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Abstract

The role of direct methods in macromolecular
crystallography is discussed. The common belief that such
methods will still remain marginal is rejected. Different
sectors are analyzed. A direct procedure for phasing
reflections when diffraction data of one isomorphous
derivative are available is briefly described. The
applications to experimental data of some test structures
succeeded, and suggest that direct methods are
competitive with traditional SIR techniques. Attention is
also devoted to a formula which is able to recover the
total from a partial structure.
Direct methods can play a central role also for expanding
(and refining) phases from derivative to native resolution,
and can constitute an alternative to traditional molecular
replacement techniques.

1 Introduction

The use of traditional direct methods for solving
macromolecular crystal structures or for refining phases
was initiated several years ago. It was soon realized that
Sayre equation, tangent formula, Karle-Hauptman
determinants, etc., even if useful in favorable conditions,
were, in general, not competitive with the highly efficient
techniques specifically devoted to macromolecular
crystallography. The role of direct methods in this area
seemed to remain quite marginal until, about two decades
ago, a more fruitful integration with macromolecular
crystallographic techniques involving isomorphous
derivative data started [1]. However, in spite of the
extensive theoretical efforts, the practical results were
unsatisfactory: while theoretical phase distributions

worked fine with calculated (error-free) data, they failed
when applied to experimental data. It was claimed that
direct methods are too sensitive to experimental errors:
indeed they estimate single-phase relationships which, if
incorrectly evaluated because of lack of isomorphism or
errors in measurements, etc., can disturb in a destructive
way the phasing process. This belief has been recently
proved wrong: in a series of papers [2], [3], [4], [5], [6] a
direct procedure has been described which is able to
satisfactorily phase protein reflections provided diffraction
data of one isomorphous derivative are available. We will
synthesize in this paper the principia of the above series of
papers and the main results achieved.
Direct methods can do much more for macromolecular
crystallography. Triplet phase distributions in the presence
of anomalous dispersion effects have been independently
derived by Hauptman [7] and by Giacovazzo [8]: they
should constitute a useful tool for the efficient phasing of
proteins even if a robust procedure is not yet available.
For brevity this topic will not be treated in this paper. We
will devote the last part of this article to two important
sectors of the phasing process:
1) phase refinement and extension. We will shortly
describe: a) the results of an innovative solvent flattening
program which has been coupled with our direct methods
program; b) the use of a formula proposed by Giacovazzo
[9] which takes into account the prior information on a
partial structure;
2) The use of direct methods for the translation of a model
molecule as an alternative to traditional molecular
replacement techniques.
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2 Symbols and abbreviations

Symbols and notations are basically the same as in a
recent series of papers [2], [3], [4], [10], [5], [6] (quoted
here as papers I-VI). For the readers convenience they are
listed below.
Fp = |Fp|exp(iϕ) Structure factor of the protein
Fd = |Fd|exp(iψ) Structure factor of the isomor-

phous derivative
FH = Fd-Fp Structure factor of the heavy-

atom structure (i.e. the atoms
added to the native protein)

Φ = − − −ϕ ϕ ϕh k h k

Ep = R exp(iϕ) Normalized structure factor of
the protein

Ed = S exp(iψ) Normalized structure factor of
the isomorphous derivative

Np Number of non-H atoms in the
primitive unit cell for the native
protein

NH Number of heavy-atoms in the
primitive unit cell for the
derivative

σ i j
i

j
N Z= ∑ =1 Zj = atomic number of the jth

atom

N eq = σ σ2
3

3
2/ (Statistically equivalent) num-

ber of atoms in the primitive
unit cell

[ ]σ σ2
3

3
2/

p
Value of Neq for the native

protein

[ ]σ σ2
3

3
2/

H
Value of Neq for the heavy atom

structure
fj Atomic scattering factor of the

jth atom

p jp f∑ = ∑ 2 The sum is extended to the

native protein atoms

H jH f∑ = ∑ 2 The sum is extended to the

heavy atom structure

d jd f∑ = ∑ 2 The sum is extended to the

derivative atoms

( ) ( ) ( )D x I x I xi i= / 0 Ii = modified Bessel function of

order i

E Fd d H
’ /= Σ1/2 Derivative pseudonormalized

( )= S i’exp ψ  structure factor

E Fp p H
’ /= Σ1/2 Native pseudonormalized stru-

( )= R i’exp ϕ cture factor

∆ = −S R’ ’ , ∆’ ’ ’= −S T R

( )T D R S= 1 2 ’ ’

F |F |π π πφ= exp(i ) Structure factor of a partial

structure

[ ]σ σ
π2

3
3
2/ (Statistically equivalent) num-

ber of atoms of the partial
structure for the primitive unit
cell.

[ ]σ σ2
3

3
2/

q
(Statistically equivalent) num-

ber of atoms of the difference
structure obtained by
subtracting the partial from the
protein structure.

Eh
’’ Structure factor  of the protein

structure pseudo-normalized
with respect to the difference
structure.

Eπh
’’ Structure factor  of the partial

structure pseudo-normalized
with respect to the difference
structure.

APP Avian pancreatic polypeptide
[11].

BPO Bacterial haloproxidase from
Streptomyces aurefaciens [12].

E2 Catalitic domain of Azoto-
bacter vinlandii dihydrolipoyl
transacetylase [13].

M-FABP Recombinant human muscle
fatty-acid-binding protein [14].

NOX NADH oxidase from Thermus
thermophilus [15].

The relevant parameters characterizing the diffraction data
of our test structures are given in Table 1.

3 Direct methods and isomorphous
replacement techniques

The integration of direct methods with isomorphous
replacement techniques (SIR case) was first accomplished
by Hauptman [1]. His main result was the following: the
triplet phase invariant Φ was estimated via a von Mises
distribution whose concentration parameter is a
complicated expression involving the six moduli Rh, Rk,,
Rh-k, Sh, Sk, Sh-k. The first application of the method to
error-free data was successful [16] but subsequent tests on
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real diffraction data were unsatisfactory. The weakness
(and the strength) of the method was clearly outlined by
Fortier, Weeks & Hauptman [17]: the accuracy of the
distribution depends on the scattering difference between

the native protein and the derivative. Heavy errors in the
estimate of such differences heavily reduce the efficiency
of the phasing process. The problem was reconsidered by

Table 1  Relevant parameters for the diffraction data of our test structures. NREFL is the number of
measured reflections up to the resolution RES for the native and derivative structures.

