that are not
normally specified in a looped list, the category may nevertheless
be taken to represent a degenerate table with a single row, and
therefore there is still a category key. For degenerate categories the
key value is often set equal to the name of the parent data block.

80

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.6.3. Category groups in a DDL2 dictionary.

loop_
_category_group_list.id
_category_group_list.parent_id
_category_group_list.description

’inclusive_group’ .
; Categories that belong to the macromolecular

dictionary.
;

’atom_group’
’inclusive_group’

; Categories that describe the properties of atoms.
;

’audit_group’
’inclusive_group’

; Categories that describe dictionary maintenance and
identification.

;
’cell_group’
’inclusive_group’

; Categories that describe the unit cell.
;

Example 3.1.6.4. A category description in a DDL2 dictionary.

save_EXPTL
_category.description

; Data items in the EXPTL category record details
about the experimental work prior to the
intensity measurements and details about the
absorption-correction technique employed.

;
_category.id exptl
_category.mandatory_code no
_category_key.name ’_exptl.entry_id’
loop_
_category_group.id ’inclusive_group’

’exptl_group’
loop_
_category_examples.detail
_category_examples.case

-
; Example 1 - based on laboratory records for

Yb(S-C5H4N)2 (THF)4
;
; _exptl.entry_id datablock1

_exptl.absorpt_coefficient_mu 1.22
_exptl.absorpt_correction_T_max 0.896
_exptl.absorpt_correction_T_min 0.802
_exptl.absorpt_correction_type integration
_exptl.absorpt_process_details
; Gaussian grid method from SHELX76

Sheldrick, G. M., "SHELX-76: structure
determination and refinement program",
Cambridge University, UK, 1976

;
_exptl.crystals_number 1
_exptl.details
; Enraf-Nonius LT2 liquid nitrogen

variable-temperature device used
;
_exptl.method ’single-crystal x-ray diffraction’
_exptl.method_details
; graphite monochromatized Cu K(alpha) fixed tube

and Enraf-Nonius CAD4 diffractometer used
;

;
-
save_

Example 3.1.6.4 shows a category of non-looped core data
items. It may be compared with the DDL1 version in Example
3.1.5.2.

For categories of looped items (those normally presented in
a table of values) it is sometimes appropriate to have as the
category key a data item that has the sole function of index-
ing unique table rows. However, it is also often the case that a
composite key is formed from existing data items, and in these

Example 3.1.6.5. A DDL2 category with a composite key.

save_GEOM_BOND
_category.description

; Data items in the GEOM_BOND category record
details about the bond lengths as calculated
from the contents of the ATOM, CELL and
SYMMETRY data.

;
_category.id geom_bond
_category.mandatory_code no
loop_

_category_key.name ’_geom_bond.atom_site_id_1’
’_geom_bond.atom_site_id_2’
’_geom_bond.site_symmetry_1’
’_geom_bond.site_symmetry_2’

loop_
_category_group.id ’inclusive_group’

’geom_group’
loop_

_category_examples.detail
_category_examples.case

-
; Example 1 - based on data set TOZ of Willis,

Beckwith & Tozer [Acta Cryst. (1991), C47,
2276-2277].

;
; loop_

_geom_bond.atom_site_id_1
_geom_bond.atom_site_id_2
_geom_bond.dist
_geom_bond.dist_esd
_geom_bond.site_symmetry_1
_geom_bond.site_symmetry_2
_geom_bond.publ_flag
O1 C2 1.342 0.004 1_555 1_555 yes
O1 C5 1.439 0.003 1_555 1_555 yes
C2 C3 1.512 0.004 1_555 1_555 yes
C2 O21 1.199 0.004 1_555 1_555 yes
C3 N4 1.465 0.003 1_555 1_555 yes
C3 C31 1.537 0.004 1_555 1_555 yes
C3 H3 1.00 0.03 1_555 1_555 ?
N4 C5 1.472 0.003 1_555 1_555 yes

- - - - data truncated for brevity - - - -
;
-
save_

cases the category definition must loop the components of the key,
as in Example 3.1.6.5 from the macromolecular dictionary defini-
tion of the GEOM_BOND category.

It must be remembered that, in practice, data files may lack some
of the items required to determine the category key formally. For
example, in the data set given in the GEOM_BOND example here,
it is possible that the _geom_bond.site_symmetry_ items may be
absent because the listing is for a single connected molecule within
an asymmetric unit. Robust parsing software must construct data
keys by assigning NULL or other suitable default values to the
missing key components.

Careful inspection of corresponding definitions in the DDL1
and DDL2 versions of core data items will demonstrate that
the explicit category key specification in DDL2 dictionaries
may be deduced within DDL1 dictionaries from the appropri-
ate _list_reference, _list_mandatory and _list_uniqueness

attributes of data-item definitions within a category (see also Sec-
tion 2.5.6.4).

3.1.6.5. Data-item definitions

The bulk of a DDL2 data dictionary comprises the save frames
that include descriptions of the meaning and properties of individ-
ual data names.

Unlike DDL1 dictionaries, where the definitions of several data
names may be contained in a single data block (most commonly
for a set of items that form a logical irreducible set), save frames in

81

3. CIF DATA DEFINITION AND CLASSIFICATION

Example 3.1.6.6. Illustration of parent/child relationships
between identifiers in related categories.

loop_
_struct_site.id
_struct_site.details

’P2 site C’
; residues with a contact < 3.7 Angstrom to an atom

in the P2 moiety of the inhibitor in the
conformation with _struct_asym.id = C

;
’P2 site D’

; residues with a contact < 3.7 Angstrom to an atom
in the P1 moiety of the inhibitor in the
conformation with _struct_asym.id = D

;

loop_
_struct_site_gen.id
_struct_site_gen.site_id
_struct_site_gen.label_comp_id
_struct_site_gen.label_asym_id
_struct_site_gen.label_seq_id
_struct_site_gen.symmetry
_struct_site_gen.details

1 ’P2 site C’ VAL A 32 1_555 .
2 ’P2 site C’ ILE A 47 1_555 .
3 ’P2 site C’ VAL A 82 1_555 .
4 ’P2 site C’ ILE A 84 1_555 .
5 ’P2 site D’ VAL B 232 1_555 .
6 ’P2 site D’ ILE B 247 1_555 .
7 ’P2 site D’ VAL B 282 1_555 .
8 ’P2 site D’ ILE B 284 1_555 .

DDL2 dictionaries each contain the definition for a single address-
able concept.

For example, the three Miller index components of a diffraction
reflection (_diffrn_refln_index_h, _diffrn_refln_index_k,
_diffrn_refln_index_l that are described in the DDL1 core
CIF dictionary in the data block data_diffrn_refln_) are
described in a DDL2 dictionary in three separate save frames,
save_ _diffrn_refln.index_h, save_ _diffrn_refln.index_k

and save_ _diffrn_refln.index_l. In the DDL2 formalism,
the intimate relationship between these three components is
expressed through the common _item_sub_category.id value of
miller_index and the mutual reference of the other Miller-index
components by the _item_dependent.dependent_name entries in
each separate save frame.

