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CompComm Chairman’s Message 
 
This newsletter has again managed to bring together a large number of very relevant and interesting 
computing related articles. The focus this time is on the computational aspects of incommensurate and 
related non-standard structures. 
 
David Watkin's article teaches us how to translate 'Cambridge speak' (SHELXL) into 'Oxford speak' 
(Crystals). Ralf Grosse-Kunstleve informs us about the latest extensions to the Computational 
Crystallography Toolbox.  
 
We expect to close the term of the current IUCr Computing Commission with a very interesting 'classical' 
computing school addressing state-of-the-art (hands-on) software development and of particular relevance 
for young scientists interested in crystallographic computing. Details can be found below.  
 

Ton Spek, Chairman or the IUCr Computing Commission, (a.l.spek@chem.uu.nl ) 
 

 

From the Editors of Newsletter No. 5 
 
Since more than three decades, crystallographers have been faced with new challenging crystalline 
material with structures incompatible with the classical view of crystals with three dimensional 
periodicity. These new materials includes incommensurately modulated and composite structures, 
quasicrystals with icosahedral or dodecagonal symmetry to cite only the most representative examples of 
aperiodic structures as they are presently called. In most cases, these new structures are best described by 
embedding them in space of up to six dimensions. This approach is justified by the fact that periodicity 
can be recovered although in higher dimension.  
 
The rapid evolution of this field is not only due to the innovative theoretical approach of the so called 
superspace symmetry but also to the enormous worldwide efforts on software development. This issue 
includes a range of articles on techniques that can explain diffraction data where the most appropriate 
model may not fit into an ordered convenient commensurate cell: Incommensurate Structures, 
Quasicrystals and Pair Distribution Functions. Besides encouraging exchange of ideas within different 
communities, we hope it might encourage crystallographers, who may prefer to deal only with ordered 
commensurate cells, to take these style of problems out of the "too unusual draw" and onto their 
diffractometers and transmission electron microscopes.  
 

Simon Billinge, Gervais Chapuis, Lachlan Cranswick and Ron Lifshitz  

(billinge@pa.msu.edu ; gervais.chapuis@epfl.ch ; lachlan.cranswick@nrc.gc.ca ; ronlif@tau.ac.il ) 

mailto:a.l.spek@chem.uu.nl
mailto:billinge@pa.msu.edu
mailto:gervais.chapuis@epfl.ch
mailto:lachlan.cranswick@nrc.gc.ca
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 Now Accepting Preliminary Registrations via the school website 

 
 
 
 

Certosa di Pontignano, 
University of Siena, Italy 
18th - 23rd August 2005 

(just prior to the Florence IUCr 2005 congress) 
 

http://www.iucr.org/iucr-top/comm/ccom/siena2005/
 
School Organisers: Prof Anthony Spek 
(Utrecht), Prof. Marcello Mellini (Siena), 
Prof. Alessandro Gualtieri (Modena), Dr 
Harry Powell (Cambridge), Lachlan 
Cranswick (NRC Chalk River) 
Consultants: Dr David Watkin 
(Oxford), Dr Simon Parsons (Edinburgh) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each day of the school is focussed on a different theme: 
  “principles & methods” 
  “joining things together” 
  “crystallographic implementations” 
  “selected topics in crystallography” 
  “special methods” 
 

 
 
 
 
 
 
 
 
 
 

The City 
Siena is described as one of the 
finest examples of a Medieval 
city.  It is in the Italian province 
of Tuscany and has direct bus 
connection to Florence (1 hour) 
and Rome (3 hours).  
 

The Venue
The Certosa di Pontignano has its 
origins as a medieval 14th century 
monastary.  It is now run by the 
University of Siena. Attractively 
placed on the top of a hill, it is 
surrounded by vineyards; with a 
direct view to the town of Siena, 
and a famous Chianti winery. 
 
 
 
 
 
 
 
 
 
 

School Aims 
To have the crystallographic 
computing experts of the present, 
help train and inspire a generation 
of experts for the future. This will 
be achieved by the use of an 
excellent (and full) program of 
lectures, workshops and projects. 
 

 

http://www.iucr2005.it/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/organ.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/venue.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html
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Procedures for the refinement of incommensurate structures using XND. 
Coding issues for the refinement of incommensurate structures. 

 
Jean-François Bérar(1) and Gianguido Baldinozzi(2)  
1. Laboratoire de Cristallographie, CNRS,  BP 166, F 38042 Grenoble Cedex, France. 
berar@grenoble.cnrs.fr ; http://www-cristallo.grenoble.cnrs.fr/Le_Personnel/CVs/BERAR.html and  
2. SPMS, CNRS ECP, F 92995 Chatenay-Malabry Cedex, France.  
gianguido.baldinozzi@ecp.fr  
 
Introduction 
 
The Rietveld program xnd [1] was first written in the late 80's to take full profit of data collected with 
high resolution laboratory diffractometers. Xnd handles complex diffraction patterns including : data sets 
contain multiple wavelength contributions, multiple phases, handled defining a proper structure or as a 
simple set of parasitic peaks, patterns recorded with irregular angular steps, joint refinements of multiple 
data sets (x-ray, neutron, single crystal), constrained refinements of multiple data sets of a given sample 
in a changing environment (field, temperature, pressure, ...) ; the program also handles a variety of 
experimental setups and their proper lineshapes and absorption corrections.  
 
The proper use of xnd requires a good knowledge of diffraction experiments and the program is not 
designed for a black box usage. For instance, the way the profile lineshape is defined finds its roots in this 
more complex approach to diffraction: in fact, each wavelength and each phase in a high resolution 
diffraction pattern have a priori different profile functions and a specific behaviour. The overall profile 
functions are then described by the convolution of these individual contributions coming from the 
experimental geometry and from the intrinsic sample broadening. They are efficiently expressed as Voigt 
functions, allowing an accurate lineshape modelling during a raisonable calculation time [2, 3]. Within 
this approximation, the lineshape contributions can be described by Lorentzian and Gaussian function 
widths with a proper angular dependence that can be straightforwardly related to a particular physical or 
instrumental origin. Following the same leit motiv, preferred orientation effects were also taken into 
account using a polynomial expansion on the spherical harmonic basis. These functions were also used to 
model the sample anisotropic broadening due to finite crystallite size or microstrain effects. 
 
The proper definition of the lineshape is the necessary base for handling the efficient refinement of the 
diffraction pattern of a modulated phase and, in the following discussion, we would like to stress the main  
features of such a refinement with xnd. In the case of composite structures the key points developed in the 
discussion are similar but several input parameters have to be  modified. 
 
Incommensurately modulated phases. 
 
Most of the structural studies of incommensurately modulated phases are developed using single crystal 
diffraction data. Nevertheless, many compounds are not easily synthesized as single crystals or the 
interesting phases present complex polydomain structures. Therefore, the study of the structure by single 
crystal techniques becomes very complex, or even not possible. The 4D formalism for mono-
incommensurately modulated phases (superspace group symmetry, intensity and positioning of satellite 
reflections) was implemented in xnd [4]. In xnd the position ui

µ for the atom µ in the modulated structure 
along the coordinate i is given by : 
 

uµ
i(xµ

4) = Σ [ S 
µ

n,I sin(2π n x 
µ

4) + Cµ
n,i cos(2π n xµ

4)] 
 
where xµ

4 is the variable describing the average position of the atom µ in the internal subspace defined by 
the modulation vector q and orthogonal to the euclidean space (xµ

4 = q.r µ, r µ being the average position 
of this atom). 

mailto:berar@grenoble.cnrs.fr
http://www-cristallo.grenoble.cnrs.fr/Le_Personnel/CVs/BERAR.html
mailto:gianguido.baldinozzi@ecp.fr


 
Another advantage is represented by the possibility to refine simultaneously x-ray and neutron diffraction 
data, taking advantage of the different atomic contrast and resolution available from these probes. Even in 
the early stages of the refinement, it is generally easier to decode the four dimensional Fourier maps 
obtained from x-ray diffraction as they are dominated by the heavier scatterers and there are less spurious 
maxima because of the atomic form factor shape. On the other hand, neutron Fourier maps give more 
details on the atomic positions and are very useful in the later stages of the refinements.  
 
This complementary use of the different probes is very powerful for the analysis of the structures of oxide 
compounds. In particular, the refinement of the incommensurately modulated perovskites-type structures 
is a challenging problem as (often) the onset of the modulated phase takes place at a ferroelastic phase 
transition. Moreover, light and heavy scatterers are generally present in these structures (ferroelectrics, 
superconductors ... ).  
 
The refinement of incommensurate phases can be considered a powerful tool for localizing the structural 
disorder affecting a compound [5, 6]. Therefore, it is possible to get a better insight of complex and 
defective phases. This is particularly important since the small differences between the ideal and real 
structure of crystals are often responsible for the onset of interesting physical properties. This is for 
instance the case of oxygen stoichiometry in superconductors, of correlations between cation 
displacements in ferroelectrics, ... 
 

 
 
Figure 1: Example of refinement: x-ray diffraction pattern of the modulated Ba0.85Ca2.15In6O12 phase [5]. 
 
In incommensurate structure refinements it is necessary to distinguish the different satellite orders so it is 
useful to define different RI (RF) agreement factors for each set of reflections (Fig. 1). In general, satellite 
peaks have low peak to background ratios; therefore, the effect of the background noise on the estimated 
integrated intensity of the satellites is increased and the RI factor will be generally larger for these sets of 
reflections, even if the structural model is good. A second problem consists in the frequent overlapping of 
the satellite peaks with intense average structure main peaks; in this case, a small error on the main peaks 
and in the description of their profile will strongly affect the estimation of the experimental intensities of 
the satellites. The importance of a very good adequation between experimental and calculated lineshapes 
must be emphasized and, in this domain, xnd offers a large choice of functions and combinations of 
functions, with angle dependent parameters to optimize the refinement. 
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Recommended procedure. 
 
The refinement of a modulated phase is generally a complex task because it generally involves the 
problem of a least-square matrix where the larger number of structural parameters of the refinement have 
an uneven weight. A robust  approach is therefore recommended. During the progression of the 
refinement, the actual importance of the different parameters must be examined and it is important to 
study their eventual correlations. Once the refinement is stable, the complexity of the structural model can 
be gradually increased,  reducing the risks of large instabilities in the refinement. The main drawback of 
this approach is that it may drive the refinement towards a local minimum but, often, the modulation 
waves of lowest order are the leading terms to explain the intensities of the satellite reflections. 
Nevertheles, it is a good policy to check for the existence of local minima and to assess the likehood of 
the model,  like in any complex refinement. In the following, a simple example of modulated structure is 
analysed. It concerns the refinement of the neutron diffraction pattern of the incommensurate phase of the 
ordered perovskite Pb2CoWO6 [7]; the code shown below correspond to xnd release 1.27. 
 
 

• The first step consists in refining all what can be attempted without going into the 
incommensurate phase : background, parasitic phases, main structure and line profile. At this step 
the input file does not differ from a standard one, we now have  to describe the incommensurate 
phase. The analysis of the anisotropic thermal displacement parameters can provide a useful hint 
for the initial amplitudes of the modulation waves. 

 
• Incommensurate vector and symmetry :  this essential information is often obtained by 

transmission electronic microscopy, from the analysis of the microdiffraction pattern of a single 
domain region of the sample. In this phase of Pb2CoWO6 the satellite spots are observed near the 
main spots forbidden by the I centring and they can be indexed by the modulation vector q = α a* 
+ γ c*. The analysis of the systematic extinctions leads to the planar monoclinic superspace group 
I2/m(α0γ)0s. It is generally possible to refine precisely the components of the modulation vector. 
Therefore, a rough estimate of these components by electron diffraction is generally a very good 
starting point. 

 
1. Symmetry data : in xnd the 3+1D space groups are introduced using the basic 3D space group 

and the effect of the symmetry operation on the modulation vector as another space group. Then 
we find in the header of the structure file two space group blocks, one for the 3D part (the usual 
space group) and another one for the complementary part being identified by “*”. 
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• Declaration of the incomensurate phase : this is done by specifiying the new nature code which 

requires  “MODUL” and “VECTOR” keys; it is also necessary to specify the “SETS” of satellites 
that are needed for accounting of the observed satellites in the “CRYSTAL” block. The additions 
to the average structure block are highlighted in the following : 

 

 
 

• Introduction of the satellite reflections sets :  they are used to generate only the necessary 
satellite orders.  This description in separe sets allows, when necessary, to define different line 
profile functions for each of them. They are followed by the vector definition which can be fitted. 

 

 
 

• Atoms and Fourier terms : the modulated atoms are identifed by “CASE”. The following input 
generate the output reproduced after in which “0_S” means a sin component associated with 1st 
order, “1_C” being a cos componenent of 2nd order. 

 

 
 

8 



9 

PB LEAD 8:( B_ISO  MODULATED=2 ) COORD : 5 parameters : expansion order 1 (size 1) 
        X     0.252946   1 ( 40  1.000000)        Y            0   0 (             ) 
        Z     0.498337   1 ( 41  1.000000)       Oc          0.5   0 (             ) 
     Biso      1.86584   1 ( 42  1.000000) 
 
 PB generates 4(8/2) sites corresponding to 4.00(0.50*8) atoms in the cell 
 The chemical occupancy is then 1.000 
 PB : 16 parameters : expansion order 1 (size 1) 
  0_  S_x            0   0 (             )  0_  C_x            0   0 (             ) 
  0_  S_y            0  -1 (  0  1.000000)  0_  C_y   -0.0389692   1 ( 43  1.000000) 
  0_  S_z            0   0 (             )  0_  C_z            0   0 (             ) 
  0_ S_Oc            0   0 (             )  0_ C_Oc            0   0 (             ) 
  1_  S_x   0.00337146   1 ( 44  1.000000)  1_  C_x  -0.00132127   1 ( 45  1.000000) 
  1_  S_y            0   0 (             )  1_  C_y            0   0 (             ) 
  1_  S_z            0  -1 (  0  1.000000)  1_  C_z  -0.00494137   1 ( 46  1.000000) 
  1_ S_Oc            0   0 (             )  1_ C_Oc            0   0 (             ) 
 
In a first step, to speed up the calculation, it may be useful to introduce only the first order satellites; 
often, the n+1 order wave still gives a valuable contribution to the intensities of n-order satellites. 
Therefore, it is sometimes necessary to introduce second order atomic displacements even if the second 
order  satellite reflections are very weak because the refinement of the intensities of first order satellites 
are sensibly improved. Nevertheless, it is very difficult to determine the phase of the modulated 
displacements of a given wave order when the satellites of this same order are very weak or missing. 
 
Conclusion. 
 
The reliable refinement of modulated structures can not be considered a straightforward task. During the 
different stages of the refinement, it is generally useful to calculate four dimensional Fourier maps. They 
can be obtained for instance with the program JANA [8]; the integrated intensities needed as input file 
can be easily extracted from the (hkl) file generated by xnd, using a very simple awk script. The input in 
JANA is also very useful to draw  the interatomic distances between atoms in the different sections of the 
modulated crystal. 
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A Program Package for Aperiodic Tilings 
 

Uwe Grimm 
Applied Mathematics Department, The Open University, Walton Hall, Milton Keynes MK7 6AA, United 
Kingdom; E-mail: u.g.grimm@open.ac.uk ; WWW: http://mcs.open.ac.uk/ugg2/   
 
We describe a package of Mathematica programs, originally devised for summer schools on aperiodic 
order and quasicrystals, which give an introduction to the construction of aperiodic tilings. The 
programs explore several approaches to generate aperiodic tilings, concentrating on one-dimensional 
and two-dimensional examples which can easily be visualised. 
 
I Introduction 
 
Quasicrystals, first discovered by Shechtman in 1982 (see Shechtman et al. 1984), are aperiodically 
ordered solids which typically display crystallographically forbidden symmetries; see e.g. Stadnik 1999, 
Suck et al. 2002, Trebin 2003 for recent collections of review articles. Their structure is usually modelled 
in terms of an aperiodic tiling of space, which plays the role of the lattice for a conventional crystals, 
compare e.g. Janot 1994, Senechal 1995. Apart from their use as toy models for quasicrystals, aperiodic 
tilings also are aesthetically appealing, and feature in some computer generated artworks. The paradigms 
of planar quasiperiodic tilings are the celebrated Penrose tiling (see Penrose 1974) and the octagonal 
Ammann-Beenker tiling (see Grünbaum et al. 1987, Ammann et al. 1992), which predate the 
experimental discovery of quasicrystals.  A patch of the octagonal tiling, which consists of squares and 
rhombi, is shown in Figure 1. The infinite tiling is repetitive, in the sense that any patch occurs within the 
tiling over and over again, but non-periodic, which means that there is no translation that maps the tiling 
onto itself. This structure is pure point diffractive, i.e., the diffraction pattern of, say, point scatterers 
placed on the vertices of the tiling is pure point, and it furthermore has perfect eightfold rotational 
symmetry; see e.g. Baake 2002 for more details on the mathematical background. 
 
The Ammann-Beenker tiling can be constructed from the two prototiles, the square and the rhombus, 
taking into account the arrow decorations of edges and corners as shown in Figure 1. Imposing the 
restrictions, known as matching rules, that markings have to agree on edges and that corner markings 
have to form complete arrows (or “houses”) at the vertices, enforces any infinite tiling obeying these rules 
to be aperiodic (sometimes the marked tiles themselves are referred to as aperiodic because all possible 
tilings of space with these tiles are necessarily non-periodic). 
 

 

Figure 1: A patch of the octagonal tiling of squares and rhombi, with matching rules marked by the black 
arrows along the edges and the large blue arrows (or “houses”) at the vertices.  
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In this article, we describe a set of computer programs which provide an introductory account of the 
construction of aperiodic tilings, detailing several different approaches such as inflation, or projection 
from higher-dimensional periodic lattices. The programs, most of which were originally produced for a 
summer school on quasicrystals held in Chemnitz in 1997, have also been used at a summer school on 
Aperiodic Order in Edmonton in 2000, a further summer school on Computational Statistical Physics in 
Chemnitz in 2000, and, recently, at the Royal Society Summer Science Exhibition 2004 in London, which 
was mainly aimed at a general public audience.  
 
The programs are written in the algebraic computer package Mathematica (a registered trademark of 
Wolfram Research) which provides all basic operations that are needed as well as advanced graphics tools 
to visualise the results. While this makes it relatively easy to play with the programs, it unfortunately also 
means that anyone who wants to use the package will need access to a computer that has Mathematica 
installed on it. The Aperiodic Tilings program package, which can be downloaded at 
http://mcs.open.ac.uk/ugg2/AperiodicTilings/, also contains an introduction to the use of Mathematica, so 
it is not necessary to be familiar with this algebraic computer package to explore the programs, although 
it will make it easier. Time permitting the author intends to add additional programs in the future. 
 
Apart from the introductory notebook, the programs consist of two parts - the actual program code (file 
names with extensions "m") in form of Mathematica packages, compare Maeder 1990, and the interactive 
front-end files (file names with extensions "nb") in form of Mathematica notebooks. Notebook files may 
be slightly different depending on the actual version of Mathematica used; although there is usually no 
problem with compatibility, different version are supplied in order to avoid the necessity of conversion. 
To use a program, open a notebook in Mathematica, and load the corresponding package file (which 
needs to be copied to the same location). 
 
II Construction of Aperiodic Tilings 
 
There are several standard approaches to construct aperiodic tilings; not all tilings will allow all of these – 
although the most popular tilings are those with all “magic” properties and hence can be constructed in a 
number of different ways. 
 
We already mentioned the matching rule approach above. The matching rules for the Ammann-Beenker 
tiling are given by the arrow decorations of edges and corners, such that the decorated tiles can form only 
aperiodic tilings that are legitimate. One might expect that this approach holds an intuitive clue for the 
formation of quasicrystals in Nature, in that matching rules might be thought to mimic interactions 
between atoms or atomic clusters in quasicrystals; however, this is not so simple because matching rules 
do not constitute growth rules. The program PenrosePuzzle may show you why that is so. It allows 
you to create a part of a Penrose tiling by assembling pieces like in a jigsaw puzzle, making sure that you 
obey the matching rules as you go along. If you are not already too familiar with this tiling, it is likely 
that, sooner or later, you will run into a situation where you encounter the problem that no further tile fits 
at a certain position, which means that you must have made a "mistake" somewhere along the way, and 
the patch you constructed is not actually a part of an infinite Penrose tiling, which means you have to 
retreat and try again. Assembling a tiling by trial and error in this way is cumbersome and very slow. The 
problem is that there is no local way to tell you which tile you have to add at a given place (provided 
there is a choice), and since atoms or atomic clusters that  assemble to form a solid do not know either, 
matching rules do not provide a proper explanation of quasicrystal growth. 
 
Another method that is easier to implement is based on inflation. Essentially, inflation/deflation 
symmetry of a tiling gives you a recipe how to dissect the basic tiles into a number of smaller copies of 
themselves, such that repeated application of dissection with an appropriate length rescaling produces an 
aperiodic tiling. For instance, for the Ammann-Beenker tiling an inflation rule is known, and the program 
OctagonalTiling of the package contains an implementation of it. Other examples constructed via this 

http://mcs.open.ac.uk/ugg2/AperiodicTilings
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approach are, besides one-dimensional chains covered in the program FibonacciChain, the so-called 
chair and sphinx tilings, in the corresponding programs ChairTiling and SphinxTiling.  
 
Inflation method for the pinwheel tiling 
 
As an example, we here consider the so-called PinwheelTiling, see Radin 1999. The inflation rule is 
implemented in the program PinwheelTiling. As the chair and sphinx tilings, it only consists of a single 
tile, with side length ratios 5:2:1 , which however appears in infinitely many orientations. The inflation 
rule is shown in Figure 2; it dissects the original right-angled triangle into five congruent copies, with side 
lengths scaled by a factor 51 with respect to the original triangle. 
 

 
Figure 2: Inflation rule for the pinwheel tiling. 
 
A repeated inflation of an initial patch consisting of two triangles produces the patches shown in Figure 3.  
 

 

Figure 3: Patched of the pinwheel tiling obtained by repeated inflation. 

 
The way this is implemented in Mathematica is as follows. The tiling consists of a list of tiles, which in 
turn are lists of their three vertices. The main part is the inflation of a single tile, which is done by 
defining a function TileInflation which, when acting on a list representing a single tile, produces a list 
containing the five dissected tiles, 
 
TileInflation[{tilevertex1_,tilevertex2_,tilevertex3_}] := 
  ScaleFactor*{{#1,#5,#4}, 
                      {#4,#7,#2}, 
                      {#4,#7,#6}, 
                      {#6,#5,#4}, 
                      {#2,#6,#3}}&[tilevertex1, 
                                             tilevertex2, 
                                             tilevertex3, 
                                             tilevertex1/2+tilevertex2/2, 
                                             3*tilevertex1/5+2*tilevertex3/5, 
                                        tilevertex1/5+4*tilevertex3/5, 
                                        tilevertex1/10+tilevertex2/2+2*tilevertex3/5] 



 
which are then rescaled by multiplying by Scalefactor which is set to 5 . The seven quantities in the 
square brackets are the seven vertices that form the five new triangles (compare Figure 2), including the 
three vertices of the triangle we started from; and the five lists with elements #1, #2, etc. pick out the 
vertices of the respective triangles. Note that in order to work correctly the vertices of the original triangle 
have to be specified in the correct order. The function TileInflation is then applied to a list of tiles by 
“mapping” it repeatedly over the elements of the list, which can be done as follows, 
 
Inflation[tiling_List, 
             num_Integer:1] /; num>=0 := 
  Nest[Flatten[Map[TileInflation,#],1]&,tiling,num] 
 
Here, the second argument num is constrained to be an integer, and it is checked that it is non-negative, 
before the function TileInflation is mapped over the list tiling using the Nest command. The additional 
command Flatten is included to prevent the proliferation of levels of lists within lists, so the resulting 
tiling is again a list of its tiles. 
 
The remaining parts of the program PinwheelTiling provide a function to plot the resulting tiling. This 
includes a function PlotColorTiling which colors all tiles according to their orientation, as shown in 
Figure 4. 
 

 

Figure 4: Pinwheel tiling with tiles colored according to their orientations. 
 

Projection and grid methods 
 
The other commonly used approach to construct aperiodic tilings is based on projection of a certain part 
of a higher-dimensional periodic lattice. The structures derived in this way are known as cut-and-project 
sets or model sets; see Baake 2002 for details. Again the program FibonacciChain shows how this 
works in the one-dimensional setting, using the ubiquitous example of the Fibonacci chain which can be 
obtained as a projection from a strip of the two-dimensional square lattice.   
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The program OctagonalTiling contains an implementation of the projection method for the Ammann-
Beenker tiling. In this case, the periodic lattice is the integer lattice in four dimensions, so cannot be 
easily visualised. In this four-dimensional space, two orthogonal two-dimensional spaces are chosen, one 
corresponding to the “physical” (sometimes also called “parallel”) space which contains the tiling, the 
orthogonal complement is known as the “internal” (sometimes also called “orthogonal” or 
“perpendicular”) space. The internal space projection of the lattice is used to select the lattice points 
which are to be projected to form the tiling. For the Ammann-Beenker tiling, all lattice points in four-
dimensional space whose projection on the internal space falls into a regular octagon are selected, and 



their projections on the physical space form the actual tiling. By relating the aperiodic tiling to a higher-
dimensional periodic lattice, the projection approach explains why these tilings have pure point 
diffraction patterns, although this has only recently been proven in a general setting, see Schlottmann 
2000. The rotational symmetry stems from a particular choice of the physical space that retains the 
eightfold rotational symmetry that is present in the four-dimensional integer lattice. The projection in 
internal and physical space forming a patch of the Ammann-Beenker tiling is shown in Figure 5. 

