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Mean and variance algebra

If we have two random variables X1 and X2 then for mean and
variance of the sum of these random variables the following is
true:

<X;+ X >=<X>+<X,>

var(X,+X,) = var(X,) + 2 cov(X,X,) + var(X,)
<cX>=c<Xp>

var(c X,) = c?var(X,)

If random variables are independent then cov(X,,X,) = 0. l.e. for
independent variables mean values and variances are summed



Central limit theorem

If there are n independent random variables {X;} with mean m, and
standard deviations o, and if mean values and standard deviation are

finite then as n increases

Y = X +X,+... X,
Tends to become random variable with Gaussian distribution with the
mean

m,=m,+m,+...m,_

And with the variance

0’ =0} +0.+..+0,
Y



An example

A random variable r; has uniform distribution between 0 and
1. Its histogram (we generate 10000 random variables using
uniform random number generator). Mean value = 0.5, and

variance =1/12

When we add two uniform random variables. The sum
already becomes unimodal, symmetric and starts to
resemble Gaussian distribution

After adding 30 uniform random variables together. It is
already can be approximated with Gaussian distribution
very well. Mean value of sum of 30 uniform random
variables is 30*0.5 = 15 and variance is 30/12 = 2.5




Distribution of structure factors

In a crystal we have set of atoms with parameters {c,x;,B;} — occupancies,
positions and B values. For simplicity we consider only positions as random
variables. We also assume that occupancies are equal to 1. Structure factor
equations (written for real and imaginary parts):

A=Y cf(s)e™ cos2msx,), B= cf(s)e”™" " sin(2msx,)
A=Ya B=Yb

Distribution of real and imaginary parts of structure factors approach to normal
distribution with mean

<A>=J<a>, <B>=3<b>
And variances:
Var(A) = 2var(a,), var(B)=2var(b,)

It is safe to assume that real and imaginary parts are independent



Distribution of structure factors

Assume that we have an atomic model with coordinates {x; .}. Model has some errors.
Then

<a> =D <a; >, var(a) = % (1-D°) f*(s)
Where D reflects errors in the position. If we have no information about coordinates
then D=0. The distribution of the real and imaginary parts of structure factors is

normal distribution with
<A>=0, var(A) =% 5f*(s)

Confusingly Zf2(s) is denoted as 2. So the distributions of A and B are N,(0, 2/2) and
therefore joint probability distribution of A and B is N,(0, 2/2 1). Where | is an identity
matrix. We usually say that the distribution of structure factors — F is two-dimensional
normal distribution.

When we have some atomic models then the distribution of F becomes two
dimensional normal distribution with mean DF_ and variance (1-D?)%,/2 +2 I



Distribution of intensities

In crystallography we observe intensities of structure factors — | = A+B2.

Now we use the following fact:

If {X.} are standard normal random variable (with mean 0 and variance 1) then
sum (X)) is x?,, distribution with degrees of freedom n, where n is the number of
random variables.

So 21/% = 2(A%+B?)/X will have x?, with degrees of freedom 2.

Some properties of intensities:
<I>=3,<I”P>=25 var(l) =2

It means that
<P>/<I>? =2, var(l)/<I>? = 1



Application: perfect twin



merohedral and pseudo-merohedral twinning

Crystal symmetry: P3 P2 P2
Constrain: - B =90° -
Lattice symmetry *: P622 P222 P2
(rotations only)
Possible twinning: merohedral pseudo-merohedral
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Twinning operator

Domain 2 - f? (f -
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Crystal lattice is invariant with respect to twinning operator.

The crystal is NOT invariant with respect to twinning operator.
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Effect on intensity statistics: intuitive approach

Take a simple case. We have two intensities: weak and strong. When we sum them we will
have four options w+w, w+s, s+w, s+s. So we will have one weak, two medium and one strong

reflection.

