
8 

Anomalous Dispersion of 
in Crystallography 

X-rays 

by 

S. Caticha-Ellis 

This electronic edition may be freely copied and 
redistributed for educational or research purposes 

only. 

It may not be sold for profit nor incorporated in any product sold for profit 
without the express pernfission of The l;,xecutive Secretary, International 
l,;nion of Crystalk~graphy, 2 Abbey Square, Chester CIII 211U, IjK 

Copyr ight  in this electronic ectition (i)2001 International [Jnion of 
Crys ta l lography 

Published for the 
International Union of Crystallography 

by 
University College Cardiff Press 

Cardiff, Wales 



© 1981 by the International Union of Crystal]ography. 
All rights reserved. 

Published by the University College Cardiff Press for the 
International Union of Crystallography with the 
financial assistance of Unesco Contract  No. SC/P,.P 250.271 

This pamphlet  is one of a series prepared by the 
Commission on Crystallographic Teaching of the 
International Union of Crystallography, under  the 
General  Editorship of Professor C. A. Taylor. 
Copies of this pamphlet  and other  pamphlets  in 
the series may be ordered direct from the 
University College Cardiff Press, 
P.O. Box 78, Cardiff 
CF1 1XL, U.K. 

ISBN 0 9 0 6 4 4 9 1 2  X 

Printed in Wales by University College, Cardiff. 



Series Preface 

The long te rm aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rog ramme  is to produce a large collection of 
short s ta tements  each dealing with a specific topic at a specific level. The  
emphasis  is on a particular teaching approach and there may well, in time, 
be  pamphlets  giving alternative teaching approaches to the same topic. It 
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
m o r e  than one level. 

The  initial selection of ten pamphlets  published together represents a 
sample of the various levels and approaches and it is hoped that it will 
st imulate many  more  people  to contribute to this scheme. It  does not take 
very long to write a short pamphlet ,  but its value to someone  teaching a 
topic for  the first t ime can be very great. 

Each pamphle t  is prefaced by a s ta tement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Edi tor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To lay a foundation for the understanding of the phenomenon of 
anomalous dispersion and its significance and importance now that very 
accurate methods of measuring X-ray intensities are available. 

Level 
This is suitable as an introductory text in a postgraduate course 

designed for students who are already fairly well acquainted with X-ray 
crystallography. 

Background Required 
A fairly thorough knowledge of crystallography and of X-ray diffrac- 

tion principles and techniques is really necessary for a proper  understand- 
ing of this article. 

Practical Resources 
No specific resources are needed- - though actual experience of X-ray 

PhOtographs exhibiting anomalous dispersion effects would be an advan- 
tage. 

Time Required for Teaching 
This is a fairly 'meaty'  course which would require five or six hours for 

full discussion and assimilation. 



Anomalous Dispersion of X-rays in Crystallography 

T h e  C o n t r i b u t i o n  o f  R e s o n a n c e  o r  D i s p e r s i o n  E f f e c t s  

t o  t h e  A t o m i c  S c a t t e r i n g  F a c t o r s  

S. C a t i c h a - E l l i s  

Instituto de Fisica "Gleb  Wataghin"  Universidade Estadual de Campinas 
C.P. 1170 - Campinas - S.P. Brasil 

Introduct ion  

The quantity usually measured in relation to each X-ray reflection is 
the intensity, which is proport ional  to [F(hkl)21 and hence it is IF(hkl)l 
that is determined experimentally.  This quantity may be called the 
'geometrical  structure factor '  since it depends only on the positions of 
atoms and not on any differences in their scattering behaviour.  If the 
nature of the scattering, including any phase change, is identical for all 
atoms, then [P(hkl)[ = [F(hkl)l; this result is sometimes known as Friedel 's 
law 1. 

As long ago as 1930, Coster, Knol and Prins 2 per formed a most elegant 
exper iment  with zinc blende, using X-ray  wavelengths selected to lie close 
to an absorption edge for zinc, but not for sulphur. They were able to 
demonstra te  a failure of Friedel 's law and to show that circumstances 
arise in practice in which the phase change produced by each a tom in a 
unit cell is not the same. The different resonance that leads to this effect 
has become known as anomalous dispersion. 

