Data evaluation, integration and analysis II

L.M.J. Kroon-Batenburg
Utrecht University

The Netherlands

Statistics for data quality

$$
\begin{aligned}
& R_{\text {merge }}=\frac{\sum_{h k l} \sum_{i}^{n}\left|I_{i}(h k l)-\langle I(h k l)\rangle\right|}{\sum_{h k l} \sum_{i}^{n} I_{i}(h k l)} \\
& R_{\text {pim }}=\frac{\sum_{h k l} \sqrt{\frac{1}{n-1}} \sum_{i}^{n}\left|I_{i}(h k l)-\langle I(h k l)\rangle\right|}{\sum_{h k l} \sum_{i}^{n} I_{i}(h k l)} \\
& R_{\text {anom }}=\frac{\sum_{h k l}|I(h k l)-I(\overline{h k l})|}{\left.\sum_{h k l} I(h k l)\right\rangle}
\end{aligned}
$$

$$
R_{\text {meas }}=\frac{\sum_{h k l} \sqrt{\frac{n}{n-1}} \sum_{i}^{n}\left|I_{i}(h k l)-\langle I(h k l)\rangle\right|}{\sum_{h k l} \sum_{i}^{n} I_{i}(h k l)}
$$

Merging and standard uncertainties

$$
\sigma^{2}=\frac{\sum_{i} w_{i} \sigma_{i}^{2}}{n \sum_{i} w_{i}} \quad \sigma \approx \frac{\sigma_{i}}{\sqrt{n}}
$$

Correlation between two half datasets

$$
C C 1 / 2=\frac{\sum_{i}^{n}\left(\left(x_{i}-\langle x\rangle\right)\left(y_{i}-\langle y\rangle\right)\right)}{\sqrt{\sum_{i}^{n}\left(x_{i}-\langle x\rangle\right)^{2} \sum_{i}^{n}\left(y_{i}-\langle y\rangle\right)^{2}}}
$$

Accuracy vs precision

Spread of observation around the true value

© Garland Science 2010

Anomalous signal indicators

Anomalous signal: $\frac{\langle\Delta F\rangle}{\langle F\rangle} \quad$ Expected: $\quad \frac{\langle\Delta F\rangle}{\langle F\rangle}=\frac{\sqrt{2 N_{A}} \delta f^{\prime \prime}}{\sqrt{N_{p}} Z_{e f f}}$

Fig. 3.14 The anomalous signal-to-noise ratio $\Delta F / \sigma_{\Delta F}$ of the glucose isomerase data versus resolution.

Fig. $3.15\langle\Delta F>/<B\rangle$ as a function of resolution.

Data evaluation, integration and analysis II

More noisy data

X-Ray Diffraction data from M. musculus SYCP3 residues 105-248, source of 6DD8 structure

Data DOI: 10.15785/SBGRID/583 | ID: 583
Publication DOI: 10.7554/eLife. 40372
6DD8 Coordinates: Viewer, PDB (RCSB) (PDBe), MMDB
Corbett Laboratory, University of California, San Diego
Release Date: Jan. 25, 2019

Pilatus3 6M detector at APS 24-ID-C Rotation increment 0.4°

Statistics

Completeness and Rmerge for Shells
Forbid: EDGEVER EDGEROT BADUNIF MAXSHIFT
llow: GOOD WEAK NEGATIVE
Require: NONE
limit reso 30.792 .6 inside limit theta 0.9110 .86 inside theta from 0.0 to 10.855