An apparent exception to this general rule is the case of save
frames defining an item, often a category key, that is an identifier
common to several categories. In this case, the save frame defin-
ing the ‘parent’ identifier implicitly defines the complete property
set of each child identifier. For completeness, the respective child
identifiers are each declared in their own save frames, but these act
only as back references to the parent definition. This is explained
more completely in Section 3.1.6.5.1 below.

3.1.6.5.1. Inheritance of identifiers

Example 3.1.6.6 is from an mmCIF of two related categories
that describe characteristics of an active site in a macromolecular
complex. The sites are described in general terms with a label and
textual description in the STRUCT_SITE category (the first looped
list in the example). Details of how each site is generated from
a list of structural features form the STRUCT_SITE_GEN category
(second loop or table).

It is clear that each instance of the data item _struct_site_

gen.site_id in the second table must have one of the values listed
as _struct_site.id in the first loop, because it is the purpose
of these identifiers to relate the two sets of data: they are the

Example 3.1.6.7. A definition of an identifier which is parent to
identifiers in other categories.

save__struct_site.id
_item_description.description

; The value of _struct_site.id must uniquely
identify a record in the STRUCT_SITE list.

Note that this item need not be a number;
it can be any unique identifier.

;
loop_
_item.name
_item.category_id
_item.mandatory_code

’_struct_site.id’ struct_site yes
’_struct_site_gen.site_id’ struct_site_gen yes
’_struct_site_keywords.site_id’

struct_site_keywords yes
’_struct_site_view.site_id’ struct_site_view yes

loop_
_item_linked.child_name
_item_linked.parent_name

’_struct_site_gen.site_id’ ’_struct_site.id’
’_struct_site_keywords.site_id’ ’_struct_site.id’
’_struct_site_view.site_id’ ’_struct_site.id’

_item_type.code line
save_

glue between the two separate tables and must have the same val-
ues to ensure the referential integrity of the data set (that is, the
consistency and completeness of cross-references between tables).
Within a group of related categories like this, it is normal to con-
sider one as the ‘parent’ and the others as ‘children’.

Because all such linking data items must have compatible
attributes, it is conventional in DDL2 dictionaries to define all the
attributes in a single location, namely the save frame which hosts
the definition of the ‘parent’ data item. In early drafts of DDL2
dictionaries, the ‘children’ were not referenced at all in separate
save frames; software validating a data file against a dictionary
was required to obtain all information about a child identifier from
the contents of the save frame defining the parent. However, sub-
sequent drafts introduced a minimal save frame for the children to
accommodate dictionary browsers that depended on the existence
of a separate definition block for each individual data item.

Consequently, the definition blocks in current DDL2 dictionar-
ies conform to the structure in Example 3.1.6.7, which refers to the
simple STRUCT_SITE example used above.

Note that the dependent data names are listed twice: once
in the loop that declares their _item.name values and the cate-
gories with which they are associated; and again in a loop that
makes the direction of the relationship explicit. A parent data item
may have several children, but each child can have only a sin-
gle parent (i.e. related data name whose value may be checked
for referential integrity). Note also that each listed item has an
_item.mandatory_code value of yes: because they are identifiers
which link categories, they must be present in a table to allow the
relationships between data items in different tables to be traced.

Other than the specific description text field, any declared
attributes (in this example only the data type) have a common value
across the set of related identifiers.

As mentioned above, it is not formally necessary to have a sepa-
rate save frame for the individual children; but it is conventional
to have such individual save frames containing minimal defini-
tions that serve as back references to the primary information in
the parent frame. These also provide somewhere for the specific
text definitions for the children to be stored. The definition frame
for _struct_site_gen.id is shown in Example 3.1.6.8.

82

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.6.8. Definition of a child identifier.

save__struct_site_gen.id
_item_description.description

; The value of _struct_site_gen.id must uniquely
identify a record in the STRUCT_SITE_GEN list.

Note that this item need not be a number;
it can be any unique identifier.

;
_item.name ’_struct_site_gen.id’
_item.category_id struct_site_gen
_item.mandatory_code yes
_item_type.code line

save_

Example 3.1.6.9. DDL2 definition of a physical quantity.

save__diffrn.ambient_temp
_item_description.description

; The mean temperature in kelvins at which the
intensities were measured.

;
_item.name ’_diffrn.ambient_temp’
_item.category_id diffrn
_item.mandatory_code no
_item_aliases.alias_name

’_diffrn_ambient_temperature’
_item_aliases.dictionary cif_core.dic
_item_aliases.version 2.0.1
loop_
_item_range.maximum
_item_range.minimum . 0.0

0.0 0.0
_item_related.related_name

’_diffrn.ambient_temp_esd’
_item_related.function_code associated_esd
_item_type.code float
_item_type_conditions.code esd
_item_units.code kelvins

save_

3.1.6.5.2. Definitions of single quantities

While it is important to ensure the referential integrity of the
data in a CIF through proper book-keeping of links between tables,
the crystallographer who wishes to create or extend a CIF dictio-
nary will be more interested in the definitions of data items that
refer to real physical quantities, the properties of a crystal or the
details of the experiment. The DDL2 formalism makes it easy to
create a detailed machine-readable listing of the attributes of such
data.

Example 3.1.6.9 parallels the example chosen for DDL1 dictio-
naries of the ambient temperature during the experiment.

In the definition save frame, the category is specifically listed
(although it is deducible from the DDL2 convention of separating
the category name from the rest of the name by a full stop in the
data name). The data type is specified as a floating-point number.
(In the core dictionary there are fewer data types and the fact that
the value may be a real rather than integer number must be inferred
from the declared range.) The range of values is also specified with
separate maximum and minimum values (unlike in DDL1 dictio-
naries, which give a single character string that must be parsed
into its component minimum and maximum values). The assign-
ment of the same value to a maximum and a minimum means that
the absolute value is permitted; without the repeated ‘0.0’ line the
range in this example would be constrained to be positive definite;
the equal value of 0.0 for maximum and minimum means that it
may be identically zero.

The _item_units.code value must be one of the entries in the
units table for the dictionary and can thus be converted into other
units as specified in the units conversion table.

The aliases entries identify the corresponding quantity defined
in the DDL1 core dictionary.

3.1.6.6. Units

As with data files described by DDL1 dictionaries, the physical
unit associated with a quantitative value in a DDL2-based file is
specified in the relevant dictionary. There is no option to express
the quantity in other units. However, DDL2 permits a dictionary
file to store not only a table of the units referred to in the dictio-
nary (listed under _item_units_list.code and the accompany-
ing descriptive item _item_units_list.detail), but also a table
specifying the conversion factors between individual codes in the
_item_units_list.code list. In principle, this allows a program
to combine or otherwise manipulate different physical quantities
while handling the units properly.