 
Figure 5: Projection in internal (left) and physical (right) space. Note that the two projections are not to 
scale. The lattice points projected are those for which the internal projections, shown as red dots, fall 
inside the regular octagon. Their projections in physical space are the vertices of an Ammann-Beenker 
tiling. 
 

Closely related to this approach is the grid method pioneered by de Bruijn (see de Bruijn 1981), where an 
n-fold rotationally symmetric aperiodic tiling is constructed by dualizing a grid obtained from intersecting 
sets of equidistant parallel lines, rotated with respect to each other by multiples of 360°/n. The program 
GridMethod implements this for arbitrary symmetries n. Choosing n=4 once more yields the Ammann-
Beenker tiling, as can be seen from Figure 6. 

 
 

 

Figure 6: De Bruijn grid and dual tiling with eightfold symmetry. The patch in the inside belongs to an 
Ammann-Beenker tiling, the regular parts near the boundary stem from regions where only some of the 
grid lines intersect. 

 

As mentioned, this method can be applied to other symmetries. Just for fun, an example with 13-fold 
symmetry is shown in Figure 7. 
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Figure 7: Tiling with 13-fold symmetry obtained by dualization of a grid. 
 
III Summary 
 
The package described in this article contains a collection of introductory Mathematica programs to 
construct planar aperiodic tilings.  It is the author’s intention to add further programs in the future. Any 
feedback or suggestions are most welcome. 
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DIMS (Direct-methods program for solving Incommensurate Modulated 
Structures) on the VEC platform 

 
Hai-fu Fan 
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China 
E-mail: fan@mail.iphy.ac.cn  ; WWW: http://cryst.iphy.ac.cn/   
 
(Editors’ note: the referred to files are included as an Zipped addendum package at the Comp Comm 
Newsletter No 5 website) 
 
1. Introduction 
 
DIMS is a Direct-methods program for solving Incommensurate Modulated Structures or, it can also be 
regarded as a program of Direct methods In Multidimensional Space (Fu et al., 1994, 1997; Li et al., 
1999). DIMS is based on the multidimensional direct methods developed in our research group in Beijing 
(Hao et al., 1987; Fan et al., 1993; Sha et al., 1994; Mo et al., 1996) and the Rantan phasing procedure 
developed in Professor M.M. Woolfson’s group in York, England (Yao, 1981). The program is for 
solving one-dimensionally modulated incommensurate structures and composite structures consists of 
two subsystems with two axes of the unit cell coincided to each other. For incommensurate modulated 
structures, DIMS can deal with diffraction data from X-rays, electrons or neutrons, while for composite 
structures only X-ray diffraction data are considered. There are two versions of DIMS in VEC (Wan et 
al., 2003). One is merged with other VEC functions, while the other is stand-alone. Both can be invoked 
on the VEC platform. The former is used for image processing in electron microscopy, while the latter is 
used for ab-initio determination of incommensurate modulated and composite structures. The latter is to 
be described here. More details of both DIMS and VEC can be found on the web site 
http://cryst.iphy.ac.cn/. Executables of DIMS and VEC and the source codes of DIMS are also available 
there. 
 
2. Invoking DIMS and preparing the input file 
 
Run the program VEC first, then pull down the menu "Diffraction", select "Ab initio Phasing" and then 
select "DIMS". This brings up the dialog box "Run DIMS" asking the user to supply a Job file (input file). 
Click "Browse" to locate the Job file or click "Create" to make a new one (see Fig. 1). The input file is a 
text file, which can be created either by following the dialog boxes or by using a text editor. A typical 
input file is shown in Fig. 2. Keywords used in the input file are given in the Appendix, including their 
definitions and meaning. 
 

 
 
Figure 1. 
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3. The output files 
 
Three output files are produced by DIMS. They are *.OUT1, *.OUT2 and *.hklm. The first one (*.OUT1) 
is actually a log file. The second (*.OUT2) is a file containing only experimental structure-factor 
magnitudes and their phases derived by DIMS. These two files are originally used with the UNIX/DOS 
version of DIMS. The only output file used on the VEC platform for further calculations is the third one 
(*.hklm). Once this file has been created by DIMS, it will be opened automatically in graphic mode on 
the VEC platform in a sub-window (see Fig. 4). Further calculations can then be performed on it. The file 
can also be opened in text mode on the VEC platform for inspection and editing. 
 

 

g-Na2CO3  
C       STATUS     ORDER      PATH        VOID1  
        0          2          3           0   
C       NTRIAL     SKIP       VOID2       RANTP  
        20         0          0           1   
C       NFS0  NFS1  NFS2  NFS3  NFS4  NFS5  NFS6  
        0     0     0     0     0     0     0   
C       ZP0   ZP1   ZP2   ZP3   ZP4   ZP5   ZP6  
        0     0     0     0     0     0     0   
C       CLCTR      MAXCL     NCLFIX     RADIUS  
        0.005      1         1          0   
C       W1          W2          W3  
        0.20        1.40        1.40   
C       MAXREL     KPMIN     KPMAX      PPERC  
        300        1.0       50.0       1.0   
C       A1      B1      C1      ALPHA1  BETA1   GAMMA1  
        8.9040  5.2390  6.0420  90.000  101.350 90.000  
C       A2      B2      C2      ALFA2   BETA2   GAMA2  
        0.0000  0.0000  0.0000  90.000  90.000  90.000  
C       K1      K2      K3  
        0.1820  0.0000  0.3180   
C       NOIN    NORMAL  STATIS  BFACTOR  NWLSTEP  
        1       1       1       0.00     16   
C       NUMBER     ATOMIC NR   ELEMENT (CELL CONTENTS)  
        8          11          Na   
        4          6           C   
        12         8           O   
        0          0   
C       SPACE-GROUP SYMBOL OR GENERATORS 
        P[C 2/M] -1 S :B  
C       DIFFACTION DATA  
    h    k    l    m     F(obs)     Phase   KN  
    0    0    2    0    61.300   180.000    1  
    0    0    4    0    54.500     0.000    1  
    0    0    5    0     2.400   180.000    1  
    0    0    7    0     2.700     0.000    1  
    0    0    8    0    12.000     0.000    1  
    .         .          . 

    .         .          .  
    .         .          .  

    1    5    0    2     0.100     0.000    0  
    3    5    3    2     0.100     0.000    0  
    7    5    1    2     0.100     0.000    0  
    0    0    0    0   -99.900     0.000    0  
  

 
 
Figure 2: The input file Na2CO3.key 
 
4. Calculation and display of 4D electron-density maps 
 
Projections and sections of 4-dimensional electron–density maps can be calculated on the VEC platform 
using the DIMS output file *.hklm.  

Example 1.  
Using the file Bi-2212.hklm to calculate an x3 − x4 section ρ (0.25, 0.00, x3, x4), the user should first 
calculate a 3-dimensional hyper-section at x1 = 0.25. Open the *.hklm file in graphic mode or activate the 
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sub-window containing the file. Then click the button  on the toolbar. This will bring up the dialog box 
shown in Fig. 3a, choose 'Sections' and set x1 = 0.25. After clicking “OK” another dialog box will appear 
as is shown in Fig. 3b. Usually there is no need to change any thing in this dialog box; the user can just 
click “OK” to pass. This will result in a 3-dimensional hyper-section x1 = 0.25 of the 4-dimensional 
electron-density map. The hyper-section is stored in the disk of the computer. What you see on the screen 
(the lower-left sub-window in Fig. 4) is only a 2-dimensional section with the first unit cell on the left 
corresponding to ρ (0.25, x2, x3, 0.00). The green lines are unit-cell borders, which are displayed or 
eliminated by clicking the item “Show/Hide unit-cell border” on the pull-down menu of “Image” (see 
upper middle of Fig. 4). Unit cells next to the left first one will have different x4 values according to the 4-
dimensional representation of 1-dimensionally incommensurate modulated structures. Operations on this 
window are not with the 2-dimensional section on the screen but with the 3-dimensional hyper-section in 
the disk. Now, activate the window and select the item “2d-sections of 4d-Fourier map” on the pull-down 
menu “Image”. In the pop-up dialog box (lower right of Fig. 4), select the x3-x4 section and set x2 = 0. 
Then by clicking “OK” the section ρ (0.25, 0.00, x3, x4) will be obtained (see the upper-right sub-window 
in Fig. 4).  
 

   
 
Figure 3:  
 

 
Figure 4:  
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Example 2.  
Using the file PbTiS.hklm to calculate an x2 − x3 section ρ (0.25, x2, x3, 0.25), the user should first 
calculate a 3-dimensional hyper-section at x1 = 0.25. The operation is the same as that in the previous 
example. The result is shown in the lower-left sub-window of Fig. 5. Now, pull down the “Image” menu 
and click on the item “Shift origin” (see upper middle of Fig. 4). In the pop-up dialog box (see the upper-
left corner of Fig. 5) set the fractional coordinates x = 0, y = 0, z = 0 and w = 0.25. Then the section 
ρ (0.25, x2, x3, 0.25) will come up as is shown in the upper-right sub-window of Fig. 5. 
 
Electron-density maps are displayed by default as half-tone graphs. However they can also be displayed 
as contour maps. To do this, click on the half-tone graph (lower right of Fig.6) and then click the button 

 on the toolbar. Tune the parameters on the pop-up dialog box (lower left of Fig. 6) and click “OK”. 
The corresponding contoured map will then appear (see upper part of Fig. 6).  
 

 
 
Figure 5:  
 

 
 
Figure 6:  
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5. 4D model building 
 
Starting from the *.hklm file, here we use the file Na2CO3.hklm, click on the pull-down menu 
“Modeling” and select “Create Model” (see upper right of Fig. 7). This starts searching for atoms in the 
3-dimensional basic structure. When a DOS window appears, press “Enter” to continue. A peak list 
containing the searching results will appear as shown in the lower part of Fig. 7. The user should assign 
atom IDs to a set of symmetrically independent peaks. To do this, highlight the peak, click the button 
“Select” on the peak-list table, then input an atom ID into the pop-up dialog box as shown in the middle 
of Fig. 7. The atomic ID is the chemical symbol of the element. Optional characters (no spaces) can be 
added following the symbol. Having finished assigning atom IDs, click the button “Search”. This starts 
the search of the modulation wave of each atom. Results will be listed in the model file Na2CO3.mod, 
which will be opened automatically and graphically in a sub-window (see the lower part of Fig. 8). The 
model file can be saved in the disk as a text file; it contains information for starting a least-squares 
refinement. 

 

 
 
Figure 7:  
 

 
 
Figure 8:  
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Appendix − Keywords for running DIMS 
 
The first line:  

A title with no effects to the phasing process  
 

STATUS (default = 0)   
0: for unknown structures  
1: for known structures, comparison will be made between the phases of satellite reflections input by the user and that 

derived by DIMS.  
 
PATH (default = 3)  

1: for phasing the satellites of incommensurate structures with known phases of the main reflections, the weak-weak 
relationships are used such that the newly obtained phases of the nth-order satellites are taken as known phases for 
phasing the (n+1)th-order satellites.  Only one of the 1st-order satellites is assigned a 'known' phase ZP1 to determine 
the origin of the 4th axis.  

2: for phasing the satellites of incommensurate structures with known phases of the main reflections, the weak-weak 
relationships are neglected for phasing all the satellites. One of each nth-order satellites is assigned a 'known' phase in 
the phasing procedure. Values of these phase angles are specified under the keyword ZPn.  

3: for phasing the satellites of incommensurate structures with known phases of the main reflections, the satellites with 
order greater than 1 are phased using PATH=2 and then weak-weak relationships are used to determine the origin-
depending phase shift.  

4: for phasing composite structures, the weak-weak relationships are neglected.  
 

ZPn  
The phase angle of an nth-order satellite, which is used as the origin-fixing reflection for phasing the nth-order satellites.  

 
ORDER (default = 2) 

0: phasing for main reflections based on certain known phases of main reflections.  
> 0:  for PATH = 1, 2 or 3, up to ORDERth-order satellites will be phased with known phases of main reflections.  
128:  for PATH = 4, only main reflections will be phased.  
129: for PATH = 4, all satellites will be phased with known phases of main reflections and, the weak-weak 

relationships will be neglected.  
 

RANTP (default = 0) active only for acentric space group with PATH = 4  
0: random phases of 45/135/225/315 degrees are assigned  
1: random phases of 0/180 degrees are assigned  

 
RADIUS (default = 0)  

0: input phases in degree.  
1: input phases in radius.  
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MAXREL (default = 300) 
Maximum number of Σ2 relations allowed for a single reflection.  
 

KPMAX (default = 50.0)  
Σ2-relations with kappa greater than KPMAX will be eliminated.  

 
KPMIN (default = 0.0)  

The value of this parameter ranges from 0.0 to 2.0, which is for eliminating Σ2-relations with kappa less then KPMIN.  
 

PPERC (default = 1.0)  
PPERC×100 % reflections (selected from the strongest one downward) will be phased, active only when phasing main 
reflections of composite structures (PATH=4, ORDER=128).  
 

NTRIAL (default = 50)  
Number of trials, i.e. the number of random-starting phase sets (max. NTRIAL = 1024).  

 
SKIP (default = 0)  

Skip the first SKIP trials.  
 
NFSn (n = 0, 1, ..., 6)  

> = 0: output phases will contain up to nth-order satellites, the output phase sets are selected according to the combined 
figures of merit CFOM.  

< 0:  The absolute value under the keyword NFSn will be the serial number of the set that you want to output 
disregarding the value of CFOM.  

 
CLCTR (default = 0.005)  

A parameter controlling dynamically the number of cycles of phase iteration 
 
MAXCL (default = 10)  

the maximum number of cycles allowed for tangent-formula iteration  
 
NCLFIX (default = 6)  

In the first NCLFIX cycles of tangent-formula iteration the known phases are kept fixed, after that they are floatable.  
 
A1, B1, C1, ALPHA1, BETA1, GAMMA1  

Unit-cell parameters of the basic structure of the incommensurate modulated structure, or of the first subsystem of the 
composite structure.  

 
A2, B2, C2, ALPHA2, BETA2, GAMMA2  

Unit-cell parameters of the second subsystem of the composite structure.  
 
K1, K2, K3 

The a*, b* and c* components of the modulation wave vector 
 q = k1a* + k2 b* + k3 c*  
 

W1 (default = 0.2), W2 (default = 1.4), W3 (default = 1.4)  
Weights of the figures of merit ABSFOM, PSI-ZERO and RISIDUAL in the calculation of the combined figure of merit 
CFOM  

 
NOIN  

In the cell contents, the top NOIN chemical elements belong to the first subsystem of the composite structures, active 
only when phasing main reflections of composite structures (PATH=4 and ORDER=128).  

 
NORMAL (= 0 or 1) 

Indicates one of the two strategies for scaling Fobs, active only when PATH=4 and ORDER=128.  
 
STATIS  

0: no WILSON statistics will be performed  
1: WILSON method is used to scale Fobs  
2: K-curve method is used to scale Fobs, active only when PATH=4 and ORDER=128.  

 
BFACTOR  

0.0: the B-factor from WILSON statistics is used for scaling, else: BFACTOR is used instead of the B-factor from 
WILSON statistics; active only when PATH=4, ORDER=128 and STATIS=1.  
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NWLSTEP (default = 16)  

 For the WILSON statistics, the reciprocal space will be divided in NWLSTEP zones. 
 
 
 
ELEMENT  

Chemical symbol of atoms in the unit cell. 
 
ATOMIC NR  

Atomic number of the specified chemical element  
 
NUMBER  

Number of atoms in the cell  
 
SUPERSPACE GROUP: TWO-LINE SYMBOL or GENERATORS  

The superspace-group symmetry is expressed either by a two-line symbol or a set of generators. 
As an example the two-line symbol for the incommensurate modulated structure of γ -Na2CO3 is 
 

P[C 2/M]-1 S  :B  
 

For more details, the user is referred to Fu Zheng-qing & Fan Hai-fu (1997) "A computer program to derive (3+1)-
dimensional symmetry operations from two-line symbols" J. Appl. Cryst. 30, 73-78.  
 
If generators are to be used, the user should first specify the number of generators before listing the elements of the first 
generator. Each generator should be ended with a blank line. As an example the generators for γ -Na2CO3 not including 
operations of the centered lattice are expressed as 
 

2     
-1 0 0 0 0.0000 
0 1 0 0 0.0000 
0 0 -1 0 0.0000 
0 0 0 -1 0.5000 

     
1 0 0 0 0.0000 
0 -1 0 0 0.0000 
0 0 1 0 0.0000 
0 0 0 1 0.5000 

 
KN  

Indicates the preceding phase is known or not  
 
0: unknown, its value is to be derived, the listed value will NOT take part in the derivation, however in the case of 

STATUS = 1 the listed phases will be compared with that derived from DIMS. 
1: known, it will be used as starting phase to derive unknown phases. 
2: a random phase will be assigned  

 
MK  

Indicates whether the reflection will be rejected in the phasing process. 
-1: rejected, a random phase will be given to this reflection in the output file.  
1: not rejected.  
 

DN  
For STATUS=1, indicates the difference between the given and the derived phases.  
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DIMS (Direct-method program of solving Incommensurate Modulated 
Structures)/VEC applications 

 
Hai-fu Fan 
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China 
E-mail: fan@mail.iphy.ac.cn  ; WWW: http://cryst.iphy.ac.cn/   
 
(Editors’ note: the referred to files are included as an Zipped addendum package at the Comp Comm 
Newsletter No 5 website) 
 
1. Introduction 

 
The integration of DIMS (Fu et al., 1994, 1997; Li et al., 1999) and VEC (Wan et al., 2003) provides an 
intuitive and automatic way of solving incommensurate structures. Calculations are visually performed on 
the VEC platform mostly via mouse clicks. Examples are given here involving two incommensurate 
modulated structures and the 4-dimensional basic structure of a composite crystal. As will be seen, 
structural details including the incommensurate modulation can be observed objectively prior to the 
model building and least-squares refinement. For detailed operations of the program DIMS/VEC the 
reader is referred to the paper “DIMS on the VEC platform” in this newsletter. 
 
2. Direct observation of the incommensurate modulation of γ-Na2CO3 

 
Crystals of γ-Na2CO3 have a one-dimensionally modulated incommensurate structure with unit cell 
parameters of the basic structure a = 8.904, b = 5.239, c = 6.042Å, β = 101.35o and the modulation wave 
vector q = 0.182a* + 0.318c*. The superspace group is P[C 2/m] –1 s (two-line symbol used in DIMS). 
Van Aalst et al. (1976) originally solved the modulated structure by trial-and-error method. Hao et al. 
(1987) used their data to test the multidimensional direct method. 300 largest main reflections, 250 largest 
first order satellites and 150 largest second order satellites from the experimental data were selected for 
the test. The program SAPI (Yao et al., 1985) was used to derive phases of main reflections, based on 
which the multidimensional direct method was used to phase satellite reflections. There is no need to 
know the basic structure in advance. In the present test, the input file Na2CO3.key was constructed with 
the same data used by Hao et al. (1987). The output file Na2CO3.hklm was produced and opened in a 
sub-window on the VEC platform (see Fig. 1). The file contains the original input data together with the 
direct-method phases of satellite reflections. Fig. 2 shows sections of the 4-dimensional electron density 
map of γ-Na2CO3 calculated with the file Na2CO3.hklm. The top row of Fig. 2 shows the half-tone 
graphic section of the 4-dimensional electron-density map at x3 (z) = ¼. Six unit cells are plotted along 
the x1 axis. Since the modulation wave vector q has a component q1 = 0.182 along a*, the modulation 
period should be about 5.5 unit cells along the x1 axis. Consequently the first unit cell on the left of the 
top row corresponds to x4 = 0.0, while the sixth unit cell corresponds to x4 ≈ 1.0. This is evident 
comparing the top row and the middle row, the contoured section ρ (0.15625, x2, ¼, x4). As is seen the top 
section reveals clearly sodium atoms and CO3 groups. It is seen also that the x2 coordinate of carbon 
atoms varies along the x1 axis from one unit cell to the other indicating the positional modulation of the 
carbon atoms as shown by the red curve. This can be seen more precisely on the section ρ (0.15625, x2, 
¼, x4). By comparing the second and the fifth unit cell (see the bottom row of Fig. 2), it is observed that 
the modulation of the CO3 groups performs an anticlockwise rotation around the axis through the carbon 
atom perpendicular to the (a, b) plane (a and b are respectively the projection of x1 and x2 along the 
direction perpendicular to the 3-dimensional physical space). All these features are consistent with the 
original result of Van Aalst et al. (1976). One of the most important differences between DIMS/VEC and 
the trial-and-error method is that all features of the structural modulation of γ-Na2CO3 are visualized on 
the direct-method phased electron-density map, which does not rely on any assumptions concerning the 
form of modulation waves and is obtainable prior to model building and structure refinement. 
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Figures 1 (left) and 2 (right) 

 
 

3. Visualizing structural modulation of Bi-2212 
 

The incommensurate structure of the high-Tc superconductor Bi2Sr2CaCu2Oy (Bi-2212) has been 
extensively studied in a number of laboratories over the world. However the results are not completely 
consistent with each other. Here DIMS/VEC produces the visualized structural modulation without 
relying on any assumptions on the modulation waves. The data used in this test is the same as that of Fu 
et al. (1995). Crystals of Bi-2212 belong to the superspace group N[Bbmb]1-11 (two-line symbol used in 
DIMS) with unit cell parameters of the basic structure a = 5.422, b = 5.437, c = 30.537Å and the 
modulation wave vector q = 0.22b* + c*. SAPI was used to derive phases of the main reflections. 

 

 
 

 
Figure 3: 
 
Fourier recycling was used to determine the basic structure. The input file Bi-2212.key was then 
constructed, with which DIMS/VEC produced the output file Bi-2212.hklm. Electron-density maps were 
calculated on the VEC platform. The 4-dimensional electron-density function of Bi-2212 projected along 
the x1 axis is shown on the right of Fig. 3 giving an overview of the incommensurate structure. Six unit 
cells are plotted along the x2 axis. All metal atoms and the oxygen atoms on Cu-O layers are clearly seen. 
The section at x2 = ½, x4 = 0 shown in the middle of Fig. 3 contains all the independent metal atoms. 
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Their modulation is shown on the section ρ (¼, ½, x3, x4) (on the left of Fig. 3). Fig. 4 shows atoms on the 
Cu-O layer and the modulation of the oxygen atom O(1). Fig. 5 shows the saw-tooth modulation of the 
oxygen atom O(4). It should be emphasized that the saw-tooth modulation here is not a result of least-
squares refinement based on a guessed model. In contrast it is revealed objectively before any efforts of 
model building. 
 

 
 

Figure 4: 
 

 
Figure 5: 
 

 
4. Solving the 4-dimensional basic structure of the composite crystal (PbS)1.18TiS2 
 
The composite structure of (PbS)1.18TiS2 (Van Smaalen et al., 1991) belongs to the space group 
C2/m (α, 0, 0) s-1. It consists of two subsystems: the subsystem TiS2 with a1 = 3.409, b1 = 5.880, 
c1 = 11.760Å α1  = 95.29o and the subsystem PbS with a2 = 5.800, b2 = 5.881 c2 = 11.759Å, α2 = 95.27o. 
Within the experimental error we have b1 = b2, c1 = c2, and α1 = α2. Unlike conventional incommensurate 
modulated structures, there are no 3-dimensional basic structures corresponding to a composite structure. 
For (PbS)1.18TiS2, the basic structure is a 4-dimensional one. It is more complicated to determine such a 
basic structure than to fine the modulation of (PbS)1.18TiS2, since there are no known phases available for 
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the direct-method phasing except the origin and enantiomorph fixing ones. The following test shows that 
DIMS/VEC is capable of solving the 4-dimensional basic structure in a straightforward manner. The 
input file PbTiS.key contains only main reflections. The symmetry is assumed to be 
non-centrosymmetric. The output file from DIMS/VEC is PbTiS.hklm, which is opened in a sub-window 
as shown in Fig. 6. Sections of the 4-dimensional electron-density maps calculated from PbTiS.hklm are 
shown below. On the left of Fig. 7 we see the “chimney and ladder” structure along the x1 axis 
constructed by the TiS2 subsystem with the period a1 and the PbS subsystem with the period a2. On the 
right of Fig. 7 there are sections through the TiS2 layer and PbS layer parallel to the (b, c) plane. Note that 
a1, a2, b and c are respectively the projection of the axes x1, x4, x2 and x3 along the direction perpendicular 
to the 3-dimensional physical space. Again all the structural features are visible on the direct-method 
phased electron-density map before any efforts of model building and structure refinement. 