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline theta from 0.0 \& Me \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Sh Theta Reso \& Meas \& Equi \& Obs \& Mis \& Lost \& Total \& Perc \& Cum \& Unil \& Uni2+ \& Nrsym \& Redun Rsym R \& Rmeas \& Rpin \& Chi \\
\hline 15.015 .602 \& 6932 \& 910 \& 7842 \& 48 \& 170 \& 8060 \& 97.3 \& 97.3 \& 18 \& 2102 \& 13284 \& 6.320 .2700 \& 0.298 \& 0.1244 \& 8223.2 \\
\hline 26.324 .446 \& 7254 \& 836 \& 8090 \& 0 \& 52 \& 8142 \& 99.4 \& 98.3 \& 14 \& 2105 \& 13981 \& 6.640 .435 \& 0.474 \& 0.186 \& 1985.2 \\
\hline \(3 \quad 7.243 .884\) \& 6932 \& 1028 \& 7960 \& 0 \& 178 \& 8138 \& 97.8 \& 98.2 \& 27 \& 2038 \& 13077 \& 6.420 .480 \& 0.522 \& 0.204 \& 641.1 \\
\hline \(4 \quad 7.983 .529\) \& 6938 \& 926 \& 7864 \& 0 \& 60 \& 7924 \& 99.2 \& 98.4 \& 23 \& 2011 \& 13233 \& 6.530 .536 \& 0.584 \& 0.227 \& 167.3 \\
\hline \(5 \quad 8.60 \quad 3.276\) \& 7346 \& 784 \& 8130 \& 0 \& 52 \& 8182 \& 99.4 \& 98.6 \& 19 \& 2078 \& 14144 \& 6.810 .629 \& 0.682 \& 0.260 \& 54. \\
\hline \(6 \quad 9.143 .083\) \& 6850 \& 1080 \& 7930 \& 0 \& 130 \& 8060 \& 98.4 \& 98.6 \& 18 \& 2024 \& 12863 \& 6.360 .670 \& 0.730 \& 0.286 \& 29. \\
\hline \(7 \quad 9.63 \quad 2.928\) \& 6830 \& 1138 \& 7968 \& 0 \& 104 \& 8072 \& 98.7 \& 98.6 \& 43 \& 2004 \& 12647 \& 6.310 .681 \& 0.741 \& 0.288 \& 42.5 \\
\hline 810.072 .801 \& 7178 \& 980 \& 8158 \& 0 \& 56 \& 8214 \& 99.3 \& 98.7 \& 31 \& 2067 \& 13608 \& 6.510 .877 \& 0.953 \& 0.368 \& 13 \\
\hline 910.482 .693 \& 7156 \& 862 \& 8018 \& 0 \& 22 \& 8040 \& 99.7 \& 98.8 \& 13 \& 2043 \& 13654 \& 6.681 .078 \& 1.168 \& 0.445 \& 7.13 \\
\hline 1010.862 .600 \& 7116 \& 778 \& 7894 \& 0 \& 98 \& 7992 \& 98.8 \& 98.8 \& 22 \& 2005 \& 13612 \& 6.791 .297 \& 1.407 \& 0.538 \& 5. \\
\hline \[
\begin{aligned}
\& 10.862 .600 \\
\& \text { atensity distr }
\end{aligned}
\] \& 532 \& \[
322
\] \& 9854 \& \[
48
\] \& \begin{tabular}{l}
\[
922
\] \\
ner
\end{tabular} \& \begin{tabular}{l}
0824 \\
d an
\end{tabular} \& \begin{tabular}{l}
\[
8.8
\] \\
mer
\end{tabular} \& 98.8

ced \& 22 \& 20477 \& 03 \& \& $$
0.448
$$ \& \[

0.178

\] \& \[

2720 .
\]

\hline
\end{tabular}

Intensity distribution for Shells, unmerged and merged
Forbid: EDGEVER EDGEROT BADUNIF MAXSHIFT
Allow: GOOD WEAK NEGATIVE
Require: NONE
limit reso 30.792 .6 inside limit theta 0.9110 .86 inside Sh Theta Reso N <I> <s> <I/s> Nmerge <I> $\begin{array}{lr}\text { I> } & \text { <s> } \\ 26 & 23.03\end{array}$
$\begin{array}{llllllllllllllll} & 5.01 & 5.602 & 13302 & 152.64 & 1.14 & 100.68 & 2120 & 179.26 & 23.03 & 7.71 & 0.918 & 0.979 & 2102\end{array}$