As radiation counters have been steadily improved,  measurements  of 
X-ray intensities have attained such a degree of accuracy that it is no 
longer acceptable to neglect the resonant  effects which are bigger than the 
experimental  errors by several orders of magnitude.  As a matter  of fact 
the effect can be detected also with film techniques in non- 
centrosymmetrical  crystals by measuring the integrated intensities of 
symmetry-equivalent  reflexions when the incident wavelength is ade- 
quately selected. Friedel 's law does not hold in these cases, a phenome-  
non which was first used by Bijvoet and collaborators 3-13 to find the 
absolute configuration of some crystals. The finding of methods to solve 
crystal structures directly by using this phenomenon  by Pepinsky and 
collaborators 14-19, Ramachandran  and Raman  2°-23, Caticha-Ellis 24-2v 
prompted  a keen interest in this field. 

Le t  us state f rom the outset that the usual name of 'anomalous  
dispersion'  given to the effects studied in this article is entirely inadequate 
and misleading as it will soon be evident. However ,  I have kept it for 



convenience, since it has been used for years in the scientific literature, to 
avoid unnecessary confusions. It  would certainly be more  exact to rename 
the subject as ' resonance effects in the scattering of radiation' ,  or directly 
' resonance scattering of radiation'  adding the qualifications nuclear or 
electronic according to the case. In the case of X-radiation there is always 
some resonant effect due to the continuous distribution of oscillator levels 
as we shall see below, so that the so-called normal scattering or non- 
resonant  scattering is not no rm a l l y  found. The paradox then, is that 
' anomalous  scattering' is absolutely normal  while 'normal  scattering' 
occurs only as an ideal, oversimplified model, which can be used as a first 
approximation when studying scattering problems.  

Calculations of the dispersion contribution to the atomic scattering 
factors made by several authors 29-3s, based on a method due to Parrat t  
and Hemps tead  36 were used by many researchers to find the absolute 
structure of several crystals, as well as to completely solve many other 
crystal structures of increasing complexity including the solution of pro-  
teins. 

Experimental  determinations of a few dispersion corrections were 
performed by some authors in order to confirm the theoretical values and 
to investigate their dependence on the scattering angle and on the 
presence of more than one anomalous scatterer in the unit cell 37-41. 

In an early paper,  S. W. Peterson 4z was able to measure differences in 
the intensities of symmetry  equivalent reflexions in tyrosine hydrochloride 
and tyrosine hydrobromide.  From measurements  m a d e  on other crystals 
he established experimentally that this phenomenon  was related to the 
presence of a heavy a tom and of a polar axis. Peterson realized clearly the 
significance of these findings for direct structure determination by means 
of Fourier  synthesis in non-centro-symmetr ical  crystals and in the same 
paper  claims to have solved the crystal structure of both tyrosine hydro-  
chloride and hydrobromide using only the information contained in the 
measurements  themselves. It  is interesting to  note that the paper  by 
Okaya,  Saito and Pepinsky is is dated only 23 days before that of 
Peterson  ̀ 2. 

In this article only the field of X-ray  resonant scattering is reviewed. 
We shah mention here only in passing two other  related resonant  effects: 

(a) Neutron resonant scattering 
(b) Resonant scattering of gamma rays (Mossbauer effect). 

(a) Resonant  scattering of thermal neutrons produces in some elements 
appreciable in-quadrature components  of the scattering factors for neutron 
wave len~hs  of about  1/~. Peterson and Smith n3 have shown the 
possibility of the crystallographic use of the phenomenon for substances 
containing such light elements as Li 6 and B 1° that can hardly produce any 
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sizeable resonant effect with X-rays. Also some heavy elements such as 
Cd 113, Sm 149, Eu T M  and Gd 157 have appreciable in-quadrature compo- 
nents in the 1 .~ region. Peterson and Smith have also observed that the 
number of elements with high in-quadrature components would be 
greatly enlarged by using neutrons of about 0.1 A. The practical difficulty 
being of course the fact that the neutron flux in this region is very low. A 
hot source built in the reactor might be used to produce the required shift 
to higher thermal energies in the Maxwellian distribution. 

The method has been analyzed by Ramaseshan 44, applied by 
McDonald and Sikka 45 to solve the crystal structure of cadmium nitrate 
tetradeuterate  and further extended by Sikka 46-4s and others. 
(b) Certain nuclei, notably Fe 57 and Sn 119 and also some rare earths have 
nuclear resonance levels that can absorb and emit gamma radiations with 
wavelengths in the useful range for crystallographic uses. The use of the 
emitted lines would have some definite advantages due to the fact that 
their widths are much smaller than those of the X-ray emission lines by a 
factor of the order  of 109 . The  main disadvantage is the very low intensity 
of the Mossbauer radiation in comparison with X-rays, a complicating 
factor from the point of view of the detectability and the statistics of the 
measurements.  However,  in some experiments where the sharpness of the 
line is essential, great advantage could be obtained from the use of such 
radiation. 