As a results of twinning, proportion of weak and strong reflections becomes small and the
number of medium reflections increases. It has effect on intensity statistics

In probabilistic terms: without twinning, the distribution of intensities is x*> with degree of
freedom 2 and after perfect twinning degree of freedom increases and becomes 4. ¥?
distributions with higher degree of freedom behave like normal distribution



Intensity statistics: twin

If there are n copies of crystal with equal size domains then the observed intensities
are average of intensities from all these domains:

1 T=%Eli

The distribution of 2n I./Z is x2,,, i.e. chi-squared distribution with degrees of
freedom 2n.

Properties
<I>=2,<I’> =(n+1)/n 2z, var(l) =1/n 2
<I?>/<I>? = (n+1)/n, var(l)/<I>? = 1/n

l.e. fourth moment converges to 1 and variance of intensities converges to 0 as n
increases.



X2 distributions

1.0

Densities of distributions for \
intensities: x? distributions (with
suitable change of variables).

0.8

Density
0.6
|
e —

0.4

Cyan — centric
Black — acentric

0.2

Red - acentric two twin domains

Blue — acentric 3 twin domains o | U &

0

I/



Cumulative distribution for 1¥/2 with suitable
change of variables (N(z) plots)

Cyan — centric
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Structure factor statistics and twin

When we move from centric to acentric reflection variance of intensities is
reduced. When there are twin then variance again is reduced. It means that
Rmerge will be smaller if we are dealing with twins.

R >R

Such variance reduction also means that R factors for data from twinned
crystals will be smaller than those from untwinned. Again same order as in R
merge is obeyed.

>R >

centric acentric twin2



Twin: R values

Rvalues for random structures (no other peculiarities)

Twin Modeled Not modeled
Yes 0.41 0.49
No 0.52 0.58

Murshudov GN “Some properties of Crystallographic Reliability index — Rfactor:
Effect of Twinning” Applied and Computational Mathematics”, 2011:10;250-261



Rvalue for structures with different model errors:
Combination of real and modeled perfect twin fractions
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Conclusions |

Distribution of intensities is related to chi-squared distribution
Distribution of signal in the data affect R-factors and other statistics

R factors for twinned crystals tend to be smaller however information content is also
smaller



Structure factor statistics: effect of errors in the data

Let us assume that we observe data and noise in the data is additive
l,=1+n
Usually one of the diagnostic techniques used is so-called fourth moment plots.

<|,2>/<I > is calculated and plotted vs resolution. Let us see how this statistics would
behave under different circumstances. If we consider perfect twin with k domains and
acentric case (recall that: var(l) = <I>/k))

P l++2 cov(1,211)+var(n2)
0o _14+k <[> <[>
2
<I()> (1+<n>)2
<I>

If covariance between noise and signal is ignored then:

1 var(n)
5 -
<Io>=1+k <I>2
2
<I, > (1+<”>)2
<[>

<n> is average noise. Usually we assume that average noise is O.



Structure factor statistics: effect of errors in the data

Average noise is one of the components of systematics noises. There may be various
reasons for this: 1) backgrounds may not be estimated accurately, for example when
ice rings are present; 2) diffuse scattering may have some effect; 3) there may be more
than one crystal, for example split crystals.

If crystal is not twinned and the variance of the noise is very small then:

<102> 1
=
<Io> (1+ )2

<l >
If <n>/<I> is sufficiently large then this ratio would come close to 1. The same
phenomenon happens if the number of twin domains is large. When there are k twin
domains, average noise is 0 and variance of noise is very small:

< 102 > k+1
<1, >° k
When k is large then this ratio again becomes close to 1. l.e. if average noise is not 0

then crystals may be interpreted to be twinned and it may affect wrong strategy to be
used in structure solution and refinement




Structure factor statistics: effect of errors in the data

Finally if average noise is O then
<I!> k+l .\ var(n)

<IO>2 k <]>?

i.e. fourth moment would start from a constant value and ten as noise level increases
it would go up. This plot should look like as in this figure. In very good data this ratio

stays more or less constant.

var(n)/<I>)
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Conclusions |l

Noise structure of the data should be analyzed carefully
Systematic noise can obscure interpretation of data

If systematic noise is detected then data may need to be reintegrated



Importance of phases and amplitudes

The distribution of intensities of structure factors is related to chi-squared
distribution.

