AIC Commission on Crystallographic Teaching

AIC International Crystallography School 2019

30 August 3 September 2019 Naples, Italy

www.cristallografia.org/aicschool2019

BILBAO CRYSTALLOGRAPHIC SERVER I

SPACE-GROUP SYMMETRY

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Universidad del País Vasco Euskal Herriko Unibertsitatea

bilbao crystallographic server

ECM31-Oviedo Satellite

rystallography online: workshop on the e and applications of the structural tools of the Bilbao Crystallographic Server

20-21 August 2018

ews:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG 04/2017: Irreducible representations of

Point-group symmetry

Plane-group symmetry

Crystallographic Databases

International Tables for Crystallography

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY VOLUME A: SPACE-GROUP SYMMETRY

Extensive tabulations and illustrations of the 17 plane groups and of the 230 space groups

headline with the relevant group symbols;

- •diagrams of the symmetry elements and of the general position;
- •specification of the origin and the asymmetric unit;
- list of symmetry operations;
- •generators;
- •general and special positions with multiplicities, site symmetries, coordinates and reflection conditions;
- symmetries of special projections;

Volume

MILERNAT for CRYST International Tables for Crystallography (2006). Vol. A, Space group 135, pp. 466-467.

Origin at centre (2/m) at $4_2/m1n$

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le \frac{1}{4}$

Symmetry operations

(1) 1	(2) 2 $0, 0, z$	(3) $4^+(0,0,\frac{1}{2}) 0,0,z$	(4) $4^{-}(0,0,\frac{1}{2})$ 0,0,z
(5) $2(0,\frac{1}{2},0)$ $\frac{1}{4},y,0$	(6) $2(\frac{1}{2},0,0) x,\frac{1}{4},0$	(7) $2(\frac{1}{2},\frac{1}{2},0)$ $x,x,\frac{1}{4}$	(8) 2 $x, \bar{x} + \frac{1}{2}, \frac{1}{4}$
(9) 1 0,0,0	(10) $m x, y, 0$	(11) $\bar{4}^+$ 0,0,z; 0,0, $\frac{1}{4}$	(12) $\bar{4}^-$ 0,0,z; 0,0, $\frac{1}{4}$
(13) $a x, \frac{1}{4}, z$	(14) $b = \frac{1}{4}, y, z$	(15) $c x + \frac{1}{2}, \bar{x}, z$	(16) $n(\frac{1}{2},\frac{1}{2},\frac{1}{2}) x,x,z$

CONTINUED

Positions

2/m..

ā..

2/m..

4

4

4

С

b

а

 $0, \frac{1}{2}, 0$

 $0, 0, \frac{1}{4}$

0,0,0

 $\frac{1}{2}, 0, \frac{1}{2}$

 $0, 0, \frac{3}{4}$

 $0, 0, \frac{1}{2}$

hkl: h+k, l=2n

hkl: h+k, l=2n

hkl: h+k, l=2n

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Mul Wyc Site	tiplici koff l symn	ity, letter, netry		Coordinates	ŝ			Reflection condi UNU General:
16	i	$ \begin{array}{cccc} 1 & (1) x, \\ (5) \bar{x} \\ (9) \bar{x}, \\ (13) x \end{array} $	y,z + $\frac{1}{2}$,y+ $\frac{1}{2}$, \bar{z} \bar{y},\bar{z} + $\frac{1}{2}$, \bar{y} + $\frac{1}{2}$,z	(2) \bar{x}, \bar{y}, z (6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}$ (10) x, y, \bar{z} (14) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}$	(3) $,\bar{z}$ (7) (11) ,z (15)	$ \bar{y}, x, z + \frac{1}{2} y + \frac{1}{2}, x + \frac{1}{2}, \bar{z} + \frac{1}{2} y, \bar{x}, \bar{z} + \frac{1}{2} \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, z + \frac{1}{2} $	(4) $y, \bar{x}, z + \frac{1}{2}$ (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (12) $\bar{y}, x, \bar{z} + \frac{1}{2}$ (16) $y + \frac{1}{2}, x + \frac{1}{2}, z + \frac{1}{2}$	WILEY 0kl : k = 2n hhl : l = 2n 00l : l = 2n h00 : h = 2n
								Special: as above, plus
8	h	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2} \end{array}$	$,0$ $\begin{array}{c} ar{x},ar{y},0\\ x+rac{1}{2},ar{y}\end{array}$	$+\frac{1}{2},0$	$ar{y}, x, rac{1}{2} \ y+rac{1}{2}, x+rac{1}{2}, rac{1}{2}$	$y,ar{x},rac{1}{2}\ ar{y}+rac{1}{2},ar{x}+rac{1}{2},rac{1}{2}$	no extra conditions
8	g	2	$x, x + rac{1}{2}, rac{1}{4} \ ar{x}, ar{x} + rac{1}{2}, rac{3}{4}$	$ar{x},ar{x}+rac{1}{2},rac{1}{4}\ x,x+rac{1}{2},rac{3}{4}$	$ar{x}+rac{1}{2} x+rac{1}{2}$	$x, x, \frac{3}{4}$ $x + \frac{1}{2}, x, \frac{3}{4}$ $\bar{x} + \frac{1}{2}, \bar{x}, \frac{1}{4}$ $\bar{x} + \frac{1}{2}, x + $	$ar{x}, rac{3}{4} \ x, rac{1}{4}$	hkl : $l = 2n$
8	f	2	$0, \frac{1}{2}, z$ $0, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, 0, z + \frac{1}{2}$ $\frac{1}{2}, 0, \overline{z} + \frac{1}{2}$	$(1, 0, \bar{z})$ (1, 0, z)	$\begin{array}{c}0,\frac{1}{2},\bar{z}+\frac{1}{2}\\0,\frac{1}{2},z+\frac{1}{2}\end{array}$		hkl : $h+k, l=2n$
8	е	2	$\begin{array}{c} 0,0,z \\ 0,0,ar{z} \end{array}$	$0,0,z+rac{1}{2}\ 0,0,ar{z}+rac{1}{2}$	$rac{1}{2},rac{1}{2},ar{z}$ $rac{1}{2},rac{1}{2},Z$	$\frac{1}{2}, \frac{1}{2}, \overline{z} + \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, z + \frac{1}{2}$		hkl : $h+k, l=2n$
4	d	2.22	$0, rac{1}{2}, rac{1}{4}$	$\frac{1}{2}, 0, \frac{3}{4}$ 0,	$\frac{1}{2}, \frac{3}{4}$	$\frac{1}{2}, 0, \frac{1}{4}$		hkl : $h+k, l=2n$