In the list of references some papers on this subject have been 
included 49-6°. 

It is curious that in spite of the widespread use of anomalous scattering, 
no book had been written on this subject until 1974. The proceedings of 
an Inter-Congress Conference organized by the Commission on Crystal- 
lographic Apparatus of the International Union of Crystallography held 
in Madrid in that year thus became an all important reference which 
covers most of the crystallographic aspects of anomalous scattering 75. 

In this chapter we review briefly the necessary theory to understand the 
origin of the dispersion effects and the basis fo r  their calculations. The 
treatment is based on the fourth chapter of James'  book: The Optical 
Principles of the Diffraction of X-Rays 61, which contains a detailed 
account of the subject. 

In the classical approach to calculate the (normal) atomic scattering 
factors the hypothesis is made that the frequency of the incident wave ~0 i 
is large in comparison with the resonance frequencies of the atom (~oK, OJL, 
etc., where the subindex refers to the electron shell), t h a t  is, those 
associated to the absorption edges. In practice, for the wavelengths 
normally used in crystallographic studies, this hypothesis can be approxi- 
mately fulfilled only in the case of light atoms, but it is not generally true 
in most real cases. This is readily seen by comparing the values of the 
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a tomic  abso rp t i on  edges  with those  of the  charac te r i s t i c  wave leng ths  of 
an t i ca thodes  n o r m a l l y  used.  

Table I 

Ka K f3 
Element K absorption edge (/~) wavelengths (/~) 

3-Li 226.6 240.0 - -  

4-C 43.6 44.0 - -  

l l -Na 11.48 11.91 11.62 
19-K 3.436 3.744 3.454 
23-V 2.269 2.505 2.284 
24-Cr 2.070 2.291 2.085 
26-Fe 1.743 1.937 1.756 
27-Co 1.608 1.790 1.607 
28-Ni 1.488 1.659 1.5,00 
29-Cu 1.380 1.5418 1.392 
42-Mo 0.6197 0.7106 0.6322 
55-Cs 0.345 0.402 0.354 
57-La 0.318 0.372 0.328 

In T a b l e  1 we q u o t e  s o m e  values  of the  K ab so rp t i on  edges  and  of the  
e m i t t ed  K wave leng ths  for  some  e l emen t s .  I t  is obv ious  f rom Tab le  1 
that ,  for  ins tance ,  if one  has i ron  or  coba l t  a t o m s  in a sample ,  CuKo~ 

r a d i a t i o n  will p r o d u c e  s t rong  r e s o n a n c e  effects s ince this wave leng th  is 
s l ightly smal le r  than  the  K - a b s o r p t i o n  edges  of these  e l e m e n t s  and  
consequen t ly  heavi ly  a b s o r b e d  by  them.  This  is also the  case for  V a t o m s  
with C r K f 3  r ad i a t i on  o r  Cr a t o m s  with F e K a ,  etc.  Obv ious ly  in these  
cases the  ca lcula t ion  of  the  a tomic  sca t te r ing  fac to r  fo w i thou t  r e s o n a n c e  
effects is no longer  val id  s ince wi is c o m p a r a b l e  to ~0 K. 

I t  is then  necessa ry  to  s tudy in wha t  way  the  va lues  of fo will be  a l t e r ed  
to f by r e s o n a n c e .  T h r e e  ma in  d i f ferent  a p p r o a c h e s  have  been  used  to  
ca lcula te  the  d i spe rs ion  cor rec t ions :  

(a) H6nl 6z-6a used hydrogen-like eigenfunctions to obtain the oscillator strengths and 
from them the photoelectric,absorption cross-sections. H6nl's method, restricted to the 
K-electrons contribution was extended by other authors. 

(b) Parratt and Hempstead approach 36 used semi-empirical relations for the photoelectric 
absorption cross-section from which f' and f" are obtained. 

(c) Cromer and Liberman 35 used relativistic Slater-Dirac wave functions.- 

R e c e n t l y  these  m e t h o d s  were  r e v i e w e d  by  W a g e n f e l d  I°6. 