Native Derivative

Structure code RES(Å) NREFL Heavy atom [σ2]H/[σ2]p RES(Å) NREFL

APP 0.99 17058 Hg 0.055 2.00 2086
BPO 2.35 23956 Au 0.028 2.78 15741
E2 2.65 10391 Hg 0.021 3.00 9179
M-FABP 2.14 7595 Hg 0.015 3.00 7125
NOX 3.00 4295 Pt 0.041 3.00 4295

Giacovazzo, Cascarano & Zheng [18]: the distribution

P( )Φ |R , R , R ,S ,S ,Sh k h k h k h k− −

[ ]≅ −
2

1π I A Ao ( ) exp( cos )Φ (1)

was obtained for the case “native heavy-atom derivative”,
where

[ ]A / R R R/

p
= −2 3 2

3 2σ σ h k h k

[ ]+ −2 3 2
3 2σ σ/ /

H
∆ ∆ ∆h k h k (2)

and ( )∆ = − ∑F F /d p H
/1 2  is the pseudo-normalized

difference (with respect to the heavy-atom structure).

Since [ ] [ ]σ σ σ σ3 2
3 2

3 2
3 2/ //

H

/

p
>> , the Cochran

parameter is often negligible with respect to the term
including pseudonormalized differences: this last may
attain large values even for large proteins. Since
∆ ∆ ∆h k h k−  may be positive or negative, positive as well

as negative triplets can be identified via (2).
Papers I-VI were devoted to describing a procedure for
phasing, via distribution (1), all the reflections up to
derivative resolution. The procedure succeeded with
experimental data and may be described in a few steps.

3.1 Normalization step

The standard Wilson method is applied to native protein
data (up to native resolution) to obtain the scale factor Kp

and the overall thermal factor Bp. Estimates of the
corresponding factors for the derivative are obtained by a
differential Wilson plot [19] through the equation

( ) ( )ln /Σ Σ Σp H p p dF F+





2 2

( ) ( )= + −ln / /K K B B sinp d d p2 2 2θ λ (3)

Actually from (3) the ratio Rk=Kd/Kp and the difference
∆B=Bd-Bp are obtained. Then Bd and Kd are set to
Bd=Bp+∆B and Kd=KpRk. Equation (3) is not sufficient for
a correct rescaling of derivative data on protein data: some
supplementary steps are needed. Since

( )E E E E Ed p p d d p H
’ ’ ’ ’ cos

2 2 2
2+ − − =φ φ

one should expect that

E E E E Td p p d
’ ’ ’ ’2 2

12 1+ − = .

Therefore the ∆ values are rescaled by the factor

S E E E E Td p p d= + −





−
’ ’ ’ ’

/
2 2

1

1 2

2 (4)

to make the experimental distribution of ∆’  closer to the

expected one.
The application of (4) does not guarantee a good rescaling
mostly when the derivative resolution is equal to or lower
than 4 �. A big improvement was obtained when the
scaling was performed by exploiting the P(∆) distribution
(see papers III and V). From the joint probability
distribution

( ) ( ) ( )P R R RH p
’ ’ ’, ∆ Σ Σ ∆= +4

( )[ ]x R R RH pexp ’ ’ ’− + + +


2 2
2 2 2Σ Σ ∆ ∆

( )[ ]x I R R0 2 ’ ’ + ∆

one obtains
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( ) ( )P P R dR∆ ∆= ∫
∞

’ ’,
0

(5a)

for positive values of ∆ and

( ) ( )P P R dR∆ ∆
∆

= ∫
−

∞
’ ’, (5b)

for negative value of ∆ (the limits of integration are

because R S’ ’= − ∆ has to be positive).
The distribution P(∆) has been calculated (see paper III)
by numerical methods: we show in Fig.1 curves
corresponding to various values of σ = Σ ΣH p .

Let us now show how P(∆) can be used in the normalizing

process. Let ∆T be a positive threshold for ∆, n
T∆

+ be the

number of positive ∆’s for which ∆ > ∆T , n
T∆

−  be the

number of negative ∆ for which |∆|>∆T. Since P(∆) is not
an even function, the ratio

RPM n n
T T

= + −
∆ ∆

is expected to be larger than unity for any value of σ and
for any ∆T.

-2.5 -1.5 -0.5 0.5 1.5 2.5
∆

0.0

0.2

0.4

0.6

0.8P(∆) σ=0.46

σ=0.20

σ=0.08

σ=0.04

Figure 1  P(∆) distribution for select values of σ

In Fig.2 we show RPM curves for different  values of σ.
RPM increases with σ and, for a given σ, increases with
∆T. Its value is strictly correlated with the ratio kd /kp :
errors in the estimate of this ratio will produce anomalous
values of RPM. For example, if Fd values are scaled so
that they are larger than their true values, the number of
positive ∆’s will exceed the expected value. In the
converse case the number of negative ∆’s will be larger
than the expected value. In practice, the experimental P(∆)
curve is modeled by different sources  of errors: besides
the scaling error, also icorrect estimates of the difference

Bd -Bp (as a consequence of the scaling error, errors in
measurements, lack of isomorphism, etc.) will generate
anomalies in P(∆).
The above considerations suggest that histogram-matching
techniques can be usefully applied to transform the
experimental ∆ curve into the P(∆) distribution expected at
the chosen σ value. The resulting ∆ values will then be
introduced into (1) for obtaining more accurate triplet
invariant estimates.

3.2 Phasing step

From (1) a weighted tangent formula may be derived

( ) ( )tan cosϕ β ϕ ϕ β ϕ ϕh k h k k h k= +∑ +∑− −j
j

j
j

sin
j j j j

= T Bh h , (6)

where βj is defined by the equation [20]

( ) ( ) ( ) ( )D D A D Dj j j1 1 1 1β α α= −k h k

and

( )α h h h= +T B2 2 1 2
.

The reliability parameter αh of any determined phase ϕh is
modified according to the agreement between the
calculated and the expected value of αh. In particular, if
αh is larger than the expected value

( )α h = ∑ A D Aj j
j

1 ,

then the calculated  αh is replaced by

( )α α α σ
αh h h

h
exp − −





2 2
1 3

2 ,

where

( ) ( )[ ]σαh

2 2
2 1

21

2
1 2= + −∑ A D A D Aj j j

j
.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
∆T

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0 RPM

σ = 0.46

σ = 0.2

σ= 0.08

σ = 0.04
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Figure 2  RPM curves for some representative
values of σ against the threshold ∆T.

