
dREL Language Specifications

Appendix to the paper:

dREL: A RELATIONAL EXPRESSION LANGUAGE FOR DICTIONARY METHODS

Nick Spadaccini, Ian R. Castleden, Doug du Boulay, Sydney R. Hall

School of Biomedical, Biomolecular and Chemical Sciences, The University of Western

Australia, Nedlands 6009, Australia

Email: Nick.Spadaccini@uwa.edu.au, Sydney.Hall@uwa.edu.au

Primitive Data Types

dREL supports the following primitive data types of the values for variables appearing in methods

expressions. Local variable names (as opposed to global data tags) are restricted to alphanumeric

characters only.

 • Character strings

 • Integer numbers

 • Real numbers

 • Complex numbers

 • Measured numbers

Data typing may be achieved by explicitly within the dictionary definitions of the object, or

implicitly from usage in an expression, or explicitly using a function. DDLm dictionary definitions

specify data types using the TYPE attributes (see _type.contents, _type.container,

_type.purpose, _type.dimension).

1. CHARACTER STRINGS

1.1 Dictionary definition

The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents.

1.2 Inline definition

Character strings are created by enclosing a string in quoting literals. Matching single and double

quote characters at the extremities of a single line string implicitly identify a literal object as TYPE

CHARACTER. Matching triple quote characters at the extremities of a multi-line string implicitly

identify a literal object as TYPE CHARACTER.

1.2.1 Single quotes

Matching single quote characters at the extremities of a single line string implicitly identify a literal

object as TYPE character. The following is simple character string.

 'single quotes make it easy to embed a "double quote"'

1.2.2 Double quotes

Matching double quote characters at the extremities of a single line string implicitly identify a literal

object as TYPE character. The following is simple character string.

 "double quotes make it easy to embed a 'single quote'"

It is also possible to use C-style elides to achieve this effect.

 "double quotes don’t prevent the use of a \"double quote\""

1.2.3 Triple quotes

Matching triple quote characters at the extremities of a multi-line string implicitly identify a literal

object as TYPE character. The following is simple character string.

 """ triple quotes

 are

 multi-line"""

This is equivalent to

 "triple quotes\nare\nmulti line\n"

Triple quotes comprised of the single quote literal are also supported.

 '''single or double quotes are can be

 used to define the triple quote sequence.'''

2. INTEGER NUMBERS

dREL supports decimal and hexadecimal Integer numbers. These are identified in three ways;

explicitly from dictionary definitions of the object, implicitly from usage in the expression language,

or explicitly using a function.

2.1 Dictionary definition

The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents.

2.2 Inline definition

2.2.1 Decimal integers

 The syntax of a decimal integer is: [+-]?[0-9]+

 An example decimal integer is: -23

2.2.2 Hexadecimal integers

 The syntax of a hexadecimal integer is: [0][xX][0-9a-fA-F]+

 An example hexadecimal integer is: 0x6672af

 3. REAL NUMBERS

dREL supports decimal and scientific Real (or floating-point) objects. Real numbers are identified

in three ways; explicitly from dictionary definitions of the object, implicitly from usage in the

expression language, or explicitly using a function.

3.1 Dictionary definition

The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents.

3.2 Inline definition

3.2.1 Decimal real numbers

The syntax of a decimal real number is: [+-]?([0-9]+.[0-9]*|.[0-9]+)[[Ee][+-]?[0-9]+]?

 An example decimal real number is: -7893.8221 or -7.89382e+3

3.3 Explicit definition

Conversion to real number is achieved with the function:

 • Float())

4. COMPLEX NUMBERS

dREL supports Complex number objects. Complex numbers are identified in three ways; explicitly

from dictionary definitions of the object, implicitly from usage in the expression language, or

explicitly using a function.

4.1 Dictionary definition

The data dictionary specifies the type of a data tag using the TYPE attribute _type.contents.

4.2 Explicit definition

Conversion to a complex number is achieved with the function:

 • Complex (Nreal, Nimag)

5. MEASURED NUMBERS

A Measured value consists of a number and its standard uncertainty appended in parentheses. The

uncertainty value is an integer scaled to the precision of the last digits of the measurement value.