$\begin{array}{llllllllllllllll}3 & 7.24 & 3.884 & 13104 & 45.48 & 1.84 & 19.18 & 2065 & 52.27 & 9.69 & 5.39 & 0.872 & 0.965 & 2038\end{array}$
$\begin{array}{lllllllllllllll}4 & 7.98 & 3.529 & 13256 & 26.18 & 2.12 & 10.42 & 2034 & 31.09 & 6.35 & 4.59 & 0.841 & 0.956 & 2011\end{array}$

4	7.98	3.529	13256	26.18	2.12	10.42	2034	31.09	6.39	4.59	0.841	.956
5	8.60	3.276	14163	12.26	2.12	5.29	2097	15.00	3.38	3.77	0.820	0.949

$\begin{array}{rrrrrrrrrrrrr}5 & 8.60 & 3.276 & 14163 & 12.26 & 2.12 & 5.29 & 2097 & 15.00 & 3.39 & 3.77 & 0.820 & 0.949 \\ 6 & 9.14 & 3.083 & 12881 & 7.96 & 2.09 & 3.30 & 2042 & 9.35 & 2.47 & 2.69 & 0.835 & 0.954 \\ 2024\end{array}$
$\begin{array}{lllllllllllllll}6 & 9.14 & 3.083 & 12881 & 7.96 & 2.09 & 3.30 & 2042 & 9.35 & 2.4 & 2.69 & 0.835 & 0.954 & 2024 \\ 7 & 9.63 & 2.928 & 12690 & 8.34 & 2.10 & 3.12 & 2047 & 9.37 & 2.54 & 2.00 & 0.877 & .967 & 2004\end{array}$
$\begin{array}{lrrrrrrrrrrrr}7 & 9.63 & 2.928 & 12690 & 8.34 & 2.10 & 3.12 & 2047 & 9.37 & 2.54 & 2.00 & 0.877 & 0.967 \\ 8 & 2004\end{array}$
$\begin{array}{lllllllllll}8 & 10.07 & 2.801 & 13639 & 3.79 & 2.12 & 1.65 & 2098 & 4.44 & 1.58 & 1.55 \\ 9 & 10.48 & 2.693 & 13667 & 2.60 & 2.16 & 1.06 & 2056 & 3.01 & 1.33 & 1.16 \\ 0.827 & 0.952 & 2067\end{array}$

$\begin{array}{llllllllllllll}10.86 & 2.600 & 134331 & 36.25 & 1.96 & 18.23 & 20705 & 43.04 & 7.28 & 0.66 & 0.9 & 0.978 & 20477\end{array}$

Radiation damage?

icr $=$ intensity control reflection

Cell dimensions

Scaling in SADABS

- Increased disorder -> larger B
- Loss in intensity due to structural change: correction to zero dose
B (start) B (mid) B (end) Rad. damage factors $0.000 \quad 17.497 \quad 34.995 \quad 0.558$ - 4.381