 

   
 

Figures 6 (left) and 7 (right) 
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Introduction 
 
With the change from point detectors to solid state 2D detectors, all “small molecule” single crystal 
measurement techniques have undergone large changes. Researchers interested in incommensurately 
modulated or composite structures have been more reluctant to move away from using point detectors. 
This paper tries to find out why, and explains what the problems of the modern equipment for such 
samples can be. We will also explore what a 2D detector can do for these samples. 
 
Point detector systems 
 
Measuring an incommensurate crystal with a point detector was difficult. The software for such systems 
used a three dimensional lattice description, and any higher-dimensional description required extra work. 
Many laboratories specializing in these samples made their own adaptations to the data collection 
software.  
 
Unit cell determination 
 
The difficulties with incommensurate structures arise already at the determination of the unit cell. There 
are basically two different cases that can occur: (1) if the satellite reflections are weak, it is possible that 
none are found during the initial search. Indexing procedures will then find the basic lattice, but without a 
proper X-ray photo (on film) to visualize reciprocal space it is impossible to see that the sample shows 
incommensurate diffraction.  (2) satellite peaks are found in the initial search, hence not all reflections 
can be indexed to a three-dimensional lattice. Sometimes (for modulated structures, but not for 
composites) it can help to index on the strongest reflections only. Specialized indexing software like dirax 
[1] has been capable of finding the basis cell for such samples based on the complete reflection list, and 
recent versions of dirax can also identify a single modulation vector from the reflections that do not fit the 
3D lattice. Only recently, Pilz et al. [2] describe an indexing method tailor made for incommensurate 
crystals. 
 
Data collection 
 
Data collection on incommensurate crystals on point detector systems also needed special attention. 
Special versions of the data collection software would be used to collect first the main lattice and then the 
satellites; alternatively a commensurate super cell could be defined with appropriate absents conditions. 
 
Visualization 
 
True computational visualization of the data collected with a point detector is not very useful for 
determining the background of a modulated structure. The normal way to visualize the data on such a 
system was to make a Weissenberg or precession picture, or a rotation photo (on film) of the unaligned or 
the aligned crystal on a CAD4. 
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CCD Detector systems 
 
A CCD detector is an integrating detector with a good spatial resolution. The integration is over  time, 
and hence over the rotation of the crystal. Spot localization and separation within the image is excellent, 
but between frames this is dependent on the rotation angle per frame.  
 
This is exactly reversed for a point detector system, where the hardware integrates all photons coming in 
through the entire input window, but localization in time for the reflections is very good.  
 
These differences between the systems have their implications on data processing, but it is important to 
realize that both point-detector and 2D detector perform integration in the hardware, so that this is not a 
new phenomenon. 
 
Unit cell determination 
 
Cell determination with a CCD detector system is in principle much easier than using the point detector 
system since there are a lot more reflections available for indexing than are generally searched for with a 
point detector. Furthermore, reciprocal space is sampled more systematically using a 2D detector.  
Unfortunately, however, the accuracy of the locations of the reflections in three-dimensional reciprocal 
space determined from wide-angle rotation images is not good: the positional accuracy in the two 
dimensions on the detector are excellent, but the accuracy in the rotation direction is relatively poor. 
Especially for incommensurates (as well as for twinned crystals) this can pose a serious complication.  
 
One possible solution to this is so-called fine slicing, whereby many images are made, each of which is 
only a small rotation (e.g. 0.3 degrees). Each reflection should be seen in at least three subsequent 
diffraction images, such that the accurate centroid can be determined by interpolation.   
 
An alternative method to get accurate 3-dimensional reflection positions is the phi/chi [3] procedure 
whereby each reflection is scanned twice using different scans (reminiscent of the SETANG procedure on 
the CAD4 diffractometer). The accurate three-dimensional location of the reflection is then calculated 
from the intersection of the two different lines through reciprocal space. This procedure requires that the 
goniostat can scan multiple axes synchronously. 
 
If the satellites are relatively weak, they may pass unnoticed with any indexing procedure, especially 
since images taken with the purpose of indexing do not normally have long exposure times. If this is the 
case, most likely these spots will show up as unexplained effects on the actual diffraction images used for 
the data collection; enough for an experienced crystallographer to pick this up afterwards. Fortunately 
there is in most cases a second chance to find the correct cell using the images from the data collection. 
 
Data collection 
 
The data collection on an incommensurate crystal with a 2D detector system is automatically right: In 
first instance, data collection strategies are based on “sweeping” the asymmetric part of reciprocal space, 
and this is only dependent on the lattice symmetry and the orientation of the reciprocal axes in space, and 
not on the actual length of the axes. Since the incommensurate vector does not affect the lattice 
symmetry, the same strategy determination can be used. Even if the sample is not known to be 
incommensurate, any strategy designed for the main lattice will also collect all relevant satellite 
reflections.  
 
So far for the simple bit. There are two more aspects of the data collection that need extra attention. 
 

1. Spatial resolution. The spatial resolution of a measurement is influenced by the beam divergence 
(optics), the crystal, the point spread of the detector and the geometry of the measurement. The 
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distance between the crystal and the detector must be chosen large enough to be able to separate 
the main lattice reflections and the satellites. A good separation of spots is especially important as 
the main lattice reflections can be orders of magnitude stronger than the satellites. Earlier 
generations of CCD cameras are especially sensitive to this dynamic range, as very strong 
reflections could cause blooming effects that mask out nearby weak satellites. The latest 
generation of CCD chips now have anti-blooming features that do not decrease the sensitivity of 
the detector; this is an advantage for modulated samples. 

 
Since the satellites are weak, it is tempting to use modern X-ray optics to increase the intensity of 
the beam. However, any optic that adds intensity necessarily also adds divergence to the beam; 
this makes it potentially more difficult to separate the closely spaced diffraction spots. The 
usability of optics which add so much divergence that a larger crystal-to-detector distance is 
required is doubtful.  

 
2. Data collection time. One must make sure that both satellites and main lattice reflections can be 

integrated accurately as there are limitations in the dynamic range of the detector and the analog to 
digital conversion. The conversion is normally done with a 16 bit ADC, but in practice, the 
dynamic range that can be caught in one exposure is less than 65536:1, more like 10000:1. The 
dynamic range of a measurement can be increased by repeating all measurements at different 
exposure times, or, saving a bit of measurement time, by making faster exposures only for the 
frames that contain overflowed pixels. The anti-blooming features mentioned earlier can prevent 
negative effects of the overflowed reflections on neighboring satellites. Reflections with 
intermediate intensities which can be integrated accurately in both long and short exposure time 
measurements can be used to verify the scaling between the repeated measurements.  

• 
Lack of experience with the spatial resolution and dynamic range for 2D detector systems have withheld 
scientists specialized in incommensurate structures from switching their point detector systems to 2D 
detector systems. Now that this experience is accumulating and further improvements to the systems have 
been made, it can be shown that the quality of the data obtained from a CCD can be superior to point 
detector data even though the latter are photon counted. 
 
The fact that on a 2D detector data are not collected reflection-by-reflection, but in sweeps through 
reciprocal space brings with it that many reflections will be measured more than once. In fact, this 
redundancy is the proper way to increase data quality when using an instrument with a 2D detector. The 
best results are obtained when redundant measurements differ in as many  parameters as possible. This 
type of true redundancy is best obtained by using a 4-axis goniometer. True redundancy reduces the 
effects of systematic errors in the measurement and provides more detail to absorption correction 
procedures. 
 
Visualization 
 
Visualization from 2D diffraction data can currently be done in two ways:  
 

• A peak search is performed over (part of) the collected data. The location of each of the peaks is 
shown in a 3D model that can be manipulated in real time to visualize the unit cell in reciprocal 
space. Tools for measuring distances between rows and planes of reflections can help to determine 
the modulation vectors. This procedure can also be very instructive for twinned or fragmented 
crystals. 

 
• A set of “synthesized precession images” is created. These images are a projection of 3D 

reciprocal space onto a plane. Each pixel in all frames is assigned a reciprocal space coordinate, 
and mapped to the synthesized image.  Because of this procedure, not only Bragg peaks, but also 
diffuse scattering effects will show up in the synthesized precession images.  

 



During the synthesis, the intensity of all measured pixels mapping to a single pixel in the precession 
image is averaged.  This averaging takes care of large differences in Lorentz factor, but this does not 
make the synthesized image quantitatively correct.   
 
For visualization of incommensurate structures, it is possible to calculate a pseudo-precession image for a 
plane that has both main lattice and satellite reflections. It is also possible to make an image of a plane 
that only contains satellite reflections.   
 
In general, this technique is very good to help understanding any effects in reciprocal space that are much 
more difficult to grasp from the rotation images directly. 
 

 
 
Fig 1: Synthesized hk0 precession image of an interesting hexagonal sample. 
 
Conclusion 
 
The objections against switching from point detectors to 2D detectors for incommensurate structures are 
no longer valid. The advantages of speed and true redundancy for the new instruments result in better 
quality data. The improved visualization tools make additional x-ray film camera's and crystal alignment 
superfluous.  
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Abstract  
 
Single crystal time-of-flight neutron scattering experiments provide information about three dimensional 
regions in reciprocal space.  New software to visualize and analyze such data has recently been developed 
in the context of the Integrated Spectral Analysis Workbench at the Intense Pulsed Neutron Source 
division of Argonne National Laboratory. This software is user-friendly, highly interactive, and includes a 
novel 3D view of reciprocal space, that has been useful when dealing with twinned or multiple crystals.   
 
Introduction 
 
The Integrated Spectral Analysis Workbench (ISAW) is a large collection of software objects for neutron 
scattering data access, visualization and analysis.  ISAW has been developed over the last six years by a 
team from the Intense Pulsed Neutron Source (IPNS) division of Argonne National Laboratory and the 
University of Wisconsin-Stout, with support from the National Science Foundation.  ISAW is 
implemented in JAVA for portability and is freely available under the GNU GPL[1].   
 
ISAW has support for several instrument types, including single crystal diffractometers, and is being 
extended to more instrument types.  After a brief overview of the structure of the software, some of the 
major features of ISAW that support single crystal diffraction data will be described in more detail. 
 
   
ISAW Overview 
 
ISAW is built around several fundamental concepts.  Internally, raw and partially reduced data are stored 
in "DataSet" objects that are collections of "Data" blocks (spectra).  The DataSets hold the raw data along 
with meta-data needed for data analysis, such as detector positions, initial flight path length, sample 
orientation, etc.  Raw data is loaded into DataSets by data "Retrievers".  Data can be "retrieved" from 
IPNS run files, NeXus files, a remote file server, etc.  Individual DataSets can be viewed in various ways 
by DataSet viewers.  Data analysis steps are implemented in self-describing "Operator" objects.  A typical 
analysis sequence can be carried out manually by loading data, and applying analysis and visualization 
operations using the main ISAW GUI.  Alternatively, the sequence of steps can be controlled by a script 
written in ISAW's scripting language or in Jython.  Common sequences of operations can also be easily 
combined into a "Wizard" consisting of a sequence of forms representing the steps of the peak indexing 
and integration process.  Data can also be written out in NeXus format.  Figure 1 is a screen dump 
showing the ISAW control panel and two views of data from the single crystal diffractometer at IPNS. 
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Figure 1 
 
 
ISAW SCD Support 
 
The SCD at IPNS uses time-of-flight neutron scattering measurements to provide information about three 
dimensional regions in reciprocal space. The SCD was recently upgraded to employ two area detectors, so 
that a larger volume of reciprocal space can be measured simultaneously.  Since a new data acquisition 
system was needed and some of the legacy software was written assuming only one area detector located 
at 90 degrees, it was decided to build new software to support single crystal diffraction in the context of 
ISAW. 
 
In principle, providing support for a new instrument type in ISAW merely requires providing a suitable 
set of operator objects to carry out the required data analysis steps.  In practice, it has also been helpful to 
provide some customized viewers for the data from a newly supported instrument type and to provide 
some user friendly framework tuned for that instrument type.  Finally, specialized software components 
for tasks such as instrument calibration may also be needed.  
 
In the case of single crystal diffractometers, operators to carry out essential analysis steps such as finding, 
indexing and integrating peaks in the 3D volume data were implemented.  In addition, user-friendly 
"Wizards" were implemented to organize the steps and guide the user through the data analysis process.  
Figure 2 shows a form from one of the Wizards. 
 

33 



 
Figure 2 
 
Interactive viewers to display a 3D view of reciprocal space as well as arbitrary slices through reciprocal 
space were designed and implemented, as shown in figures 3 and 4.   
 

 
Figure 3 
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Figure 4 

 
Finally, a new calibration system was implemented to adjust instrument parameters such as the nominal 
detector positions, orientations and sizes. The calibration operator uses the known lattice parameters of a 
calibration sample such as quartz, and a Marquardt type optimization routine[4] to adjust instrument 
parameters to minimize the sum squared differences between measured and expected peak positions in 
reciprocal space.  Figure 5 shows the input panel for the calibration operator, and illustrates which 
instrument parameters can be calibrated. 
 

 
Figure 5 
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Reciprocal Lattice Viewer 
 
The Wizards written for single crystal diffraction provide an easy to use interface, and work well with a 
set of strong peaks from a single crystal.  Unfortunately, this is not always the case.  If, for example, the 
crystal is "twinned", the basic auto indexing routine is likely to fail.  In order to visualize this and allow 
the user to choose and index one crystallite at a time from a twinned crystal, a 3D reciprocal lattice 
viewer was designed to let the user interactively select families of planes to use for indexing the peaks 
within the reciprocal lattice.  
 
The essential capabilities of the reciprocal lattice viewer include: 
 

• Display voxels in reciprocal space, corresponding exactly to time-of-flight histogram bins from 
the area detectors. 
 

• Allow user selection of families of planes of peaks in reciprocal space.   
  

• Use Fourier Transforms of projections of peaks in various directions to assist the user in selecting 
planes.  (This is similar to the Rossmann indexing algorithm[2][3].) 
 

• Allow user to restrict data to a family of planes in reciprocal space. 
 

• Calculate an orientation matrix, when three independent families of planes have been chosen. 
 

 
The raw time-of-flight data from the SCD at IPNS consists of 20,000 time-of-flight histograms, one 
histogram for each pixel on the area detectors. Each time-of-flight histogram bin corresponds to a 
different neutron wavelength/energy which can be determined from the time-of-flight of the neutron over 
the known flight path.  Thus each time-of-flight histogram bin corresponds to an element of volume in 
reciprocal space.  For each time-of-flight histogram bin for which the counts exceed a specified threshold, 
the reciprocal lattice viewer maps eight points corresponding to the four corners of the pixel in real space 
and the beginning and ending times-of-flight, to reciprocal space.  These eight points define a distorted 
"box" in reciprocal space.  Each such box is drawn in a color corresponding to the number of counts in 
that histogram bin.   
 
If the crystal is, in fact, single, the peaks will fall on families of planes in reciprocal space.  In order to 
find basis vectors for a primitive unit cell in real space, it is sufficient to find three independent families 
of planes in reciprocal space with the three largest inter-plane spacings.  Typically, at least the family of 
planes with the largest inter-plane spacing in reciprocal space is relatively easy to identify.  
 
The reciprocal space viewer allows the user to interactively choose a family of planes by selecting three 
peaks.  The peaks are selected by clicking on them and then pressing the "Select", "Select +" or "Select *" 
buttons.  "Select" selects a new origin.  "Select +" or "Select *" specify two additional points, which form 
vectors drawn from the origin to the newly selected points.  The "Q" value for the origin is displayed, as 
are the "Q" components and lengths of the two vectors that are formed.  See Figure 6. 
 
 



 
Figure 6 
 
  The positions of the three selected peaks determine a plane normal. The user can choose to interpret this 
family of planes as planes of constant h, k or l values by pressing the "User->" button in the appropriate 
plane control.  Suppose that the user chooses to interpret the specified family of planes as "Constant h 
Planes".  After pressing the "User->" button, the cross product of the vectors is calculated, normalized 
and displayed in the "Constant h Planes" control.  Given this normal, the software projects all peaks onto 
a line in the direction of the normal.  If the peaks lie on a family of planes with that normal, the 
projections will form a regular pattern.  The projection is Fourier transformed to identify the fundamental 
frequency in the projection of the peaks.   Based on this fundamental frequency and the normal direction, 
integer "h" values are assigned to each peak, and a refined normal direction is determined by finding the 
least squares solution to the over determined system of equations:  
  

 iqn ⋅  = hi, i = 0,1,2,...,N 
 
where iq  is one of the N voxels with counts above the required threshold in reciprocal space and hi is the 
assigned "h" value.  The fundamental frequency in this pattern is also mapped to real space and the 
corresponding d-spacing is displayed in the "Constant h Planes" control.  The user can also enter a value 
for "d" in this control, if the crystal lattice parameters are known and the calculated value for "d" is not 
sufficiently accurate.   
 
Having selected a family of planes, the user may choose to discard all peaks that are sufficiently far from 
all planes in the family of planes. A default tolerance of 10% of the plane spacing is used.  If the data 
contains spurious peaks from any source, approximately 80% of the spurious peaks should be discarded, 
and virtually none of the desired peaks will be discarded.  This "filter" operation can be turned on or off 
using the "Filter On/Off" button in the plane control. 
 
In this way, the user can manually choose three families of planes in reciprocal space, filtering to any or 
all of the three families of planes, as needed to omit spurious peaks.   
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To assist in the process of choosing families of planes, the software  will determine a list of 
approximately 600 unit vectors whose endpoints are spread uniformly over a unit hemisphere.  For each 
of these possible plane normals, the peaks are projected onto the normal direction, Fourier transformed 
and refined as described above.  From the resulting Fourier transforms a smaller set of at least 10 Fourier 
transforms are selected based on various heuristics, such as the residual error from the least squares 
refinement.  The selected set is ordered by increasing "d-spacing", and displayed as rows in an image.  
When the user points at a row in this image, the d-spacing is displayed on the border of the graph below 
the image.  The corresponding family of planes is also indicated in the reciprocal space viewer, by 
drawing a sequence of boxes along the normal direction, with the space between successive boxes equal 
to the spacing between the planes.  See Figure 7. 
 
 

 
Figure 7 
   
  After finding a set of possible families of planes in this manner, it is fairly easy for the user to step down 
the rows of the image, noting the d-spacing and examining the suggested family of planes in reciprocal 
space.  The user can choose to use such a family of planes as constant h, k or l planes by pressing the 
"FFT->" button.  As before, the calculated value of "d" can be replaced by a more accurate value, if the 
lattice parameters are already known. 
 
  When the user has chosen constant h, constant k and constant l planes, integer (h,k,l) values can be 
assigned to each voxel, iq , with counts above the currently specified threshold.  Using these assigned 
(h,k,l) values, the orientation matrix can be calculated.  The orientation matrix is calculated as the the 
matrix M that most nearly maps each of the triples 
 

iv = (hi, ki, li) 
 
to the corresponding voxels 
 

iq  = (qxi, qyi, qzi). 
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That is, a least squares method is applied to find coefficients for the orientation matrix, M, so that  
 

M iv  = iq ,  
 

as nearly as possible. 
 
  At several stages in the SCD software, it was necessary to solve a linear least squares problem.  The 
solution to such least squares problems are often described in terms of the "normal equations".  
Unfortunately, the normal equations can be ill-conditioned and so may be difficult to solve accurately.  A 
more stable solution can be obtained by using Householder[5] transformations (elementary reflectors) to 
reduce the matrix to upper triangular form[6].  Since the Householder transforms preserve distances, 
errors are not magnified by the solution process.  This method of solving the least squares problem is 
used throughout ISAW. 
 
 
Conclusions 
 
ISAW provides a large set of classes for neutron scattering data visualization and analysis.  The support 
for single crystal diffractometers includes a powerful and novel interactive viewer for reciprocal space 
that allows the user to interactively select families of planes in reciprocal space.  This process has been 
successfully used to deal with crystals that are twinned.  The software can be downloaded from the IPNS 
website, http://www.pns.anl.gov/computing/ISAW/
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Introduction 
 
The increase in solved modulated structures and the latest development of the methods for their solution 
is closely connected with advances in the instrumentation. Modern diffractometers give more or less 
complete diffraction pattern of the crystal. This fact and their very good sensitivity minimizes the chance 
that satellites would be overlooked or too weak for measurement. Moreover data collection programs for 
most of commonly used diffractometers allow integration of these additional reflections. 
 
Existence of satellite reflections is directly connected with fact the classical 3d translation symmetry in 
the modulated crystal is lost. The atoms from cell to cell change their basic structural parameters such as 
occupancies, positions and ADP (atomic displacement parameters). However, these changes are not 
random; they can be described by periodic modulation functions: 

( ) ( )ddd nnnuu +⋅+⋅+⋅=⋅⋅⋅ rqrqrqrqrqrq ,,,,,, 221121 LL  
 
The modulation function must be reasonably smooth function with maximally a few discontinuities. Then 
the structure can be described using basic functions with periodic perturbations.  
 
The fact that the diffraction pattern is still made from clearly distinguished diffraction spots was used by 
deWolff, Janssen, and Janner [1] to develop the so called "superspace approach". Additional vectors 
perpendicular to regular three dimensional space were introduced to recover the translation symmetry in 
the more dimensional elementary cell. This general approach made it possible to generalize structure 
determination techniques for their application in (3+d) dimensional space. The superspace concept 
provides us also with a visualization method to demonstrate real modulations in the crystal.  
 
The crystal structure analysis of modulated and composite crystals is becoming more or less standard. 
The modulation parameters for various building units of the structure can take many different functional 
forms. For example the strong step-like modulation in one structural unit may induce a smoother 
modulation in the rest of the structure. A Fourier synthesis and animation techniques play very important 
role during structure determination and refinement. The purpose of this contribution is to present here 
these methods. 
 
Fourier (3+d) dimension techniques 
 
The generalized density of diffracting objects (electrons for X-rays, nuclei for neutrons) in the modulated 
structures has (3+d) dimensional periodicity. This means that it can be expressed as a 3+d dimensional 
Fourier series: 
 

( ) ( ) ( )HRHR
H

⋅−= ∑ iF πρ 2exp , 
 
where H and R are respectively diffraction and positional (3+d) vector and ( )HF  are generalized structure 
factors related by the standard way to the integrated intensities. The maps can be calculated either when 
phases are already known at least in some approximation or when the above equation is used for ( )H2F . 
For the latter case the Patterson maps are obtained. They can be used to find a starting modulation model 
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in cases when the structure contains some dominating heavy atoms. In the Fig 1 the modulation of one 
interatomic vector between two symmetrically related positions of heavy atom is presented. The periodic 
expansion and contraction of density is induced by a mutual modulation of two atomic positions in the 
selected direction. In the case when the modulation is negligible the density section would show just a 
uniformly distributed density. The amplitude can be estimated from the difference between the most 
expanded and the most contracted area. The x4 position corresponding to the most contracted density can 
help to find the phase of the modulation function. For more details see the original work [2]. 
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Fig. 1:  x x2 − 4  and x x3 − 4  sections of the Patterson function of heavily modulated atom  
 
The Fourier maps based on phases derived from the modulation of the heavy atom can be used to find a 
modulation curve of light atoms (see Fig 2).   

   

 

 
Fig 2:  The x x2 − 4  and x x3 − 4  sections of Fourier maps in the vicinity of  a light atom 
 
Fourier maps can also reveal a special character of the modulation in cases when the positional or 
occupational modulation has a discontinuous character. As an example we use the modulated structure of 
Cd(NH3)3Ni(CN)4 [3]. In the fig.3 it is shown how the modulation of Cd atoms in this structure look like: 
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Fig 3: The occupational modulation of Cd1 and Cd2. The two basic positions are clearly separated into 
two crenel-like intervals.  
 
The map shows clearly that the cadmium atom occupies two different positions. More detailed analysis 
shows that one position is octahedrally coordinated while the other is tetrahedrally coordinated. The 
number of harmonic functions to model satisfactory such a modulation would be very high. The crenel-
like approach [2] can considerably reduce number of parameters.  
 
The Fourier sections of type  presented hitherto show clearly changes of a certain coordinate of a 
selected atom as a function of the modulation coordinates. This is very important for finding the best 
modulation model for one particular atom but,  on the other hand, these maps cannot usually give a direct 
idea about the structure in three dimensions. The best way to present mutual interactions in modulated 
crystals is to draw three-dimensional maps as a function of the internal coordinate t. In the next figure we 
demonstrate usefulness of properly selected section and/or projections in the structure Cd(NH

4xxn −

3)3Ni(CN)4 
[3]. The two-dimensional section running through the Ni(CN)4 group shows how the step-like modulation 
of cadmium affects the other atoms:        
 

   
 
Fig 4: Sections through the four-dimensional Fourier map showing the coordination of cadmium by two 
symmetry-related cyano groups C1-N1. The section runs through the plane of Ni(CN)4 in the basic 
structure; e1,e2,e3 are the Cartesian axis.  
 