3.1.7. Composing new data definitions

Preceding sections have described the framework within which
CIF dictionaries exist and are used, and their individual formal
structures. While this is important for presenting the definition of
new data items, it does not address what is often the most diffi-
cult question: what quantities, concepts or relationships merit sep-
arate data items? On the one hand, the extensibility of CIF pro-
vides great freedom of choice: anything that can be characterized
as a separate idea may be assigned a new data name and set of
attributes. On the other hand, there are practical constraints on
designing software to write and read a format that is boundless in
principle, and some care must be taken to organize new definitions
economically and in an ordered way.

3.1.7.1. Granularity

Perhaps the most obvious decision that needs to be made is the
level of detail or granularity chosen to describe the topic of inter-
est. CIF data items may be very specific (the deadtime in microsec-
onds of the detector used to measure diffraction intensities in an
experiment) or very general (the text of a scientific paper). In gen-
eral, a data name should correspond to a single well defined quan-
tity or concept within the area of interest of a particular applica-
tion. It can be seen that the level of granularity is determined by
the requirements of the end application.

A practical example of determining an appropriate level of
granularity is given by the core dictionary definitions for bib-
liographic references cited in a CIF. The dictionary originally
contained a single character field, _publ_section_references,
which was intended to contain the complete reference list for an
article as undifferentiated text. Notes for Authors in journals
accepting articles in CIF format advised authors to separate the
references within the field with blank lines, but otherwise no struc-
ture was imposed upon the field. In a subsequent revision to the
core dictionary, the much richer CITATION category was intro-
duced to allow the structured presentation of references to journal
articles and chapters of books. This was intended to aid queries
to bibliographic databases. However, a full structured markup of
references with multiple authors or editors in CIF requires
additional categories, so that the details of the reference may
be spread across three tables corresponding to the CITATION,
CITATION_AUTHOR and CITATION_EDITOR categories. Populating
several disjoint tables greatly complicates the author’s task of writ-
ing a reference list. Moreover, the CITATION category does not yet
cover all the many different types of bibliographic reference that
it is possible to specify, and is therefore suitable only for refer-
ences to journal articles and chapters of books. However, it is pos-

83

3. CIF DATA DEFINITION AND CLASSIFICATION

sible to write a program that can deduce the structure of a standard
reference within an undifferentiated reference list (provided the
journal guidelines have been followed by the author) to the extent
that enough information can be extracted to add hyperlinks to ref-
erences using a cross-publisher reference linking service such as
CrossRef (CrossRef, 2004). Therefore, in practice, IUCr journals
still ask the author of an article to supply their reference list in the
_publ_section_references field, rather than using the apparently
more useful _citation_ fields. It remains to be seen whether this
is the best strategy in the long term.

In more technical topic areas, the details of an experimen-
tal instrument could be described by a huge number of possible
data names, ranging from the manufacturer’s serial number to the
colour of the instrument casing. However, many of these details are
irrelevant to the analysis of the data generated by the instrument,
so the characteristics of an instrument that are assigned individ-
ual data names are typically just those parameters that need to be
entered in equations describing the calibration or interpretation of
the data it generates.

3.1.7.2. Category ‘special details’ fields

When the specific items in a particular topic area that need to
be recorded under their own data names have been decided, there
is likely to be other information that could be recorded, but is felt
to be irrelevant to the immediate purposes of the data collection
and analysis. It is good practice to provide a place in the CIF for
such additional information; it encourages an author to record the
infomation and permits data mining at a later stage. Each cate-
gory typically contains a data name with the suffix _details (or
_special_details) which identifies a text field in which addi-
tional information relating to the category may be stored. This
field often contains explanatory text qualifying the information
recorded elsewhere in the same category, but it might contain
additional specific items of information for which no data name
is given and for which no obvious application is envisaged. This
helps to guard against the loss of information that might be put to
good use in the future. Of course, if a *_details field is regularly
used to store some specific item of information and this informa-
tion is seen to be valuable in the analysis or interpretation of data
elsewhere in the file, there is a case for defining a new, separate tag
for this information.

3.1.7.3. Construction of data names

Since a dictionary definition contains all the machine-readable
attributes necessary for validating the contents of a data field, the
data name itself may be an arbitrary tag, devoid of semantic con-
tent. However, while dictionary-driven access to a CIF is useful in
many cases, there are circumstances where it is useful to browse
the file. It is therefore helpful to construct a data name in a way that
gives a good indication of the quantity described. From the begin-
ning, CIF data names have been constructed from self-descriptive
components in an order that reflects the hierarchical relationship of
the component ideas, from highest (most general) level to lowest
(most specific) level when read from left to right.

In a typical example from the core CIF dictionary, the data name
_atom_site_type_symbol defines a code (symbol) indicating the
chemical nature (type) of the occupant of a location in the crystal
lattice (atom_site). The equivalent data name from the mmCIF
dictionary, _atom_site.type_symbol, explicitly separates the cat-
egory to which the data name belongs from its more specific qual-
ifiers by using a full stop (.) instead of an underscore (_). While
this use of a full stop is mandated in DDL2 dictionaries, it should

_database_code_CSD ’VOBYUG’

(a)

_database_2.database_id ’PDB’
_database_2.database_code ’5HVP’

(b)

Fig. 3.1.7.1. Alternative quantities described (a) by data-name extension (core dic-
tionary) or (b) by paired data names (mmCIF dictionary).

nevertheless be considered a convenience, since the category mem-
bership is explicitly listed in the dictionary definition frame for
every data name.

However, it may not always be easy to establish the best
order of components when constructing a new data name. In
the JOURNAL category, there was initially some uncertainty about
whether to associate the telephone numbers of different contact
persons by appending codes such as _coeditor and _techeditor

to a common base name. In the end, the order of components
was reversed to give names like _journal_coeditor_phone and
_journal_techeditor_phone. Examining the JOURNAL category
in the core CIF dictionary will show why this was done. Similarly,
the extension of geometry categories to include details of hydro-
gen bonding went through a stage of discussing adding new data
names to the existing categories, but with suffixes indicating that
the components were participating in hydrogen bonding, before it
was decided that a completely new category for describing all ele-
ments of a hydrogen bond was justified. These examples show that
the correct ordering of components within a data name is closely
related to the perceived classification of data names by category
and subcategory.

Sometimes it is useful to differentiate alternative data items
by appending a suffix to a root data name. For example, the
core dictionary defines several data names for recording the ref-
erence codes associated with a data block by different databases:
_database_code_CAS, _database_code_CSD etc. This is conve-
nient where there are two or three alternatives, but becomes
unwieldy when the number of possibilities increases, because
new data names need to be defined for each new alternative
case. A better solution is to have a single base name and a
companion data item that defines which of the available alter-
natives the base item refers to. The mmCIF dictionary follows
this principle: the category DATABASE_2 contains two data names,
_database_2.database_code (the value of which is an assigned
database code) and _database_2.database_id (the value of
which identifies which of the possible databases assigned the code)
(Fig. 3.1.7.1).

Note the distinction between a data name constructed with a suf-
fix indicating a particular database, and a data name which incor-
porates a prefix registered for the private use of a database. The
data name _database_code_PDB is a public data name specifying
an entry in the Protein Data Bank, while _pdb_database_code is
a private data name used for some internal purpose by the Protein
Data Bank (see Section 3.1.8.2).