Statistics after scaling

Forbid: EDGEVER EDGEROT BADUNIF MAXSHIFT SADABS														
Allow: GOOD WEAR NEGATIVE														
Require: NONE														
limit reso 29.992 .6 inside limit theta 0.9410 .86 inside theta from 0.935 to 10.855														
Sh	Theta	Reso	Meas	Equi	Obs	Mis I	Lost	Total	Perc	Cum	Uni1	Uni2+	Nrsym	Redun
1	5.01	5.602	6080	1686	7766	0	238	8004	497.0	97.0	77	2015	9710	4.82
2	6.32	4.446	6931	1123	8054	0	88	8142	98.9	98.0	24	2083	11545	5.54
3	7.24	3.884	6679	1249	7928	0	210	8138	897.4	97.8	41	2016	11295	5.60
4	7.98	3.529	6806	1052	7858	0	66	7924	49.2	98.1	30	2002	12039	6.07
5	8.60	3.276	7292	838	8130	0	52	8182	29.4	98.4	27	2070	13389	6.47
6	9.14	3.083	6819	1111	7930		130	8060	98.4	98.4	20	2022	12467	6.17
7	9.63	2.928	6794	1172	7966	0	104	8070	98.7	98.4	44	2003	12321	6.15
8	10.07	2.801	7163	997	8160		56	8216	699.3	98.5	33	2065	13430	6.50
9	10.48	2.693	7143	875	8018	0	22	8040	99.7	98.7	15	2041	13497	6.61
10	10.86	2.600	7105	789	7894	0	98	7992	298.8	98.7	25	2002	13506	6.75
$\begin{array}{lllllllllllllllllllllllll}10.86 & 2.600 & 68812 & 10892 & 79704 & 0 & 1064 & 80768 & 98.7 & 98.7 & 336 & 20319 & 123199 & 6.06\end{array}$														
Intensity distribution for Shells, unmerged and merged														
Forbid: EDGEVER EDGEROT BADUNIF MAXSHIFT SADABS														
Allow: GOOD WEAR NEGATIVE														
Require: NONE														
limit reso 29.992 .6 inside limit theta 0.9410 .86 inside														
	Theta	Reso	N	<I>	<s>	<I/s>	> Nme	erge	<I>	<s>		$\mathrm{cc} 1 \lambda^{2}$	cc*	npair
1	5.01	5.602	9787	55.10	8.11	5.72		20925	54.294	4.14	11.96	0.989	0.997	2015
2	6.32	4.446	11569	32.74	5.01	5.04		21073	38.442	2.82	11.62	0.997	0.999	2083
3	7.24	3.884	11336	16.62	2.84	4.28		20571	18.141	1.43	9.80	0.994	0.999	2016
4	7.98	3.529	12069	9.94	2.15	3.42		20321	11.311	1.06	8.07	0.989	0.997	2002
5	8.60	3.276	13416	4.83	1.66	2.49		2097	5.460	0.71	6.07	0.976	0.994	2070
6	9.14	3.083	12487	3.08	1.58	1.68		2042	3.490	0.66	3.95	0.971	0.993	2022
7	9.63	2.928	12361	3.11	1.72	1.29		2047	3.530	0.70	3.06	0.983	0.996	2003
8	10.07	2.801	13467	1.56	1.69	0.92		2098	1.750	0.61	2.21	0.913	0.977	2065
	10.48	2.693	13512	1.05	1.79	0.65		2056	1.22	0.60		0.886	0.969	2041
10	10.86	2.600	13531	0.84	1.92	0.56		2027	0.980	0.62	1.38	0.777	0.935	2002
$\begin{array}{llllllllllllllllllll}10.86 & 2.600 & 123535 & 11.45 & 2.69 & 2.45 & 20655 & 13.98 & 1.34 & 5.99 & 0.990 & 0.998 & 20319\end{array}$														

Multi-scan data

	Exp Rotax	dist sw	swing	inc	frame		Omega	Chi				
1	01f Phi	45.01	22.1	-0.3	1.00	1076.00	0.00	35.00	0.00	0.00	37.45	-322.80
2	02 f Ph	45.04	22.1	-0.3	1077.00	127	0.00	35.00	0.00	45.00	-14.98	-60.00
3	s03f Omega	45.01	22	0.3	1277.00	1689.00	0.00	-54.74	-156.00	13.18	137.06	123.90
4	s04f Omega	45.00	22.1	0.3	1690.00	1961.00	0.00	64.88	0.00	-51.68	29.87	81.60
5	s05f Omega	44.99	22.1	0.3	1962.00	2374.00	0.00	-54.74	102.00	13.18	137.07	23.90
6	s06f Omeg	45.01	22.1	0.3	2375.00	2787.00	0.00	-54.74	0.00	13.18	137.08	123.90
7	s07f Omega	45.00	22	0.3	2788.00	3200.00	0.00	-54.74	51.00	13.18	137.06	123.90
8	s08f Omega	44.99	22.1	0.3	3201.00	3613.00	0.00	-54.74	153.00	13.18	137.07	12

