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VOLUME A: SPACE-GROUP SYMMETRY

•headline with the relevant group symbols;
•diagrams of the symmetry elements and of the 
  general position;
•specification of the origin and the asymmetric 
  unit;
•list of symmetry operations;
•generators;
•general and special positions with multiplicities, 
  site symmetries, coordinates and reflection 
  conditions;
•symmetries of special projections;

Extensive tabulations and illustrations
 of the 17 plane groups and 

of the 230 space groups
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Example GENPOS: Space group P21/c (14)

short-hand notation
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presentation
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Wyckoff positions 
Site-symmetry groups

Problem: WYCKPOS
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2 x,1/4,1/4

2 1/2,y,1/4

Example WYCKPOS:  Wyckoff Positions Ccce (68)



Geometric 
Interpretation of (W,w)
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1. Characterize geometrically the matrix-column pairs 
listed under General position of the space group 
P4mm in ITA. 

Consider the diagram of the symmetry elements of 
P4mm. Try to determine the matrix-column pairs of 
the symmetry operations whose symmetry 
elements are indicated on the unit-cell diagram. 

2.

Problem 1.1

3. Compare your results with the results of the program 
SYMMETRY OPERATIONS 

EXERCISES



Problem 1.2EXERCISES

Consider the special Wyckoff positions of the 
the space group P4mm. 

Determine the site-symmetry groups of  Wyckoff 
positions 1a and 1b. Compare the results with the 
listed ITA data

The coordinate triplets (x,1/2,z) and (1/2,x,z), 
belong to Wyckoff position 4f.  Compare their 
site-symmetry groups.

Compare your results with the results of the 
program WYCKPOS.



Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM

(a,b, c), origin O: point X(x, y, z)

(a′
,b′

, c′), origin O’: point X(x′
, y

′
, z

′)

3-dimensional space

(P,p)

Co-ordinate transformations in crystallography

5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(i) linear part: change of orientation or length:

(ii) origin shift by a shift vector p(p1,p2,p3): 
the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p

Transformation matrix-column pair (P,p)



atomic coordinates X(x,y,z):

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

x
y
z

p1
p2
p3( )

(X’)=(P,p)-1(X)
           =(P-1, -P-1p)(X)

x´

y
z

-1

Co-ordinate transformations in crystallography

Transformation of space-group operations (W,w) by (P,p):

(W’,w’)=(P,p)-1(W,w)(P,p)

unit cell parameters: G:    G´=Pt G P

Structure-description transformation by (P,p)

metric 
tensor



abc cb̄a Monoclinic axis b
Transf. abc bac̄ Monoclinic axis c

abc ācb Monoclinic axis a
C12/c1 A12/a1 A112/a B112/b B2/b11 C2/c11 Cell type 1

HM C2/c A12/n1 C12/n1 B112/n A112/n C2/n11 B2/n11 Cell type 2
I 12/a1 I 12/c1 I 112/b I 112/a I 2/c11 I 2/b11 Cell type 3

No. HM abc bac̄ cab c̄ba bca ac̄b

33 Pna21 Pna21 Pbn21 P21nb P21cn Pc21n Pn21a

Monoclinic descriptions

Orthorhombic descriptions

530 ITA settings of orthorhombic and 
monoclinic groups

Problem: ITA SETTINGS



ITA-settings
symmetry data

Transformation 
of the basis

Generators
General positions

GENPOS

space group

Bilbao Crystallographic Server

Co-ordinate transformations 
in crystallography

Problem:



Example GENPOS: 

default setting C12/c1

final setting A112/a

(W,w)A112/a=
(P,p)-1(W,w)C12/c1(P,p)



Example GENPOS: ITA settings of C2/c(15)

default setting A112/a setting



Problem: WYCKPOS

Transformation 
of the basis

ITA 
settings

space group

Coordinate transformations
Wyckoff positions

Bilbao Crystallographic Server



Space-group identification by a set 
of generators in arbitrary basis

Problem: IDENTIFY 
GROUP

Bilbao Crystallographic Server



Problem 1.3EXERCISES

Consider the space group P21/c (No. 14). Show that the 
relation between the General and Special position data of 
P1121/a (setting unique axis c ) can be obtained from the data 
P121/c1(setting unique axis b ) applying the transformation 
(a’,b’,c’)c = (a,b,c)bP, with P= c,a,b.

Use the retrieval tools GENPOS (generators and general 
positions) and  WYCKPOS (Wyckoff positions) for 
accessing the space-group data. Get the data on general 
and special positions in different settings either by 
specifying transformation matrices to new bases, or by 
selecting one of the 530 settings of the monoclinic and 
orthorhombic groups listed in ITA.



Problem 1.4EXERCISES

Use the retrieval tools GENPOS or Generators and General 
positions,  WYCKPOS (or Wyckoff positions) for accessing 
the space-group data on the Bilbao Crystallographic Server or 
Symmetry Database server. Get the data on general and 
special positions in different settings either by specifying 
transformation matrices to new bases, or by selecting one 
of the 530 settings of the monoclinic and orthorhombic 
groups listed in ITA.