Measurement numbers are identified in three ways; explicitly from dictionary definitions of the

object, implicitly from usage in the expression language, or explicitly using a function.

5.1 Dictionary definition

The dictionary definitions declare the TYPE of a data tag with the following set of attribute

declarations:
 _type.contents Real

 _type.purpose Measured

The value of the attribute _type.contents can also be Integer or Complex.

5.2 Inline definition

5.2.1 Measured numbers

 The syntax of a measurement number is: [Real|DecimalInteger]\([1-9][0-9]*\)

 An example measurement number is: -783.2(12) = -783.2±1.2

 Other examples are x.xxE-yy(zz) or x.xx(zz)E-yy or x.xxE-yy(z.zzE+ww) where a ‘.’ in the

standard uncertainty value indicates an explicit value.

5.3 Explicit definition

Conversion to a measurement number is achieved with the function:

 • Measure (val, su)

Container Types for dREL

dREL supports the container types

 • List List data is bounded by square brackets []

 • Array Array data is bounded by square brackets []

 • Matrix Matrix data is bounded by square brackets []

 • Table Table data is bounded by curly brackets { }

 • Single

dREL also supports the nesting and mixing of container types i.e. the definition

 _type.container List

 _type.contents Real

 -type.dimension (5(3))

refers to a list of five arrays; each array contains three real numbers.

1. LIST CONTAINERS

List containers are objects with the following properties.

• Type: contained items may be of any, but the same, TYPE.

• Dimension: Lists are single dimensioned.

• Size: the length of a list need not pre-defined.

• Access: indexed by integers (implied starting index is 0).

• Shape: bounded by [....] and may be nested.

Lists are created in three ways; explicitly from dictionary definitions of the object, implicitly from

usage in the expression language, or explicitly using a function.

1.1 Dictionary definition

The dictionary definitions declare the nature of a List container with attribute declarations. Here are

such declarations for a list of real numbers of nine elements.

 _type.container List

 _type.contents Integer

1.2 Inline definition

Lists may be defined inline using the List(…) function. E.g.

 List([1, 7, 3, 10]) which is also implied by [1,7,3,10]

2. ARRAY CONTAINERS

Array containers are objects with the following properties.

• Type: may contain items of any TYPE.

• Dimension: are single or multi dimensioned.

• Size: predetermined upper extents; minimum elements assumed to be 1.

• Access: indexed by integers (implied starting index is 0).

• Shape: bounded by [....] and may be nested.

Arrays are created in three ways; explicitly from dictionary definitions of the object, implicitly from

usage in the expression language, or explicitly using a function.

2.1 Dictionary definition

The dictionary definitions declare the nature of a Array container with attribute declarations. Here

are the attributes for defining an array of binary numbers.

 _type.container Array

_type.contents Binary

2.2 Inline definition

Vectors may be defined inline using the Array(….) function. E.g.

 Array([[126,255,0],[123,245,10]]) which is also implied by [[126,255,0],[123,245,10]]

for a data item defined as _type.container Array

3. MATRIX CONTAINERS

Matrix containers are objects with the following properties.

• Type: only contain items of number TYPE.

• Dimension: are single or multi dimensioned.

• Size: predetermined upper extents; minimum elements assumed to be 1.

• Access: indexed by integers (implied starting index is 0).

• Shape: bounded by [....] and may be nested.

Matrices are created in three ways; explicitly from dictionary definitions of the object, implicitly

from usage in the expression language, or explicitly using a function.

3.1 Dictionary definition

The dictionary definitions declare the nature of a Matrix container with attribute declarations. Here

are the attributes for defining a vector of three real numbers, indexed from 0 to 2.

 _type.container Matrix

_type.contents Real

_type.dimension [3]

3.2 Inline definition

Vectors may be defined inline using the Matrix(….) function. E.g.

 Matrix([10.2, 12.3, 7.4]) which is also implied by [10.2,12.3,7.4] for a data item

defined as _type.container Matrix

4. TABLE CONTAINERS

Table containers are similar to Lists except that each value in the table may have an associated key.

A table has the following properties.

• Type: can contain values of any, but the same, TYPE.