Goniometer Geometry

Eulerian Geometry
Kappa Geometry

Binary image header

- Bruker .sfrm image files have an ascii header
- We normally rely on the data processing software to read metadata from the header and make correct use of it

```
Id=APEX2 Model=D85 [10/02-2786] with KAPPA [50.00000] DetectorType=CCD-LDI-APEX2S
DetectorId=smart10022786 CalibrationId=smart10022786 GoniostatType=x8 GoniostatId=smart10022786
Date=10/03/16 12:28:01 repeats=1 IntegrationTime=15.0 nx=512 ny=512 Binned=no Theta=11.054 Omega=0.0
Chi=35.0 Phi=-0.0 Interval=-0.3 Dx=45.0 RadiationType=XRAY HV=50 MA=30 PixelXsize=120.0
PixelYsize=120.0 Detgain=15.668 DataTypeRead=u8 DataTypeWrite=u8 Target=MO Alpha1=0.7093
Alpha2=0.71359 Alpha ratio=1.99996 Polarisation=PARALLEL CryoTemperature=150.0
CryoActualTemperature=150.0 DetectorTemperature=-57.43 BeamHor=-0.757 BeamVer=-0.042 Format=100
Nunderflow=76 UnderflowSize=1 Noverflow1=37985 Noverflow2=0
Swing=22.108 Dist=45.0 Axis=3 RotAxis=Phi StartPos=0.0 35.0 -0.0 EndPos=0.0 35.0 -0.3
MeanPos=0.0 35.0 - 0.15 Goniostat=0.0 35.0 0.0 RotStart=-0.0 RotInc=-0.3 RotEnd=-0.3 RotValue=-0.15
OverflowLevel=960000 RescaleFactor=16.0 RescaleLevel=120000.0 DoSwapHeader=on DoSwapData=on
No AdcZero correction fast=right slow=down
VIEW (EVAL software suite)
```


Twin crystal: indexing

```
1000 c-vectors from file i.drx. }3749\mathrm{ input reflections ignored
Dirax> go
165999834 triplets
3 0 0 0 0 ~ t r i p l e t s ~ u s e d
Randomizing [i,j,k]...
3 0 0 0 0 ~ r a n d o m ~ t r i p l e t s
2 9 9 9 9 ~ t r i p l e t ~ v e c t o r s
Squishd: 29999 t vectors ==> 29996 t vectors
Sorting 29996 t vectors...
```



```
371 9
362 5 1.789 4.269 8.373 89.99 92.93 96.13 63 ?
356 56 8.351 9.153 13.554 104.49 90.22 
262 21 8.256 9.133 13.538 105.37 91.96 91.23 983|
\begin{tabular}{rrrrrrrrr}
250 & 153 & 8.340 & 9.078 & 13.572 & 105.34 & 91.37 & 90.69 & 991 \\
240 & 20 & 8.390 & 9.176 & 13.336 & 104.95 & 90.79 & 91.85 & 991 \\
239 & 51 & 8.333 & 9.147 & 13.459 & 104.54 & 90.85 & 90.60 & 993 \\
236 & 17 & 8.408 & 9.002 & 13.784 & 105.90 & 91.88 & 90.99 & 1002
\end{tabular}
\begin{tabular}{lllllllll}
34 & 7 & 6.226 & 6.228 & 9.377 & 81.93 & 82.52 & 84.71 & 356
\end{tabular}
\begin{tabular}{lllllllllllll}
28 & 3 & 3.952 & 4.107 & 4.853 & 90.36 & 104.70 & 98.26 & 75
\end{tabular}
250 153 8.340 9.078 13.572 105.34 91.37 90.69 991
selected ACL 250
```