3.1.7.4. Parsable data values versus separate data names

An advantage of defining multiple data names for the indi-
vidual components of a complicated quantity is that there is
no ambiguity in resolving the separate components. Hence the
Miller indices of a reflection in the list of diffraction measure-
ments are specified in the core dictionary by the group of three
data names _diffrn_refln_index_h, _diffrn_refln_index_k

and _diffrn_refln_index_l. In principle, a single data name

84

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

associated with the group of three values in some well defined
format (e.g. comma separated, as h, k, l) could have been defined
instead. However, this would require a parser to understand the
internal structure of the value so that it could parse out the sepa-
rate values for h, k and l.

On the other hand, there are many examples of data values
that are stored as string values parsable into distinct components.
An extreme example is the reference list mentioned in Section
3.1.7.1. More common are dates (_audit_creation_date), chem-
ical formulae (e.g. _chemical_formula_moiety), symmetry oper-
ations (_symmetry_equiv_pos_as_xyz) or symmetry transforma-
tion codes (_geom_bond_site_symmetry_1). There is no definitive
answer as to which approach is preferred in a specific case. In
general, the separation of the components of a compound value
is preferred when a known application will make use of the sep-
arate components individually. For instance, applications may list
structure factors according to a number of ordering conventions
on individual Miller indices. As an extreme example of sepa-
rating the components of a compound value, the mmCIF dictio-
nary defines data names for the standard uncertainty values of
most of the measurable quantities it describes, while the core
dictionary just uses the convention that a standard uncertainty is
specified by appending an integer in parentheses to a numeric
value.

When compound values are left as parsable strings, the pars-
ing rules for individual data items need to be made known to
applications. The DDL1 attribute _type_construct was envis-
aged as a mechanism for representing the components of a data
value with a combination of regular expressions and reference
to primitive data items, but this has not been implemented in
existing CIF dictionaries (or in dictionary utility software). An
alternative approach used in DDL2-based dictionaries defines
within the dictionaries a number of extended data types (expressed
in regular-expression notation through the attribute _item_type_

list.code).
A related problem is how to handle data names that describe an

indeterminate number of parameters. For example, in the modu-
lated structures dictionary an extra eight Miller indices are defined
to span a reciprocal space of dimension up to 11. In principle,
the dimensionality could be extended without limit. According to
the practice of defining a unique data name for each modulation
dimension, new data names would need to be defined as required
to describe higher-dimensional systems. Beyond a certain point
this will become unwieldy, as will the set of data names required
to describe the n2 components of the W matrix for a modulated
structure of dimensionality n (_cell_subsystem_matrix_W_1_1
etc.).

The modulated structures dictionary was constrained to define
extended Miller indices in this way for compatibility with the core
dictionary. Data names describing new quantities that are subject
to similar unbounded extensibility should perhaps refer to values
that are parsable into vector or matrix components of arbitrary
dimension.

3.1.7.5. Consistency of abbreviations

One further consideration when constructing a data name is the
use of consistent abbreviations within the components of the data
name. This is of course a matter of style, since if a data name is
fully defined in a dictionary with a machine-readable attribute set,
the data name itself can be anything. Nonetheless, to help to find
and group similar data names it is best to avoid too many different
abbreviations.

Table 3.1.7.1 lists the abbreviations used in the current pub-
lic dictionaries. Note that there are already cases where different
abbreviations are used for the same term.

3.1.8. Management of multiple dictionaries

So far this chapter has discussed the mechanics of writing dictio-
nary definitions and of assembling a collection of definitions in a
single global or local dictionary file. In practice, the set of data
names in a CIF data file may include names defined in several dic-
tionary files. A mechanism is required to identify and locate the
dictionaries relevant to an individual data file. In addition, because
dictionaries are suitable for automated validation of the contents
of a data file, it is convenient to be able to overlay the attributes
listed in a dictionary with an alternative set that permit validation
against modified local criteria. This section describes protocols for
identifying, locating and overlaying dictionary files and fragments
of dictionary files.

3.1.8.1. Identification of dictionaries relevant to a data file

A CIF data file should declare within each of its data
blocks the names, version numbers and, where appropri-
ate, locations of the global and local dictionaries that con-
tain definitions of the data names used in that block. For
DDL1 dictionaries, the relevant identifiers are the items
_audit_conform_dict_name, _audit_conform_dict_version

and _audit_conform_dict_location, defined in the core dic-
tionary. DDL2 dictionaries are identified by the equivalent
items _audit_conform.dict_name, *.dict_version and *.dict_

location. For convenience, the DDL1 versions will be used in the
following discussion.

The values of the items _audit_conform_dict_name and
_audit_conform_dict_version are character strings that match
the values of the _dictionary_name and _dictionary_version

identifiers in the dictionary that defines the relevant data names.
Validation against the latest version of a dictionary should always
be sufficient, since every effort is made to ensure that a dictio-
nary evolves only by extension, not by revising or removing parts
of previous versions of the dictionary. Nevertheless, including
_audit_conform_dict_version is encouraged: it can be useful to
confirm which version of the dictionary the CIF was initially vali-
dated against.

The data item _audit_conform_dict_location may be used to
specify a file name or uniform resource locator (URL). However,
a file name on a single computer or network will be of use only to
an application with the same view of the local file system, and so
is not portable. A URL may be a better indicator of the location
of a dictionary file on the Internet, but can go out of date as server
names, addresses and file-system organization change over time.
The preferred method for locating a dictionary file is to make use
of a dynamic register, as described in Section 3.1.8.2. Neverthe-
less, _audit_conform_dict_location remains a valid data item
that may be of legitimate use, particularly in managing local appli-
cations.

The following example demonstrates a statement of dictionary
conformance in a data file describing a powder diffraction experi-
ment with some additional local data items:

loop_
_audit_conform_dict_name
_audit_conform_dict_version
_audit_conform_dict_location

cif_core.dic 2.3.1 .
cif_pd.dic 1.0.1 .
cif_local_my.dic 1.0

/usr/local/dics/my_local_dictionary

85

3. CIF DATA DEFINITION AND CLASSIFICATION

Table 3.1.7.1. Abbreviations in CIF data names

Terms for which abbreviations are defined are sometimes found unabbreviated.