T h e r e  is a close pa ra l l e l i sm b e t w e e n  the  classical  and  the  q u a n t u m  
t r e a t m e n t ;  we give next  a scheme of J a m e s '  classical t r e a tme n t .  
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Scat ter ing  by  a Class ica l  D i p o l e  Osc i l la tor  

In the classical theory of dispersion the a tom is assumed to scatter 
radiation as if it was f o r m e d  by dipole oscillators whose natural frequen- 
cies are those of the absorption edges of the electronic shells. These  
oscillators may be thought of as originated by simple harmonic vibrations 
of the electronic charges, as for instance, the movemen t  of an electron of 
mass rn around the positive nucleus assumed to be at rest. An elec- 
t romagnetic  wave falling on the a tom and having an instantaneous electric 
field E = E 0  e+'~' at t h e p o s i t i o n  of the dipole, sets the electron in 
oscillation, the displacement of the atom satisfies then the differential 
equation: 

i i+kx+og~x=  e E o  i~, • e , ( 1 )  

where k is a damping factor and ogs the natural  circular frequency of the 
electron. 

The  forced solution of (1) is: 

eE o e i.,t 
x : (2) 

m "to E_wE+ikw ' 

and the dipole moment :  

M = ex (3) 

which has its axis in the direction of the applied field E. 
This oscillating dipole radiates with the same frequency of oscillation; 

. the amplitude of the wave at a unit distance in the equatorial  plane being 

e 2 o 9 2 E  0 
A = - -  2 (4) 

m c  2 t .Os-o92- t - ik t .o  

The scattering factor of the dipole is defined, as usual, as the ratio of 
the scattered amplitude A to that scattered by a free electron A,  under 
the same conditions. In this case, A~, the Thomson amplitude, is obtained 
by taking to~ = 0, k = 0: 

e 2 

Ae = • Eo (5) 
m c  2 

The dipole scattering factor is then given by 

f=A= o92 
A~ to 2 -  o9 2 -  iko9 (6) 

If the incident frequency to tends to ogs the scattering factor becomes 
imaginary. 

Expression (6) is very important  since the atomic scattering factor 
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results Irom a superposition of similar terms by considering the atom as 
made up of a distribution of dipole oscillators. Let  us denote by f '(o)) and 
f"(~o) respectively the real and the imaginary parts of f: 

f = f '  + if" (7) 

o~(~,~- ~o~) 
f ' ( ~ o )  - ( , o2  - ~o~)2 + k , o ~ 2  

ka~ 3 

f " ( , o )  = ( , o 2 _  ~o~) 2 + k2o~  ~ 

Apart  from the functional dependence of f on the frequency, the main 
conclusion is that the scattering factor contains a real and an imaginary 
component,  i.e. an in-phase and a quadrature component.  

If a medium is composed of N similar dipoles per unit volume, it can be 
shown that the refractive index n is also complex and ~ven  by 

2vrNe 2 
n = 1 - -  - f  ( 8 )  

rnw2 
which we rewrite as 

with 
n = l - a - i [ 3 ,  

2wNe 2 
01~ - -  - -  " f t ,  D I O J  2 

.2,a-Ne 2 
_ . ~ t .  

[3 H,l¢..02 

(9) 

The fact that n is complex and particularly so when w approximates oJ,, 
indicates that the med ium is absorbent. In fact by taking the origin of 
phases at an arbitrary origin O, the phase, after the wave has travelled a 
distance r, is 

e-i(2"n' /h)nr= e - i ( 2 w / h ) r ( 1 - - a - ? ~ ) =  e - ( 2 ~ i X ) r ( 1 - e O  . e-(2~lh)rl3 

where the second factor is a real exponential with negative argument 
indicating a decrease in the wave amplitude. The decrease in intensity is 
given by e -(4~'/x)'~ or e - ~ , / x  being the linear absorption coefficient, then 

47r/3 2(J)~. 4 w N e  2 f"(o~) (10) 
,,k c rnco9 

After  substitution of f" and division by N one obtains the linear absorp- 
tion coefficient per dipole in the medium for the circular frequency: 

4.tre 2 kco 2 
/~o(~o)= m c  (~o2-oJ~)2+k2io 2" (!1) 



Reciprocally, the imaginary component  of the dipole scattering factor 
of an absorbent medium is given by: 

tt/C 
f"(og) = ~ "  o9>,, (o9). (12) 

If /zo(og) was a measurable magnitude, then expression (12) would pro- 
vide a way to calculate the imaginary component  f" by using the experi- 
mental values of the absorption coefficients. This conclusion, obtained for 
a dipole, is clearly true also for an atom, so that the tables of absorption 
coefficients can be regarded as giving the imaginary components of the 
atomic scattering factors except for a scaling coefficient. 