• Dimension: single dimensioned list; each “key”:val is considered as one element.

• Size: the length of a table is not pre-determined.

• Access: by key; the default keys are sequential integers starting at 0.

• Shape: bounded by {...} and may be nested.

Tables are created in two ways; explicitly from dictionary definitions of the object, implicitly from

usage in the expression language, or explicitly using a function.

4.1 Dictionary definition

The dictionary definitions identify a Table object with the following attribute declarations.

 _type.container Table

 _type.contents Real

A Table differs from a List in several important ways. A List object contains a specified number of

values that are identified explicitly by sequence. A Table contains a sequence of character or

number values which identified by a key.

4.2 Explicit definition

Conversion of a sequence of objects to a new list is achieved with the function Table (‘key’:val,..).

E.g.

 Table(“left”:”links”,“right”:”recht”) implied by {“left”:”links”,“right”:”recht”}

5. SINGLE CONTAINERS

Single containers are a single value with the following properties.

• Type: may be of any TYPE.

• Dimension: a single value.

• Size: 1.

Single values are created in three ways; explicitly from dictionary definitions of the object,

implicitly from usage in the expression language, or explicitly using a function.

5.1 Dictionary definition

The dictionary definitions declare the nature of a Single container with attribute declarations. Here

is a declaration for a real number.

 _type.container Single

 _type.contents Real

5.2 Inline definition

Single values may be specified inline by equating it to another single value. E.g.

 a = 5.

 Z = a

Language Basics

In this section the basic syntax of dREL, and the language elements that lead up to controlling the

execution flow, are introduced. It is important to appreciate that dREL does not support, or require,

data declarations other than those already discussed. Nor does it provide input/output control

statements.

1. ASSIGNMENT EXPRESSIONS

1.1 Named objects

A NAMED object or “variable” in dREL may only be created on assignment. The typing of a

variable is by coersion. The scope of a variable is local.

1.2 Assignment statements

1.2.1 The process of object transfer is initiated with the “=“ character which transfers the value of

the right-hand expression of objects Robjects to the left-hand objects Lobjects. The general form of

the object transfer is:

 Lobjects = Robjects or Lobjects = { multi-line expression }

In the example below the value of the literal Integer object, “5”, is assigned to a mutable NAME

object, the variable string “x”.

 x = 5

Robjects may also be an expression of objects.

 x = y * z

 y = Sin (a) + Cos (a)

Multiple transfers are also allowed.

 a, b, c = 3.628, -7.67, 5.329

1.2.2 The process of object incrementation is initiated with the “+=“ digraph which increments the

values of the right-hand expression of objects Robjects to the left-hand objects Lobjects. The general

form of an object incrementation is:

 Lobjects += Robjects

In the example below the value of the literal Integer “1”, is added to the existing value in a mutable

NAME object, the single variable “x”.

 x += 2 i.e. if the value of x is initially 5, becomes 7

Lobjects may also be a muli-element container whereas Robjects may be either a single value or a

multi-element container E.g.

 vect += 1 i.e. if vect is initially [3,3,3], becomes [4,4,4]

 vect += [1,2,3] i.e. if vect is initially [3,3,3], becomes [4,5,6]

1.2.2 The process of object decrementation is initiated with the “-=“ digraph which decrements the

values of the right-hand expression of objects Robjects to the left-hand objects Lobjects. The general

form of an object incrementation is:

 Lobjects -= Robjects

In the example below the value of the literal Integer “1”, is subtracted from the existing value in a

mutable NAME object, the single variable “x”.

 x -= 2 i.e. if the value of x is initially 5, becomes 3

Lobjects may also be a muli-element container whereas Robjects may be either a single value or a

multi-element container E.g.

 vect -= 1 i.e. if vect is initially [3,3,3], becomes [2,2,2]

 vect -= [1,2,3] i.e. if vect is initially [3,3,3], becomes [2,1,0]

1.2.3 The process of object appending is initiated with the “++=“ trigraph which appends the values

of the right-hand expression of objects Robjects to the end of left-hand objects Lobjects. The general

form of an object appending is:

 Lobjects ++= Robjects

Lobjects must be a muli-element container whereas Robjects may be either a single value or a multi-

element container E.g.

 vect ++= 1 i.e. if vect is initially [3,3,3], becomes [3,3,3,1]

 vec2 ++= [1,2,3] i.e. if vec2 is initially [3,3,3], becomes [3,3,3,1,2,3]

 matx ++= [[1,2,3]] i.e. if matx is initially [[3,2,1]], becomes [[3,2,1],[1,2,3]]

1.3 Assignment TYPING

In dREL object types are not declared. We have already seen that the typing of Robjects items may

be determined from dictionary definitions, inline typing constructions or simply inferred by

association with objects of known type. The TYPE of Lobjects may be set by the same mechanisms,

or result directly from the inferred type of the Robjects value.

It follows that the statement

x = 5

sets the TYPE of “x” as Integer. A new assignment of “x” in the next statement

x = 10

is permitted because it has a consistent TYPE. However, the assignment

x = "Hello World"

is illegal but will not cause an error message to be raised.

This is contrary to the practice of some scripting languages, but it avoids the faulty and misleading

construction of expressions.

2. TYPE COERCION RULES

Type coercion rules are needed when Robjects expressions contain objects of mixed type. dREL

uses the following coercion rule, in order of increasing priority.

 Integer  Real  Complex

3. COMMENTS

Comments are non-executable strings. In dREL a sequence of characters following an unquoted

sharp or hash symbol # is interpreted as a comment, up to the end-of-line character. Here are typical

examples.

x = 5 # a comment follows an in-line hash

The following statement does not contain a comment because the hash symbol is contained within a

quoted string.

s = "# this is *not* a comment"

4. EXPRESSION OPERATORS AND TERMINATORS

dREL supports the following arithmetic expression operators

 + addition

 * product (dot product when applied to vectors)

 ^ cross product of vectors

 ** power of

 - subtraction

 / division

The operands apply to Integer, Real and Complex number objects. They are also applicable to the

containers List and Table provided the elements of these are of TYPE number. The expression

operators + and * have meaning for manipulating character strings.

dREL supports the following logical expression operators

 == equals

 != not equals

 > greater than

 < less than

 >= greater than or equals

 <= less than or equals

 and and

 or or

 not not

 in matches element of the list

 not in does not matches element of the list

dREL supports the following expression terminators

 ; semicolon separates multiple expressions in a line

 \n newline closes a line unless a balancing ')', '}' or ']' is missing

Example statements using these terminators follow.

 a = 234 ; y = 45 ; z = -2

 b = (y + z)/2.0

 c = (45 + 72 *

 (93 + 4) + z)

5. SUPPORTED ESCAPE SEQUENCES

The following special character sequences are supported in dREL expressions. Note that the same

diagraphs may be used for other purposes in data values, but within the literal dREL scripts the

following meanings will be assumed.

\n newline

\r carriage return

\f formfeed

\t horizontal tab

\x hexadecimal bit pattern

\0 null character

\\ backslash (\)

Flow Control

 dREL supports a range of standard and specialised flow control statements and terminators for

controlling the repeated execution of object expressions. These are as follows:

 • Do
 • Repeat
 • For
 • Loop
 • With
 • Break
 • Next
 • If/ElseIf/Else

The essential constituents of a repetitive execution sequence, is as follows.

 repeat-statement {
 expression block
 repeat-terminator (optional)
 }

If more than one expression exists within the expression block, it MUST be enclosed within a set of

braces "{" and "}". If only one expression is repeated, its association with the repeat_statement is

implied and the braces are optional. In general, it is good and safe programming practice to always

use braces to bound the repeated expression block.

1. DO STATEMENT

Indexed repetition of expressions is supplied with a Do statement.

 Do index = first, last, incr { *expression block* }

The index variable is initialised with the first index value (or variable) and executes the expression

block provided index is less than or equal to the last index value (or variable). The index is

incremented by the incr value AFTER each execution of the expression block. The incr value is

option and has a default value of 1.

A typical application of the Do operator follows.

 Do i = 0,20,2 { total = total + subtotal[i]; }

2. REPEAT STATEMENT

Unindexed repetition of expressions is supplied with a Repeat statement.