The weighting scheme is designed to drive phases towards
values that mimize the difference between α and α  by

reducing in the tangent refinement the importance of the
phases with too large values of α.
In one possible strategy for the phase determination one
could simultaneously apply the tangent formula (6) to all
the reflections up to derivative resolution. Such a strategy
would require the calculation of several tens of millions of
triplets, their cumbersome management by the tangent
formula and large storage and computing time.
We have chosen a different strategy: first we phase a small
set of reflections with large ∆  and R values ( i.e., batch

1, with NLAR reflections). The strategy is a multisolution
one: a starting set of phases are generated by a random
process [21]. Random phases are given to NLAR/2
reflections [22] with unit weights for the origin and
enantiomorph-fixing reflections, and with weights equal to
0.8 for the others. Cycles of weighted tangent refinement
are first applied to the NLAR/2 reflections and, after
convergence, the phasing process is extended to all the
NLAR reflections.
Among the various trials provided by the multisolution
approach, the most probable one (on the basis of the
figures of merit: see below) is used as a seed for phasing
the remaining reflections. Batches of about 200
reflections, chosen in decreasing order of |∆|, are
progressively phased via a phase extension procedure
from batch number one.

3.3 The last step: picking up the correct
solution

Figures of merit (FOMs) used in our procedure for picking
the correct solution from the trial solutions are based on
the theory described in two recent papers [23], [24].
Substantial modifications are, however, necessary to face
the large complexity of the problem and to take advantage
of the information contained in derivative data.
The first FOM is MABS = ∑ ∑α αhh hh , where

( )α ϕ ϕh k h k= +∑















−A sinj

j
j j

2

( )+ +∑















−A j

j
j j

cos

/

ϕ ϕk h k

2 1 2

and

[ ]
[ ]

A R R Rj p

H

j j

j j

=

+

−

−

2

2

3 2
3 2

3 2
3 2

σ σ

σ σ

/

/ .

h k h k

h k h k∆ ∆ ∆

MABS gives a measure of the consistency of the triplet
estimates, but it is not used as an active FOM for picking
(in combination with others) the correct solution.
The second FOM (i.e., ALFCOMB) depends on the ratio

( )α α σ αh h h
− , where σ αh

 is given in §3.2. This

expression for the variance holds in the absence of errors
in measurements and in their mathematical treatment as
well as in the presence of perfect isomorphism between
native and derivative structures. If this is not the case, as
with real data, the variance cannot be perfectly calculated
and is probably underestimated by σ αh

. Accordingly, we

used 2σαh
 instead of σ αh

 in ALFCOMB.

The third FOM (PSICOMB) relies on the expectation that
the distribution of the psi-zero triplets should be as
random as possible. PSICOMB depends on the ratios

α σαh
h

’
’ , where

( )α ϕ ϕh k h k
’ ’= +∑
















−A sinj

j
j j

2

( )+ +∑















−A j

j
j j

’

/

cos ϕ ϕk h k

2 1 2

[ ]A j H j j

’ /= −2 3 2
3 2σ σ ∆ ∆k h k

σαh
’

’
/

= ∑






A j

j

2
1 2

 .

The weak reflections that constitute psi-zero triplets with
the NLAR reflections are characterized by small values of

both R and ∆’ . Here, there is no room for a FOM based

on classical negative quartet estimates based on native
data only, which is unreliable for macromolecular
structures of usual size.
In our procedure negative and positive triplets play a
similar role: they are nearly equal in number and
reliability, and are both actively used in the phasing
process. We decided to use the ratio

A Aj j
j

j j
j

cos cosΦ Φ∑ ∑  as a FOM (CPHASE)

involving both positive and negative estimated triplet
phases Φ j .

A combined figure of merit (CFOM) integrates the
indications arising from ALFCOMB, PSICOMB and
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CPHASE. The combination of the various FOMs involves
suitable weights which indicate our confidence in them.
CFOM allows a satisfactory discrimination of correct
versus wrong solutions (see Table 2 for some results). For
all the test structures the highest CFOM solutions are the
correct ones: in the Table 2 they are marked by bold
characters. We note: i) figures in Table 2 refer to batch 1,
as explained in §3.2. ii) in the last column the average
phase error (ERR) is shown. It is sufficiently small for all

the test structures but NOX. iii) The solution is found in
few trials. For all the test structures the maximum number
of trials we explored was 100. We don’t claim that correct
solutions always correspond to the highest CFOM values.
Severe lack of isomorphism, errors in measurements
and/or in the treatment of the experimental data will
reduce the efficiency of the procedure.

Table 2  FOM values for the ‘best’ trial solutions as ranked by CFOM for the various test structures

APP

Trial MABS ALFCOMB PSICOMB CPHASE CFOM ERR

14 1.10 0.23 0.54 0.91 0.49 30
28 1.10 0.23 0.53 0.91 0.49 30
7 1.10 0.22 0.47 0.91 0.47 82

29 1.09 0.20 0.46 0.91 0.46 83
24 0.75 0.00 0.68 0.68 0.43 84

BPO
18 0.84 0.40 0.96 0.75 0.63 29
6 0.58 0.15 0.80 0.57 0.48 84

19 0.58 0.14 0.79 0.57 0.48 83

E2
24 1.14 0.75 1.0 0.89 0.76 27
1 1.14 0.75 1.0 0.89 0.76 27

22 1.14 0.75 1.0 0.89 0.76 27
9 2.05 1.0 0.67 1.0 0.74 86

16 2.05 1.0 0.66 1.0 0.73 86
31 0.56 0.14 0.76 0.53 0.46 78

M-FABP
24 0.85 0.10 0.57 0.77 0.44 39
12 0.72 0.02 0.55 0.69 0.39 63
6 0.64 0.01 0.54 0.64 0.38 83

NOX
61 0.75 0.01 0.78 0.64 0.45 52
65 0.75 0.01 0.78 0.64 0.44 52
93 0.75 0.01 0.74 0.64 0.43 53
66 0.65 0.00 0.74 0.58 0.42 63

The solution may then not be recognizable by the figures
of merit, and may be characterized by a high value of
ERR. In extremely unfavourable cases the correct solution
could not be obttained at all.
When the solution is not clearly recognizable, a further
check can be used:
a) Difference Fourier synthesis with coefficients