Obviously f" and /~a h a v e  their respective maximum values for a 
frequency close to ogs; the value of the damping coefficient k being the 
breadth of the absorption peak at half height. The smaller the value of k 
the sharper the absorption peak which then becomes a line. If a beam of 
white radiation is passing through the medium only frequencies near to o9~ 
will be significantly absorbed. 

The Atomic  Scattering Factor. The Oscillator Strength 

Assuming the simple case where k is very small and co is quite different 
from ogs, then, we obtain approximately: 

O) 2 
f ' -  ~ ~ (13) 

02 --ogs  

and 

f ' =  0 
/x. = 0 (14) 

Under  these conditions, we shall concentrate on the real part f '  of the 
dipole scattering factor. Let  us now consider an atom containing g(1), 
g(2) . . . .  , g ( s ) , . . ,  dipole oscillators of natural frequencies o91, 
o92 . . . .  ogs . . . .  respectively. Expression (13) can now be generalized by 
summing the contributions of all the oscillators contained in the atom so 
as to give the real part of the atomic scattering factor: 

f,=~ g( s)og~ 
2 2 (15) 

O9 --ogs  

The number g(s) of dipole oscillators of natural frequency ogs existing 
in an atom is called the 'oscillator strength' corresponding to that particu- 
lar frequency. The calculation of the oscil lator strength is the main 
difficulty in obtaining the resonance contributions to the atomic scattering 
factors. 



We shall not discuss here either the  implications or the validity of the 
generalization just made which has far reaching consequences. A com- 
parison of these arguments with those f rom the quantum theory of atomic 
scattering is quite adequate,  but will not be under taken here, since we 
rather intend to concentrate on the applications of anomalous scattering. 
The reader  is referred, for such a comparison,  to James '  book 61. 

If we now re-examine the foregoing arguments we note  that the calcula- 
tions were explicitly made  for points located in the plane perpendicular  to 
the electric vector of the incident wave, that is equivalent to taking the 
polarization factor equal to unity. That  is why the expression (15) 
obtained for the atomic scattering factor is independent  of the diffraction 
angle. In fact, as it is well known, this is not generally true, for instance 
for a spherically symmetric atom, f =  f(sin 0/A). 

f could be independent  of 0 if the incident wavelength was big with 
respect to the dimensions of the a tom where the electron density is not 
negligible; notwithstanding the opposite is the case normally encountered 
in practice since the atomic dimensions and the wavelengths normally 
used in crystallography are of the same order of magnitude, namely, one 
to two angstroms. 

However ,  our aim is to obtain only the dispersion terms and not the 
entire atomic scattering factor. The terms which correspond, for instance, 
to the K absorption edge are important  only when the incident frequency 
to is close to toK- The relevant  electron distribution in the case is only that  
of the K electrons. It  is then easy to verify that  XK is much larger than the 
dimensions of the atomic region where the K-elect ron density is appreci- 
able; this means that the phase difference in the scattered waves due to 
the difference in position of the K electrons within the a tom will be small 
and their total contribution will thus be practically independent  of the 
diffusion angle. The same arguments are valid, mutatis rnutandis, to the 
case of L, M, etc., electrons. It follows that the resonant  contribution to 
the atomic scattering should be nearly independent  of the diffusion angle, 
which means that the hypothesis used in the previous calculations can be 
applied to a fair approximation.  

In the quantum mechanical t rea tment  the analogues of the classical 
oscillator strengths are magnitudes g(k, n) which are proport ional  to the 
transition probabili ty of an electron passing from a state k t o  a state n. 
For an electron atom, 

Y~ g(k, n ) =  1 (16) 
r l  

i.e. the T h o m a s - R e i c h e - K u h n  sum rule, holds. This rule, extended to the 
case of a many-elect ron atom, states that the sum of the oscillator 
strength is equal to the atomic number  Z. 



Summing up, the atom scatters as if it was composed by dipole 
oscillators of given natural frequencies, identical to the Bohr frequencies, 
their number or oscillator strength being proportional  to the transition 
probability of state k into state n. It is here important to note that the 
states k include all the discrete states of negative energy and the con- 
tinuum of positive energy states. 