Abbreviation Term Abbreviation Term Abbreviation Term

abbrev abbreviation eqn equation oper operation
abs absolute (configuration, not structure) esd standard uncertainty (estimated org organism
absorpt absorption standard deviation) (see su) orient orientation
alt alternative expt experiment origx orthogonal coordinate matrix (PDB files)
amp amplitude exptl experimental os operating system
AN accession number fom figure of merit param parameter
anal analyser fract fractional pd powder diffraction
aniso anisotropic* Fsqd F squared PDB Protein Data Bank
anisotrop anisotropic* gen generation PDF Powder Diffraction File
anom anomalous gen generator perp perpendicular
ASTM American Society for Testing and Materials gen genetic phos phosphate
asym asymmetric geom geometric pk peak
atten attenuation H-M Hermann–Mauguin polarisn polarization
au arbitrary units ha heavy atom poly polymer
auth author hbond hydrogen bond pos position
av average hist history prep preparation
ax axial horiz horizontal proc processed
B B form of atomic displacement I intensity prof profile

parameter (a.d.p.) ICSD Inorganic Crystal Structure Database prot protein
backgd background* id identifier ptnr partner
beg begin illum illumination publ publication
bg background* imag imaginary R agreement index
biol biology inc increment rad radius
bkg background* incl include recd received
bond bonding info information recip reciprocal
Bsol B form of a.d.p. for solvent instr instrument ref reference
calc calculated Int international refine refinement
calib calibration (pd) ISBN International Standard Book Number refln reflection
cartn Cartesian iso isotropic reflns reflections
CAS Chemical Abstracts Service iso isomorphous res resolution
char characterization (pd) ISSN International Standard Serial Number restr restraints
chem chemical IUCr International Union of Crystallography rev revision
chir chirality IUPAC International Union of Pure and Rmerge agreement index of merging
clust cluster Applied Chemistry rms root mean square
coef coefficient len length rot rotation
com common lim limit S goodness of fit
comp component loc lack of closure samp sample
conc concentration ls least squares scat scattering factor
conf conformation max maximum seq sequence
config configuration MDF Metals Data File sigI σ(I)*
conform conformant meanI mean intensity sigmaI σ(I)*
conn connectivity meas measured sint sin θ
cons constant mid middle (between max and min) sint/lambda sin(θ)/λ*
CSD Cambridge Structural Database min minimum sol solvent
db database mod modification spec specimen
defn definition mods modifications src source
detc detector mon monomer std standard
der derivative monochr monochromator (pd)* stol sin(θ)/λ*
dev standard deviation mono monochromator (pd)* struct structure
dict dictionary nat natural su standard uncertainty
dif difference* NBS National Bureau of Standards (now suppl supplementary
diff difference* National Institute of Standards and sys systematic
diffr diffractometer Technology) tbar mean path length
diffrn diffraction NCA number of connected atoms temp temperature
displace displacement ncs noncrystallographic symmetry tor torsion angle
dist distance netI net intensity tran transformation*
divg divergence NH number of connected hydrogen atoms transf transformation*
dom domain nha non-hydrogen atoms transform transformation*
dtime deadtime norm normal tvect translation vector (PDB files)
ens ensemble nst nonstandard vert vertical
eq equatorial* nucl nucleic acid wR weighted agreement index
equat equatorial* num number wt weight
equiv equivalent obs observed

* Terms with multiple definitions.

It is clear that the location specified for the local dictionary is only
meaningful for applications running on the same computer or net-
work, and therefore the ability to validate against this local dic-
tionary is not portable. On the other hand, it may be that the local
data names used by the authors of this CIF are not intended to have
meaning outside their own laboratory.

3.1.8.2. The dictionary register

COMCIFS maintains a register of dictionaries known to it,
including the identifying name and version strings within those
dictionaries. The register also includes the location of each dic-
tionary, expressed at present as a URL designed to allow retrieval

by file transfer protocol (ftp) from the IUCr server. Changes in
the location of a particular dictionary file can be made by mod-
ifying the entry in the register, avoiding the problem of speci-
fying a URL in a data file that would then become outdated if
the dictionary was moved. Dictionary applications can consult
the register (according to a protocol outlined below) to locate
and retrieve the dictionaries needed for validating data files. It
is of course essential that the validation software knows how to
locate the register. The location is at present given by the URL
ftp://ftp.iucr.org/pub/cifdics/cifdic.register.

The problem of changing URLs has therefore not disappeared
completely, but is at least confined to the need to maintain one
single address.

86

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Table 3.1.8.1. CIF dictionary register (maintained as a STAR File)

data_validation_dictionaries
loop_

_cifdic_dictionary.name
_cifdic_dictionary.version
_cifdic_dictionary.DDL_compliance
_cifdic_dictionary.reserved_prefix
_cifdic_dictionary.URL
_cifdic_dictionary.description

cif_core.dic . 1.4.1 .
ftp://ftp.iucr.org/pub/cifdics/cif_core.dic
’Core CIF Dictionary’

cif_core.dic 1.0 . .
ftp://ftp.iucr.org/pub/cifdics/cifdic.C91
’Original Core CIF Dictionary’

cif_core.dic 2.3.1 1.4.1 .
ftp://ftp.iucr.org/pub/cifdics/cif_core_2.3.1.dic
’Core CIF Dictionary’

cif_pd.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_pd.dic
’Powder CIF Dictionary’

cif_pd.dic 1.0.1 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_pd_1.0.1.dic
’Powder CIF Dictionary’

cif_ms.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_ms.dic
’Modulated structures CIF Dictionary’

cif_ms.dic 1.0.1 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_ms_1.0.1.dic
’Modulated structures CIF Dictionary’

cif_rho.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_rho.dic
’Modulated structures CIF Dictionary’

cif_rho.dic 1.0.1 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_rho_1.0.1.dic
’Electron density CIF Dictionary’

cif_mm.dic . 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_mm.dic
’Macromolecular CIF Dictionary’

cif_mm.dic 1.0 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_mm_1.0.dic
’Macromolecular CIF Dictionary’

mmcif_std.dic . 2.1.6 .
ftp://ftp.iucr.org/pub/cifdics/mmcif_std.dic
’Macromolecular CIF Dictionary’

mmcif_std.dic 2.0.09 2.1.6 .
ftp://ftp.iucr.org/pub/cifdics/cif_mm_2.0.09.dic
’Macromolecular CIF Dictionary’

cif_img.dic . 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/cif_img.dic
’Image CIF Dictionary’

cif_img.dic 1.0 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/cif_img_1.0.dic
’Image CIF Dictionary’

cif_img.dic 1.3.2 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/cif_img_1.3.2.dic
’Image CIF Dictionary’

cif_sym.dic . 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/cif_sym.dic
’Symmetry CIF Dictionary’

cif_sym.dic 1.0.1 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/cif_sym_1.0.1.dic
’Symmetry CIF Dictionary’

cif_compat.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_compat.dic
’Legacy CIF Dictionary of deprecated terms’

ddl_core.dic . 1.4.1 .
ftp://ftp.iucr.org/pub/cifdics/ddl_core.dic
’Non-relational dictionary definition language’

ddl_core_2.1.3.dic . 2.1.3 .
ftp://ftp.iucr.org/pub/cifdics/ddl_core_2.1.3.dic
’Relational dictionary definition language’

mmcif_ddl.dic . 2.1.6 .
ftp://ftp.iucr.org/pub/cifdics/mmcif_ddl.dic
’Relational dictionary definition language’

Table 3.1.8.1 is an extract from the current register. The latest
version of the register will always be available from the URL given
above.