 $0, \frac{1}{2}, \frac{1}{2}$

 $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}$

 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

 $\frac{1}{2},0,0$

 $\frac{1}{2}, \frac{1}{2}, \frac{3}{4}$

 $\frac{1}{2}, \frac{1}{2}, 0$

bilbao crystallographic server

	Contact us	About us	Publications	How to cite the server
			Space-group symmetry	
A bilbao	GENPOS	Generators and Gene	ral Positions of Space Groups	
crystaf	WYCKPOS	Wyckoff Positions of S	Space Groups	
lographic	HKLCOND	Reflection conditions	of Space Groups	
server	MAXSUB	Maximal Subgroups of	f Space Groups	
	SERIES	Series of Maximal Iso	morphic Subgroups of Space Groups	
31-Oviedo Satellite	WYCKSETS	Equivalent Sets of Wy	ckoff Positions	
	NORMALIZER	Normalizers of Space	Groups	
phy online: workshop on	KVEC	The k-vector types an	d Brillouin zones of Space Groups	
ications of the structural t	SYMMETRY OPERATIONS	Geometric interpretati	on of matrix column representations of symme	etry operations
ao Grystanographic Serve	IDENTIFY GROUP	Identification of a Spa	ce Group from a set of generators in an arbitr	ary setting
0.04 4				

Structure Utilities

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

ECM

rystallogra e and appli of the Bilb

20-21 August 2018

ews:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG 04/2017: Irradualble representations of

Problem: Matrix-column presentation Geometrical interpretation

Generators and General Positions

space group

GENPOS

How to select the group

The space groups are specified by their sequential number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting] or [TTA Settings] for checking the non Please, enter the sequential number of group as given in the International Tables for Crystallography, Vol. A or Show: Generators only All General Positions •

Example GENPOS: Space group P21/c (14)

Space-group symmetry operations

General Positions of the Group 14 (P2₁/c) [unique axis b]

Click here to get the general positions in text format

short-hand notation

$$\begin{array}{l} \text{matrix-column} \\ \text{presentation} \end{array} \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

General positions

Symmetry operations

4 e 1

(1) 1

Geometric interpretation

Seitz symbols

	Ne	(x x x) form	Motrix form	Symmetry operation			
	NO.	(x,y,z) form	Matrix form	ITA	Seitz		
$\begin{pmatrix} 2W_{13} \\ 2W_{23} \\ 2W_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$	1	x,y,z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}		
tion	2	-x,y+1/2,-z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 0,y,1/4	{ 2 ₀₁₀ 0 1/2 1/2 }		
	3	-x,-y,-z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	{ -1 0 }		
	4	x,-y+1/2,z+1/2	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	c x,1/4,z	{ m ₀₁₀ 0 1/2 1/2 }		
itions]]					
(1) x, y, z (2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (3) $\bar{x}, \bar{y}, \bar{z}$ (4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$							
erations							
(2) $2(0, \frac{1}{2}, 0)$ 0, y	$\frac{1}{4}$	(3) 1 0,0	0,0 (4) c	$x, \frac{1}{4}, z$			

ITA data

Problem: Wyckoff positions Site-symmetry groups WYCKPOS

	Wyckoff Positions	space group
How to select the group	Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it:	r 68
International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.	Standard/Default Setting Non Conventional Setting	ing (ITA Settings)
If you are using this program in the preparation of a paper, please cite it in the following form:		
Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.		