 Repeat { *expression block* }

The expression block MUST contain one or more invocations of the Break statement in order to exit

the repeat loop. Repeat loops may be nested. A typical application of the Repeat operator follows.

 Repeat { i=i+1; if(i>100) Break;….. }

3. FOR STATEMENT

Manipulation of List items is provided with with a For statement.

 For a in list : n op m { * expression block * }

where a is the current element of the entire list. An optional expression “:n op m” is available to

control the accessing of list packets, where n is the index (starting at 0) for each packet; op is the test

operator (< > <= >= allowed) and m is the test integer operand. The op and m entries are optional.

The index n is a local variable and may be tested elsewhere in the script.

An example where list is a literal object follows.

i = 0

For a in [“Mon”,“Tues”,“Wednes”,“Thurs”,“Fri”] {

 Day[i] = a + "day"; i += 1; }

4. LOOP STATEMENT

A fundamental function of dREL is to apply and derive data in a data file using definitions in a

dictionary. Much of this data is in looped lists, and, consequently, there needs to be a simple and

transparent way to identify and apply repetitive data items. Data items in the same list are,

according to the dictionary language DDLm, classified as belonging to the same generic category

group. The id code of a category is therefore a convenient tag to identify groups of items, and to

access “packets” (i.e. sub-lists) of data items in lists. The Loop repetition operator is provided

primarily for this purpose.

 Loop local as list : n op m { * expression block * }

The string local is an object variable, local only to the specific methods script in which it is invoked,

which assumes the successive values of list during the repeated execution of an expression block. If

list is a category id code, then the local object contains successive sub-list of tagged values (i.e. an

implicit Table) and individual data items may be accessed as object attributes of local. An optional

expression “:n op m” is available to control the looping of list packets, where n is the loop index

(starting at 0) for each packet; op is the test operator (< > <= >= allowed) and m is the test integer

operand. The op and m entries are optional. The index n is a local variable and may be tested

elsewhere in the script.

4.1 Data Loop Example 1

A simple invocation of Loop will now be considered for data. This example will access two data

items in the category POSITION, known by their data names as position.vector_xyz and

position.object_id. An abbreviated definition of the category and these items follow. Note that

position.object_id is specified as the category key to each packet of these items.

_category.id POSITION

category.keyid '_position.object_id'

_definition.id '_position.number'

_name.category_id position

_name.object_id number

_type.container Single

_type.contents Integer

_type.purpose Index

_definition.id '_position.object_id'

_name.category_id position

_name.object_id object_id

_type.container Single

_type.contents Uchar

_definition.id '_position.vector_xyz'

_name.category_id position

_name.object_id vector_xyz

_type.container Matrix

_type.contents Real

_type.dimension [3]

In a data file these items might appear in a looped list (abbreviated) as follows.

loop_

 _position.number

 _position.object_id

 _position.vector_xyz

 1 origin [0.0, 0.0, 0.0]

 2 body-diagonal [5.0, 5.0, 5.0]

 32 diagonal-terminal [10.0, 10.0, 10.0]

In a dREL script the Loop construct allows individual items in a packet (in this instance the packet

contains three values) to be addressed by the extension name defined in the dictionary with the

attribute _item.extension (i.e. number, object_id and vector_xyz).

Loop a as position {

 If (a.object_id == "origin") {

 CoordOrigin = a.vector_xyz }

 Else LocalPosn[a.number] = a.vector_xyz

}

4.2 Data Loop Example 2

Another example is needed to illustrate the functionality of the Loop operator when handling lists of

data from non-hierarchically-related but derived, categories. The prototype dictionary language

allows hierarchical relationships between data items to be defined, via category definitions, and

these provide access "pathways" which are independent of how these related data are stored in the

data file. For instance, items in the same category, or in hierarchically related categories, may be

accessed as an attribute extension of either the name of the “parent” category (i.e. the highest

category in the family hierarchy) or the name of the hierarchically related category.

All data in a looped list be of the same category family. Items from hierarchically related categories

may be in more than one looped list but for the purposes of access, the dREL parser subsumes these

items into a common list.