Non-merohedral twin crystal: indexing

Correlation=-0.82												
a	b	C	alpha	beta	gamma	vol						
Save A : 8.340	9.078	13.572	105.34	91.37	90.69		. 5					
Save B : 8.367	9.075	13.593	105.22	91.48	91.03		. 2					
Volume ratio $=0.995$ Trying 64 solutions												
Nr Rotangle F	Rotvec (xyz)			RotVec (hkl)		angle)	RotVec (uvw)			angle)	Obliq	Fom
$1 \quad 1.819-0.8603$	30.5	80.0042		7.01	-8.00 ($0.34)$	0.06	12.00	-5.02	$0.22)$	0.18	8.860
2179.9890 .4740	00.78	$30.3942-1$		0.01	0.04 (1.79)	-1.00	0.00	0.00	$0.07)$	1.75	1.140 U
Selected Solution 2												
a	b	C	alpha	beta	gamma	vol						
Save A : 8.340	9.078	13.572	105.34	91.37	90.69		. $5<$					
Save B : 8.367	9.075	13.593	105.22	91.48	91.03		$.2<$					
$\mathrm{H}^{\prime}=+1.003{ }^{*} \mathrm{H}+0.001 * \mathrm{~K}+0.001 * \mathrm{~L}$												
$\mathrm{K}^{\prime}=-0.032{ }^{*} \mathrm{H}-1.000{ }^{*} \mathrm{~K}-0.001^{*} \mathrm{~L}$												
$L^{\prime}=-0.079 * \mathrm{H}-0.002{ }^{*} \mathrm{~K}-1.002{ }^{*} \mathrm{~L}$												
Nr Rotangle R	Rotvec (xyz)			RotVec (hkl)		angle)		Vec (uv		angle)	Obliq	Fom
2179.9890 .4740	00.7	730.39	$2-1$.	0.01	0.04	1.79)	-1.00	0.00	0.00	$0.07)$	1.75	$1.140 \mathrm{U}<$

(h,k,l) transforms to $\sim(h,-k,-l)$

Twin crystal: indexing

Frame 200
A: hkl 229
B: hkl 2-2-9

Validation and open science

Inspect the images:

- Where all Bragg spots predicted and integrated?
- Did we understand all features we observed?
- Are we confident the structure solution and refinement is not (strongly) affected by remaining unexplained features
- Data may be useful for other researcher or software developers. Open science is advocated by research funders: please archive you data in a public repository
- Take care the data is FAIR. Correct and sufficient metadata is essential.

Core Metadata

Core Metadata

- Data binary format
- Number of pixels, pixel size (binning mode)
- Beam Center (mm, pixels)
- Origin of data frame
- Wavelength
- Rotation axis
- Rotation range per frame
- Axes and offsets
- Detector-to-sample distance

```
imgCIF tags
_array_structure_byte_order,_array_structur
e_compression_type
_array_structure_list.index;
_array_structure_list.dimensions
_array_element_size.size
_diffrn_detector_element.center[1]
_diffrn_detector_element.center[2]
_diffraction_radiation.wavelength.wavelengt
h
_diffrn_scan_axis.axis_id,
_diffrn_scan_axis.displacement_start
_diffrn_scan_axis.displacement.increment
_axis.id,_axis.vector[1].., _
_axis.offset[1]..
```


Incommensurate modulation

E. coli enzyme N -acetyl-neuraminic lyase

$\left\lvert\, \begin{aligned} & \text { rmat from jlr.rmat } \\ & \text { checking laue with one qvector }\end{aligned}\right.$
qvec setup for symmetry $2 / \mathrm{m}$
RMAT 1 j1r

Incommensurate modulation: example

Periodic

(a)

Commensurate ($\mathbf{q}=0.25 \mathbf{b}^{*}$)

Porta et al. (2011). Acta Cryst. D67, 628-638, 745

Incommensurate modulation: q-vector

Incommensurate modulation

SCIENTIFIC REPRTS

OPEN Pathological macromolecular crystallographic data affected by twinning, partial-disorder and exhibiting multiple lattices for testing of data processing and refinement tools

Ivan Campeotto ${ }^{1,2,3}$, Andrey Lebedev \mathbb{D}^{4}, Antoine M. M. Schreurs ${ }^{5}$, Loes M. J. KroonBatenburg ${ }^{5}$, Edward Lowe ${ }^{2}$, Simon E. V. Phillips $\mathbb{C}^{1,4}$, Garib N. Murshudov ${ }^{6}$ \& Arwen R. Pearson (1) ${ }^{1,7}$

Data Records

The datasets (raw diffraction images) discussed in this manuscript have been deposited in the publicly available database zenodo at, https://doi.org/ 10.5281/zenodo.54568 and 10.5281/zenodo.1240503. Structural models and processed structure factor data deposited in the PDB are available under the accession codes given in Table 1, with the exception of dataset Y137A, as the R factor indices were not satisfactory for PDB deposition.