Ccce			$D_{^{2h}}^{^{22}}$				т		
	N	o. 68		<i>C</i> 2	$/c \ 2/c \ 2/c$	/ <i>e</i>			Patterson symmetry $Cmmm$
1	6	<i>i</i> 1	(1) $x, y,$ (5) $\bar{x}, \bar{y},$	z (2) z \bar{z} (6) z	$\bar{x} + \frac{1}{2}, \bar{y}, z$ $x + \frac{1}{2}, y, \bar{z}$	(3) \bar{x}, y, \bar{z} (7) x, \bar{y}, z	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	(4) $x +$ (8) $\bar{x} +$	$-\frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}$ $-\frac{1}{2}, y, z + \frac{1}{2}$ Volume
8	h	2	$\frac{1}{4}, 0, z$	$\frac{3}{4}, 0, \bar{z} + \frac{1}{2}$	$\frac{3}{4}, 0, \overline{z}$	$\frac{1}{4}, 0, z + \frac{1}{2}$			ST CR
8	g	2	$0, \frac{1}{4}, z$	$0, rac{1}{4}, ar{z} + rac{1}{2}$	$0, rac{3}{4}, ar{z}$	$0, \frac{3}{4}, z + \frac{1}{2}$			Space-group symmetry Edited by Mois I. Aroyo WILEY Sixth edition
8	f	. 2 .	$0, y, \frac{1}{4}$	$\frac{1}{2}, \overline{y}, \frac{1}{4}$	$0, \bar{y}, \frac{3}{4}$	Wyckof	f Posi	tions of	Group 68 (Ccce) [origin choice 2]
8	е	2	$x, \frac{1}{4}, \frac{1}{4}$	$\bar{x} + \frac{1}{2}, \frac{3}{4}, \frac{1}{4}$	$ar{x},rac{3}{4},rac{3}{4}$	Multiplicity	Wyckoff	Site	Coordinates
8	d	ī	0, 0, 0	$\frac{1}{2}, 0, 0$	$0, 0, \frac{1}{2}$	Multiplicity	letter	symmetry	(0,0,0) + (1/2,1/2,0) +
8	с	ī	$\frac{1}{4}, \frac{3}{4}, 0$	$\frac{1}{4}, \frac{1}{4}, 0$	$\frac{3}{4}, \frac{3}{4}, \frac{1}{2}$	16	i	1	(x,y,z) (-x+1/2,-y,z) (-x,y,-z+1/2) (x+1/2,-y,-z+1/2) (-x,-y,-z) (x+1/2,y,-z) (x,-y,z+1/2) (-x+1/2,y,z+1/2)
4	b	222	$0, rac{1}{4}, rac{3}{4}$	$0, rac{3}{4}, rac{1}{4}$		8	h	2	(1/4,0,z) (3/4,0,-z+1/2) (3/4,0,-z) (1/4,0,z+1/2)
4	а	222	$0, \frac{1}{4}, \frac{1}{4}$	$0, \frac{3}{4}, \frac{3}{4}$		8	g	2	(0,1/4,z) (0,1/4,-z+1/2) (0,3/4,-z) (0,3/4,z+1/2)
			, , , ,	, , , , ,		8	f	.2.	(0,y,1/4) (1/2,-y,1/4) (0,-y,3/4) (1/2,y,3/4)
		Sp	ace Group :	68 (Ccce) [ori	gin choice 2	8	е	2	(x,1/4,1/4) (-x+1/2,3/4,1/4) (-x,3/4,3/4) (x+1/2,1/4,3/4)
			Wycl	Wyckoff Position : 4a Site Symmetry Group 222			d	-1	(0,0,0) (1/2,0,0) (0,0,1/2) (1/2,0,1/2)
			Site Sy				с	-1	(1/4,3/4,0) (1/4,1/4,0) (3/4,3/4,1/2) (3/4,1/4,1/2)
			(1 0 0 0 0 1 0 0		4	b	222	(0,1/4,3/4) (0,3/4,1/4)
		x,y,z	(0 0 1 0)	4	а	222	(0,1/4,1/4) (0,3/4,3/4)
	-X	(,y,-z+1/2	($\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}$	2)	2 0,y,1/4			
	-x	k,−y+1/2,z	($\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}$	2)	2 0,1/4,z		Bilba	ao Crystallographic
	х,-у	+1/2,-z+1/2	($\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 x,1/4,1/4			Server

Example WYCKPOS: Wyckoff Positions Ccce (68)

Site Symmetry Group 222

x,y,z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1
-x+1,y,-z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 1/2,y,1/4
-x+1,-y+1/2,z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/2,1/4,z
x,-y+1/2,-z+1/2	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 x,1/4,1/4

Problem: Geometric Interpretation of (W,w) OPERATION

SYMMETRY

Geometric Interpretation of Matrix Column Representation of Symmetry Operation

Symmetry Operation + Introduce the crystal system This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or Or enter the sequential number of group as given in the International Tables for space group. choose it 35 Crystallography, Vol. A Input: i) The crystal system or the space group number. Matrix column representation of symmetry operation -x+1/2,y+1/2,z ii) The matrix column representation of symmetry operation. If you want to work on a non conventional setting click on Non Rotational part Translation conventional setting, this will show you a form where you have to introduce the transformation matrix relating the conventional setting of 0 0 0 the group you have chosen with the non conventional one you are In matrix form 0 0 1 0 interested in. 0 0 0 1 Output: We obtain the geometric interpretation of the symmetry operation. ndard/Default Setting Non Conventional Setting ITA Settings Symmetry operation of the space group 35 (Cmm2) 0 1/2-x+1/2,y+1/2,z 0 1/2 1 0 1/4.v.z 0

- Characterize geometrically the matrix-column pairs listed under *General position* of the space group *P4mm* in ITA.
- 2. Consider the diagram of the symmetry elements of *P4mm*. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.
- 3. Compare your results with the results of the program SYMMETRY OPERATIONS

Consider the special Wyckoff positions of the the space group *P4mm*.

Determine the site-symmetry groups of Wyckoff positions *I a* and *I b*. Compare the results with the listed ITA data

The coordinate triplets (x, 1/2, z) and (1/2, x, z), belong to Wyckoff position 4f. Compare their site-symmetry groups.

Compare your results with the results of the program WYCKPOS.