However, categories of data that are derived from another category will often use category keys

which refer to the same quantities. In these cases, the keys are not implicitly equivalent (as would be

the case if the categories were hierarchically related) but they are “linked” using the DDL attribute

name.parent_item_id. Here is the definition of an item in the category GEOM which is linked to a

category key in the category POSITION (see Example 1).

_definition.id '_geom.vertex1_id'

_name.category_id geom

_name.object_id vertex1_id

_name.linked_item_id '_position.object_id'

_type.container Single

_type.contents Text

The name.linked_item_id attribute specify that geom.vertex1_id has a value that is common to

one of the unique values of the item position.object_id. This linkage implies that

position.object_id is a "key" unique item in the category POSITION. The same relationships also

apply for the items geom.vertex2_id and geom.vertex3_id, which are shown below in an

example data list.

loop_

 _geom.type

 _geom.vertex1_id

 _geom.vertex2_id

 _geom.vertex3_id

 point origin . .

 line origin body-diagonal .

 line body-diagonal diagonal-terminal .

 triangle origin body-diagonal diagonal-terminal

Specific values in this list can be accessed via their unique extension names. However, because of

the defined relationship between the vertex ID's and the position.object_id (in Example 1), these

can be used to “point” to specific packets and items in the POSITION category using the

<category>[<key>].<extension> construction. The With command used the example dREL script

below is described in the next section and the list-append operator "++=" is described below.

With p as position

Loop g as geom {

 If (g.type == "point") {

 PointList ++= Tuple(Tuple(g.vertex1_id,

 p[g.vertex1_id].vector_xyz))

 }

 Else if (g.type == "line") {

 LineList ++= Tuple(Tuple(g.vertex1_id, g.vertex2_id),

 Tuple(p[g.vertex1_id].vector_xyz,

 p[g.vertex2_id].vector_xyz))
 }}

This illustrates how values from the category list can be directly accessed simply by appending the

name extensions to the item which is linked to the key of that list. Executing this script results in the

following values strings:

 PointList[0] is ("origin",[0.,0.,0.])

 LineList[0] is ("origin","body-diagonal"),([0.,0.,0.],[5.,5.,5.])

 LineList[1] is ("body-diagonal","diagonal-terminal"),([5.,5.,5.],[10.,10.,10.])

5. WITH STATEMENT

The With statement is identical to the Loop statement except that the list pointer is not incremented.

This statement is used only to identify the current list object within scope and context as a local

object. The general form is as follows.

 With local as list { *expression block* }

This statement is very useful for accessing data items in the current packet of a category lists. This

enables items in a list to be addressed as name extension attributes, just as in Loop.

With p as atom_site

 If (label == p.id) x = p.frac_vector

Note the braces about the expression block are required for multiline expressions.

6. BREAK TERMINATOR

Repetitive blocks can be exited prematurely with the Break keyword. The general form of the

statement is as follows.

 Break

For example, in the sequence

Do i=1:10 {

 Do j=i+1:10 {

 If (a[i] < a[j]) Break

}}

7. NEXT TERMINATOR

Repetitive blocks can be reset prematurely with the Next keyword. The general form of the

statement is as follows.

 Next

For example, in the sequence

Do i=1:10 {

 Do j=i+1:10 {

 If (a[i] < a[j]) Next

}}

8. IF/ELSEIF/ELSE STATEMENTS

The standard If/ElseIf/Else statements have the following form and sequence. The If statement must

precede all others in the sequence. The Else statement must, if used, follow all others. There may

be any number of ElseIf statements.

 If (expr) { *expression block* }

 Else If (expr) { *expression block* }

 Else { *expression block* }

Braces around the expression blocks are necessary if they contain more than one statement.

Intrinsic Functions

dREL has an extensive set of intrinsic functions, which are listed in this section according to the

following classes.

• CONVERSION and MANIPULATION

• TRIGONOMETRIC

• MATHEMATICAL

• DISCIPLINE

1. CONVERSION AND MANIPULATION FUNCTIONS.

These functions are responsible for fixing the TYPE of the contained object.