( ) ( )F F id p p− exp ϕ  are calculated for the solutions with

the highest values of CFOM. The maxima of the map
should provide heavy-atom positions.
b) Such parameters are refined according to the phase
refinement process [25].
c) If the refined positional parameters coincide with an
allowed origin of the protein space group, then the trial
solution is discarded from the set of reliable ones.
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Steps a), b) and c) are executed in sequence without user
intervention.
Why should such a process work? Readers accustomed to
direct phasing of small molecules know that in
symmorphic space groups the so-called ‘uranium solution’
occurs quite frequently. It is marked by a high consistency
of triplets phases, which are all close to zero. An observed
Fourier synthesis would produce a huge maximum at an
allowed origin. This type of false solution may be
recognized and therefore discarded by special FOMs like
the psi-zero and negative-quartet criteria. Since the psi-
zero FOM described in paper II is not highly
discriminating for macromolecules and the negative-
quartet criterion is not among the used FOMs, the
calculation of the difference Fourier synthesis for proteins
is an efficient substitute for the specific FOMs. It is
worthwhile emphasizing that a difference Fourier synthesis
should not provide huge maxima at the allowed origins as
for small molecules: since our phasing procedure uses a
nearly equivalent number of positive and negative triplets,
peak intensities in the maps corresponding to the ‘uranium
solutions’ are similar to peak intensities corresponding to
true heavy-atom positions.
In Table 3, we show, for each test structure and for trial
solutions highly ranked by CFOM, but corresponding to
true or “uranium” solutions, the heavy-atom positions as
obtained after some cycles of Fourier-least-squares
calculations. Trials 7 and 29 for APP, 9 and 16 for E2,
show maxima at allowed origins and could therefore be
discarded. This increases the discriminating power of
CFOM. It may be concluded that in general, if use is made
of the above considerations, the correct solution can be
found with higher reliability among the different trials.

Table 3  Heavy-atom positions for each test
structure and for trial solutions highly ranked by

CFOM (compare with Table 2). The correct
solutions are in bold characters.

Structure Name Trial Heavy-atom position

APP 14
28
7
29

0.246 0.009 0.227
0.244 0.010 0.226
0.000 0.390 0.500
0.000 .0396 0.500

BPO 18 0.591 0.026 0.279
0.221 0.112 0.311

E2 24
1

22
9
16

0.203 0.070 0.214
0.203 0.069 0.213
0.203 0.070 0.215
0.000 0.000 0.500
0.000 0.000 0.500

M-FABP 24 0.609 0.441 0.742

NOX 61
65
93

0.393 0.242 0.524
0.393 0.242 0.524
0.893 0.242 0.225

4 Intermediate results

The application of the above procedure to experimental
data (see paper VI) produces electron density maps which
are competitive with those generated by traditional SIR
techniques. The results can be described as follows: a)
without any information on the heavy-atom positions, the
phasing process is able to provide in favourable cases
electron density maps which may be directly interpreted;
b) the process is able to phase all the reflections up to
derivative resolution and may be accomplished in a fully
automatic way, thereby adding appeal to the method; c)
poor isomorphism between the native and derivative
hinder a complete success: the maps are then not
straightforwardly interpretable but still show interesting
correlation with the correct maps. In Figs. 3a and 4a we
show some details of the electron density map for BPO
and M-FABP respectively, as obtained at the end of the
procedure described in section 3. The solvent regions
cannot be correctly distinguished from the protein regions,
and the maps are hardly interpretable at this stage. For the
readers benefit, in Figs. 3b and 4b we show the
corresponding details in the “true” (obtained from the
published model) BPO and M-FABP maps respectively.
In order to provide the reader a numerical index, in Table
4 we show the correlation CORR of the electron density
maps ρ calculated via direct methods with the correct
maps ρmod corresponding to the refined model phases, all
reflections up to native resolution included. CORR has
been calculated according to

( ) ( )
CORR =

−

− −

ρ ρ ρ ρ

ρ ρ ρ ρ

mod mod
/

mod mod

/
2 2 1 2

2 2 1 2

The highest CORR values are obtained for E2 and BPO,
the derivatives of which are of extremely high quality. The
worst phase values were obtained for NOX: the Pt
derivative we used, as well as the other four derivatives of
NOX, show serious lack of isomorphism [15].
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Figure 3a  BPO- section y=0 of the map obtained by
Direct Methods.

Figure 3b  BPO- section y=0 of the true (obtained
from the published model) map.

Figure 4a  MFABP - section y=0 for the map
obtained by Direct Methods.

Figure 4b  MFABP- section y=0 for the true
(obtained from the published model) map.

Table 4  Mean phase error (ERR) for the test
structure up to derivative resolution. NREF is the

number of phased reflections up to derivative
resolution. CORR is the correlation factor between

direct methods map (derivative resolution) and “true”
map (native resolution).

Structure

Name

NREF ERR(Weighted) CORR

APP 1850 61 (57) 0.3927

BPO 12774 57 (52) 0.4490

E2 6575 57 (52) 0.5121

M-FABP 5456 64 (61) 0.3733

NOX 4066 73 (69) 0.3129
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5 Phase refinement and extension up to
native resolution

Refinement of the phases determined up to derivative
resolution can be made as soon as a model of the heavy-
atom structure is available. As specified in section 3
heavy-atoms are straightforwardly found by difference
Fourier: their parameters (occupancy, coordinates and
thermal factor) are then automatically refined.
Several techniques for improving direct-method phases by
incorporating the heavy-atom structure have been
proposed: particularly notable are those proposed by
Fortier, Moore & Fraser [26] and by Klop, Krabbendam &
Kroon [27]. None of these methods were useful at this
stage: the above techniques seem to work well when
careful phase estimates are available, and at this stage this
is not the case. However in a paper in preparation
(Giacovazzo & Siliqi) it is shown that heavy-atom
substructure can in favourable cases lead to a notable
improvement of the phases determined as in section 4.
We show in Table 5 the mean-phase errors and the CORR
values obtained when the heavy-atom substructure is
available (to be compared with Table 4).
In terms of CORR only APP and M-FABP show
remarkable improvement of the electron density map. In
the other cases, the information of the heavy atom
structure does not produce any improvement in term of
CORR index, but reduces the heavy-atom residual in the
electron density map. Accordingly, the new phases proved
to be a better starting point for the application of
techniques devoted to extending phases up to native
resolution: we refer mostly to solvent flattening [28], [29]
and histogram matching techniques [30], [31].

Table 5  Mean phase error (ERR) when the
information on the heavy-atom structure has

been exploited (data up to derivative resolution).
NREF is the number of phased reflections up to

derivative resolution. CORR is the correlation factor
between direct methods map (derivative resolution)

and “true” map (native resolution)

Structure

Name

NREF ERR(Weighted) CORR

APP 1854 58 (53) 0.4667

BPO 12613 57 (48) 0.4525

E2 6408 56 (47) 0.5026

M-FABP 5616 64 (59) 0.3992

NOX 4006 74 (67) 0.2939

In the same paper by Giacovazzo & Siliqi, an innovate
solvent-flattening procedure has been settled, which
carefully extends and refines phases up to the native
resolution. For our test structures, we show  in Table 6 the
final correlation values between our final electron density
maps and the “true” maps. All the maps but NOX are
easily interpretable, as is suggested by the high values of
CORR. The serious lack of isomorphism of the Pt
derivative of NOX did not allow the method to produce
batch one phases sufficiently good to be used as a seed for
subsequent expansion. NOX will be a useful test when two
or more derivatives will be used by our direct methods
procedure.