Consider the General position data of the space group Im-3m 
(No. 229). Using the option Non-conventional setting obtain the 
matrix-column pairs of the symmetry operations with 
respect to a primitive basis, applying the transformation 
(a’,b’,c’) = 1/2(-a+b+c,a-b+c,a+b-c)



Problem 1.5EXERCISES

Calculate the coefficients of the metric tensor for the body-centred 
cubic lattice: (i) for the conventional basis (aP,bP,cP);

(ii) for the primitive basis: 
aI=1/2(-aP+bP+cP), bI=1/2(aP-bP+cP), cI=1/2(aP+bP-cP) 

A body-centred cubic lattice (cI) has as its 
conventional basis the conventional basis 
(aP,bP,cP) of a primitive cubic lattice, but the 
lattice also contains the centring vector 
1/2aP+1/2bP+1/2cP which points to the 
centre of the conventional cell. 

(iii) determine the lattice parameters of the primitive 
cell if aP=4 Å

  G´=Pt G Pmetric tensor 
transformationHint



Problem 1.6EXERCISES

Calculate the coefficients of the metric tensor for the face-centred 
cubic lattice:

(i) for the conventional basis (aP,bP,cP);
(ii) for the primitive basis: 

aF=1/2(bP+cP), bF=1/2(aP+cP), cF=1/2(aP+bP) 

A face-centred cubic lattice (cF) has as its 
conventional basis the conventional basis 
(aP,bP,cP) of a primitive cubic lattice, but the 
lattice also contains the centring vectors 
1/2bP+1/2cP,  1/2aP+1/2cP, 1/2aP+1/2bP, 
which point to the centres of the faces of 
the conventional cell. 

(iii) determine the lattice parameters of the primitive 
cell if aP=4 Å



GROUP-SUBGROUP RELATIONS 
OF SPACE GROUPS



Maximal subgroups of space groups 

International Tables for Crystallography,  Vol. A1

eds. H. Wondratschek, U. Mueller



Bilbao Crystallographic Server

SUBGROUPS OF SPACE 
GROUPS SUBGROUPGRAPH

Problem:

subgroup index

99
4

[i]=[iP].[iL]



General graph for  
P41212 > P21 

 SUBGROUPGRAPH

Graph for P41212 > P21  
index [i]=4

P41212 > P21

maximal  
subgroup graph

three P21 subgroups in 
two conjugacy classes



PROBLEM: Domain-structure analysis

G            H[i]

number of domain states

twins and antiphase domains

symmetry groups of the domain 
states; multiplicity and degeneracy

twinning operation

G

M

H

iP

iL

Hermann, 1929: 

iP=PG/PH

iL=ZH,p/ZG,p=VH,p/VG,p

twins

antiphase

subgroup index
[i]=[iP].[iL]



Group-subgroup pair P4mm>Pmm2, [i]=2
 a’=a, b’=b, c’=c

P4mm Pmm2

2c 2mm. 1/2 0 z  
01/2 z

1/2 0 z   1c mm2  
0 1/2 z’  1b mm2  

SPLITTING OF 
WYCKOFF POSITIONS

WYCKSPLIT
Problem:

Bilbao Crystallographic Server



Data on Relations between Wyckoff 
Positions in International Tables for 

Crystallography,  Vol. A1 

Example



Bilbao Crystallographic Server

group
subgroup

Transformation 
matrix (P,p)

Two-level input: 
Choice of the 

Wyckoff positions

WYCKSPLIT



Bilbao Crystallographic Server

Two-level output: 

Relations between 
coordinate triplets

WYCKSPLIT



MAGNETIC SYMMETRY AND APPLICATIONS

D.B. Litvin Magnetic Space Groups v. V3.02 
http://www.bk.psu.edu/faculty/litvin/Download.html

H. Stokes, B.J. Campbell Magnetic Space-group Data
http://stokes.byu.edu/magneticspacegroups.html



REPRESENTATIONS OF 
CRYSTALLOGRAPHIC GROUPS



Databases of Representations

character tables
multiplication tables

symmetrized products

wave-vector data

Brillouin zones
representation domains

parameter ranges

Representations of space and point groups

POINT 

Retrieval tools

Bilbao Crystallographic Server



Database on 
Representations 
of Point Groups 

group-subgroup
relations

character tables
matrix representations
basis functions

Bilbao Crystallographic Server



c-2 > a-2 + b-2

Brillouin Zone Database 
Crystallographic Approach 

Brillouin zones
Representation domain
Wave-vector symmetry

Reciprocal space groups Symmorphic space groups
IT unit cells
Asymmetric unit
Wyckoff positions



c-2 < a-2 + b-2 c-2 > a-2 + b-2

Brillouin zone Database
Bilbao Crystallographic Server



SUBPERIODIC GROUPS: LAYER, 
ROD AND FRIEZE GROUPS


