
Table of Contents
(This Issue's Editors: Simon Billinge, Gervais Chapuis, Lachlan Cranswick and Ron Lifshitz)

(Editors’ warning – unless you want to kill 103 pages worth of forest – DO NOT press the “print” button. For hardcopies –
you may like to only print out the articles of personal interest.)

CompComm chairman’s message, Ton Spek 2

Editors’ message, Simon Billinge, Gervais Chapuis,
Lachlan Cranswick and Ron Lifshitz 2

IUCr Commission on Crystallographic Computing 3

Preliminary registration for the IUCr Computing
School, Siena, Italy, August 2005 4

Incommensurate structures, quasicrystals and pair
distribution functions. (programming and general
articles) :

Procedures for the refinement of
incommensurate structures using XND. Coding
issues for the refinement of incommensurate
structures. 5
Jean-François Bérar and Gianguido Baldinozzi

A Program Package for Aperiodic Tilings 10
Uwe Grimm

DIMS (Direct-methods program for solving
Incommensurate Modulated Structures) on the
VEC platform 16
Hai-fu Fan

DIMS (Direct-methods program for solving
Incommensurate Modulated Structures) /VEC
applications 24
Hai-fu Fan

Collection and visualization of single crystal data
of incommensurate crystals 28
Rob Hooft

Visualization and Analysis of Single Crystal
Time-of-Flight Neutron Scattering Data using
ISAW 32
Dennis Mikkelson, Arthur J. Schultz, Ruth Mikkelson
and Thomas Worlton

Graphical and interpretation tools for difficult
incommensurate and composite structures in
JANA2000 40
Václav Petříček and Michal Dušek

Calculating the Pair Distribution Function from
a Structural Model 47
Thomas Proffen

Other Articles :

Refinement in Crystals 51
Richard Cooper and David Watkin

cctbx news: Phil and friends 69
Ralf W. Grosse-Kunstleve, Pavel V. Afonine,
Nicholas K. Sauter and Paul D. Adams

Computing the Z-matrix for global optimisation 92
Kenneth Shankland

Calls for contributions to Newsletter No. 6 103

Commission on Crystallographic Computing
International Union of Crystallography

http://www.iucr.org/iucr-top/comm/ccom/
Newsletter No. 5, January 2005

This issue’s theme:
"At Right Angles to Conventional Crystallographic
reality: incommensurate structures, quasicrystals

and pair distribution functions"
http://www.iucr.org/iucr-top/comm/ccom/newsletters/

http://www.iucr.org/iucr-top/comm/ccom/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/

2

CompComm Chairman’s Message

This newsletter has again managed to bring together a large number of very relevant and interesting
computing related articles. The focus this time is on the computational aspects of incommensurate and
related non-standard structures.

David Watkin's article teaches us how to translate 'Cambridge speak' (SHELXL) into 'Oxford speak'
(Crystals). Ralf Grosse-Kunstleve informs us about the latest extensions to the Computational
Crystallography Toolbox.

We expect to close the term of the current IUCr Computing Commission with a very interesting 'classical'
computing school addressing state-of-the-art (hands-on) software development and of particular relevance
for young scientists interested in crystallographic computing. Details can be found below.

Ton Spek, Chairman or the IUCr Computing Commission, (a.l.spek@chem.uu.nl)

From the Editors of Newsletter No. 5

Since more than three decades, crystallographers have been faced with new challenging crystalline
material with structures incompatible with the classical view of crystals with three dimensional
periodicity. These new materials includes incommensurately modulated and composite structures,
quasicrystals with icosahedral or dodecagonal symmetry to cite only the most representative examples of
aperiodic structures as they are presently called. In most cases, these new structures are best described by
embedding them in space of up to six dimensions. This approach is justified by the fact that periodicity
can be recovered although in higher dimension.

The rapid evolution of this field is not only due to the innovative theoretical approach of the so called
superspace symmetry but also to the enormous worldwide efforts on software development. This issue
includes a range of articles on techniques that can explain diffraction data where the most appropriate
model may not fit into an ordered convenient commensurate cell: Incommensurate Structures,
Quasicrystals and Pair Distribution Functions. Besides encouraging exchange of ideas within different
communities, we hope it might encourage crystallographers, who may prefer to deal only with ordered
commensurate cells, to take these style of problems out of the "too unusual draw" and onto their
diffractometers and transmission electron microscopes.

Simon Billinge, Gervais Chapuis, Lachlan Cranswick and Ron Lifshitz

(billinge@pa.msu.edu ; gervais.chapuis@epfl.ch ; lachlan.cranswick@nrc.gc.ca ; ronlif@tau.ac.il)

mailto:a.l.spek@chem.uu.nl
mailto:billinge@pa.msu.edu
mailto:gervais.chapuis@epfl.ch
mailto:lachlan.cranswick@nrc.gc.ca
mailto:ronlif@tau.ac.il

3

THE IUCR COMMISSION ON CRYSTALLOGRAPHIC COMPUTING - TRIENNIUM 2003-2005

Chairman: Prof. Dr. Anthony L. Spek
Director of National Single Crystal Service Facility,
Utrecht University,
H.R. Kruytgebouw, N-801,
Padualaan 8, 3584 CH Utrecht,
the Netherlands.
Tel: +31-30-2532538
Fax: +31-30-2533940
E-mail: a.l.spek@chem.uu.nl
WWW: http://www.cryst.chem.uu.nl/spea.html

Professor I. David Brown
Brockhouse Institute for Materials Research,
McMaster University,
Hamilton, Ontario, Canada
Tel: 1-(905)-525-9140 ext 24710
Fax: 1-(905)-521-2773
E-mail: idbrown@mcmaster.ca
WWW: http://www.physics.mcmaster.ca/people/faculty/Brown_ID.html

Lachlan M. D. Cranswick
Neutron Program for Materials Research (NPMR),
National Research Council (NRC),
Building 459, Station 18, Chalk River Laboratories,
Chalk River, Ontario, Canada, K0J 1J0
Tel: (613) 584-8811 ext: 3719
Fax: (613) 584-4040
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

Dr Vincent Favre-Nicolin
CEA Grenoble
DRFMC/SP2M/Nano-structures et Rayonnement Synchrotron
17, rue des Martyrs 38054 Grenoble Cedex 9
38054 Grenoble Cedex 9 – France
Tel: (+33) 4 38 78 95 40
Fax: (+33) 4 38 78 51 97
E-mail: vincefn@users.sourceforge.net
WWW: http://objcryst.sourceforge.net/

Dr Ralf Grosse-Kunstleve
Lawrence Berkeley Lab
1 Cyclotron Road,
BLDG 64R0121,
Berkeley, California, 94720-8118, USA.
Tel: 510-486-5909
Fax: 510-486-5909
E-mail: rwgk@yahoo.com
WWW: http://cci.lbl.gov/

Prof Alessandro Gualtieri
Università di Modena e Reggio Emilia,
Dipartimento di Scienze della Terra,
Via S.Eufemia, 19,
41100 Modena, Italy
Tel: +39-059-2055810
Fax: +39-059-2055887
E-mail: alex@unimore.it
WWW: http://www.terra.unimo.it/mineralogia/gualtieri.html

Prof Ethan A Merritt
Department of Biological Structure
University of Washington
Box 357420, HSB G-514
Seattle, Washington, USA
Tel: 206 543 1861
Fax: 206 543 1524
E-mail: merritt@u.washington.edu
WWW: http://www.bmsc.washington.edu/people/merritt/

Dr. Simon Parsons
School of Chemistry
Joseph Black Building,
West Mains Road,
Edinburgh, Scotland EH9 3JJ, UK
Tel: +44 131 650 5804
Fax: +44 131 650 4743
E-mail: s.parsons@ed.ac.uk
WWW: http://www.chem.ed.ac.uk/staff/parsons.html

Dr. Bev Vincent
RigakuMSC
9009 New Trails Dr,
The Woodlands, Texas 77381-5209, USA
Tel: 281-363-1033
Fax: 281-364-3628
E-mail: brv@RigakuMSC.com
WWW: http://www.rigakumsc.com/

Consultants

Dr David Watkin
Chemical Crystallography,
Oxford University,
9 Parks Road,
Oxford, OX1 3PD, UK.
Tel: +44 (0) 1865 272600
Fax: +44 (0) 1865 272699
E-mail: david.watkin@chemistry.oxford.ac.uk
WWW: http://www.chem.ox.ac.uk/researchguide/djwatkin.html

Dr Harry Powell
MRC Laboratory of Molecular Biology,
Hills Road, Cambridge, CB2 2QH, UK.
Tel: +44 (0) 1223 248011
Fax: +44 (0) 1223 213556
E-mail: harry@mrc-lmb.cam.ac.uk
WWW: http://www.mrc-lmb.cam.ac.uk/harry/

mailto:a.l.spek@chem.uu.nl
http://www.cryst.chem.uu.nl/spea.html
mailto:idbrown@mcmaster.ca
http://www.physics.mcmaster.ca/people/faculty/Brown_ID.html
mailto:lachlan.cranswick@nrc.gc.ca
mailto:vincefn@users.sourceforge.net
http://objcryst.sourceforge.net/
mailto:rwgk@yahoo.com
http://cci.lbl.gov/
mailto:alex@unimore.it
http://www.terra.unimo.it/mineralogia/gualtieri.html
mailto:merritt@u.washington.edu
http://www.bmsc.washington.edu/people/merritt/
mailto:s.parsons@ed.ac.uk
http://www.chem.ed.ac.uk/staff/parsons.html
mailto:brv@RigakuMSC.com
http://www.rigakumsc.com/
mailto:david.watkin@chemistry.oxford.ac.uk
http://www.chem.ox.ac.uk/researchguide/djwatkin.html
mailto:harry@mrc-lmb.cam.ac.uk
http://www.mrc-lmb.cam.ac.uk/harry/

4

 Now Accepting Preliminary Registrations via the school website

Certosa di Pontignano,
University of Siena, Italy
18th - 23rd August 2005

(just prior to the Florence IUCr 2005 congress)

http://www.iucr.org/iucr-top/comm/ccom/siena2005/

School Organisers: Prof Anthony Spek
(Utrecht), Prof. Marcello Mellini (Siena),
Prof. Alessandro Gualtieri (Modena), Dr
Harry Powell (Cambridge), Lachlan
Cranswick (NRC Chalk River)
Consultants: Dr David Watkin
(Oxford), Dr Simon Parsons (Edinburgh)

Each day of the school is focussed on a different theme:
 “principles & methods”
 “joining things together”
 “crystallographic implementations”
 “selected topics in crystallography”
 “special methods”

The City
Siena is described as one of the
finest examples of a Medieval
city. It is in the Italian province
of Tuscany and has direct bus
connection to Florence (1 hour)
and Rome (3 hours).

The Venue
The Certosa di Pontignano has its
origins as a medieval 14th century
monastary. It is now run by the
University of Siena. Attractively
placed on the top of a hill, it is
surrounded by vineyards; with a
direct view to the town of Siena,
and a famous Chianti winery.

School Aims
To have the crystallographic
computing experts of the present,
help train and inspire a generation
of experts for the future. This will
be achieved by the use of an
excellent (and full) program of
lectures, workshops and projects.

http://www.iucr2005.it/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/
http://www.iucr.org/iucr-top/comm/ccom/siena2005/organ.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/venue.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html
http://www.iucr.org/iucr-top/comm/ccom/siena2005/program.html

5

Procedures for the refinement of incommensurate structures using XND.
Coding issues for the refinement of incommensurate structures.

Jean-François Bérar(1) and Gianguido Baldinozzi(2)
1. Laboratoire de Cristallographie, CNRS, BP 166, F 38042 Grenoble Cedex, France.
berar@grenoble.cnrs.fr ; http://www-cristallo.grenoble.cnrs.fr/Le_Personnel/CVs/BERAR.html and
2. SPMS, CNRS ECP, F 92995 Chatenay-Malabry Cedex, France.
gianguido.baldinozzi@ecp.fr

Introduction

The Rietveld program xnd [1] was first written in the late 80's to take full profit of data collected with
high resolution laboratory diffractometers. Xnd handles complex diffraction patterns including : data sets
contain multiple wavelength contributions, multiple phases, handled defining a proper structure or as a
simple set of parasitic peaks, patterns recorded with irregular angular steps, joint refinements of multiple
data sets (x-ray, neutron, single crystal), constrained refinements of multiple data sets of a given sample
in a changing environment (field, temperature, pressure, ...) ; the program also handles a variety of
experimental setups and their proper lineshapes and absorption corrections.

The proper use of xnd requires a good knowledge of diffraction experiments and the program is not
designed for a black box usage. For instance, the way the profile lineshape is defined finds its roots in this
more complex approach to diffraction: in fact, each wavelength and each phase in a high resolution
diffraction pattern have a priori different profile functions and a specific behaviour. The overall profile
functions are then described by the convolution of these individual contributions coming from the
experimental geometry and from the intrinsic sample broadening. They are efficiently expressed as Voigt
functions, allowing an accurate lineshape modelling during a raisonable calculation time [2, 3]. Within
this approximation, the lineshape contributions can be described by Lorentzian and Gaussian function
widths with a proper angular dependence that can be straightforwardly related to a particular physical or
instrumental origin. Following the same leit motiv, preferred orientation effects were also taken into
account using a polynomial expansion on the spherical harmonic basis. These functions were also used to
model the sample anisotropic broadening due to finite crystallite size or microstrain effects.

The proper definition of the lineshape is the necessary base for handling the efficient refinement of the
diffraction pattern of a modulated phase and, in the following discussion, we would like to stress the main
features of such a refinement with xnd. In the case of composite structures the key points developed in the
discussion are similar but several input parameters have to be modified.

Incommensurately modulated phases.

Most of the structural studies of incommensurately modulated phases are developed using single crystal
diffraction data. Nevertheless, many compounds are not easily synthesized as single crystals or the
interesting phases present complex polydomain structures. Therefore, the study of the structure by single
crystal techniques becomes very complex, or even not possible. The 4D formalism for mono-
incommensurately modulated phases (superspace group symmetry, intensity and positioning of satellite
reflections) was implemented in xnd [4]. In xnd the position ui

µ for the atom µ in the modulated structure
along the coordinate i is given by :

uµ
i(xµ

4) = Σ [S
µ

n,I sin(2π n x
µ

4) + Cµ
n,i cos(2π n xµ

4)]

where xµ

4 is the variable describing the average position of the atom µ in the internal subspace defined by
the modulation vector q and orthogonal to the euclidean space (xµ

4 = q.r µ, r µ being the average position
of this atom).

mailto:berar@grenoble.cnrs.fr
http://www-cristallo.grenoble.cnrs.fr/Le_Personnel/CVs/BERAR.html
mailto:gianguido.baldinozzi@ecp.fr

Another advantage is represented by the possibility to refine simultaneously x-ray and neutron diffraction
data, taking advantage of the different atomic contrast and resolution available from these probes. Even in
the early stages of the refinement, it is generally easier to decode the four dimensional Fourier maps
obtained from x-ray diffraction as they are dominated by the heavier scatterers and there are less spurious
maxima because of the atomic form factor shape. On the other hand, neutron Fourier maps give more
details on the atomic positions and are very useful in the later stages of the refinements.

This complementary use of the different probes is very powerful for the analysis of the structures of oxide
compounds. In particular, the refinement of the incommensurately modulated perovskites-type structures
is a challenging problem as (often) the onset of the modulated phase takes place at a ferroelastic phase
transition. Moreover, light and heavy scatterers are generally present in these structures (ferroelectrics,
superconductors ...).

The refinement of incommensurate phases can be considered a powerful tool for localizing the structural
disorder affecting a compound [5, 6]. Therefore, it is possible to get a better insight of complex and
defective phases. This is particularly important since the small differences between the ideal and real
structure of crystals are often responsible for the onset of interesting physical properties. This is for
instance the case of oxygen stoichiometry in superconductors, of correlations between cation
displacements in ferroelectrics, ...

Figure 1: Example of refinement: x-ray diffraction pattern of the modulated Ba0.85Ca2.15In6O12 phase [5].

In incommensurate structure refinements it is necessary to distinguish the different satellite orders so it is
useful to define different RI (RF) agreement factors for each set of reflections (Fig. 1). In general, satellite
peaks have low peak to background ratios; therefore, the effect of the background noise on the estimated
integrated intensity of the satellites is increased and the RI factor will be generally larger for these sets of
reflections, even if the structural model is good. A second problem consists in the frequent overlapping of
the satellite peaks with intense average structure main peaks; in this case, a small error on the main peaks
and in the description of their profile will strongly affect the estimation of the experimental intensities of
the satellites. The importance of a very good adequation between experimental and calculated lineshapes
must be emphasized and, in this domain, xnd offers a large choice of functions and combinations of
functions, with angle dependent parameters to optimize the refinement.

6

Recommended procedure.

The refinement of a modulated phase is generally a complex task because it generally involves the
problem of a least-square matrix where the larger number of structural parameters of the refinement have
an uneven weight. A robust approach is therefore recommended. During the progression of the
refinement, the actual importance of the different parameters must be examined and it is important to
study their eventual correlations. Once the refinement is stable, the complexity of the structural model can
be gradually increased, reducing the risks of large instabilities in the refinement. The main drawback of
this approach is that it may drive the refinement towards a local minimum but, often, the modulation
waves of lowest order are the leading terms to explain the intensities of the satellite reflections.
Nevertheles, it is a good policy to check for the existence of local minima and to assess the likehood of
the model, like in any complex refinement. In the following, a simple example of modulated structure is
analysed. It concerns the refinement of the neutron diffraction pattern of the incommensurate phase of the
ordered perovskite Pb2CoWO6 [7]; the code shown below correspond to xnd release 1.27.

• The first step consists in refining all what can be attempted without going into the
incommensurate phase : background, parasitic phases, main structure and line profile. At this step
the input file does not differ from a standard one, we now have to describe the incommensurate
phase. The analysis of the anisotropic thermal displacement parameters can provide a useful hint
for the initial amplitudes of the modulation waves.

• Incommensurate vector and symmetry : this essential information is often obtained by

transmission electronic microscopy, from the analysis of the microdiffraction pattern of a single
domain region of the sample. In this phase of Pb2CoWO6 the satellite spots are observed near the
main spots forbidden by the I centring and they can be indexed by the modulation vector q = α a*
+ γ c*. The analysis of the systematic extinctions leads to the planar monoclinic superspace group
I2/m(α0γ)0s. It is generally possible to refine precisely the components of the modulation vector.
Therefore, a rough estimate of these components by electron diffraction is generally a very good
starting point.

1. Symmetry data : in xnd the 3+1D space groups are introduced using the basic 3D space group

and the effect of the symmetry operation on the modulation vector as another space group. Then
we find in the header of the structure file two space group blocks, one for the 3D part (the usual
space group) and another one for the complementary part being identified by “*”.

7

• Declaration of the incomensurate phase : this is done by specifiying the new nature code which

requires “MODUL” and “VECTOR” keys; it is also necessary to specify the “SETS” of satellites
that are needed for accounting of the observed satellites in the “CRYSTAL” block. The additions
to the average structure block are highlighted in the following :

• Introduction of the satellite reflections sets : they are used to generate only the necessary
satellite orders. This description in separe sets allows, when necessary, to define different line
profile functions for each of them. They are followed by the vector definition which can be fitted.

• Atoms and Fourier terms : the modulated atoms are identifed by “CASE”. The following input
generate the output reproduced after in which “0_S” means a sin component associated with 1st
order, “1_C” being a cos componenent of 2nd order.

8

9

PB LEAD 8:(B_ISO MODULATED=2) COORD : 5 parameters : expansion order 1 (size 1)
 X 0.252946 1 (40 1.000000) Y 0 0 ()
 Z 0.498337 1 (41 1.000000) Oc 0.5 0 ()
 Biso 1.86584 1 (42 1.000000)

 PB generates 4(8/2) sites corresponding to 4.00(0.50*8) atoms in the cell
 The chemical occupancy is then 1.000
 PB : 16 parameters : expansion order 1 (size 1)
 0_ S_x 0 0 () 0_ C_x 0 0 ()
 0_ S_y 0 -1 (0 1.000000) 0_ C_y -0.0389692 1 (43 1.000000)
 0_ S_z 0 0 () 0_ C_z 0 0 ()
 0_ S_Oc 0 0 () 0_ C_Oc 0 0 ()
 1_ S_x 0.00337146 1 (44 1.000000) 1_ C_x -0.00132127 1 (45 1.000000)
 1_ S_y 0 0 () 1_ C_y 0 0 ()
 1_ S_z 0 -1 (0 1.000000) 1_ C_z -0.00494137 1 (46 1.000000)
 1_ S_Oc 0 0 () 1_ C_Oc 0 0 ()

In a first step, to speed up the calculation, it may be useful to introduce only the first order satellites;
often, the n+1 order wave still gives a valuable contribution to the intensities of n-order satellites.
Therefore, it is sometimes necessary to introduce second order atomic displacements even if the second
order satellite reflections are very weak because the refinement of the intensities of first order satellites
are sensibly improved. Nevertheless, it is very difficult to determine the phase of the modulated
displacements of a given wave order when the satellites of this same order are very weak or missing.

Conclusion.

The reliable refinement of modulated structures can not be considered a straightforward task. During the
different stages of the refinement, it is generally useful to calculate four dimensional Fourier maps. They
can be obtained for instance with the program JANA [8]; the integrated intensities needed as input file
can be easily extracted from the (hkl) file generated by xnd, using a very simple awk script. The input in
JANA is also very useful to draw the interatomic distances between atoms in the different sections of the
modulated crystal.

References:

[1] Bérar J-F and Garnier P, Accuracy in powder diffraction, APD 2nd Conference, 846, Gaithersburg,

USA, NIST (1992).
[2] Baldinozzi G, Sciau Ph, Pinot M and Grebille D, Acta Crystallogr. B 51 (1995) 668
[3] Seshadri R, Martin C, Maignan A, Hervieu M, Raveau B and Rao C N R, J.Mater.Chem. 6 (1996)

1585
[4] Baldinozzi G., Grebille D and Bérar J-F, Proceedings of Aperiodic 97, World Scientific
[5] Baldinozzi G., Goutenoire F, Hervieu M, Suard E and Grebille D, Acta Crystallogr. B 52 (1996) 780
[6] Baldinozzi G., Grebille D, Sciau Ph, Kiat J-M, Moret J and Bérar J-F, J. Phys.: Condens. Matter 10

(1998) 6461
[7] Baldinozzi G., Calvarin G., Sciau Ph., Grebille D. Suard E., Acta Crystallogr. B 56 (2000) 570
[8] Petricek,V., Dusek,M. & Palatinus,L.(2000). Jana2000. The crystallographic computing system.

Institute of Physics, Praha, Czech Republic

A Program Package for Aperiodic Tilings

Uwe Grimm
Applied Mathematics Department, The Open University, Walton Hall, Milton Keynes MK7 6AA, United
Kingdom; E-mail: u.g.grimm@open.ac.uk ; WWW: http://mcs.open.ac.uk/ugg2/

We describe a package of Mathematica programs, originally devised for summer schools on aperiodic
order and quasicrystals, which give an introduction to the construction of aperiodic tilings. The
programs explore several approaches to generate aperiodic tilings, concentrating on one-dimensional
and two-dimensional examples which can easily be visualised.

I Introduction

Quasicrystals, first discovered by Shechtman in 1982 (see Shechtman et al. 1984), are aperiodically
ordered solids which typically display crystallographically forbidden symmetries; see e.g. Stadnik 1999,
Suck et al. 2002, Trebin 2003 for recent collections of review articles. Their structure is usually modelled
in terms of an aperiodic tiling of space, which plays the role of the lattice for a conventional crystals,
compare e.g. Janot 1994, Senechal 1995. Apart from their use as toy models for quasicrystals, aperiodic
tilings also are aesthetically appealing, and feature in some computer generated artworks. The paradigms
of planar quasiperiodic tilings are the celebrated Penrose tiling (see Penrose 1974) and the octagonal
Ammann-Beenker tiling (see Grünbaum et al. 1987, Ammann et al. 1992), which predate the
experimental discovery of quasicrystals. A patch of the octagonal tiling, which consists of squares and
rhombi, is shown in Figure 1. The infinite tiling is repetitive, in the sense that any patch occurs within the
tiling over and over again, but non-periodic, which means that there is no translation that maps the tiling
onto itself. This structure is pure point diffractive, i.e., the diffraction pattern of, say, point scatterers
placed on the vertices of the tiling is pure point, and it furthermore has perfect eightfold rotational
symmetry; see e.g. Baake 2002 for more details on the mathematical background.

The Ammann-Beenker tiling can be constructed from the two prototiles, the square and the rhombus,
taking into account the arrow decorations of edges and corners as shown in Figure 1. Imposing the
restrictions, known as matching rules, that markings have to agree on edges and that corner markings
have to form complete arrows (or “houses”) at the vertices, enforces any infinite tiling obeying these rules
to be aperiodic (sometimes the marked tiles themselves are referred to as aperiodic because all possible
tilings of space with these tiles are necessarily non-periodic).

Figure 1: A patch of the octagonal tiling of squares and rhombi, with matching rules marked by the black
arrows along the edges and the large blue arrows (or “houses”) at the vertices.

10

mailto:u.g.grimm@open.ac.uk
http://mcs.open.ac.uk/ugg2/

11

In this article, we describe a set of computer programs which provide an introductory account of the
construction of aperiodic tilings, detailing several different approaches such as inflation, or projection
from higher-dimensional periodic lattices. The programs, most of which were originally produced for a
summer school on quasicrystals held in Chemnitz in 1997, have also been used at a summer school on
Aperiodic Order in Edmonton in 2000, a further summer school on Computational Statistical Physics in
Chemnitz in 2000, and, recently, at the Royal Society Summer Science Exhibition 2004 in London, which
was mainly aimed at a general public audience.

The programs are written in the algebraic computer package Mathematica (a registered trademark of
Wolfram Research) which provides all basic operations that are needed as well as advanced graphics tools
to visualise the results. While this makes it relatively easy to play with the programs, it unfortunately also
means that anyone who wants to use the package will need access to a computer that has Mathematica
installed on it. The Aperiodic Tilings program package, which can be downloaded at
http://mcs.open.ac.uk/ugg2/AperiodicTilings/, also contains an introduction to the use of Mathematica, so
it is not necessary to be familiar with this algebraic computer package to explore the programs, although
it will make it easier. Time permitting the author intends to add additional programs in the future.

Apart from the introductory notebook, the programs consist of two parts - the actual program code (file
names with extensions "m") in form of Mathematica packages, compare Maeder 1990, and the interactive
front-end files (file names with extensions "nb") in form of Mathematica notebooks. Notebook files may
be slightly different depending on the actual version of Mathematica used; although there is usually no
problem with compatibility, different version are supplied in order to avoid the necessity of conversion.
To use a program, open a notebook in Mathematica, and load the corresponding package file (which
needs to be copied to the same location).

II Construction of Aperiodic Tilings

There are several standard approaches to construct aperiodic tilings; not all tilings will allow all of these –
although the most popular tilings are those with all “magic” properties and hence can be constructed in a
number of different ways.