Table 6  Mean phase error (ERR) after the
application of our solvent-flattening procedure:

phase has been extended to the set of data up to
native resolution. NREF is the number of phased

reflections up to native resolution. CORR is the
correlation factor between our final map and the

“true” map.

Structure

Name

NREF ERR(Weighted) CORR

APP 17058 51 (44) 0.8150

BPO 23956 52 (46) 0.7391

E2 10391 41 (38) 0.8761

M-FABP 7589 53 (46) 0.7093

NOX 4619 77 (74) 0.2743

To allow the reader to check the quality of the new maps
we show: a) in Figs. 5a and 5b the APP skeleton obtained
from our map and from the “true” map respectively; b) In
Figs. 6, 7a and 8 some sections of our electron density
maps for BPO, E2 and M-FABP (to be compared with
true electron density map sections shown in Figs. 3b, 7b
and 4b respectively).
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Figure 5a  APP skeleton from our map (visualized by
RasMol v2.3 by Roger Sayle)

Figure 5b  APP skeleton for the “true” map
(visualized by RasMol v2.3 by Roger Sayle)

Figure 6  BPO  section y=0 for the map obtained by
applying our solvent flattening procedure to our

Direct Methods map

Figure 7a  E2 section y=0.3 for the map obtained by
applying our solvent flattening procedure to our

Direct Methods map.
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Figure 7b  E2 section y=0.3 of the true (obtained
from the published model) map.

Figure 8  M-FABP section y=0 for the map obtained
by applying our solvent flattening procedure to our

Direct Methods map

6 The representation theory and its
integration with isomorphous replacement
techniques

We have seen in section 3 that the availability of
isomorphous derivative data reduces the complexity of the
problem: triplet relations, which in the absence of

derivative data are of order N p
−1 2/ , become, as soon as this

supplementary information is available, relations of

order N H
−1 2/ . Since N NH p<<  the triplet reliability

increases, and the protein structure becomes solvable by
direct methods. The above complexity reduction suggests
that paraphernalia used with great success to solve small

molecules could be resuscitated for application to
macromolecules. A special wide-use and efficient tool is
the theory of representations by Giacovazzo [32], [33]
(see also Hauptman [34] for a related principle). The
problem may be so stated: can we, for any phase invariant
Φ, arrange the (R, S) space in a sequence of subsets, each
contained within the succeeding one and having the
property that Φ may be estimated, in order of expected
effectiveness, from the (R, S) magnitudes constituting the
subset? A solution to this question for SIR and OAS
methods has been provided by Giacovazzo [35]. For the
quartet invariant
Φ4 = + + +φ φ φ φh k l m ( )h k l m+ + + = 0

the first subset of magnitudes to exploit for the SIR case is

{ }R R R R R R R S Sh k l m h k h l k l h k l, , , , , , , ,...,+ + + + . (7)

For the triplet invariant the second representation will
involve the subset

{R R R S S Sh h h h h h1 2 3 1 2 3
, , , , , ,

R R R R R R Rk h k h k h k h k h k h k, , , , , , ,
1 1 2 2 3 3+ − + − + −

}S S Sk h k h k, , .... ,
1 3+ − (8)

where k is a free vector.
Such a procedure exploits for (8) the special quintets

{ }φ φ φ φ φh h h k k1 2 3
+ + + − ,

{ }φ φ φ ψ ψh h h k k1 2 3
+ + + − ,

{ }φ φ φ φ ψh h h k k1 2 3
+ + + − ,

{ }φ φ ψ φ φh h h k k1 2 3
+ + + − ,

{ }φ ψ ψ φ φh h h k k1 2 3
+ + + − ,

....................
etc., where  the quintets are obtained by permutation of φ
and ψ.
The calculation of the joint probability distribution
function

(P φ φ φ φ φ φ φ ψ ψh k l m h k h l k l h k l, , , , , , , ,..., ,+ + + +

)R R R R Sh k l m k l, , , ..., + (9)

for quartets, and the derivation of the distribution

(P φ φ φ φ φ φ φ φh h h k h k h k h k h k1 1 3 1 1 2 2
, , , , , , , ,+ − + −

)φ φ ψ ψh k h k h h k h h k3 3 1 3 1 3+ − − −, , , ... , , , ... ,R S (10)

for triplets, are quite complicated. However a technique
has been recently settled [36], [37], [38]  which allows
such calculations.
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6.1 The quartet invariant estimate

The joint probability distribution function (9) has been
derived [36], [37] (see also [39] for a related method) via
the Gram-Charlier expansion of the characteristic function.
Let us denote

( ) ( )R i i1 1exp expφ φ= R h h ,

( ) ( )R i i2 2exp expφ φ= R k k ,

( ) ( )R i i3 3exp expφ φ= R l l ,

( ) ( )R i i4 4exp expφ φ= R m m ,

( ) ( )R i i5 5exp expφ φ= + +R h k h k ,

( ) ( )R i i6 6exp expφ φ= + +R lh l h ,

( ) ( )R i i7 7exp expφ φ= + +R k l k l ,

( ) ( )S i S i1 1exp expψ ψ= h h ,

( ) ( )S i S i2 2exp expψ ψ= k k ,

( ) ( )S i S i3 3exp expψ ψ= l l ,

( ) ( )S i S i4 4exp expψ ψ= m m ,

( ) ( )S i S i5 5exp expψ ψ= + +h k h k ,

( ) ( )S i S i6 6exp expψ ψ= + −h l h l ,

( ) ( )S i S i7 7exp expψ ψ= + +k l k l

The conclusive conditional formula is

( )P R R S SΦ4 1 7 1 7| ,..., , ,...,

( )[ ] { }≅ −
2 0 4

1

4 4πI A Aexp cosΦ (11)

where

{ }A
N B

L L L
H

4
1 2 3 4

5 6 7
2

1
1≅

+
+ + +

∆ ∆ ∆ ∆ ’ ’ ’

[

]

B
N

L L L L L L

L L L L L L

L L L L L L

H

= +

+ +

+ +

1

2 1 2 5 3 4 5

1 3 6 2 4 6

1 4 7 2 3 7

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

( )L S R R S Di i i i i i
’ ’ ’ ’ ’= + − −2 2

12 1 (12)

The main features of the formula may be so described:

a) the relation is of the order N H
−1 . Since N H  is usually

small, quartets are expected to be reliable (at least in
principle).
b) the sign of A4 is determined by the product of two
factors: the first is ∆ ∆ ∆ ∆1 2 3 4 , which may be positive or

negative, the second is the term [ ]1 5 6 7+ + +L L L’ ’ ’

which again may be positive or negative.

c) Li
’  is the expected value of ε H Hi i

E= −
2

1 . In

absence of prior information on the heavy-atom structure

Li
’  may only be estimated by probabilistic

considerations [that is, by the formula (12)]. Errors in

measurements, lack of isomorphism, etc., can make Li
’

remarkably different from ε Hi
. In these cases quartet

estimates are expected to be wrong. Once the heavy-atom
structure becomes available, A4 may be replaced by

[ ]{ }A
N B

c
H c

H H H=
+

+ + +2

1
11 2 3 4

5 6 7
∆ ∆ ∆ ∆

ε ε ε (13)

where

( )B
Nc

H
H H H H H H H H H= + + +

1

2 1 2 5 3 4 5 2 3 7ε ε ε ε ε ε ε ε ε... .