The first section is plotted for the internal coordinate t=-0.05, which is near of the refined end point of the 
crenel function definition interval, i.e. it shows the situation just before the "jump". The atom Cd1 (green) 
still keeps the tetrahedral coordination but the new octahedral position (Cd2) is already arising. Distances 
between the new (arising) Cd2 position and two neighboring atoms N1 are respectively 1.6 Å and 2.1 Å. 
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The too short first distance (1.6 Å) forces an abrupt change in the coordination that is visible in the 
second section calculated for t=0. Here the Cd atoms are already localized in the new octahedral position 
(Cd2) and the cyano group C1-N1 on the right is shifted to achieve more realistic distance to Cd2. 
 
Graphic interpretation of structural results 
 
Till now there has been no common program which can directly use superspace group information to 
draw modulated structures. Therefore modulated positions of atoms must be pre-calculated in some 
artificial large cell beforehand. Then a standard drawing program such as ATOMS or DIAMOND can 
used to produce figures. As the modulated structure is not periodic we have to suppress in the plotting 
software generating of atoms outside of the pre-calculated area in the modulation direction(s). In Fig. 5 
we show representation of modulated structure plotted from pre-calculated coordinates by the program 
Diamond [].  
 
Fig 5: The modulation along the chain [-Cd(NH3)n-NC-Ni(CN)2-CN-]∞  
 

 
(a) The most common situation: cadmium has alternatively octahedral and tetrahedral coordination. 

 

 
(b) An intermediate states in which cadmium exhibits penta-coordination are indicated by the red arrows 
 
Graphical and interpretation tools in Jana2000 
 
Program Jana2000 is based on the generalized crystallography following from the superspace approach. 
As its main features, we should mention possibility to use single crystal or powder diffraction data 
originated from the X-ray, synchrotron or neutron experiment; refinement of modulation of occupancy, 
position, harmonic and anharmonic ADP; refinement of anomalous dispersion coefficients; multipole 
refinement; automatic setting of symmetry restrictions for refined parameters, user constraints and 
restraints, powerful rigid body access; calculation and visualization of 3+d dimensional electron density 
maps. The number of modulation vectors is limited to three according to current experience. The access 
to three or more dimensional structures is unified, i.e. the user sees the same tools regardless of the 
dimension. The underlying idea of the program is to offer a simple way for solving simple tasks but keep 
all possibilities open for complicated structures. 
 
Data Input. The single crystal input data can be provided either as a rough diffractometer file or as a file 
already processed by some data reduction software. Data from various sources can be combined provided 
that the wavelength of the partial data is the same. The reading of data can be followed by automatic 
transformation that changes number of indices according to the target dimension. For instance, three real 
indices used for measurement can be automatically transformed to integer indices of modulated structure. 
Any user defined transformation of indices is possible as well as a transformation resulting from supercell 
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definition. During import of twin domains the program can automatically reveal merohedry by tentative 
transformation of indices using the user defined twin matrices, see Fig. 6. For powder data the program 
supports several basic input forms like GSAS, FullProf and many others. Jana2000 cannot index powder 
data. The symmetry information can be entered by a tool shown in Fig. 7. using a symbol of the 
(super)space group or list of symmetry operators. Non-standard settings and centring are widely accepted. 
Several tools for transformation of the structure model are available, especially cell transformation, 
group-to-subgroup transformation and commensurate structure-to-supercell transformation. In all cases 
the complete structure mode is transformed including coordinates, cell parameters, indices and symmetry. 
The tool for group-to-subgroup transformation is presented in the figure 8.  
 

 
 
Fig. 6: Example of data input to Jana2000. A three-fold twin of CsLiSO4 was indexed in a supercell. The 
transformation matrix transforms the supercell into the finally used elementary cell. The overlap option 
causes that the reflections are sorted automatically into the first, second or third twin domain using the 
twinning matrices.  
 

 
 
Fig. 7: Tool for entering symmetry information into Jana2000. The symmetry can be entered by symbol or 
symmetry operators. "Complete the set" completes set of operators to form a group and derives the 
(super)space group symbol from the operators. The origin can be arbitrarily shifted. In addition to 
standard centering symbols a non-standard centering X can be used with user defined centering vectors. 
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Fig. 8: Tool for group-subgroup transformation. The white lines are the symmetry operations selected 
from the set of existing operators. In this case the inversion center and the centering are retained. If they 
are removed the list of existing operators available for selection is expanded. "Complete subgroup" 
derives the (super)space group symbol from the selected operators. Then the structure model is 
transformed and expanded into the subgroup. The removed symmetry operations can be used as twinning 
operations. 
 
Structure solution and refinement.  
 
Jana2000 cannot automatically solve the phase problem. Instead, it prepares an input for external direct 
methods programs. The refinement program can make Le Bail refinement of profile parameters, Rietveld 
refinement based on powder data or classical structure refinement based on single crystal data. For 
powder data it also refines modulation vectors. Refinement of profile parameters includes Gaussian, 
Lorentzian or Pseudo-Voight profiles and the following corrections: anisotropic particle and strain 
broadening, profile asymmetry, preferred orientation, absorption and background. Structure refinement 
offers the same possibilities for both single crystal and powder data. For all structures refinement is 
possible of position, occupation, twin fractions, extinction, isotropic, anisotropic and anharmonic ADP. 
For 3d structures the multipole refinement is available, too. Occupation, position and ADP parameters can 
be modulated by harmonic modulation waves or by discontinuous modulation functions for occupation 
(crenel function) and for position (sawtooth function). 
 
The refinement program sets automatically symmetry restrictions of refinable parameters. Parts of refined 
structure can be refined within the rigid body approximation in one or more positions in the elementary 
cell. The rigid body approach as used in Jana2000 allows refinement of occupation, position and TLS 
modulations for each rigid body position and combination of rigid body and free atomic contributions for 
selected parts of rigid body. Structure parameters can be fixed or made dependent using their unique 
identifiers and tools for setting refinement options.  The simplest option is fixing a parameter or group of 
parameters to zero or to their actual value. The user can also define linear dependencies between 
parameters or require the same modulations, temperature parameters or sum of occupancies for two or 
more atoms. Selected bond lengths and angles can be restrained to a desired value within a user defined 
limit based on their standard uncertainty. Set of geometrical constraints is available for fixing a geometry 
of some atomic group, keeping structural fragments planar and forcing positions of some atoms to 
complete a defined geometric shape. The latter is especially useful for positions of hydrogens, which 
should complete a tetrahedral of trigonal coordination given by remaining non-hydrogen atoms, see Fig. 
9. The bond length and angle restraints as well as the geometrical constraints work for both standard and 
modulated structures.  
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Jana2000 enables calculation and visualization of Fourier maps. It can also pre-calculate atomic positions 
for visualization of modulated structures by an external plotting program. Both these features were 
discussed in section 2 and 3. Moreover, the program contains a tool for plotting various structure 
parameters as a function of t coordinate, for instance position, occupancy, ADP parameters, distances and 
angles. A growing importance has interpretation of bond valences that is good indication of stability of 
coordination of an atom in modulated structure. An example is given in Fig. 10.  
 

 
 
Fig. 9: Tool for constraining refinement of hydrogens. The highlighted option keeps two hydrogen atoms, 
H4a and H4b, to complete tetrahedric coordination around the central atom C4. It should be noted that 
this constraint works also for modulated structures. 
 

 
 
Fig. 10: Bond valence sum calculated for the environment of Co in Sr1.274CoO3 [5] as a function of t. 
Large abrupt changes of the bond valence sum correspond with the discontinuous changes of cobalt 
coordination found in this structure.  
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Introduction 
 
The determination of crystal structures is an important part of chemistry, physics and of course 
crystallography. Conventional structure determination is based on the analysis of the intensities and 
positions of Bragg reflections which only allows one to determine the long range average structure of the 
crystal. Only one-body information such as atomic positions, site occupancies and temperature factors can 
be extracted. Determination of the average structure based on powder diffraction data is now routinely 
done using the Rietveld method. It should be kept in mind, however, that the analysis of Bragg scattering 
assumes a prefect long range periodicity of the crystal. However, many materials are quite disordered and 
even more importantly, the key to the deeper understanding of their properties is the study of deviations 
from the average structure or the study of the local atomic arrangements. Deviations from the average 
structure result in the occurrence of diffuse scattering which contains information about two-body 
interactions. A convenient way to reveal the local, medium and long range structure of a material is the 
analysis of the Pair Distribution Function (PDF). The PDF is obtained via Fourier Transform from 
properly normalized diffraction intensities. This method has long been applied to the study of short range 
order in liquids and glasses but has recently been extended to crystalline materials. A summary of this 
technique and its applications is given in the review by Proffen et al. [1] as well as the recent book by 
Egami and Billinge [2].  
 
The key to the successful analysis of the PDF is often the ability to refine a structural model to the 
experimental data. Two programs to calculate and refine PDFs from a structural model are the real space 
refinement program PDFFIT [3] and the general defect structure simulation program DISCUS [4,5]. Both 
programs are available from the author or on the WWW at 
http://www.totalscattering.org/programs/discus/. This paper gives a short summary of the details, how 
these programs calculate the PDF given an atomic structure. 
 
Calculating the PDF 
 
The PDF can simply be understood as a bond-length distribution of the material under investigation, in 
other words the PDF is related to the probability of finding an atom A at a distance r from an atom B as 
illustrated in Figure 1. Unfortunately there are many different definitions used in the crystalline, glass and 
liquids community as well as different program packages. A summary of definitions and conversions is 
given in a paper by Keen [6]. 

   
 
Figure 1: Schematic diagram of the PDF of graphite. The circles mark the near-neighbor shells. The 
corresponding distances can easily be seen in the PDF. Distances are given in Å. 
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In this paper we will use G(r) which is implemented in the programs DISCUS and PDFFIT and is in 
some way the PDF function of choice for disordered crystalline materials [6].  The function is calculated 
from a structural model using the relation 
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In this equation, the sums loop over all atoms i and j in the structure which are separated by a distance rij. 
In addition each contribution is weighted by the atoms scattering power bi. Finally <b> is the average 
scattering power of the sample and ρ0 is its number density. In practice, the first sum loops over all atoms 
i in the crystal, but the second sum is limited to neighboring unit cells with a distance not larger than the 
probing distance rij. This reduces the computing time significantly, but it requires the program to maintain 
the information relating a particular atom to its unit cell. In DISCUS and PDFFIT this is realized via a 
specific order of the atoms within the computer memory. As the program calculates the contributions of 
each relevant atom-atom pair, the corresponding weight is ‘histogrammed’ on a specified grid in r.  
 
Introducing thermal motion 
 
In reality atoms move due to thermal motion, resulting in a broadening of the PDF peaks related to the 
atomic displacement parameters (adp) of the respective atoms. Calculating the PDF following equation 
(1) will give one sharp contribution for each atom-atom pair sampled. In cases where the model crystal is 
of sufficient size the atoms can be randomly displaced according to their adp’s. As a result  
 

 

Figure 2: Modeling of thermal motion: (a) no thermal motion; (b) no thermal motion, Qmax=35Å-1; (c) 
convolution with Gaussian (blue solid  line) and correlated motion (dotted red line); (d) ensemble 
average 3x3x3 unit cells; (e) Gaussian, Qmax=35Å-1 and (f) ensemble average  and convolution. 
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the calculated PDF peaks will show a reasonable width. On the other hand in many cases the disorder in 
the model can be described sufficiently using a much smaller model. In this case, an alternative way to 
introduce thermal broadening is needed. The simplest way is to convolute the expression in Equation 1 
with a Gaussian of appropriate width. This is illustrated in Figure 2: (a) shows the PDF of a perfect 
crystal with no thermal displacements and as a result, sharp peaks are observed for the different atom-
atom distances. In Figure 2c we see the PDF of the same model crystal, only this time thermal motion 
was modeled using Gaussians. The alternative of a larger model crystal (here 3x3x3 unit cells) with 
individually displacing atoms is seen in Figure 2d. Because of the still limited size of the model crystal, 
the PDF peaks appear noisy. The other parts of Figure 2 deal with termination effects and are discussed in 
the next section. 
 
Thorpe and co-workers [7] have shown that the pure Gaussian is insufficient due to anisotropic averaging 
and the function actually used in PDFFIT and DISCUS to model thermal motion is  
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Here σij is the peak width calculated from the respective adp’s of atoms i and j. As you can see the last 
term is the correction to the Gaussian PDF peak shape mentioned above.  
 
Termination effects 
 
As mentioned above, the experimental PDF is obtained via a Fourier Transform and as a result, the 
observed PDF contains truncation contributions. Although there are many approaches using dampening 
functions before applying the Fourier Transform to minimize these contributions, the effect of a cutoff at 
a given value Qmax can be modeled analytically. All that is required, is a convolution of the model PDF 
with the Fourier Transform of the step function terminating the diffraction data. This function is 
 

 maxsin( )( ) Q rS r
r

= . (3) 

 
In practice it turns out that for large Qmax, the termination effects are very small compared to the 
contribution due to noise in the diffraction data. Values of Qmax > 40Å-1 can now routinely be achieved at 
instruments located at synchrotron or spallation neutron sources. 
 
The r-dependence of the PDF peak width 
 
The final piece needed to calculate a PDF from a structural model are corrections due to instrument 
resolution as well as correlated motion. Let us discuss correlated motion first: Near neighbor atoms have 
the tendency to move in phase causing near neighbor PDF peaks to sharpen compared to far neighbor 
peaks. The size of the effect depends on the bonding in the crystal and e.g. for a covalent bonded semi-
conductor alloy this sharpening is much more pronounced than for example for a metal as discussed in a 
paper by Jeong et al. [8]. The second effect to be discussed is the instrument resolution. It causes an 
increase of the PDF peak width as function of distance r as well as an exponential dampening of the PDF 
peaks as function of r. An example is shown in Figure 2c when comparing the PDF shown in blue with 
no correction for correlation motion with the PDF shown in red showing a sharper nearest neighbor PDF 
peak due to correlated motion. The r dependence of the PDF peak width as implemented in the programs 
DISCUS and PDFFIT is given by 
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δ γσ σ α= − − + 2 2 . (4) 

 
Here σ’ij is the peak width calculated from the adp’s of the model crystal and rij is the atom-atom 
distance. Equation (4) reveals the two correction terms δ and γ to account for correlated motion. The 
different r dependence is related to the vibrational model suitable for the studied system and details can 
be found in [8]. The correction term α accounts for peak broadening at large r due to instrument 
resolution. In practice, however, this effect is only observed for distances above 20Å on medium- and 
high resolution instruments. 
 
For a more detailed discussion, please refer to the PDFFIT users guide [9] and it desired the source code 
of PDFFIT and DISCUS which is part of the programs UNIX distribution. 
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Refinement in Crystals 
 

Richard Cooper and David Watkin, 
Chemical Crystallography, Department of Chemistry, University of Oxford, Chemistry Research 
Laboratory, Mansfield Road, Oxford, OX1 3TA, UK - Email : david.watkin@chem.ox.ac.uk ; WWW: 
http://www.xtl.ox.ac.uk/ and http://www.chem.ox.ac.uk/researchguide/djwatkin.html  
 
In the last newsletter, there were brief articles on refinement in both SHELXL97 and SIR2004.  We have 
been invited to describe how CRYSTALS fits in with them.  The authors of these programs and of 
CRYSTALS have all known each other for many years and enjoy and benefit from the amicable 
competition between their programs.  To complete the stories started by Sandy Blake and the SirTeam 
last time, here follows a brief description of where CRYSTALS fits in with these other excellent 
programs. 
 
During the 1979’s the Oxford Chemical Crystallography Laboratory had a strong interest all aspects on 
crystallographic computing, including Direct Methods, with a good Symbolic Addition program being 
written by John Hodder, and Tom Blundell’s tangent refinement program.  At that time Davide Viterbo 
and Edwardo Castellano also made their contributions as post docs.  Because of Keith Prout and John 
Rollett’s involvement in twinning, the main thrust of programming moved into refinement and analysis, 
which remains our strongest interest.  We now have no skills in programming Direct Methods, but 
fortunately we are permitted to distribute re-compiled versions of SHELXS 84 by George Sheldrick and 
SIR92 by Carmelo Giacovazzo along side CRYSTALS.  Interfaces exist in CRYSTALS to enable it to 
communicate freely with more modern Direct Methods programs which users can obtain directly from the 
authors.  Structure refinement and analysis remain our principal domains. 
 

CRYSTALS – the users view 
 
It is now common for serious computing environments to have dual user interfaces – a GUI for the more 
routine tasks, and a Command Line Interpretor(CLI) which enables the user to get into close 
communication with the full richness of the system.  A similar duality exists for CRYSTALS.  The CLI, 
which was the only mechanism for communicating with the program in the days of mainframe 
computing, has been retained and extended, and offers the users access to an amazing wealth of 
operations.  Access to this interface can either be obtained by typing command directly into the running 
program, or a whole series of commands can be pre-prepared in an ASCII file and then executed.  This 
‘batch mode’ of operation is useful if the same sequence of commands need to be used repeatedly, as for 
example during the regular program validation exercises. 
 

#list 12 
full x’s u’s 
end 
#sfls 
refine 
refine 
calc 
end 
#fourier 
map type=difference 
end 
#peaks 
end 
#distance 
end 

 
However, for more routine work, it is convenient for the user if frequently used sequences of operations 
are pre-packed into a single higher-level operation, which is then made accessible from some kind of 
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menu.  Static menus are quite useful, but their functionality can be enhanced if they are able to interrogate 
the current state of the analysis and ask the user for additional information or guidance.  If at the same 
time, the user is able to interact with a visualisation of the structure, one has a fully-fledged GUI.  In 
CRYSTALS, the extensive GUI is created by a scripting language (because of its origins in the 1980’s, 
procedural rather than object orientated). This means that the GUI items can be programmed to make 
quite complex decisions, even to control whole structure analyses.  And because the GUI is built from 
plain-text scripts, it can easily be developed and extended to meet new or local needs. 
 

 
 
Fig 1: The GUI window has tool bars, drop-down menus, a context sensitive model window, an editable 
structure parameter window, tabs for various information tables and an area into which commands can 
be typed – the old CLI.  One command #USE filename causes the contents of the file to be processed 
as commands. 
 

CRYSTALS AND SHELXL97 
 
Although in recent years CRYSTALS has gained in popularity because of its graphical user interface, 
beneath this there still lies a powerful command line interface.  The user can either type commands 
directly into this, or pre-prepare them in files (or a mixture of both). 
 
The convergent evolution existing between SHELXL97 and CRYSTALS can be illustrated by recasting 
the SHELXL97 examples given by Sandy Blake into CRYSTALS command line format.  Of course there 
is no line-by-line correspondence, (which makes it difficult. to automate migration from one system to the 
other except for trivial cases).  A difference which often irritates a user migrating from SHELXL97 to 
CRYSTALS is our verbose syntax – there is a lot to type into CRYSTALS to get the same effect as in 
SHELXL97.  This is a hang over from the early days of computing, when the command structure enabled 
the program to do a syntactical analysis of the data, and perhaps suggest which cards had been mistyped.  
Errors can be made, even with modern text editors, and syntactical analysis can still reveal an incomplete 
cut-and-paste job!  The verbose input to CRYSTALS may increase the opportunity for typing errors, 
however it also makes it easier to locate them.   
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Constraints: 
 
SHELXL97 

EXYZ atomnames 
E
 
ADP atomnames 

CRYSTALS 
RIDE C(1,X’S) UNTIL F(4)  
RIDE C(1,U’S) UNTIL F(4) 
RIDE C(1,X’S,U’S) UNTIL F(4) 
RIDE C(23,X’S) H(231,X’S) H(232,X’S) H(233,X’S) 

On a RIDE card (line), parameter shifts are equated on an atom by atom basis 
 
LINK C(1,X’S,U’S) UNTIL F(4) AND C(101,X’S,U’S) UNTIL F(104) 

On a LINK card, parameter shifts in the first atom list (up to the ‘AND’) are equated with corresponding 
parameters in the second list.  Useful in the initial treatment of pseudo-symmetry or disorder 
 

EQUIVALENCE F(1,OCC) UNTIL F(4) 
 
A single parameter shift is used for the occupations number of all the atoms between F1 and F4, for 
example in a BF4 group 

 
EQUIVALENCE F(1,OCC) UNTIL F(4) F(101,OCC) UNTIL F(104) 
WEIGHT -1 F(101) UNTIL F(104) 

 
This could be two interpenetrating BF4 groups (F1-F4 and F101 until F104). Equal shifts are applied to 
the occupation numbers of all 8 atoms, but in an opposite sense for the second four.  A similar 
construction can be used to impose non-crystallographic symmetry 
 

EQUIVALENCE C(1,X) C(101,X) 
WEIGHT -1 C(101,X) 
 

A group of atoms can be refined as a rigid body (ie refine their centroid and orientation).  A model 
building instruction must have been used to ensure the group had the correct local geometry before 
refinement starts. 
 

GROUP C(1) UNTIL C(27) 
 
SHELXL97 has the option to scale rigid groups (a variable metric) – an option we would certainly look 
into next time we are extending this part of CRYSTALS. 
 
If a group of parameters are such that their total should remain constant under refinement (e.g. twin 
components, partial occupancies), this can be applied as a constraint.  If one is uncertain of what the total 
should be, the control can be applied as a restraint with a standard uncertainty.  Both options exist in 
CRYSTALS. 

SUM parameter list 
e.g. SUM ELEMENT(1) ELEMENT(2) ELEMENT(3) … 

to ensure that the total of the twin elements add up to unity. 
or SUM  s ATOM(1,OCC) ATOM(2,OCC) ATOM(3,OCC) … 

as a restraint with uncertainty s. 
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Restraints: 
 
SHELXL97 

DFIX  d  s[0.02]  atom pairs 
SADI  s[0.02]  atom pairs 
SAME  s1[0.02]  s2[0.02]  atomnames 
DELU/SIMU/ISOR 
FLAT  s[0.1]  four or more atoms 
SUMP  c  sigma  c1  m1  c2  m2 ... 
 
 

CRYSTALS 
DISTANCE d, s = atom(1) TO atom(2), atom(3) TO atom(4), etc 

The distances between the atom pairs are restrained to d with an su of s 
DISTANCE d, s = MEAN atom(1) TO atom(2), atom(3) TO atom(4), etc 

As above, except that all the pairs are restrained to their common mean +d, which is 
usually zero. 

ANGLE a, s = atom1 TO atom2 TO atom3 … etc 
The angle between the 3 atoms is restrained to a degrees with an su of s .  A similar syntax 
enables a number of angles to be restrained to their mean value. 

SAME  s1, s2 atom list AND atom list AND …. 
The geometries at each atom in each list are restrained to be the same.  This command is in 
fact expanded into a list of DISTANCE and ANGLE restraints.  S1 and s2 are the standard 
uncertainties on the distances and angles.  

VIBRATION u, s = atom1 TO atom2, atom3 TO atom4, etc 
Restrains the component of U along the bond to be the same for each atom in each pair of 
atoms, (the Hirshfeld condition).  u is an offset, generally zero 

U(IJ) u, s = atom1 TO atom2, atom3 TO atom4, etc 
The components of Uij for each atom in each atom pair are retrained to be similar, plus an 
offset, u, usually zero. 

PLANAR s atom list 
Restrains the atom in the list to be coplanar. 

NONBONDED v, p= atom1 to atom2, … etc 
The atom pairs are restrained to be v angstrom apart using a function with a steep repulsive 
gradient if the atoms are too close together, and a shallow attractive gradient if they are 
further apart. 

SUM s parameter list. 
Restrains the sum of the listed parameters to remain constant  

AVERAGE s parameter list 
Restrains each parameter in the list to their common average. 

LIMIT s parameter 
The shifts in the specified parameters are restrained to zero with a standard uncertainty of 
s, unless the X-ray data strongly indicate something else.  Different parameters or 
parameter types can be limited to different degrees.  This is a derivative of Marquardt’s 
method, and should not be confused with ‘damping’ a refinement using partial shifts.  
Partial shifts are also available in CRYSTALS 

RESTRAIN v, s = Expression 
Expression is a FORTRAN like representation of a function of the refinable parameters 
and other crystallographic constants, and v is the target value.  The expression is 
differentiated by CRYSTALS and the derivatives added into the normal equations. 
 

CRYSTALS includes functions to go through a structure and automatically generate lists of restraints.  
These can then either be applied automatically, or manually edited to achieve some non-standard result.  



The restraints are found in an ASCII file ‘bfile.pch’, called the PUNCH file, another hangover from the 
days when IBM cards were actually punched out! 
 
Automatic generation of restraints is available for: 

• Hydrogen atoms.  Bond lengths are restrained to the same target values as are used in SHELXL97, 
bond angles are restrained to target values or to satisfy symmetry, Uiso is related to Uequiv of the 
adjacent atoms. 