Complex() Convert two arguments (Real, Imag) into a Complex number

Real(), Imag() Returns real and imaginary part of Complex argument

Integer() Convert argument into an integer number

Float(), Rem() Convert to real number, get remainder of real number

Int(), Nint() Convert to trucated integer, rounded-up integer value

List() Convert arguments into a List object.

Table() Convert arguments into a Table object.

Numb() Convert the character argument into the ascii number equivalent.

Char() Convert the ascii number argument into a character equivalent.

Minor() Generate a matrix of minor elements from the matrix argument.

Cofactor() Generate a matrix of cofactor elements from the matrix argument.

Adjoint() Generate a matrix of adjoint elements from the matrix argument.

Inverse() Generate a matrix of inverse elements from the matrix argument.

Transpose() Generate a matrix of transposed elements from the matrix argument.

Eigen() Get eigenvalues and vectors of a 3x3 matrix and return as three lists

 containing four elements (value plus vector of direction cosines).

2. TRIGONOMETRIC FUNCTIONS.

These functions are responsible for performing trigonometric operations on the argument.

Sin(), Cos(), Tan() Sine, cosine and tangent functions of radian arguments.

Sind(), Cosd(), Tand() Sine, cosine and tangent functions of degree arguments.

Asin(), Acos(), Atan() Arcsine, cosine and tangent functions as radians.

Arcsin(), Arccos(), Arctan() Arcsine, cosine and tangent functions as radians.

Asind(), Acosd(), Atand() Arcsine, cosine and tangent functions as degrees.

Atan2(a,b), Atan2d(a,b) Arctangent function in radians and degrees

Phase() Get the phase in radians for a Complex number.

Exp(), ExpIm(), ExpImag() Exponential functions with Real and Complex arguments.

Log(), Ln() Base-10 and natural logarithm functions.

Pi, TwoPi Values of p and 2

3. MATHEMATICAL FUNCTIONS

These functions are responsible for performing mathematical operations on the arguments.

Sqrt() Get square root of number.

Mod() Modulus of arg1 to base arg2.

Abs(), Magn() Absolute value of the argument.

Sign() Sign of argment 2 applied to argument 1.

First(), Last() Get the first and last element of a list or character string.

Strip(list, n) Strip the nth element from the list. (n=0,1,2...)

Len() Get the length of a list or character string.

Sort() Sort all elements in a list from small to large.

Reverse() Reverse the order of a list.

TopLo(), TopHi() Sort all elements in a list from small to large; large to small.

Dim() Return an integer list of dimension lengths. Zero value is end of array.

Det() Get the determinant of a matrix

Dot(), Cross() Scalar and vector product of two vectors.

Norm() Root mean square value of elements in a list or vector.

MaxI(list,ind) Maximum value in list. Index of max value returned as argument 2.

MinI(list,ind) Minimum value in list. Index of max value returned as argument 2.

Max(), Min() Maximum and minimum values in the list.

SubString(s1, s2) Returns TRUE if string s1 is a substring of s2.

Eigen(mat) Return sorted list of three (value, vector) Lists.

4. DISCIPLINE-SPECIFIC FUNCTIONS

Specific functions may be defined in a data dictionary using the a definition save frame and DDL

attributes. These frames are opened with "save_function.<FunctionName>". The typing of the

function value is specified using the TYPE attributes. The definition of the a discipline function

within the method expression is achieved as follows:

Function <FunctionName> (<arg1> :[<ContainerType> , <ContentsType>],

 <arg2> :[<ContainerType> , <ContentsType>], etc.)

{ <expression evaluating FunctionName in terms of the input arguments> }

Note that an argument may be a container type "Category" and contents type "Tag".

In the Crystallographic CORE dictionary the following functions are already defined.

AtomType(label) Extract the “atom_type” element symbol from an atom label string label.

Closest(v, u) Returns [w, t] where w is the closest real space vector transformation of v to

 u, and t is the integer cell vector that converts v to w.

SeitzFromJones(text) Converts a Jones-Faithful equiv. pos. text (x,y,z) into a 4x4 Seitz matrix.

SymEquiv(s,cat,v) Converts a coordinate vector v into a vector transformed by the symmetry

seitz matrix extracted from category cat using index n from symop code s.