Then quartet reliability proved to be comparable with
triplet reliability. We show in Table 7 for some test
structures the statistical calculations for assessing the
reliability of the quartets having negative values of

[ ]ε ε εH H H5 6 7 1+ + +

Table 7  Statistical calculations for small-cross quartets by (13) (observed data).

APP E2 M-FABP
NR % <|Φ4|

0> NR % <|Φ4|
0> NR % <|Φ4|

0>
3621 71.6 114 10079 65.6 108 10084 54.9 96
1577 75.7 119 2224 74.8 118 1993 57.7 95
181 86.7 131 78 87.2 127 268 54.5 93

5 80.0 142 47 63.8 89
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13 69.2 85

Table 8  BPO: statistical calculations for triplet invariants (found among the 1500 reflections with the
largest of |∆|) relative to the formulas (2) and (15). Observed data for native and derivative structures are used.

(2)
Positive estimated triplets

(15)
Positive estimated triplets

(15)
Negative estimated triplets

ARG NR % <|Φ|0> NR % <|Φ|0> NR % <|Φ|0>
0.2 25195 68 69 20107 72 65 2785 52 92
1.2 8680 72 64 10145 77 59 676 58 100
3.2 0 - - 531 84 50 30 40 98
4.4 0 - - 70 90 44 2 50 116

(2)
Negative estimated triplets

(15)
Positive estimated triplets

(15)
Negative estimated triplets

ARG NR % <|Φ|0> NR % <|Φ|0> NR % <|Φ|0>
0.2 24805 68 110 2739 51 89 19688 71 115
1.2 6919 72 115 581 58 82 9485 76 120
3.2 0 - - 27 74 61 437 80 126
4.4 0 - - 8 75 67 45 78 122

Table 9  E2: statistical calculations for triplet invariants (found among the 855 reflections with the largest
of |∆|) relative to the formulas (2) and (15). Observed data for native and derivative structures are used.

(2)
Positive estimated triplets

(15)
Positive estimated triplets

(15)
Negative estimated triplets

ARG NR % <|Φ|0> NR % <|Φ|0> NR % <|Φ|0>
0.2 25058 72 65 19537 79 57 2967 62 104
1.2 4281 81 54 8088 85 50 599 74 119
3.2 0 - - 239 95 36 21 91 146
4.4 0 - - 30 100 23 1 100 159

(2)
Negative estimated triplets

(15)
Positive estimated triplets

(15)
Negative estimated triplets

ARG NR % <|Φ|0> NR % <|Φ|0> NR % <|Φ|0>
0.2 24942 71 114 2961 64 74 19234 78 122
1.2 3234 81 126 531 75 62 7161 85 131
3.2 0 - - 27 85 56 207 94 143
4.4 0 - - 7 86 55 17 100 157
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6.2 The triplet invariant estimate via its second
representation

The joint probability distribution (9) has been derived [38]
via the Gram-Charlier expansion of the characteristic
function. Let us denote

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

R i R i

R i R i

R i R i

R i R i

R i R i

R i R i

R i R i

R i R i

R i R i

R i R i

1 1

2 2

3 3

4 4

5 5

1 6

7 7

8 8

9 9

10 10

1

2 2

3

4

1 1

1 1

2 2

2 2

3 3

3 3

exp exp

exp exp

exp exp

exp exp

exp exp

exp exp

exp exp

exp exp

exp exp

exp exp

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

=

=

=

=

=

=

=

=

=

=

+ +

− −

+ +

− −

+ +

− −

h h

h h

h h

h k

h k h k

h k h k

h k h k

h k h k

h k h k

h k h k

1

3

( ) ( )
( ) ( )

( ) ( )

S i S i

S i S i

S i S i

1 1

2 2

10 10

1

2 2

3 3

exp exp

exp exp

.......

exp exp

φ ψ

φ ψ

φ ψ

=

=

= − −

h h

h h

h k h k

1

The conclusive formula estimating the triplet invariant Φ
may be written as

( )[ ] ( )P I A A10 0 10
1

102=
−

π exp cos Φ (14)

where

[ ]A R R R
p

10 3 2
3 2

1 2 32= σ σ/ /

+ + ∑







2 11 2 3∆ ∆ ∆’

N
CORR

H
k

k
(15)

( )CORR
T

L L L B
k

k

k

=
+ +1 1 2 3

’ ’ ’

[
]

T N L L L L L L L

L L L L L L

Hk = + +

+ + +

−1
4 5 8 6 7 7 10

8 9 5 10 6 9

’ ’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’ ,

( ) [

]

B N L L L L L L

L L L L L L

L L L L L L

L L L L L L

L L L L L L

L L L L L L

L L L

Hk = +

+ +

+ +

+ +

+ +

+ +

+

−
2

1
1 2 3 1 4 5

1 4 6 1 7 10

1 8 9 2 4 7

2 4 8 2 5 10

2 6 9 3 4 9

3 4 10 3 5 8

3 6 7

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’

We observe:
a) the distribution (14) is a von Mises-type function: it is
unimodal, and the expected value of Φ is 0 or π according
to whether A is positive or negative.

b) for proteins the term [ ]2 3 2
3 2

1 2 3σ σ/ /

p
R R R  is quite

often negligible with respect to the second term in (15). It
can be neglected.
c) the contribution from the second phasing shell can
change the value of the expected phase. According to the
first representation formula, Φ is expected to be zero if

( )∆ ∆ ∆1 2 3  is positive, is expected to be π if ( )∆ ∆ ∆1 2 3

is negative. In the second representation formula the term

( )CORR
T

L L L B
k

k

k

=
+ +1 1 2 3

’ ’ ’
 may be considered

a correction term which modulates the first representation
estimate. If CORR k

k
∑ < −1the second representation

estimate is different by π from the first representation
estimate.