Co-ordinate transformations in crystallography

3-dimensional space (a, b, c), origin O: point X(x, y, z)(P,p)(a', b', c'), origin O': point X(x', y', z')

Transformation matrix-column pair (P,p)

(i) linear part: change of orientation or length:

$$(\mathbf{a}', \mathbf{b}', \mathbf{c}') = (\mathbf{a}, \mathbf{b}, \mathbf{c})P$$

= $(\mathbf{a}, \mathbf{b}, \mathbf{c})\begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{33}\mathbf{c})$

(ii) origin shift by a shift vector $p(p_1, p_2, p_3)$:

<i>O</i> ' = <i>O</i> + <i>p</i>	the origin O' has coordinates (p1,p2,p3) in the old coordinate system
	the old coordinate system

Co-ordinate transformations in crystallography

Transformation of space-group operations (W,w) by (P,p):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Structure-description transformation by (P,p)

Problem: ITA SETTINGS

530 ITA settings of **orthorhombic** and **monoclinic** groups

Monoclinic descriptions

		abc	cba					Monoclinic axis b
	Transf.			abc	baīc			Monoclinic axis c
						abc	$ar{\mathbf{a}}\mathbf{c}\mathbf{b}$	Monoclinic axis a
		C12/c1	A12/a1	A112/a	B112/b	B2/b11	C2/c11	Cell type 1
HM	C2/c	A12/n1	C12/n1	B112/n	A112/n	C2/n11	B2/n11	Cell type 2
		I12/a1	I12/c1	I112/b	I112/a	I2/c11	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	baīc	cab	ē ba	bca	aīcb
33	$Pna2_1$	$Pna2_1$	$Pbn2_1$	$P2_1nb$	$P2_1cn$	$Pc2_1n$	$Pn2_1a$

ITA-Settings for the Space Group 15

Note: The transformation matrices must be read by columns. P is the transformation from standard to the ITA-setting

Example **GENPOS**:

default setting CI2/cI

(W,w)_{A112/a}= (P,p)⁻¹(W,w)_{C12/c1}(P,p)

final setting AII2/a

 $(a, b, c)_n = (a, b, c)_s P$

TA number	Setting	Р	P ⁻¹
15	C 1 2/c 1	a,b,c	a,b,c
15	A 1 2/n 1	-a-c,b,a	c,b,-a-c
15	<i>l</i> 1 2/a 1	c,b,-a-c	-a-c,b,a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C 1 2/n 1	a,-b,-a-c	a,-b,a-c
15	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
15	A 1 1 2/a	c,a,b	b,c,a
15	B 1 1 2/n	a,-a-c,b	a,c,-a-b
15	I 1 1 2/b	-a-c,c,b	-a-b,c,b
15	B 1 1 2/b	a,c,-b	a,-c,b
15	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
15	/ 1 1 2/a	c,-a-c,-b	-a-b,-c,a
15	<i>B</i> 2/ <i>b</i> 1 1	b,c,a	c,a,b
15	C 2/n 1 1	b,a,-a-c	b,a,-b-c
15	/ 2/c 1 1	b,-a-c,c	-b-c,a,c
15	C 2/c 1 1	-b,a,c	b,-a,c
15	<i>B</i> 2/ <i>n</i> 1 1	-b,-a-c,a	c,-a,-b-c
15	<i>I 2/b</i> 1 1	-b,c,-a-c	-b-c,-a,b

Example **GENPOS**: ITA settings of C2/c(15)

The general positions of the group 15 (A 1 1 2/a)

	Stand	dard/Default Setting	g C2/c	ITA-Setting A 1 1 2/a					
	(x,y,z) form	matrix form	symmetry operation	(x,y,z) form	matrix form	symmetry operation			
1	x, y, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	x, y, z	$\left(\begin{array}{rrrrr}1&0&0&0\\0&1&0&0\\0&0&1&0\end{array}\right)$	1			
2	-x, y, -z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 0,y,1/4	-x+1/2, -y, z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/4,0,z			
3	-x, -y, -z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	-x, -y, -z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0			
4	x, -y, z+1/2	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	c x,0,z	x+1/2, y, -z	$\left(\begin{array}{rrrrr}1&0&0&1/2\\0&1&0&0\\0&0&-1&0\end{array}\right)$	a x,y,0			
5	x+1/2, y+1/2, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	t (1/2,1/2,0)	x, y+1/2, z+1/2	$\left(\begin{array}{rrrrr}1&0&0&0\\0&1&0&1/2\\0&0&1&1/2\end{array}\right)$	t (0,1/2,1/2)			
6	-x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 1/4,y,1/4	-x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	2 (0,0,1/2) 1/4,1/4,z			
7	-x+1/2, -y+1/2, -z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 1/4,1/4,0	-x, -y+1/2, -z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	-1 0,1/4,1/4			
8	x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n (1/2,0,1/2) x,1/4,z	x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n (1/2,1/2,0) x,y,1/4			

default setting

AII2/a setting

WYCKPOS

Problem: Coordinate transformations Wyckoff positions

68

B b e b [origin 2] b,c,a c,a,b

Problem: Space-group identification by a set of generators in arbitrary basis

IDENTIFY GROUP

IDENTIFY GROUP: Identifies a Space Group given a set of generators

IDENTIFY GROUP identifies a Space Group given a set of generators and shows the transformation matrix to a standard or reference (default) description of the Space Group.

Enter the generators of the Space Group in the box below, given in any basis (x+1/2,y+1/2,z -y+1/3,x+1/4,z+1/4

Assumed lattice translations: x + 1, y, z x, y + 1, z x, y, z + 1

х,у,z

EXERCISES

Consider the space group $P2_1/c$ (No. 14). Show that the relation between the *General* and *Special* position data of $P112_1/a$ (setting *unique axis c*) can be obtained from the data $P12_1/c1$ (setting *unique axis b*) applying the transformation $(\mathbf{a',b',c'})_c = (\mathbf{a,b,c})_b P$, with P = c,a,b.

Use the retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff positions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in *ITA*.