SymLat(s) Convert the symop code n_jkl into a lattice vector [j-5, k-5, l-5]

SymNum(s) Convert the symop code n_jkl into a symmetry integer n. (n=0,1,2...)

Symop(index, lvect) Convert symmetry equivalent position number index and cell lattice vector

 lvect to the symop code n_jkl. (n=1,2,3...)

List Operators

1. STRING CONCATENATION

The following properties of strings apply.

 • Concatenation of ASCII and UNICODE strings results in a UNICODE string.

 • Character strings are immutable.

 • There is no "char" type. Strings of length 1 are used.

1.1 Concatenation of literals

Multiple sequential string literals will be concatenated automatically in statements. E.g.

 x = "string literals that are adjacent" " are concatenated"

equivalent to

 x = "string literals that are adjacent are concatenated"

1.2 Concatenation of objects

The operators + and * may be applied to string objects. Here is an example of the + operator.

 s1 = "this" ; s2 = " and that"

 s3 = s1 + s2

The object s3 now holds “this and that”.

Strings made up of multiple instances of the same character sequence can be generated by the *

operator, as below.

 s4 = "-"*10

The object s4 now holds a string "-----------". The * operator can be applied to named objects

as well.

 s4 = "-EOF-" ; s5 = s4*3

The object s4 now holds a string "-EOF--EOF--EOF-".

2. LIST MEMBERSHIP

It is possible to test objects containing lists of strings for the “membership” of specific strings.

These tests are equivalent to looping through the lists and applying the standard string equivalence

operators “==” and “!=”, as illustrated in the following example statements.

cnt = List(["data_", "global_", "save_", "stop_", "loop_"])

Do i=0,4 { If(“stop_” == cnt[i]) Break ;}

The last statement is problematical because the length of the list of items being tested needs to be

known. It may be replaced simply by:

If (“stop_” in cnt) { … }

This works only if elements of the container are of the same type. The negation test for membership

of a list also applies. E.g.

If (“cell_” not in cnt) { … }

3. LIST NOTATION

The following notation is available for the formation of lists from existing named lists.

new = list[:] New copy of entire list.

new = list[n:m:i] New list with elements from indices n to m in steps of i.

new = list[n:m] New list of elements from indices n to m in steps of 1.

val = list[1] val becomes the value of the second element of list.

new = list1 + list2 New list of list1 concatenated with list2.

new = [list1, list2] New list of list1 concatenated with list2.

val1 += val2 Increment val1 with val2.

list1 += val Increment all elements in list1 with val.

list1 += list2 Increment matching elements in list1 with values in list2.

list1 ++= val Append val to list1.

list1 ++= list2 Append list2 to list1.

val1 -= val2 Decrement val1 with val2.

list1 -= val Decrement all elements in list1 with val.

list1 -= list2 Decrement matching elements in list1 with values in list2.

list[i:j] = list2 Cut and paste ALL of list2 into the elements i to j-1.

4. ARRAY NOTATION

The following notation applies strictly to Array objects.

var = mat[n,m] Variable contains the value of the matrix element (n,m)

vec = vec1 + val Scalar addition. [9,10,11] = Vector([4,5,6]) + 5

vec = Function(vec1) Vector function. [1,2,0] = Mod([4,5,6], 3) for (Mod, Int,)

vec = vec1 + vec2 Vector addition. [12,14,16] = Vector([4,5,6]) + Vector([8,9,10])

var = vec1 * vec2 Scalar (dot) product. 8*4+9*5+10*6 =Vector([4,5,6])*Vector([8,9,10])

vec = vec1 ^ vec2 Vector (cross) product. (-4,8,-4) = Vector([4,5,6]) ^ Vector([8,9,10])

vec = mat * vec1 Post-matrix vector multiply.

 E.g. [32,77,112] = Matrix([[1,2,3],[4,5,6],[7,8,9]]) * Vector([4,5,6])

vec = vec1 * mat Pre-matrix vector multiply.

 E.g. [66,81,96] = Vector([4,5,6]) * Matrix([[1,2,3],[4,5,6],[7,8,9]])

mat = mat1 * mat2 Matrix multiply. Matrices must have concordant shapes.