We already mentioned the matching rule approach above. The matching rules for the Ammann-Beenker
tiling are given by the arrow decorations of edges and corners, such that the decorated tiles can form only
aperiodic tilings that are legitimate. One might expect that this approach holds an intuitive clue for the
formation of quasicrystals in Nature, in that matching rules might be thought to mimic interactions
between atoms or atomic clusters in quasicrystals; however, this is not so simple because matching rules
do not constitute growth rules. The program PenrosePuzzle may show you why that is so. It allows
you to create a part of a Penrose tiling by assembling pieces like in a jigsaw puzzle, making sure that you
obey the matching rules as you go along. If you are not already too familiar with this tiling, it is likely
that, sooner or later, you will run into a situation where you encounter the problem that no further tile fits
at a certain position, which means that you must have made a "mistake" somewhere along the way, and
the patch you constructed is not actually a part of an infinite Penrose tiling, which means you have to
retreat and try again. Assembling a tiling by trial and error in this way is cumbersome and very slow. The
problem is that there is no local way to tell you which tile you have to add at a given place (provided
there is a choice), and since atoms or atomic clusters that assemble to form a solid do not know either,
matching rules do not provide a proper explanation of quasicrystal growth.

Another method that is easier to implement is based on inflation. Essentially, inflation/deflation
symmetry of a tiling gives you a recipe how to dissect the basic tiles into a number of smaller copies of
themselves, such that repeated application of dissection with an appropriate length rescaling produces an
aperiodic tiling. For instance, for the Ammann-Beenker tiling an inflation rule is known, and the program
OctagonalTiling of the package contains an implementation of it. Other examples constructed via this

http://mcs.open.ac.uk/ugg2/AperiodicTilings

12

approach are, besides one-dimensional chains covered in the program FibonacciChain, the so-called
chair and sphinx tilings, in the corresponding programs ChairTiling and SphinxTiling.

Inflation method for the pinwheel tiling

As an example, we here consider the so-called PinwheelTiling, see Radin 1999. The inflation rule is
implemented in the program PinwheelTiling. As the chair and sphinx tilings, it only consists of a single
tile, with side length ratios 5:2:1 , which however appears in infinitely many orientations. The inflation
rule is shown in Figure 2; it dissects the original right-angled triangle into five congruent copies, with side
lengths scaled by a factor 51 with respect to the original triangle.

Figure 2: Inflation rule for the pinwheel tiling.

A repeated inflation of an initial patch consisting of two triangles produces the patches shown in Figure 3.

Figure 3: Patched of the pinwheel tiling obtained by repeated inflation.

The way this is implemented in Mathematica is as follows. The tiling consists of a list of tiles, which in
turn are lists of their three vertices. The main part is the inflation of a single tile, which is done by
defining a function TileInflation which, when acting on a list representing a single tile, produces a list
containing the five dissected tiles,

TileInflation[{tilevertex1_,tilevertex2_,tilevertex3_}] :=
 ScaleFactor*{{#1,#5,#4},
 {#4,#7,#2},
 {#4,#7,#6},
 {#6,#5,#4},
 {#2,#6,#3}}&[tilevertex1,
 tilevertex2,
 tilevertex3,
 tilevertex1/2+tilevertex2/2,
 3*tilevertex1/5+2*tilevertex3/5,
 tilevertex1/5+4*tilevertex3/5,
 tilevertex1/10+tilevertex2/2+2*tilevertex3/5]

which are then rescaled by multiplying by Scalefactor which is set to 5 . The seven quantities in the
square brackets are the seven vertices that form the five new triangles (compare Figure 2), including the
three vertices of the triangle we started from; and the five lists with elements #1, #2, etc. pick out the
vertices of the respective triangles. Note that in order to work correctly the vertices of the original triangle
have to be specified in the correct order. The function TileInflation is then applied to a list of tiles by
“mapping” it repeatedly over the elements of the list, which can be done as follows,

Inflation[tiling_List,
 num_Integer:1] /; num>=0 :=
 Nest[Flatten[Map[TileInflation,#],1]&,tiling,num]

Here, the second argument num is constrained to be an integer, and it is checked that it is non-negative,
before the function TileInflation is mapped over the list tiling using the Nest command. The additional
command Flatten is included to prevent the proliferation of levels of lists within lists, so the resulting
tiling is again a list of its tiles.

The remaining parts of the program PinwheelTiling provide a function to plot the resulting tiling. This
includes a function PlotColorTiling which colors all tiles according to their orientation, as shown in
Figure 4.

Figure 4: Pinwheel tiling with tiles colored according to their orientations.

Projection and grid methods

The other commonly used approach to construct aperiodic tilings is based on projection of a certain part
of a higher-dimensional periodic lattice. The structures derived in this way are known as cut-and-project
sets or model sets; see Baake 2002 for details. Again the program FibonacciChain shows how this
works in the one-dimensional setting, using the ubiquitous example of the Fibonacci chain which can be
obtained as a projection from a strip of the two-dimensional square lattice.

13

The program OctagonalTiling contains an implementation of the projection method for the Ammann-
Beenker tiling. In this case, the periodic lattice is the integer lattice in four dimensions, so cannot be
easily visualised. In this four-dimensional space, two orthogonal two-dimensional spaces are chosen, one
corresponding to the “physical” (sometimes also called “parallel”) space which contains the tiling, the
orthogonal complement is known as the “internal” (sometimes also called “orthogonal” or
“perpendicular”) space. The internal space projection of the lattice is used to select the lattice points
which are to be projected to form the tiling. For the Ammann-Beenker tiling, all lattice points in four-
dimensional space whose projection on the internal space falls into a regular octagon are selected, and

their projections on the physical space form the actual tiling. By relating the aperiodic tiling to a higher-
dimensional periodic lattice, the projection approach explains why these tilings have pure point
diffraction patterns, although this has only recently been proven in a general setting, see Schlottmann
2000. The rotational symmetry stems from a particular choice of the physical space that retains the
eightfold rotational symmetry that is present in the four-dimensional integer lattice. The projection in
internal and physical space forming a patch of the Ammann-Beenker tiling is shown in Figure 5.

Figure 5: Projection in internal (left) and physical (right) space. Note that the two projections are not to
scale. The lattice points projected are those for which the internal projections, shown as red dots, fall
inside the regular octagon. Their projections in physical space are the vertices of an Ammann-Beenker
tiling.

Closely related to this approach is the grid method pioneered by de Bruijn (see de Bruijn 1981), where an
n-fold rotationally symmetric aperiodic tiling is constructed by dualizing a grid obtained from intersecting
sets of equidistant parallel lines, rotated with respect to each other by multiples of 360°/n. The program
GridMethod implements this for arbitrary symmetries n. Choosing n=4 once more yields the Ammann-
Beenker tiling, as can be seen from Figure 6.

Figure 6: De Bruijn grid and dual tiling with eightfold symmetry. The patch in the inside belongs to an
Ammann-Beenker tiling, the regular parts near the boundary stem from regions where only some of the
grid lines intersect.

As mentioned, this method can be applied to other symmetries. Just for fun, an example with 13-fold
symmetry is shown in Figure 7.

14

Figure 7: Tiling with 13-fold symmetry obtained by dualization of a grid.

III Summary

The package described in this article contains a collection of introductory Mathematica programs to
construct planar aperiodic tilings. It is the author’s intention to add further programs in the future. Any
feedback or suggestions are most welcome.

Bibliography

mmann R, Grünbaum B, Shephard GC 1992: Aperiodic tiles, Discrete Comput. Geom. 8, 1–25. A

Baake M 2002: A guide to mathematical quasicrystals, in Suck J-B, Schreiber M, Häussler P (eds.) Quasicrystals: An
Introduction to Structure, Physical Properties, and Applications, Springer, Berlin, pp 17–48.

de Bruijn NG 1981: Algebraic theory of Penrose's non-periodic tilings of the plane. I, Indag. math. (Proc. Kon. Ned. Akad.
Wet. Ser. A) 84, 39–52; Algebraic theory of Penrose's non-periodic tilings of the plane. II, Indag. math. (Proc. Kon. Ned. Akad.

et. Ser. A) 84, 53–66. W

Grimm U, Schreiber M 2002: Aperiodic tilings on the computer, in Suck J-B, Schreiber M, Häussler P (eds.) Quasicrystals: An
Introduction to Structure, Physical Properties, and Applications, Springer, Berlin, pp 49–66; see also

ttp://mcs.open.ac.uk/ugg2/AperiodicTilings/h .

Grünbaum B, Shephard GC 1987: Tilings and Patterns, W.H. Freeman, New York.

Janot C 1994: Quasicrystals: A Primer (2nd ed.), Clarendon Press, Oxford.

M

aeder R 1990: Programming in Mathematica, Addison-Wesley, Redwood City, California

Penrose R 1974: The rôle of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Applics. (Southend-on-Sea)
10, 266–271.

R

adin C 1999: Miles of Tiles, AMS, Providence, Rhode Island.

Schlottmann M 2000: Generalized model sets and dynamical systems, in Baake M, Moody RV (eds.) Directions in
Mathematical Quasicrystals, AMS, Providence, Rhode Island, pp 143–159.

S

enechal M 1995: Quasicrystals and Geometry, Cambridge University Press, Cambridge.

Shechtman D, Blech I, Gratias D, Cahn JW 1984: Metallic phase with long-range orientational order and no translational
symmetry, Phys. Rev. Lett. 53, 1951–1953.

S

tadnik Z (ed.) 1999: Physical Properties of Quasicrystals, Springer, Heidelberg.

Suck J-B, Schreiber M, Häussler P (eds.) 2002: Quasicrystals: An Introduction to Structure, Physical Properties, and
Applications, Springer, Berlin.

Trebin H-R (ed.) 2003: Quasicrystals: Structure and Physical Properties, Wiley-VCH, Weinheim

15

http://mcs.open.ac.uk/ugg2/AperiodicTilings

DIMS (Direct-methods program for solving Incommensurate Modulated
Structures) on the VEC platform

Hai-fu Fan
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
E-mail: fan@mail.iphy.ac.cn ; WWW: http://cryst.iphy.ac.cn/

(Editors’ note: the referred to files are included as an Zipped addendum package at the Comp Comm
Newsletter No 5 website)

1. Introduction

DIMS is a Direct-methods program for solving Incommensurate Modulated Structures or, it can also be
regarded as a program of Direct methods In Multidimensional Space (Fu et al., 1994, 1997; Li et al.,
1999). DIMS is based on the multidimensional direct methods developed in our research group in Beijing
(Hao et al., 1987; Fan et al., 1993; Sha et al., 1994; Mo et al., 1996) and the Rantan phasing procedure
developed in Professor M.M. Woolfson’s group in York, England (Yao, 1981). The program is for
solving one-dimensionally modulated incommensurate structures and composite structures consists of
two subsystems with two axes of the unit cell coincided to each other. For incommensurate modulated
structures, DIMS can deal with diffraction data from X-rays, electrons or neutrons, while for composite
structures only X-ray diffraction data are considered. There are two versions of DIMS in VEC (Wan et
al., 2003). One is merged with other VEC functions, while the other is stand-alone. Both can be invoked
on the VEC platform. The former is used for image processing in electron microscopy, while the latter is
used for ab-initio determination of incommensurate modulated and composite structures. The latter is to
be described here. More details of both DIMS and VEC can be found on the web site
http://cryst.iphy.ac.cn/. Executables of DIMS and VEC and the source codes of DIMS are also available
there.

2. Invoking DIMS and preparing the input file

Run the program VEC first, then pull down the menu "Diffraction", select "Ab initio Phasing" and then
select "DIMS". This brings up the dialog box "Run DIMS" asking the user to supply a Job file (input file).
Click "Browse" to locate the Job file or click "Create" to make a new one (see Fig. 1). The input file is a
text file, which can be created either by following the dialog boxes or by using a text editor. A typical
input file is shown in Fig. 2. Keywords used in the input file are given in the Appendix, including their
definitions and meaning.

Figure 1.

16

mailto:fan@mail.iphy.ac.cn
http://cryst.iphy.ac.cn/
http://cryst.iphy.ac.cn/

3. The output files

Three output files are produced by DIMS. They are *.OUT1, *.OUT2 and *.hklm. The first one (*.OUT1)
is actually a log file. The second (*.OUT2) is a file containing only experimental structure-factor
magnitudes and their phases derived by DIMS. These two files are originally used with the UNIX/DOS
version of DIMS. The only output file used on the VEC platform for further calculations is the third one
(*.hklm). Once this file has been created by DIMS, it will be opened automatically in graphic mode on
the VEC platform in a sub-window (see Fig. 4). Further calculations can then be performed on it. The file
can also be opened in text mode on the VEC platform for inspection and editing.

g-Na2CO3
C STATUS ORDER PATH VOID1
 0 2 3 0
C NTRIAL SKIP VOID2 RANTP
 20 0 0 1
C NFS0 NFS1 NFS2 NFS3 NFS4 NFS5 NFS6
 0 0 0 0 0 0 0
C ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6
 0 0 0 0 0 0 0
C CLCTR MAXCL NCLFIX RADIUS
 0.005 1 1 0
C W1 W2 W3
 0.20 1.40 1.40
C MAXREL KPMIN KPMAX PPERC
 300 1.0 50.0 1.0
C A1 B1 C1 ALPHA1 BETA1 GAMMA1
 8.9040 5.2390 6.0420 90.000 101.350 90.000
C A2 B2 C2 ALFA2 BETA2 GAMA2
 0.0000 0.0000 0.0000 90.000 90.000 90.000
C K1 K2 K3
 0.1820 0.0000 0.3180
C NOIN NORMAL STATIS BFACTOR NWLSTEP
 1 1 1 0.00 16
C NUMBER ATOMIC NR ELEMENT (CELL CONTENTS)
 8 11 Na
 4 6 C
 12 8 O
 0 0
C SPACE-GROUP SYMBOL OR GENERATORS
 P[C 2/M] -1 S :B
C DIFFACTION DATA
 h k l m F(obs) Phase KN
 0 0 2 0 61.300 180.000 1
 0 0 4 0 54.500 0.000 1
 0 0 5 0 2.400 180.000 1
 0 0 7 0 2.700 0.000 1
 0 0 8 0 12.000 0.000 1
 . . .

 . . .
 . . .

 1 5 0 2 0.100 0.000 0
 3 5 3 2 0.100 0.000 0
 7 5 1 2 0.100 0.000 0
 0 0 0 0 -99.900 0.000 0

Figure 2: The input file Na2CO3.key

4. Calculation and display of 4D electron-density maps

Projections and sections of 4-dimensional electron–density maps can be calculated on the VEC platform
using the DIMS output file *.hklm.

Example 1.
Using the file Bi-2212.hklm to calculate an x3 − x4 section ρ (0.25, 0.00, x3, x4), the user should first
calculate a 3-dimensional hyper-section at x1 = 0.25. Open the *.hklm file in graphic mode or activate the

17

sub-window containing the file. Then click the button on the toolbar. This will bring up the dialog box
shown in Fig. 3a, choose 'Sections' and set x1 = 0.25. After clicking “OK” another dialog box will appear
as is shown in Fig. 3b. Usually there is no need to change any thing in this dialog box; the user can just
click “OK” to pass. This will result in a 3-dimensional hyper-section x1 = 0.25 of the 4-dimensional
electron-density map. The hyper-section is stored in the disk of the computer. What you see on the screen
(the lower-left sub-window in Fig. 4) is only a 2-dimensional section with the first unit cell on the left
corresponding to ρ (0.25, x2, x3, 0.00). The green lines are unit-cell borders, which are displayed or
eliminated by clicking the item “Show/Hide unit-cell border” on the pull-down menu of “Image” (see
upper middle of Fig. 4). Unit cells next to the left first one will have different x4 values according to the 4-
dimensional representation of 1-dimensionally incommensurate modulated structures. Operations on this
window are not with the 2-dimensional section on the screen but with the 3-dimensional hyper-section in
the disk. Now, activate the window and select the item “2d-sections of 4d-Fourier map” on the pull-down
menu “Image”. In the pop-up dialog box (lower right of Fig. 4), select the x3-x4 section and set x2 = 0.
Then by clicking “OK” the section ρ (0.25, 0.00, x3, x4) will be obtained (see the upper-right sub-window
in Fig. 4).

Figure 3:

Figure 4:

18

Example 2.
Using the file PbTiS.hklm to calculate an x2 − x3 section ρ (0.25, x2, x3, 0.25), the user should first
calculate a 3-dimensional hyper-section at x1 = 0.25. The operation is the same as that in the previous
example. The result is shown in the lower-left sub-window of Fig. 5. Now, pull down the “Image” menu
and click on the item “Shift origin” (see upper middle of Fig. 4). In the pop-up dialog box (see the upper-
left corner of Fig. 5) set the fractional coordinates x = 0, y = 0, z = 0 and w = 0.25. Then the section
ρ (0.25, x2, x3, 0.25) will come up as is shown in the upper-right sub-window of Fig. 5.

Electron-density maps are displayed by default as half-tone graphs. However they can also be displayed
as contour maps. To do this, click on the half-tone graph (lower right of Fig.6) and then click the button

 on the toolbar. Tune the parameters on the pop-up dialog box (lower left of Fig. 6) and click “OK”.
The corresponding contoured map will then appear (see upper part of Fig. 6).

Figure 5:

Figure 6:

19

5. 4D model building

Starting from the *.hklm file, here we use the file Na2CO3.hklm, click on the pull-down menu
“Modeling” and select “Create Model” (see upper right of Fig. 7). This starts searching for atoms in the
3-dimensional basic structure. When a DOS window appears, press “Enter” to continue. A peak list
containing the searching results will appear as shown in the lower part of Fig. 7. The user should assign
atom IDs to a set of symmetrically independent peaks. To do this, highlight the peak, click the button
“Select” on the peak-list table, then input an atom ID into the pop-up dialog box as shown in the middle
of Fig. 7. The atomic ID is the chemical symbol of the element. Optional characters (no spaces) can be
added following the symbol. Having finished assigning atom IDs, click the button “Search”. This starts
the search of the modulation wave of each atom. Results will be listed in the model file Na2CO3.mod,
which will be opened automatically and graphically in a sub-window (see the lower part of Fig. 8). The
model file can be saved in the disk as a text file; it contains information for starting a least-squares
refinement.

Figure 7:

Figure 8:

20

21

References

Fan, H.F., van Smaalen, S., Lam, E.J.W. & Beurskens, P.T. (1993). Direct methods for incommensurate intergrowth

compounds I. Determination of the modulation. Acta Cryst. A49, 704-708.
Fu, Z.Q. & Fan, H.F. (1994). DIMS --- a direct method program for incommensurate modulated structures. J. Appl. Cryst., 27,

124-127.
Fu, Z.Q. & Fan, H.F. (1997). A computer program to derive (3+1)-dimensional symmetry operations from two-line symbols. J.

Appl. Cryst., 30, 73-78.
Hao, Q., Liu, Y.W. & Fan, H.F. (1987). Direct methods in superspace I. Preliminary theory and test on the determination of

incommensurate modulated structures. Acta Cryst., A43, 820-824.
Li, Y., Wan, Z.H. & Fan, H.F. (1999). MIMS — a program for measuring 4-dimensional Fourier maps of incommensurate

modulated structures. J. Appl. Cryst.,32, 1017-1020.
Mo, Y.D., Fu, Z.Q., Fan, H.F., van Smaalen, S. Lam, E.J.W. & Beurskens, P.T. (1996). Direct methods for incommensurate

intergrowth compounds III. Solving the average structure in multidimensional space. Acta Cryst. A52, 640-644.
Sha, B.D., Fan, H.F., van Smaalen, S., Lam, E.J.W. & Beurskens, P.T. (1994). Direct methods for incommensurate intergrowth

compounds II. Determination of the modulation using only main reflections. Acta Cryst. A50, 511-515.
Wan, Z.H., Liu, Y.D. Fu, Z.Q., Li, Y., Cheng, T.Z., Li, F.H. & Fan, H.F. (2003). Visual computing in electron crystallography.

Z. Krist. 218, 308-315.
Yao, J. X. (1981). On the application of phase relationships to complex structures XVIII. RANTAN—Random MULTAN.

Acta Cryst., A37, 642-644.

Appendix − Keywords for running DIMS

The first line:

A title with no effects to the phasing process

STATUS (default = 0)
0: for unknown structures
1: for known structures, comparison will be made between the phases of satellite reflections input by the user and that

derived by DIMS.

PATH (default = 3)

1: for phasing the satellites of incommensurate structures with known phases of the main reflections, the weak-weak
relationships are used such that the newly obtained phases of the nth-order satellites are taken as known phases for
phasing the (n+1)th-order satellites. Only one of the 1st-order satellites is assigned a 'known' phase ZP1 to determine
the origin of the 4th axis.

2: for phasing the satellites of incommensurate structures with known phases of the main reflections, the weak-weak
relationships are neglected for phasing all the satellites. One of each nth-order satellites is assigned a 'known' phase in
the phasing procedure. Values of these phase angles are specified under the keyword ZPn.

3: for phasing the satellites of incommensurate structures with known phases of the main reflections, the satellites with
order greater than 1 are phased using PATH=2 and then weak-weak relationships are used to determine the origin-
depending phase shift.

4: for phasing composite structures, the weak-weak relationships are neglected.

ZPn
The phase angle of an nth-order satellite, which is used as the origin-fixing reflection for phasing the nth-order satellites.

ORDER (default = 2)

0: phasing for main reflections based on certain known phases of main reflections.
> 0: for PATH = 1, 2 or 3, up to ORDERth-order satellites will be phased with known phases of main reflections.
128: for PATH = 4, only main reflections will be phased.
129: for PATH = 4, all satellites will be phased with known phases of main reflections and, the weak-weak

relationships will be neglected.

RANTP (default = 0) active only for acentric space group with PATH = 4
0: random phases of 45/135/225/315 degrees are assigned
1: random phases of 0/180 degrees are assigned

RADIUS (default = 0)

0: input phases in degree.
1: input phases in radius.

22

MAXREL (default = 300)
Maximum number of Σ2 relations allowed for a single reflection.

KPMAX (default = 50.0)
Σ2-relations with kappa greater than KPMAX will be eliminated.

KPMIN (default = 0.0)

The value of this parameter ranges from 0.0 to 2.0, which is for eliminating Σ2-relations with kappa less then KPMIN.

PPERC (default = 1.0)
PPERC×100 % reflections (selected from the strongest one downward) will be phased, active only when phasing main
reflections of composite structures (PATH=4, ORDER=128).

NTRIAL (default = 50)
Number of trials, i.e. the number of random-starting phase sets (max. NTRIAL = 1024).

SKIP (default = 0)

Skip the first SKIP trials.

NFSn (n = 0, 1, ..., 6)

> = 0: output phases will contain up to nth-order satellites, the output phase sets are selected according to the combined
figures of merit CFOM.

< 0: The absolute value under the keyword NFSn will be the serial number of the set that you want to output
disregarding the value of CFOM.

CLCTR (default = 0.005)

A parameter controlling dynamically the number of cycles of phase iteration

MAXCL (default = 10)

the maximum number of cycles allowed for tangent-formula iteration

NCLFIX (default = 6)

In the first NCLFIX cycles of tangent-formula iteration the known phases are kept fixed, after that they are floatable.

A1, B1, C1, ALPHA1, BETA1, GAMMA1

Unit-cell parameters of the basic structure of the incommensurate modulated structure, or of the first subsystem of the
composite structure.

A2, B2, C2, ALPHA2, BETA2, GAMMA2

Unit-cell parameters of the second subsystem of the composite structure.

K1, K2, K3

The a*, b* and c* components of the modulation wave vector
 q = k1a* + k2 b* + k3 c*

W1 (default = 0.2), W2 (default = 1.4), W3 (default = 1.4)
Weights of the figures of merit ABSFOM, PSI-ZERO and RISIDUAL in the calculation of the combined figure of merit
CFOM

NOIN

In the cell contents, the top NOIN chemical elements belong to the first subsystem of the composite structures, active
only when phasing main reflections of composite structures (PATH=4 and ORDER=128).

NORMAL (= 0 or 1)

Indicates one of the two strategies for scaling Fobs, active only when PATH=4 and ORDER=128.

STATIS

0: no WILSON statistics will be performed
1: WILSON method is used to scale Fobs
2: K-curve method is used to scale Fobs, active only when PATH=4 and ORDER=128.

BFACTOR

0.0: the B-factor from WILSON statistics is used for scaling, else: BFACTOR is used instead of the B-factor from
WILSON statistics; active only when PATH=4, ORDER=128 and STATIS=1.

23

NWLSTEP (default = 16)

 For the WILSON statistics, the reciprocal space will be divided in NWLSTEP zones.

ELEMENT

Chemical symbol of atoms in the unit cell.

ATOMIC NR

Atomic number of the specified chemical element

NUMBER

Number of atoms in the cell

SUPERSPACE GROUP: TWO-LINE SYMBOL or GENERATORS

The superspace-group symmetry is expressed either by a two-line symbol or a set of generators.
As an example the two-line symbol for the incommensurate modulated structure of γ -Na2CO3 is

P[C 2/M]-1 S :B

For more details, the user is referred to Fu Zheng-qing & Fan Hai-fu (1997) "A computer program to derive (3+1)-
dimensional symmetry operations from two-line symbols" J. Appl. Cryst. 30, 73-78.

If generators are to be used, the user should first specify the number of generators before listing the elements of the first
generator. Each generator should be ended with a blank line. As an example the generators for γ -Na2CO3 not including
operations of the centered lattice are expressed as

2
-1 0 0 0 0.0000
0 1 0 0 0.0000
0 0 -1 0 0.0000
0 0 0 -1 0.5000

1 0 0 0 0.0000
0 -1 0 0 0.0000
0 0 1 0 0.0000
0 0 0 1 0.5000

KN

Indicates the preceding phase is known or not

0: unknown, its value is to be derived, the listed value will NOT take part in the derivation, however in the case of

STATUS = 1 the listed phases will be compared with that derived from DIMS.
1: known, it will be used as starting phase to derive unknown phases.
2: a random phase will be assigned

MK

Indicates whether the reflection will be rejected in the phasing process.
-1: rejected, a random phase will be given to this reflection in the output file.
1: not rejected.

DN
For STATUS=1, indicates the difference between the given and the derived phases.

24

DIMS (Direct-method program of solving Incommensurate Modulated
Structures)/VEC applications

Hai-fu Fan
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
E-mail: fan@mail.iphy.ac.cn ; WWW: http://cryst.iphy.ac.cn/

(Editors’ note: the referred to files are included as an Zipped addendum package at the Comp Comm
Newsletter No 5 website)

1. Introduction

The integration of DIMS (Fu et al., 1994, 1997; Li et al., 1999) and VEC (Wan et al., 2003) provides an
intuitive and automatic way of solving incommensurate structures. Calculations are visually performed on
the VEC platform mostly via mouse clicks. Examples are given here involving two incommensurate
modulated structures and the 4-dimensional basic structure of a composite crystal. As will be seen,
structural details including the incommensurate modulation can be observed objectively prior to the
model building and least-squares refinement. For detailed operations of the program DIMS/VEC the
reader is referred to the paper “DIMS on the VEC platform” in this newsletter.