The Oscillator Density 

For the continuum of positive energy states, the summations become 
integrals. The natural frequency for them changes continuously, so that 
rather than the discrete value g(co~) it is necessary to define the oscillator 
density (dg/d~0) at the frequency co. The number of oscillators with 
frequencies between co and co + d~o is (dg/dm) d~o. This number is zero for 
~o < ~o~, where o) 5 is the frequency associated with the s absorption edge. 
The oscillator strength due to all K electrons for instance, is obtained by 
integration in the whole range of frequencies ~o K to % i.e. the interval 
where the number of oscillators related to the continuum of positive 
energy states is different from zero: 

I~o ~ d(~_~ ) gK = dco. (17) 
K K 

In words, gK is given by the probability of transition of the K electrons to 
all permissible states. Wheeler  and Bearden 62 applied the sum rule and 
obtained 

gK= 2 ( 1 - ~  g(k, m))  (18) 
m 

where g(k, m) is the oscillator strength of the virtual oscillator of the 
transition k---~m, where m is an occupied state. The sum in (18) then, 
needs be taken only on the relatively few occupied states, gK is then less 
than 2. Analogous considerations apply to the other shells, so that for an 
s shell one would have: 

g = n , ( 1 - ~  g(s, m)) (19) 
m 

when n~ is the multiplicity of the shell. This method of calculation applied 
by Wheeler  and Bearden in 1934 to the K-electrons of a few atoms has 
apparently some advantages which have not been exploited again. 

Bethe 6s calculated the oscillator strengths g(s, m) for hydrogen-like 
atoms. 

From equation (19), the generalized Thomas-Re iche-Kuhn  rule can be 
obtained observing that: g(s, rn) = - g ( m ,  s). The  justification of this argu- 
ment is of a statistical nature, for both transitions should have the same 
probability, since their net result must average zero. 
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Thus, 

~ g ( s )  = ~ d o ~ = Z  (20) 
s • 

s=K,L,M,. . .  

Equation (15), which can be rewritten: 

g(s),~ f'= ~g(s)- ~ v v ,  o,,-2 ~,2, (15') 

becomes 

f ' = Z + L  [ 2 ~doJ (21) 
sJo~ s 0 9  i - -  ° ) -  

s=K,L,M, . . .  

Equation (21) only applies when oJ i the incident frequency, corresponds 
to a wavelength k~ large in comparison with the atomic dimensions. For 
frequencies higher than the natural frequencies of the atom and 
wavelengths of the order  of the atomic dimensions, we may substitute Z 
by f0, the normal scattering factor with good approximation and write: 

where 

f'=fo+af 

(22) 

Equations ( 2 1 ) a n d  (22) are valid for any wavelength except for very 
short ones when relativistic corrections are not negligible. Damping has 
also been neglected: an approximation usually adopted in th,; calculation 
of Af' and Af", which however does not introduce unduly large errors 
except in the intervals 

(-0 i 

x =--~ 1 ±0.005,  
cos 

a round  the absorption edges. 
The 'normal '  scattering factor f0 has Z as a limiting value at low 

frequencies for any angle of scattering and at very low angles for any 
frequency. To obtain the real part of the dispersion correction one has to 
integrate equation (22) so that the values of the oscillator densities 
(dg/dco) have to be calculated. This can be done from the atomic 
wave-functions, n6n162-63 made calculations for the K and L electrons 
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which were assumed to be hydrogen-like. The result was quite satisfac- 
tory for the K electrons but not for the L's.  Later  H~Snl's method was 
applied by Eisenlohr and Miiller 66 to the L electrons of several atoms. 

The Har t ree  wave functions were tried by Cromer  6" to obtain the 
oscillator strengths, but he found them inadequate for this purpose, 
particularly for the heavy elements. He tried then the relativistic wave 
functions without exchange, calculated by Cohen 68 in the test cases of 
tungsten and uranium, finding bet ter  results. New relativistic wave func- 
tions computed by Lieberman, Waber  and Cromer  69 became available for 
all atoms, which included Slater's 7°-71 approximate exchange correction 
and Latter 's 72 self-interaction term. Using these wave functions, 
Cromer 67 calculated a set of oscillator strengths which have been in use 
up to now. From them, he obtained a set of dispersion corrections for 
elements 10 through 98 for five different wavelen~hs.  

U s e  of the  Photoe lec tr i c  A b s o r p t i o n  M e a s u r e m e n t s  

There  is, in principle, a simpler approach to the calculation of the 
dispersion terms by using the following relationship between the oscillator 
density functions (d~d~%) and the photoelectric absorption coefficient 
M~o)61: 

( d g ) _  mc 
27r2e2 ;z (~o), (23) 

which indicates that the oscillator density (dg/dw) is simply proportional 
t o  ~(~). 