The entries for each dictionary include one with the version
string set to ‘.’, representing the current version; this is the ver-
sion that should be retrieved unless a data file specifies otherwise.

Note that the register may also contain locators for local
dictionaries constructed by owners of reserved prefixes (Sec-
tion 3.1.2.2) when the owner has requested that a dictionary of
local names be made publicly available. An appropriate name
for a local dictionary in the register (_dictionary_name or
_dictionary.title for DDL1 or DDL2 dictionaries, respec-
tively) would be cif_local_myprefix.dic, where the string indi-
cated by myprefix is one of the prefixes reserved for private use
by the author of the dictionary (see Section 3.1.2.2). This scheme
complements the naming convention for public dictionaries.

3.1.8.3. Locating a dictionary for validation

The following protocol applies to the creation and use of soft-
ware designed to locate the dictionaries referenced by a data file
and validate the data file against them. The protocol is necessary
to address the issues that arise because dictionaries evolve through
various audited versions, because not all dictionaries referenced by
a data file may be accessible, and because data files might not in
practice contain pointers to their associated dictionaries.

Software source code for applications that use CIF dictionar-
ies to validate the contents of data files should be distributed with
a copy of the most recent version of the register of dictionaries,
and with the URL of the master copy hard-coded. Library utili-
ties should be provided that permit local cacheing of the register
file and the ability to download and replace the cached register at
regular intervals. Individual dictionary files located and retrieved
through the use of the register should also be cached locally, to
guard against temporary unavailability of network resources.

Each CIF data file should contain a reference to one or
more dictionary files against which the file may be vali-
dated. At the very least this will be _audit_conform_dict_name

(_audit_conform.dict_name for DDL2 files) (N). *_version (V)
and *_location (L) are optional. In the event that no dictionaries
are specified, the default validation dictionary should be that iden-
tified as having N = cif_core.dic and V = ‘.’ (i.e. the most recent
version of the core dictionary). Since dictionaries are intended
always to be extended, it is normally enough just to specify the
name (and possibly the location).

This default is appropriate for most well formed CIFs, but if it is
important to provide formal validation of old CIFs conforming to
the earliest printed specification, which used the now-deprecated
units extension convention, the dictionary cif compat.dic may also
be added to the default list (Section 3.1.5.4.3).

There is a difficulty associated with assuming this default for
CIFs containing DDL2 data names. At present, the DDL2 version
of the core dictionary does not exist as a separate file. Most exist-
ing CIFs built on the DDL2 model conform to the macromolecu-
lar (mmCIF) dictionary, and so best current working practice is to
assume a default validation dictionary for DDL2-style CIFs with
N = mmcif_std.dic and V = ‘.’ (i.e. the most recent version of the
mmCIF dictionary), since this includes the core data names as a
subset. However, to anticipate future developments, it is suggested
that applications built to validate DDL2 files first search the regis-
ter for a default entry with N = cif_core.dic, V = ‘.’ and a value
of 2 or higher for the relevant DDL version:

loop_
_cifdic_dictionary.name
_cifdic_dictionary.version
_cifdic_dictionary.DDL_compliance
cif_core.dic . 2.1.2

87

3. CIF DATA DEFINITION AND CLASSIFICATION

A software application validating against CIF dictionaries
should attempt to locate and validate against the referenced dic-
tionaries in the order cited in the data file, according to the follow-
ing procedure. The terms ‘warning’ and ‘error’ in this procedure
are not necessarily messages to be delivered to a user. They may
be handled as condition codes or return values delivered to calling
procedures instead.

If N, V and L are all given, try to load the file from the location
L, or a locally cached copy of the referenced file. If this fails, raise
a warning. Then search the dictionary register for entries matching
the given N and V . (An appropriate strategy would be to search a
locally cached copy of the register, and to refresh that local copy
with the latest version from the network if the search fails.) If a
successful match is made, try to retrieve the file from the location
given by the matching entry in the register (or a locally cached
copy with the same N and V previously fetched from the location
specified in the register). If this fails, try to load files identified
from the register with the same N but progressively older versions
V (version numbering takes the form n.m.l . . ., where n, m, l, . . .
are integers referring to progressively less significant revision lev-
els). Version ‘.’ (meaning the current version) should be accessed
before any other numbered version. If this fails, raise a warning
indicating that the specified dictionary could not be located.

If N and V but not L are given, try to load locally cached or
master copies of the matching dictionary files from the location
specified in the register file, in the order stated above, viz: (i) the
version number V specified; (ii) the version with version number
indicated as ‘.’; (iii) progressively older versions. Success in other
than the first instance should be accompanied by a warning and an
indication of the revision actually loaded.

If only N is given, try to load files identified in the register by (i)
the version with version number indicated as ‘.’; (ii) progressively
older versions.

If all efforts to load a referenced dictionary fail, the validation
application should raise a warning.

If all efforts to load all referenced dictionaries fail, the validation
application should raise an error.

For any dictionary file successfully loaded according to this pro-
tocol, the validation application must perform a consistency check
by scanning the file for internal identifiers (_dictionary_name,
_dictionary_version or the DDL2 equivalents) and ensuring that
they match the values of N and V (where V is not ‘.’). Failure in
matching should raise an error.

3.1.9. Composite dictionaries

The dictionaries referenced by a data file are those that contain
the definitions of the data names used in the data file. Typically
these include or consist entirely of public dictionaries that are
necessarily permissive in the range of values allowed for data
items. However, the power and flexibility of validating against
machine-readable dictionaries could be harnessed by applica-
tions that need to impose stricter validation criteria. For exam-
ple, the core dictionary permits an enumeration range of 0 to 8
for _atom_site_attached_hydrogens, but one might wish to val-
idate a data set describing well behaved organic molecules where
anything above 4 is almost certainly an error. It would be helpful to
have a validation dictionary identical to the core dictionary except
for this enumeration range; however it would be inefficient to cre-
ate an alternative dictionary of the same size simply for this one
change. In Section 3.1.9.1, we consider how to build a dictionary
file that includes the bulk of the content of the public dictionar-
ies cited in the CIF, together with modifications in local dictionary

files to allow alternative specifications of what constitutes a ‘valid’
data item.

Proper applications of this approach include restricting the enu-
meration range specified for an item in a public dictionary; enforc-
ing a more strict data typing than allowed by the parent dictionary;
storing a list of all data names (including local ones) permitted in
a CIF; or adding to existing dictionary entries references to local
data items in an extension dictionary. An example of the latter
application would be the addition of a _list_link_child entry
to a public definition to accompany the introduction of a new child
category in a local dictionary. The protocol to be described does
not prohibit other applications, but care must be taken to gener-
ate dictionaries that retain internal consistency and are properly
parsable by standard validation tools.

3.1.9.1. A dictionary merging protocol

The following protocol describes the construction of a compos-
ite, or virtual, dictionary by merging and overlaying fragments
of a local validation dictionary and the public dictionaries ref-
erenced from within a data file. The term ‘dictionary fragment’
refers here to a physical disk file which contains one or more
data blocks or save frames (according to whether the relevant data
model is DDL1 or DDL2) containing complete or partial sets of
attributes associated with data names identified in the relevant dic-
tionary data block or save frame through the item _name (DDL1)
or _item.name (DDL2).