Watch out! Diffuse scattering

Frame 1

Watch out! Diffuse scattering

Frame 90

Frame 45

Mapping detector pixels to reciprocal space

Detector panel

Pixel -> η
\longrightarrow
Ewald sphere

Reciprocal space reconstructions

Streaks in b*-direction

hko

0kl

5kl

Space group determination

XPREP

SBgrid 583

Search for higher METRIC symmetry
Identical indices and Friedel opposites combined before calculating R(sym)

Option	A: $\mathrm{FOM}=$	0.740		ORTHORHOM	C P-1a	ice	$\mathrm{R}(\mathrm{sym})=0.732$	25203]
Cell:	45.898	49.431	150.563	390.00	89.26	90.00	Volume: 3	341567.50
Matrix:	1.0000	0.0000	0.0000	0.0000	1.0000	0.0000	$0.0000 \quad 0.0000$	01.0000
Opt	B: FOM	0.000		MONOCLIN	P-1) 0.]
Cell:	45.898	49.431	150.563	390.00	90.74	90.00	Volume: 3	341567.50
Matrix:	1.0000	0.0000	0.0000	0.0000	-1.0000	0.0000	$0.0000 \quad 0.0000$	0-1.0000
Option	C: FOM	0.740		MONOCLINIC	P-la	ice	$\mathrm{R}(\mathrm{sym})=0.751$	16048]
Cell:	45.898	150.563	49.431	190.00	90.00	89.26	6 Volume: 3	341567.50
Matrix:	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	$0.0000-1.0000$	0.0000
Option	D: FOM	0.740		MONOCLINIC	P-lat	ice	$\mathrm{R}(\mathrm{sym})=0.777$	[15447]
Cell:	49.431	45.898	150.563	390.74	90.00	90.00	Volume: 3	341567.50
Matrix:	: 0.0000	1.0000	0.0000	1.0000	0.0000	0.0000	$0.0000 \quad 0.0000$	0-1.0000

Option E retains original cell

[A] Triclinic, [M] Monoclinic, [O] Orthorhombic, [T] Tetragonal, [H] Trigonal/Hexagonal, [C] Cubic or [E] EXIT								
Select option [M] :								
Lattice exceptions: P	A	B	c	I	F	Cbv	Rev	A11
$\mathrm{N}($ total $)=0$	61703	61680	61679	61633	92531	82442	82433	123535
$\mathrm{N}($ int >3 sigma) $=0$	22732	22794	22980	22872	34253	30745	30520	45882
Mean intensity $=0.0$	2.5	2.6	2.4	2.4	2.5	2.5	2.4	2.5
Mean int/sigma $=0.0$	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Lattice type [P, A, B, C, I, F, O(obv.), R(rev. rhamb. on hex. axes)]								
Select option [P]:								

Systematic absence exceptions:

| | $-21-$ | -a- | -c- | n- |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | | | |
| N | 35 | 2395 | 2383 | 2396 |
| N I >35 | 4 | 1133 | 1087 | 1062 |
| $<\mathrm{I}>$ | 0.1 | 4.6 | 5.3 | 5.1 |
| $<\mathrm{I} / \mathrm{s}>$ | 1.1 | 3.3 | 3.2 | 3.1 |

Identical indices and Friedel opposites combined before calculating R (sym)

Negative intensities

From Intensities to structure factor amplitudes

$$
\begin{aligned}
& F=\sqrt{I} \\
& 2 \frac{\sigma_{F}}{F}=\frac{\sigma_{I}}{I} \quad \rightarrow \quad \sigma_{F}=\frac{1}{2} \frac{\sigma_{I}}{\sqrt{I}}
\end{aligned}
$$