2. Direct observation of the incommensurate modulation of γ-Na2CO3

Crystals of γ-Na2CO3 have a one-dimensionally modulated incommensurate structure with unit cell
parameters of the basic structure a = 8.904, b = 5.239, c = 6.042Å, β = 101.35o and the modulation wave
vector q = 0.182a* + 0.318c*. The superspace group is P[C 2/m] –1 s (two-line symbol used in DIMS).
Van Aalst et al. (1976) originally solved the modulated structure by trial-and-error method. Hao et al.
(1987) used their data to test the multidimensional direct method. 300 largest main reflections, 250 largest
first order satellites and 150 largest second order satellites from the experimental data were selected for
the test. The program SAPI (Yao et al., 1985) was used to derive phases of main reflections, based on
which the multidimensional direct method was used to phase satellite reflections. There is no need to
know the basic structure in advance. In the present test, the input file Na2CO3.key was constructed with
the same data used by Hao et al. (1987). The output file Na2CO3.hklm was produced and opened in a
sub-window on the VEC platform (see Fig. 1). The file contains the original input data together with the
direct-method phases of satellite reflections. Fig. 2 shows sections of the 4-dimensional electron density
map of γ-Na2CO3 calculated with the file Na2CO3.hklm. The top row of Fig. 2 shows the half-tone
graphic section of the 4-dimensional electron-density map at x3 (z) = ¼. Six unit cells are plotted along
the x1 axis. Since the modulation wave vector q has a component q1 = 0.182 along a*, the modulation
period should be about 5.5 unit cells along the x1 axis. Consequently the first unit cell on the left of the
top row corresponds to x4 = 0.0, while the sixth unit cell corresponds to x4 ≈ 1.0. This is evident
comparing the top row and the middle row, the contoured section ρ (0.15625, x2, ¼, x4). As is seen the top
section reveals clearly sodium atoms and CO3 groups. It is seen also that the x2 coordinate of carbon
atoms varies along the x1 axis from one unit cell to the other indicating the positional modulation of the
carbon atoms as shown by the red curve. This can be seen more precisely on the section ρ (0.15625, x2,
¼, x4). By comparing the second and the fifth unit cell (see the bottom row of Fig. 2), it is observed that
the modulation of the CO3 groups performs an anticlockwise rotation around the axis through the carbon
atom perpendicular to the (a, b) plane (a and b are respectively the projection of x1 and x2 along the
direction perpendicular to the 3-dimensional physical space). All these features are consistent with the
original result of Van Aalst et al. (1976). One of the most important differences between DIMS/VEC and
the trial-and-error method is that all features of the structural modulation of γ-Na2CO3 are visualized on
the direct-method phased electron-density map, which does not rely on any assumptions concerning the
form of modulation waves and is obtainable prior to model building and structure refinement.

mailto:fan@mail.iphy.ac.cn
http://cryst.iphy.ac.cn/

Figures 1 (left) and 2 (right)

3. Visualizing structural modulation of Bi-2212

The incommensurate structure of the high-Tc superconductor Bi2Sr2CaCu2Oy (Bi-2212) has been
extensively studied in a number of laboratories over the world. However the results are not completely
consistent with each other. Here DIMS/VEC produces the visualized structural modulation without
relying on any assumptions on the modulation waves. The data used in this test is the same as that of Fu
et al. (1995). Crystals of Bi-2212 belong to the superspace group N[Bbmb]1-11 (two-line symbol used in
DIMS) with unit cell parameters of the basic structure a = 5.422, b = 5.437, c = 30.537Å and the
modulation wave vector q = 0.22b* + c*. SAPI was used to derive phases of the main reflections.

Figure 3:

Fourier recycling was used to determine the basic structure. The input file Bi-2212.key was then
constructed, with which DIMS/VEC produced the output file Bi-2212.hklm. Electron-density maps were
calculated on the VEC platform. The 4-dimensional electron-density function of Bi-2212 projected along
the x1 axis is shown on the right of Fig. 3 giving an overview of the incommensurate structure. Six unit
cells are plotted along the x2 axis. All metal atoms and the oxygen atoms on Cu-O layers are clearly seen.
The section at x2 = ½, x4 = 0 shown in the middle of Fig. 3 contains all the independent metal atoms.

25

Their modulation is shown on the section ρ (¼, ½, x3, x4) (on the left of Fig. 3). Fig. 4 shows atoms on the
Cu-O layer and the modulation of the oxygen atom O(1). Fig. 5 shows the saw-tooth modulation of the
oxygen atom O(4). It should be emphasized that the saw-tooth modulation here is not a result of least-
squares refinement based on a guessed model. In contrast it is revealed objectively before any efforts of
model building.

Figure 4:

Figure 5:

4. Solving the 4-dimensional basic structure of the composite crystal (PbS)1.18TiS2

The composite structure of (PbS)1.18TiS2 (Van Smaalen et al., 1991) belongs to the space group
C2/m (α, 0, 0) s-1. It consists of two subsystems: the subsystem TiS2 with a1 = 3.409, b1 = 5.880,
c1 = 11.760Å α1 = 95.29o and the subsystem PbS with a2 = 5.800, b2 = 5.881 c2 = 11.759Å, α2 = 95.27o.
Within the experimental error we have b1 = b2, c1 = c2, and α1 = α2. Unlike conventional incommensurate
modulated structures, there are no 3-dimensional basic structures corresponding to a composite structure.
For (PbS)1.18TiS2, the basic structure is a 4-dimensional one. It is more complicated to determine such a
basic structure than to fine the modulation of (PbS)1.18TiS2, since there are no known phases available for

26

the direct-method phasing except the origin and enantiomorph fixing ones. The following test shows that
DIMS/VEC is capable of solving the 4-dimensional basic structure in a straightforward manner. The
input file PbTiS.key contains only main reflections. The symmetry is assumed to be
non-centrosymmetric. The output file from DIMS/VEC is PbTiS.hklm, which is opened in a sub-window
as shown in Fig. 6. Sections of the 4-dimensional electron-density maps calculated from PbTiS.hklm are
shown below. On the left of Fig. 7 we see the “chimney and ladder” structure along the x1 axis
constructed by the TiS2 subsystem with the period a1 and the PbS subsystem with the period a2. On the
right of Fig. 7 there are sections through the TiS2 layer and PbS layer parallel to the (b, c) plane. Note that
a1, a2, b and c are respectively the projection of the axes x1, x4, x2 and x3 along the direction perpendicular
to the 3-dimensional physical space. Again all the structural features are visible on the direct-method
phased electron-density map before any efforts of model building and structure refinement.

Figures 6 (left) and 7 (right)

References

Fu, Z.Q. & Fan, H.F. (1994). DIMS --- a direct method program for incommensurate modulated structures. J. Appl. Cryst., 27,

124-127.
Fu, Z.Q., Li, Y., Cheng, T.Z., Zhang, Y.H., Gu, B.L. & Fan, H.F. (1995). Incommensurate modulations in Bi-2212 high-Tc

superconductor revealed by single-crystal X-ray analysis using direct methods. Science in China, A38, 210-216.
Fu, Z.Q. & Fan, H.F. (1997). A computer program to derive (3+1)-dimensional symmetry operations from two-line symbols. J.

Appl. Cryst., 30, 73-78.
Hao, Q., Liu, Y.W. & Fan, H.F. (1987). Direct methods in superspace I. Preliminary theory and test on the determination of

incommensurate modulated structures. Acta Cryst. A43, 820-824.
Li, Y., Wan, Z.H. & Fan, H.F. (1999). MIMS — a program for measuring 4-dimensional Fourier maps of incommensurate

modulated structures. J. Appl. Cryst.,32, 1017-1020.
Van Aalst, W., Den Hollander, J., Peterse, W.J.A.M. & De Wolff, P.M. (1976). The modulated structure of γ - Na2CO3 in a

harmonic approximation. Acta Cryst. B32, 47-58.
Van Smaalen, S., Meetsma, A., Wiegers, G. A. and De Boer, J. L. (1991). Determination of the modulated structure of the

inorganic misfit layer compound (PbS)1.18TiS2. Acta Cryst., B47, 314-325.
Wan, Z.H., Liu, Y.D. Fu, Z.Q., Li, Y., Cheng, T.Z., Li, F.H. & Fan, H.F. (2003). Visual computing in electron crystallography.

Z. Krist. 218, 308-315.
Yao, J.X., Zheng, C.D., Qian, J.Z., Han F.S., Gu, Y.X. & Fan, H.F. (1985). SAPI-85: a computer program for automatic

solution of crystal structures from X-ray diffraction data. Institute of Physics, Chinese Academy of Sciences, Beijing
100080, P.R. China.

27

28

Collection and visualization of single crystal data of incommensurate
crystals.

Rob W.W. Hooft
Bruker AXS BV, Delft, The Netherlands; Email: rob.hooft@bruker-axs.nl ; WWW:
http://www.bruker-axs.nl/

Introduction

With the change from point detectors to solid state 2D detectors, all “small molecule” single crystal
measurement techniques have undergone large changes. Researchers interested in incommensurately
modulated or composite structures have been more reluctant to move away from using point detectors.
This paper tries to find out why, and explains what the problems of the modern equipment for such
samples can be. We will also explore what a 2D detector can do for these samples.

Point detector systems

Measuring an incommensurate crystal with a point detector was difficult. The software for such systems
used a three dimensional lattice description, and any higher-dimensional description required extra work.
Many laboratories specializing in these samples made their own adaptations to the data collection
software.

Unit cell determination

The difficulties with incommensurate structures arise already at the determination of the unit cell. There
are basically two different cases that can occur: (1) if the satellite reflections are weak, it is possible that
none are found during the initial search. Indexing procedures will then find the basic lattice, but without a
proper X-ray photo (on film) to visualize reciprocal space it is impossible to see that the sample shows
incommensurate diffraction. (2) satellite peaks are found in the initial search, hence not all reflections
can be indexed to a three-dimensional lattice. Sometimes (for modulated structures, but not for
composites) it can help to index on the strongest reflections only. Specialized indexing software like dirax
[1] has been capable of finding the basis cell for such samples based on the complete reflection list, and
recent versions of dirax can also identify a single modulation vector from the reflections that do not fit the
3D lattice. Only recently, Pilz et al. [2] describe an indexing method tailor made for incommensurate
crystals.

Data collection

Data collection on incommensurate crystals on point detector systems also needed special attention.
Special versions of the data collection software would be used to collect first the main lattice and then the
satellites; alternatively a commensurate super cell could be defined with appropriate absents conditions.

Visualization

True computational visualization of the data collected with a point detector is not very useful for
determining the background of a modulated structure. The normal way to visualize the data on such a
system was to make a Weissenberg or precession picture, or a rotation photo (on film) of the unaligned or
the aligned crystal on a CAD4.

mailto:rob.hooft@bruker-axs.nl
http://www.bruker�axs.nl/

29

CCD Detector systems

A CCD detector is an integrating detector with a good spatial resolution. The integration is over time,
and hence over the rotation of the crystal. Spot localization and separation within the image is excellent,
but between frames this is dependent on the rotation angle per frame.

This is exactly reversed for a point detector system, where the hardware integrates all photons coming in
through the entire input window, but localization in time for the reflections is very good.

These differences between the systems have their implications on data processing, but it is important to
realize that both point-detector and 2D detector perform integration in the hardware, so that this is not a
new phenomenon.

Unit cell determination

Cell determination with a CCD detector system is in principle much easier than using the point detector
system since there are a lot more reflections available for indexing than are generally searched for with a
point detector. Furthermore, reciprocal space is sampled more systematically using a 2D detector.
Unfortunately, however, the accuracy of the locations of the reflections in three-dimensional reciprocal
space determined from wide-angle rotation images is not good: the positional accuracy in the two
dimensions on the detector are excellent, but the accuracy in the rotation direction is relatively poor.
Especially for incommensurates (as well as for twinned crystals) this can pose a serious complication.

One possible solution to this is so-called fine slicing, whereby many images are made, each of which is
only a small rotation (e.g. 0.3 degrees). Each reflection should be seen in at least three subsequent
diffraction images, such that the accurate centroid can be determined by interpolation.

An alternative method to get accurate 3-dimensional reflection positions is the phi/chi [3] procedure
whereby each reflection is scanned twice using different scans (reminiscent of the SETANG procedure on
the CAD4 diffractometer). The accurate three-dimensional location of the reflection is then calculated
from the intersection of the two different lines through reciprocal space. This procedure requires that the
goniostat can scan multiple axes synchronously.

If the satellites are relatively weak, they may pass unnoticed with any indexing procedure, especially
since images taken with the purpose of indexing do not normally have long exposure times. If this is the
case, most likely these spots will show up as unexplained effects on the actual diffraction images used for
the data collection; enough for an experienced crystallographer to pick this up afterwards. Fortunately
there is in most cases a second chance to find the correct cell using the images from the data collection.

Data collection

The data collection on an incommensurate crystal with a 2D detector system is automatically right: In
first instance, data collection strategies are based on “sweeping” the asymmetric part of reciprocal space,
and this is only dependent on the lattice symmetry and the orientation of the reciprocal axes in space, and
not on the actual length of the axes. Since the incommensurate vector does not affect the lattice
symmetry, the same strategy determination can be used. Even if the sample is not known to be
incommensurate, any strategy designed for the main lattice will also collect all relevant satellite
reflections.

So far for the simple bit. There are two more aspects of the data collection that need extra attention.

1. Spatial resolution. The spatial resolution of a measurement is influenced by the beam divergence
(optics), the crystal, the point spread of the detector and the geometry of the measurement. The

30

distance between the crystal and the detector must be chosen large enough to be able to separate
the main lattice reflections and the satellites. A good separation of spots is especially important as
the main lattice reflections can be orders of magnitude stronger than the satellites. Earlier
generations of CCD cameras are especially sensitive to this dynamic range, as very strong
reflections could cause blooming effects that mask out nearby weak satellites. The latest
generation of CCD chips now have anti-blooming features that do not decrease the sensitivity of
the detector; this is an advantage for modulated samples.

Since the satellites are weak, it is tempting to use modern X-ray optics to increase the intensity of
the beam. However, any optic that adds intensity necessarily also adds divergence to the beam;
this makes it potentially more difficult to separate the closely spaced diffraction spots. The
usability of optics which add so much divergence that a larger crystal-to-detector distance is
required is doubtful.

2. Data collection time. One must make sure that both satellites and main lattice reflections can be

integrated accurately as there are limitations in the dynamic range of the detector and the analog to
digital conversion. The conversion is normally done with a 16 bit ADC, but in practice, the
dynamic range that can be caught in one exposure is less than 65536:1, more like 10000:1. The
dynamic range of a measurement can be increased by repeating all measurements at different
exposure times, or, saving a bit of measurement time, by making faster exposures only for the
frames that contain overflowed pixels. The anti-blooming features mentioned earlier can prevent
negative effects of the overflowed reflections on neighboring satellites. Reflections with
intermediate intensities which can be integrated accurately in both long and short exposure time
measurements can be used to verify the scaling between the repeated measurements.

•
Lack of experience with the spatial resolution and dynamic range for 2D detector systems have withheld
scientists specialized in incommensurate structures from switching their point detector systems to 2D
detector systems. Now that this experience is accumulating and further improvements to the systems have
been made, it can be shown that the quality of the data obtained from a CCD can be superior to point
detector data even though the latter are photon counted.

The fact that on a 2D detector data are not collected reflection-by-reflection, but in sweeps through
reciprocal space brings with it that many reflections will be measured more than once. In fact, this
redundancy is the proper way to increase data quality when using an instrument with a 2D detector. The
best results are obtained when redundant measurements differ in as many parameters as possible. This
type of true redundancy is best obtained by using a 4-axis goniometer. True redundancy reduces the
effects of systematic errors in the measurement and provides more detail to absorption correction
procedures.

Visualization

Visualization from 2D diffraction data can currently be done in two ways:

• A peak search is performed over (part of) the collected data. The location of each of the peaks is
shown in a 3D model that can be manipulated in real time to visualize the unit cell in reciprocal
space. Tools for measuring distances between rows and planes of reflections can help to determine
the modulation vectors. This procedure can also be very instructive for twinned or fragmented
crystals.

• A set of “synthesized precession images” is created. These images are a projection of 3D

reciprocal space onto a plane. Each pixel in all frames is assigned a reciprocal space coordinate,
and mapped to the synthesized image. Because of this procedure, not only Bragg peaks, but also
diffuse scattering effects will show up in the synthesized precession images.

During the synthesis, the intensity of all measured pixels mapping to a single pixel in the precession
image is averaged. This averaging takes care of large differences in Lorentz factor, but this does not
make the synthesized image quantitatively correct.

For visualization of incommensurate structures, it is possible to calculate a pseudo-precession image for a
plane that has both main lattice and satellite reflections. It is also possible to make an image of a plane
that only contains satellite reflections.

In general, this technique is very good to help understanding any effects in reciprocal space that are much
more difficult to grasp from the rotation images directly.

Fig 1: Synthesized hk0 precession image of an interesting hexagonal sample.

Conclusion

The objections against switching from point detectors to 2D detectors for incommensurate structures are
no longer valid. The advantages of speed and true redundancy for the new instruments result in better
quality data. The improved visualization tools make additional x-ray film camera's and crystal alignment
superfluous.

Acknowledgments

The author thanks his colleagues Eric Hovestreydt, Frank van Meurs, Michael Ruf and Leo Straver for
critical examination of the text.

References

[1] A.J.M. Duisenberg, Indexing in single-crystal diffractometry with an obstinate list of reflections, J. Appl. Cryst. (1992), 25,
92-96
[2] K. Pilz, M. Estermann and S. van Smaalen, Automatic indexing of area-detector data of periodic and aperiodic crystals, J.
Appl. Cryst. (2002), 35, 253-260
[3] A.J.M. Duisenberg, R.W.W. Hooft, A.M.M. Schreurs and J. Kroon, Accurate cells from area-detector images, J. Appl.
Cryst. (2000), 33, 893-898

31

32

Visualization and Analysis of Single Crystal Time-of-Flight Neutron
Scattering Data using ISAW

Dennis Mikkelsona, Arthur J. Schultzb, Ruth Mikkelsona, Thomas Worltonb

aUniversity of Wisconsin-Stout, Menomonie, WI, USA and bArgonne National Laboratory, Argonne, IL,
USA; Email: mikkelsond@uwstout.edu, mikkelsonr@uwstout.edu, ajschultz@anl.gov,
tgworlton@anl.gov ; WWW: http://www.pns.anl.gov/computing/isaw/

Abstract

Single crystal time-of-flight neutron scattering experiments provide information about three dimensional
regions in reciprocal space. New software to visualize and analyze such data has recently been developed
in the context of the Integrated Spectral Analysis Workbench at the Intense Pulsed Neutron Source
division of Argonne National Laboratory. This software is user-friendly, highly interactive, and includes a
novel 3D view of reciprocal space, that has been useful when dealing with twinned or multiple crystals.

Introduction

The Integrated Spectral Analysis Workbench (ISAW) is a large collection of software objects for neutron
scattering data access, visualization and analysis. ISAW has been developed over the last six years by a
team from the Intense Pulsed Neutron Source (IPNS) division of Argonne National Laboratory and the
University of Wisconsin-Stout, with support from the National Science Foundation. ISAW is
implemented in JAVA for portability and is freely available under the GNU GPL[1].

ISAW has support for several instrument types, including single crystal diffractometers, and is being
extended to more instrument types. After a brief overview of the structure of the software, some of the
major features of ISAW that support single crystal diffraction data will be described in more detail.

ISAW Overview

ISAW is built around several fundamental concepts. Internally, raw and partially reduced data are stored
in "DataSet" objects that are collections of "Data" blocks (spectra). The DataSets hold the raw data along
with meta-data needed for data analysis, such as detector positions, initial flight path length, sample
orientation, etc. Raw data is loaded into DataSets by data "Retrievers". Data can be "retrieved" from
IPNS run files, NeXus files, a remote file server, etc. Individual DataSets can be viewed in various ways
by DataSet viewers. Data analysis steps are implemented in self-describing "Operator" objects. A typical
analysis sequence can be carried out manually by loading data, and applying analysis and visualization
operations using the main ISAW GUI. Alternatively, the sequence of steps can be controlled by a script
written in ISAW's scripting language or in Jython. Common sequences of operations can also be easily
combined into a "Wizard" consisting of a sequence of forms representing the steps of the peak indexing
and integration process. Data can also be written out in NeXus format. Figure 1 is a screen dump
showing the ISAW control panel and two views of data from the single crystal diffractometer at IPNS.

mailto:mikkelsond@uwstout.edu
mailto:mikkelsonr@uwstout.edu
mailto:ajschultz@anl.gov
mailto:tgworlton@anl.gov
http://www.pns.anl.gov/computing/isaw/

Figure 1

ISAW SCD Support

The SCD at IPNS uses time-of-flight neutron scattering measurements to provide information about three
dimensional regions in reciprocal space. The SCD was recently upgraded to employ two area detectors, so
that a larger volume of reciprocal space can be measured simultaneously. Since a new data acquisition
system was needed and some of the legacy software was written assuming only one area detector located
at 90 degrees, it was decided to build new software to support single crystal diffraction in the context of
ISAW.

In principle, providing support for a new instrument type in ISAW merely requires providing a suitable
set of operator objects to carry out the required data analysis steps. In practice, it has also been helpful to
provide some customized viewers for the data from a newly supported instrument type and to provide
some user friendly framework tuned for that instrument type. Finally, specialized software components
for tasks such as instrument calibration may also be needed.

In the case of single crystal diffractometers, operators to carry out essential analysis steps such as finding,
indexing and integrating peaks in the 3D volume data were implemented. In addition, user-friendly
"Wizards" were implemented to organize the steps and guide the user through the data analysis process.
Figure 2 shows a form from one of the Wizards.

33

Figure 2

Interactive viewers to display a 3D view of reciprocal space as well as arbitrary slices through reciprocal
space were designed and implemented, as shown in figures 3 and 4.

Figure 3

34

Figure 4

Finally, a new calibration system was implemented to adjust instrument parameters such as the nominal
detector positions, orientations and sizes. The calibration operator uses the known lattice parameters of a
calibration sample such as quartz, and a Marquardt type optimization routine[4] to adjust instrument
parameters to minimize the sum squared differences between measured and expected peak positions in
reciprocal space. Figure 5 shows the input panel for the calibration operator, and illustrates which
instrument parameters can be calibrated.

Figure 5

35

36

Reciprocal Lattice Viewer

The Wizards written for single crystal diffraction provide an easy to use interface, and work well with a
set of strong peaks from a single crystal. Unfortunately, this is not always the case. If, for example, the
crystal is "twinned", the basic auto indexing routine is likely to fail. In order to visualize this and allow
the user to choose and index one crystallite at a time from a twinned crystal, a 3D reciprocal lattice
viewer was designed to let the user interactively select families of planes to use for indexing the peaks
within the reciprocal lattice.

The essential capabilities of the reciprocal lattice viewer include:

• Display voxels in reciprocal space, corresponding exactly to time-of-flight histogram bins from
the area detectors.

• Allow user selection of families of planes of peaks in reciprocal space.

• Use Fourier Transforms of projections of peaks in various directions to assist the user in selecting
planes. (This is similar to the Rossmann indexing algorithm[2][3].)

• Allow user to restrict data to a family of planes in reciprocal space.

• Calculate an orientation matrix, when three independent families of planes have been chosen.

The raw time-of-flight data from the SCD at IPNS consists of 20,000 time-of-flight histograms, one
histogram for each pixel on the area detectors. Each time-of-flight histogram bin corresponds to a
different neutron wavelength/energy which can be determined from the time-of-flight of the neutron over
the known flight path. Thus each time-of-flight histogram bin corresponds to an element of volume in
reciprocal space. For each time-of-flight histogram bin for which the counts exceed a specified threshold,
the reciprocal lattice viewer maps eight points corresponding to the four corners of the pixel in real space
and the beginning and ending times-of-flight, to reciprocal space. These eight points define a distorted
"box" in reciprocal space. Each such box is drawn in a color corresponding to the number of counts in
that histogram bin.

If the crystal is, in fact, single, the peaks will fall on families of planes in reciprocal space. In order to
find basis vectors for a primitive unit cell in real space, it is sufficient to find three independent families
of planes in reciprocal space with the three largest inter-plane spacings. Typically, at least the family of
planes with the largest inter-plane spacing in reciprocal space is relatively easy to identify.

The reciprocal space viewer allows the user to interactively choose a family of planes by selecting three
peaks. The peaks are selected by clicking on them and then pressing the "Select", "Select +" or "Select *"
buttons. "Select" selects a new origin. "Select +" or "Select *" specify two additional points, which form
vectors drawn from the origin to the newly selected points. The "Q" value for the origin is displayed, as
are the "Q" components and lengths of the two vectors that are formed. See Figure 6.

Figure 6

 The positions of the three selected peaks determine a plane normal. The user can choose to interpret this
family of planes as planes of constant h, k or l values by pressing the "User->" button in the appropriate
plane control. Suppose that the user chooses to interpret the specified family of planes as "Constant h
Planes". After pressing the "User->" button, the cross product of the vectors is calculated, normalized
and displayed in the "Constant h Planes" control. Given this normal, the software projects all peaks onto
a line in the direction of the normal. If the peaks lie on a family of planes with that normal, the
projections will form a regular pattern. The projection is Fourier transformed to identify the fundamental
frequency in the projection of the peaks. Based on this fundamental frequency and the normal direction,
integer "h" values are assigned to each peak, and a refined normal direction is determined by finding the
least squares solution to the over determined system of equations:

 iqn ⋅ = hi, i = 0,1,2,...,N

where iq is one of the N voxels with counts above the required threshold in reciprocal space and hi is the
assigned "h" value. The fundamental frequency in this pattern is also mapped to real space and the
corresponding d-spacing is displayed in the "Constant h Planes" control. The user can also enter a value
for "d" in this control, if the crystal lattice parameters are known and the calculated value for "d" is not
sufficiently accurate.

Having selected a family of planes, the user may choose to discard all peaks that are sufficiently far from
all planes in the family of planes. A default tolerance of 10% of the plane spacing is used. If the data
contains spurious peaks from any source, approximately 80% of the spurious peaks should be discarded,
and virtually none of the desired peaks will be discarded. This "filter" operation can be turned on or off
using the "Filter On/Off" button in the plane control.

In this way, the user can manually choose three families of planes in reciprocal space, filtering to any or
all of the three families of planes, as needed to omit spurious peaks.