Using experimental values of /x(co) one could obtain values for the 
oscillator densities from equation (23). However ,  accurate values for 
/x(w) are not presently available for all the elements in a useful range of 
~o. Then, the usefulness of an empirical method to obtain (dg/dw)s, g,, Af' 
and Af" based on the experimental values of /x(w) is very limited. 

A semi-empirical method has been used by taking the well known 
approximate functional dependence of /x(~o): 

, , [ (cos/w)" •/x(~%) for w > ~o~ 
/~ Leo)=/0 (24) 

CO ~ 6 0  s 

where n has a value of about 3 which, however, changes with the atomic 
number and with the absorption edge involved. Moreover  /z(co) is not 
strictly zero below w,. 

By choosing the  best experimental values for n and/x(~os) integration 
of equation (17) should provide reasonably good values of g .  One can 
substitute in the general case, equations (23) and (24) in (17) to obtain: 

m c  ms /x (o)~)2 (25) 
g s  - -  2~rZe 2 n -- 1 
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Analogously, we obtain from (22) the contribution Af'~ of electrons s to 
Af': 

m c  ~ [-° co 2 dw 

- 2 -e - 
(26) 

Equation (26) has been integrated in the general case by Parratt  and 
Hempstead 36. These authors have expressed their results in the form of 
'universal anomalous dispersion curves', which are essentially the rep- 
resentation of the integral in equation (26) with n as a parameter,  as a 
function of hi/As. When damping is neglected, these curves are indepen- 
dent of the atomic number  and of the electronic shell involved. To obtain 
a particular value of Af' s, the value on the curve with the correct value of 
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,Fig. 1. Universal anomalous dispersion curves according to Parratt and Hempstead. 
The value of R e  (./q - 1) times the oscillator strength gives the anomalous dispersion 

correction for any atomic shell of electrons. 
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n is multiplied by the oscillator strength calculated from equation (25). 
Af' is then obtained by summation through all s = K , / ,  M , . . .  shells. The 
shape of the curves, reproduced in Fig. 1, is quite instructive. They are 
qualitatively correct and show that the dispersion contributions from the 
various electron shells are rarely negligible, or, in other  words, as Parratt  
and Hempstead point out, there is practically no region of normal 
dispersion. 

Since the method used by Parratt  and Hempstead is based on experi- 
mentally determined values and uses exact integrations one should expect 
results in bet ter  agreement with the independent  measurements made of 
the atomic scattering factor than is the case for the values obtained using 
H6nl 's  theory based on hydrogen-like electron shells. The  calculations 
made by Parratt  and Hempstead for the K region of copper and the L 
region of tungsten using only one term in the oscillator distribution for 
each electron shell, actually showed a less satisfactory agreement than 
H6nl 's  theory. This rather discouraging result was attributed by Parratt  
and Hempstead to (a) the difficulties inherent in the experimental meas- 
urements and (b)neglect  of parts of the calculations in previous compari- 
sons. 

In fact, the experimental differences ( f - f o )  which they used to compare  
their calculations were presumably of a rather low precision, since they 
were based on values of f, measured in the early 30's and presumably not 
very precise. The values of fo substracted in the iron case was the 
Thomas-Fermi  )Co = 17.3 for plane (110 )o f  Fe. 

It would be interesting to remeasure the values of f using modern 
techniques and subtract better  values  of fo as are currently available 
nowadays in order tO make a definite comparison. 

The Imaginary Component Af" 
The imaginary component  of the atomic scattering factor corresponds 

to a component  of the scattered radiation from the atom having a phase 
in the forward direction that lags w/2 behind that of the primary wave. 

As is known, in the (Thomson) scattering by free electrons, or very 
approximately in the case of bound electrons and very high frequencies 
the phase-lag of the forward scattered wave is 7r. As the frequency of the 
incident radiation approaches an absorption edge the amplitude of the 
imaginary component  increases so that the resultant phase m a y  differ 
significantly from ~r. 

In order  to have an appreciable resonant effect, the incident frequency 
must lie very close to one of the natural oscillator frequencies. However,  
since the virtual oscillators in an atom have frequencies covering a 
continuous distribution, the resonance effect may be appreciable even for 
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frequencies not so close to one of t h e  absorption edges, for it still 
coincides with one of the continuous distribution. A system having a 
discrete set of oscillators would then behave in an entirely different way. 