In single crystal acentric case degrees of freedom is 2.
Properties of the distribution:

<I>=3<]*>=23% var(l)=2"

And for amplitudes:
<l FI>= gﬁ ~0.8863, <IFF >=3, Var(IFI)=4?TnZ ~0.2153

We can use these properties to calculate various statistics. For example what would

be R factor if instead of observed amplitudes we use expected values of amplitudes?
It turns out to be around 0.42.



Importance of phases

It is well known that phases are very important. It is one of the examples
demonstrating it. It may be not very good example but nevertheless ...

Can we show in terms of numbers the meaning of this statement?

Magnitude
hPhase \ / 1
v
\\ .'/
A
Magnitude /
f / \
______________ / \__)
Phase




Importance of phases

Correlation between two electron density:

)_<p1p2>—<p1><p2>_<FlF2>—<Fl><F2>

COr(pl’pZ \/V211‘(,01)Var(p2) - \/VElr(Fi)VEH.(FZ)

Correlation can be calculated in real or Fourier space. Advantage of Fourier space is
that we can calculate it in Fourier shells or resolution bins. <F> =0 in all resolution
bins apart from that containing the origin. We almost never need the origin.

Using in Fourier space means that we can analyse the quality of maps depending on
resolution (or frequency). We also will use this fact:

var(F) = <[F[?>
So correlation in resolution bin for Fourier coefficients (complex coefficients) is

<FF, > _<IKIFE, |cos(¢, —@,)>

cor(F ,F))= =
h.5) Jvar(F)var(F,) < F P><|F, P>




Importance of phases

We can write correlation in terms of E values also. E values are defined as:
F

V<l F P>

So correlation in Fourier shells is
cor(F,F,)=<EE, >=<|E, Il E, | cos(¢, — p,) >

Now let us consider several cases:

E =

1) Phases are perfect, amplitudes are perfect then cor=1.0
2) Phases are random, amplitudes are perfect then cor=0



Importance of phases

3) Phases are perfect, amplitudes are random (i.e. not related to the structure we

are solving)
cor(F,F,)=<IE | E, >=<|E| I><| E, I>

Now if we use the properties of the di\s/LLibution of |F| then we get:

JU
<lE I>=<lE||>=—

i.e. correlation becomes:

cor(F,F,)=<|E, < E, I>= % ~0.785

If phases are perfect then correlation between true and observed electron densities
with random amplitudes can be as high as 0.785.
If we do know that amplitudes are random then we can replace them with constant

value equal to the the expected value of the amplitudes on this resolution bin. E
value of a constant equal to 1. So in this case correlation will be:

cor(F,F,)=<lE, I>= % ~(0.886
One obvious conclusion is that if we have phase information then unobserved E

values can be replaced with the expected value. It is how “free-lunch” algorithm
works



Importance of phases

We can ask another question: what should be the quality of the data so that adding
them would give higher correlation than the use of constant values for them.
(Under assumption that phases are perfect or there is some phase information and

JdENE, b = Vo cor(F IIE, 1) = Wr-a_ 4
2 4 -1
Correlation between “true” and “observed” amplitudes must be at least 0.47 so
that the data gives some information about the model. Otherwise using expected
values of amplitudes would give better correlation than using “observed” data.

One should be careful in interpretation of this statement: 1) we observe intensities;
2) errors in intensities have very different distribution that errors in amplitudes; 3)
if many assumptions would be obeyed then we can go as low as half data
correlation between amplitudes around 0.124



Conclusion I

Phases are important (obviously). Map correlation with perfect phase and
random amplitude can go up to 0.78.

Replacing random amplitudes by the expected value may improve map
(correlation can go up to 0.88)

Low quality data might be useful (half data correlation for amplitudes can go
down to 0.124)

However bias problem needs to be addressed.
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