Conserving relative errors

Wilson distribution

centric:

$$
\boldsymbol{P}(\boldsymbol{J})=\left(2 \pi \sum_{N} \boldsymbol{J}\right)^{-1 / 2} \exp \left(-\boldsymbol{J} / 2 \sum_{N}\right)
$$

acentric:

$$
\boldsymbol{P}(\boldsymbol{J})=\sum_{N}^{-1} \exp \left(-\boldsymbol{J} / \sum_{N}\right)
$$

$$
\sum_{N}=\sum_{j} f_{j}^{2}
$$

Unconditional structure factor probability distribution

Inflating negative and weak intensities

$$
P(J \mid I)=P(I \mid J) P(I)
$$

$$
\begin{aligned}
& P(I \mid J)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-(I-J)^{2} / 2 \sigma^{2}\right) \quad \begin{array}{l}
\mathrm{I}=-1.0 \quad J=\text { true value } \\
\sigma=1.0
\end{array} \\
& P(J)=\sum_{N}^{-1} \exp \left(-J / \sum_{N}\right) \quad \text { if } \mathrm{J} \geq 0 \\
& P(J)=0 \quad \text { if }<0 \\
& \text { Wilson distribution } \\
& \Sigma_{N}=\text { mean } \operatorname{in} \text { resolution shell }=20 \\
& \text { Estimate: } E(J \mid I)=\int_{0}^{\infty} J P(I \mid J) P(J) d J=0.51 \quad \text { Implemented in TRUNCATE }
\end{aligned}
$$

French \& Wilson (1978): Bayesian statistics

Wilson plot

$$
\begin{aligned}
& \boldsymbol{P}(\boldsymbol{I})=\sum_{N}^{-1} \exp \left(-\boldsymbol{I} / \sum_{N}\right) \\
& \boldsymbol{I}_{\mathrm{abs}}(\boldsymbol{\eta})=|\boldsymbol{F}(\boldsymbol{\eta})|^{2}=\boldsymbol{F}(\boldsymbol{\eta}) \cdot \boldsymbol{F}^{*}(\boldsymbol{\eta})=\sum_{i} \sum_{j} \boldsymbol{f}_{i} \boldsymbol{f}_{j} \exp \left\{2 \pi i\left(\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right) \cdot \boldsymbol{\eta}\right\} \\
& \left\langle\boldsymbol{I}_{\mathrm{abs}}(\boldsymbol{\eta})\right\rangle=\sum_{i} \boldsymbol{f}_{i}^{2}=\sum_{N} \quad \\
& \boldsymbol{f}_{i}^{2}=\left(\boldsymbol{f}_{i}^{0}\right)^{2} \exp \left\{-2 \boldsymbol{B} \frac{\sin ^{2} \theta}{\lambda^{2}}\right\} \quad \ln \frac{\langle\boldsymbol{I}\rangle}{\sum_{i}\left(f_{i}^{0}\right)^{2}}{ }^{\text {Average over resolution shells }}
\end{aligned}
$$

Scale factor and B-factor

After determining the scale factor and B -factor, $\mathrm{F}_{\text {calc }}$ and $\mathrm{F}_{\mathrm{obs}}$ can be compared in refinement

$$
\begin{gathered}
\text { Minimize: } \quad \sum_{h k l}\left(\left|F_{\text {obs }}(h k l)\right|-k\left|F_{\text {calc }}(h k l)\right|\right)^{2} \\
F_{\text {calc }}(h k l)=\sum_{j=1}^{N} f_{j} \exp \left\{-B_{j}(\sin \theta / \lambda)^{2}\right\} \exp \left\{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right\}
\end{gathered}
$$

Cherish your data

Check that you have understood what you see in the diffraction images
Could unprocessed features influence your structure determination/refinement results?
\square Archive your raw data in a FAIR way to:

- Allow other researchers to conduct further research based your experiments
- Allow reanalysis at a later date, especially to extract 'new' science as new techniques are developed
- Provide example materials for teaching and learning.