(i) Assemble and load all dictionary fragments against which the
current data block will be validated. The order of presentation is
important. Complete dictionaries referenced by a data file should
be assembled in the order cited. A dictionary validation applica-
tion may then accept a list of additional dictionary fragments to
PREPEND to, REPLACE or APPEND to each file in the list of
cited dictionaries. In most applications, it will be appropriate to
append to or replace attributes defined in a public dictionary, and
the PREPEND operation is presented only for completeness.

(ii) Define three modes in which conflicting data names in
the aggregate dictionary file may be resolved, called STRICT,
REPLACE and OVERLAY.

(iii) Scan the aggregate dictionary fragments in the order of
loading. Assemble for each defined data name a composite defi-
nition frame (data block or save frame as appropriate) as follows,
depending on the mode in which the validation application is oper-
ating:

STRICT: If a data name appears to be multiply defined, generate
a fatal error. This mode permits the interpolation of local dictionar-
ies that do not attempt to modify the attributes of public data items.

REPLACE: All attributes previously stored for the conflicting
data name are deleted, and only the attributes in the later data
block (or save frame) containing the definition are preserved. This
mode permits the complete redefinition of public data names and is
not appropriate for validation of CIFs to be archived. Its main use
would be in testing modifications of individual definition frames
outside the parent dictionary.

OVERLAY: New attributes are added to those already stored
for the data name; conflicting attributes replace those already
stored. This is the standard mechanism for modifying attributes
for application-specific validation purposes.

This protocol allows the creation of a coherent virtual dictio-
nary from several different dictionary files or fragments. Although
it must be used with care, it permits different levels of validation
based on dictionary-driven methods without modifying the origi-
nal dictionary files themselves.

88

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.9.1. A standard CIF dictionary definition block.

data_atom_site_attached_hydrogens
_name ’_atom_site_attached_hydrogens’
_category atom_site
_type numb
_list yes
_list_reference ’_atom_site_label’
_enumeration_range 0:8
_enumeration_default 0
loop_ _example

_example_detail 2 ’water oxygen’
1 ’hydroxyl oxygen’
4 ’ammonium nitrogen’

_definition
; The number of hydrogen atoms attached

to the atom at this site excluding any
hydrogen atoms for which coordinates
(measured or calculated) are given.

;

Example 3.1.9.2. A modified data attribute for overlaying a pub-
lic definition.

data_atom_site_attached_hydrogens_restricted
_name ’_atom_site_attached_hydrogens’
_enumeration_range 0:4

As an example, consider the core CIF dictionary definition men-
tioned above of the number of hydrogen atoms that might be
attached to an atom site (Example 3.1.9.1).

For a particular application, any structures reporting more than
four attached hydrogen atoms might be considered as invalid.
A validation program to satisfy this requirement might therefore
build a composite dictionary from the public cif core.dic, which
contains the definition in Example 3.1.9.1, and the fragment of
Example 3.1.9.2, processed in APPEND/OVERLAY modes.

3.1.9.2. Protocol implementation

At the time of publication (2005), there is no reference imple-
mentation for this protocol, and so the proper treatment of the fine
details of merging and overlay operations is not available. The
following guidelines outline the first steps in an implementation
under DDL1.4.

The description assumes that a composite dictionary is to be
assembled from two public dictionaries, a.dic and b.dic, and a local
dictionary mod.dic that includes some modifications to the defini-
tions in one or both of the public dictionaries (and is therefore
processed in OVERLAY mode). It is assumed that the compos-
ite dictionary will be written to disk as a separate file, virtual.dic,
although in practice applications may simply construct the image
of the composite dictionary in memory.

(1) Each contributing dictionary fragment should have at most
one data block containing the data names _dictionary_name and
_dictionary_version (with, optionally, _dictionary_update

and _dictionary_history). The *_name and *_version together
identify the dictionary file uniquely and should match the corre-
sponding entries in the IUCr register if this is a public dictionary.
This information is conventionally stored in a data block named
data_on_this_dictionary.

In DDL1.4, all four of the items _dictionary_name, *_version,
*_update and *_history are scalars, i.e. may not be looped.
Hence a new dictionary identifier section in virtual.dic may be con-
structed as follows.

(i) Create a data block data_on_this_dictionary at the begin-
ning of virtual.dic.

(ii) If a name for the composite dictionary is supplied (via
a command-line switch, for example), write this as the value

of _dictionary_name; otherwise generate a pseudo-unique string
(e.g. concatenate the computer identifier string, process number
and current date string).

(iii) If a dictionary version number is supplied (via a
command-line switch, for example), write this as the value of
_dictionary_version; otherwise supply the value ‘1.0’.

(iv) Supply the current date in the format yyyy-mm-dd as the
value of _dictionary_update.

(v) Create a composite _dictionary_history by concatenation
of the individual _dictionary_history fragments. The applica-
tion may add details of the current merge operation to the history
field.

(2) There is no significance to the ordering of data blocks con-
taining definitions in dictionaries, although they are convention-
ally sorted alphabetically. For convenience, data blocks should be
written out in the order in which they are encountered in the input
primitive dictionary files, except that definitions modified by sub-
sequent entries remain in their initial location.

(3) In STRICT mode, if the same value of _name is present in
two or more data blocks, the composite dictionary is invalid and
the application should raise a fatal error. Otherwise the composite
dictionary simply contains the aggregate definitions from multiple
input dictionaries.

(4) In REPLACE mode, a stored definition block is discarded
and replaced by a new definition of the item referenced by _name.

(5) For the OVERLAY mode (assumed in the present discus-
sion), the following procedure is proposed. Load a data block from
the first dictionary file. Locate the _name tag. (Because _name may
be looped, a data block may contain definitions for more than one
data name. For convenience, we consider only the case of a data
block containing a single value of _name. In any event, it is possible
to separate a set of looped definitions into individual data blocks,
each defining only one of the data names in the initial _name loop.)
Search the next dictionary file for a data block containing the same
value of _name. Load the contents of that data block.

(i) If the new data block contains only data items that do not
appear in the first data block, they are simply concatenated with
those already present.

(ii) If the new data block contains a scalar data item already
present in the first data block (i.e. with _list no), discard the
stored attributes.

(iii) If the new data block contains data items that may be looped
and that occur in the first data block, build a new composite table
of values in the following way: (a) construct a valid loop header if
necessary; (b) do not repeat identical sets of values (i.e. collapse
identical table rows); (c) if it is possible to identify the category
key, then raise a fatal error if there are identical instances of a key
value [after the normalization of step (b) has occurred]; (d) else
append new rows to the table.

When the new composite data block has been built according
to these principles, search the next dictionary file specified and
repeat.

3.1.10. Public CIF dictionaries

So far, seven CIF dictionaries have been published by the IUCr
with COMCIFS approval. They are described in the remaining
chapters in this part of the volume. This section provides an
overview of the large-scale structure of these dictionaries and
forms a general introduction to Chapters 3.2 to 3.8.