37

To assist in the process of choosing families of planes, the software will determine a list of
approximately 600 unit vectors whose endpoints are spread uniformly over a unit hemisphere. For each
of these possible plane normals, the peaks are projected onto the normal direction, Fourier transformed
and refined as described above. From the resulting Fourier transforms a smaller set of at least 10 Fourier
transforms are selected based on various heuristics, such as the residual error from the least squares
refinement. The selected set is ordered by increasing "d-spacing", and displayed as rows in an image.
When the user points at a row in this image, the d-spacing is displayed on the border of the graph below
the image. The corresponding family of planes is also indicated in the reciprocal space viewer, by
drawing a sequence of boxes along the normal direction, with the space between successive boxes equal
to the spacing between the planes. See Figure 7.

Figure 7

 After finding a set of possible families of planes in this manner, it is fairly easy for the user to step down
the rows of the image, noting the d-spacing and examining the suggested family of planes in reciprocal
space. The user can choose to use such a family of planes as constant h, k or l planes by pressing the
"FFT->" button. As before, the calculated value of "d" can be replaced by a more accurate value, if the
lattice parameters are already known.

 When the user has chosen constant h, constant k and constant l planes, integer (h,k,l) values can be
assigned to each voxel, iq , with counts above the currently specified threshold. Using these assigned
(h,k,l) values, the orientation matrix can be calculated. The orientation matrix is calculated as the the
matrix M that most nearly maps each of the triples

iv = (hi, ki, li)

to the corresponding voxels

iq = (qxi, qyi, qzi).

38

That is, a least squares method is applied to find coefficients for the orientation matrix, M, so that

M iv = iq ,

as nearly as possible.

 At several stages in the SCD software, it was necessary to solve a linear least squares problem. The
solution to such least squares problems are often described in terms of the "normal equations".
Unfortunately, the normal equations can be ill-conditioned and so may be difficult to solve accurately. A
more stable solution can be obtained by using Householder[5] transformations (elementary reflectors) to
reduce the matrix to upper triangular form[6]. Since the Householder transforms preserve distances,
errors are not magnified by the solution process. This method of solving the least squares problem is
used throughout ISAW.

Conclusions

ISAW provides a large set of classes for neutron scattering data visualization and analysis. The support
for single crystal diffractometers includes a powerful and novel interactive viewer for reciprocal space
that allows the user to interactively select families of planes in reciprocal space. This process has been
successfully used to deal with crystals that are twinned. The software can be downloaded from the IPNS
website, http://www.pns.anl.gov/computing/ISAW/

Acknowledgment

The authors would like to acknowledge the contributions of their colleagues at IPNS and their students.
In particular, Dr. Peter Peterson, ORNL, made significant contributions to the underlying data analysis
algorithms for single crystal diffraction while he was a post-doc at IPNS. Also, Chris Bouzek did much
of the implementation of the SCD "Wizards" while he was a student at the University of Wisconsin-Stout.

The authors also gratefully acknowledge the support for the development of the single crystal software in
ISAW by the National Science Foundation, under grant number DMR-0218882. Work at Argonne was
funded by the U.S. DOE-MS under contract number W-31-109-ENG-38.

References:
[1] GNU GPL, http://www.gnu.org/copyleft/gpl.html
[2] Powell, H.(1999). Acta Cryst., D55, 1690-1695.
[3] Steller, I., Bolotovsky, R. & Rossman, M.G.(1997). J. Appl.Cryst. 30, 1036-1040.
[4] Bevington, P., Robinson, D.(1992). Data Reduction and Error Analysis for the Physical Sciences,

(WCB McGraw-Hill, Boston)
[5] Householder, A.(1975). The Theory of Matrices in Numerical Analysis, (Dover, New York)
[6] http://sep.stanford.edu/sep/prof/fgdp/c6/paper_html/node5.html

39

http://www.pns.anl.gov/computing/ISAW/
http://www.gnu.org/copyleft/gpl.html
http://sep.stanford.edu/sep/prof/fgdp/c6/paper_html/node5.html

Graphical and interpretation tools for difficult incommensurate and
composite structures in JANA2000

Václav Petříček and Michal Dušek,
Institute of Physics of ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic - Email : petricek@fzu.cz
and mailto:dusek@fzu.cz ; WWW: http://www-xray.fzu.cz/jana/

Introduction

The increase in solved modulated structures and the latest development of the methods for their solution
is closely connected with advances in the instrumentation. Modern diffractometers give more or less
complete diffraction pattern of the crystal. This fact and their very good sensitivity minimizes the chance
that satellites would be overlooked or too weak for measurement. Moreover data collection programs for
most of commonly used diffractometers allow integration of these additional reflections.

Existence of satellite reflections is directly connected with fact the classical 3d translation symmetry in
the modulated crystal is lost. The atoms from cell to cell change their basic structural parameters such as
occupancies, positions and ADP (atomic displacement parameters). However, these changes are not
random; they can be described by periodic modulation functions:

() ()ddd nnnuu +⋅+⋅+⋅=⋅⋅⋅ rqrqrqrqrqrq ,,,,,, 221121 LL

The modulation function must be reasonably smooth function with maximally a few discontinuities. Then
the structure can be described using basic functions with periodic perturbations.

The fact that the diffraction pattern is still made from clearly distinguished diffraction spots was used by
deWolff, Janssen, and Janner [1] to develop the so called "superspace approach". Additional vectors
perpendicular to regular three dimensional space were introduced to recover the translation symmetry in
the more dimensional elementary cell. This general approach made it possible to generalize structure
determination techniques for their application in (3+d) dimensional space. The superspace concept
provides us also with a visualization method to demonstrate real modulations in the crystal.

The crystal structure analysis of modulated and composite crystals is becoming more or less standard.
The modulation parameters for various building units of the structure can take many different functional
forms. For example the strong step-like modulation in one structural unit may induce a smoother
modulation in the rest of the structure. A Fourier synthesis and animation techniques play very important
role during structure determination and refinement. The purpose of this contribution is to present here
these methods.

Fourier (3+d) dimension techniques

The generalized density of diffracting objects (electrons for X-rays, nuclei for neutrons) in the modulated
structures has (3+d) dimensional periodicity. This means that it can be expressed as a 3+d dimensional
Fourier series:

() () ()HRHR
H

⋅−= ∑ iF πρ 2exp ,

where H and R are respectively diffraction and positional (3+d) vector and ()HF are generalized structure
factors related by the standard way to the integrated intensities. The maps can be calculated either when
phases are already known at least in some approximation or when the above equation is used for ()H2F .
For the latter case the Patterson maps are obtained. They can be used to find a starting modulation model

40

mailto:petricek@fzu.cz
mailto:dusek@fzu.cz
http://www-xray.fzu.cz/jana/

in cases when the structure contains some dominating heavy atoms. In the Fig 1 the modulation of one
interatomic vector between two symmetrically related positions of heavy atom is presented. The periodic
expansion and contraction of density is induced by a mutual modulation of two atomic positions in the
selected direction. In the case when the modulation is negligible the density section would show just a
uniformly distributed density. The amplitude can be estimated from the difference between the most
expanded and the most contracted area. The x4 position corresponding to the most contracted density can
help to find the phase of the modulation function. For more details see the original work [2].

41

Fig. 1: x x2 − 4 and x x3 − 4 sections of the Patterson function of heavily modulated atom

The Fourier maps based on phases derived from the modulation of the heavy atom can be used to find a
modulation curve of light atoms (see Fig 2).

Fig 2: The x x2 − 4 and x x3 − 4 sections of Fourier maps in the vicinity of a light atom

Fourier maps can also reveal a special character of the modulation in cases when the positional or
occupational modulation has a discontinuous character. As an example we use the modulated structure of
Cd(NH3)3Ni(CN)4 [3]. In the fig.3 it is shown how the modulation of Cd atoms in this structure look like:

x3=0.250,x1=0.000

0.08 0.12 0.16 0.20 0.24 x2
0.0

0.4

0.8

1.2

1.6

2.0

x4

Fig 3: The occupational modulation of Cd1 and Cd2. The two basic positions are clearly separated into
two crenel-like intervals.

The map shows clearly that the cadmium atom occupies two different positions. More detailed analysis
shows that one position is octahedrally coordinated while the other is tetrahedrally coordinated. The
number of harmonic functions to model satisfactory such a modulation would be very high. The crenel-
like approach [2] can considerably reduce number of parameters.

The Fourier sections of type presented hitherto show clearly changes of a certain coordinate of a
selected atom as a function of the modulation coordinates. This is very important for finding the best
modulation model for one particular atom but, on the other hand, these maps cannot usually give a direct
idea about the structure in three dimensions. The best way to present mutual interactions in modulated
crystals is to draw three-dimensional maps as a function of the internal coordinate t. In the next figure we
demonstrate usefulness of properly selected section and/or projections in the structure Cd(NH

4xxn −

3)3Ni(CN)4
[3]. The two-dimensional section running through the Ni(CN)4 group shows how the step-like modulation
of cadmium affects the other atoms:

Fig 4: Sections through the four-dimensional Fourier map showing the coordination of cadmium by two
symmetry-related cyano groups C1-N1. The section runs through the plane of Ni(CN)4 in the basic
structure; e1,e2,e3 are the Cartesian axis.

The first section is plotted for the internal coordinate t=-0.05, which is near of the refined end point of the
crenel function definition interval, i.e. it shows the situation just before the "jump". The atom Cd1 (green)
still keeps the tetrahedral coordination but the new octahedral position (Cd2) is already arising. Distances
between the new (arising) Cd2 position and two neighboring atoms N1 are respectively 1.6 Å and 2.1 Å.

42

The too short first distance (1.6 Å) forces an abrupt change in the coordination that is visible in the
second section calculated for t=0. Here the Cd atoms are already localized in the new octahedral position
(Cd2) and the cyano group C1-N1 on the right is shifted to achieve more realistic distance to Cd2.

Graphic interpretation of structural results

Till now there has been no common program which can directly use superspace group information to
draw modulated structures. Therefore modulated positions of atoms must be pre-calculated in some
artificial large cell beforehand. Then a standard drawing program such as ATOMS or DIAMOND can
used to produce figures. As the modulated structure is not periodic we have to suppress in the plotting
software generating of atoms outside of the pre-calculated area in the modulation direction(s). In Fig. 5
we show representation of modulated structure plotted from pre-calculated coordinates by the program
Diamond [].

Fig 5: The modulation along the chain [-Cd(NH3)n-NC-Ni(CN)2-CN-]∞

(a) The most common situation: cadmium has alternatively octahedral and tetrahedral coordination.

(b) An intermediate states in which cadmium exhibits penta-coordination are indicated by the red arrows

Graphical and interpretation tools in Jana2000

Program Jana2000 is based on the generalized crystallography following from the superspace approach.
As its main features, we should mention possibility to use single crystal or powder diffraction data
originated from the X-ray, synchrotron or neutron experiment; refinement of modulation of occupancy,
position, harmonic and anharmonic ADP; refinement of anomalous dispersion coefficients; multipole
refinement; automatic setting of symmetry restrictions for refined parameters, user constraints and
restraints, powerful rigid body access; calculation and visualization of 3+d dimensional electron density
maps. The number of modulation vectors is limited to three according to current experience. The access
to three or more dimensional structures is unified, i.e. the user sees the same tools regardless of the
dimension. The underlying idea of the program is to offer a simple way for solving simple tasks but keep
all possibilities open for complicated structures.

Data Input. The single crystal input data can be provided either as a rough diffractometer file or as a file
already processed by some data reduction software. Data from various sources can be combined provided
that the wavelength of the partial data is the same. The reading of data can be followed by automatic
transformation that changes number of indices according to the target dimension. For instance, three real
indices used for measurement can be automatically transformed to integer indices of modulated structure.
Any user defined transformation of indices is possible as well as a transformation resulting from supercell

43

definition. During import of twin domains the program can automatically reveal merohedry by tentative
transformation of indices using the user defined twin matrices, see Fig. 6. For powder data the program
supports several basic input forms like GSAS, FullProf and many others. Jana2000 cannot index powder
data. The symmetry information can be entered by a tool shown in Fig. 7. using a symbol of the
(super)space group or list of symmetry operators. Non-standard settings and centring are widely accepted.
Several tools for transformation of the structure model are available, especially cell transformation,
group-to-subgroup transformation and commensurate structure-to-supercell transformation. In all cases
the complete structure mode is transformed including coordinates, cell parameters, indices and symmetry.
The tool for group-to-subgroup transformation is presented in the figure 8.

Fig. 6: Example of data input to Jana2000. A three-fold twin of CsLiSO4 was indexed in a supercell. The
transformation matrix transforms the supercell into the finally used elementary cell. The overlap option
causes that the reflections are sorted automatically into the first, second or third twin domain using the
twinning matrices.

Fig. 7: Tool for entering symmetry information into Jana2000. The symmetry can be entered by symbol or
symmetry operators. "Complete the set" completes set of operators to form a group and derives the
(super)space group symbol from the operators. The origin can be arbitrarily shifted. In addition to
standard centering symbols a non-standard centering X can be used with user defined centering vectors.

44

Fig. 8: Tool for group-subgroup transformation. The white lines are the symmetry operations selected
from the set of existing operators. In this case the inversion center and the centering are retained. If they
are removed the list of existing operators available for selection is expanded. "Complete subgroup"
derives the (super)space group symbol from the selected operators. Then the structure model is
transformed and expanded into the subgroup. The removed symmetry operations can be used as twinning
operations.

Structure solution and refinement.

Jana2000 cannot automatically solve the phase problem. Instead, it prepares an input for external direct
methods programs. The refinement program can make Le Bail refinement of profile parameters, Rietveld
refinement based on powder data or classical structure refinement based on single crystal data. For
powder data it also refines modulation vectors. Refinement of profile parameters includes Gaussian,
Lorentzian or Pseudo-Voight profiles and the following corrections: anisotropic particle and strain
broadening, profile asymmetry, preferred orientation, absorption and background. Structure refinement
offers the same possibilities for both single crystal and powder data. For all structures refinement is
possible of position, occupation, twin fractions, extinction, isotropic, anisotropic and anharmonic ADP.
For 3d structures the multipole refinement is available, too. Occupation, position and ADP parameters can
be modulated by harmonic modulation waves or by discontinuous modulation functions for occupation
(crenel function) and for position (sawtooth function).

The refinement program sets automatically symmetry restrictions of refinable parameters. Parts of refined
structure can be refined within the rigid body approximation in one or more positions in the elementary
cell. The rigid body approach as used in Jana2000 allows refinement of occupation, position and TLS
modulations for each rigid body position and combination of rigid body and free atomic contributions for
selected parts of rigid body. Structure parameters can be fixed or made dependent using their unique
identifiers and tools for setting refinement options. The simplest option is fixing a parameter or group of
parameters to zero or to their actual value. The user can also define linear dependencies between
parameters or require the same modulations, temperature parameters or sum of occupancies for two or
more atoms. Selected bond lengths and angles can be restrained to a desired value within a user defined
limit based on their standard uncertainty. Set of geometrical constraints is available for fixing a geometry
of some atomic group, keeping structural fragments planar and forcing positions of some atoms to
complete a defined geometric shape. The latter is especially useful for positions of hydrogens, which
should complete a tetrahedral of trigonal coordination given by remaining non-hydrogen atoms, see Fig.
9. The bond length and angle restraints as well as the geometrical constraints work for both standard and
modulated structures.

45

Jana2000 enables calculation and visualization of Fourier maps. It can also pre-calculate atomic positions
for visualization of modulated structures by an external plotting program. Both these features were
discussed in section 2 and 3. Moreover, the program contains a tool for plotting various structure
parameters as a function of t coordinate, for instance position, occupancy, ADP parameters, distances and
angles. A growing importance has interpretation of bond valences that is good indication of stability of
coordination of an atom in modulated structure. An example is given in Fig. 10.

Fig. 9: Tool for constraining refinement of hydrogens. The highlighted option keeps two hydrogen atoms,
H4a and H4b, to complete tetrahedric coordination around the central atom C4. It should be noted that
this constraint works also for modulated structures.

Fig. 10: Bond valence sum calculated for the environment of Co in Sr1.274CoO3 [5] as a function of t.
Large abrupt changes of the bond valence sum correspond with the discontinuous changes of cobalt
coordination found in this structure.

References:

[1] Wolff, P.M. de, Janssen, T. & Janner, A. (1981). Acta Cryst., A37, 625-636.
[2] Petříček, V., van der Lee, A. & Evain, M. (1995). Acta Cryst. A51, 529-535.
[3] Petříček, V., Dušek, M. & Černák, J. (2005). Acta Cryst. B61, to be published
[4] Petříček, V. & Dušek, M. (2000). JANA2000. Programs for Modulated and Composite Crystals. Institute of Physics,
Praha, Czech Republic.
[5] Evain, M. ; Boucher F. ; Gourdon O. ; Petříček V. ; Dušek M. ; Bezdíčka, P. (1998). Chem.Mater., (1998), 10, 3068-3076.

46

Calculating the Pair Distribution Function from a Structural Model

Thomas Proffen
Lujan Center, Los Alamos National Laboratory, MS H805, Los Alamos, NM 87544, USA Email:
tproffen@lanl.gov - WWW: http://lansce.lanl.gov/lujan/ER1ER2/NPDF/ ; LA-UR 05-0406

Introduction

The determination of crystal structures is an important part of chemistry, physics and of course
crystallography. Conventional structure determination is based on the analysis of the intensities and
positions of Bragg reflections which only allows one to determine the long range average structure of the
crystal. Only one-body information such as atomic positions, site occupancies and temperature factors can
be extracted. Determination of the average structure based on powder diffraction data is now routinely
done using the Rietveld method. It should be kept in mind, however, that the analysis of Bragg scattering
assumes a prefect long range periodicity of the crystal. However, many materials are quite disordered and
even more importantly, the key to the deeper understanding of their properties is the study of deviations
from the average structure or the study of the local atomic arrangements. Deviations from the average
structure result in the occurrence of diffuse scattering which contains information about two-body
interactions. A convenient way to reveal the local, medium and long range structure of a material is the
analysis of the Pair Distribution Function (PDF). The PDF is obtained via Fourier Transform from
properly normalized diffraction intensities. This method has long been applied to the study of short range
order in liquids and glasses but has recently been extended to crystalline materials. A summary of this
technique and its applications is given in the review by Proffen et al. [1] as well as the recent book by
Egami and Billinge [2].

The key to the successful analysis of the PDF is often the ability to refine a structural model to the
experimental data. Two programs to calculate and refine PDFs from a structural model are the real space
refinement program PDFFIT [3] and the general defect structure simulation program DISCUS [4,5]. Both
programs are available from the author or on the WWW at
http://www.totalscattering.org/programs/discus/. This paper gives a short summary of the details, how
these programs calculate the PDF given an atomic structure.

Calculating the PDF

The PDF can simply be understood as a bond-length distribution of the material under investigation, in
other words the PDF is related to the probability of finding an atom A at a distance r from an atom B as
illustrated in Figure 1. Unfortunately there are many different definitions used in the crystalline, glass and
liquids community as well as different program packages. A summary of definitions and conversions is
given in a paper by Keen [6].

Figure 1: Schematic diagram of the PDF of graphite. The circles mark the near-neighbor shells. The
corresponding distances can easily be seen in the PDF. Distances are given in Å.

47

mailto:tproffen@lanl.gov
http://lansce.lanl.gov/lujan/ER1ER2/NPDF/
http://www.totalscattering.org/programs/discus/

In this paper we will use G(r) which is implemented in the programs DISCUS and PDFFIT and is in
some way the PDF function of choice for disordered crystalline materials [6]. The function is calculated
from a structural model using the relation

 02
1() () 4i j

ij
i j

b b
G r r r r

r b
δ π ρ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑ − . (1)

In this equation, the sums loop over all atoms i and j in the structure which are separated by a distance rij.
In addition each contribution is weighted by the atoms scattering power bi. Finally is the average
scattering power of the sample and ρ0 is its number density. In practice, the first sum loops over all atoms
i in the crystal, but the second sum is limited to neighboring unit cells with a distance not larger than the
probing distance rij. This reduces the computing time significantly, but it requires the program to maintain
the information relating a particular atom to its unit cell. In DISCUS and PDFFIT this is realized via a
specific order of the atoms within the computer memory. As the program calculates the contributions of
each relevant atom-atom pair, the corresponding weight is ‘histogrammed’ on a specified grid in r.

Introducing thermal motion

In reality atoms move due to thermal motion, resulting in a broadening of the PDF peaks related to the
atomic displacement parameters (adp) of the respective atoms. Calculating the PDF following equation
(1) will give one sharp contribution for each atom-atom pair sampled. In cases where the model crystal is
of sufficient size the atoms can be randomly displaced according to their adp’s. As a result

Figure 2: Modeling of thermal motion: (a) no thermal motion; (b) no thermal motion, Qmax=35Å-1; (c)
convolution with Gaussian (blue solid line) and correlated motion (dotted red line); (d) ensemble
average 3x3x3 unit cells; (e) Gaussian, Qmax=35Å-1 and (f) ensemble average and convolution.

48

the calculated PDF peaks will show a reasonable width. On the other hand in many cases the disorder in
the model can be described sufficiently using a much smaller model. In this case, an alternative way to
introduce thermal broadening is needed. The simplest way is to convolute the expression in Equation 1
with a Gaussian of appropriate width. This is illustrated in Figure 2: (a) shows the PDF of a perfect
crystal with no thermal displacements and as a result, sharp peaks are observed for the different atom-
atom distances. In Figure 2c we see the PDF of the same model crystal, only this time thermal motion
was modeled using Gaussians. The alternative of a larger model crystal (here 3x3x3 unit cells) with
individually displacing atoms is seen in Figure 2d. Because of the still limited size of the model crystal,
the PDF peaks appear noisy. The other parts of Figure 2 deal with termination effects and are discussed in
the next section.

Thorpe and co-workers [7] have shown that the pure Gaussian is insufficient due to anisotropic averaging
and the function actually used in PDFFIT and DISCUS to model thermal motion is

2

2

()1() exp 1
22

ij ij
ij

ij ijij

r r r r
T r

rσπσ

⎡ ⎤⎡ ⎤ ⎛− −
= − +

⎞
⎢ ⎥⎜⎢ ⎥ ⎜⎢ ⎥

⎟⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
. (2)

Here σij is the peak width calculated from the respective adp’s of atoms i and j. As you can see the last
term is the correction to the Gaussian PDF peak shape mentioned above.

Termination effects

As mentioned above, the experimental PDF is obtained via a Fourier Transform and as a result, the
observed PDF contains truncation contributions. Although there are many approaches using dampening
functions before applying the Fourier Transform to minimize these contributions, the effect of a cutoff at
a given value Qmax can be modeled analytically. All that is required, is a convolution of the model PDF
with the Fourier Transform of the step function terminating the diffraction data. This function is

 maxsin()() Q rS r
r

= . (3)

In practice it turns out that for large Qmax, the termination effects are very small compared to the
contribution due to noise in the diffraction data. Values of Qmax > 40Å-1 can now routinely be achieved at
instruments located at synchrotron or spallation neutron sources.

The r-dependence of the PDF peak width

The final piece needed to calculate a PDF from a structural model are corrections due to instrument
resolution as well as correlated motion. Let us discuss correlated motion first: Near neighbor atoms have
the tendency to move in phase causing near neighbor PDF peaks to sharpen compared to far neighbor
peaks. The size of the effect depends on the bonding in the crystal and e.g. for a covalent bonded semi-
conductor alloy this sharpening is much more pronounced than for example for a metal as discussed in a
paper by Jeong et al. [8]. The second effect to be discussed is the instrument resolution. It causes an
increase of the PDF peak width as function of distance r as well as an exponential dampening of the PDF
peaks as function of r. An example is shown in Figure 2c when comparing the PDF shown in blue with
no correction for correlation motion with the PDF shown in red showing a sharper nearest neighbor PDF
peak due to correlated motion. The r dependence of the PDF peak width as implemented in the programs
DISCUS and PDFFIT is given by

49

 '
2ij ij ij

ij ij

r
r r
δ γσ σ α= − − + 2 2 . (4)

Here σ’ij is the peak width calculated from the adp’s of the model crystal and rij is the atom-atom
distance. Equation (4) reveals the two correction terms δ and γ to account for correlated motion. The
different r dependence is related to the vibrational model suitable for the studied system and details can
be found in [8]. The correction term α accounts for peak broadening at large r due to instrument
resolution. In practice, however, this effect is only observed for distances above 20Å on medium- and
high resolution instruments.

For a more detailed discussion, please refer to the PDFFIT users guide [9] and it desired the source code
of PDFFIT and DISCUS which is part of the programs UNIX distribution.

References

[1] Th. Proffen, S.J.L. Billinge, T. Egami and D. Louca, Structural analysis of complex materials using the atomic pair

distribution function - a practical guide, Z. Krist. 218, 132-143 (2003).
[2] T. Egami and S.J.L. Billinge, Underneath the Bragg-Peaks: Structural Analysis of Complex Materials , Elsevier

Science B.V., Amsterdam, 2003.
[3] Th. Proffen and S.J.L. Billinge, PDFFIT a Program for Full Profile Structural Refinement of the Atomic Pair

Distribution Function, J. Appl. Cryst. 32, 572-575 (1999).
[4] Th. Proffen and R.B. Neder, DISCUS a Program for Diffuse Scattering and Defect Structure Simulations , J. Appl.

Cryst. 30, 171-175 (1997).
[5] Th. Proffen and R.B. Neder, DISCUS a Program for Diffuse Scattering and Defect Structure Simulations - Update ,

J. Appl. Cryst. 32, 838-839 (1999).
[6] D.A. Keen, A comparison of various commonly used correlation functions for describing total scattering, J. Appl.

Cryst. 34, 172-177 (2001).
[7] M.F. Thorpe; V.A. Levashov; M. Lei; S.J.L. Billinge. Notes on the Analysis of Data for Pair Distribution Functions.

In S. J. L. Billinge; M. F. Thorpe, editors, From Semiconductors to Proteins page 105 New York 2002. Plenum.
[8] I.-K. Jeong, Th. Proffen, F. Mohiuddin-Jacobs and S.J.L. Billinge, Measuring Correlated Atomic Motion using X-Ray

Diffraction, J. Phys. Chem. A 103, 921-924 (1999).
[9] I.-K. Jeong, R.H. Heffner, M.J. Graf and S.J.L. Billinge, Lattice Dynamics and Correlated Atomic Motion from the

Atomic Pair Distribution Function, Phys. Rev. B 67, 104301 (2003).
[10] Th. Proffen and S.J.L. Billinge, PDFFIT Users Guide, Manual Version 1.3 (2003).

50

51

Refinement in Crystals

Richard Cooper and David Watkin,
Chemical Crystallography, Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford, OX1 3TA, UK - Email : david.watkin@chem.ox.ac.uk ; WWW:
http://www.xtl.ox.ac.uk/ and http://www.chem.ox.ac.uk/researchguide/djwatkin.html

In the last newsletter, there were brief articles on refinement in both SHELXL97 and SIR2004. We have
been invited to describe how CRYSTALS fits in with them. The authors of these programs and of
CRYSTALS have all known each other for many years and enjoy and benefit from the amicable
competition between their programs. To complete the stories started by Sandy Blake and the SirTeam
last time, here follows a brief description of where CRYSTALS fits in with these other excellent
programs.