EXERCISES

Problem 1.4

Use the retrieval tools GENPOS or Generators and General positions, WYCKPOS (or Wyckoff positions) for accessing the space-group data on the Bilbao Crystallographic Server or Symmetry Database server. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

Consider the General position data of the space group Im-3m (No. 229). Using the option *Non-conventional setting* obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation $(\mathbf{a}', \mathbf{b}', \mathbf{c}') = 1/2(-\mathbf{a}+\mathbf{b}+\mathbf{c}, \mathbf{a}-\mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{b}-\mathbf{c})$

EXERCISES

Problem 1.5

A body-centred cubic lattice (*cl*) has as its conventional basis the conventional basis $(\mathbf{a_P}, \mathbf{b_P}, \mathbf{c_P})$ of a primitive cubic lattice, but the lattice also contains the centring vector $1/2\mathbf{a_P}+1/2\mathbf{b_P}+1/2\mathbf{c_P}$ which points to the centre of the conventional cell.

Calculate the coefficients of the metric tensor for the body-centred cubic lattice: (i) for the conventional basis $(\mathbf{a}_{\mathbf{P}}, \mathbf{b}_{\mathbf{P}}, \mathbf{c}_{\mathbf{P}})$;

(ii) for the primitive basis:

 $a_{I} = 1/2(-a_{P}+b_{P}+c_{P}), b_{I} = 1/2(a_{P}-b_{P}+c_{P}), c_{I} = 1/2(a_{P}+b_{P}-c_{P})$

(iii) determine the lattice parameters of the primitive cell if $a_P=4$ Å

 $G' = P^{t} G P$

Hint

Problem 1.6

A face-centred cubic lattice (cF) has as its conventional basis the conventional basis $(\mathbf{a}_{\mathbf{P}}, \mathbf{b}_{\mathbf{P}}, \mathbf{c}_{\mathbf{P}})$ of a primitive cubic lattice, but the lattice also contains the centring vectors $1/2\mathbf{b}_{\mathbf{P}}+1/2\mathbf{c}_{\mathbf{P}}$, $1/2\mathbf{a}_{\mathbf{P}}+1/2\mathbf{c}_{\mathbf{P}}$, $1/2\mathbf{a}_{\mathbf{P}}+1/2\mathbf{b}_{\mathbf{P}}$, which point to the centres of the faces of the conventional cell.

Calculate the coefficients of the metric tensor for the face-centred cubic lattice:

(i) for the conventional basis (**a**_P,**b**_P,**c**_P);

(ii) for the primitive basis:

 $a_{F} = 1/2(b_{P}+c_{P}), b_{F} = 1/2(a_{P}+c_{P}), c_{F} = 1/2(a_{P}+b_{P})$

(iii) determine the lattice parameters of the primitive cell if $a_P=4$ Å

ERNATIONAL TABLE CRYSTALLOGRAPH CRYST ğ

Volume Europetry relations space groups Edited by Hans Monthalts/Park and Unit-Maler Real address

> Ori yorai lographic-

> > serve

GROUP-SUBGROUP RELATIONS OF SPACE GROUPS

bilbao crystallographic server

		Contact us	About us	Publications	How to cite the serve
				Space-group symmetry	
1			Ma	agnetic Symmetry and Application	ons
		Gro	up-Subgroup Relat	tions of Space Groups	
SUBGR	OUPGRAPH	La	attice of Maximal Subgro	ups	
HERMA	NN	D	istribution of subgroups i	n conjugated classes	
COSET	3	с	oset decomposition for a	group-subgroup pair	
WYCKS	PLIT	Т	he splitting of the Wyckof	ff Positions	
MINSUP)	M	inimal Supergroups of S	pace Groups	
SUPER	GROUPS	S	upergroups of Space Gro	oups	
CELLSU	JB	Li	st of subgroups for a give	en k-index.	
CELLSU	JPER	Li	st of supergroups for a g	iven k-index.	
NONCH	AR	N	on Characteristic orbits.		
соммо	NSUBS	с	ommon Subgroups of Sp	ace Groups	
соммо	NSUPER	с	ommon Supergroups of	Two Space Groups	
INDEX		In	dex of a group subgroup	pair	
SUBGR	OUPS 🕰	S in	ubgroups of a space grou reducible representation(up consistent with some given supe s)	ercell, propagation vector(s) or

ECM31-Oviedo S

Crystallography online: w use and applications of the of the Bilbao Crystallog

> WYC 20-21 August 2

News:

- New Article in Nature 07/2017: Bradlyn et al. "Top chemistry" Nature (2017). 54
- New program: BANDF 04/2017: Band representatio Band representations of Dou
- New section: Double groups
 - New program: D 04/2017: General pos Space Groups
 - New program: DEDDESENTATIONS DDG

BLES	U		Inter	national Ta	bles for Crysta	llograph	y, Vol.AI
IATIONAL TA ∕STALLOGR∕		1	Maxir	e mal suboro	ds. H. Wondra	atschek,	U. Mueller
for CR	Sprendry relations topics groups Edited by Hans Brochastered and Unich Maller Friendlan		Γιαλιί	P4mm	No. 99	Sioups	P4mm
		I Maxi [2] P41 [2] P21 [2] P2n	mal translationeng 1 (75, P4) m (35, Cmm2) n1 (25, Pmm2)	<i>leiche</i> subgroups 1; 2; 3; 4 1; 2; 7; 8 1; 2; 5; 6		a - b , a + b , c	
		II Max • Enl [2] $\mathbf{c}' =$ $P4_2$	imal klassengleich arged unit cell = 2c mc (105) cc (103) cm (101) nm (99)	e subgroups $\langle 2; 5; 3+(0,0,1) \rangle$ $\langle 2; 3; 5+(0,0,1) \rangle$ $\langle 2; (3; 5)+(0,0,1) \rangle$ $\langle 2; 3; 5 \rangle$)>	a, b, 2c a, b, 2c a, b, 2c a, b, 2c a, b, 2c	
		• Seri [p] c' = P4m [p ²] a' = P4m	es of maximal ison pc am (99) = pa, b' = pb am (99)	horphic subgroups $\langle 2; 3; 5 \rangle$ p > 1 no conjugate subgrou $\langle 2 + (2u, 2v, 0); 3 +$ $p > 2; 0 \le u < p; 0$ p^2 conjugate subgrou	(u+v, -u+v, 0); 5+(0, 2v, 0) $\leq v < p$ ps for the prime p	a , b , <i>p</i> c <i>p</i> a , <i>p</i> b , c	и, v, 0

Help

Problem: SUBGROUPS OF SPACE GROUPS

Bilbao Crystallographic Server -> SUBGROUPGRAPH

Group-Subgroup Lattice and Chains of Maximal Subgroups

Lattice and chains ...