 
#DISTANCE 
OUTPUT PUNCH =H-RESTRAIN 
END 

 
• Create adp similarity and Hirschfeld restraints 

 
#DISTANCE 
OUTPUT PUNCH = SIMU S1DEV=s S2DEV=u 
END 
#DISTANCE 
OUTPUT PUNCH = DELU D1DEV=s D2DEV=u 
END 
 
s and u are standard uncertainties for normal and terminal bonded atoms. 
 

• Molecular similarity This was described above (SAME) 
 

• Intermolecular short contacts. 
 

#DISTANCE 
OUTPUT PUNCH=NON-BONDED VALUE=1.5 POWERFACTOR=1.0 
END 

 
 
Non-atomic electron density distributions. 
 
These were described in the last newsletter.  For very highly disordered fragments, models based on 
multiple interpenetrating partially occupied structures become unrealistic.  In these cases, it may be better 
to use a diffuse distribution of electron density with a simple geometric shape, or even to use the discrete 
Fourier transform of the residual density in the un-resolved area (SQUEEZE).  The CRYSTALS 
integration with SQUEEZE in PLATON conserves the A and B parts of the structure factor, so that no 
modifications are made to Fo, and the disordered region contributes to the phasing. 
 

 
Sandy’s examples (Dolomanov et al. 2003) 
Example 1.  Restraining a disordered BF4 anion.   
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Fig 2: Sandy’s figure 7 
 
 

DFIX   1.38  0.01    B F1    B F2    B F3    B F4 
DFIX   2.25  0.02    F1 F2   F1 F3  F1 F4   F2 F3   F2 F4   F3 F4 
DFIX   1.38  0.01    B F1’  B F2’  B F3’  B F4’ 
DFIX   2.25  0.02    F1’ F2’  F1’ F3’  F1’ F4’  F2’ F3’  F2’ F4’  F3’ F4' 
 

Becomes 
DIST   1.38  0.01 = B(1) to F(1), B(1) to F(2), B(1) to F(3), B(1) to F(4) 
CONT   B(1) TO F(101), B(1) TO F(102), B(1) TO F(103), B(1) TO F(104) 
DIST   2.25  0.02 = F(1) to F(2), F(1) to F(3), F(1) to F(4),  
CONT   F(2) to F(3), F(2) to F(4), F(3) to F(4) 
CONT   F(101) TO F(102), F(101) TO F(103), F(101) TO F(104) etc 
 

Note that atoms are identified by an element type and a number.  The advantage of this is that the 
numbers can be used in mathematical expressions, eg for sorting, in CRYSTALS. 
 
Example 2.  Restraining a poorly defined SbF6

- anion.  The target value for the Sb-F bond 
is uncertain, but they are expected to be the same by symmetry. 
 

 
 
Fig 3: Sandy’s figure 8 
 

SADI  0.01  Sb26  F27  Sb26 F28  … Sb26 F32 
 

Becomes 
 

 DIST 0.0, .01 = MEAN SB(26) TO F(27), SB(26) TO F(28) ..SB(26) TO F(32) 
 
Example 3.  Restrain the local geometries of three fragments to be similar.   
 

 
 
Fig 4: Sandy’s figure 9 
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SAME  0.01  C1 > O7 
C11  ... 
N12 … 
C13 … 
C14 … 
C15 … 
O16 … 
O17  ... 
 
SAME  0.01  C1 > O7 
C21  ... 
N22 … 
C23 … 
C24 … 
C25 … 
O26 … 
O27  ... 

 
Becomes 
 

SAME .01 C(1) UNTIL O(7) AND C(11) UNTIL O(17) AND C(21) UNTIL O(27) 
 

Example 4.  A disordered bromide anion in a cavity.   
 

 
 
Fig 5: Sandy’s figure 10 
 
 

SUMP  1.00   0.01   1  2   1  3   1  4   1  5   1  6 
 
FVAR  osf   0.2  0.2  0.2  0.2  0.2   
 
Br1      5   x y z   21 
Br2      5   x y z   31 
Br3      5   x y z   41 
Br4      5   x y z   51 
Br5      5   x y z   61 
 

Becomes 
 

As a constraint: 
 

SUM BR(1,OCC) UNTIL BR(5) 
 
Or as a restraint 
 

SUM .01 BR(1,OCC) UNTIL BR(5) 
 

It is assumed that the Br are adjacent in the atom list, and that the initial sum of their occupancy factors 
adds up to unity.  If any of the Br also happen to be on a special position, more complex restraints must 
be used. 
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Free Variables 
 
Sandy’s last example illustrates the use of ‘Free Variables’ in SHELXL97.  Free variables are also used 
in CRYSTALS, but they are automatically set up for the user.   
 
Blocked Normal Matrices 
 
In SHELXL97 the BLOC instruction enables the user to specify that different groups of parameters can 
be processed in different ways in different least squares cycles.  Two different strategies are available in 
CRYSTALS. 
 
Multi-block sparse matrix.  User-specified blocks of parameters are set up along the leading diagonal.  
The most sparse is to use a single block for each atom.  More effective strategies are to set up blocks 
either corresponding to molecular fragments, or to separate the positional parameters and the adps.  There 
are no restrictions on the blocking scheme other than that a given parameter can only appear in one block.  
The figure shows an atom-by-atom blocking scheme, and a per-fragment scheme. 
 

 
 

Fig 6: Sparse Matrix Schematics.  In the left example, a block of the matrix is computed for the selected 
parameters of the selected atoms.  Cross terms between atoms are ignored.  In the right example a 
separate block is set up for each fragment.  This is an excellent scheme if the fragments are not 
correlated, but is a catastrophe if they are related by pseudo symmetry.  Beware of being Marshed!  
(Watkin, 1994) 

 
BLOCK X’S 
BLOCK SCALE FIRST(U’S) UNTIL C(27) C(28,U[ISO]) UNTIL LAST 
… 
REFINE 
REFINE 
REFINE 
 
The first two lines create a matrix consisting of two blocks. One block contains the x.y & z 
of all the atoms.  The second block contains the anisotropic adps of the atoms up to C28, 
and the isotropic adps of the rest.  Note that this block also includes the overall scalefactor, 
which is highly correlated with the adps.  This sparse matrix is accumulated and inverted 
for all three cycles of refinement 
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1) Small dense matrices accumulated and inverted separately in different cycles 
 

BLOCK X’S 
REFINE 
BLOCK SCALE FIRST(U’S) UNTIL C(27) C(28,U[ISO]) UNTIL LAST 
REFINE 
 
This task consists of two independent cycles of refinement.  In the first only the positions 
are refined, in the second the scale and adps. 
 

The first example is the preferred way of completing the refinement of a very large structure since a 
single structure factor calculation is used for the computation of all the derivatives. 
 
Model Building 
 
This is perhaps the area of greatest dissimilarity between SHELXL97 and CRYSTALS.  In SHELXL97 
the modelling instructions are embedded amongst the constraints and restraints.  In CRYSTALS, 
modelling, constraints and restraints are kept quite distinct.  As usual, this gives SHELXL97 an advantage 
in terms of lines typed.  However, because CRYSTALS is generally run interactively on a PC, separating 
the functions enables the user to try various models in an exploratory way.  A difficult analysis can be put 
aside and then picked up at a later date at the point where it was previously left off – in much the same 
way as a complex document can be worked on in Microsoft WORD without having to restart from a plain 
text file.   
 
In the last example (4), both the restraint and the constraint instructions assume that the starting model 
has been correctly built, and so refer only the actual parameter values to be refined.  The same idea is 
used for the treatment of hydrogen atoms.  Firstly they are added to the backbone (either from a 
difference map or geometrically), and then their refinement is controlled (by fixing them, by applying 
restraints, by applying ‘riding’ constraints or by any appropriate mixture). 
 
CRYSTALS: 
 

#PERHYDRO 
DIST 0.98 
U[ISO] NEXT 1.2 
END 

 
This command places hydrogen aoms on all the carbon atoms in the structure at a distance of 0.98 
Angstrom, and with Uiso equal to 1.2 times the carbon Uequiv. 
 
Commands also exist for adding hydrogen atoms on a one-by-one basis to selected atoms.  In fact, the 
‘PERHYDRO’ command is expaded into a series of per-atom commands, which the user can view and 
edit to produce special environments. 
 

#HYDROGEN 
DIST 1.00 
U[ISO] NEXT 1.1 
H13 pivot_atom 3 neighbouring_atoms 
H12 pivot_atom 2 neighbouring_atoms 
etc 
HBOND donor acceptor 
END 

 
 



Example 5.  Adding in part of a structural model from elsewhere.   
 

 
 
Fig 7: Sandy’s figure 4 
 
SHELXL97. 
 

FRAG   17   15.72  20.15 20.39 74.8 70.75 86.50 
Co      4      x y z... 
C1      1      x y z... 
C2      1      x y z... 
B3      3      x y z... 
... 
B19     3      x y z... 
FEND 
 
AFIX  17 
Co1    7   0.33250   0.76245   0.52909  11.000  0.0608 0.1389 = 
           0.0396   -0.0183   -0.0212    0.0153 
C1     1   0.37668   0.84367   0.54903  11.00000   0.155 
C2     1   0.41382   0.84350   0.45796  11.00000   0.089 
B3     3   0.31680   0.82455   0.43612  11.00000   0.117 
... 
B19    3   0.20793   0.79538   0.51437  11.00000   0.138 
AFIX   0 
 

CRYSTALS 
 
The model, which is assumed to have approximate values for most atoms, is used as the target for 
regularisation by a better structure.  This may either be a well defined group within the current structure, 
or come from elsewhere.  In this case atomic coordinates for the ideal structure come from the CSD. 
 

#REGULARISE REPLACE 
GROUP 17 
SYSTEM 15.72  20.15 20.39 74.8 70.75 86.50 
IDEAL 
ATOM X Y Z 
… 
ATOM X Y Z 
TARGET CO(1) UNTIL B(19) 
END 

 
There are 17 ATOM lines containing the coordinates of the atoms in the same order as approximate ones 
in the group Co(1) until B(19).   
 
 Refinement is completed by refining the atoms freely, with geometric restraints or as a rigid 
group: 
 GROUP CO(1) UNTIL B(19) 
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The REGULARISE command can also be used to fill in missing atoms in one fragment with ones 
mapped from elsewhere (REGULARISE AUGMENT), to compare two fragments (ie find the rms atomic 
deviations after fitting them together with information about the transformation used) or to replace a trial 
model with a scaleable geometric figure (CP-RING, HEXAGON, OCTAHEDRON, PHENYL,SQUARE, 
TBP, TETRAHEDRON). 
 
Residues and Parts. 
 
SHELXL97 included a powerful syntax for dealing with multi-fragment or disordered structures.  Similar 
ideas have been implemented in CRYSTALS.  Groups of atoms which are spatially distinct (main 
molecule, solvent, counter ions) can each be put into a separate ‘residue’.  These residues can be used in a 
command anywhere an atom identifier might be used as a short hand for a whole group of atoms. 
 
SHELXL97 
 

PART  n  sof 
 

CRYSTALS 
 

FULL FRAG(1,OCC) 
 
Might be equivalent to: 

FULL C(1,OCC) UNTIL C(27) 
 
Disordered parts of a molecule (or fragment) can be distinguished from each other by assigning them to a 
‘group’.  Atoms in different groups do not bond to each other, unless the group number is zero.  This can 
be useful for setting up constraints. 
 

RIDE GROUP(1,OCC) AND GROUP(2,OCC) 
 
The definition of group 1 and 2 is part of building the model. 
 
Summary 
 
This part of this article has tried to show that there are great similarities between SHELXL97 and the 
command line interface to CRYSTALS.  This is the interface used by experienced crystallographers when 
dealing with difficult problems.  To aid the user in composing correct commands, a view of the model is 
always available on the screen, and atom names can be passed into the command line simply by clicking 
on them in the diagram.  This is most useful during model building – and if the model begins to look 
‘wrong’, the user can regress to an earlier model. 
 
 
 

CRYSTALS and SIR2004 
 
The SIR family of programs are widely respected and widely used because of their direct methods 
capabilities.  However, since SIR97 they have also included refinement code developed from CAOS.  
Unlike the close similarity between CRYSTALS & SHELXL97 (an example of convergent evolution), 
the close similarity between CAOS and CRYSTALS is the result of shared ancestry.  Much of the 
underlying data base design in CAOS was devised by Bob Carruthers during his post doctoral stay in 
Rome, before returning to Oxford to begin writing CRYSTALS.  The design of this data structure was 
strongly influenced by earlier ALGOL programs of Durward Cruickshank and AUTOCODE programs of 
John Rollett.  The similarities include a list structure for maintaining the data, and an input syntax 
amenable to syntactical processing.   
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The constraints and restraints available in CRYSTALS have been described above.  The recent article on 
SIR2004 lists some of the refinement features: 
 

1) The ability to reduce the full matrix of the normal equations defining any kind of blocks. 
This facility is available in CRYSTALS, but is rarely used now except for the biggest structures. 
CRYSTALS will handle 600 anisotropic or 1400 isotropic atoms in the full matrix, and an 
effectively unlimited number with matrix blocking.  However, the algorithms used to compute 
structure factors and derivatives are not optimal for macromolecular structures.  In addition to the 
normal Choleski inverter, CRYSTALS can solve the normal equations by eigenvalue 
decomposition. 
 

2) 18 weighting schemes are available.  
CRYSTALS also contains most of the schemes available in SIR2004, plus a few others.  Robust-
resistant and Dunitz Seiler weight modifiers are available in conjunction with any of the other 
schemes.  A re-implementation of the SHELXL97 weighting scheme is suitable for F2 refinement. 
 

3) The program generates constraints for the parameters of atoms on special positions in all space 
groups. 
CRYSTALS tries to generate space group constraints for all atomic parameters. However, there 
are difficulties in symbolically reconciling space group constraints when the user has already 
manually specified other constraints (eg equivalencing of parameter shifts, treating a group of 
atoms as a rigid body, reparameterisation into orthogonal coordinates). In this case, space group 
symmetry requirements are applied to the affected parameters in the form of very tight restraints. 
 

4) Automatic or through wizard generation of hydrogen atoms. 
In CRYSTALS the command PERHYDRO geometrically places hydrogen atoms on all carbon 
atoms, otherwise the menu shown below can be used for individual cases.  A semi-automated 
procedure combines Fourier and geometric methods. 
 

5) The possibility to impose conditions (constraints) or additional information (restraints). 
Many of the options available in CRYSTALS were described in the comparison with SHELXL97.  
An additional constraint, useful when there is high correlation between parameters, is to refine 
sums and differences of parameter shifts, rather than the shifts themselves 
 
COMBINE C(1,X’S) UNTIL C(6) AND C(101,X’S) UNTIL C(106) 
 
This would re-parameterise two six-membered groups related by a pseudo crystallographic 
inversion centre. 
 

6) Floating origin is restrained automatically by setting the restrain of the sum of the. appropriate 
coordinate. 
The terms in the sum are weighted according to the scattering power of the atoms. 
 

7) Refinement of the Flack parameter to evaluate the absolute configuration.   
This is performed correctly, including the correlation with any other refined parameters.  The 
parameter is permitted to take on negative values.  Other refinement features available in 
CRYSTALS include twin, batch (for multi-crystal data sets) and layer scale factors. 

 
The underlying codes in both SIR2004 and CRYSTALS are almost equally suitable for most routine 
structure refinements.  There are however significant differences in the user interface. 
 
Both SIR2004 and CRYSTALS were originally controlled by cards or card images in ASCII files.  
Development has continued along parallel but independent routes, and both programs now have graphical 
interfaces.  The figure shows how close these developments sometimes are. 



 

 
 
Fig 8: Parallel evolution in SIR2004 and CRYSTALS.  Hydrogen placement menus:  left, CAOS, right 
CRYSTALS. 
 
One very special feature of CRYSTALS is the integral processor for a tailored scripting language.  This 
enables a user or application programmer to construct quite complicated operations out of a sequence of 
CRYSTALS primitives.  For example, the primitive for placing hydrogen atoms on carbon can be 
combined with the primitive for computing a difference electron density map.  The results are displayed 
jointly for possible user intervention, after which the refinable model is updated.  One option is to 
perform automatic Fourier refinement, and another is to refine the (found or placed) hydrogen atoms with 
automatically generated slack restraints on the geometry and isotropic adps.  Once the geometry has been 
regularised in this way, the refinement can be finished with the hydrogen atoms treated with riding 
constrains.  These also are generated automatically.   
 
The figure shows the structure manipulation menu and the hydrogen treatment menu. 
 

 

 
Fig 9: Hydrogen placing.  Selections can be made in the model by clicking.  The pink atoms are peaks 
from the difference density map, the white atoms are hydrogen placed geometrically.  The user can 
change the peaks found in the difference map into hydrogen atoms.  The check-box near the middle will 
initiate cycles of refinement of the hydrogen atoms only with the imposition of suitable geometric and adp 
restraints.  
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Structure modelling is a crucial stage in resolving difficult structures, and SCRIPTS have been used to 
build a large number of tools to help with this.  Because SCRIPTS are a kind of macro language used to 
invoke CRYSTALS primitives, they can easily be extended or developed to treat new cases.  In addition 
to sending commands down to the underlying CRYSTALS program, SCRIPTS can also interrogate the 
CRYSTALS data base and the user.  This can be done via drop down menus, radio buttons, checkboxes 
or direct clicking into the model. 
 
Structure Editing.   
 
Powerful constraints and restraints are essential for dealing with difficult refinements, but even more 
important is the construction of an appropriate starting model.  Least Squares is only a technique for 
applying the final tweaks to an already fundamentally correct structure.  Some of the model building 
facilities were described above.  Other commonly required actions are available through the GUI. 
 

 
 
Fig 10: Top level structure modification menu (left).  Drop-down context sensitive menu in model window 
(right).  The choice of options depends upon how many atoms have been selected 
 
The actual numerical values of parameters can be changed by using a text editor on an ASCII file 
containing all the parameters for the whole model.  More conveniently, some can be changed using the 
drop down context sensitive menu.  Alternatively, an editor pane can be opened for any atom and 
parameter values changed interactively. 
 

 
 
Fig 11: GUI menu of modelling primitives 

64 



65 

 
The greatest wealth of modelling primitives is accessible via the old-fashioned command-line input.  This 
is still available via a text input box in the GUI.  Users can either type commands into this box, or enter 
the name of a file of preprepared commands.  There is a vast vocabulary of commands that can be entered 
here.  The built-in editor enables simple modification of parameter values, but more useful are 
crystallographic operations.  These can perform mathematical operations on groups of atom parameters, 
change, sort and filter atoms, assign atoms to residues or groups – a total of 40 different operations. 
 
Modelling Examples 
 

1. Move the centre of gravity of a structure onto a centre of inversion. 
2.  

#EDIT 
CENTROID 100 ALL 
SHIFT –x –y –z ALL 
SHIFT .5 .5 .5 ALL 
DELETE QC(100) 
END 
 
This creates a pseudo atom (QC(100)) at the centroid of the existing atoms. The model is then 
shifted by the coordinates of this centroid (-x,-y,-z) to put the centre of gravity at (0,0,0), and then 
shifted again to put it at (.5,.5.,5).  The pseudo atom is then deleted.  Useful if a P⎯1 structure has 
been solved in P 1. 
 

3. Rotate a methyl group through 30 degrees. 
4.  

#EDIT 
ROTATE 60.0 C(1) C(2) H(20) H(21) H(22) 
END 

 
5. Allocate residue numbers to discrete moieties, add an offset to the serial numbers of moiety two, 

and delete moiety three. 
 

#EDIT 
INSERT RESIDUE 
ADD 100 RESIDUE(2,SERIAL) 
DELET RESIDUE(3) 
END 

 
6. Reject any atoms who’s isotropic adp has become too large 

 
#EDIT 
SELECT U[ISO] LE .10 
END 
 

7. Ensure that the individual adps of a group conform to a rigid model before starting restrained 
refinement 

 
#ANISO 
ATOM C(1) UNTIL C(6) 
TLS 
REPLACE 
END 
 



This computes a tls model for the listed atoms, and then replaces the individual Uaniso with 
values computed from the tls model.  Elements of the tls model can be changed manually if 
required.  The tls model can be extended to atoms not in the original calculation. 
 

8. After the space group has been changed from P 1 to P⎯1, one half of the structure can simply be 
deleted, or the two halves can be averaged. 

9.  
#PEAK 5 5 
SELECT TYPE=AVERAGE 
END 

 
If a structure has Z’>1, it is convenient if the atoms are numbered in a consistent way.  There is a SCRIPT 
to help with this.  The user numbers one of the molecules tidily, then propagates this numbering into the 
other molecules.  If the atoms in the other molecules are of type Q (ie un-named peaks) the atom typing is 
also propagated.  
 
 
 

 
 
Fig 12: The numbering and atom typing for the top molecule can be propagated into the other molecules. 
 

 
After this, the molecules can be restrained to be similar 
SAME C(1) UNTIL O(23) AND C(101) UNTIL O(123)etc 
 

Validation 
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Refinement programs rarely ‘blow up’ these days, so that it is possible for a user to generate an 
apparently stable yet incorrect model.  Various tools to help with validation are available in CRYSTALS.  
In the ‘Guided’ mode of operation (not so far mentioned in this article), the user is guided through the 
analysis step by step.  The penultimate stage consists of validating the analysis against the minimal Acta 
Cryst criteria.  Beyond this, if the user has access to PLATON or MOGUL, tasks can be spawned to these 
programs and the results acted upon in CRYSTALS.  For more troublesome case, there are tools for 
looking into the data: 



1. Rotax.  The original Edinburgh code has been brought right into CRYSTALS.  If twinning is 
detected, the appropriate twin laws can be applied directly and refinement continued. 

 

 
 
Fig 13: GUI interface for Rotax inside the Crystals software 
 

2. Examination of the original data.  A weird Wilson Plot, or unexpected incompleteness of data may 
indicate something went wrong during data collection. 

 

 
 
Fig 14: Wilson plot (left) shows something seriously wrong with the high angle data.  The completeness 
chart (right) tends to confirm this. 
 

3. If refinement gets bogged down, look for trends in Fo and Fc.  A common source of difficulties is 
partially occluded low angle strong reflections.  They have a minimal impact on direct methods, 
but can be a catastrophe for refinement.  Outliers on an Fo-Fc plot may either be flawed data, or 
indicative of something missing from the model. 

 

 
 
Fig 15: The Fo-Fc plot (left) shows no real outliers, but masses of data with small or negative Fo values.  
The normal probability plot (right) also confirms that there is something seriously wrong with the model 
or the data.  
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4. In the case illustrated above (2 and 3), the data had been collected at break-neck speed on a 

Nonius Kccd diffractometer.  Of the 4143 reflections recorded, 2848 were greater than zero, and 
only 564 (14%) had I > 3 sigma(I).  Even so, chemically and statistically acceptable models were 
achieved without the use of restraints.  Note that even with such a weak data set, the structure was 
solved by SIR92 without serious difficulty.   

 

 
 
Fig 16: Cumulative distribution curves for the very weak data (red), middling (blue) and strong data 
(green) plotted as a function of resolution.  86% of the data has I<3 sigma(I).  No one except a 
programmer would choose to collect such weak data, but sometimes Nature offers no choice. 
 
Conclusion. 
 
SHELXL97, SIR2002 and CRYSTALS all have a great wealth of mathematical and crystallographic 
resources in common.  The differences begin to emerge when large or non-routine problems occur.  In 
these cases the crystallographer needs both the best available mathematical methods, and a helpful 
environment for applying the techniques.  We feel that the ability to interactively make changes to the 
model, and instantly apply a complex refinement strategy is particularly useful in these cases.  The 
validity of a particular model and strategy can be tested against a wealth of yard-sticks. 
 
The complete CRYSTALS package, including GUI, manuals, examples and a high quality graphics 
module, is available at no charge for non-commercial use from http://www.xtl.ox.ac.uk. 
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Abstract 
 
We describe recent developments of the Computational Crystallography Toolbox. 
 
Preamble 
 
In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit 
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting 
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64 
Unix). All example scripts shown below were tested with cctbx build 2005_01_22_0855. 

In the following we refer to our articles in the previous issues of this newsletter as "Newsletter No. 1", 
"Newsletter No. 2", etc. to improve readability. The full citations are included in the references section. 
 
1   Introduction 
 
The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source 
component of the Phenix project (http://www.phenix-online.org/). Currently much energy is devoted to 
implementing a streamlined command-line interface to the Phenix refinement algorithms. In this article 
we describe the new Python-based hierarchical interchange language (Phil) that was developed for this 
purpose. Other important developmemts highlighted below are our implementation of cartesian dynamics 
simulated annealing for macromolecular structure refinement, the significant enhancements of the 
iotbx.reflections_statistics command, the new C++ and Python interfaces to the CCP4 MTZ 
library, and the inclusion of PyCifRW in the cctbx bundles available for download. 