As in the quartet case Li
’  is an estimate of ε Hi , which

may fail when lack of isomorphism and/or errors in the
experimental data occur. If the heavy-atom structure is

available then ε Hi  may be used instead of Li
’ . We

show in Tables 8 and 9 the applications of (15) to E2 and
BPO experimental data. The data should be read as
follows: triplet estimated positive by (2) are split by (15)
in positive and negative estimated triplets. Analogously,
triplets estimated negative by (2) are splitted by (15) in
positive and negative subsets. It is evident that (15) is
more efficient than (2) in ranking triplet reliability and in
estimating their cosine sign. A useful practical detail is
that the results in Tables 8 and 9 are obtained by
exploiting only (about) 20 quintets per triplet.
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7 The partial structure as a source of prior
information

A probabilistic formula by Giacovazzo [9] originally
designed for small molecules, allows the recover of the
complete from a partial structure. The formula may be
written as

E E"
,

"
h h≅ π

[ ]+ −∑ −− −σ σ π π3 2
3 2/ "

,
" "

,
"E E

q
( E )( E )k k

k
h k h k (16)

If the known partial structure is negligible (in terms of
number of electrons) with respect to the complete structure
then

[ ] [ ]σ σ σ σ π π π3 2
3 2

3 2
3 2 0/ /

,
’’

,
’’

,
’’,

q N
E E E≅ ≅ ≅ ≅−h k h k

and (16) reduces to Sayre’s equation.
In terms of phases (16) is equivalent to
tan θ π πh = T B (17)

where

{ [ ]
( )[

( )
( )
( )]}

T R R sin

R R sin

R R sin

R R sin

R R sin

qπ π π

π π

π π

π π π π

ϕ σ σ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

= +

× +∑

− +

− +

+ +

− −

− −

− −

− −

2 3 2
3 2

h h h

k h k k h k
k

k h k k h k

k h k k h k

k h k k h k

’’
,

’’
,

/

’’ ’’

,
’’ ’’

,

’’
,

’’
,

,
’’

,
’’

, ,

[ ]
( )[

( )
( )

( )]}

B R R /

R R

R R

R R

R R

"
,

"
,

/

q

" "

,
" "

,

"
,

"
,

,
"

,
"

, ,

π π π

π π

π π

π π π π

φ σ σ

φ φ

φ φ

φ φ

φ φ

= +


× +∑

− +

− +

+ +

− −

− −

− −

− −

2 3 2
3 2

h h

k

k

h

k h k k h k

k h k k h k

h k k h k

k h k k h k

cos

cos

cos

cos

cos

θh is the most probable value of φh and

( )α π π π,

/
T Bh = +2 2 1 2

(18)

is its reliability parameter.
Equation (16) has been recently reconsidered with respect
to its possible use in macromolecular crystallography. In a
feasibility study by Giacovazzo & Gonzalez-Platas [10],
experimental tests on protein data show that the formula is
potentially able to estimate phases accurately, provided
30-40% of the electron density is correctly located. Real
cases were not examined. In the future, eq. (16) will be
applied to a situation frequently occurring in practice:
phase extension from derivative to native resolution, and

phase refinement. The use of (16) is the reciprocal
counterpart of electron density modification techniques.
Indeed a basic step of these techniques is to fix criteria to
define the structure part, say ρπ ; by Fourier inversion φπ is

calculated. Once this has been made φπ is used, in
combination with the old values, as better approximation
of the true phase value.
On the other hand (16) comes from the electron density
squaring under the prior condition that  ρπ  is known. The

supplemental contribution of order [ ]σ σ3 2
3 2/

q
 comes

from the squaring of the unknown part of the structure
under the restraint that ρπ  is known. To devise the

optimal use of (9) for practical cases is not
straightforward, because it involves good approximations
of the phases φk  and φh k−  (which are not always

available). Presently we are exploring different
approaches.

8 Molecular replacement techniques and
direct methods

The role of direct methods in the molecular replacement
area has so far been quite marginal. Main [40] considered,
among other kinds of prior information, the following
ones: a) randomly positioned and randomly oriented
atomic groups; b) randomly positioned but correctly
oriented atomic groups. Such categories of information
give rise to a von Mises distribution for triplet invariant
phases such as

( ) ( ){ }P K Q E E EΦ Φ Φ= −exp cos2
2 3h h h1

(19)

where Q and Φ  can be defined in terms of the prior

information, and the E’s are the structure factors
normalized by taking the prior into account.
In case a) the Main formula encompasses a previous
Hauptman [41] formula [called B(z,t)] which is devoted to
calculating the average of an exponential term which goes
over all orientations of the triangle formed by three atoms:

( ) ( )[ ]B z t i, exp ’ ’= ⋅ + ⋅2π h r h r

In case b), Φ  is expected to lie between 0 and 2π: the

use of such values and of the corresponding reliability
parameter should automatically translate the model
structure in the correct position.
Additional phase relationships (which are not structure
invariants or seminvariants) devoted to the translation
problem were obtained by Giacovazzo [42] for polar
space groups. In such cases the shift τ which brings a
molecular fragment from a trial to the correct position may
be restricted to a region which is smaller than the unit cell.
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For example, in P21 the origin may be freely chosen along
the diad axis, and therefore τ may be restricted to the
family of vectors [x 0 z]. This restriction is transformed, in
the probabilistic approach, into supplemental prior
information, so that one-phase, two-phase, three-phase
relationships can be found (none of them being a structure
invariant) which can be used for translating a molecule in
the correct position. The Main formula (at least to the
knowledge of the authors) has never been applied to
proteins, or rotating nor for translating a molecule from a
trial position. Giacovazzo’s formulas were never applied
to practical cases. In a forthcoming paper [43] it is shown
that direct procedures can be successfully applied to
macromolecules for translation purposes. We shortly
quote here one of the experimental tests. M-FABP was
originally solved by using multiple isomorphous
replacement and molecular replacement procedures [14].
The model of adipocyte lipid binding protein (A-LBP),
obtained from 2.5� resolution, was used as a search model
from molecular replacement. The rotation function in
MERLOT [44] was used to orient the molecule and a
translation search was made by XPLOR [45] using 1351
reflections between 15 and 2.5� resolution. The same
rotation procedure was followed in the paper by
Giacovazzo, Manna & Siliqi, but the translation search
was performed by direct methods. The solution with the
highest CFOM corresponds to the correct translation. Our
solvent-flattening procedure mentioned in section 5,
automatically applied to direct-method phases, produced
an electron density map having a correlation factor of 0.6
with the “true” map. In Fig. 9 we show the section at
y=0.0 of the resulting electron density map, which may be
usefully compared with the “true” section in Fig. 4b.

