

Managing a Large[1] Scientific
(Crystallographic[2]) Software

Project

“It's not the Algorithms”

Paul Emsley
Aug 2011

[1] Non-trival, not small
[2] I don't think it matters

Content

! Dependencies/Libraries

! Handling the updates

! Source Code Repository

! Building

! Testing

! Progress

! Mailing list

! Releases

! Deployment

Introduction to Coo!

! GNU GPL v3

! OpenGL (3D graphics) package for
macromolecular model-building

! i.e. making, adjusting and validating
models of proteins

! At its peak it was 3rd most highly cited
research paper in last 5 years

! Most highly cited Free Software

The GNU Heritage

! I have been a GNU fan since late '80s

! “If I have a chance to develop software, it will
be based on GNU and GLPed”

! 12 years later I got the chance

! Which meant GCC, G++, GDB, Emacs & the
GNU build system

2004: The Marketplace

! Extremely entrenched user-base

! 2 (perhaps 3) programs that were always used

! Once chosen & learnt, users didn't swap

! Which mean that the program had to be

! Easy to get/Freely available

! Easy to install

! With compelling functionality

! Communicate with other programs

! and “Web Services”

! Core:

! C++, C, Scheme (Guile), Python

! Crystallographic Libraries:

! CCP4 libs, mmdb, Clipper

! Graphics:

! GTK+, glade, gnomecanvas, OpenGL

! Building:

! Subversion, automake & autoconf, emacs,

! Documentation:

! Texinfo, Doxygen, XHTML, Wordpress, Apache

Technologies
226 package
dependencies

Developing: Early on...

! I used to work on just one computer

! Making a tar file every few days.

! (This made backtracking painful)

! I discovered SVN and that made a big
difference

! +30-40% more productive

! More than one computer

! Cross-platform issues

PE: testing experiences

! Kevin (2001): “You have a methodological problem”

! “if you can't test your code you're developing wrongly”

! From 0.0 to 0.3.3 – time spent was mostly bug fixing

! 90% of time fixing 3-yr-old code

! Frustrating

! Pre-release testing (by me)

! conflict of interest

! I was “hitting the buffers” on the release schedule

! I really didn't want to find bugs!

PE: testing experiences

! At CCP4 meeting: Peter Briggs was talking
about problems releasing 5.0

! Me: “You must have a extensive and fully-
featured test suite!”

! Peter: “Hmm”

! Harry (to PE): “Have you got one?”

! Me: “Err, no”

! Harry: “Shut up, then”

Testing in CCTBX

! Ralf and Peter discussed how testing in
CCTBX worked.

! I was impressed at the rigour

! Bring some of that to Coot

Previously: Test/Exercising
Programs

! Generated test data for classes/objects

! Used for development

! Had hard-coded test values

! the “did it work?” test was something that I
determined “by eye” at/after run-time

! Not automated

! Not part of test suite

Other Testers

! No-one formally involved

! Student (at Workshops)

! And other ad-hoc users

! Challenge is to convert problems that they
report/demonstrate into an automatic test

Practical Aspects of Test Suite

! Written in a different language

! it is difficult to write tests with compensating
errors

! If the scripting language is embedded, it can
return variables, rather than text in a log file that
has to be parsed and converted to variables

! I use greg (gnu regression test suite)
because guile is embedded in Coot

! We also use PyUnit

An Example
! “Can I have a “sharpening tool?”

! Yes (I thought), but I will need to store the data before
converting it to a map – make it part of the molecule class:

! clipper::HKL_data<clipper::datatypes::F_phi<float> > original_fphis

! I implemented the sharpening template

! I merged in changes from Bernhard

! I ran the tests

! Crash!

! Obscure bug, tickled only after using 60+ molecules, which
may not have otherwise been noticed for years

“How can I test this?”

! A new way of working for me:

! First I export a function to the scripting layer that
allows access to new function

! then sketch out the new class and functions
interface (skeleton functions)

! Now write a test that exercises new functions

! At first it fails - Of course!