For a given group and supergroup the program SUBGROUPGRAPH will give the lattice of maximal subgroups that relates these two groups and, in the case that the index is specified, all of the possible chains of maximal subgroup that relate the two groups. In the latter case, also there is a possibility to obtain all of the different subgroups of the same type.

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:							
Enter supergroup number (G) or choose it: 99							
Enter subgroup number (H) or choose it:	4						
Enter the index [G:H] (optional):							
Construct the lattice							
subgroup index							
[i]=[i _P].[i _L]							

General graph for $P4_12_12 > P2_1$

SUBGROUPGRAPH *P*4₁2₁2 > *P*2₁

three P21 subgroups in two conjugacy classes

Graph for P4₁2₁2 > P2₁ index [i]=4

PROBLEM: Domain-structure analysis

Hermann, 1929:

Problem: SPLITTING OF WYCKOFF POSITIONS

Group-subgroup pair P4mm>Pmm2, [i]=2 a'=a, b'=b, c'=c

2c 2mm. I/2 0 z 0I/2 z ↔ ☆ 1/2 0 z Ic mm2 ☆ 0 I/2 z' Ib mm2

Data on Relations between Wyckoff Positions in International Tables for Crystallography, Vol. A I

No. 99

P4mm

	Axes	Coordinates	Wyckoff positions						
			1a	1 <i>b</i>	2c	4d	4e	4f	8g
I Maximal tra	anslatione	ngleiche subgroups							
[2] <i>P</i> 4 (75)			1a	1 <i>b</i>	2c	4d	4d	4d	$2 \times 4d$
[2] Pmm2 (25)			1 <i>a</i>	1 <i>d</i>	1b;1c	4i	2e;2g	2f;2h	$2 \times 4i$
[2] Cmm2 (35)	a-b,	$\frac{1}{2}(x-y), \frac{1}{2}(x+y), z$	2a	2 <i>b</i>	4 <i>c</i>	4d;4e	8 <i>f</i>	8 <i>f</i>	$2 \times 8f$
	a+b, c								L .
II Maximal kl	assengleid	che subgroups							Example
Enlarged u	nit cell, no	on-isomorphic							
[2] <i>I</i> 4 <i>cm</i> (108)	a - b , a + b , 2 c	$\frac{1}{2}(x-y), \frac{1}{2}(x+y), \frac{1}{2}z;$ +(0,0, $\frac{1}{2}$)	4 <i>a</i>	4 <i>b</i>	8 <i>c</i>	16 <i>d</i>	16 <i>d</i>	$2 \times 8c$	2×16d
[2] <i>I</i> 4 <i>cm</i> (108)	a - b , a + b , 2 c	$ \frac{\frac{1}{2}(x-y) + \frac{1}{2}, \frac{1}{2}(x+y), \frac{1}{2}z; \\ +(0,0,\frac{1}{2}) $	4 <i>b</i>	4 <i>a</i>	8 <i>c</i>	16d	$2 \times 8c$	16 <i>d</i>	2×16d
[2] I4mm (107)	a−b , a+b , 2 c	$\frac{1}{2}(x-y), \frac{1}{2}(x+y), \frac{1}{2}z;$ +(0,0, $\frac{1}{2}$)	$2 \times 2a$	4 <i>b</i>	8 <i>c</i>	$2 \times 8d$	$2 \times 8c$	16e	2×16e
[2] I4mm (107)	a−b , a+b , 2 c	$\frac{1}{2}(x-y)+\frac{1}{2},\frac{1}{2}(x+y),\frac{1}{2}z;$ +(0,0, $\frac{1}{2}$)	4 <i>b</i>	$2 \times 2a$	8 <i>c</i>	$2 \times 8d$	16e	$2 \times 8c$	2×16e
[2] $P4_2mc(105)$	a , b , 2 c	$x, y, \frac{1}{2}z; +(0, 0, \frac{1}{2})$	2a	2b	$2 \times 2c$	8 <i>f</i>	$2 \times 4d$	$2 \times 4e$	$2 \times 8f$
[2] P4cc (103)	a , b , 2 c	$x, y, \frac{1}{2}z; +(0, 0, \frac{1}{2})$	2a	2b	4 <i>c</i>	8 <i>d</i>	8 <i>d</i>	8 <i>d</i>	$2 \times 8d$
$[2] P4_2 cm(101)$	a , b , 2 c	$x, y, \frac{1}{2}z; +(0, 0, \frac{1}{2})$	2a	2b	4 <i>c</i>	$2 \times 4d$	8e	8e	$2 \times 8e$
[2] P4bm (100)	a−b,	$\frac{1}{2}(x-y), \frac{1}{2}(x+y), z;$	2 <i>a</i>	2 <i>b</i>	4c	8 <i>d</i>	8 <i>d</i>	$2 \times 4c$	$2 \times 8d$

Wyckoff Positions Splitting

WYCKSPLIT

Conventional Settings

Non conventional Settings

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:								
Enter supergroup or choose it				136	grou	Ρ		
Enter subgroup or choose it	SUD	group	65					
Please, define the transformation relating the group and the subgroup bases. (NOTE: If you don't know the transformation click here for possible workarounds)								
rotational matrix:	Transforma matrix (P,	tion P)	1 -1 0	1 1 0		0 0 1		
origin shift:				0	0	0		

Show group-subgroup data.