Figure 9  M-FABP section y=0 of the map obtained
by translating via Direct Methods the model molecule,
and subsequently, by applying our solvent-flattening

procedure.

9 Conclusions

This paper shows that direct methods can be successfully
applied to many of the problems encountered in
macromolecular crystallography. Indeed:
a) they are competitive with traditional isomorphous
derivative techniques, with the supplemental appeal due to
their high degree of automation;
b) they can profit from anomalous dispersion effects;
c) they can be applied to translating a molecule from a
trial to the correct position.
Only for point a), and particularly for the SIR case, has a
well established direct procedure been described. The
MIR case however will easily follow. Point b) is still at an
earlier stage even if notable results have been obtained
from various authors. Point c) is starting. The rotation
problem, so basic for the molecular replacement area, has
not been attempted for macromolecules by direct methods.
We intend to show that even in this area direct methods
can offer an important contribution.

The authors are grateful to Drs H.J. Hecht, W.
Hol, A. Mattevi and G. Zanotti for having provided
protein diffraction data and for useful discussions.

References

[1] Hauptman, H. (1982). Acta Cryst. A38, 289-294.
[2] Giacovazzo, C., Siliqi, D. & Ralph, A. (1994). Acta Cryst.

A50, 503-510.
[3] Giacovazzo, C., Siliqi, D. & Spagna, R. (1994). Acta

Cryst. A50, 609-621.
[4] Giacovazzo, C., Siliqi, D. & Zanotti, G. (1995). Acta

Cryst. A51, 177-188.
[5] Giacovazzo, C., Siliqi, D. & Gonzalez-Platas, J. (1995).

Acta Cryst. A51, 811-820.
[6] Giacovazzo, C., Siliqi, D., Gonzalez-Platas, J. Hecht, H.,

Zanotti, G. & York, B. (1995). Acta Cryst. D52, 813-825.
[7] Hauptman, H. (1982). Acta Cryst. A38, 632-641.
[8] Giacovazzo, C. (1983). Acta Cryst. A39, 585-592.
[9] Giacovazzo, C. (1983). Acta Cryst. A39, 685-692.
[10] Giacovazzo, C. & Gonzalez-Platas, J. (1995). Acta Cryst.

A51, 398-404.
[11] Glover, I., Haneef, I., Pitts, J., Woods, S., Moss, D.,

Tickle, I. & Blundell, T. L. (1983). Biopolymers, 22, 293-
304.

[12] Hecht, H., Sobek, H., Haag, T., Pfeifer, O. & Van Pee, K.
H. (1994). Nature Struct. Biol. 1, 532-537.

[13] Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H.,
Westphal, A. H., De Kok, A. & Hol, W. G. J. (1992).
Science, 255, 1544-1550.

[14] Zanotti, G., Scapin, G., Spadon, P., Veerkamp, J. H. &
Sacchettini, J. C. (1992). J. Biol. Chem. 267, 18541-
18550.

[15] Hecht, H., Erdmann, H., Park, H., Sprinzl, M., Schmid, R.
D. & Schomburg, D. (1993). Acta Cryst. A49, Suppl. 86.



17

[16] Hauptman, H., Potter, S. & Weeks, C. M. (1982). Acta
Cryst. A38, 294-300

[17] Fortier, S., Weeks, C. M., Hauptman, H. (1984). Acta
Cryst. A40, 544-548

[18] Giacovazzo, C., Cascarano, G. & Zheng, C.-D. (1988).
Acta Cryst. A44, 45-51.

[19] Blundell, T.L. & Johnson, L.N. (1976). Protein
Crystallography, p. 336, London: Academic Press.

[20] Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi,
A., Burla, M.C., Polidori, G. & Camalli, M. (1994). J.
Appl. Cryst. 27, 435.

[21] Baggio, R., Woolfson, M.M., Declercq, J-P. & Germain,
G. (1978). Acta Cryst. A34, 883-892

[22] Burla, M.C., Cascarano, G. & Giacovazzo, C. (1992). Acta
Cryst. A48, 906-912.

[23] Cascarano, G., Giacovazzo, C. & Viterbo, D. (1987). Acta
Cryst. A4843, 22-29.

[24] Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1992b).
Acta Cryst. A48, 859-865.

[25] Dickerson, R.E., Kendrew, J.C & Strandberg, B.E. (1961).
Acta Cryst. 14, 1188-1195.

[26] Fortier, S., Moore, N. J. & Fraser, M. E. (1985). Acta
Cryst. A41, 571-577.

[27] Klop, E. A., Krabbendam, H. & Kroon, J. (1987). Acta
Cryst. A43, 810-820.

[28] Wang, B.C. (1985). In “Methods in Enzymology”,
Vol.115 (Wyckoff, H.W., Hirs, C.H.W. and Timasheff,
S.N., ed.), p.90-112.

[29] Leslie, A.G.W (1987). Acta Cryst. A43, 41-46
[30] Lunin, V. Y (1993). Acta Cryst. D49, 90-99.
[31] Zhang, K.Y.J. & Main, P. (1990). Acta Cryst. A46, 41-46
[32] Giacovazzo, C. (1977) Acta Cryst. A33, 934-944
[33] Giacovazzo, C. (1980) Acta Cryst. A36, 362-373
[34] Hauptman, H. (1976). Acta Cryst. A32, 934-940
[35] Giacovazzo, C. (1984) International School of

Crystallography, lecture notes, in Direct Methods of
Solving Crystal Structures, Erice, Italy

[36] Giacovazzo, C. & Siliqi, D. (1996). Acta Cryst. A52, 133-
142

[37] Giacovazzo, C. & Siliqi, D. (1996). Acta Cryst. A52, 143-
151

[38] Giacovazzo, C. & Siliqi, D. (1996). Acta Cryst. A53, 000-
000 (submitted)

[39] Kiriakidis, C.E., Peschar, R. & Shenk, H. (1996) Acta
Cryst. A52, 77-87

[40] Main, P. (1976) Crystallographic Computing Techniques,
edited by F. Ahmed, p 99-105, Copenhagen; Munskgaard

[41] Hauptman, H. (1965). Z. Krist. 121, 1-8
[42] Giacovazzo, C. (1988). Acta Cryst. A44, 294-300.
[43] Giacovazzo, C., Manna, L. & Siliqi, D. (1997) in

preparation
[44] Fitzgerald, P.M.D. (1988). J. Appl. Cryst. 21, 273-278.
[45] Br�nger, A.T. (1990) XPLOR version 2.1, manual. A

system for crystallography and NMR.