Let  us consider, for instance, the case of K electrons. As we know 
A f t =  0 f o r  wi <WK.  It is then only necessary to cons ider  frequencies 
larger than wrc, since only in this case they may coincide with those of the 
continuum. 

An extension of equation (12) gives the relationship between the 
K-contribution to the absorption coefficient and ~xf~, the K-contribution 
to the imaginary component  of the atomic scattering factor: 

4we 2 
ixK(wi) = " ,'~f~ (12') 

t r i G 6 0  i 

From relation (23) between the oscillator density and the absorption 
coefficient one obtains: 

and then: 

dg)  _ m___c_c 
-d-£ K 2 w Z e  z • t zK(w),  (23') 

Z. \ O O 9 / K  

Assuming a dependence of /-~K on w according to (24),  

m c  

is obtained, ~ving the K-contribution as a function of the incident 
frequency. 

It is interesting to express the relationship between Afj~ and the 
corresponding oscillator gK: 

"a" (~OKI~-~ A f t =  ~ ( n - 1 )  - - ~ -  "gK (29) 

valid for to i < ¢oK, which was obtained from equations (25) and (28). 
af;~ 

Figure 2 represents as a function of x = wdwK, the effect of 
gr¢ 

damping is indicated qualitatively by the dotted line. 
The atomic scattering factor may be expressed as the sum of  three 

terms: 

f = f o + A f ' + i A f "  

where fo is a function of (sin O)/h, whose values, calculated for atoms with 
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Fig. 2. hnaginary dispersion correction as a function of incident frequency accord- 
ing to James. 

spherical symmetry are tabulated, for instance in the International Tables 
for X - R a y  Crystallography, Vol. 373. As was shown in this chapter the 
components,  Af' and a f"  are not negligible when the incident frequency is 
slightly larger than that of the absorption edges of the atom. These two 
components,  related to the photoelectric absorption coefficients as well as 
to the oscillator density and oscillator strengths associated to the atom, 
are given by: 

do)G 
a f '  = Y~ a f ;  = s y~ ~o~- ~o'- ' (30) 

s • 

and 

~ ~r dq', x" mc  . . 
Af"= ~ Af~ = -~ro~(~--£)~ = A. -T----~_c°dx~(¢°~) • (31) 

s s q- 7Te-  

s = K ,  r , M ,  N , . . .  

It is possible, by using quantum mechanical methods to determine the 
oscillator densities from the atomic wave functions. This method first 
introduced by HSn162-63, who of course, did not dispose at the time of the 
computing facilities nowadays provided by modern computers, so that his 
main contribution was in developing the method and calculating some 
values for hydrogen-like K-electrons.  

A method based on the utilization of the relationships between oscil- 
lator strengths and densities from one side and photoelectric absorption 
coefficients on the other, developed by Parratt  and Hempstead 36 did not 
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succeed initially in providing satisfactory results due mainly to the lack of 
good experimental values of the absorption coefficients and also, to my 
belief, to the lack of reliable experimental and theoretical atomic scatter- 
ing factors. 

Cromer 67 used self-consistent field relativistic Dirac-Slater  wave func- 
tions to calculate accurate oscillator strengths for elements 10 through 98. 
He calculated then the dispersion terms Af' by using Parratt  and Hemp-  
stead's 36 solution of equation (26) and summing over the different ab- 
sorption edges. The imaginary terms )c,, were also computed for the same 
elements from equation (29). The values of the parameters n used by 
Cromer 67, Dauben and Templeton 28 and other authors were taken from 
the discussion by Parrat t  and Hempstead  36, as n = 11/4 for the l s  1/2 edge, 
n = 7/3 for the 2 s l / 2  edge and n = 5/2 for all other edges. 

The use of the dispersion terms for the solution of crystal structures, 
which will be discussed later, made it necessary to obtain the values of Af' 
for a wide range of wavelengths for atoms where the anomalous disper- 
sion effects are significant. This calculation was performed by Saravia and 
C a t i c h a - E l l i s  33 f o r  e l e m e n t s  2 0  t h r o u g h  83  f o r  3 2  d i f f e r e n t  K,, 

wavelengths ranging from T~K~ (2.75/~) to IK~ (0.435 ~) ,  by using the 
method of Parratt  and Hempstead 36, the absorption edges from Cauchois 
and Hulubei TM and the oscillator s t ren~hs  from Cromer 67. Essentially the 
same calculations were later performed by Hazel134 for eleven K~ radia- 
tions. 
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