Two-level input:

Choice of the Wyckoff positions

Wyckoff Positions Splitting

136 (P42/mnm) > 65 (Cmmm)

	Gr	oup D	ata	a	S	ubgroup Data
					16r	(x, y, z)
					8q	(x, y, 1/2)
					8р	(x, y, 0)
	All p	oositio	ns		80	(x, 0, z)
	16k	(x, y,	z)		8n	(0, y, z)
	8j	(x, x,	z)		8m	(1/4 , 1/4 , z)
	8 i	(x, y,	0)		41	(0, 1/2 , z)
	8h	(0, 1/	2,	z)	4k	(0, 0, z)
	4g	(x, - x	, O)	4j	(0, y, 1/2)
	4f	(x, x,	0)		4i	(0, y, 0)
Ξ	4e	(0, 0,	z)		4h	(x, 0, 1/2)
	4d	(0 1/	2	1/4)	40	(x 0 0)

Wyckoff Positions Splitting

Bilbao Crystallographic Server

99 (P4mm) > 8 (Cm) [unique axis b]

WYCKSPLIT

Result from splitting

No	Wyckoff position(s)							
OFI	Group	Subgroup	More					
1	8g	4b 4b 4b 4b	Relations					
2	4f	4b 4b	Relations					
3	4e	4b 4b	Relations					
4	4d	4b 2a 2a	Relations					
5	2c	4b	Relations					
6	1b	2a	Relations					
7	1a	2a	Relations					

Two-level output:

Relations between coordinate triplets

	Repres	entative	Subgroup Wyckoff position		
No	o group basis subgroup basis		name[n]	representative	
1	(x, x, z)	(0, x, z)		(x ₁ , y ₁ , z ₁)	
2	(-x, -x, z)	(0, -x, z)	4ba	(x ₁ , -y ₁ , z ₁)	
3	(x+1, x, z)	(1/2, x+1/2, z)	401	(x ₁ +1/2, y ₁ +1/2, z ₁)	
4	(-x+1, -x, z)	(1/2, -x+1/2, z)		(x ₁ +1/2, -y ₁ +1/2, z ₁)	
5	(-x, x, z)	(-x, 0, z)	224	(x ₂ , 0, z ₂)	
6	(-x+1, x, z)	(-x+1/2, 1/2, z)	201	(x ₂ +1/2, 1/2, z ₂)	
7	(x, -x, z)	(x, 0, z)	220	(x3, 0, z3)	
8	(x+1, -x, z)	(x+1/2, 1/2, z)	242	(x ₃ +1/2, 1/2, z ₃)	

Splitting of Wyckoff position 4d

MAGNETIC SYMMETRY AND APPLICATIONS

bilbao crystallographic server

News:	Contact us	About us	Publications	How to cite the server				
 New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305. 			Space-group symmetry					
New program: BANDREP 04/2017: Band representations and Elemental Band representations of Double Space	Ŋ	Magn	etic Symmetry and Application	ons				
Groups. • New section: Double point and	Magnetic Symmetry and Applications							
space groups M	GENPOS	General Positio	ns of Magnetic Space Groups					
04/2017: General positions of D: M	WYCKPOS	Wyckoff Positio	ns of Magnetic Space Groups					
Space Groups New program:	NORMALIZER	Normalizers of	Magnetic Space Groups					
04/2017: Irreducible representation	ENTIFY MAGNETIC GROUP	Identification of	a Magnetic Space Group from a	a set of generators in an arbitrary setting				
the Double Point Groups M		Magnetic Point	Group Tables					
REPRESENTATIONS DSI M	AGNEXT	Systematic Abs	ences of Magnetic Space Group	DS				
• New program: DSITESY	AXMAGN	Maximal magne models	tic space groups for a given a p	ropagation vector and resulting magnetic structural				
representations of Double Space	AGMODELIZE	Magnetic struct	ure models for any given magne	etic symmetry				
Oroups New program: DCOMPRE k-	SUBGROUPSMAG	Magnetic subgr	oups consistent with some giver	n propagation vector(s) or a supercell				
04/2017: Compatibility relations between the irreducible represent M	AGNDATA 🕰	A collection of r	nagnetic structures with transpo	rtable cif-type files				
of Double Space Groups	VISUALIZE 🛆	3D Visualization	of magnetic structures with Jm	ol				
M		Symmetry-adap	ted form of crystal tensors in ma	agnetic phases				

Tutorials

Material used in workshops and schools

Archive

H. Stokes, B.J. Campbell *Magnetic Space-group Data* <u>http://stokes.byu.edu/magneticspacegroups.html</u>

D.B. Litvin *Magnetic Space Groups v. V3.02* http://www.bk.psu.edu/faculty/litvin/Download.html