The command-line interface to the Phenix refinement algorithms is called phenix.refine. The 
refinement algorithms require a structural model, xray data and optionally experimental phase 
information, typically in the form of Hendrickson-Lattman coefficients. For macromolecular refinement 
the ratio of experimental observations to refinable parameters is typically quite low. Geometry restraints 
have to be included in order to make the refinement stable. Finally, the refinement algorithms introduce a 
large number of parameters, such as the number of refinement cycles to run, parameters for bulk-solvent 
correction, simulated annealing, etc. In our current development version the number of parameters 
including file names and data labels is already greater than 100. This number is likely to increase 
significantly as we add more features in the future. 
In previous issues of this newsletter we have described comprehensive utilities for reading reflection files 
(Newsletter No. 3), processing of structural data formatted as PDB files integrated with the handling of 
geometry restraints based on the CCP4 Monomer Library (Newsletter No. 4). However, until recently we 
had only ad-hoc solutions for the handling of the large number of algorithmic parameters. 
phenix.refine is written in Python (with C++ extensions for numerically intensive algorithms, see 
Newsletter No. 1). Therefore it was quite natural for us to also use Python to define parameters. For 
example, Python classes are quite convenient for organizing parameters: 

mailto:RWGrosse-Kunstleve@lbl.gov
http://cci.lbl.gov/
http://cci.lbl.gov/cctbx_build/
http://cctbx.sourceforge.net/
http://www.phenix-online.org/
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from libtbx import introspection 
 
class cartesian_dynamics: 
  def __init__(self, temperature     = 300, 
                     number_of_steps = 200, 
                     time_step       = 0.0005): 
    introspection.adopt_init_args() 
 
class simulated_annealing: 
  def __init__(self, do_simulated_annealing = False, 
                     start_temperature      = 2500, 
                     final_temperature      = 300, 
                     cool_rate              = 25, 
                     number_of_steps        = 25, 
                     time_step              = 0.0005, 
                     update_grads_shift     = 0.3): 
    introspection.adopt_init_args() 

 
A group of parameters can then be used like this: 

 
my_cartesian_dynamics_params = cartesian_dynamics(number_of_steps=300) 
my_simulated_annealing_params = simulated_annealing(final_temperature=200) 
some_algorithm( 
  cartesian_dynamics_params=my_cartesian_dynamics_params, 
  simulated_annealing_params=my_simulated_annealing_params) 

 
With: 
 

def some_algorithm( 
      cartesian_dynamics_params, 
      simulated_annealing_params): 
  print cartesian_dynamics_params.temperature 
  print cartesian_dynamics_params.number_of_steps 
  print simulated_annealing_params.start_temperature 
  print simulated_annealing_params.final_temperature 

 
the output is: 
 

300 
300 
2500 
200 

 
This shows that we retain the default values for temperature and start_temperature, but override the 
values for number_of_steps and final_temperature. 
 
2   Management of parameters: Phil is your friend 
 
One obvious problem of the approach to parameter management outlined above is that it requires 
familiarity with the Python syntax. While Python is arguably one of the most elegant programming 
languages, it still has too much syntax for non-programmers. E.g. all Python string literals have to be in 
quotes and indentation is syntactically significant. It also appeared difficult to implement the advanced 
parameter management features introduced below working exclusively with Python syntax. Therefore we 
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have replaced the Python syntax with the new Phil syntax to make parameter management as simple as 
possible. The Phil equivalent of the examples above is: 
 

refinement.cartesian_dynamics { 
  temperature = 300 
  number_of_steps = 200 
  time_step = 0.0005 
} 
 
refinement.simulated_annealing { 
  do_simulated_annealing = False 
  start_temperature = 2500 
  final_temperature = 300 
  cool_rate = 25 
  number_of_steps = 25 
  time_step = 0.0005 
  update_grads_shift = 0.3 
} 

 
The Phil syntax has only two main elements, phil.definition (e.g. cool_rate=25 and phil.scope 
(e.g. simulated_annealing { }). To make this syntax as user-friendly as possible, strings do not have 
to be quoted and, unlike Python, indentation is not syntactically significant. E.g. this: 
 

refinement.xray_data { 
  file_name = "peak.mtz" 
  labels = "Fobs" "SigFobs" 
} 

 
is equivalent to: 
 

refinement.xray_data { 
file_name=peak.mtz 
labels=Fobs SigFobs 
} 

 
Scopes can be nested recursively. The number of nesting levels is limited only by Python's recursion limit 
(default 1000). To maximize convenience, nested scopes can be defined in two equivalent ways. For 
example: 
 

refinement { 
  xray_data { 
  } 
} 

 
is equivalent to: 
 

refinement.xray_data { 
} 
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2.1   Beyond syntax 
 
Phil is more than just a parser for a very simple, user-friendly syntax. Major Phil features are: 
 

• The concepts of master files and user files. The syntax for the two types of Phil files is 
identical, but the processed Phil files are used in different ways. I.e. the concepts exist only 
at the semantical level. The "look and feel" of the files is uniform.  

• Interpretation of command-line arguments as Phil definitions.  

• Merging of (multiple) Phil files and (multiple) Phil definitions derived from command-line 
arguments.  

• Automatic conversion of Phil files to pure Python objects equivalent to instances of ad-hoc 
Python parameter classes like the examples shown in the introduction. These pure Python 
objects are completely independent from the Phil system.  

• The reverse conversion of (potentially modified) pure Python objects back to Phil files. 
This could also be viewed as a Phil pretty printer.  

• Shell-like variable substitution using $var and ${var} syntax.  

• include syntax to merge Phil files at the parser level.  

 

2.2   Master files 
 
The master files are written by the software developer and include "attributes" for each parameter, such as 
the type (integer, floating-point, string, unit cell, etc.) and support information for graphical interfaces. 
For example: 
 

refinement.crystal_symmetry { 
  unit_cell=None 
    .type=unit_cell 
    .help="Unit cell parameters." 
    .input_size = 40 
    .expert_level = 0 
  space_group=None 
    .type=space_group 
    .help="Space group symbol or number." 
    .input_size = 20 
    .expert_level = 0 
} 

 
To see the full set of "attributes" for all phenix.refine parameters run this command: 
 

iotbx.phil --show_all_attributes $MMTBX_DIST/mmtbx/refinement/__init__.params 

 
The output is not shown because it is more than 1000 lines long (and still growing). Fortunately, the end-
user does not have to be aware of these long master files. 
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2.3   User files 
 
User files are typically generated by the application, e.g. 
 

phenix.refine --show_defaults 

 
will process the master file. (Since phenix is not open source this command is not available in a plain 
cctbx installation.) This command will list only the most relevant parameters, classified by the software 
developer as .expert_level = 0. For example: 
 

refinement.crystal_symmetry { 
  unit_cell = None 
  space_group = None 
} 

 
The attributes are not shown. Therefore the output is much shorter compared to the iotbx.phil output 
above. Currently the output contains only 53 lines with 35 definitions. 
 
2.4   Command-line arguments + Phil 
 
In theory the user could save and edit the generated parameter files. However, in most practical situations 
this is not necessary for two reasons. 
Firstly, phenix.refine (and in the future other cctbx and Phenix applications) inspects all input files and 
uses the information found to fill in the blanks automatically. For example the unit cell is copied from the 
input PDB file or, if this information is missing in the PDB file, from a reflection file. This is not only 
convenient, but also eliminates the possibility of typing errors. 
Secondly, command-line arguments that are not file names or options prefixed with -- (like --
show_defaults above) are given to Phil for examination. E.g., this is a possible command: 
 

phenix.refine peak.mtz model.pdb number_of_macro_cycles=10 

 
Assume the first two arguments can be opened as files (the file names may be specified in any order; 
phenix.refine detects the file types automatically). Also assume that a file with the name 
number_of_macro_cycles=10 does not exist. This argument will therefore be interpreted with Phil. 
 
2.5   Merging of Phil objects 
 
The Phil parser converts master files, user files and command line arguments to uniform Phil objects 
which can be merged to generate a combined set of "effective" parameters used in running the 
application. We demonstrate this by way of a simple, self-contained Python script with embedded Phil 
syntax: 
 

import iotbx.phil 
 
master_params = iotbx.phil.parse(""" 
  refinement.crystal_symmetry { 
    unit_cell = None 
      .type=unit_cell 
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    space_group = None 
      .type=space_group 
  } 
  """) 
 
user_params = iotbx.phil.parse(""" 
  refinement.crystal_symmetry { 
    unit_cell = 10 12 12 90 90 120 
    space_group = None 
  } 
  """) 
 
command_line_params = iotbx.phil.parse( 
  "refinement.crystal_symmetry.space_group=19") 
 
effective_params = master_params.fetch( 
  sources=[user_params, command_line_params]) 
effective_params.show() 

 
The master_params define all available parameters including the type information. The user_params 
override the default unit_cell assignment but leave the space group undefined. The space group symbol 
is defined by the command line argument. effective_params.show() produces: 
 

refinement.crystal_symmetry { 
  unit_cell = 10 12 12 90 90 120 
  space_group = 19 
} 

 
Having to type in fully qualified parameter names (e.g. refinement.crystal_symmetry.space_group) 
can be very inconvenient. Therefore Phil includes support for matching parameter names of command-
line arguments as substrings to the parameter names in the master files: 
 

import libtbx.phil.command_line 
 
argument_interpreter = libtbx.phil.command_line.argument_interpreter( 
  master_params=master_params, 
  home_scope="refinement") 
 
command_line_params = argument_interpreter.process( 
  arg="space_group=19") 

 
This works even if the user writes just group=19 or even e_gr=19. The only requirement is that the 
substring leads to a unique match in the master file. Otherwise Phil produces a helpful error message. For 
example: 
 

argument_interpreter.process("u=19") 

 
leads to: 
 

UserError: Ambiguous parameter definition: u = 19 
Best matches: 
  refinement.crystal_symmetry.unit_cell 
  refinement.crystal_symmetry.space_group 
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The user can cut-and-paste the desired parameter to edit the command line for another trial to run the 
application. 
 
2.6   Conversion of Phil objects to pure Python objects 
 
The Phil parser produces objects that preserve most information generated in the parsing process, such as 
line numbers and parameter attributes. While this information is very useful for pretty printing (e.g. to 
archive effective parameters) and the automatic generation of graphical user interfaces, it is only a burden 
in the context of core numerical algorithms. Therefore Phil supports "extraction" of light-weight pure 
Python objects from the Phil objects. Based on the example above, this can be achieved with just one line: 
 

params = effective_params.extract() 

 
We can now use the extracted objects in the context of Python: 
 

print params.refinement.crystal_symmetry.unit_cell 
print params.refinement.crystal_symmetry.space_group 

 
Output: 
 

(10, 12, 12, 90, 90, 120) 
P 21 21 21 

 
At first glance one may almost miss that something significant has happened. However, we started out 
with "space_group=19" and now we see P 21 21 21 in the output. This is because the space_group 
parameter was defined to be of .type=space_group in the master file. Associated with each type are 
converters to and from corresponding Python objects. In this case, the space_group converter produces a 
Python object of type: 
 

print repr(params.refinement.crystal_symmetry.space_group) 

 
Output: 
 

<cctbx.sgtbx.space_group_info instance at 0xb64edf6c> 

 
This object cannot only show the space group symbol, but has many other "methods". E.g. to print the list 
of symmetry operations in "xyz" notation: 
 

for s in params.refinement.crystal_symmetry.space_group.group(): 
  print s 
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Output: 
 

x,y,z 
x+1/2,-y+1/2,-z 
-x,y+1/2,-z+1/2 
-x+1/2,-y,z+1/2 

 
2.7   Conversion of Python objects to Phil objects 
 
Phil also supports the reverse conversion compared to the previous section, from Python objects to Phil 
objects. For example, to change the unit cell parameters: 
 

from cctbx import uctbx 
 
params.refinement.crystal_symmetry.unit_cell = uctbx.unit_cell( 
  (10,12,15,90,90,90)) 
modified_params = master_params.format(python_object=params) 
modified_params.show() 

 
Output: 
 

refinement.crystal_symmetry { 
  unit_cell = 10 12 15 90 90 90 
  space_group = "P 21 21 21" 
} 

 
We need to bring in the master_params again because all the meta-information was lost in the 
extract() step that produced params. Again, a type-specific converter is used to produce a string for 
each Python object. We started out with space_group=19 but get back space_group = "P 21 21 21" 
because we chose to make the converter work that way. 
 
2.8   Extending Phil 
 
The astute reader may have noticed that we used both libtbx.phil and iotbx.phil. Why does Phil 
appear to have two homes? 
 
The best way to think about Phil is to say "Phil is libtbx.phil." The basic Phil objects storing the parsing 
results (phil.definition and phil.scope), the tokenizer, parser and the command line support are 
implemented in the libtbx.phil module. iotbx.phil extends Phil by adding two new types, 
unit_cell and space_group. The converters for these types can be found in 
$IOTBX_DIST/iotbx/phil.py. For example, this is the code for the unit cell converters: 
 

class unit_cell_converters: 
 
  def __str__(self): return "unit_cell" 
 
  def from_words(self, words, master): 
    s = libtbx.phil.str_from_words(words=words) 
    if (s is None): return None 
    return uctbx.unit_cell(s) 
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  def as_words(self, python_object, master): 
    if (python_object is None): 
      return [tokenizer.word(value="None")] 
    return [tokenizer.word(value="%.10g" % v) 
      for v in python_object.parameters()] 

 
Arbitrary new types can be added to Phil by defining similar converters. If desired, the built-in converters 
for the basic types (int, float, str, etc.) defined in libtbx.phil can even be replaced. All converters 
have to have __str__(), from_words() and as_words() methods. More complex converters may 
optionally have a non-trivial __init__() method (an example is the choice_converters class in 
$LIBTBX_DIST/libtbx/phil/__init__.py). 
 
The iotbx.phil.parse() function used in the examples above is a very small function which adds the 
unit_cell and space_group converters to Phil's default converter registry and then calls the main 
libtbx.phil.parse() function to do the actual work. Following the example of iotbx.phil it should 
be straightforward to add other domain-specific types to the Phil system. 
 
2.9   Variable substitution 
 
Phil supports shell-like variable substitution using $var and ${var} syntax. A few examples say more than 
many words: 
 

import libtbx.phil 
 
params = libtbx.phil.parse(""" 
  root_name = peak 
  file_name = $root_name.mtz 
  full_path = $HOME/$file_name 
  related_file_name = ${root_name}_data.mtz 
  message = "Reading $file_name" 
  as_is = ' $file_name ' 
  """) 
params.fetch(source=params).show() 

 
Output: 
 

root_name = peak 
file_name = "peak.mtz" 
full_path = "/net/cci/rwgk/peak.mtz" 
related_file_name = "peak_data.mtz" 
message = "Reading peak.mtz" 
as_is = ' $file_name ' 

 
Note that the variable substitution does not happen during parsing. The output of params.show() is 
identical to the input. In the example above, variables are substituted by the fetch() method that we 
introduced earlier to merge user files given a master file. 
 



2.10   Phil odds and ends 
 
Phil also supports merging of files at the parsing level. The syntax is simply include file_name. 
include directives may appear inside scopes to enable hierarchical building of master files without the 
need to copy-and-paste large fragments explicitly. Duplication appears only in automatically generated 
user files. I.e. the programmer is well served because a system of master files can be kept free of large-
scale redundancies that are difficult to maintain. At the same time the end user is well served because the 
indirections are resolved automatically and all parameters are presented in one uniform view. 
Variable substitution and include directives smell almost like programming. However, there is a line that 
Phil is never meant to cross: flow control is not a part of the syntax. It is hard to imagine that a fully 
featured programming language could be syntactically simpler than Python. For example, there are good 
reasons why Python string literals have to be quoted. Otherwise Python scripts would be full of $ signs 
because some method is needed to distinguish strings from variable names. On the other hand, having to 
quote space group symbols in parameter files is a nuisance. In the future we may extend Phil as an 
interchange format for data other than parameters but for our programming needs we feel extremely well 
served by Python. 
 
3   Refinement tools 
 
3.1   mmtbx.refinement.f_model.manager 
 
The goal of crystallographic structure refinement is to optimize a set of model parameters such that the 
model predictions best fit the experimental observations. In our terminology, model goes beyond atomic 
coordinates, displacement parameters and occupancies. A complete macromolecular model generally also 
includes other contributions such as scale factors, bulk-solvent correction and anisotropy correction. 
Furthermore, all modern refinement programs include facilities for cross-validation (e.g. for the 
calculation of the R-free). 
 
The phenix.refine command mentioned earlier is based on the mmtbx (Macromolecular toolbox) 
module of the cctbx. The mathematical foundation of the mmtbx model parameterization is described in 
Afonine et al. (2005). It is summarized in this formula: 
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where k is the overall scale factor (Sheriff & Hendrickson, 1987), are structure factors calculated 

from the atomic model, k

calcF

sol and Bsol are bulk-solvent parameters (Jiang & Brünger, 1994),  are 
structure factors calculated from a molecular mask,  is a column vector with the Miller indices of a 
reflection,  is its transposed vector, and  is the overall anisotropic scale matrix (6 components). 

maskF
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During refinement, is usually calculated many times in different contexts, many parameters are 
updated at different schedules, and various statistics are printed repeatedly to report the refinement 
progress. Moreover, some refinement strategies require complete sets of intermediate parameters to be 
stored for later reference. To meet these needs in a general and reusable way, all model parameters for the 
crystallographic contribution to the refinement target are grouped by the 

modelF

mmtbx.refinement.f_model.manager class. In the following we develop a self-contained Python script 
to highlight major features of this class. Since we need data to work with, but also want the example to be 
self-contained, we start by generating a random structure: 
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from cctbx.development import random_structure 
from cctbx import sgtbx 
 
space_group_info = sgtbx.space_group_info( 
  symbol="P212121") 
n_sites = 500 
structure = random_structure.xray_structure( 
  space_group_info = space_group_info, 
  elements         = ["N"]*(n_sites), 
  volume_per_atom  = 50, 
  anisotropic_flag = False, 
  random_u_iso     = True) 

 
We use this structure to compute ideal observations f_obs: 
 

d_min = 2.0 
f_obs = abs(structure.structure_factors( 
  d_min          = d_min, 
  anomalous_flag = False).f_calc()) 

 
Next we introduce two types of errors: missing atoms and coordinate errors with a certain max_shift: 
 

from cctbx import xray 
 
fraction_missing = 0.1 
max_shift = 0.2 
n_keep = int(round(structure.scatterers().size() 
                   * (1-fraction_missing))) 
partial_structure = xray.structure( 
  special_position_settings=structure) 
partial_structure.add_scatterers( 
  structure.scatterers()[:n_keep]) 
partial_structure.replace_scatterers( 
  partial_structure.random_shift_sites( 
    max_shift_cart=max_shift).scatterers()) 

 
As before we compute structure factors, this time for the partial_structure: 
 

f_calc = partial_structure.structure_factors( 
  d_min          = d_min, 
  anomalous_flag = False).f_calc() 

 
For our demonstration we need an array of R-free flags (also known as a test set). We could generate the 
R-free flags in one line, but we break the code up for clarity: 
 

from cctbx.array_family import flex 
 
n_reflections = f_calc.data().size() 
partitioning = flex.random_permutation(size=n_reflections) % 10 

 
At this point partitioning is an integer array with randomly assigned but uniformly distributed values 
from 0 to 9. Insert print list(partitioning) to display the array. The next line turns this integer array 
into a boolean array. At the same time we build a cctbx.miller.array (Newsletter No. 1) with the same 
indexing set as f_obs but with the boolean array as the data: 
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r_free_flags = f_obs.array(data=(partitioning == 0)) 

 
Finally we have all the pieces we need to initialize the main object of this demonstration: 
 

import mmtbx.refinement.f_model 
 
f_model_manager = mmtbx.refinement.f_model.manager( 
  f_calc = f_calc, 
  f_obs = f_obs, 
  r_free_flags = r_free_flags) 
f_model_manager.show() 

 
The output of the show() method is: 
 

f_calc          =  <cctbx.miller.array object at 0xb5e9ff6c> 
f_obs           =  <cctbx.miller.array object at 0xb60e170c> 
f_mask          =  <cctbx.miller.array object at 0xb5eccb4c> 
r_free_flags    =  <cctbx.miller.array object at 0xb5e9ff0c> 
u_aniso         =  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 
k_sol           =  0.0 
b_sol           =  0.0 
scale_work      =  1.0 
scale_test      =  1.0 
alpha           =  None 
beta            =  None 
sf_algorithm    =  None 
target_name     =  None 
target_functors =  None 

 
Our f_model_manager maintains references to the input arrays (f_calc, f_obs, r_free_flags). We also 
see a new f_mask array used for bulk-solvent correction and all the parameters introduced above. Some 
parameters are not defined (None), but these are not needed in this example. As is, the f_model_manager 
is already able to answer certain questions, for example, what are the current values of R-work and R-
free: 
 

print f_model_manager.r_work() 
print f_model_manager.r_free() 

 
Output: 
 

0.275794965768 
0.28068823468 

 
(The output may vary since we are working with a random structure.) More detailed information is just 
waiting for us: 
 

f_model_manager.r_factors_in_resolution_bins( 
  reflections_per_bin = 100, 
  max_number_of_bins  = 10) 

 



Output: 
 

 Bin     Resolution       No. Refl.      R-factors 
number     range         work   test     work   test 
  1: 20.6581 -  3.8191    988    111   0.2778 0.2555 
  2:  3.8191 -  3.0344    924    114   0.2596 0.2610 
  3:  3.0344 -  2.6517    914    107   0.2649 0.2750 
  4:  2.6517 -  2.4097    899    104   0.2713 0.2887 
  5:  2.4097 -  2.2372    906     95   0.2856 0.2998 
  6:  2.2372 -  2.1054    927     80   0.2992 0.2971 
  7:  2.1054 -  2.0001    884    106   0.2846 0.3438 

 
If model parameters are updated the f_model_manager automatically recomputes all dependent values: 
 

f_model_manager.update( 
  k_sol = 1.2, 
  b_sol = 30.0) 

 
This centralized, concise facility is extremely helpful in developing new refinement strategies. 

At any stage,  according to the formula above, or just the bulk-solvent correction can easily be 
extracted: 

modelF

 
f_model = f_model_manager.f_model() 
f_bulk = f_model_manager.f_bulk() 

 
Detailed and uniform statistics can easily be displayed in various contexts. For example: 
 

f_model_manager.show_fom_phase_error_alpha_beta_in_bins( 
  reflections_per_bin = 100, 
  max_number_of_bins  = 10) 

 
Output: 
 

|-----------------------------------------------------------------------------| 
|R-free likelihood based estimates for figures of merit, absolute phase error,| 
|and distribution parameters alpha and beta (Acta Cryst. (1995). A51, 880-887)| 
|                                                                             | 
| Bin     Resolution        No. Refl.   FOM   phase err.   Alpha         Beta | 
|number     range         work   test         <|p-p_c|>                       | 
|  1: 20.6581 -  3.8191    988    111  0.8414  20.7174     0.9663    5782.0632| 
|  2:  3.8191 -  3.0344    924    114  0.8190  23.9808     0.9663    5782.0632| 
|  3:  3.0344 -  2.6517    914    107  0.8208  24.0338     0.9372    4108.1081| 
|  4:  2.6517 -  2.4097    899    104  0.8058  25.6936     0.9226    3272.3595| 
|  5:  2.4097 -  2.2372    906     95  0.7733  28.8366     0.9251    3055.6162| 
|  6:  2.2372 -  2.1054    927     80  0.7806  28.1986     0.9304    2583.5975| 
|  7:  2.1054 -  2.0001    884    106  0.7484  31.1348     0.9304    2583.5975| 
|-----------------------------------------------------------------------------| 

 
After refinement is is often very helpful to inspect electron density maps. Since the f_model_manager 
controls all essential data for the calculation of maps, it is most natural to add a map generation method. 
For example: 
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fft_map = f_model_manager.electron_density_map( 
  map_type = "2m*Fobs - alpha*Fmodel") 

Or: 
 

fft_map = f_model_manager.electron_density_map( 
  map_type = "k*Fobs - n*Fmodel", 
  k        = 2, 
  n        = 1) 

 
To end this demonstration, we bring in the iotbx utilities for writing maps in XPLOR format: 
 

import iotbx.xplor.map 
 
fft_map.as_xplor_map( 
  file_name="2fo-fm.xplor", 
  title_lines=["2*Fobs - Fmodel"], 
  gridding_first=(0,0,0), 
  gridding_last=fft_map.n_real()) 

 
Happy viewing! -- Well, admittedly it is not very interesting to view maps of random structures, but it 
works just the same given real data and real models. 
The complete script can be found in the cctbx installation: 
 

$MMTBX_DIST/mmtbx/examples/f_model_manager.py 

 
3.2 Bulk-solvent correction and anisotropic scaling 
 
In the previous issue of the Newsletter (No. 3) we briefly described a protocol for the determination of 
flat bulk-solvent model parameters and anisotropic scaling parameters. In the current version of the cctbx 
we have generalized this protocol significantly. The main features currently available are: 
 

1. In addition to the least-squares target function presented before, a maximum-likelihood 
crystallographic target function can be used for the determination of the bulk-solvent and scale 
parameters. This enables a uniform overall strategy for maximum-likelihood model refinement 
since all parameters (bulk solvent, scale and atomic) can be refined against the same target 
function. 