During the 1979’s the Oxford Chemical Crystallography Laboratory had a strong interest all aspects on
crystallographic computing, including Direct Methods, with a good Symbolic Addition program being
written by John Hodder, and Tom Blundell’s tangent refinement program. At that time Davide Viterbo
and Edwardo Castellano also made their contributions as post docs. Because of Keith Prout and John
Rollett’s involvement in twinning, the main thrust of programming moved into refinement and analysis,
which remains our strongest interest. We now have no skills in programming Direct Methods, but
fortunately we are permitted to distribute re-compiled versions of SHELXS 84 by George Sheldrick and
SIR92 by Carmelo Giacovazzo along side CRYSTALS. Interfaces exist in CRYSTALS to enable it to
communicate freely with more modern Direct Methods programs which users can obtain directly from the
authors. Structure refinement and analysis remain our principal domains.

CRYSTALS – the users view

It is now common for serious computing environments to have dual user interfaces – a GUI for the more
routine tasks, and a Command Line Interpretor(CLI) which enables the user to get into close
communication with the full richness of the system. A similar duality exists for CRYSTALS. The CLI,
which was the only mechanism for communicating with the program in the days of mainframe
computing, has been retained and extended, and offers the users access to an amazing wealth of
operations. Access to this interface can either be obtained by typing command directly into the running
program, or a whole series of commands can be pre-prepared in an ASCII file and then executed. This
‘batch mode’ of operation is useful if the same sequence of commands need to be used repeatedly, as for
example during the regular program validation exercises.

#list 12
full x’s u’s
end
#sfls
refine
refine
calc
end
#fourier
map type=difference
end
#peaks
end
#distance
end

However, for more routine work, it is convenient for the user if frequently used sequences of operations
are pre-packed into a single higher-level operation, which is then made accessible from some kind of

mailto:david.watkin@chem.ox.ac.uk
http://www.xtl.ox.ac.uk/
http://www.chem.ox.ac.uk/researchguide/djwatkin.html

menu. Static menus are quite useful, but their functionality can be enhanced if they are able to interrogate
the current state of the analysis and ask the user for additional information or guidance. If at the same
time, the user is able to interact with a visualisation of the structure, one has a fully-fledged GUI. In
CRYSTALS, the extensive GUI is created by a scripting language (because of its origins in the 1980’s,
procedural rather than object orientated). This means that the GUI items can be programmed to make
quite complex decisions, even to control whole structure analyses. And because the GUI is built from
plain-text scripts, it can easily be developed and extended to meet new or local needs.

Fig 1: The GUI window has tool bars, drop-down menus, a context sensitive model window, an editable
structure parameter window, tabs for various information tables and an area into which commands can
be typed – the old CLI. One command #USE filename causes the contents of the file to be processed
as commands.

CRYSTALS AND SHELXL97

Although in recent years CRYSTALS has gained in popularity because of its graphical user interface,
beneath this there still lies a powerful command line interface. The user can either type commands
directly into this, or pre-prepare them in files (or a mixture of both).

The convergent evolution existing between SHELXL97 and CRYSTALS can be illustrated by recasting
the SHELXL97 examples given by Sandy Blake into CRYSTALS command line format. Of course there
is no line-by-line correspondence, (which makes it difficult. to automate migration from one system to the
other except for trivial cases). A difference which often irritates a user migrating from SHELXL97 to
CRYSTALS is our verbose syntax – there is a lot to type into CRYSTALS to get the same effect as in
SHELXL97. This is a hang over from the early days of computing, when the command structure enabled
the program to do a syntactical analysis of the data, and perhaps suggest which cards had been mistyped.
Errors can be made, even with modern text editors, and syntactical analysis can still reveal an incomplete
cut-and-paste job! The verbose input to CRYSTALS may increase the opportunity for typing errors,
however it also makes it easier to locate them.

52

53

Constraints:

SHELXL97

EXYZ atomnames
E

ADP atomnames

CRYSTALS
RIDE C(1,X’S) UNTIL F(4)
RIDE C(1,U’S) UNTIL F(4)
RIDE C(1,X’S,U’S) UNTIL F(4)
RIDE C(23,X’S) H(231,X’S) H(232,X’S) H(233,X’S)

On a RIDE card (line), parameter shifts are equated on an atom by atom basis

LINK C(1,X’S,U’S) UNTIL F(4) AND C(101,X’S,U’S) UNTIL F(104)

On a LINK card, parameter shifts in the first atom list (up to the ‘AND’) are equated with corresponding
parameters in the second list. Useful in the initial treatment of pseudo-symmetry or disorder

EQUIVALENCE F(1,OCC) UNTIL F(4)

A single parameter shift is used for the occupations number of all the atoms between F1 and F4, for
example in a BF4 group

EQUIVALENCE F(1,OCC) UNTIL F(4) F(101,OCC) UNTIL F(104)
WEIGHT -1 F(101) UNTIL F(104)

This could be two interpenetrating BF4 groups (F1-F4 and F101 until F104). Equal shifts are applied to
the occupation numbers of all 8 atoms, but in an opposite sense for the second four. A similar
construction can be used to impose non-crystallographic symmetry

EQUIVALENCE C(1,X) C(101,X)
WEIGHT -1 C(101,X)

A group of atoms can be refined as a rigid body (ie refine their centroid and orientation). A model
building instruction must have been used to ensure the group had the correct local geometry before
refinement starts.

GROUP C(1) UNTIL C(27)

SHELXL97 has the option to scale rigid groups (a variable metric) – an option we would certainly look
into next time we are extending this part of CRYSTALS.

If a group of parameters are such that their total should remain constant under refinement (e.g. twin
components, partial occupancies), this can be applied as a constraint. If one is uncertain of what the total
should be, the control can be applied as a restraint with a standard uncertainty. Both options exist in
CRYSTALS.

SUM parameter list
e.g. SUM ELEMENT(1) ELEMENT(2) ELEMENT(3) …

to ensure that the total of the twin elements add up to unity.
or SUM s ATOM(1,OCC) ATOM(2,OCC) ATOM(3,OCC) …

as a restraint with uncertainty s.

54

Restraints:

SHELXL97

DFIX d s[0.02] atom pairs
SADI s[0.02] atom pairs
SAME s1[0.02] s2[0.02] atomnames
DELU/SIMU/ISOR
FLAT s[0.1] four or more atoms
SUMP c sigma c1 m1 c2 m2 ...

CRYSTALS
DISTANCE d, s = atom(1) TO atom(2), atom(3) TO atom(4), etc

The distances between the atom pairs are restrained to d with an su of s
DISTANCE d, s = MEAN atom(1) TO atom(2), atom(3) TO atom(4), etc

As above, except that all the pairs are restrained to their common mean +d, which is
usually zero.

ANGLE a, s = atom1 TO atom2 TO atom3 … etc
The angle between the 3 atoms is restrained to a degrees with an su of s . A similar syntax
enables a number of angles to be restrained to their mean value.

SAME s1, s2 atom list AND atom list AND ….
The geometries at each atom in each list are restrained to be the same. This command is in
fact expanded into a list of DISTANCE and ANGLE restraints. S1 and s2 are the standard
uncertainties on the distances and angles.

VIBRATION u, s = atom1 TO atom2, atom3 TO atom4, etc
Restrains the component of U along the bond to be the same for each atom in each pair of
atoms, (the Hirshfeld condition). u is an offset, generally zero

U(IJ) u, s = atom1 TO atom2, atom3 TO atom4, etc
The components of Uij for each atom in each atom pair are retrained to be similar, plus an
offset, u, usually zero.

PLANAR s atom list
Restrains the atom in the list to be coplanar.

NONBONDED v, p= atom1 to atom2, … etc
The atom pairs are restrained to be v angstrom apart using a function with a steep repulsive
gradient if the atoms are too close together, and a shallow attractive gradient if they are
further apart.

SUM s parameter list.
Restrains the sum of the listed parameters to remain constant

AVERAGE s parameter list
Restrains each parameter in the list to their common average.

LIMIT s parameter
The shifts in the specified parameters are restrained to zero with a standard uncertainty of
s, unless the X-ray data strongly indicate something else. Different parameters or
parameter types can be limited to different degrees. This is a derivative of Marquardt’s
method, and should not be confused with ‘damping’ a refinement using partial shifts.
Partial shifts are also available in CRYSTALS

RESTRAIN v, s = Expression
Expression is a FORTRAN like representation of a function of the refinable parameters
and other crystallographic constants, and v is the target value. The expression is
differentiated by CRYSTALS and the derivatives added into the normal equations.

CRYSTALS includes functions to go through a structure and automatically generate lists of restraints.
These can then either be applied automatically, or manually edited to achieve some non-standard result.

The restraints are found in an ASCII file ‘bfile.pch’, called the PUNCH file, another hangover from the
days when IBM cards were actually punched out!

Automatic generation of restraints is available for:

• Hydrogen atoms. Bond lengths are restrained to the same target values as are used in SHELXL97,
bond angles are restrained to target values or to satisfy symmetry, Uiso is related to Uequiv of the
adjacent atoms.

#DISTANCE
OUTPUT PUNCH =H-RESTRAIN
END

• Create adp similarity and Hirschfeld restraints

#DISTANCE
OUTPUT PUNCH = SIMU S1DEV=s S2DEV=u
END
#DISTANCE
OUTPUT PUNCH = DELU D1DEV=s D2DEV=u
END

s and u are standard uncertainties for normal and terminal bonded atoms.

• Molecular similarity This was described above (SAME)

• Intermolecular short contacts.

#DISTANCE
OUTPUT PUNCH=NON-BONDED VALUE=1.5 POWERFACTOR=1.0
END

Non-atomic electron density distributions.

These were described in the last newsletter. For very highly disordered fragments, models based on
multiple interpenetrating partially occupied structures become unrealistic. In these cases, it may be better
to use a diffuse distribution of electron density with a simple geometric shape, or even to use the discrete
Fourier transform of the residual density in the un-resolved area (SQUEEZE). The CRYSTALS
integration with SQUEEZE in PLATON conserves the A and B parts of the structure factor, so that no
modifications are made to Fo, and the disordered region contributes to the phasing.

Sandy’s examples (Dolomanov et al. 2003)
Example 1. Restraining a disordered BF4 anion.

55

Fig 2: Sandy’s figure 7

DFIX 1.38 0.01 B F1 B F2 B F3 B F4
DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 F2 F3 F2 F4 F3 F4
DFIX 1.38 0.01 B F1’ B F2’ B F3’ B F4’
DFIX 2.25 0.02 F1’ F2’ F1’ F3’ F1’ F4’ F2’ F3’ F2’ F4’ F3’ F4'

Becomes
DIST 1.38 0.01 = B(1) to F(1), B(1) to F(2), B(1) to F(3), B(1) to F(4)
CONT B(1) TO F(101), B(1) TO F(102), B(1) TO F(103), B(1) TO F(104)
DIST 2.25 0.02 = F(1) to F(2), F(1) to F(3), F(1) to F(4),
CONT F(2) to F(3), F(2) to F(4), F(3) to F(4)
CONT F(101) TO F(102), F(101) TO F(103), F(101) TO F(104) etc

Note that atoms are identified by an element type and a number. The advantage of this is that the
numbers can be used in mathematical expressions, eg for sorting, in CRYSTALS.

Example 2. Restraining a poorly defined SbF6

- anion. The target value for the Sb-F bond
is uncertain, but they are expected to be the same by symmetry.

Fig 3: Sandy’s figure 8

SADI 0.01 Sb26 F27 Sb26 F28 … Sb26 F32

Becomes

 DIST 0.0, .01 = MEAN SB(26) TO F(27), SB(26) TO F(28) ..SB(26) TO F(32)

Example 3. Restrain the local geometries of three fragments to be similar.

Fig 4: Sandy’s figure 9

56

SAME 0.01 C1 > O7
C11 ...
N12 …
C13 …
C14 …
C15 …
O16 …
O17 ...

SAME 0.01 C1 > O7
C21 ...
N22 …
C23 …
C24 …
C25 …
O26 …
O27 ...

Becomes

SAME .01 C(1) UNTIL O(7) AND C(11) UNTIL O(17) AND C(21) UNTIL O(27)

Example 4. A disordered bromide anion in a cavity.

Fig 5: Sandy’s figure 10

SUMP 1.00 0.01 1 2 1 3 1 4 1 5 1 6

FVAR osf 0.2 0.2 0.2 0.2 0.2

Br1 5 x y z 21
Br2 5 x y z 31
Br3 5 x y z 41
Br4 5 x y z 51
Br5 5 x y z 61

Becomes

As a constraint:

SUM BR(1,OCC) UNTIL BR(5)

Or as a restraint

SUM .01 BR(1,OCC) UNTIL BR(5)

It is assumed that the Br are adjacent in the atom list, and that the initial sum of their occupancy factors
adds up to unity. If any of the Br also happen to be on a special position, more complex restraints must
be used.

57

Free Variables

Sandy’s last example illustrates the use of ‘Free Variables’ in SHELXL97. Free variables are also used
in CRYSTALS, but they are automatically set up for the user.

Blocked Normal Matrices

In SHELXL97 the BLOC instruction enables the user to specify that different groups of parameters can
be processed in different ways in different least squares cycles. Two different strategies are available in
CRYSTALS.

Multi-block sparse matrix. User-specified blocks of parameters are set up along the leading diagonal.
The most sparse is to use a single block for each atom. More effective strategies are to set up blocks
either corresponding to molecular fragments, or to separate the positional parameters and the adps. There
are no restrictions on the blocking scheme other than that a given parameter can only appear in one block.
The figure shows an atom-by-atom blocking scheme, and a per-fragment scheme.

Fig 6: Sparse Matrix Schematics. In the left example, a block of the matrix is computed for the selected
parameters of the selected atoms. Cross terms between atoms are ignored. In the right example a
separate block is set up for each fragment. This is an excellent scheme if the fragments are not
correlated, but is a catastrophe if they are related by pseudo symmetry. Beware of being Marshed!
(Watkin, 1994)

BLOCK X’S
BLOCK SCALE FIRST(U’S) UNTIL C(27) C(28,U[ISO]) UNTIL LAST
…
REFINE
REFINE
REFINE

The first two lines create a matrix consisting of two blocks. One block contains the x.y & z
of all the atoms. The second block contains the anisotropic adps of the atoms up to C28,
and the isotropic adps of the rest. Note that this block also includes the overall scalefactor,
which is highly correlated with the adps. This sparse matrix is accumulated and inverted
for all three cycles of refinement

58

59

1) Small dense matrices accumulated and inverted separately in different cycles

BLOCK X’S
REFINE
BLOCK SCALE FIRST(U’S) UNTIL C(27) C(28,U[ISO]) UNTIL LAST
REFINE

This task consists of two independent cycles of refinement. In the first only the positions
are refined, in the second the scale and adps.

The first example is the preferred way of completing the refinement of a very large structure since a
single structure factor calculation is used for the computation of all the derivatives.

Model Building

This is perhaps the area of greatest dissimilarity between SHELXL97 and CRYSTALS. In SHELXL97
the modelling instructions are embedded amongst the constraints and restraints. In CRYSTALS,
modelling, constraints and restraints are kept quite distinct. As usual, this gives SHELXL97 an advantage
in terms of lines typed. However, because CRYSTALS is generally run interactively on a PC, separating
the functions enables the user to try various models in an exploratory way. A difficult analysis can be put
aside and then picked up at a later date at the point where it was previously left off – in much the same
way as a complex document can be worked on in Microsoft WORD without having to restart from a plain
text file.

In the last example (4), both the restraint and the constraint instructions assume that the starting model
has been correctly built, and so refer only the actual parameter values to be refined. The same idea is
used for the treatment of hydrogen atoms. Firstly they are added to the backbone (either from a
difference map or geometrically), and then their refinement is controlled (by fixing them, by applying
restraints, by applying ‘riding’ constraints or by any appropriate mixture).

CRYSTALS:

#PERHYDRO
DIST 0.98
U[ISO] NEXT 1.2
END

This command places hydrogen aoms on all the carbon atoms in the structure at a distance of 0.98
Angstrom, and with Uiso equal to 1.2 times the carbon Uequiv.

Commands also exist for adding hydrogen atoms on a one-by-one basis to selected atoms. In fact, the
‘PERHYDRO’ command is expaded into a series of per-atom commands, which the user can view and
edit to produce special environments.

#HYDROGEN
DIST 1.00
U[ISO] NEXT 1.1
H13 pivot_atom 3 neighbouring_atoms
H12 pivot_atom 2 neighbouring_atoms
etc
HBOND donor acceptor
END

Example 5. Adding in part of a structural model from elsewhere.

Fig 7: Sandy’s figure 4

SHELXL97.

FRAG 17 15.72 20.15 20.39 74.8 70.75 86.50
Co 4 x y z...
C1 1 x y z...
C2 1 x y z...
B3 3 x y z...
...
B19 3 x y z...
FEND

AFIX 17
Co1 7 0.33250 0.76245 0.52909 11.000 0.0608 0.1389 =
 0.0396 -0.0183 -0.0212 0.0153
C1 1 0.37668 0.84367 0.54903 11.00000 0.155
C2 1 0.41382 0.84350 0.45796 11.00000 0.089
B3 3 0.31680 0.82455 0.43612 11.00000 0.117
...
B19 3 0.20793 0.79538 0.51437 11.00000 0.138
AFIX 0

CRYSTALS

The model, which is assumed to have approximate values for most atoms, is used as the target for
regularisation by a better structure. This may either be a well defined group within the current structure,
or come from elsewhere. In this case atomic coordinates for the ideal structure come from the CSD.

#REGULARISE REPLACE
GROUP 17
SYSTEM 15.72 20.15 20.39 74.8 70.75 86.50
IDEAL
ATOM X Y Z
…
ATOM X Y Z
TARGET CO(1) UNTIL B(19)
END

There are 17 ATOM lines containing the coordinates of the atoms in the same order as approximate ones
in the group Co(1) until B(19).

 Refinement is completed by refining the atoms freely, with geometric restraints or as a rigid
group:
 GROUP CO(1) UNTIL B(19)

60

61

The REGULARISE command can also be used to fill in missing atoms in one fragment with ones
mapped from elsewhere (REGULARISE AUGMENT), to compare two fragments (ie find the rms atomic
deviations after fitting them together with information about the transformation used) or to replace a trial
model with a scaleable geometric figure (CP-RING, HEXAGON, OCTAHEDRON, PHENYL,SQUARE,
TBP, TETRAHEDRON).

Residues and Parts.

SHELXL97 included a powerful syntax for dealing with multi-fragment or disordered structures. Similar
ideas have been implemented in CRYSTALS. Groups of atoms which are spatially distinct (main
molecule, solvent, counter ions) can each be put into a separate ‘residue’. These residues can be used in a
command anywhere an atom identifier might be used as a short hand for a whole group of atoms.

SHELXL97

PART n sof

CRYSTALS

FULL FRAG(1,OCC)

Might be equivalent to:

FULL C(1,OCC) UNTIL C(27)

Disordered parts of a molecule (or fragment) can be distinguished from each other by assigning them to a
‘group’. Atoms in different groups do not bond to each other, unless the group number is zero. This can
be useful for setting up constraints.

RIDE GROUP(1,OCC) AND GROUP(2,OCC)

The definition of group 1 and 2 is part of building the model.

Summary

This part of this article has tried to show that there are great similarities between SHELXL97 and the
command line interface to CRYSTALS. This is the interface used by experienced crystallographers when
dealing with difficult problems. To aid the user in composing correct commands, a view of the model is
always available on the screen, and atom names can be passed into the command line simply by clicking
on them in the diagram. This is most useful during model building – and if the model begins to look
‘wrong’, the user can regress to an earlier model.

CRYSTALS and SIR2004

The SIR family of programs are widely respected and widely used because of their direct methods
capabilities. However, since SIR97 they have also included refinement code developed from CAOS.
Unlike the close similarity between CRYSTALS & SHELXL97 (an example of convergent evolution),
the close similarity between CAOS and CRYSTALS is the result of shared ancestry. Much of the
underlying data base design in CAOS was devised by Bob Carruthers during his post doctoral stay in
Rome, before returning to Oxford to begin writing CRYSTALS. The design of this data structure was
strongly influenced by earlier ALGOL programs of Durward Cruickshank and AUTOCODE programs of
John Rollett. The similarities include a list structure for maintaining the data, and an input syntax
amenable to syntactical processing.

62

The constraints and restraints available in CRYSTALS have been described above. The recent article on
SIR2004 lists some of the refinement features:

1) The ability to reduce the full matrix of the normal equations defining any kind of blocks.
This facility is available in CRYSTALS, but is rarely used now except for the biggest structures.
CRYSTALS will handle 600 anisotropic or 1400 isotropic atoms in the full matrix, and an
effectively unlimited number with matrix blocking. However, the algorithms used to compute
structure factors and derivatives are not optimal for macromolecular structures. In addition to the
normal Choleski inverter, CRYSTALS can solve the normal equations by eigenvalue
decomposition.

2) 18 weighting schemes are available.
CRYSTALS also contains most of the schemes available in SIR2004, plus a few others. Robust-
resistant and Dunitz Seiler weight modifiers are available in conjunction with any of the other
schemes. A re-implementation of the SHELXL97 weighting scheme is suitable for F2 refinement.

3) The program generates constraints for the parameters of atoms on special positions in all space
groups.
CRYSTALS tries to generate space group constraints for all atomic parameters. However, there
are difficulties in symbolically reconciling space group constraints when the user has already
manually specified other constraints (eg equivalencing of parameter shifts, treating a group of
atoms as a rigid body, reparameterisation into orthogonal coordinates). In this case, space group
symmetry requirements are applied to the affected parameters in the form of very tight restraints.

4) Automatic or through wizard generation of hydrogen atoms.
In CRYSTALS the command PERHYDRO geometrically places hydrogen atoms on all carbon
atoms, otherwise the menu shown below can be used for individual cases. A semi-automated
procedure combines Fourier and geometric methods.

5) The possibility to impose conditions (constraints) or additional information (restraints).
Many of the options available in CRYSTALS were described in the comparison with SHELXL97.
An additional constraint, useful when there is high correlation between parameters, is to refine
sums and differences of parameter shifts, rather than the shifts themselves

COMBINE C(1,X’S) UNTIL C(6) AND C(101,X’S) UNTIL C(106)

This would re-parameterise two six-membered groups related by a pseudo crystallographic
inversion centre.

6) Floating origin is restrained automatically by setting the restrain of the sum of the. appropriate
coordinate.
The terms in the sum are weighted according to the scattering power of the atoms.

7) Refinement of the Flack parameter to evaluate the absolute configuration.
This is performed correctly, including the correlation with any other refined parameters. The
parameter is permitted to take on negative values. Other refinement features available in
CRYSTALS include twin, batch (for multi-crystal data sets) and layer scale factors.

The underlying codes in both SIR2004 and CRYSTALS are almost equally suitable for most routine
structure refinements. There are however significant differences in the user interface.

Both SIR2004 and CRYSTALS were originally controlled by cards or card images in ASCII files.
Development has continued along parallel but independent routes, and both programs now have graphical
interfaces. The figure shows how close these developments sometimes are.

Fig 8: Parallel evolution in SIR2004 and CRYSTALS. Hydrogen placement menus: left, CAOS, right
CRYSTALS.

One very special feature of CRYSTALS is the integral processor for a tailored scripting language. This
enables a user or application programmer to construct quite complicated operations out of a sequence of
CRYSTALS primitives. For example, the primitive for placing hydrogen atoms on carbon can be
combined with the primitive for computing a difference electron density map. The results are displayed
jointly for possible user intervention, after which the refinable model is updated. One option is to
perform automatic Fourier refinement, and another is to refine the (found or placed) hydrogen atoms with
automatically generated slack restraints on the geometry and isotropic adps. Once the geometry has been
regularised in this way, the refinement can be finished with the hydrogen atoms treated with riding
constrains. These also are generated automatically.

The figure shows the structure manipulation menu and the hydrogen treatment menu.

Fig 9: Hydrogen placing. Selections can be made in the model by clicking. The pink atoms are peaks
from the difference density map, the white atoms are hydrogen placed geometrically. The user can
change the peaks found in the difference map into hydrogen atoms. The check-box near the middle will
initiate cycles of refinement of the hydrogen atoms only with the imposition of suitable geometric and adp
restraints.

63

Structure modelling is a crucial stage in resolving difficult structures, and SCRIPTS have been used to
build a large number of tools to help with this. Because SCRIPTS are a kind of macro language used to
invoke CRYSTALS primitives, they can easily be extended or developed to treat new cases. In addition
to sending commands down to the underlying CRYSTALS program, SCRIPTS can also interrogate the
CRYSTALS data base and the user. This can be done via drop down menus, radio buttons, checkboxes
or direct clicking into the model.

Structure Editing.

Powerful constraints and restraints are essential for dealing with difficult refinements, but even more
important is the construction of an appropriate starting model. Least Squares is only a technique for
applying the final tweaks to an already fundamentally correct structure. Some of the model building
facilities were described above. Other commonly required actions are available through the GUI.

Fig 10: Top level structure modification menu (left). Drop-down context sensitive menu in model window
(right). The choice of options depends upon how many atoms have been selected

The actual numerical values of parameters can be changed by using a text editor on an ASCII file
containing all the parameters for the whole model. More conveniently, some can be changed using the
drop down context sensitive menu. Alternatively, an editor pane can be opened for any atom and
parameter values changed interactively.

Fig 11: GUI menu of modelling primitives

64

65

The greatest wealth of modelling primitives is accessible via the old-fashioned command-line input. This
is still available via a text input box in the GUI. Users can either type commands into this box, or enter
the name of a file of preprepared commands. There is a vast vocabulary of commands that can be entered
here. The built-in editor enables simple modification of parameter values, but more useful are
crystallographic operations. These can perform mathematical operations on groups of atom parameters,
change, sort and filter atoms, assign atoms to residues or groups – a total of 40 different operations.

Modelling Examples

1. Move the centre of gravity of a structure onto a centre of inversion.
2.

#EDIT
CENTROID 100 ALL
SHIFT –x –y –z ALL
SHIFT .5 .5 .5 ALL
DELETE QC(100)
END

This creates a pseudo atom (QC(100)) at the centroid of the existing atoms. The model is then
shifted by the coordinates of this centroid (-x,-y,-z) to put the centre of gravity at (0,0,0), and then
shifted again to put it at (.5,.5.,5). The pseudo atom is then deleted. Useful if a P⎯1 structure has
been solved in P 1.

3. Rotate a methyl group through 30 degrees.
4.

#EDIT
ROTATE 60.0 C(1) C(2) H(20) H(21) H(22)
END

5. Allocate residue numbers to discrete moieties, add an offset to the serial numbers of moiety two,

and delete moiety three.

#EDIT
INSERT RESIDUE
ADD 100 RESIDUE(2,SERIAL)
DELET RESIDUE(3)
END

6. Reject any atoms who’s isotropic adp has become too large

#EDIT
SELECT U[ISO] LE .10
END

7. Ensure that the individual adps of a group conform to a rigid model before starting restrained
refinement

#ANISO
ATOM C(1) UNTIL C(6)
TLS
REPLACE
END

This computes a tls model for the listed atoms, and then replaces the individual Uaniso with
values computed from the tls model. Elements of the tls model can be changed manually if
required. The tls model can be extended to atoms not in the original calculation.