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

bilbao crystallographic server

		Contact us	About us	Publications	How to cite the serve
				Space-group symmetry	
		Repres	entations and App	lications	
lographic	REPRES	Space Grou	ups Representations		
server	Representatio	ons PG Irreducible	representations of the c	rystallographic Point Groups	
FOUND Outside Col	Representatio	ons SG Irreducible	representations of the S	pace Groups	
ECM31-Oviedo Sa	Get_irreps	Irreps and o	order parameters in a sp	ace group-subgroup phase tra	ansition
Crystallography online: wor use and applications of the s of the Bilbao Crystallogra	Get_mirreps	Irreps and subgroup p	order parameters in a pa hase transition	aramagnetic space group- mag	gnetic
20.24 August 201	DIRPRO	Direct Prod	lucts of Space Group Irre	educible Representations	
20-21 August 20	CORREL	Correlation group-subg	s relations between the proup pair	irreducible representations of a	a
New Article in Nature	POINT	Point Group	p Tables		
07/2017: Bradlyn et al. "Topolo obemisted Nature (2017) 547	SITESYM	Site-symme	etry induced representat	ions of Space Groups	S
criemistry wature (2017). 547,	COMPATIBILI	TY Compatibili	ty relations between the	irreducible representations of	а
 New program: BANDRE 04/2017: Band representations 	RELATIONS	space grou	р		
Band representations of Doubl	MECHANICAI	REP. Decomposi	ition of the mechanical re	epresentation into irreps	
 New section: Double po groups 	MAGNETIC R	EP. 🛆 Decomposi	ition of the magnetic rep	resentation into irreps	
 New program: DGI 04/2017: General positik Space Groups New program: 	BANDREP	Band repre Space Grou	sentations and Element	ary Band representations of D	ouble

DEDDESENTATIONS DDC

Databases of Representations

Representations of space and point groups

wave-vector data

Brillouin zones representation domains parameter ranges POINT

character tables multiplication tables symmetrized products

Retrieval tools

Database on Representations of Point Groups

group-subgroup relations

Point Subgroups

Subgroup	Order	Index
6mm	12	1
6	6	2
3m	6	2
3	3	4
mm2	4	3
2	2	6
m	2	6
1	1	12

The Rotation Group D(L)

L	2L+1	А ₁	A ₂	В ₁	В ₂	E ₂	E ₁			
0	1	1	•	•	•	•	•			
1	3	1	•	•	•	•	1			
2	5	1	•	•	•	1	1			
3	7	1	•	1	1	1	1			
4	9	1	•	1	1	2	1			
5	11	1	•	1	1	2	2			
6	13	2	1	1	1	2	2			
7	15	2	1	1	1	2	3			
8	17	2	1	1	1	3	3			
9	19	2	1	2	2	3	3			
10	21	2	1	2	2	4	3			

Bilbao Crystallographic Server

Point Group Tables of C_{6v}(6mm)

[List of irreducible representations in matrix form]

character tables matrix representations basis functions

Brillouin Zone Database Crystallographic Approach

Reciprocal space groups Brillouin zones Representation domain Wave-vector symmetry

G

 G_0

Σ

 \overline{k}_x

 $_{2}\Lambda_{1}$

 λ_0

 Q_{0}

Symmorphic space groups IT unit cells Asymmetric unit Wyckoff positions

The k-vector Types of Group 22 [F222]

k-vector description				ckoff	Position	ITA description
CI	DML*	Conventional ITA		т	· ^	Coordinates
Label	Primitive	Conventional-ITA			~	
GM	0,0,0	0,0,0	а	2	222	0,0,0
Т	1,1/2,1/2	0,1,1	b	2	222	0,1/2,1/2
T~T ₂				2	222	1/2,0,0
Z	1/2,1/2,0	0,0,1	с	2	222	0,0,1/2
Y	1/2,0,1/2	0,1,0	d	2	222	0,1/2,0
Y~Y ₂			d	2	222	1/2,0,1/2
SM	0,u,u ex	2u,0,0	e	4	2	x,0,0 : 0 < x <= sm ₀
U	1,1/2+u,1/2+u ex	2u,1,1	е	4	2	x,1/2,1/2 : 0 < x < u ₀
U~SM ₁ =[SM ₀ T ₂]		е	4	2	x,0,0 : 1/2-u ₀ =sm ₀ < x < 1/2	
SM+SM ₁ =[GM T ₂]				4	2	x,0,0 : 0 < x < 1/2
A	1/2,1/2+u,u ex	2u,0,1	f	4	2	x,0,1/2 : 0 < x <= a ₀
С	1/2,u,1/2+u ex	2u,1,0	f	4	2	x,1/2,0 : 0 < x < c ₀

 $c^{-2} > a^{-2} + b^{-2}$

 H_0

The k-vector Types of Group 22 [F222]

Brillouin zone

(Diagram for arithmetic crystal class 222F)

ECM31-Oviedo Satellite

Crystallography online: workshop on the use and applications of the structural tools of the Bilbao Crystallographic Server

+ 2040

SUBPERIODIC GROUPS: LAYER, ROD AND FRIEZE GROUPS

bilbao crystallographic server

	Contact us	About us	Publications	How to cite the serve
			Space-group symmetry	
		Ma	agnetic Symmetry and Applicat	ions
2			· · · · · · · · · · · · · · · · · · ·	
		Group	-Subgroup Relations of Space	Groups
		I	Representations and Applicatio	ns
			Solid State Theory Application	IS
Su	Subperiodic Groups: Layer, Rod and Frieze Groups			

N	Subperiodic Groups: Layer, Rod and Frieze Groups			
	GENPOS	Generators and General Positions of Subperiodic Groups		
	WPOS	Wyckoff Positions of Subperiodic Groups		
	MAXSUB	Maximal Subgroups of Subperiodic Groups		
	KVEC 🛆	The k-vector types and Brillouin zones of Layers Groups		
	SECTIONS 🛦	Identification of Layer Symmetry of Periodic Sections		
	04/2017: General positions of Double Space Groups	Point-group symmetry		

 New program: REPRESENTATIONS DPG