2. Three options for defining the bulk-solvent parameters (ksol, Bsol) and the anisotropic scale matrix 
Uaniso: 

a. Manual assignment. This is potentially useful at the beginning of structure refinement 
when the model has many errors. 

b. Minimization of a crystallographic target function using the LBFGS minimizer. This is a 
quick and precise way of determining ksol, Bsol and Uaniso if a model of reasonable quality is 
available and the experimental data extend to sufficiently low resolution. However, this 
algorithm fails to produce physically reasonable parameters in some situations. This 
experience was the motivation for implementing the more sophisticated protocol outlined 
below. 

c. Combined LBFGS minimization and grid search algorithm (Afonine et al, 2005). This is 
the most robust procedure for the determination of ksol, Bsol and Uaniso. However, it is also 
the most time-consuming option. 

 
The bulk-solvent and scaling algorithms are implemented in the mmtbx.bulk_solvent module. 
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3.3   Simulated annealing refinement 
 
Simulated annealing is a time-tested tool for escaping local minima in crystallographic refinement 
(Brünger et al, 1987). Recently we have implemented a simulated annealing algorithm for restrained 
molecular dynamics in the cctbx. This enables us to take full advantages of combined simulated annealing 
and maximum-likelihood model refinement (Adams et al, 1997; Brunger & Adams, 2002). 
The simulated annealing algorithms are implemented in the mmtbx.cartesian_dynamics module. 
 
3.4   Building of hydrogen atoms 
 
Fourier syntheses at subatomic resolution (dmin < 1.0 Å) usually reveal the presence of hydrogen atoms. 
At lower resolutions this information is lost. Therefore a general refinement program has to provide 
different strategies depending on the resolution of the data. If ultra-high resolution data are available, 
hydrogens can be explicitly included in the refinement, for example using the riding hydrogen model 
(Sheldrick, 1995). At lower resolutions the inclusion of hydrogens in the refinement target for the X-ray 
data is likely to lead to overfitting. However in this case the hydrogens should still be considered in the 
definition of the geometry restraints, and this has been shown to improve atomic models even in the 
absence of atomic resolution data (Richardson et al. 2003). In addition, refinement against neutron 
diffraction data requires appropriate modeling of hydrogen atoms.   
 
As a first step towards covering these cases we have implemented a hydrogen building procedure for the 
standard amino acid residues. In most cases the hydrogen positions are geometrically well defined. 
However, there are some cases where the positions are not unambiguously determined, such as -CH3, -
OH in a tyrosine residue.  To account for this, our procedure consists of two steps. In the first step we 
place all expected hydrogen atoms in appropriate positions. If ambiguities exist, we place the affected 
hydrogens arbitrarily in a one of the allowed positions. In the second step we perform model 
regularization by refinement against geometry restraints (see Newsletter No. 4). Optionally, this can be 
combined with Cartesian dynamics to escape from local minima. 
 
The hydrogen building algorithms are implemented in the mmtbx.hydrogens module. 
 
3.5   Maximum-likelihood tools 
 
Previously we had implemented an amplitude-based maximum-likelihood target function (Lunin et al, 
2002), its quadratic approximation (Lunin & Urzhumtsev, 1999), and a procedure for estimating the 
distribution parameters (alpha, beta) according to Lunin & Skovoroda (1995). Recently we have extended 
the set of maximum-likelihood tools by these methods:  
 
R-free likelihood-based estimation of model phase errors and figures of merit 
 
This procedure is based on the algorithm described by Lunin & Skovoroda (1995). The mean phase errors 
and figures of merit are determined in narrow resolution bins using test reflections only. The procedure 
provides relatively precise and unbiased values for these parameters. The algorithms are available via 
methods of the mmtbx.refinement.f_model.manager class introduced in section 3.1, e.g.: 
 

figures_of_merit = f_model_manager.figures_of_merit() 
phase_errors = f_model_manager.phase_errors() 

 



Coefficients for Fourier Syntheses 
 
It was straightforward to implement the calculation of  “best” coefficients for Fourier syntheses, 
[ ] ( )calcmodel

s
obs

s exp2 sss iFFm ϕα− , where  are figures of merit and sm ( )rs ∆= ,cossα  (Urzhumtsev et al., 
1996; Read, 1986 uses the notation ).  The sD f_model_manager.electron_density_map() method 
demonstrated in section 3.1 provides an interface to these algorithms. 
 
Use of Experimental Phase Information 
 
We are actively working on fast C++ code for a maximum-likelihood target which includes experimental 
phase information (MLHL target; Pannu et al, 1998). This code is in the cctbx bundles already but not yet 
fully tested. 
 
4   iotbx.reflection_statistics 
 
Recently we have enhanced the iotbx.reflection_statistics command significantly. The initial 
version (written in April 2004) can be used to compute data completeness, anomalous signals, 
correlations between intensities and correlations between anomalous signals of pairs of reflection arrays. 
All these statistics are computed both in resolution shells and as overall quantities. The latest version 
(written in December 2004) adds these new features: 

• Automatic determination of the space group of the metric (i.e. the lattice symmetry; see 
also Newsletter No. 3).  

• Automatic derivation of a non-redundant set of possible twin laws from first principles 
(Flack, 1987).  

• Automatic derivation of a non-redundant set of possible reindexing matrices for comparing 
two datasets. The matrices are derived from first principles (see below). 

• Computation of a sorted list of peaks in the native Patterson synthesis to facilitate the 
detection of translational non-crystallographic symmetry (NCS).  

• Tests for perfect merohedral twinning using both the second moments of amplitudes (also 
known as Wilson ratios) and intensities (Yeates, 1997).  

With the old version of the iotbx.reflection_statistics command correlations between pairs of 
reflection arrays are computed only if the unit cell parameters and the space group symmetries are 
identical. The new version is designed to overcome this limitation in the most general way. Internally, all 
arrays are transformed to a primitive setting. The change-of-basis matrices are determined with a cell 
reduction algorithm (see Newsletter No. 3). Each array in the primitive setting is expanded to P1. I.e. the 
symmetry matrices are applied to generate all equivalent Miller indices. Given a pair of reflection arrays 
preprocessed in this way, a newly developed algorithm performs an exhaustive search for the change-of-
basis matrix that leads to the best superposition of the reduced unit cells. This algorithm employs the new 
similarity_transformations() and bases_mean_square_difference() methods of the 
cctbx.uctbx.unit_cell class. Associated with each unit cell is the space group of the metric as 
determined with the lattice symmetry algorithm outlined in the Newsletter No. 3. If the tolerances used in 
the computation of the cell superposition are reasonable, the metric symmetries are identical, or one is a 
subgroup of the other. We continue with the highest metric space group. Each symmetry operation of this 
space group is a possible reindexing matrix. Conceptually, we compute the correlations between two 
arrays for each reindexing matrix and produce a sorted list of the results. However, if any of the space 
groups of the two input arrays are different from P1, this leads to a redundant list. The remove these 
redundancies, we employ double coset decomposition (see below). To minimize the runtime, redundant 
correlations are never computed. 
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The algorithmic complexities are in stark contrast to the simple end-user interface. The universal 
reflection file reader described in Newsletter No. 3 is used to automatically detect and process all 
common file formats. A possible command for comparing reflection data is: 
 

iotbx.reflection_statistics *.sca *.mtz 

 
For a large number of arrays this may take a couple of minutes, but the comprehensive analyses do not 
require any user intervention. The potentially large output contains tags for quick searching. A guide is 
printed at the beginning of the output. For example: 
 

Array indices (for quick searching): 
   1: hg1.0_scale_anomalous.sca:i_obs,sigma 
   2: hginfl_3.5_ano.sca:i_obs,sigma 
   3: hgpeak_3.5_ano.sca:i_obs,sigma 
   4: pb1.0_4.0_ano.sca:i_obs,sigma 
   5: pbpeak_3.5_scale_anomalous.sca:i_obs,sigma 
   6: pt_4.0_ano.sca:i_obs,sigma 
   7: scale.sca:i_obs,sigma 
   8: sm_scale_anomalous.sca:i_obs,sigma 
   9: tmpb.sca:i_obs,sigma 
 
Useful search patterns are: 
    Summary i 
    CC Obs i j 
    CC Ano i j 
  i and j are the indices shown above. 

 
If we search for CC Obs 7 1 we find: 
 

CC Obs 7 1  0.956 h,-k,-l 
Correlation of: 
  scale.sca:i_obs,sigma 
  hg1.0_scale_anomalous.sca:i_obs,sigma 
Overall correlation with reindexing:  0.956 h,-k,-l 
unused:         - 43.6948 [   4/20  ]  1.000 
bin  1: 43.6948 -  8.6072 [2856/2950]  0.954 
bin  2:  8.6072 -  6.8402 [2916/2924]  0.962 
bin  3:  6.8402 -  5.9780 [3028/3036]  0.957 
bin  4:  5.9780 -  5.4326 [2936/2948]  0.960 
bin  5:  5.4326 -  5.0438 [2940/2960]  0.964 
bin  6:  5.0438 -  4.7468 [2792/2818]  0.959 
bin  7:  4.7468 -  4.5093 [3104/3124]  0.954 
bin  8:  4.5093 -  4.3132 [2824/2842]  0.949 
bin  9:  4.3132 -  4.1473 [2904/2930]  0.946 
bin 10:  4.1473 -  4.0043 [2964/2990]  0.937 
unused:  4.0043 -         [  24/72  ]  0.904 
 
CC Obs 7 1  0.364 h,k,l 
Correlation of: 
  scale.sca:i_obs,sigma 
  hg1.0_scale_anomalous.sca:i_obs,sigma 
Overall correlation:  0.364 

 
In this example the highest correlation (0.956) between the two arrays is found with the reindexing matrix 
h,-k,-l. In contrast, the correlation between the arrays as indexed originally is only 0.364. 
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The iotbx.reflection_statistics command is implemented in the file 
$IOTBX_DIST/iotbx/command_line/reflection_statistics.py. 
 
4.1   Double coset decomposition 
 

A useful summary of the theory of double cosets can be found in An introduction to group theory by 
Tony Gaglione, which is available online: 
 

http://web.usna.navy.mil/~wdj/tonybook/gpthry/node44.html  

 
Double coset decomposition is concerned with a group g and two subgroups h1 and h2. The group g is 
partitioned into non-overlapping sets of symmetry operations equivalent under h1 and h2. In the context 
of the algorithm outlined above, g is the highest space group of the metric. h1 and h2 are the space groups 
of the arrays to be compared. Each double coset represents a reindexing choice unique under h1 and h2. 
I.e. any matrix selected from a given double coset will lead to identical correlation coefficients. 
If we do not care which matrix is selected from a given double coset, we arrive at a surprisingly simple 
algorithm. The following is the relevant fragment from the file $CCTBX_DIST/cctbx/sgtbx/cosets.py: 
 

def double_unique(g, h1, h2): 
  result = [] 
  done = {} 
  for a in g: 
    if (str(a) in done): continue 
    result.append(a) 
    for hi in h1: 
      for hj in h2: 
        b = hi.multiply(a).multiply(hj) 
        done[str(b)] = None 
  return result 

 
g, h1 and h2 are instances of cctbx.sgtbx.space_group. The algorithm follows directly from the 
definition of cosets as found at the web page referenced above: 
 

For a, b element of g, we define a ~ b if and only if h1 a h2 = b. 

 
h1 a h2 = b corresponds to b = hi.multiply(a).multiply(hj) in the Python code. 
result is a Python list of representative matrices, one from each coset. Which matrices are returned 
depends on the order of the matrices in g, h1 and h2. This may not always yield the "nicest" choice. 
However, any investment in a more sophisticated selection has little or no practical value. Typically the 
transformed indices are mapped into a canonical asymmetric unit (e.g. using the map_to_asu() method 
of cctbx.miller.array). After this manipulation the indexing set will be the same no matter which 
matrix from a given double coset is selected. 
 
5   iotbx.mtz 
 
CCP4 MTZ files are binary files containing merged or unmerged reflection data and optionally 
information about raw data ("batches"). For a couple of years already the cctbx has included C++ and 
Python interfaces to the CCP4 C MTZ library in the iotbx.mtz module. However, while the support for 
reading MTZ files was quite complete, creating and writing MTZ files was only partially supported. To 

http://web.usna.navy.mil/~wdj/tonybook/gpthry/node44.html


87 

resolve this problem and to unify the interfaces for reading and writing, the iotbx.mtz module was 
heavily restructured. We have also added complete C++ and Python interfaces for the manipulation of 
MTZ batches. The iotbx.mtz module extends the functionality of the CCP4 C MTZ library by 
automatically grouping related MTZ columns into one object, cctbx.miller.array instances as 
introduced in Newsletter No. 1. 
 
Combined with the universal reflection file reader, it is quite easy to quickly write a script for converting 
any of the formats processed by the reflection file reader to the MTZ format. First let's get some data to 
work with: 
 

from iotbx import reflection_file_reader 
import os 
 
reflection_file = reflection_file_reader.any_reflection_file( 
  file_name=os.path.expandvars( 
    "$CNS_SOLVE/doc/html/tutorial/data/pen/scale.hkl")) 

 
We are reading a CNS reflection file in the CNS tutorial. (To run this example CNS has to be installed 
including the tutorial.) Since the crystal symmetry is not defined in CNS reflection files, we supply this 
information manually: 
 

from cctbx import crystal 
 
crystal_symmetry = crystal.symmetry( 
  unit_cell=(97.37, 46.64, 65.47, 90, 115.4, 90), 
  space_group_symbol="C2") 

 
We convert the reflection file to a list of cctbx.miller.array instances: 
 

miller_arrays = reflection_file.as_miller_arrays( 
  crystal_symmetry=crystal_symmetry) 

 
Now we loop over the Miller arrays to convert them to MTZ data columns: 
 

mtz_dataset = None 
for miller_array in miller_arrays: 
  if (mtz_dataset is None): 
    mtz_dataset = miller_array.as_mtz_dataset( 
      column_root_label=miller_array.info().labels[0]) 
  else: 
    mtz_dataset.add_miller_array( 
      miller_array=miller_array, 
      column_root_label=miller_array.info().labels[0]) 

 
Let's see what we got: 
 

mtz_object = mtz_dataset.mtz_object() 
mtz_object.show_summary() 
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The output ends with: 
 

Column number, label, number of valid values, type: 
  1 H         6735/6735=100.00% H: index h,k,l 
  2 K         6735/6735=100.00% H: index h,k,l 
  3 L         6735/6735=100.00% H: index h,k,l 
  4 F_PHGA    6735/6735=100.00% F: amplitude 
  5 SIGF_PHGA 6735/6735=100.00% Q: standard deviation 
  6 F_KUOF    6735/6735=100.00% F: amplitude 
  7 SIGF_KUOF 6735/6735=100.00% Q: standard deviation 
  8 F_NAT     6735/6735=100.00% F: amplitude 
  9 SIGF_NAT  6735/6735=100.00% Q: standard deviation 

 
Finally we write the MTZ file to disk: 
 

mtz_object.write("pen_data.mtz") 

 
Note that the iotbx.mtz.dump pen_data.mtz command is available to produce the same output as the 
mtz_object.show() statement in the example. 
 
6   Integration of PyCifRW 
 
PyCifRW is a library for reading and writing CIF (Crystallographic Information Format) files using 
Python. PyCifRW was developed by James Hester at the Australian National Beamline Facility (ANBF). 
Documentation can be found online: 
 

http://www.ansto.gov.au/natfac/ANBF/CIF/  

 
Recently, the PyCifRW license was changed to allow redistribution. We are very excited about this 
development because it allows us to include PyCifRW in the cctbx bundles. However, like the CCP4 I/O 
library and Clipper (see Newsletter No. 4), PyCifRW is not in the cctbx CVS tree on SourceForge. James 
Hester continues to develop PyCifRW in his own environment and we will update the cctbx bundles with 
the latest releases. Currently we redistribute PyCifRW version 1.19 released in November 2004. 
 
PyCifRW in a cctbx installation is used in the same way as described in the PyCifRW documentation. 
Let's try it out. We develop a self-contained Python script by starting with embedded CIF syntax: 

file("quartz.cif", "w").write(""" 
  data_global 
  _chemical_name Quartz 
  _cell_length_a 4.9965 
  _cell_length_b 4.9965 
  _cell_length_c 5.4570 
  _cell_angle_alpha 90 
  _cell_angle_beta 90 
  _cell_angle_gamma 120 
  _symmetry_space_group_name_H-M 'P 62 2 2' 
  loop_ 
  _atom_site_label 
  _atom_site_fract_x 
  _atom_site_fract_y 
  _atom_site_fract_z 
  Si   0.50000   0.00000   0.00000 
  O   0.41520   0.20760   0.16667 
  """) 

http://www.ansto.gov.au/natfac/ANBF/CIF/
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At this point we have created a file quartz.cif. Now we parse it with PyCifRW: 
 

from PyCifRW.CifFile import CifFile 
 
cif_file = CifFile("quartz.cif") 
cif_global = cif_file["global"] 
print cif_global["_chemical_name"] 

 
Output: 
 

Quartz 

 
Looks like a good start! But we want more. For example, structure factors. For this we have to process the 
rest of the data in the CIF file. First we determine the crystal symmetry: 
 

from cctbx import uctbx, sgtbx, crystal 
 
unit_cell = uctbx.unit_cell([float(cif_global[param]) 
  for param in [ 
  "_cell_length_a","_cell_length_b","_cell_length_c", 
  "_cell_angle_alpha","_cell_angle_beta","_cell_angle_gamma"]]) 
space_group_info = sgtbx.space_group_info( 
  symbol=cif_global["_symmetry_space_group_name_H-M"]) 
crystal_symmetry = crystal.symmetry( 
  unit_cell=unit_cell, 
  space_group_info=space_group_info) 
crystal_symmetry.show_summary() 

 
Output: 
 

Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 

 
Now we turn our attention to the list of coordinates and create a new cctbx.xray.structure instance: 
 

from cctbx import xray 
 
structure = xray.structure(crystal_symmetry=crystal_symmetry) 
for label,x,y,z in zip(cif_global["_atom_site_label"], 
                       cif_global["_atom_site_fract_x"], 
                       cif_global["_atom_site_fract_y"], 
                       cif_global["_atom_site_fract_z"]): 
  scatterer = xray.scatterer( 
    label=label, 
    site=[float(s) for s in [x,y,z]]) 
  structure.add_scatterer(scatterer) 
structure.show_summary().show_scatterers() 
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Output: 
 

Number of scatterers: 2 
At special positions: 2 
Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
Si   Si     3 ( 0.5000  0.0000  0.0000) 1.00 0.0000 
O    O      6 ( 0.4152  0.2076  0.1667) 1.00 0.0000 

 
Just one more hoop and we have the structure factors: 
 

f_calc = structure.structure_factors(d_min=2).f_calc() 
abs(f_calc).show_summary().show_array() 

 
Output: 
 

Miller array info: None 
Observation type: None 
Type of data: double, size=7 
Type of sigmas: None 
Number of Miller indices: 7 
Anomalous flag: False 
Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
(1, 0, 0) 15.708493924 
(1, 0, 1) 36.2626337008 
(1, 0, 2) 7.77312576362 
(1, 1, 0) 14.9039425672 
(1, 1, 1) 0.975009858138 
(2, 0, 0) 15.8407980479 
(2, 0, 1) 13.6738859288 

 
Note that this is almost what we had in Newsletter No. 1. The main difference is that we start from a CIF 
file rather than the plain cctbx interfaces. 
 
The complete script can be found in the cctbx installation: 
 

$PYCIFRW_DIST/example_quartz.py 
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Computing the Z-matrix for global optimisation 
 

Kenneth Shankland, 
ISIS Facility, Rutherford Appleton Lab., Oxon OX11 0QX, U.K. - Email :  K.Shankland@rl.ac.uk ; 
WWW: http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM  
 
Introduction 
 
In a previous article [1] the construction of internal coordinate molecular models, suitable for use in 
global optimisation schemes against powder diffraction data, was discussed.  In particular, the 'Z-matrix' 
format was outlined in some detail and the importance of defining flexible torsion angles (i.e. torsion 
angles around which free rotation can occur) as a series of proper and improper torsions was emphasised.  
Many computer programs can generate a Z-matrix from a given input molecular model but all those 
examined by this author (admittedly a few years ago!) did not produce Z-matrices with torsion angles 
defined in this fashion.  By way of example, consider the following simple structure: 
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The CH2Cl group can rotate around bond 1-12.  If we assume for a moment that the chlorine atom lies in 
the plane of the ring, then one Z-matrix that would describe this molecule is; 

ClH
H

H

H
H

H

H 1

3
2

4

5

6

7

8

9

10

11
12

15

14

13

   
     C1    0.0000000  0    0.0000000  0    0.0000000  0    0    0    0     
  C2    1.4000000  0    0.0000000  0    0.0000000  0    1    0    0     
  C3    1.4000000  0  120.0000000  0    0.0000000  0    2    1    0     
  C4    1.4000000  0  120.0000000  0    0.0000000  0    3    2    1 
  C5    1.4000000  0  120.0000000  0    0.0000000  0    4    3    2     
  C6    1.4000000  0  120.0000000  0    0.0000000  0    5    4    3 
  H7    1.0000000  0  120.0000000  0  180.0000000  0    2    3    4 
  H8    1.0000000  0  120.0000000  0  180.0000000  0    3    4    5 
  H9    1.0000000  0  120.0000000  0  180.0000000  0    4    5    6 
  H10   1.0000000  0  120.0000000  0  180.0000000  0    5    6    1 
  H11   1.0000000  0  120.0000000  0  180.0000000  0    6    1    2 
  C12   1.4000000  0  120.0000000  0  180.0000000  0    1    2    3 
  Cl13  1.7000000  0  109.5000000  0    0.0000000  0   12    1    2 
  H14   1.0000000  0  109.5000000  0  120.0000000  0   12    1    2 
  H15   1.0000000  0  109.5000000  0  240.0000000  0   12    1    2 
 
Whilst this is satisfactory for this single conformation of the molecule (and therefore a good starting point 
for say, a single-point energy calculation) it is clear that if we want the ability to generate any permissible 
conformation about bond 1-12 (as we do, for global optimisation), we need to change the last three lines 
to: 
 
 
  Cl13  1.7000000  0  109.5000000  0    0.0000000  1   12    1    2 
  H14   1.0000000  0  109.5000000  0  120.0000000  0   12    1   13 
  H15   1.0000000  0  109.5000000  0  120.0000000  0   12    1   14 
 

mailto:K.Shankland@rl.ac.uk
http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM
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We therefore create a Z-matrix where any allowable value can be entered for torsion 13-12-1-2 and the 
attached hydrogen atoms will automatically rotate, as they are now defined relative to the position of the 
chlorine atom.   However, for anything other than the simplest of molecules, it is tedious to create a Z-
matrix in this form manually.  Fortunately, a Cartesian XYZ file (easily produced from molecular 
modelling programs) with atomic connectivity has all the information needed to construct an appropriate 
Z-matrix automatically; the steps needed to effect this conversion are described below. 
 

Desirable attributes for a computer program that calculates Z-matrices  
 
• The ability to specify the starting atom for the Z-matrix 
• The ability to identify flexible torsion angles.  Note that all torsion angles are normally considered to 

be flexible except when either (a) the torsion involved is part of a ring system or (b) the torsion 
involved has a bond order greater than one  

• The ability to identify torsions that involve only ‘H’ atom rotations, as rotation around these torsions 
will not have any significant impact upon the calculation of an X-ray powder diffraction pattern 

 
Of these attributes, the first two are essential and the latter desirable. 
 
A strategy for the calculation 
 
Step 1 
 
Firstly, we obtain a model of the input structure in Cartesian co-ordinates with associated atomic 
connectivity.  For the example presented later (famotidine), CSSR format is used: 
  
       #   label                   x                       y                      z                      connectivity 
   1 S1      0.00000   0.00000   0.00000    2   3   4  33 
   2 O2      1.43958   0.00000   0.00000    1   0   0   0 
   3 O3     -0.66320   1.28419   0.00000    1   0   0   0 
   4 N4     -0.40765  -0.88451   1.28417    1   5   0   0 
   5 C5     -1.67657  -1.14553   1.55244    4   6   9   0 
 
   etc. . . .  
 
Thus atom 1 is connected to atoms 2,3,4 and 33, Atom 2 is connected to 1 etc….. 
 