8. After the space group has been changed from P 1 to P⎯1, one half of the structure can simply be
deleted, or the two halves can be averaged.

9.
#PEAK 5 5
SELECT TYPE=AVERAGE
END

If a structure has Z’>1, it is convenient if the atoms are numbered in a consistent way. There is a SCRIPT
to help with this. The user numbers one of the molecules tidily, then propagates this numbering into the
other molecules. If the atoms in the other molecules are of type Q (ie un-named peaks) the atom typing is
also propagated.

Fig 12: The numbering and atom typing for the top molecule can be propagated into the other molecules.

After this, the molecules can be restrained to be similar
SAME C(1) UNTIL O(23) AND C(101) UNTIL O(123)etc

Validation

66

Refinement programs rarely ‘blow up’ these days, so that it is possible for a user to generate an
apparently stable yet incorrect model. Various tools to help with validation are available in CRYSTALS.
In the ‘Guided’ mode of operation (not so far mentioned in this article), the user is guided through the
analysis step by step. The penultimate stage consists of validating the analysis against the minimal Acta
Cryst criteria. Beyond this, if the user has access to PLATON or MOGUL, tasks can be spawned to these
programs and the results acted upon in CRYSTALS. For more troublesome case, there are tools for
looking into the data:

1. Rotax. The original Edinburgh code has been brought right into CRYSTALS. If twinning is
detected, the appropriate twin laws can be applied directly and refinement continued.

Fig 13: GUI interface for Rotax inside the Crystals software

2. Examination of the original data. A weird Wilson Plot, or unexpected incompleteness of data may
indicate something went wrong during data collection.

Fig 14: Wilson plot (left) shows something seriously wrong with the high angle data. The completeness
chart (right) tends to confirm this.

3. If refinement gets bogged down, look for trends in Fo and Fc. A common source of difficulties is
partially occluded low angle strong reflections. They have a minimal impact on direct methods,
but can be a catastrophe for refinement. Outliers on an Fo-Fc plot may either be flawed data, or
indicative of something missing from the model.

Fig 15: The Fo-Fc plot (left) shows no real outliers, but masses of data with small or negative Fo values.
The normal probability plot (right) also confirms that there is something seriously wrong with the model
or the data.

67

4. In the case illustrated above (2 and 3), the data had been collected at break-neck speed on a

Nonius Kccd diffractometer. Of the 4143 reflections recorded, 2848 were greater than zero, and
only 564 (14%) had I > 3 sigma(I). Even so, chemically and statistically acceptable models were
achieved without the use of restraints. Note that even with such a weak data set, the structure was
solved by SIR92 without serious difficulty.

Fig 16: Cumulative distribution curves for the very weak data (red), middling (blue) and strong data
(green) plotted as a function of resolution. 86% of the data has I<3 sigma(I). No one except a
programmer would choose to collect such weak data, but sometimes Nature offers no choice.

Conclusion.

SHELXL97, SIR2002 and CRYSTALS all have a great wealth of mathematical and crystallographic
resources in common. The differences begin to emerge when large or non-routine problems occur. In
these cases the crystallographer needs both the best available mathematical methods, and a helpful
environment for applying the techniques. We feel that the ability to interactively make changes to the
model, and instantly apply a complex refinement strategy is particularly useful in these cases. The
validity of a particular model and strategy can be tested against a wealth of yard-sticks.

The complete CRYSTALS package, including GUI, manuals, examples and a high quality graphics
module, is available at no charge for non-commercial use from http://www.xtl.ox.ac.uk.

References.

O.V. Dolomanov, A.J. Blake, N.R. Champness, M. Schröder & C. Wilson, Chemical Communications
2003. "A novel synthetic strategy for hexanuclear supramolecular architectures", pp. 682−683

D.J. Watkin, Acta Cryst. 1994, A50, 411−437

68

http://www.xtl.ox.ac.uk/

69

cctbx news: Phil and friends

Ralf W. Grosse-Kunstleve, Pavel V. Afonine, Nicholas K. Sauter and Paul D. Adams,
Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
BLDG 64R0121, Berkeley, California 94720-8118., USA - Email : RWGrosse-Kunstleve@lbl.gov ;
WWW: http://cci.lbl.gov/

Abstract

We describe recent developments of the Computational Crystallography Toolbox.

Preamble

In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64
Unix). All example scripts shown below were tested with cctbx build 2005_01_22_0855.

In the following we refer to our articles in the previous issues of this newsletter as "Newsletter No. 1",
"Newsletter No. 2", etc. to improve readability. The full citations are included in the references section.

1 Introduction

The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source
component of the Phenix project (http://www.phenix-online.org/). Currently much energy is devoted to
implementing a streamlined command-line interface to the Phenix refinement algorithms. In this article
we describe the new Python-based hierarchical interchange language (Phil) that was developed for this
purpose. Other important developmemts highlighted below are our implementation of cartesian dynamics
simulated annealing for macromolecular structure refinement, the significant enhancements of the
iotbx.reflections_statistics command, the new C++ and Python interfaces to the CCP4 MTZ
library, and the inclusion of PyCifRW in the cctbx bundles available for download.

The command-line interface to the Phenix refinement algorithms is called phenix.refine. The
refinement algorithms require a structural model, xray data and optionally experimental phase
information, typically in the form of Hendrickson-Lattman coefficients. For macromolecular refinement
the ratio of experimental observations to refinable parameters is typically quite low. Geometry restraints
have to be included in order to make the refinement stable. Finally, the refinement algorithms introduce a
large number of parameters, such as the number of refinement cycles to run, parameters for bulk-solvent
correction, simulated annealing, etc. In our current development version the number of parameters
including file names and data labels is already greater than 100. This number is likely to increase
significantly as we add more features in the future.
In previous issues of this newsletter we have described comprehensive utilities for reading reflection files
(Newsletter No. 3), processing of structural data formatted as PDB files integrated with the handling of
geometry restraints based on the CCP4 Monomer Library (Newsletter No. 4). However, until recently we
had only ad-hoc solutions for the handling of the large number of algorithmic parameters.
phenix.refine is written in Python (with C++ extensions for numerically intensive algorithms, see
Newsletter No. 1). Therefore it was quite natural for us to also use Python to define parameters. For
example, Python classes are quite convenient for organizing parameters:

mailto:RWGrosse-Kunstleve@lbl.gov
http://cci.lbl.gov/
http://cci.lbl.gov/cctbx_build/
http://cctbx.sourceforge.net/
http://www.phenix-online.org/

70

from libtbx import introspection

class cartesian_dynamics:
 def __init__(self, temperature = 300,
 number_of_steps = 200,
 time_step = 0.0005):
 introspection.adopt_init_args()

class simulated_annealing:
 def __init__(self, do_simulated_annealing = False,
 start_temperature = 2500,
 final_temperature = 300,
 cool_rate = 25,
 number_of_steps = 25,
 time_step = 0.0005,
 update_grads_shift = 0.3):
 introspection.adopt_init_args()

A group of parameters can then be used like this:

my_cartesian_dynamics_params = cartesian_dynamics(number_of_steps=300)
my_simulated_annealing_params = simulated_annealing(final_temperature=200)
some_algorithm(
 cartesian_dynamics_params=my_cartesian_dynamics_params,
 simulated_annealing_params=my_simulated_annealing_params)

With:

def some_algorithm(
 cartesian_dynamics_params,
 simulated_annealing_params):
 print cartesian_dynamics_params.temperature
 print cartesian_dynamics_params.number_of_steps
 print simulated_annealing_params.start_temperature
 print simulated_annealing_params.final_temperature

the output is:

300
300
2500
200

This shows that we retain the default values for temperature and start_temperature, but override the
values for number_of_steps and final_temperature.

2 Management of parameters: Phil is your friend

One obvious problem of the approach to parameter management outlined above is that it requires
familiarity with the Python syntax. While Python is arguably one of the most elegant programming
languages, it still has too much syntax for non-programmers. E.g. all Python string literals have to be in
quotes and indentation is syntactically significant. It also appeared difficult to implement the advanced
parameter management features introduced below working exclusively with Python syntax. Therefore we

71

have replaced the Python syntax with the new Phil syntax to make parameter management as simple as
possible. The Phil equivalent of the examples above is:

refinement.cartesian_dynamics {
 temperature = 300
 number_of_steps = 200
 time_step = 0.0005
}

refinement.simulated_annealing {
 do_simulated_annealing = False
 start_temperature = 2500
 final_temperature = 300
 cool_rate = 25
 number_of_steps = 25
 time_step = 0.0005
 update_grads_shift = 0.3
}

The Phil syntax has only two main elements, phil.definition (e.g. cool_rate=25 and phil.scope
(e.g. simulated_annealing { }). To make this syntax as user-friendly as possible, strings do not have
to be quoted and, unlike Python, indentation is not syntactically significant. E.g. this:

refinement.xray_data {
 file_name = "peak.mtz"
 labels = "Fobs" "SigFobs"
}

is equivalent to:

refinement.xray_data {
file_name=peak.mtz
labels=Fobs SigFobs
}

Scopes can be nested recursively. The number of nesting levels is limited only by Python's recursion limit
(default 1000). To maximize convenience, nested scopes can be defined in two equivalent ways. For
example:

refinement {
 xray_data {
 }
}

is equivalent to:

refinement.xray_data {
}

72

2.1 Beyond syntax

Phil is more than just a parser for a very simple, user-friendly syntax. Major Phil features are:

• The concepts of master files and user files. The syntax for the two types of Phil files is
identical, but the processed Phil files are used in different ways. I.e. the concepts exist only
at the semantical level. The "look and feel" of the files is uniform.

• Interpretation of command-line arguments as Phil definitions.

• Merging of (multiple) Phil files and (multiple) Phil definitions derived from command-line
arguments.

• Automatic conversion of Phil files to pure Python objects equivalent to instances of ad-hoc
Python parameter classes like the examples shown in the introduction. These pure Python
objects are completely independent from the Phil system.

• The reverse conversion of (potentially modified) pure Python objects back to Phil files.
This could also be viewed as a Phil pretty printer.

• Shell-like variable substitution using $var and ${var} syntax.

• include syntax to merge Phil files at the parser level.

2.2 Master files

The master files are written by the software developer and include "attributes" for each parameter, such as
the type (integer, floating-point, string, unit cell, etc.) and support information for graphical interfaces.
For example:

refinement.crystal_symmetry {
 unit_cell=None
 .type=unit_cell
 .help="Unit cell parameters."
 .input_size = 40
 .expert_level = 0
 space_group=None
 .type=space_group
 .help="Space group symbol or number."
 .input_size = 20
 .expert_level = 0
}

To see the full set of "attributes" for all phenix.refine parameters run this command:

iotbx.phil --show_all_attributes $MMTBX_DIST/mmtbx/refinement/__init__.params

The output is not shown because it is more than 1000 lines long (and still growing). Fortunately, the end-
user does not have to be aware of these long master files.

73

2.3 User files

User files are typically generated by the application, e.g.

phenix.refine --show_defaults

will process the master file. (Since phenix is not open source this command is not available in a plain
cctbx installation.) This command will list only the most relevant parameters, classified by the software
developer as .expert_level = 0. For example:

refinement.crystal_symmetry {
 unit_cell = None
 space_group = None
}

The attributes are not shown. Therefore the output is much shorter compared to the iotbx.phil output
above. Currently the output contains only 53 lines with 35 definitions.

2.4 Command-line arguments + Phil

In theory the user could save and edit the generated parameter files. However, in most practical situations
this is not necessary for two reasons.
Firstly, phenix.refine (and in the future other cctbx and Phenix applications) inspects all input files and
uses the information found to fill in the blanks automatically. For example the unit cell is copied from the
input PDB file or, if this information is missing in the PDB file, from a reflection file. This is not only
convenient, but also eliminates the possibility of typing errors.
Secondly, command-line arguments that are not file names or options prefixed with -- (like --
show_defaults above) are given to Phil for examination. E.g., this is a possible command:

phenix.refine peak.mtz model.pdb number_of_macro_cycles=10

Assume the first two arguments can be opened as files (the file names may be specified in any order;
phenix.refine detects the file types automatically). Also assume that a file with the name
number_of_macro_cycles=10 does not exist. This argument will therefore be interpreted with Phil.

2.5 Merging of Phil objects

The Phil parser converts master files, user files and command line arguments to uniform Phil objects
which can be merged to generate a combined set of "effective" parameters used in running the
application. We demonstrate this by way of a simple, self-contained Python script with embedded Phil
syntax:

import iotbx.phil

master_params = iotbx.phil.parse("""
 refinement.crystal_symmetry {
 unit_cell = None
 .type=unit_cell

74

 space_group = None
 .type=space_group
 }
 """)

user_params = iotbx.phil.parse("""
 refinement.crystal_symmetry {
 unit_cell = 10 12 12 90 90 120
 space_group = None
 }
 """)

command_line_params = iotbx.phil.parse(
 "refinement.crystal_symmetry.space_group=19")

effective_params = master_params.fetch(
 sources=[user_params, command_line_params])
effective_params.show()

The master_params define all available parameters including the type information. The user_params
override the default unit_cell assignment but leave the space group undefined. The space group symbol
is defined by the command line argument. effective_params.show() produces:

refinement.crystal_symmetry {
 unit_cell = 10 12 12 90 90 120
 space_group = 19
}

Having to type in fully qualified parameter names (e.g. refinement.crystal_symmetry.space_group)
can be very inconvenient. Therefore Phil includes support for matching parameter names of command-
line arguments as substrings to the parameter names in the master files:

import libtbx.phil.command_line

argument_interpreter = libtbx.phil.command_line.argument_interpreter(
 master_params=master_params,
 home_scope="refinement")

command_line_params = argument_interpreter.process(
 arg="space_group=19")

This works even if the user writes just group=19 or even e_gr=19. The only requirement is that the
substring leads to a unique match in the master file. Otherwise Phil produces a helpful error message. For
example:

argument_interpreter.process("u=19")

leads to:

UserError: Ambiguous parameter definition: u = 19
Best matches:
 refinement.crystal_symmetry.unit_cell
 refinement.crystal_symmetry.space_group

75

The user can cut-and-paste the desired parameter to edit the command line for another trial to run the
application.

2.6 Conversion of Phil objects to pure Python objects

The Phil parser produces objects that preserve most information generated in the parsing process, such as
line numbers and parameter attributes. While this information is very useful for pretty printing (e.g. to
archive effective parameters) and the automatic generation of graphical user interfaces, it is only a burden
in the context of core numerical algorithms. Therefore Phil supports "extraction" of light-weight pure
Python objects from the Phil objects. Based on the example above, this can be achieved with just one line:

params = effective_params.extract()

We can now use the extracted objects in the context of Python:

print params.refinement.crystal_symmetry.unit_cell
print params.refinement.crystal_symmetry.space_group

Output:

(10, 12, 12, 90, 90, 120)
P 21 21 21

At first glance one may almost miss that something significant has happened. However, we started out
with "space_group=19" and now we see P 21 21 21 in the output. This is because the space_group
parameter was defined to be of .type=space_group in the master file. Associated with each type are
converters to and from corresponding Python objects. In this case, the space_group converter produces a
Python object of type:

print repr(params.refinement.crystal_symmetry.space_group)

Output:

<cctbx.sgtbx.space_group_info instance at 0xb64edf6c>

This object cannot only show the space group symbol, but has many other "methods". E.g. to print the list
of symmetry operations in "xyz" notation:

for s in params.refinement.crystal_symmetry.space_group.group():
 print s

76

Output:

x,y,z
x+1/2,-y+1/2,-z
-x,y+1/2,-z+1/2
-x+1/2,-y,z+1/2

2.7 Conversion of Python objects to Phil objects

Phil also supports the reverse conversion compared to the previous section, from Python objects to Phil
objects. For example, to change the unit cell parameters:

from cctbx import uctbx

params.refinement.crystal_symmetry.unit_cell = uctbx.unit_cell(
 (10,12,15,90,90,90))
modified_params = master_params.format(python_object=params)
modified_params.show()

Output:

refinement.crystal_symmetry {
 unit_cell = 10 12 15 90 90 90
 space_group = "P 21 21 21"
}

We need to bring in the master_params again because all the meta-information was lost in the
extract() step that produced params. Again, a type-specific converter is used to produce a string for
each Python object. We started out with space_group=19 but get back space_group = "P 21 21 21"
because we chose to make the converter work that way.

2.8 Extending Phil

The astute reader may have noticed that we used both libtbx.phil and iotbx.phil. Why does Phil
appear to have two homes?

The best way to think about Phil is to say "Phil is libtbx.phil." The basic Phil objects storing the parsing
results (phil.definition and phil.scope), the tokenizer, parser and the command line support are
implemented in the libtbx.phil module. iotbx.phil extends Phil by adding two new types,
unit_cell and space_group. The converters for these types can be found in
$IOTBX_DIST/iotbx/phil.py. For example, this is the code for the unit cell converters:

class unit_cell_converters:

 def __str__(self): return "unit_cell"

 def from_words(self, words, master):
 s = libtbx.phil.str_from_words(words=words)
 if (s is None): return None
 return uctbx.unit_cell(s)

77

 def as_words(self, python_object, master):
 if (python_object is None):
 return [tokenizer.word(value="None")]
 return [tokenizer.word(value="%.10g" % v)
 for v in python_object.parameters()]

Arbitrary new types can be added to Phil by defining similar converters. If desired, the built-in converters
for the basic types (int, float, str, etc.) defined in libtbx.phil can even be replaced. All converters
have to have __str__(), from_words() and as_words() methods. More complex converters may
optionally have a non-trivial __init__() method (an example is the choice_converters class in
$LIBTBX_DIST/libtbx/phil/__init__.py).

The iotbx.phil.parse() function used in the examples above is a very small function which adds the
unit_cell and space_group converters to Phil's default converter registry and then calls the main
libtbx.phil.parse() function to do the actual work. Following the example of iotbx.phil it should
be straightforward to add other domain-specific types to the Phil system.

2.9 Variable substitution

Phil supports shell-like variable substitution using $var and ${var} syntax. A few examples say more than
many words:

import libtbx.phil

params = libtbx.phil.parse("""
 root_name = peak
 file_name = $root_name.mtz
 full_path = $HOME/$file_name
 related_file_name = ${root_name}_data.mtz
 message = "Reading $file_name"
 as_is = ' $file_name '
 """)
params.fetch(source=params).show()

Output:

root_name = peak
file_name = "peak.mtz"
full_path = "/net/cci/rwgk/peak.mtz"
related_file_name = "peak_data.mtz"
message = "Reading peak.mtz"
as_is = ' $file_name '

Note that the variable substitution does not happen during parsing. The output of params.show() is
identical to the input. In the example above, variables are substituted by the fetch() method that we
introduced earlier to merge user files given a master file.

2.10 Phil odds and ends

Phil also supports merging of files at the parsing level. The syntax is simply include file_name.
include directives may appear inside scopes to enable hierarchical building of master files without the
need to copy-and-paste large fragments explicitly. Duplication appears only in automatically generated
user files. I.e. the programmer is well served because a system of master files can be kept free of large-
scale redundancies that are difficult to maintain. At the same time the end user is well served because the
indirections are resolved automatically and all parameters are presented in one uniform view.
Variable substitution and include directives smell almost like programming. However, there is a line that
Phil is never meant to cross: flow control is not a part of the syntax. It is hard to imagine that a fully
featured programming language could be syntactically simpler than Python. For example, there are good
reasons why Python string literals have to be quoted. Otherwise Python scripts would be full of $ signs
because some method is needed to distinguish strings from variable names. On the other hand, having to
quote space group symbols in parameter files is a nuisance. In the future we may extend Phil as an
interchange format for data other than parameters but for our programming needs we feel extremely well
served by Python.

3 Refinement tools

3.1 mmtbx.refinement.f_model.manager

The goal of crystallographic structure refinement is to optimize a set of model parameters such that the
model predictions best fit the experimental observations. In our terminology, model goes beyond atomic
coordinates, displacement parameters and occupancies. A complete macromolecular model generally also
includes other contributions such as scale factors, bulk-solvent correction and anisotropy correction.
Furthermore, all modern refinement programs include facilities for cross-validation (e.g. for the
calculation of the R-free).

The phenix.refine command mentioned earlier is based on the mmtbx (Macromolecular toolbox)
module of the cctbx. The mathematical foundation of the mmtbx model parameterization is described in
Afonine et al. (2005). It is summarized in this formula:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−= mask

2
sol

sol
calc

aniso
model

4
expexp FFhUhF sBkk t

where k is the overall scale factor (Sheriff & Hendrickson, 1987), are structure factors calculated

from the atomic model, k

calcF

sol and Bsol are bulk-solvent parameters (Jiang & Brünger, 1994), are
structure factors calculated from a molecular mask, is a column vector with the Miller indices of a
reflection, is its transposed vector, and is the overall anisotropic scale matrix (6 components).

maskF
h

th anisoU

During refinement, is usually calculated many times in different contexts, many parameters are
updated at different schedules, and various statistics are printed repeatedly to report the refinement
progress. Moreover, some refinement strategies require complete sets of intermediate parameters to be
stored for later reference. To meet these needs in a general and reusable way, all model parameters for the
crystallographic contribution to the refinement target are grouped by the

modelF

mmtbx.refinement.f_model.manager class. In the following we develop a self-contained Python script
to highlight major features of this class. Since we need data to work with, but also want the example to be
self-contained, we start by generating a random structure:

78

79

from cctbx.development import random_structure
from cctbx import sgtbx

space_group_info = sgtbx.space_group_info(
 symbol="P212121")
n_sites = 500
structure = random_structure.xray_structure(
 space_group_info = space_group_info,
 elements = ["N"]*(n_sites),
 volume_per_atom = 50,
 anisotropic_flag = False,
 random_u_iso = True)

We use this structure to compute ideal observations f_obs:

d_min = 2.0
f_obs = abs(structure.structure_factors(
 d_min = d_min,
 anomalous_flag = False).f_calc())

Next we introduce two types of errors: missing atoms and coordinate errors with a certain max_shift:

from cctbx import xray

fraction_missing = 0.1
max_shift = 0.2
n_keep = int(round(structure.scatterers().size()
 * (1-fraction_missing)))
partial_structure = xray.structure(
 special_position_settings=structure)
partial_structure.add_scatterers(
 structure.scatterers()[:n_keep])
partial_structure.replace_scatterers(
 partial_structure.random_shift_sites(
 max_shift_cart=max_shift).scatterers())

As before we compute structure factors, this time for the partial_structure:

f_calc = partial_structure.structure_factors(
 d_min = d_min,
 anomalous_flag = False).f_calc()

For our demonstration we need an array of R-free flags (also known as a test set). We could generate the
R-free flags in one line, but we break the code up for clarity:

from cctbx.array_family import flex

n_reflections = f_calc.data().size()
partitioning = flex.random_permutation(size=n_reflections) % 10

At this point partitioning is an integer array with randomly assigned but uniformly distributed values
from 0 to 9. Insert print list(partitioning) to display the array. The next line turns this integer array
into a boolean array. At the same time we build a cctbx.miller.array (Newsletter No. 1) with the same
indexing set as f_obs but with the boolean array as the data:

80

r_free_flags = f_obs.array(data=(partitioning == 0))

Finally we have all the pieces we need to initialize the main object of this demonstration:

import mmtbx.refinement.f_model

f_model_manager = mmtbx.refinement.f_model.manager(
 f_calc = f_calc,
 f_obs = f_obs,
 r_free_flags = r_free_flags)
f_model_manager.show()

The output of the show() method is:

f_calc = <cctbx.miller.array object at 0xb5e9ff6c>
f_obs = <cctbx.miller.array object at 0xb60e170c>
f_mask = <cctbx.miller.array object at 0xb5eccb4c>
r_free_flags = <cctbx.miller.array object at 0xb5e9ff0c>
u_aniso = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
k_sol = 0.0
b_sol = 0.0
scale_work = 1.0
scale_test = 1.0
alpha = None
beta = None
sf_algorithm = None
target_name = None
target_functors = None

Our f_model_manager maintains references to the input arrays (f_calc, f_obs, r_free_flags). We also
see a new f_mask array used for bulk-solvent correction and all the parameters introduced above. Some
parameters are not defined (None), but these are not needed in this example. As is, the f_model_manager
is already able to answer certain questions, for example, what are the current values of R-work and R-
free:

print f_model_manager.r_work()
print f_model_manager.r_free()

Output:

0.275794965768
0.28068823468

(The output may vary since we are working with a random structure.) More detailed information is just
waiting for us:

f_model_manager.r_factors_in_resolution_bins(
 reflections_per_bin = 100,
 max_number_of_bins = 10)

Output:

 Bin Resolution No. Refl. R-factors
number range work test work test
 1: 20.6581 - 3.8191 988 111 0.2778 0.2555
 2: 3.8191 - 3.0344 924 114 0.2596 0.2610
 3: 3.0344 - 2.6517 914 107 0.2649 0.2750
 4: 2.6517 - 2.4097 899 104 0.2713 0.2887
 5: 2.4097 - 2.2372 906 95 0.2856 0.2998
 6: 2.2372 - 2.1054 927 80 0.2992 0.2971
 7: 2.1054 - 2.0001 884 106 0.2846 0.3438

If model parameters are updated the f_model_manager automatically recomputes all dependent values:

f_model_manager.update(
 k_sol = 1.2,
 b_sol = 30.0)

This centralized, concise facility is extremely helpful in developing new refinement strategies.