The public CIF dictionaries have been constructed by experts in
a number of different crystallographic fields. They are intended to
serve the individual fields in which they have been commissioned
and therefore vary in character depending on the requirements

89

3. CIF DATA DEFINITION AND CLASSIFICATION

Table 3.1.10.1. High-level grouping of categories by dictionary

Category groups are organized into families by common function and purpose.

cif core.dic cif pd.dic cif ms.dic cif rho.dic mmcif std.dic cif img.dic cif sym.dic

(a) Experimental measurements
ARRAY
AXIS

CELL CELL CELL
DIFFRN DIFFRN DIFFRN DIFFRN
EXPTL EXPTL EXPTL

PD CALIB
PD CHAR
PD DATA
PD INSTR
PD MEAS
PD PREP
PD SPEC

(b) Analysis
PD CALC
PD PEAK
PD PROC

PHASING
REFINE REFINE REFINE
REFLN REFLN REFLN REFLN

(c) Structure
ATOM ATOM ATOM ATOM
CHEMICAL CHEMICAL

CHEM COMP
CHEM LINK
ENTITY

GEOM GEOM GEOM
PD PHASE

STRUCT
SYMMETRY SYMMETRY SYMMETRY SPACE GROUP
VALENCE VALENCE

(d) Publication
CITATION CITATION
COMPUTING COMPUTING
DATABASE DATABASE
JOURNAL JOURNAL
PUBL PUBL

SOFTWARE

(e) File metadata
AUDIT AUDIT AUDIT

PD BLOCK

and practices of each field. Here we provide a general framework
within which the category groups of each separate dictionary may
be described.

3.1.10.1. Categories and category groups

The only formal unit of classification common to all CIF dic-
tionaries is the category. For example, in the core CIF dictio-
nary information about the chemical and physical properties of
the different atomic species in a crystal cell is collected in a
few data names such as _atom_type_oxidation_number which
belong to the same category, in this case the ATOM_TYPE cate-
gory. As described in Section 3.1.5.3, it is conventional (although
not mandatory) that CIF data names begin with components corre-
sponding to the name of the category to which they belong.

The term category as used in CIF dictionaries has a techni-
cal meaning which constrains its normal use in grouping items
that are understood to have a ‘natural’ relationship. In a CIF,
only items belonging to the same category may appear together
in the same looped list. This means, for example, that data items
describing collective properties of the atom sites in the lattice (such
as the number of atoms of each atomic species in the unit cell)
must be assigned to a different category from the data items that
describe the properties of the individual sites. Hence the proper-
ties of individual sites (such as the positional coordinates defined
by _atom_site_fract_x etc.) belong to the ATOM_SITE category,
while the transformation matrix between Cartesian and fractional
components (expressed by a collection of data names such as

_atom_sites_fract_tran_matrix_11) belong to the ATOM_SITES

category. Clearly, the category names have been chosen to be sim-
ilar to reflect their close relationship, while the EXPTL category
containing data names such as _exptl_crystal_colour is named
quite differently. It is natural to wish to describe related categories
in a common higher level of classification, and indeed category
groups exist as formal components of DDL2-structured dictionar-
ies. We shall, however, refer informally to ‘category groups’ in
discussions of DDL1 dictionaries as collections of categories with
a close relationship that is usually implicit in their names.

3.1.10.2. Overview of category classification

Table 3.1.10.1 provides an informal classification at a high level
of the category groups represented in each of the CIF dictionar-
ies in this volume. Related category groups are clustered within
the table in families sharing a common function. The five families
(a) to (e) in Table 3.1.10.1 refer to: the crystallographic experi-
ment itself; the processing and analysis of data from the experi-
ment; the derived structural model; the reporting and publication
of the results; and general auditing of the file itself, its purpose,
authorship, history and links to other data sets, i.e. the file meta-
data. Detailed discussions of the individual categories (and formal
category groups for DDL2 dictionaries) will be found in the rele-
vant chapters in the rest of this part of the volume.

Table 3.1.10.1 shows the different characters of the seven dic-
tionaries. The macromolecular dictionary (mmcif std.dic; Chap-
ter 4.5) contains an embedded version of the core dictionary

90

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

(cif core.dic; Chapter 4.1) in DDL2 format and so includes all the
categories defined in the core. However, it extends the descrip-
tion of the structural model extensively by introducing families of
categories for the description of chemical components of a macro-
molecular structure (ENTITY) and for the detailed description of
the structure itself (STRUCT). New categories are also introduced to
describe the phasing of the structure and the SOFTWARE category
allows the inclusion of more details of computational techniques
than the core COMPUTING category does.

The other dictionaries are purely extensions which either intro-
duce new data names (and occasionally new categories) into exist-
ing category groups or, where necessary, introduce completely new
groups of categories.

The powder dictionary (cif pd.dic; Chapter 4.2) contains several
new category groups reflecting the need for substantially differ-
ent methods of describing the experiment and analysing the data,
as well as a need for the structural model to be able to handle
multiple crystalline phases. The modulated structures dictionary
(cif ms.dic; Chapter 4.3) introduces no new category groups, but
does introduce several new data names and categories within the
existing framework. The electron density dictionary (cif rho.dic;
Chapter 4.4) introduces two new categories within an existing

category group. The image CIF dictionary (cif img.dic; Chapter
4.6) has several new categories that characterize arrays of data
from two-dimensional X-ray detectors and the consequent detailed
descriptions of the relevant axes within the experimental setup.
The symmetry dictionary (cif sym.dic; Chapter 4.7) was commis-
sioned specifically to replace the symmetry categories in the core
dictionary with a more detailed treatment.

References
Bray, T., Paoli, J. & Sperberg-McQueen, C. M. (1998). Extensible

Markup Language (XML) 1.0. W3C Recommendation 10-February-
1998. http://www.w3.org/TR/1998/REC-xml-19980210.

CrossRef (2004). Query spec. http://www.crossref.org/03libraries/
25query spec.html.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallographic
Information File (CIF): a new standard archive file for crystallogra-
phy. Acta Cryst. A47, 655–685.

Hall, S. R., Spadaccini, N., Castleden, I. R., du Boulay, D. & Westbrook,
J. D. (2002). StarDDL: towards the unification of Star dictionaries.
Acta Cryst. A58 (Suppl.), C256.

W3C (2004). Extensible Markup Language (XML). http://www.w3c.org/
XML/.

91 references

http://dx.doi.org/openurl?url_ver=Z39.88-2003&rfr_id=ori:rid:author.iucr.org&rft_id=doi:10.1107/97809553602060000733&rfr_dat=cr%5FsetVer%3D01%26cr%5Fpub%3D10%2E1107%26cr%5Fwork%3DGeneral%20considerations%20when%20defining%20a%20CIF%20data%20item%26cr%5Fsrc%3D10%2E1107%26cr%5FsrvTyp%3Dhtml%26cr_rfr_dat%3Dreferences

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