! But eventually the test passes

! Very gratifying

! And test moves from devel to main testing suite

Another Example

! Many functions in Coot take a molecule-number
argument

! part of the test suite should be to exercise functions
given “bad” molecule numbers

! ~95% of time there is no problem (tested twice)

! is it worth it for that extra ~small %age of time?

! A crash in an interactive program on bad input is bad

! A crash in a “batch” program on bad input is not so
bad

Recent Example

! “When I mutate an adenine to a thymine, the
C7 disappears”

Recent example

(greg-testcase "Mutate to a DT keeps C7" #t

 (lambda ()

 (let ((imol (ideal-nucleic-acid "DNA" "B" 1 "gatc")))

 (if (not (valid-model-molecule? imol))

 (throw 'fail))

 (mutate-base imol "A" 2 "" "DT")

 (list? (get-atom imol "A" 2 "" " C7 ")))))

Something I missed

! Recall that OpenGL is not immediately
scriptable

! Click on an atom and in the console it reported

atom specs of atoms[0], not

atoms[atom_index]

! Very difficult to catch (or even notice)

Is it worth it?

! Previously: 90% of time for the 2 or 3 years
spend debugging old code

! Writing tests takes

! +50% to +100% longer

! For me, I now spend most of my time with
new code, not old code

! That is enjoyable

! Having the executables have to pass a test suite
is an enormous feeling of security

Productivity

! Subversion and testing

! Security

! Liberation!

! Freedom from paralysis

Which Framework?

! I use greg for Scheme and PyUnit for Python

! CCP4 now uses Python and PyUnit

Code Complexity

! Cyclomatic Code Complexity

! A measure of code branches

! Correlated with the number of lines of code in a
function

! and/or the number of “if” statements

! Studies show strong correlation of code
complexity with defect rate

! “metrics” plug-in for Eclipse

! Simple Rule: if it's longer than 2 pages

! Worry...

Visualisation of Code

! Code City

Jmol in Code City

Vuze in Code City

Hosting Issues

! The mailing list and SVN were hosted at the
University

! Burden on our sys. adm., who had other things
to do

! Then the server was hacked, new computer
brought in but I was not allowed to run SVN
there

! So

! SVN hosting moved to Google

! Mailing list moved to JISCmail

! 600+ subscribers

A Wiki too
 -
2.3Gb/month

Build Status
! Many machines

! Dispersed

! Some I can use the file system directly and
some files are accessed over the web

! Status is polled every 10 minutes

! guile script

! Can access the age of the latest successful
build and the build logs (in case of failure)

Build Status

Gathering Specs

! Lots of email,

! personal and via mailing list

! I travel a lot and do presentations

! Thus specs are gathered

! I select those that the users most require and
estimate how long to implement

! I choose enough for ~2 months (full-on) work

! Each feature taking n “half-days”

Burn-up Chart
Made by PyChart

Burn-up Chart

Burn-up Chart

Burn-up Chart

Burn-up Chart

! Project managing:

! Either define the release date...

! or the spec

! NOT both!

! (That's a recipe for a “death march”)

Deployment

! Integration on a hourly/daily basic (SVN)

! Daily deployment

! multiple platforms

! Bug fixes, feature requests available quickly

! real communication with “expert users”

! take customer feedback seriously

! Problem of “monolithic release” goes away

! because the program is “always deployable”

Lines of Code

Languages

Coot repo commits/month

CCTBX repo commits/month

Productivity Gains
! Not writing papers

! Not going to meetings

! Not handling the Mac or WinCoot builds

! Using Scheme and Python

! Especially for the GUI

! Emacs

! Subversion

! Testing/test suite

! Working together

Summary/Take Home...

! Use SVN (or bzr) or something similar

! Writing new code is much more fun than
debugging old code

! So: Be disciplined: Test-driven development

! Use Standard Template Library

! Writing extension language code
(scheme/python) is much more fun than C++

! Spec features, not release and NOT both

“Release Early, Release Often”

! This is ridiculous

! (in our field)

! Should be:

! “Release when it's 'done done', release often”