At any stage, according to the formula above, or just the bulk-solvent correction can easily be
extracted:

modelF

f_model = f_model_manager.f_model()
f_bulk = f_model_manager.f_bulk()

Detailed and uniform statistics can easily be displayed in various contexts. For example:

f_model_manager.show_fom_phase_error_alpha_beta_in_bins(
 reflections_per_bin = 100,
 max_number_of_bins = 10)

Output:

|---|
|R-free likelihood based estimates for figures of merit, absolute phase error,|
|and distribution parameters alpha and beta (Acta Cryst. (1995). A51, 880-887)|
| |
| Bin Resolution No. Refl. FOM phase err. Alpha Beta |
|number range work test <|p-p_c|> |
| 1: 20.6581 - 3.8191 988 111 0.8414 20.7174 0.9663 5782.0632|
| 2: 3.8191 - 3.0344 924 114 0.8190 23.9808 0.9663 5782.0632|
| 3: 3.0344 - 2.6517 914 107 0.8208 24.0338 0.9372 4108.1081|
| 4: 2.6517 - 2.4097 899 104 0.8058 25.6936 0.9226 3272.3595|
| 5: 2.4097 - 2.2372 906 95 0.7733 28.8366 0.9251 3055.6162|
| 6: 2.2372 - 2.1054 927 80 0.7806 28.1986 0.9304 2583.5975|
7: 2.1054 - 2.0001 884 106 0.7484 31.1348 0.9304 2583.5975

After refinement is is often very helpful to inspect electron density maps. Since the f_model_manager
controls all essential data for the calculation of maps, it is most natural to add a map generation method.
For example:

81

82

fft_map = f_model_manager.electron_density_map(
 map_type = "2m*Fobs - alpha*Fmodel")

Or:

fft_map = f_model_manager.electron_density_map(
 map_type = "k*Fobs - n*Fmodel",
 k = 2,
 n = 1)

To end this demonstration, we bring in the iotbx utilities for writing maps in XPLOR format:

import iotbx.xplor.map

fft_map.as_xplor_map(
 file_name="2fo-fm.xplor",
 title_lines=["2*Fobs - Fmodel"],
 gridding_first=(0,0,0),
 gridding_last=fft_map.n_real())

Happy viewing! -- Well, admittedly it is not very interesting to view maps of random structures, but it
works just the same given real data and real models.
The complete script can be found in the cctbx installation:

$MMTBX_DIST/mmtbx/examples/f_model_manager.py

3.2 Bulk-solvent correction and anisotropic scaling

In the previous issue of the Newsletter (No. 3) we briefly described a protocol for the determination of
flat bulk-solvent model parameters and anisotropic scaling parameters. In the current version of the cctbx
we have generalized this protocol significantly. The main features currently available are:

1. In addition to the least-squares target function presented before, a maximum-likelihood
crystallographic target function can be used for the determination of the bulk-solvent and scale
parameters. This enables a uniform overall strategy for maximum-likelihood model refinement
since all parameters (bulk solvent, scale and atomic) can be refined against the same target
function.

2. Three options for defining the bulk-solvent parameters (ksol, Bsol) and the anisotropic scale matrix
Uaniso:

a. Manual assignment. This is potentially useful at the beginning of structure refinement
when the model has many errors.

b. Minimization of a crystallographic target function using the LBFGS minimizer. This is a
quick and precise way of determining ksol, Bsol and Uaniso if a model of reasonable quality is
available and the experimental data extend to sufficiently low resolution. However, this
algorithm fails to produce physically reasonable parameters in some situations. This
experience was the motivation for implementing the more sophisticated protocol outlined
below.

c. Combined LBFGS minimization and grid search algorithm (Afonine et al, 2005). This is
the most robust procedure for the determination of ksol, Bsol and Uaniso. However, it is also
the most time-consuming option.

The bulk-solvent and scaling algorithms are implemented in the mmtbx.bulk_solvent module.

83

3.3 Simulated annealing refinement

Simulated annealing is a time-tested tool for escaping local minima in crystallographic refinement
(Brünger et al, 1987). Recently we have implemented a simulated annealing algorithm for restrained
molecular dynamics in the cctbx. This enables us to take full advantages of combined simulated annealing
and maximum-likelihood model refinement (Adams et al, 1997; Brunger & Adams, 2002).
The simulated annealing algorithms are implemented in the mmtbx.cartesian_dynamics module.

3.4 Building of hydrogen atoms

Fourier syntheses at subatomic resolution (dmin < 1.0 Å) usually reveal the presence of hydrogen atoms.
At lower resolutions this information is lost. Therefore a general refinement program has to provide
different strategies depending on the resolution of the data. If ultra-high resolution data are available,
hydrogens can be explicitly included in the refinement, for example using the riding hydrogen model
(Sheldrick, 1995). At lower resolutions the inclusion of hydrogens in the refinement target for the X-ray
data is likely to lead to overfitting. However in this case the hydrogens should still be considered in the
definition of the geometry restraints, and this has been shown to improve atomic models even in the
absence of atomic resolution data (Richardson et al. 2003). In addition, refinement against neutron
diffraction data requires appropriate modeling of hydrogen atoms.

As a first step towards covering these cases we have implemented a hydrogen building procedure for the
standard amino acid residues. In most cases the hydrogen positions are geometrically well defined.
However, there are some cases where the positions are not unambiguously determined, such as -CH3, -
OH in a tyrosine residue. To account for this, our procedure consists of two steps. In the first step we
place all expected hydrogen atoms in appropriate positions. If ambiguities exist, we place the affected
hydrogens arbitrarily in a one of the allowed positions. In the second step we perform model
regularization by refinement against geometry restraints (see Newsletter No. 4). Optionally, this can be
combined with Cartesian dynamics to escape from local minima.

The hydrogen building algorithms are implemented in the mmtbx.hydrogens module.

3.5 Maximum-likelihood tools

Previously we had implemented an amplitude-based maximum-likelihood target function (Lunin et al,
2002), its quadratic approximation (Lunin & Urzhumtsev, 1999), and a procedure for estimating the
distribution parameters (alpha, beta) according to Lunin & Skovoroda (1995). Recently we have extended
the set of maximum-likelihood tools by these methods:

R-free likelihood-based estimation of model phase errors and figures of merit

This procedure is based on the algorithm described by Lunin & Skovoroda (1995). The mean phase errors
and figures of merit are determined in narrow resolution bins using test reflections only. The procedure
provides relatively precise and unbiased values for these parameters. The algorithms are available via
methods of the mmtbx.refinement.f_model.manager class introduced in section 3.1, e.g.:

figures_of_merit = f_model_manager.figures_of_merit()
phase_errors = f_model_manager.phase_errors()

Coefficients for Fourier Syntheses

It was straightforward to implement the calculation of “best” coefficients for Fourier syntheses,
[] ()calcmodel

s
obs

s exp2 sss iFFm ϕα− , where are figures of merit and sm ()rs ∆= ,cossα (Urzhumtsev et al.,
1996; Read, 1986 uses the notation). The sD f_model_manager.electron_density_map() method
demonstrated in section 3.1 provides an interface to these algorithms.

Use of Experimental Phase Information

We are actively working on fast C++ code for a maximum-likelihood target which includes experimental
phase information (MLHL target; Pannu et al, 1998). This code is in the cctbx bundles already but not yet
fully tested.

4 iotbx.reflection_statistics

Recently we have enhanced the iotbx.reflection_statistics command significantly. The initial
version (written in April 2004) can be used to compute data completeness, anomalous signals,
correlations between intensities and correlations between anomalous signals of pairs of reflection arrays.
All these statistics are computed both in resolution shells and as overall quantities. The latest version
(written in December 2004) adds these new features:

• Automatic determination of the space group of the metric (i.e. the lattice symmetry; see
also Newsletter No. 3).

• Automatic derivation of a non-redundant set of possible twin laws from first principles
(Flack, 1987).

• Automatic derivation of a non-redundant set of possible reindexing matrices for comparing
two datasets. The matrices are derived from first principles (see below).

• Computation of a sorted list of peaks in the native Patterson synthesis to facilitate the
detection of translational non-crystallographic symmetry (NCS).

• Tests for perfect merohedral twinning using both the second moments of amplitudes (also
known as Wilson ratios) and intensities (Yeates, 1997).

With the old version of the iotbx.reflection_statistics command correlations between pairs of
reflection arrays are computed only if the unit cell parameters and the space group symmetries are
identical. The new version is designed to overcome this limitation in the most general way. Internally, all
arrays are transformed to a primitive setting. The change-of-basis matrices are determined with a cell
reduction algorithm (see Newsletter No. 3). Each array in the primitive setting is expanded to P1. I.e. the
symmetry matrices are applied to generate all equivalent Miller indices. Given a pair of reflection arrays
preprocessed in this way, a newly developed algorithm performs an exhaustive search for the change-of-
basis matrix that leads to the best superposition of the reduced unit cells. This algorithm employs the new
similarity_transformations() and bases_mean_square_difference() methods of the
cctbx.uctbx.unit_cell class. Associated with each unit cell is the space group of the metric as
determined with the lattice symmetry algorithm outlined in the Newsletter No. 3. If the tolerances used in
the computation of the cell superposition are reasonable, the metric symmetries are identical, or one is a
subgroup of the other. We continue with the highest metric space group. Each symmetry operation of this
space group is a possible reindexing matrix. Conceptually, we compute the correlations between two
arrays for each reindexing matrix and produce a sorted list of the results. However, if any of the space
groups of the two input arrays are different from P1, this leads to a redundant list. The remove these
redundancies, we employ double coset decomposition (see below). To minimize the runtime, redundant
correlations are never computed.

84

85

The algorithmic complexities are in stark contrast to the simple end-user interface. The universal
reflection file reader described in Newsletter No. 3 is used to automatically detect and process all
common file formats. A possible command for comparing reflection data is:

iotbx.reflection_statistics *.sca *.mtz

For a large number of arrays this may take a couple of minutes, but the comprehensive analyses do not
require any user intervention. The potentially large output contains tags for quick searching. A guide is
printed at the beginning of the output. For example:

Array indices (for quick searching):
 1: hg1.0_scale_anomalous.sca:i_obs,sigma
 2: hginfl_3.5_ano.sca:i_obs,sigma
 3: hgpeak_3.5_ano.sca:i_obs,sigma
 4: pb1.0_4.0_ano.sca:i_obs,sigma
 5: pbpeak_3.5_scale_anomalous.sca:i_obs,sigma
 6: pt_4.0_ano.sca:i_obs,sigma
 7: scale.sca:i_obs,sigma
 8: sm_scale_anomalous.sca:i_obs,sigma
 9: tmpb.sca:i_obs,sigma

Useful search patterns are:
 Summary i
 CC Obs i j
 CC Ano i j
 i and j are the indices shown above.

If we search for CC Obs 7 1 we find:

CC Obs 7 1 0.956 h,-k,-l
Correlation of:
 scale.sca:i_obs,sigma
 hg1.0_scale_anomalous.sca:i_obs,sigma
Overall correlation with reindexing: 0.956 h,-k,-l
unused: - 43.6948 [4/20] 1.000
bin 1: 43.6948 - 8.6072 [2856/2950] 0.954
bin 2: 8.6072 - 6.8402 [2916/2924] 0.962
bin 3: 6.8402 - 5.9780 [3028/3036] 0.957
bin 4: 5.9780 - 5.4326 [2936/2948] 0.960
bin 5: 5.4326 - 5.0438 [2940/2960] 0.964
bin 6: 5.0438 - 4.7468 [2792/2818] 0.959
bin 7: 4.7468 - 4.5093 [3104/3124] 0.954
bin 8: 4.5093 - 4.3132 [2824/2842] 0.949
bin 9: 4.3132 - 4.1473 [2904/2930] 0.946
bin 10: 4.1473 - 4.0043 [2964/2990] 0.937
unused: 4.0043 - [24/72] 0.904

CC Obs 7 1 0.364 h,k,l
Correlation of:
 scale.sca:i_obs,sigma
 hg1.0_scale_anomalous.sca:i_obs,sigma
Overall correlation: 0.364

In this example the highest correlation (0.956) between the two arrays is found with the reindexing matrix
h,-k,-l. In contrast, the correlation between the arrays as indexed originally is only 0.364.

86

The iotbx.reflection_statistics command is implemented in the file
$IOTBX_DIST/iotbx/command_line/reflection_statistics.py.

4.1 Double coset decomposition

A useful summary of the theory of double cosets can be found in An introduction to group theory by
Tony Gaglione, which is available online:

http://web.usna.navy.mil/~wdj/tonybook/gpthry/node44.html

Double coset decomposition is concerned with a group g and two subgroups h1 and h2. The group g is
partitioned into non-overlapping sets of symmetry operations equivalent under h1 and h2. In the context
of the algorithm outlined above, g is the highest space group of the metric. h1 and h2 are the space groups
of the arrays to be compared. Each double coset represents a reindexing choice unique under h1 and h2.
I.e. any matrix selected from a given double coset will lead to identical correlation coefficients.
If we do not care which matrix is selected from a given double coset, we arrive at a surprisingly simple
algorithm. The following is the relevant fragment from the file $CCTBX_DIST/cctbx/sgtbx/cosets.py:

def double_unique(g, h1, h2):
 result = []
 done = {}
 for a in g:
 if (str(a) in done): continue
 result.append(a)
 for hi in h1:
 for hj in h2:
 b = hi.multiply(a).multiply(hj)
 done[str(b)] = None
 return result

g, h1 and h2 are instances of cctbx.sgtbx.space_group. The algorithm follows directly from the
definition of cosets as found at the web page referenced above:

For a, b element of g, we define a ~ b if and only if h1 a h2 = b.

h1 a h2 = b corresponds to b = hi.multiply(a).multiply(hj) in the Python code.
result is a Python list of representative matrices, one from each coset. Which matrices are returned
depends on the order of the matrices in g, h1 and h2. This may not always yield the "nicest" choice.
However, any investment in a more sophisticated selection has little or no practical value. Typically the
transformed indices are mapped into a canonical asymmetric unit (e.g. using the map_to_asu() method
of cctbx.miller.array). After this manipulation the indexing set will be the same no matter which
matrix from a given double coset is selected.

5 iotbx.mtz

CCP4 MTZ files are binary files containing merged or unmerged reflection data and optionally
information about raw data ("batches"). For a couple of years already the cctbx has included C++ and
Python interfaces to the CCP4 C MTZ library in the iotbx.mtz module. However, while the support for
reading MTZ files was quite complete, creating and writing MTZ files was only partially supported. To

http://web.usna.navy.mil/~wdj/tonybook/gpthry/node44.html

87

resolve this problem and to unify the interfaces for reading and writing, the iotbx.mtz module was
heavily restructured. We have also added complete C++ and Python interfaces for the manipulation of
MTZ batches. The iotbx.mtz module extends the functionality of the CCP4 C MTZ library by
automatically grouping related MTZ columns into one object, cctbx.miller.array instances as
introduced in Newsletter No. 1.

Combined with the universal reflection file reader, it is quite easy to quickly write a script for converting
any of the formats processed by the reflection file reader to the MTZ format. First let's get some data to
work with:

from iotbx import reflection_file_reader
import os

reflection_file = reflection_file_reader.any_reflection_file(
 file_name=os.path.expandvars(
 "$CNS_SOLVE/doc/html/tutorial/data/pen/scale.hkl"))

We are reading a CNS reflection file in the CNS tutorial. (To run this example CNS has to be installed
including the tutorial.) Since the crystal symmetry is not defined in CNS reflection files, we supply this
information manually:

from cctbx import crystal

crystal_symmetry = crystal.symmetry(
 unit_cell=(97.37, 46.64, 65.47, 90, 115.4, 90),
 space_group_symbol="C2")

We convert the reflection file to a list of cctbx.miller.array instances:

miller_arrays = reflection_file.as_miller_arrays(
 crystal_symmetry=crystal_symmetry)

Now we loop over the Miller arrays to convert them to MTZ data columns:

mtz_dataset = None
for miller_array in miller_arrays:
 if (mtz_dataset is None):
 mtz_dataset = miller_array.as_mtz_dataset(
 column_root_label=miller_array.info().labels[0])
 else:
 mtz_dataset.add_miller_array(
 miller_array=miller_array,
 column_root_label=miller_array.info().labels[0])

Let's see what we got:

mtz_object = mtz_dataset.mtz_object()
mtz_object.show_summary()

88

The output ends with:

Column number, label, number of valid values, type:
 1 H 6735/6735=100.00% H: index h,k,l
 2 K 6735/6735=100.00% H: index h,k,l
 3 L 6735/6735=100.00% H: index h,k,l
 4 F_PHGA 6735/6735=100.00% F: amplitude
 5 SIGF_PHGA 6735/6735=100.00% Q: standard deviation
 6 F_KUOF 6735/6735=100.00% F: amplitude
 7 SIGF_KUOF 6735/6735=100.00% Q: standard deviation
 8 F_NAT 6735/6735=100.00% F: amplitude
 9 SIGF_NAT 6735/6735=100.00% Q: standard deviation

Finally we write the MTZ file to disk:

mtz_object.write("pen_data.mtz")

Note that the iotbx.mtz.dump pen_data.mtz command is available to produce the same output as the
mtz_object.show() statement in the example.

6 Integration of PyCifRW

PyCifRW is a library for reading and writing CIF (Crystallographic Information Format) files using
Python. PyCifRW was developed by James Hester at the Australian National Beamline Facility (ANBF).
Documentation can be found online:

http://www.ansto.gov.au/natfac/ANBF/CIF/

Recently, the PyCifRW license was changed to allow redistribution. We are very excited about this
development because it allows us to include PyCifRW in the cctbx bundles. However, like the CCP4 I/O
library and Clipper (see Newsletter No. 4), PyCifRW is not in the cctbx CVS tree on SourceForge. James
Hester continues to develop PyCifRW in his own environment and we will update the cctbx bundles with
the latest releases. Currently we redistribute PyCifRW version 1.19 released in November 2004.

PyCifRW in a cctbx installation is used in the same way as described in the PyCifRW documentation.
Let's try it out. We develop a self-contained Python script by starting with embedded CIF syntax:

file("quartz.cif", "w").write("""
 data_global
 _chemical_name Quartz
 _cell_length_a 4.9965
 _cell_length_b 4.9965
 _cell_length_c 5.4570
 _cell_angle_alpha 90
 _cell_angle_beta 90
 _cell_angle_gamma 120
 _symmetry_space_group_name_H-M 'P 62 2 2'
 loop_
 _atom_site_label
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 Si 0.50000 0.00000 0.00000
 O 0.41520 0.20760 0.16667
 """)

http://www.ansto.gov.au/natfac/ANBF/CIF/

89

At this point we have created a file quartz.cif. Now we parse it with PyCifRW:

from PyCifRW.CifFile import CifFile

cif_file = CifFile("quartz.cif")
cif_global = cif_file["global"]
print cif_global["_chemical_name"]

Output:

Quartz

Looks like a good start! But we want more. For example, structure factors. For this we have to process the
rest of the data in the CIF file. First we determine the crystal symmetry:

from cctbx import uctbx, sgtbx, crystal

unit_cell = uctbx.unit_cell([float(cif_global[param])
 for param in [
 "_cell_length_a","_cell_length_b","_cell_length_c",
 "_cell_angle_alpha","_cell_angle_beta","_cell_angle_gamma"]])
space_group_info = sgtbx.space_group_info(
 symbol=cif_global["_symmetry_space_group_name_H-M"])
crystal_symmetry = crystal.symmetry(
 unit_cell=unit_cell,
 space_group_info=space_group_info)
crystal_symmetry.show_summary()

Output:

Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)
Space group: P 62 2 2 (No. 180)

Now we turn our attention to the list of coordinates and create a new cctbx.xray.structure instance:

from cctbx import xray

structure = xray.structure(crystal_symmetry=crystal_symmetry)
for label,x,y,z in zip(cif_global["_atom_site_label"],
 cif_global["_atom_site_fract_x"],
 cif_global["_atom_site_fract_y"],
 cif_global["_atom_site_fract_z"]):
 scatterer = xray.scatterer(
 label=label,
 site=[float(s) for s in [x,y,z]])
 structure.add_scatterer(scatterer)
structure.show_summary().show_scatterers()

90

Output:

Number of scatterers: 2
At special positions: 2
Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)
Space group: P 62 2 2 (No. 180)
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso
Si Si 3 (0.5000 0.0000 0.0000) 1.00 0.0000
O O 6 (0.4152 0.2076 0.1667) 1.00 0.0000

Just one more hoop and we have the structure factors:

f_calc = structure.structure_factors(d_min=2).f_calc()
abs(f_calc).show_summary().show_array()

Output:

Miller array info: None
Observation type: None
Type of data: double, size=7
Type of sigmas: None
Number of Miller indices: 7
Anomalous flag: False
Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)
Space group: P 62 2 2 (No. 180)
(1, 0, 0) 15.708493924
(1, 0, 1) 36.2626337008
(1, 0, 2) 7.77312576362
(1, 1, 0) 14.9039425672
(1, 1, 1) 0.975009858138
(2, 0, 0) 15.8407980479
(2, 0, 1) 13.6738859288

Note that this is almost what we had in Newsletter No. 1. The main difference is that we start from a CIF
file rather than the plain cctbx interfaces.

The complete script can be found in the cctbx installation:

$PYCIFRW_DIST/example_quartz.py

7 Acknowledgments

We like to thank James Hester for writing PyCifRW and for his hard work concerning the PyCifRW
license. We gratefully acknowledge the financial support of NIH/NIGMS. Our work was supported in
part by the US Department of Energy under Contract No. DE-AC03-76SF00098.

91

8 References

Adams, P. D., Pannu, N. S., Read, R. J. & Brünger, A. T. (1997). Proc. Natl. Acad. Sci. 94, 5018-5023.

Afonine, P.V., Grosse-Kunstleve, R.W. & Adams, P. D. (2005). Submitted.

Brunger, A. T & Adams, P. D. (2002). Acc. Chem. Res. 35, 404-412.

Brünger, A. T., Kuriyan, J., Karplus, M. (1987). Science. 235, 458- 460.

Flack, H.D. (1987). Acta Cryst. A43, 564-568.

Grosse-Kunstleve, R.W., Adams, P.D. (2003). Newsletter of the IUCr Commission on Crystallographic Computing, 1, 28-38.
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2003jan/

Grosse-Kunstleve, R.W., Sauter, N.K., Adams, P.D. (2004). Newsletter of the IUCr Commission on Crystallographic
Computing, 3, 22-31. http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004jan/

Grosse-Kunstleve, R.W., Afonine, P.V., B., Adams, P.D. (2004). Newsletter of the IUCr Commission on Crystallographic
Computing, 4, 19-36. http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004aug/

Jiang, J.-S. & Brünger, A. T. (1994). J. Mol. Biol. 243, 100-115.

Lunin, V.Y. & Skovoroda, T.P. (1995). Acta Cryst. A51, 880-887.

Lunin, V.Y. & Urzhumtsev, A. (1999). CCP4 Newsletter on Protein Crystallography, 37, 14-28.

Lunin, V.Y., Afonine, P.V. & Urzhumtsev, A. (2002). Acta Cryst., A58, 270-282.

Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. (1998). Acta Cryst. D54, 1285-1294.

Read, R.J. (1986). Acta Cryst. A42, 140-149.

Richardson, J.S., Arendall, W.B. III, and Richardson, D.C. (2003). Methods Enzymol. 374, 385-412.

Sheldrick, G.M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Sheriff, S. & Hendrickson, W. A. (1987). Acta Cryst. A43, 118-121.

Urzhumtsev, A.G., Skovoroda, T.P., Lunin, V.Y. (1996). J. Appl. Cryst. 29, 741-744.

Yeates, T.O. (1997). Methods Enzymol. 276, 344-358.

http://www.iucr.org/iucr-top/comm/ccom/newsletters/2003jan/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004jan/
http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004aug/

Computing the Z-matrix for global optimisation

Kenneth Shankland,
ISIS Facility, Rutherford Appleton Lab., Oxon OX11 0QX, U.K. - Email : K.Shankland@rl.ac.uk ;
WWW: http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM

Introduction

In a previous article [1] the construction of internal coordinate molecular models, suitable for use in
global optimisation schemes against powder diffraction data, was discussed. In particular, the 'Z-matrix'
format was outlined in some detail and the importance of defining flexible torsion angles (i.e. torsion
angles around which free rotation can occur) as a series of proper and improper torsions was emphasised.
Many computer programs can generate a Z-matrix from a given input molecular model but all those
examined by this author (admittedly a few years ago!) did not produce Z-matrices with torsion angles
defined in this fashion. By way of example, consider the following simple structure:

92

The CH2Cl group can rotate around bond 1-12. If we assume for a moment that the chlorine atom lies in
the plane of the ring, then one Z-matrix that would describe this molecule is;

ClH
H

H

H
H

H

H 1

3
2

4

5

6

7

8

9

10

11
12

15

14

13

 C1 0.0000000 0 0.0000000 0 0.0000000 0 0 0 0
 C2 1.4000000 0 0.0000000 0 0.0000000 0 1 0 0
 C3 1.4000000 0 120.0000000 0 0.0000000 0 2 1 0
 C4 1.4000000 0 120.0000000 0 0.0000000 0 3 2 1
 C5 1.4000000 0 120.0000000 0 0.0000000 0 4 3 2
 C6 1.4000000 0 120.0000000 0 0.0000000 0 5 4 3
 H7 1.0000000 0 120.0000000 0 180.0000000 0 2 3 4
 H8 1.0000000 0 120.0000000 0 180.0000000 0 3 4 5
 H9 1.0000000 0 120.0000000 0 180.0000000 0 4 5 6
 H10 1.0000000 0 120.0000000 0 180.0000000 0 5 6 1
 H11 1.0000000 0 120.0000000 0 180.0000000 0 6 1 2
 C12 1.4000000 0 120.0000000 0 180.0000000 0 1 2 3
 Cl13 1.7000000 0 109.5000000 0 0.0000000 0 12 1 2
 H14 1.0000000 0 109.5000000 0 120.0000000 0 12 1 2
 H15 1.0000000 0 109.5000000 0 240.0000000 0 12 1 2

Whilst this is satisfactory for this single conformation of the molecule (and therefore a good starting point
for say, a single-point energy calculation) it is clear that if we want the ability to generate any permissible
conformation about bond 1-12 (as we do, for global optimisation), we need to change the last three lines
to:

 Cl13 1.7000000 0 109.5000000 0 0.0000000 1 12 1 2
 H14 1.0000000 0 109.5000000 0 120.0000000 0 12 1 13
 H15 1.0000000 0 109.5000000 0 120.0000000 0 12 1 14

mailto:K.Shankland@rl.ac.uk
http://www.isis.rl.ac.uk/dataanalysis/people/ken/KEN.HTM

93

We therefore create a Z-matrix where any allowable value can be entered for torsion 13-12-1-2 and the
attached hydrogen atoms will automatically rotate, as they are now defined relative to the position of the
chlorine atom. However, for anything other than the simplest of molecules, it is tedious to create a Z-
matrix in this form manually. Fortunately, a Cartesian XYZ file (easily produced from molecular
modelling programs) with atomic connectivity has all the information needed to construct an appropriate
Z-matrix automatically; the steps needed to effect this conversion are described below.

Desirable attributes for a computer program that calculates Z-matrices

• The ability to specify the starting atom for the Z-matrix
• The ability to identify flexible torsion angles. Note that all torsion angles are normally considered to

be flexible except when either (a) the torsion involved is part of a ring system or (b) the torsion
involved has a bond order greater than one

• The ability to identify torsions that involve only ‘H’ atom rotations, as rotation around these torsions
will not have any significant impact upon the calculation of an X-ray powder diffraction pattern

Of these attributes, the first two are essential and the latter desirable.

A strategy for the calculation

Step 1

Firstly, we obtain a model of the input structure in Cartesian co-ordinates with associated atomic
connectivity. For the example presented later (famotidine), CSSR format is used:

 # label x y z connectivity
 1 S1 0.00000 0.00000 0.00000 2 3 4 33
 2 O2 1.43958 0.00000 0.00000 1 0 0 0
 3 O3 -0.66320 1.28419 0.00000 1 0 0 0
 4 N4 -0.40765 -0.88451 1.28417 1 5 0 0
 5 C5 -1.67657 -1.14553 1.55244 4 6 9 0

 etc. . . .

Thus atom 1 is connected to atoms 2,3,4 and 33, Atom 2 is connected to 1 etc…..