 
Step 2 
 
In terms of atom identification, we will have the original atom numbering scheme and a new numbering 
scheme for the atoms within the Z-matrix.  Rather than attempting to maintain some correspondence 
between the original and the new numbering scheme, we will aim to renumber the structure in a one-off 
operation.  This new numbering scheme is the one that we will then use for the Z-matrix.  The 
renumbering algorithm is simple and will be presented later. The renumbered atom list is then ordered in 
ascending order, just like the original, giving, for example: 

 
   1 S11    -3.15763   0.38730   4.11686    2   3   0   0 
   2 C10    -1.83328  -0.83920   4.04576    1   4   5   6 
   3 C12    -2.46400   1.75399   3.11132    1  20  21  22 
   4 C9     -1.92778  -1.82462   2.87380    2   7   8   9 
   5 H29    -1.88968  -1.31614   4.82938    2   0   0   0 
 



Step 3 
 
It is clear that there is redundancy in the connectivity list that can be removed.  For example, atom 1 is 
connected to 2 and 3, but that information is contained further down the list in the connectivities of atoms 
2 and 3.  Therefore, we trim the connectivity list with the following rule: for each atom in the list, look at 
the connectivity list and delete any atoms that have a higher number than the current atom.  For any 
atoms that remain in the connected list, ensure that they are placed in ascending order.  Applying this 
rule to the five atom list shown earlier, the list becomes 
 
   1 S11    -3.15763   0.38730   4.11686     
   2 C10    -1.83328  -0.83920   4.04576    1   
   3 C12    -2.46400   1.75399   3.11132    1   
   4 C9     -1.92778  -1.82462   2.87380    2   
   5 H29    -1.88968  -1.31614   4.82938    2   
 
For a compound that contains no ring systems, each atom in the list will only have a single connected 
atom.  For a compound that has a single ring system, only one atom in the list will have two connected 
atoms remaining at the end of this step.  This property of the list makes it easy to identify ring systems 
and hence identify non-rotating bonds.  
 
Step 4 
 
This simplified representation makes generation of a Z-matrix straightforward, provided that the 
following rules are remembered 
 

• A flexible torsion angle can only cross the central twisting bond a single time.  For example, if 
4-3-2-1 is a legitimate flexible torsion, 5-3-2-1 cannot be, because the 3-2 bridge has already been 
crossed.  Instead, the position for atom 5 must be defined relative to the atom that first crossed the 
bridge i.e. an improper torsion 5-3-2-4. 

 
• If the central bond is part of a ring, it cannot be a flexible torsion.   

 
• Each time we look for a ‘connection’ from an atom, we always use the lowest index atom that is 

connected, excluding the atom we are tracking from 
 
We’ll now take a typical example (famotidine) and see how this works in practice. 
 
Famotidine: renumbering the structure 
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The numbering scheme is from a .CSSR file, which is shown below 
                 
   1 S1      0.00000   0.00000   0.00000    2   3   4  33 
   2 O2      1.43958   0.00000   0.00000    1   0   0   0 
   3 O3     -0.66320   1.28419   0.00000    1   0   0   0 
   4 N4     -0.40765  -0.88451   1.28417    1   5   0   0 
   5 C5     -1.67657  -1.14553   1.55244    4   6   9   0 
   6 N6     -2.72661  -0.84659   0.82513    5   7   8   0 
   7 H7     -2.64780  -0.44281   0.13183    6   0   0   0 
   8 H8     -3.51664  -1.07174   1.09032    6   0   0   0 
   9 C9     -1.92778  -1.82462   2.87380    5  10  31  32 
  10 C10    -1.83328  -0.83920   4.04576    9  11  29  30 
  11 S11    -3.15763   0.38730   4.11686   10  12   0   0 
  12 C12    -2.46400   1.75399   3.11132   11  13  27  28 
  13 C13    -1.37355   2.49913   3.79836   12  14  17   0 
  14 N14    -1.72206   3.44723   4.74729   13  15   0   0 
  15 C15    -0.65834   4.05997   5.22388   14  16  19   0 
  16 S16     0.84898   3.46491   4.54237   15  17   0   0 
  17 C17    -0.04407   2.35168   3.57109   13  16  18   0 
  18 H18     0.39441   1.77470   2.93215   17   0   0   0 
  19 N19    -0.55717   5.05435   6.13996   15  20   0   0 
  20 C20    -1.65577   5.66504   6.58976   19  21  24   0 
  21 N21    -1.49335   6.65177   7.47900   20  22  23   0 
  22 H22    -0.74545   6.92387   7.68745   21   0   0   0 
  23 H23    -2.15564   7.03585   7.73829   21   0   0   0 
  24 N24    -2.90102   5.36593   6.21922   20  25  26   0 
  25 H25    -3.02436   4.74583   5.69903   24   0   0   0 
  26 H26    -3.51859   5.80870   6.51171   24   0   0   0 
  27 H27    -2.14046   1.40036   2.24489   12   0   0   0 
  28 H28    -3.18891   2.34331   2.91616   12   0   0   0 
  29 H29    -1.88968  -1.31614   4.82938   10   0   0   0 
  30 H30    -1.03619  -0.39013   4.03420   10   0   0   0 
  31 H31    -1.26103  -2.49122   2.97977    9   0   0   0 
  32 H32    -2.82899  -2.21138   2.84944    9   0   0   0 
  33 N33    -0.58734  -0.79346  -1.29434    1  34  35   0 
  34 H34    -0.72390  -0.27427  -1.94887   33   0   0   0 
  35 H35    -0.11417  -1.48289  -1.51453   33   0   0   0 
 
This molecule is numbered starting from one end.  Ideally, we would like the Z-matrix to start from S11 
which lies at the middle of the molecule - this ensures that dependencies amongst the torsion angles are 
evenly distributed, which confers performance benefits during the global optimisation stage [2].  Thus we 
will renumber the structure based upon the connectivity, starting from atom S11.  The algorithm is 
straightforward: pick the start atom and call it atom 1 and make a note that this has been renumbered and 
traced. Look at the n atoms connected to it and number them 2 through to n. Make a note that these atoms 
have been renumbered.  Now loop over the connected atoms and look at the atoms connected to those 
atoms i.e. begin tracing the first connected atom.  Clearly, this is a recursive process which will continue 
until there are no more atoms left to trace that are ‘descended’ from this first connected atom.  The initial 
loop over the atoms connected to atom 1 will then move on to the second connected atom and so on until 
all atoms have been renumbered and all atoms have been marked as having been traced.  A trivial piece 
of C++ code for doing this is attached at the end of this document, together with the sample input file 
‘famot.xyz’.  This program simply outputs the mapping "original atom number → new atom number".  
Here is the result of the renumbering. 
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   1 S11    -3.15763   0.38730   4.11686    2   3   0   0 
   2 C10    -1.83328  -0.83920   4.04576    1   4   5   6 
   3 C12    -2.46400   1.75399   3.11132    1  20  21  22 
   4 C9     -1.92778  -1.82462   2.87380    2   7   8   9 
   5 H29    -1.88968  -1.31614   4.82938    2   0   0   0 
   6 H30    -1.03619  -0.39013   4.03420    2   0   0   0 
   7 C5     -1.67657  -1.14553   1.55244    4  10  11   0 
   8 H31    -1.26103  -2.49122   2.97977    4   0   0   0 
   9 H32    -2.82899  -2.21138   2.84944    4   0   0   0 
  10 N4     -0.40765  -0.88451   1.28417    7  12   0   0 
  11 N6     -2.72661  -0.84659   0.82513    7  18  19   0 
  12 S1      0.00000   0.00000   0.00000   10  13  14  15 
  13 O2      1.43958   0.00000   0.00000   12   0   0   0 
  14 O3     -0.66320   1.28419   0.00000   12   0   0   0 
  15 N33    -0.58734  -0.79346  -1.29434   12  16  17   0 
  16 H34    -0.72390  -0.27427  -1.94887   15   0   0   0 
  17 H35    -0.11417  -1.48289  -1.51453   15   0   0   0 
  18 H7     -2.64780  -0.44281   0.13183   11   0   0   0 
  19 H8     -3.51664  -1.07174   1.09032   11   0   0   0 
  20 C13    -1.37355   2.49913   3.79836    3  23  24   0 
  21 H27    -2.14046   1.40036   2.24489    3   0   0   0 
  22 H28    -3.18891   2.34331   2.91616    3   0   0   0 
  23 N14    -1.72206   3.44723   4.74729   20  25   0   0 
  24 C17    -0.04407   2.35168   3.57109   20  26  28   0 
  25 C15    -0.65834   4.05997   5.22388   23  26  27   0 
  26 S16     0.84898   3.46491   4.54237   24  25   0   0 
  27 N19    -0.55717   5.05435   6.13996   25  29   0   0 
  28 H18     0.39441   1.77470   2.93215   24   0   0   0 
  29 C20    -1.65577   5.66504   6.58976   27  30  31   0 
  30 N21    -1.49335   6.65177   7.47900   29  32  33   0 
  31 N24    -2.90102   5.36593   6.21922   29  34  35   0 
  32 H22    -0.74545   6.92387   7.68745   30   0   0   0 
  33 H23    -2.15564   7.03585   7.73829   30   0   0   0 
  34 H25    -3.02436   4.74583   5.69903   31   0   0   0 
  35 H26    -3.51859   5.80870   6.51171   31   0   0   0 
 
Now we remove any forward references to atoms removed, as specified in 'Step 3' earlier, to give: 
 
    1 S11    -3.15763   0.38730   4.11686     
   2 C10    -1.83328  -0.83920   4.04576    1   
   3 C12    -2.46400   1.75399   3.11132    1   
   4 C9     -1.92778  -1.82462   2.87380    2   
   5 H29    -1.88968  -1.31614   4.82938    2   
   6 H30    -1.03619  -0.39013   4.03420    2    
   7 C5     -1.67657  -1.14553   1.55244    4   
   8 H31    -1.26103  -2.49122   2.97977    4   
   9 H32    -2.82899  -2.21138   2.84944    4    
  10 N4     -0.40765  -0.88451   1.28417    7   
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  11 N6     -2.72661  -0.84659   0.82513    7   
  12 S1      0.00000   0.00000   0.00000   10   
  13 O2      1.43958   0.00000   0.00000   12    
  14 O3     -0.66320   1.28419   0.00000   12    
  15 N33    -0.58734  -0.79346  -1.29434   12   
  16 H34    -0.72390  -0.27427  -1.94887   15   
  17 H35    -0.11417  -1.48289  -1.51453   15   
  18 H7     -2.64780  -0.44281   0.13183   11   
  19 H8     -3.51664  -1.07174   1.09032   11   
  20 C13    -1.37355   2.49913   3.79836    3   
  21 H27    -2.14046   1.40036   2.24489    3   
  22 H28    -3.18891   2.34331   2.91616    3   
  23 N14    -1.72206   3.44723   4.74729   20  
  24 C17    -0.04407   2.35168   3.57109   20  
  25 C15    -0.65834   4.05997   5.22388   23  
  26 S16     0.84898   3.46491   4.54237   24  25  
  27 N19    -0.55717   5.05435   6.13996   25   
  28 H18     0.39441   1.77470   2.93215   24   
  29 C20    -1.65577   5.66504   6.58976   27  
  30 N21    -1.49335   6.65177   7.47900   29  
  31 N24    -2.90102   5.36593   6.21922   29  
  32 H22    -0.74545   6.92387   7.68745   30   
  33 H23    -2.15564   7.03585   7.73829   30   
  34 H25    -3.02436   4.74583   5.69903   31   
  35 H26    -3.51859   5.80870   6.51171   31   
 
Note that only a single atom has two connected atoms coming from it.  This indicates that there is a single 
ring system in the molecule. 
 
Famotidine: constructing the Z-matrix 
 
Construction of the Z-matrix is now simply a matter of filling in the blanks in the table below.  Atom 1 
lies at 0,0,0, atom 2 lies at some distance a from atom 1, atom 3 lies at some distance b from atom 1 and 
makes an angle c with 1 and 2.  Atom 4 lies at some distance d from atom 2, making an angle e with 2 
and 1 and a torsion f with 2,1 and 3.  This torsion can be varied.  NB: We already have the entire first 
column (Bond to) in the form of the first connectivity column in the renumbered XYZ file. 
 
  # Atom Length Angle Torsion Variable Bond to Angle to Torsion to        
   1 S11      0.0 0.0 0.0 N 0 0 0 
   2 C10        a 0.0 0.0 N 1 0 0 
   3 C12        b c 0.0 N 1 2 0 
   4 C9      d e f Y 2 1 3 
   5 etc..... 
 
The calculation of distances, angles and torsions for the Z-matrix is straightforward in Cartesian space.  
By placing the blank Z-matrix next to the renumbered XYZ file, one can easily see the correspondence 
between them, and how the Z-matrix file can be generated automatically, using the bond connection 
information.  All we need to remember for the moment is that each time we look back for a connection, 
we always use the connected atom with the lowest index number, of course remembering that we must 
exclude the atoms we are tracking from.  For example, working through the first few atoms… 
 
   1 S11    -3.15763   0.38730   4.11686     
   2 C10    -1.83328  -0.83920   4.04576    1   
   3 C12    -2.46400   1.75399   3.11132    1   
   4 C9     -1.92778  -1.82462   2.87380    2   
   5 H29    -1.88968  -1.31614   4.82938    2   
   6 H30    -1.03619  -0.39013   4.03420    2    
   7 C5     -1.67657  -1.14553   1.55244    4   
   8 H31    -1.26103  -2.49122   2.97977    4   
   9 H32    -2.82899  -2.21138   2.84944    4 
   … 
  20 C13    -1.37355   2.49913   3.79836    3 
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1 lies at the origin.  2 is connected to 1.  3 is connected to 1 and as 1 is connected to 2, the angle is 3-1-2.  
4 is connected to 2, 2 is connected to 1, 1 is connected to 3, so the angle must be 4-2-1 and the torsion 
4-2-1-3.  Torsion 4-2-1-3 must be flagged as a variable torsion.  5 is connected to 2, the lowest index 
connected to 2 is 1, and the lowest (excluding 2 as it has just been used) connected to 1 is 3.  Therefore 
the torsion is 5-2-1-3.  However, the central atoms 2-1 already participate in a rotating torsion and so 
atom 3 is replaced by the first atom that crossed the 2-1 bridge i.e. 4.  The torsion thus becomes 5-2-1-4 
i.e. an improper torsion that is fixed relative to the first atom of the proper torsion.  Similarly, 6-2-1-3 
must become 6-2-1-4.  7 is connected to 4, the lowest index from 4 is 2, the lowest index from 2 is 1, thus 
7-4-2-1 is the correct torsion.  This must be flagged as being variable.  8 is connected to 4, the lowest 
index from 4 is 2, the lowest index from 2 is 1, thus 8-4-2-1 is the suggested torsion.  As the 4-2 bridge 
has already been crossed, the correct torsion must be 8-4-2-7.  Similarly, 9-4-2-7 is correct torsion for 
atom 9.  By the time we arrive at atom 20, we are starting to build the other side of the molecule but the 
same rules still apply.  20 is connected to 3, 3 to 1 and 1 to 2.  The torsion is therefore 20-3-1-2.   
 
It should be clear by now that the rules for the construction of the Z-matrix become pretty straightforward 
once the renumbering process has been carried out.  However, we still have a problem to deal with when 
handling ring systems. 
 

Ring system handling 
 
As mentioned earlier, the presence of a ring is indicated by an atom in the renumbered list having more 
than one connected atom.  We need to identify the ring torsions and flag them to say that they cannot be 
variable.  Looking more closely at atom 26, 
  
  20 C13    -1.37355   2.49913   3.79836    3   
  21 H27    -2.14046   1.40036   2.24489    3   
  22 H28    -3.18891   2.34331   2.91616    3   
  23 N14    -1.72206   3.44723   4.74729   20  
  24 C17    -0.04407   2.35168   3.57109   20  
  25 C15    -0.65834   4.05997   5.22388   23  
  26 S16     0.84898   3.46491   4.54237   24  25  
 
we see that it has more than one connected atom.  By following the connections from these connected 
atoms, we see that the ring must consist of  

N
23

25

S
2624

20

and so any torsion that involves a central bond of 26-24,26-25,24-20,25-23 or 23-20 cannot be variable.  
To illustrate that this works, the rules outlined thus far would generate the following torsions leading up 
to and around the ring. 
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20-3-1-2  Variable Proper 
21-3-1-20  Fixed Improper 
22-3-1-20  Fixed Improper 
23-20-3-1  Variable Proper 
24-20-3-23  Fixed Improper 
25-23-20-3  Fixed Proper (because it involves a central bond of 23-20) 
26-24-20-3  Fixed Proper (because it involves a central bond of 24-20) 
27-25-23-20  Fixed Proper (because it involves a central bond of 25-23) 
28-24-20-3  Fixed Proper (because it involves a central bond of 24-20) 
 
Remember that the distinction between a proper and an improper torsion is one of nomenclature and the 
only difference that we actually see in the final Z-matrix between these different types of torsions is: are 
they flagged as being variable or not? 
 
Connectivity in the final Z-matrix as a result of applying the rules described is given below, with actual 
lengths, angles and torsions omitted for clarity. 
 
 
  # Atom Len Ang Tor Var Bond to Angle to Torsion to     
   1 S11         N 0 0 0 
   2 C10          N 1 0 0 
   3 C12          N 1 2 0 
   4 C9         Y 2 1 3 
   5 H29         N 2 1 4 
   6 H30         N 2 1 4 
   7 C5           Y 4 2 1 
   8 H31         N 4 2 7 
   9 H32        N 4 2 7 
  10 N4          Y 7 4 2 
  11 N6          N 7 4 10 
  12 S1         Ydb 10 7 4 
  13  O2          Y 12 10 7 
  14 O3         N 12 10 13 
  15 N33        N 12 10 13 
  16 H34         Yh 15 12 10 
  17 H35         N 15 12 16 
  18 H7    Yh 11 7 4 
  19 H8        N 11 7 18 
  20 C13        Y 3 1 2 
  21 H27         N 3 1 20 
  22 H28         N 3 1 20 
  23 N14        Y 20 3 1 
  24 C17         N 20 3 23 
  25 C15         Nr 23 20 3 
  26 S16        Nr 24 20 3 
  27 N19       Nr 25 23 20 
  28 H18       Nr 24 20 22 
  29 C20       Y 27 25 23 
  30 N21       Ydb 29 27 25 
  31 N24      N 29 27 30 
  32 H22        Yh 30 29 27 
  33 H23       N 30 29 32 
  34 H25       Yh 31 29 27 
  35 H26    N 31 29 34 
 
r indicates ring torsion 
h indicates torsion that will twist only H atoms and so is not really needed 
db indicates torsion around a double bond that is not needed 
 



Therefore, the algorithm suggests a total of 13 torsions, which a glance at a sketch of the molecule shows 
to be correct. 
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However, applying our chemical knowledge (eliminating double bonds and rotations that only affect the 
positions of H atoms), we see that only 7 make any sense for an X-ray powder diffraction experiment 
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Summary 
 
The algorithm outlined above, as implemented in the DASH computer program for structure 
determination from powder diffraction data, has proven to be very successful.  The critical step is the 
renumbering of the structure; once this is done, generation of the Z-matrix is straightforward.  Although 
alternatives to the Z-matrix approach exist, it remains a very simple and useful formalism.  
 
1. Shankland, K. (2004). http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004aug/  
2. Shankland, K., McBride, L., David, W.I.F., Shankland, N., Steele, G., (2002)  J. Appl. Crystallogr., 35, 
443-454. 
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Atom renumbering code (reads file 'famot.xyz') 
 
#include <iostream.h>  
#include <fstream.h> 
#include <math.h> 
int used[100], ic[100][5], ic2[100][5], numlines; 
double xyz[100][3], xyz2[100][6]; 
void trace(int i); 
 
void main() {  
  int j, junk, itrace; 
  char junk2[2]; 
  ifstream infile("famot.xyz",ios::in); 
  infile >> numlines; 
  for (j=1; j<=numlines; j++)  
    infile >>junk>>junk2>>xyz[j][1]>>xyz[j][2] 
    >>xyz[j][3]>>ic[j][1]>>ic[j][2]>>ic[j][3]>>ic[j][4]; 
  for (j=0; j<=11; j++) 
    used[j] = 0; 
  cout << "trace from which atom number ? "; 
  cin >> itrace; 
  trace(itrace); 
} 
 
void trace(int i) { 
  static int incr=0, mapping[100], traced[100]; 
  int j, k; 
  traced[i]=1; 
  if (used[i] == 0)  { 
    used[i] = 1; 
    incr++; 
    mapping[i]=incr; 
 xyz2[mapping[i]][1]=xyz[i][1]; 
 xyz2[mapping[i]][2]=xyz[i][2]; 
 xyz2[mapping[i]][3]=xyz[i][3]; 
 ic2[mapping[i]][1]=ic[i][1]; 
 ic2[mapping[i]][2]=ic[i][2]; 
 ic2[mapping[i]][3]=ic[i][3]; 
 ic2[mapping[i]][4]=ic[i][4]; 
 cout << "mapping " << i << " to "<<  mapping[i] << endl; 
  } 
 
  for (j=1; j<=4; j++) { 
    if (ic[i][j] != 0) { 
  if (used[ic[i][j]] == 0) { 
          used[ic[i][j]] = 1; 
          incr++; 
          mapping[ic[i][j]]=incr; 
     xyz2[mapping[i]][1]=xyz[i][1]; 
   xyz2[mapping[i]][2]=xyz[i][2]; 
   xyz2[mapping[i]][3]=xyz[i][3]; 
   ic2[mapping[i]][1]=ic[i][1]; 
   ic2[mapping[i]][2]=ic[i][2]; 
   ic2[mapping[i]][3]=ic[i][3]; 
   ic2[mapping[i]][4]=ic[i][4]; 
       cout << "mapping " << ic[i][j] << " to "<<  mapping[ic[i][j]] << endl; 
  } 
    } 
  } 
 
  for (j=1; j<=4; j++) { 
 k=ic[i][j]; 
 if ( (k!=0) && (traced[k]==0)) { 
 trace(k); 
 } 
  } 
  
} 
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famot.xyz 
 
35                               
   1 S1      0.00000   0.00000   0.00000    2   3   4  33 
   2 O2      1.43958   0.00000   0.00000    1   0   0   0 
   3 O3     -0.66320   1.28419   0.00000    1   0   0   0 
   4 N4     -0.40765  -0.88451   1.28417    1   5   0   0 
   5 C5     -1.67657  -1.14553   1.55244    4   6   9   0 
   6 N6     -2.72661  -0.84659   0.82513    5   7   8   0 
   7 H7     -2.64780  -0.44281   0.13183    6   0   0   0 
   8 H8     -3.51664  -1.07174   1.09032    6   0   0   0 
   9 C9     -1.92778  -1.82462   2.87380    5  10  31  32 
  10 C10    -1.83328  -0.83920   4.04576    9  11  29  30 
  11 S11    -3.15763   0.38730   4.11686   10  12   0   0 
  12 C12    -2.46400   1.75399   3.11132   11  13  27  28 
  13 C13    -1.37355   2.49913   3.79836   12  14  17   0 
  14 N14    -1.72206   3.44723   4.74729   13  15   0   0 
  15 C15    -0.65834   4.05997   5.22388   14  16  19   0 
  16 S16     0.84898   3.46491   4.54237   15  17   0   0 
  17 C17    -0.04407   2.35168   3.57109   13  16  18   0 
  18 H18     0.39441   1.77470   2.93215   17   0   0   0 
  19 N19    -0.55717   5.05435   6.13996   15  20   0   0 
  20 C20    -1.65577   5.66504   6.58976   19  21  24   0 
  21 N21    -1.49335   6.65177   7.47900   20  22  23   0 
  22 H22    -0.74545   6.92387   7.68745   21   0   0   0 
  23 H23    -2.15564   7.03585   7.73829   21   0   0   0 
  24 N24    -2.90102   5.36593   6.21922   20  25  26   0 
  25 H25    -3.02436   4.74583   5.69903   24   0   0   0 
  26 H26    -3.51859   5.80870   6.51171   24   0   0   0 
  27 H27    -2.14046   1.40036   2.24489   12   0   0   0 
  28 H28    -3.18891   2.34331   2.91616   12   0   0   0 
  29 H29    -1.88968  -1.31614   4.82938   10   0   0   0 
  30 H30    -1.03619  -0.39013   4.03420   10   0   0   0 
  31 H31    -1.26103  -2.49122   2.97977    9   0   0   0 
  32 H32    -2.82899  -2.21138   2.84944    9   0   0   0 
  33 N33    -0.58734  -0.79346  -1.29434    1  34  35   0 
  34 H34    -0.72390  -0.27427  -1.94887   33   0   0   0 
  35 H35    -0.11417  -1.48289  -1.51453   33   0   0   0 
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Call for Contributions to the Next CompComm Newsletter 
 

Due to the IUCr 2005 Florence congress occuring in the middle of the near, the sixth issue of the 
Compcomm Newsletter is expected to appear around January of 2006 with the primary theme to be 
determined.  If no-one is else is co-opted, the newsletter will be edited by Lachlan Cranswick. 
 
Contributions would be aso greatly appreciated on matters of general interest to the crystallographic 
computing community, e.g. meeting reports, future meetings, developments in software, algorithms, 
coding, programming languages, techniques and other news.  
 
Please send articles and suggestions directly to the editor. 
 
Lachlan M. D. Cranswick 
NPMR, NRC, 
Building 459, Station 18, 
Chalk River Laboratories, 
Chalk River, Ontario, 
Canada, K0J 1J0  
E-mail: lachlan.cranswick@nrc.gc.ca  
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick   

mailto:lachlan.cranswick@nrc.gc.ca
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