Step 2

In terms of atom identification, we will have the original atom numbering scheme and a new numbering
scheme for the atoms within the Z-matrix. Rather than attempting to maintain some correspondence
between the original and the new numbering scheme, we will aim to renumber the structure in a one-off
operation. This new numbering scheme is the one that we will then use for the Z-matrix. The
renumbering algorithm is simple and will be presented later. The renumbered atom list is then ordered in
ascending order, just like the original, giving, for example:

 1 S11 -3.15763 0.38730 4.11686 2 3 0 0
 2 C10 -1.83328 -0.83920 4.04576 1 4 5 6
 3 C12 -2.46400 1.75399 3.11132 1 20 21 22
 4 C9 -1.92778 -1.82462 2.87380 2 7 8 9
 5 H29 -1.88968 -1.31614 4.82938 2 0 0 0

Step 3

It is clear that there is redundancy in the connectivity list that can be removed. For example, atom 1 is
connected to 2 and 3, but that information is contained further down the list in the connectivities of atoms
2 and 3. Therefore, we trim the connectivity list with the following rule: for each atom in the list, look at
the connectivity list and delete any atoms that have a higher number than the current atom. For any
atoms that remain in the connected list, ensure that they are placed in ascending order. Applying this
rule to the five atom list shown earlier, the list becomes

 1 S11 -3.15763 0.38730 4.11686
 2 C10 -1.83328 -0.83920 4.04576 1
 3 C12 -2.46400 1.75399 3.11132 1
 4 C9 -1.92778 -1.82462 2.87380 2
 5 H29 -1.88968 -1.31614 4.82938 2

For a compound that contains no ring systems, each atom in the list will only have a single connected
atom. For a compound that has a single ring system, only one atom in the list will have two connected
atoms remaining at the end of this step. This property of the list makes it easy to identify ring systems
and hence identify non-rotating bonds.

Step 4

This simplified representation makes generation of a Z-matrix straightforward, provided that the
following rules are remembered

• A flexible torsion angle can only cross the central twisting bond a single time. For example, if
4-3-2-1 is a legitimate flexible torsion, 5-3-2-1 cannot be, because the 3-2 bridge has already been
crossed. Instead, the position for atom 5 must be defined relative to the atom that first crossed the
bridge i.e. an improper torsion 5-3-2-4.

• If the central bond is part of a ring, it cannot be a flexible torsion.

• Each time we look for a ‘connection’ from an atom, we always use the lowest index atom that is

connected, excluding the atom we are tracking from

We’ll now take a typical example (famotidine) and see how this works in practice.

Famotidine: renumbering the structure

N
14

15

S
16

17

13

12

S
11

10

95
N
6

N4S1

O
3

O2

N
33

35

34

7

8

N19

2028

27

30

29

31

32

N21
N24

26

25

22

23

18

94

95

The numbering scheme is from a .CSSR file, which is shown below

 1 S1 0.00000 0.00000 0.00000 2 3 4 33
 2 O2 1.43958 0.00000 0.00000 1 0 0 0
 3 O3 -0.66320 1.28419 0.00000 1 0 0 0
 4 N4 -0.40765 -0.88451 1.28417 1 5 0 0
 5 C5 -1.67657 -1.14553 1.55244 4 6 9 0
 6 N6 -2.72661 -0.84659 0.82513 5 7 8 0
 7 H7 -2.64780 -0.44281 0.13183 6 0 0 0
 8 H8 -3.51664 -1.07174 1.09032 6 0 0 0
 9 C9 -1.92778 -1.82462 2.87380 5 10 31 32
 10 C10 -1.83328 -0.83920 4.04576 9 11 29 30
 11 S11 -3.15763 0.38730 4.11686 10 12 0 0
 12 C12 -2.46400 1.75399 3.11132 11 13 27 28
 13 C13 -1.37355 2.49913 3.79836 12 14 17 0
 14 N14 -1.72206 3.44723 4.74729 13 15 0 0
 15 C15 -0.65834 4.05997 5.22388 14 16 19 0
 16 S16 0.84898 3.46491 4.54237 15 17 0 0
 17 C17 -0.04407 2.35168 3.57109 13 16 18 0
 18 H18 0.39441 1.77470 2.93215 17 0 0 0
 19 N19 -0.55717 5.05435 6.13996 15 20 0 0
 20 C20 -1.65577 5.66504 6.58976 19 21 24 0
 21 N21 -1.49335 6.65177 7.47900 20 22 23 0
 22 H22 -0.74545 6.92387 7.68745 21 0 0 0
 23 H23 -2.15564 7.03585 7.73829 21 0 0 0
 24 N24 -2.90102 5.36593 6.21922 20 25 26 0
 25 H25 -3.02436 4.74583 5.69903 24 0 0 0
 26 H26 -3.51859 5.80870 6.51171 24 0 0 0
 27 H27 -2.14046 1.40036 2.24489 12 0 0 0
 28 H28 -3.18891 2.34331 2.91616 12 0 0 0
 29 H29 -1.88968 -1.31614 4.82938 10 0 0 0
 30 H30 -1.03619 -0.39013 4.03420 10 0 0 0
 31 H31 -1.26103 -2.49122 2.97977 9 0 0 0
 32 H32 -2.82899 -2.21138 2.84944 9 0 0 0
 33 N33 -0.58734 -0.79346 -1.29434 1 34 35 0
 34 H34 -0.72390 -0.27427 -1.94887 33 0 0 0
 35 H35 -0.11417 -1.48289 -1.51453 33 0 0 0

This molecule is numbered starting from one end. Ideally, we would like the Z-matrix to start from S11
which lies at the middle of the molecule - this ensures that dependencies amongst the torsion angles are
evenly distributed, which confers performance benefits during the global optimisation stage [2]. Thus we
will renumber the structure based upon the connectivity, starting from atom S11. The algorithm is
straightforward: pick the start atom and call it atom 1 and make a note that this has been renumbered and
traced. Look at the n atoms connected to it and number them 2 through to n. Make a note that these atoms
have been renumbered. Now loop over the connected atoms and look at the atoms connected to those
atoms i.e. begin tracing the first connected atom. Clearly, this is a recursive process which will continue
until there are no more atoms left to trace that are ‘descended’ from this first connected atom. The initial
loop over the atoms connected to atom 1 will then move on to the second connected atom and so on until
all atoms have been renumbered and all atoms have been marked as having been traced. A trivial piece
of C++ code for doing this is attached at the end of this document, together with the sample input file
‘famot.xyz’. This program simply outputs the mapping "original atom number → new atom number".
Here is the result of the renumbering.

N
23

25

S
26

24

20
3

S
1

2

47
N
11

N10S12

O
14

O13

N
15

17

16

18

19

N27

2922

21

6

5

8

9

N30
N31

35

34

32

33

28

 1 S11 -3.15763 0.38730 4.11686 2 3 0 0
 2 C10 -1.83328 -0.83920 4.04576 1 4 5 6
 3 C12 -2.46400 1.75399 3.11132 1 20 21 22
 4 C9 -1.92778 -1.82462 2.87380 2 7 8 9
 5 H29 -1.88968 -1.31614 4.82938 2 0 0 0
 6 H30 -1.03619 -0.39013 4.03420 2 0 0 0
 7 C5 -1.67657 -1.14553 1.55244 4 10 11 0
 8 H31 -1.26103 -2.49122 2.97977 4 0 0 0
 9 H32 -2.82899 -2.21138 2.84944 4 0 0 0
 10 N4 -0.40765 -0.88451 1.28417 7 12 0 0
 11 N6 -2.72661 -0.84659 0.82513 7 18 19 0
 12 S1 0.00000 0.00000 0.00000 10 13 14 15
 13 O2 1.43958 0.00000 0.00000 12 0 0 0
 14 O3 -0.66320 1.28419 0.00000 12 0 0 0
 15 N33 -0.58734 -0.79346 -1.29434 12 16 17 0
 16 H34 -0.72390 -0.27427 -1.94887 15 0 0 0
 17 H35 -0.11417 -1.48289 -1.51453 15 0 0 0
 18 H7 -2.64780 -0.44281 0.13183 11 0 0 0
 19 H8 -3.51664 -1.07174 1.09032 11 0 0 0
 20 C13 -1.37355 2.49913 3.79836 3 23 24 0
 21 H27 -2.14046 1.40036 2.24489 3 0 0 0
 22 H28 -3.18891 2.34331 2.91616 3 0 0 0
 23 N14 -1.72206 3.44723 4.74729 20 25 0 0
 24 C17 -0.04407 2.35168 3.57109 20 26 28 0
 25 C15 -0.65834 4.05997 5.22388 23 26 27 0
 26 S16 0.84898 3.46491 4.54237 24 25 0 0
 27 N19 -0.55717 5.05435 6.13996 25 29 0 0
 28 H18 0.39441 1.77470 2.93215 24 0 0 0
 29 C20 -1.65577 5.66504 6.58976 27 30 31 0
 30 N21 -1.49335 6.65177 7.47900 29 32 33 0
 31 N24 -2.90102 5.36593 6.21922 29 34 35 0
 32 H22 -0.74545 6.92387 7.68745 30 0 0 0
 33 H23 -2.15564 7.03585 7.73829 30 0 0 0
 34 H25 -3.02436 4.74583 5.69903 31 0 0 0
 35 H26 -3.51859 5.80870 6.51171 31 0 0 0

Now we remove any forward references to atoms removed, as specified in 'Step 3' earlier, to give:

 1 S11 -3.15763 0.38730 4.11686
 2 C10 -1.83328 -0.83920 4.04576 1
 3 C12 -2.46400 1.75399 3.11132 1
 4 C9 -1.92778 -1.82462 2.87380 2
 5 H29 -1.88968 -1.31614 4.82938 2
 6 H30 -1.03619 -0.39013 4.03420 2
 7 C5 -1.67657 -1.14553 1.55244 4
 8 H31 -1.26103 -2.49122 2.97977 4
 9 H32 -2.82899 -2.21138 2.84944 4
 10 N4 -0.40765 -0.88451 1.28417 7

96

97

 11 N6 -2.72661 -0.84659 0.82513 7
 12 S1 0.00000 0.00000 0.00000 10
 13 O2 1.43958 0.00000 0.00000 12
 14 O3 -0.66320 1.28419 0.00000 12
 15 N33 -0.58734 -0.79346 -1.29434 12
 16 H34 -0.72390 -0.27427 -1.94887 15
 17 H35 -0.11417 -1.48289 -1.51453 15
 18 H7 -2.64780 -0.44281 0.13183 11
 19 H8 -3.51664 -1.07174 1.09032 11
 20 C13 -1.37355 2.49913 3.79836 3
 21 H27 -2.14046 1.40036 2.24489 3
 22 H28 -3.18891 2.34331 2.91616 3
 23 N14 -1.72206 3.44723 4.74729 20
 24 C17 -0.04407 2.35168 3.57109 20
 25 C15 -0.65834 4.05997 5.22388 23
 26 S16 0.84898 3.46491 4.54237 24 25
 27 N19 -0.55717 5.05435 6.13996 25
 28 H18 0.39441 1.77470 2.93215 24
 29 C20 -1.65577 5.66504 6.58976 27
 30 N21 -1.49335 6.65177 7.47900 29
 31 N24 -2.90102 5.36593 6.21922 29
 32 H22 -0.74545 6.92387 7.68745 30
 33 H23 -2.15564 7.03585 7.73829 30
 34 H25 -3.02436 4.74583 5.69903 31
 35 H26 -3.51859 5.80870 6.51171 31

Note that only a single atom has two connected atoms coming from it. This indicates that there is a single
ring system in the molecule.

Famotidine: constructing the Z-matrix

Construction of the Z-matrix is now simply a matter of filling in the blanks in the table below. Atom 1
lies at 0,0,0, atom 2 lies at some distance a from atom 1, atom 3 lies at some distance b from atom 1 and
makes an angle c with 1 and 2. Atom 4 lies at some distance d from atom 2, making an angle e with 2
and 1 and a torsion f with 2,1 and 3. This torsion can be varied. NB: We already have the entire first
column (Bond to) in the form of the first connectivity column in the renumbered XYZ file.

 # Atom Length Angle Torsion Variable Bond to Angle to Torsion to
 1 S11 0.0 0.0 0.0 N 0 0 0
 2 C10 a 0.0 0.0 N 1 0 0
 3 C12 b c 0.0 N 1 2 0
 4 C9 d e f Y 2 1 3
 5 etc.....

The calculation of distances, angles and torsions for the Z-matrix is straightforward in Cartesian space.
By placing the blank Z-matrix next to the renumbered XYZ file, one can easily see the correspondence
between them, and how the Z-matrix file can be generated automatically, using the bond connection
information. All we need to remember for the moment is that each time we look back for a connection,
we always use the connected atom with the lowest index number, of course remembering that we must
exclude the atoms we are tracking from. For example, working through the first few atoms…

 1 S11 -3.15763 0.38730 4.11686
 2 C10 -1.83328 -0.83920 4.04576 1
 3 C12 -2.46400 1.75399 3.11132 1
 4 C9 -1.92778 -1.82462 2.87380 2
 5 H29 -1.88968 -1.31614 4.82938 2
 6 H30 -1.03619 -0.39013 4.03420 2
 7 C5 -1.67657 -1.14553 1.55244 4
 8 H31 -1.26103 -2.49122 2.97977 4
 9 H32 -2.82899 -2.21138 2.84944 4
 …
 20 C13 -1.37355 2.49913 3.79836 3

3

S
1

2

4
7

6

5

8

9

1 lies at the origin. 2 is connected to 1. 3 is connected to 1 and as 1 is connected to 2, the angle is 3-1-2.
4 is connected to 2, 2 is connected to 1, 1 is connected to 3, so the angle must be 4-2-1 and the torsion
4-2-1-3. Torsion 4-2-1-3 must be flagged as a variable torsion. 5 is connected to 2, the lowest index
connected to 2 is 1, and the lowest (excluding 2 as it has just been used) connected to 1 is 3. Therefore
the torsion is 5-2-1-3. However, the central atoms 2-1 already participate in a rotating torsion and so
atom 3 is replaced by the first atom that crossed the 2-1 bridge i.e. 4. The torsion thus becomes 5-2-1-4
i.e. an improper torsion that is fixed relative to the first atom of the proper torsion. Similarly, 6-2-1-3
must become 6-2-1-4. 7 is connected to 4, the lowest index from 4 is 2, the lowest index from 2 is 1, thus
7-4-2-1 is the correct torsion. This must be flagged as being variable. 8 is connected to 4, the lowest
index from 4 is 2, the lowest index from 2 is 1, thus 8-4-2-1 is the suggested torsion. As the 4-2 bridge
has already been crossed, the correct torsion must be 8-4-2-7. Similarly, 9-4-2-7 is correct torsion for
atom 9. By the time we arrive at atom 20, we are starting to build the other side of the molecule but the
same rules still apply. 20 is connected to 3, 3 to 1 and 1 to 2. The torsion is therefore 20-3-1-2.

It should be clear by now that the rules for the construction of the Z-matrix become pretty straightforward
once the renumbering process has been carried out. However, we still have a problem to deal with when
handling ring systems.

Ring system handling

As mentioned earlier, the presence of a ring is indicated by an atom in the renumbered list having more
than one connected atom. We need to identify the ring torsions and flag them to say that they cannot be
variable. Looking more closely at atom 26,

 20 C13 -1.37355 2.49913 3.79836 3
 21 H27 -2.14046 1.40036 2.24489 3
 22 H28 -3.18891 2.34331 2.91616 3
 23 N14 -1.72206 3.44723 4.74729 20
 24 C17 -0.04407 2.35168 3.57109 20
 25 C15 -0.65834 4.05997 5.22388 23
 26 S16 0.84898 3.46491 4.54237 24 25

we see that it has more than one connected atom. By following the connections from these connected
atoms, we see that the ring must consist of

N
23

25

S
2624

20

and so any torsion that involves a central bond of 26-24,26-25,24-20,25-23 or 23-20 cannot be variable.
To illustrate that this works, the rules outlined thus far would generate the following torsions leading up
to and around the ring.

98

99

20-3-1-2 Variable Proper
21-3-1-20 Fixed Improper
22-3-1-20 Fixed Improper
23-20-3-1 Variable Proper
24-20-3-23 Fixed Improper
25-23-20-3 Fixed Proper (because it involves a central bond of 23-20)
26-24-20-3 Fixed Proper (because it involves a central bond of 24-20)
27-25-23-20 Fixed Proper (because it involves a central bond of 25-23)
28-24-20-3 Fixed Proper (because it involves a central bond of 24-20)

Remember that the distinction between a proper and an improper torsion is one of nomenclature and the
only difference that we actually see in the final Z-matrix between these different types of torsions is: are
they flagged as being variable or not?

Connectivity in the final Z-matrix as a result of applying the rules described is given below, with actual
lengths, angles and torsions omitted for clarity.

 # Atom Len Ang Tor Var Bond to Angle to Torsion to
 1 S11 N 0 0 0
 2 C10 N 1 0 0
 3 C12 N 1 2 0
 4 C9 Y 2 1 3
 5 H29 N 2 1 4
 6 H30 N 2 1 4
 7 C5 Y 4 2 1
 8 H31 N 4 2 7
 9 H32 N 4 2 7
 10 N4 Y 7 4 2
 11 N6 N 7 4 10
 12 S1 Ydb 10 7 4
 13 O2 Y 12 10 7
 14 O3 N 12 10 13
 15 N33 N 12 10 13
 16 H34 Yh 15 12 10
 17 H35 N 15 12 16
 18 H7 Yh 11 7 4
 19 H8 N 11 7 18
 20 C13 Y 3 1 2
 21 H27 N 3 1 20
 22 H28 N 3 1 20
 23 N14 Y 20 3 1
 24 C17 N 20 3 23
 25 C15 Nr 23 20 3
 26 S16 Nr 24 20 3
 27 N19 Nr 25 23 20
 28 H18 Nr 24 20 22
 29 C20 Y 27 25 23
 30 N21 Ydb 29 27 25
 31 N24 N 29 27 30
 32 H22 Yh 30 29 27
 33 H23 N 30 29 32
 34 H25 Yh 31 29 27
 35 H26 N 31 29 34

r indicates ring torsion
h indicates torsion that will twist only H atoms and so is not really needed
db indicates torsion around a double bond that is not needed

Therefore, the algorithm suggests a total of 13 torsions, which a glance at a sketch of the molecule shows
to be correct.

N

S
S

N

N
S

O

O

N

N

N
N

However, applying our chemical knowledge (eliminating double bonds and rotations that only affect the
positions of H atoms), we see that only 7 make any sense for an X-ray powder diffraction experiment

N

S
S

N

N
S

O

O

N

N

N
N

Summary

The algorithm outlined above, as implemented in the DASH computer program for structure
determination from powder diffraction data, has proven to be very successful. The critical step is the
renumbering of the structure; once this is done, generation of the Z-matrix is straightforward. Although
alternatives to the Z-matrix approach exist, it remains a very simple and useful formalism.

1. Shankland, K. (2004). http://www.iucr.org/iucr-top/comm/ccom/newsletters/2004aug/
2. Shankland, K., McBride, L., David, W.I.F., Shankland, N., Steele, G., (2002) J. Appl. Crystallogr., 35,
443-454.

100

http://www.iucr.org/iucr�top/comm/ccom/newsletters/2004aug/

101

Atom renumbering code (reads file 'famot.xyz')

#include <iostream.h>
#include <fstream.h>
#include <math.h>
int used[100], ic[100][5], ic2[100][5], numlines;
double xyz[100][3], xyz2[100][6];
void trace(int i);

void main() {
 int j, junk, itrace;
 char junk2[2];
 ifstream infile("famot.xyz",ios::in);
 infile >> numlines;
 for (j=1; j<=numlines; j++)
 infile >>junk>>junk2>>xyz[j][1]>>xyz[j][2]
 >>xyz[j][3]>>ic[j][1]>>ic[j][2]>>ic[j][3]>>ic[j][4];
 for (j=0; j<=11; j++)
 used[j] = 0;
 cout << "trace from which atom number ? ";
 cin >> itrace;
 trace(itrace);
}

void trace(int i) {
 static int incr=0, mapping[100], traced[100];
 int j, k;
 traced[i]=1;
 if (used[i] == 0) {
 used[i] = 1;
 incr++;
 mapping[i]=incr;
 xyz2[mapping[i]][1]=xyz[i][1];
 xyz2[mapping[i]][2]=xyz[i][2];
 xyz2[mapping[i]][3]=xyz[i][3];
 ic2[mapping[i]][1]=ic[i][1];
 ic2[mapping[i]][2]=ic[i][2];
 ic2[mapping[i]][3]=ic[i][3];
 ic2[mapping[i]][4]=ic[i][4];
 cout << "mapping " << i << " to "<< mapping[i] << endl;
 }

 for (j=1; j<=4; j++) {
 if (ic[i][j] != 0) {
 if (used[ic[i][j]] == 0) {
 used[ic[i][j]] = 1;
 incr++;
 mapping[ic[i][j]]=incr;
 xyz2[mapping[i]][1]=xyz[i][1];
 xyz2[mapping[i]][2]=xyz[i][2];
 xyz2[mapping[i]][3]=xyz[i][3];
 ic2[mapping[i]][1]=ic[i][1];
 ic2[mapping[i]][2]=ic[i][2];
 ic2[mapping[i]][3]=ic[i][3];
 ic2[mapping[i]][4]=ic[i][4];
 cout << "mapping " << ic[i][j] << " to "<< mapping[ic[i][j]] << endl;
 }
 }
 }

 for (j=1; j<=4; j++) {
 k=ic[i][j];
 if ((k!=0) && (traced[k]==0)) {
 trace(k);
 }
 }

}

102

famot.xyz

35
 1 S1 0.00000 0.00000 0.00000 2 3 4 33
 2 O2 1.43958 0.00000 0.00000 1 0 0 0
 3 O3 -0.66320 1.28419 0.00000 1 0 0 0
 4 N4 -0.40765 -0.88451 1.28417 1 5 0 0
 5 C5 -1.67657 -1.14553 1.55244 4 6 9 0
 6 N6 -2.72661 -0.84659 0.82513 5 7 8 0
 7 H7 -2.64780 -0.44281 0.13183 6 0 0 0
 8 H8 -3.51664 -1.07174 1.09032 6 0 0 0
 9 C9 -1.92778 -1.82462 2.87380 5 10 31 32
 10 C10 -1.83328 -0.83920 4.04576 9 11 29 30
 11 S11 -3.15763 0.38730 4.11686 10 12 0 0
 12 C12 -2.46400 1.75399 3.11132 11 13 27 28
 13 C13 -1.37355 2.49913 3.79836 12 14 17 0
 14 N14 -1.72206 3.44723 4.74729 13 15 0 0
 15 C15 -0.65834 4.05997 5.22388 14 16 19 0
 16 S16 0.84898 3.46491 4.54237 15 17 0 0
 17 C17 -0.04407 2.35168 3.57109 13 16 18 0
 18 H18 0.39441 1.77470 2.93215 17 0 0 0
 19 N19 -0.55717 5.05435 6.13996 15 20 0 0
 20 C20 -1.65577 5.66504 6.58976 19 21 24 0
 21 N21 -1.49335 6.65177 7.47900 20 22 23 0
 22 H22 -0.74545 6.92387 7.68745 21 0 0 0
 23 H23 -2.15564 7.03585 7.73829 21 0 0 0
 24 N24 -2.90102 5.36593 6.21922 20 25 26 0
 25 H25 -3.02436 4.74583 5.69903 24 0 0 0
 26 H26 -3.51859 5.80870 6.51171 24 0 0 0
 27 H27 -2.14046 1.40036 2.24489 12 0 0 0
 28 H28 -3.18891 2.34331 2.91616 12 0 0 0
 29 H29 -1.88968 -1.31614 4.82938 10 0 0 0
 30 H30 -1.03619 -0.39013 4.03420 10 0 0 0
 31 H31 -1.26103 -2.49122 2.97977 9 0 0 0
 32 H32 -2.82899 -2.21138 2.84944 9 0 0 0
 33 N33 -0.58734 -0.79346 -1.29434 1 34 35 0
 34 H34 -0.72390 -0.27427 -1.94887 33 0 0 0
 35 H35 -0.11417 -1.48289 -1.51453 33 0 0 0

103

Call for Contributions to the Next CompComm Newsletter

Due to the IUCr 2005 Florence congress occuring in the middle of the near, the sixth issue of the
Compcomm Newsletter is expected to appear around January of 2006 with the primary theme to be
determined. If no-one is else is co-opted, the newsletter will be edited by Lachlan Cranswick.

Contributions would be aso greatly appreciated on matters of general interest to the crystallographic
computing community, e.g. meeting reports, future meetings, developments in software, algorithms,
coding, programming languages, techniques and other news.

Please send articles and suggestions directly to the editor.

Lachlan M. D. Cranswick
NPMR, NRC,
Building 459, Station 18,
Chalk River Laboratories,
Chalk River, Ontario,
Canada, K0J 1J0
E-mail: lachlan.cranswick@nrc.gc.ca
WWW: http://neutron.nrc.gc.ca/peep.html#cranswick

mailto:lachlan.cranswick@nrc.gc.ca

	Jean-François Bérar and Gianguido Baldinozzi
	Uwe Grimm
	Hai-fu Fan
	Hai-fu Fan
	Rob Hooft
	Dennis Mikkelson, Arthur J. Schultz, Ruth Mikkelson and Thom
	Václav Petříček and Michal Dušek
	Thomas Proffen
	Richard Cooper and David Watkin
	Ralf W. Grosse-Kunstleve, Pavel V. Afonine, Nicholas K. Saut
	Kenneth Shankland
	The IUCr Commission on Crystallographic Computing - Trienn
	I Introduction
	II Construction of Aperiodic Tilings

	III Summary
	Bibliography
	References

	Appendix Keywords for running DIMS
	Introduction
	Point detector systems
	CCD Detector systems
	Conclusion
	Acknowledgments
	References

	Introduction
	Fourier (3+d) dimension techniques
	Graphic interpretation of structural results
	Graphical and interpretation tools in Jana2000
	Abstract
	Preamble
	1 Introduction
	2 Management of parameters: Phil is your friend
	2.1 Beyond syntax
	2.2 Master files
	2.3 User files
	2.4 Command-line arguments + Phil
	2.5 Merging of Phil objects
	2.6 Conversion of Phil objects to pure Python objects
	2.7 Conversion of Python objects to Phil objects
	2.8 Extending Phil
	2.9 Variable substitution
	2.10 Phil odds and ends

	3 Refinement tools
	3.1 mmtbx.refinement.f_model.manager
	Bulk-solvent correction and anisotropic scaling
	3.3 Simulated annealing refinement
	3.4 Building of hydrogen atoms
	3.5 Maximum-likelihood tools

	4 iotbx.reflection_statistics
	4.1 Double coset decomposition

	5 iotbx.mtz
	6 Integration of PyCifRW
	7 Acknowledgments
	8 References
	Desirable attributes for a computer program that calculates

	A strategy for the calculation
	Ring system handling

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

